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Abstract—Non-interactive zero-knowledge proofs
(NIZKs) are a powerful cryptographic tool, with
numerous potential applications. However, succinct
NIZKs (e.g., zk-SNARK schemes) necessitate a trusted
party to generate and publish some public parameters,
to be used by all provers and verifiers. This party
is trusted to correctly run a probabilistic algorithm
(specified by the the proof system) that outputs the
public parameters, and publish them, without leaking
any other information (such as the internal randomness
used by the algorithm); violating either requirement may
allow producing convincing “proofs” of false statements.
This trust requirement poses a serious impediment to
deploying NIZKs in many applications, because a party
that is trusted by all users of the envisioned system may
simply not exist.

In this work, we show how public parameters for a class
of NIZKs can be generated by a multi-party protocol, such
that if at least one of the parties is honest, then the result
is secure (in both aforementioned senses) and can be subse-
quently used for generating and verifying numerous proofs
without any further trust. We design and implement such a
protocol, tailored to efficiently support the state-of-the-art
NIZK constructions with short and easy-to-verify proofs
(Parno et al. IEEE S&P ’13; Ben-Sasson et al. USENIX
Sec ’14; Danezis et al. ASIACRYPT ’14). Applications
of our system include generating public parameters for
systems such as Zerocash (Ben-Sasson et al. IEEE S&P ’13)
and the scalable zero-knowledge proof system of (Ben-
Sasson et al. CRYPTO ’14).

I. INTRODUCTION

Consider first the following simple scenario. A server
owns a private database x, and a client wishes to learn
y := F (x) for a public function F , selected either
by himself or someone else. A (hiding) commitment
cm to x is known publicly. For example, x may be
a database containing genetic data, and F may be a
machine-learning algorithm that uses the genetic data
to compute a classifier y. On the one hand, the client
seeks integrity of computation: he wants to ensure that
the server reports the correct output y (e.g., because the
classifier y will be used for critical medical decisions).
On the other hand, the server seeks confidentiality of
his own input: he is willing to disclose y to the client,
but no additional information about x beyond y (e.g.,
because the genetic data x may contain sensitive personal
information).
Zero-knowledge proofs. Achieving the combination

of the above security requirements seems paradoxical:
the client does not have the input x, and the server
is not willing to share it. Yet, cryptography offers a
powerful tool that is able to do just that: zero-knowledge
proofs [1]. The server, acting as the prover, attempts
to convince the client, acting as the verifier, that the
following NP statement is true: “there is x̃ such that
y = F (x̃) and x̃ is a decommitment of cm”. Indeed:
(a) the proof system’s soundness property addresses the
client’s integrity concern, because it guarantees that, if
the NP statement is false, the prover cannot convince
the verifier (with high probability);1 and (b) the proof
system’s zero-knowledge property addresses the server’s
confidentiality concern, because it guarantees that, if the
NP statement is true, the prover can convince the verifier
without leaking any information about x (beyond was is
leaked by y).
Non-interactivity. While zero-knowledge proofs can
address the above simple scenario, they also apply more
widely, including to scenarios that involve many parties
who do not trust each other or are not all simultaneously
online. In such cases, it is desirable to use non-interactive
zero-knowledge proofs (NIZKs), where the proof consists
of a single message π that can be verified by anyone.
For example, such a proof π can be stored for later use,
or it can be verified by multiple parties without requiring
the prover to separately interact with each of these.

Unfortunately, NIZKs do not exist for languages
outside BPP (even when soundness is relaxed to hold
only computationally) [3], [4]. But, if a trusted party is
available for a one-time setup phase, then, under suitable
hardness assumptions, NIZKs exist for all languages in
NP [5], [6], [7], [8]. During the setup phase, the trusted
party runs a probabilistic polynomial-time generator
algorithm G (prescribed by the proof system) and
publishes its output pp, called the public parameters;
afterwards, the trusted party is no longer needed, and
anyone can use pp to produce proofs or to verify them.
Soundness of the NIZK depends on this trusted setup:
if pp is not correctly generated, or if secret internal

1Sometimes a property stronger than soundness is required: proof
of knowledge [1], [2], which guarantees that, whenever the verifier is
convinced, not only can he deduce that a witness exists, but also that
the prover knows one such witness.



randomness used within G is revealed, then it may be
feasible to convince that verifier that false NP statements
are true.
The problem of parameter generation. If no trusted
party is available, how are the public parameters pp
generated? One approach is to look for, in Nature or
Society, a publicly-observable distribution that equals (or
is close to) pp’s distribution. For example, if G merely
outputs a random binary string of a certain length,2 it
may be possible, via suitable measurements and post-
processing of, e.g., data about sun spots or the stock
market, to extract bits that are close to random. (See
[9], [10] for work in this direction, and [11] for a NIST
prototype using quantum randomness sources). However,
if G follows a more complex probabilistic strategy, then
there may be no stochastic process in Nature or Society
that yields a distribution close to pp’s.

An attractive alternative approach to address the
problem of parameter generation is the following:

construct a multi-party protocol for securely generating
the public parameters pp.

The setup phase will then involve a large set of parties
running the multi-party protocol for generating pp, and
for soundness of the NIZK to hold it will suffice that
only a few (ideally, even just one) of these parties are
honest. Clearly, this is a weaker and more realistic trust
assumption then placing ultimate trust in any single party.

Several works have explored this approach for the pa-
rameter distributions of various cryptographic primitives
and, more generally, one can invoke secure multi-party
computation [12], [13] to obtain a feasibility result. Yet,
as discussed in Section II, prior works do not yield
satisfactory efficiency in our setting, which we now
introduce.

A. Our focus

The focus of our work is to address the param-
eter generation problem for a particular kind of
NIZKs: zero-knowledge succinct arguments of knowl-
edge (zk-SNARKs) [14], [15], [16]; these are NIZKs
for which the proof is short and easy to verify [17].
Concretely, our goal is to obtain efficient multi-party
protocols for securely sampling the public parameters
required by zk-SNARKs, as we now explain.

zk-SNARK constructions. There are many zk-SNARK
constructions, with different properties in efficiency
and supported languages. In preprocessing zk-SNARKs,
the complexity of sampling public parameters grows

2NIZKs for which G outputs a random binary string are said to be
in the common random string model.

with the size of the computation being proved [18],
[19], [16], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31]; in fully-succinct zk-SNARKs, that
complexity is independent of computation size [17],
[32], [33], [34], [15], [35], [36], [37], [38], [39], [40].
Working prototypes have been achieved for preprocessing
zk-SNARKs [21], [22], [25], [27], [30] and fully-succinct
ones [39]. Several works have also explored various
applications of zk-SNARKs [41], [42], [43], [44], [45].

Public parameters of zk-SNARKs. Despite the afore-
mentioned multitude of constructions, Bitansky et al.
[16] showed that essentially all known preprocessing
zk-SNARK constructions can be “explained” as the
combination of a linear interactive proof (LIP) and an
encoding that forbids all but linear homomorphisms.
This yields a unified view of parameter generation
across preprocessing zk-SNARKs (that are not fully
succinct). Namely, given an NP relation R, the generator
G adheres to the following computation pattern when
producing public parameters for R: (i) derive from R
a certain circuit C;3 (ii) evaluate C at a random input;
(iii) output the encoding of the evaluation. In other words,
public parameters of preprocessing zk-SNARKs are the
encodings of random evaluations of certain circuits.

The sampling problem. Concretely, for a prime r,
the circuit C is defined over a size-r field Fr and the
encoding of α ∈ Fr is α · G, where G generates an
order-r group G. Moreover, G is a duplex-pairing group
(i.e., G is a subgroup of some G1×G2 equipped with a
pairing). This discussion motivates the following multi-
party sampling problem:

Let r be a prime, G = 〈G〉 an order-r group, n a
positive integer, and C : Fmr → Fhr an Fr-arithmetic
circuit. Construct an n-party protocol for securely
sampling pp := C(~α) · G for random ~α in Fm.

We thus seek a multi-party protocol such that, even when
all but one of the parties are malicious, the protocol’s
output is pp sampled from the correct distribution and,
moreover, parties learn nothing beyond pp itself. We
study this problem, and the special case of generating
public parameters for preprocessing zk-SNARKs.

B. Our contributions

We design, build, and evaluate a multi-party protocol
for securely sampling encodings of random evaluations
of certain circuits. The resulting system enables us, in
particular, to sample the public parameters for a class of

3The circuit C computes the LIP’s verifier’s message. In some LIP
constructions, C can be interpreted as an arithmetization of the decision
algorithm of the relation R.
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preprocessing zk-SNARKs that includes [21], [25], [31];
we integrated our system with libsnark [46], a C++
zk-SNARK library, to facilitate this application. In more
detail, we present the following two main contributions.

(1) Secure sampling for a class of circuits. We design,
build, and evaluate a multi-party protocol that securely
samples values of the form C(~α) · G for a random ~α,
provided that C belongs to a certain circuit class C?.
Roughly, C? comprises the arithmetic circuits such that,
for every gate, (i) the gate’s output is also a circuit’s
output, and (ii) at least one of the gate’s two inputs is
also a circuit’s input.

The multi-party protocol runs atop a synchronous
network with an authenticated broadcast channel and
a common random string. The computation proceeds
in rounds and, at each round, the protocol’s schedule
determines which parties act; a party acts by broadcasting
a message to all other parties.4

When n parties participate, our protocol is secure
against ≤ n − 1 malicious parties. If even one of the
parties is honest, and assuming the protocol reaches
completion, then the protocol’s output is a sample from
the designated distribution and no other information
leaks.5 Each party runs in time Oλ(size(C)), where
Oλ(·) hides a fixed polynomial in the security parameter
λ. The number of rounds is n·depth?(C)+O(1) and the
number of broadcast messages is O(n·depth?(C)). Here,
depth?(C) denotes the ?-depth of C, which is at most
the (standard) circuit depth of C, but sometimes much
smaller, as is (crucially) the case for the zk-SNARK
application discussed below.

While the above results hold for any group G, our
implementation is specialized to the case when G is
duplex-pairing because, for this case, several additional
optimizations are possible.

(2) Application to zk-SNARKs. Our system can
be used to securely sample public parameters of a
zk-SNARK, whenever zk-SNARK’s generator can be
cast as sampling the encoding of the random evaluation
of a circuit that lies in the class C?. While the class
C? appears restrictive, we observe that several known
constructions of preprocessing zk-SNARK have such a
generator.

To facilitate this application to zk-SNARKs, we
(i) integrated our system with libsnark [46], and

4A broadcast channel can also be thought of as an append-only
public logbook, such as the one that Bitcoin seeks to realize via its
puzzle-based block-chain protocol [47]. Authentication can be achieved,
e.g., via digital signatures supported by a public-key infrastructure.

5A malicious party may prevent the protocol from reaching comple-
tion, by acting incorrectly or by delaying their prescribed broadcasts.
However, the culprit party can be readily identified.

(ii) applied our system to generating public parameters
for two specific zk-SNARK constructions: that of [21],
[25] and that of [31]. The first construction supports
proving the satisfiability of arithmetic circuits, while the
second one supports proving that of boolean circuits.6

(We also extended libsnark with an implementation
of [31]’s zk-SNARK because, previously, libsnark
provided only a zk-SNARK based on [21], [25].)

Given an arithmetic circuit D, our code generates a
related circuit CPGHR in C?, such that the encoding of
a random evaluation of CPGHR corresponds to public
parameters for [21], [25]’s zk-SNARK when proving
satisfiability of D. If D has Nw wires and Ng gates, then
CPGHR has size 11 ·Nw + 2dlog2Nge(dlog2Nge+ 1) + 38
and ?-depth 3. Similarly, given a boolean circuit D,
our code generates a related circuit CDFGK in C? for
[31]’s zk-SNARK; if D has Nw wires and Ng gates, then
CDFGK has size 2 ·Nw + 2dlog2Nge(dlog2Nge+ 1) + 10
and ?-depth 2.

We evaluate the concrete costs of our protocol when
used to generate the public parameters, needed by afore-
mentioned zk-SNARK, in order to prove satisfiability of
specific circuits D that arise in specific applications:
• Our system can securely generate the public parameters

for Zerocash [44], a decentralized anonymous payment
systems extending Bitcoin. Letting D be the circuit that
implements the NP relation used in Zerocash: CPGHR

has size 138467206 and ?-depth 3; in our multi-party
protocol, the number of rounds is 3 · n+ 3 and each
party works for 14124 s.

• Our system can securely generate the public parameters
needed for the scalable zk-SNARK of [39], which
proves correct execution of programs on a 32-bit RISC
architecture. Letting D be the circuit used in [39]:
CPGHR has size 8027609 and ?-depth 6; in our multi-
party protocol, the number of rounds is 6·n+6 and each
party works for 4048 s. (More precisely, [39] requires
two circuits, and here and elsewhere we present the
sum of the costs for each complexity measure.)

C. Summary of challenges and techniques

We describe at high level the challenges that arise, as
well as the techniques that we employed to address them,
for each of our two main contributions.

1) Secure sampling for a class of circuits

Let r be a prime, G = 〈G〉 an order-r group, n a positive
integer, and C : Fmr → Fhr an Fr-arithmetic circuit. We

6More precisely, both actually support more general NP-complete
relations, but this technical detail is not important for the present
discussion.
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seek a multi-party protocol for securely sampling C(~α) ·
G for a random ~α. We are willing to compromise on
functionality by restricting C to belong to a yet-to-be-
determined circuit class C?, provided that, in turn, we
gain improved concrete efficiency (since, ultimately, we
want to implement the protocol and use it to generate
zk-SNARK public parameters).

The ideal functionality. A natural solution approach
is to construct a multi-party protocol that securely
implements the ideal functionality fC,G defined as
follows. On input ~σ := (~σ1, . . . , ~σn) where ~σi =
(σi,1, . . . , σi,m) ∈ Fmr is party i’s input, fC,G first
computes αj :=

∏n
i=1 σi,j for j = 1, . . . ,m; then fC,G

sets ~α := (α1, . . . , αm) and computes ~P := C(~α) · G;
finally, fC,G outputs ~P . Indeed, if at least one party
honestly provides an input consisting of random elements,
fC,G outputs the encoding of a random evaluation of C.7

However, we now argue that one is unlikely to
obtain good concrete efficiency by using off-the-shelf
solutions to securely implement the ideal functionality
fC,G . Briefly, this is because the “core” of fC,G is
the computation of C(~α) · G, which involves both
the evaluation of an Fr-arithmetic circuit and scalar
multiplications over the group G.

Some approaches to implement fC,G . On the one
hand, we could express the aforementioned computation
via a boolean circuit, and invoke a suitable secure
computation protocol for boolean circuits (see Section II).
However, the conversion to a boolean circuit is expensive.
For example, the number of boolean gates required to
compute C(~α) alone is a factor of log2 r larger than the
number of Fr-arithmetic gates for the same task, because
each addition and multiplication in Fr is expanded into
a boolean sub-circuit of size ≥ log2 r. We expect that
log2 r ≥ 100 (since r is a cryptographically-large prime),
which results in a blowup of two orders of magnitude
in the number of gates.

On the other hand, we could express the computation
of C(~α) · G via an arithmetic circuit, and invoke a
suitable secure computation protocol for arithmetic
circuits (see Section II). However, over what field should
the arithmetic circuit be defined? While C is defined
over the field Fr, the group G may not be. In fact,
for the application considered in this paper (namely,
secure sampling of public parameters for zk-SNARKs),
the group G is defined over a prime field Fq that is
different from Fr. If we express the computation as

7More precisely, fC,G must also check that none of the parties’
inputs contains a zero. Doing so biases the output distribution, but only
negligibly so because r has cryptographic size. Thus, this technical
detail does not cause any problems.

an Fr-arithmetic circuit then, while evaluating C may
be efficient, scalar multiplications over G may not be.
Conversely, if we express the computation as an Fq-
arithmetic circuit, while scalar multiplications over G
may be efficient, evaluating C may not be. In either
case, we find ourselves with the overheads associated to
“characteristic simulation”, which also are on the order
of log2 r or log2 q.

One approach to address the above issue could be to
extend existing protocols to support multiple characteris-
tics. For example, one idea is to first compute ~β := C(~α)
using a protocol that supports Fr-arithmetic circuits and
then, somehow, instead of having parties decommit and
obtain ~β, use the commitment to ~β as an input to a
second protocol, which instead supports Fq-arithmetic
circuits, to compute ~β · G by interpreting ~β in binary and
conducting scalar multiplications in G as needed. We
did not investigate whether such an approach leads to a
feasible protocol and, instead, opted for an alternative,
and more direct, approach, which we outline next.

Our approach to implement fC,G . We observe that,
while the envisioned application to zk-SNARKs does
not restrict C in any way, for particular zk-SNARK
constructions (including [21], [25], [31]) the circuit C
can be written to be of a special form (with some effort,
see Section I-C2 below). Specifically, for every gate
in C, the gate’s output is also an output of the circuit
and, moreover, the gate is either a linear combination or
multiplication for which one of the two wires is also an
input wire. We call C? the class of such circuits, and
restrict our attention to implementing fC,G provided that
C ∈ C?.

Next, for such circuits, we design a protocol that
enables parties to jointly homomorphically evaluate the
circuit C (avoiding, in particular, first computing ~β :=
C(~α) and then ~β · G). Roughly, first all parties commit
to their shares; then, for each multiplication gate, since
one of the two gate’s inputs is also an input to the
circuit, every party can, in sequence, contribute, and
prove correct contribution of, his share of the input. (As
for linear combinations, they are “for free” as in many
other multi-party protocols.)

A naive realization of the above strategy yields an
enormous number of rounds: n times C’s depth. In
contrast, we show that, via a careful choice of when
each party contributes his own sure, we can reduce the
number of rounds to only n times C’s ?-depth, where
?-depth is a much milder notion of depth.

We realize the above approach by splitting the con-
struction in two steps. First, a reduction from the problem
of sampling the encoding of a random evaluation of C
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to the problem of jointly evaluating a related circuit C̃.
Second, a protocol for evaluating C̃. The steps greatly
simplify providing a formal proof of security.

Our implementation is specialized to the case when
G is a duplex-pairing group, in which case the NIZKs
used by parties can be implemented very efficiently via
Schnorr proofs.

2) Application to zk-SNARKs

We wish to apply our system to generating public
parameters for two specific zk-SNARK constructions:
that of [21], [25] and that of [31]. This requires writing
code that transforms the generator’s input NP relation,
represented as an instance D of arithmetic or boolean
satisfiability, into a corresponding circuit C in C?

such that C(~α) · G for a random ~α equals the suitable
distribution of public parameters for each of the two
constructions.

Constructing an efficient transformation from D to
C, for either of the constructions, is not straightforward,
because of the requirement that C is in C? (which allows
us to invoke our secure sampling multi-party protocol).
Briefly, in both cases, an issue that arises is how to
construct a sub-circuit that given an input τ , evaluates
all Lagrange polynomials (defined over a certain subset
of Fr; indeed, the standard linear-size circuit for this
operation involves division gates, which our protocol
does not handle (and are thus not included in C?). Instead
of relying on the standard circuit, we rely on a suitable
FFT-like sub-circuit that avoids the division gates.

II. PRIOR WORK

The problem of setting up public parameters for NIZKs
has been studied before, especially in the setting where
the public parameters merely consist of a random string.
For example, [48], [9], [10] study various aspects of this
problem. There are also other cryptographic primitives
that require a set of public parameters to be known
to every party in the system, and various works have
explored distributed generation of such parameters for
various distributions [49], [50], [51], [52], [53], [54].

Secure multi-party computation protocol that work
against malicious majorities directly give feasibility
results. As discussed in Section I-C, these feasibility
results seem unlikely to give good concrete efficiency
in practice for the particular ideal functionality that
we are interested in. This includes recent state-of-the-
art protocols that support arithmetic circuits [55], [56],
because in our case we need simultaneous support for
arithmetic circuits defined over two different fields.

III. DEFINITIONS

We give the definitions needed for technical discus-
sions. Throughout, we denote by λ the security parameter.
The input 1λ is implicit to all cryptographic algorithms
that we consider. We let f = Oλ(g) mean there exists
c > 0 such that f = O(λcg).

A. Basic notation

Vectors are denoted by arrow-equipped letters (such
as ~a); their entries carry an index but not the arrow
(e.g., a1 or a2). Concatenation of vectors (and scalars)
is denoted by the operator ◦. We write {y |x1 ←
D1 ; x2 ← D2 ; . . . }E to denote the distribution over y
obtained by conditioning on the event E and sampling
x1 from D1, x2 from D2, and so on, and then computing
y := y(x1, y2, . . . ). Given two distributions D and D′,
we write D

negl
= D′ to denote that the statistical distance

between D and D′ is negligible in a security parameter λ.
A distribution D is efficiently sampleable if there exists a
probabilistic polynomial-time algorithm A whose output
follows the distribution D.

Groups. We denote by G a group, and only consider
cyclic groups having a prime order r. Group elements
are denoted with calligraphic letters (e.g. P,Q). We
write G = 〈G〉 to denote that the element G generates G,
and use additive notation for group arithmetic. That is,
P +Q denotes addition of the two elements P and Q;
a · P denotes scalar multiplication of P by the integer
scalar a; and O := 0 · P denotes the identify element.
(Since r ·P = O, we can equivalently think of the scalar
a as belonging to the field of size r.) Given a vector
~a = (a1, . . . , an), we use ~a · P as a shorthand for the
vector (a1 · P, . . . , an · P).

Fields. We denote by F a field, and by Fn the field of
size n. We assume familiarity with prime-order fields;
for background, see the book of Lidl and Niederreiter
[57].

B. Hiding commitments

A hiding commitment scheme is a pair COMM =
(COMM.Gen,COMM.Ver) with the following syntax.
• COMM.Gen(x) → (cm, trap): On input data x, the

commitment generator COMM.Gen probabilistically
samples a commitment cm of x and a corresponding
trapdoor trap.

• COMM.Ver(x, cm, trap) → b: On input data x,
commitment cm, and trapdoor trap, the commitment
verifier COMM.Ver outputs b = 1 if cm is a valid
commitment of x with respect to the trapdoor trap
(and b = 0 otherwise).
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We will use a commitment scheme COMM that satisfies
the standard completeness, (computational) binding, and
(statistical) hiding properties.

C. Non-interactive zero-knowledge proofs of knowledge

A non-interactive zero-knowledge proof of knowledge
(NIZK) for an NP relation R in the common random
string model is a tuple NIZKR = (NIZKR.P,NIZKR.V,
NIZKR.E,NIZKR.S) with the following syntax.
• NIZKR.P(crs, x,w)→ π: On input common random

string crs, instance x, and witness w, the prover
NIZKR.P outputs a non-interactive proof π for the
statement “there is w such that (x,w) ∈ R”.

• NIZKR.V(crs, x, π) → b: On input common ran-
dom string crs, instance x, and proof π, the verifier
NIZKR.V outputs b = 1 if π is a convincing proof for
the statement “there is w such that (x,w) ∈ R”.

Above, crs is a random string of Oλ(1)-bit (the exact
length is prescribed by NIZKR). The remaining two
components are each pairs of algorithms, as follows.
• NIZKR.E1 → (crsext, trapext): The extractor’s gen-

erator NIZKR.E1 samples a string crsext (indistin-
guishable from crs) and a corresponding trapdoor
trapext. NIZKR.E2(crsext, trapext, x, π) → w: On
input crsext, trapext, instance x, and proof π, the
extractor NIZKR.E2 outputs a witness w for the
instance x.

• NIZKR.S1 → (crssim, trapsim): The simulator’s
generator NIZKR.S1 samples a string crssim (indis-
tinguishable from crs) and a corresponding trapdoor
trapsim. NIZKR.S2(crssim, trapsim, x)→ π: On input
crssim, trapsim, and instance x (for which there is
w such that (x,w) ∈ R), the simulator NIZKR.S2

outputs π that is indistinguishable from an “honest”
proof.

We will use a scheme NIZKR that satisfies the standard
completeness, (computational and adaptive) proof-of-
knowledge, and (statistical, adaptive, and multi-theorem)
zero-knowledge properties. Note that the NIZKs we use
here are for statements that are short and of a special
form. Thus we can use specialized NIZK constructions
that require merely a common random string, rather than
a (structured) common reference string whose generation
is the problem we set out to solve in the first place.

D. Arithmetic circuits

We consider arithmetic, rather than boolean, circuits.
Given a field F, an F-arithmetic circuit C takes as input
elements in F, and its gates output elements in F. We
write C : Fm → Fh if C takes m inputs and produces h
outputs.

Wires, inputs, gates, and size. We denote by wires(C)
and gates(C) the wires and gates of C; also, we denote
by inputs(C) and outputs(C) the subsets of wires(C)
consisting of C’s input and output wires. We denote by
#wires(C), #gates(C),#inputs(C), and #outputs(C)
the cardinalities of wires(C), gates(C), inputs(C), and
outputs(C) respectively. The size of C is size(C) :=
#inputs(C) + #gates(C).
Bilinear gates. Each gate g of C is bilinear, i.e., g
computes (αL

0 +
∑dL

j=1 α
L
jw

L
j) · (αR

0 +
∑dR

j=1 α
R
jw

R
j) →

w, where L-coeffs(g) := (αL
j)
dL

j=0 are the left co-
efficients, R-coeffs(g) := (αR

j)
dR

j=0 the right coeffi-
cients, L-inputs(g) := {wL

j}d
L

j=1 the left input wires,
R-inputs(g) := {wR

j}d
R

j=1 the right input wires, and
output(g) := w the output wire. Bilinear gates include
addition, multiplication, and constant gates. (As usual,
the dependency graph induced by C’s gates is acyclic.)
Further notions for circuits with a split domain. We
also consider F-arithmetic circuits C for which the inputs
are partitioned into n disjoint sets; in such a case, we
write C : Fm1×· · ·×Fmn → Fh to express that the first
m1 inputs are in the first set, the next m2 in the second,
and so on; the integers m1, . . . ,mn are then also part
of C’s description.

For i = 1, . . . , n: we denote by inputs(C, i) the input
wires that belong to the i-th set, and by gates(C, i) the
gates that take as input an input wire in inputs(C, i);
the notations #inputs(C, i) and #gates(C, i) denote the
cardinalities of these sets; and we define size(C, i) :=
#inputs(C, i) + #gates(C, i).

Moreover, for any gate g in gates(C), L-deps(g) is
the set of integers i in {1, . . . , n} for which there is
a wire in L-inputs(g) whose value depends (topologi-
cally) on the value of a wire in inputs(C, i). Similarly,
R-deps(g) is defined relative to R-inputs(g). We also
define deps(g) := L-deps(g) ∪ R-deps(g).
Two classes of circuits. We consider the following two
classes of circuits.
• We denote by C? the class of F-arithmetic cir-

cuits C : Fm → Fh for which every gate g in
gates(C) is such that: (i) output(g) ∈ outputs(C);
(ii) L-inputs(g) ∩ inputs(C) = ∅; (iii) R-inputs(g) is
empty or a singleton in inputs(C).

• We denote by C† the class of F-arithmetic circuits
C : Fm1 × · · · ×Fmn → Fh for which every gate g in
gates(C) is such that: (i) output(g) ∈ outputs(C);
(ii) L-inputs(g)∩ inputs(C) = ∅; (iii) |R-deps(g)| ≤ 1.

Notions of depth. For circuits in the classes C? and
C†, we work with alternative notions of depth, denoted
?-depth and †-depth, that are defined as follows.
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• Given C in C?, depth?(C) :=
maxw∈outputs(C) depth?(w) and

depth?(w) :={
1 if w ∈ inputs(C)

bw + max {depth?(w′)}w′∈L-inputs(gw) if w 6∈ inputs(C)
,

where
– gw is the gate in gates(C) for which w =

output(gw),
– bw ∈ {0, 1} equals 1 if and only if either
|L-inputs(gw)| ≥ 2 or |L-inputs(gw)| = 1 ∧
L-coeffs(g)[0] 6= 0.

• Given C in C†, depth†(C) :=
maxw∈outputs(C) depth†(w) and

depth†(w) :=
1 if w ∈ inputs(C)

max {bw,w′ + depth†(w′)}w′∈L-inputs(gw)

∪{depth†(w′)}w′∈R-inputs(gw) if w 6∈ inputs(C)

,

where
– gw (resp., gw′) is the gate in gates(C) for which

w = output(gw) (resp., w′ = output(gw′)),
– bw,w′ ∈ {0, 1} equals 0 if and only if R-deps(gw) ⊇

R-deps(gw′).
Both ?-depth and †-depth are bounded from above
by (traditional) circuit depth, but are sometimes much
less than it. For example, the circuit computing w →
(1,w,w2, . . . ,wd) has depth d, while it has ?-depth and
†-depth equal to 1.

E. Pairings and duplex-pairing groups

Pairings. Let G1 and G2 be cyclic groups of a
prime order r. Let G1 be a generator of G1, i.e.,
G1 = {αG1}α∈Fr

, and let G2 be a generator for G2.
A pairing is an efficient map e : G1 ×G2 → GT , where
GT is also a cyclic group of order r (which, unlike other
groups, we write in multiplicative notation), satisfying
the following properties.
• BILINEARITY. For every pair of nonzero elements
α, β ∈ Fr, it holds that e(αG1, βG2) = e(G1,G2)αβ .

• NON-DEGENERACY. e(G1,G2) is not the identity in
GT .

Duplex-pairing groups. A group G of prime order
r is duplex pairing if there are order-r groups G1 and
G2 such that (i) there is a pairing e : G1 ×G2 → GT
for some target group GT , and (ii) there is a generator
G1 of G1 and G2 of G2 such that G is isomorphic to
{(t · G1, t · G2)|t ∈ Fr} ⊆ G1 ×G2.

F. Multi-party broadcast protocols

We consider multi-party protocols that run over a
synchronous network with an authenticated broadcast

channel. Namely, the computation proceeds in rounds
and, at each round, the protocol’s schedule determines
which parties act; a party acts by broadcasting a message
to all other parties. The broadcast channel is authenticated
in that all parties always know who sent a particular
message (regardless of what an adversary may do).
Moreover, we assume that parties have access to a
common random string crs (the problem of “setting up”
such a string via a multi-party protocol is well-studied).
To simplify notation, we do not make crs an explicit
input. We now introduce some notations and notions for
later discussions.
Honest execution. Given a positive integer n,
an n-party broadcast protocol is a tuple Π =
(S,Σ1, . . . ,Σn) where: (i) S : N → 2{1,...,n} is the
deterministic polynomial-time schedule function; and
(ii) for i = 1, . . . , n, Σi is the (possibly stateful)
probabilistic polynomial-time strategy of party i.

The execution of Π on an input ~x = (x1, . . . , xn),
denoted [[Π, ~x]], works as follows. Set t := 1. While
S(t) 6= ∅: (i) for each i ∈ S(t) in any order, party i
runs Σi, on input (xi, t) and with oracle access to the
history of messages broadcast so far, and broadcasts the
resulting output message msgt,i and, then, (ii) t increases
by 1.

The transcript of [[Π, ~x]], denoted tr, is the sequence of
triples (t, i,msgt,i) ordered by msgt,i’s broadcast time.
The output of [[Π, ~x]], denoted out, is the last message
in the transcript. Since Π’s strategies are probabilistic,
the transcript and output of [[Π, ~x]] are random variables.

The round complexity is ROUND(Π) :=
mint∈N{t |S(t + 1) = ∅}. For i = 1, . . . , n,
the time complexity of party i is TIME(Π, i) :=∑
t∈[ROUND(Π)] s.t. i∈S(t) TIME(Σi, t) where

TIME(Σi, t) is Σi(·, t)’s time complexity.
Adversarial execution. Let A be a probabilistic
polynomial-time algorithm and J a subset of {1, . . . , n}.
We denote by [[Π, ~x]]A,J the execution [[Π, ~x]] modified
so that A controls parties in J , i.e., A knows the private
states of parties in J , may alter the strategies of parties in
J , and may wait, in each round, to first see the messages
broadcast by parties not in J and, only after that,
instruct parties in J to send their messages. (In particular,
[[Π, ~x]]A,∅ = [[Π, ~x]].) We denote by REALΠ,A,J(~x) the
concatenation of the output of [[Π, ~x]]A,J and the view
of A in [[Π, ~x]]A,J .

G. Ideal functionalities

While Section III-F describes the real-world execution
of a protocol Π on an input ~x, here we describe the
ideal-world execution of a function f on an input ~x:
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each party i privately sends his input xi to a trusted
party, who broadcasts f(~x).

Adversarial execution. Let S be a probabilistic
polynomial-time algorithm and J a subset of {1, . . . , n}.
The ideal-world execution of f on ~x when S controls
parties in J differs from the above one as follows: S
may substitute the inputs of parties in J with other
same-length inputs. We denote by IDEALf,S,J(~x) the
concatenation of the value broadcast by the trusted party
and the output of S in the ideal-world execution of f
on ~x when S controls parties in J .

H. Secure sampling broadcast protocols

Let r be a prime, G = 〈G〉 an order-r group, n a positive
integer, and C : Fmr → Fhr an Fr-arithmetic circuit. A
secure sampling broadcast protocol with n parties
for C over G is a tuple ΠSS = (Π, V, S), where Π
is an n-party broadcast protocol, and V ((the verifier)
and S (the simulator) are probabilistic polynomial-time
algorithms, that satisfies the following.

For every probabilistic polynomial-time algorithm
A (the adversary) and subset J of {1, . . . , n} (the
corrupted parties) with |J | < n, these two distributions
are negligibly close:REALΠ,A,J(~σ)

∣∣∣∣∣∣∣
~σ1 ← Fmr

...
~σn ← Fmr


V=1

negl
=

IDEALfSS
C,G ,S(A,J),J(~σ)

∣∣∣∣∣∣∣
~σ1 ← Fmr

...
~σn ← Fmr

 .

Above, ~σ denotes (~σ1, . . . , ~σn); V = 1 denotes condition-
ing on the event that V , given as input the transcript of
[[Π, ~x]]A,J , outputs 1; and fSSC,Gdenotes the deterministic
function that outputs C((

∏n
i=1 σi,1, . . . ,

∏n
i=1 σi,m)) · G,

i.e., the encoding of C’s output.
Next, we extend the above definition to variable

number of parties and restricted circuit classes. Let r
be a prime, G = 〈G〉 a group of order r, and C a class
of Fr-arithmetic circuits. A secure sampling broadcast
protocol for C over G is a tuple ΠSS = (Π, V, S) such
that, for every positive integer n and circuit C : Fmr → Fhr
in C, (Πn,C , Vn,C , Sn,C) is a secure sampling broadcast
protocol with n parties for C over G.

I. Secure evaluation broadcast protocols

Let r be a prime, G = 〈G〉 an order-r group, n a positive
integer, and C : Fm1

r ×· · ·×Fmn
r → Fhr an Fr-arithmetic

circuit. A secure evaluation broadcast protocol with

n parties for C over G is a tuple ΠSE = (Π, V, S),
where Π is an n-party broadcast protocol and V, S are
probabilistic polynomial-time algorithms, that satisfies
the following.

For every probabilistic polynomial-time algorithm A,
subset J of {1, . . . , n} with |J | < n, and input ~σ =
(~σ1, . . . , ~σn) in Fm1

r × · · · × Fmn
r ,

{REALΠ,A,J(~σ)}V=1

negl
=
{

IDEALfSE
C,G ,S(A,J),J(~σ)

}
.

Above, V = 1 denotes the event that V , on input the
transcript of [[Π, ~x]]A,J , outputs 1, and fSEC,G denotes the
deterministic function such that fSEC,G(~σ) := C(~σ) · G.

As before, we extend the above definition to variable
number of parties and restricted circuit classes. Let r be
a prime, G = 〈G〉 a group of order r, and C a class of
Fr-arithmetic circuits. A secure evaluation broadcast
protocol for C over G is a tuple ΠSE = (Π, V, S) such
that, for every positive integer n and circuit C : Fm1

r ×
· · · × Fmn

r → Fhr in C, (Πn,C , Vn,C , Sn,C) is a secure
evaluation broadcast protocol with n parties for C over
G.

IV. SECURE SAMPLING FOR A CLASS OF CIRCUITS

Our main construction is a multi-party protocol for
securely sampling values of the form C(~α) · G for a
random ~α, provided that C belongs to the class C?. We
use two cryptographic ingredients: hiding commitments
(see Section III-B) and NIZKs (see Section III-C). Recall
that NIZKs require parties to access a common random
string; such a string is available in the setting of
multi-party broadcast protocols that we consider (see
Section III-F). We prove the following theorem, by
constructing the requisite protocol:

Theorem IV.1. Assume the existence of hiding commit-
ment schemes and NIZKs. Let r be a prime and G a
group of order r. There is a secure sampling broadcast
protocol ΠSS = (Π, V, S) for C? over G such that, for
every positive integer n and circuit C in C?:
• Round complexity: ROUND(Πn,C) = n ·depth?(C) +

3;
• Time complexity: for i = 1, . . . , n, TIME(Πn,C , i) =
Oλ(size(C)); and

• Verification efficiency: Vn,C runs in time Oλ(n ·
size(C)).

• Security (simulator efficiency): Sn,C runs in time
Oλ(n · size(C)).

Concrete efficiency. It is crucial for our implementation
that the use of NIZKs in the above theorem above is
“light”. We use NIZKs for two relations, denoted RA

and RB and defined in Figure 1, that involve only
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The NP relation RA. An instance-witness pair (x,w)
is in RA if and only if COMM.Ver(σ, cm, trap) = 1,
when parsing x as a commitment cm and w as a tuple
(σ, trap) for which σ ∈ Fr and trap is a trapdoor.
The NP relation RB. An instance-witness pair (x,w)
is in RB if and only if all the following checks pass.
1) Parse x as tuple (R,P, d, ~α,~b,~c) and w as a tuple

(~σ, ~trap).
2) Check that the G-element R equals the G-element

(α0 +
∑d

i=1 αiσi) · P .
3) For j = 1, . . . , d: if bj = 0, check that

COMM.Ver(σj , cj , trapj) = 1; otherwise, if
bj = 1, check that the G-element cj equals the
G-element σj · G (and ignore trapj).

Fig. 1. Description of the two NP relations RA and RB.

arithmetic in G and invocations of the commitment
verifier COMM.Ver. Indeed, if G is a duplex-pairing
group (as when generating parameters for a zk-SNARK),
it is possible to instantiate the commitment scheme, and
subsequently the NIZKs for RA and RB, very efficiently
(see Section V). Our implementation and evaluation
target this special case, as we discuss in later sections
(see Sections VI and VII).
Proof strategy. We construct the protocol of The-
orem IV.1 in two steps. The first step (Lemma IV.2
below) is a reduction from the problem of constructing
secure sampling broadcast protocols to the problem of
constructing secure evaluation broadcast protocols. The
second step (Lemma IV.3) is a construction of such a
secure evaluation broadcast protocol.

Lemma IV.2 (Sampling-to-evaluation reduction). Let
r be a prime and G a group of order r. There exist
polynomial-time transformations T1 and T2 that satisfy
the following. For every positive integer n and circuit
C ∈ C?: C̃ := T1(n,C) is a circuit in C†, and for every
secure evaluation broadcast protocol ΠSE with n parties
for C̃ over G, ΠSS := T2(ΠSE) is a secure sampling
broadcast protocol with n parties for C over G.

The transformation T2 increases the protocol’s round
complexity by 1, and preserves all time complexities up
to Oλ(1) factors. Moreover, the new circuit C̃ is not
much larger than C:
• depth†(C̃) = n · depth?(C);
• size(C̃) = O(n · size(C)); and
• size(C̃, i) = O(size(C)) for i = 1, . . . , n.

Lemma IV.3 (Evaluation protocol). Assume the existence
of hiding commitment schemes and NIZKs. Let r be a
prime and G a group of order r. There is a secure
evaluation broadcast protocol ΠSE = (Π, V, S) for C†

over G such that, for every positive integer n and circuit

C in C†:
• ROUND(Πn,C) = depth†(C) + 2;
• TIME(Πn,C , i) = Oλ(size(C, i)) for i = 1, . . . , n;

and
• Vn,C and Sn,C run in Oλ(size(C)) time.

Proofs of Lemma IV.2 and Lemma IV.3 are given in
Appendix A and Appendix B, and sketched below.

A. Sketch of Sampling-to-Evaluation Reduction

We sketch the proof of Lemma IV.2 (see Appendix A for
a detailed proof). At high level, the two transformations
T1 and T2 work as follows. The circuit transformation
T1, given the number of parties n and a circuit C ∈ C?,
outputs a circuit C̃ ∈ C† that computes C’s output,
along with other auxiliary values, by suitably combining
n multiplicative shares of C’s input. The protocol
transformation T2, given a secure evaluation protocol
ΠSE for C̃, outputs a secure sampling protocol ΠSS for
C by (i) generating random shares for all inputs, to
ensure uniform sampling; (ii) extending the protocol
by one round, to obtain a correctly-formatted output;
(iii) extending the verifier, to account for the additional
round in the transcript; and (iv) extending the simulator,
to account for the different ideal functionality, whose
output excludes the aforementioned auxiliary values
(which, hence, must be simulated). Technically, most
of the effort goes into constructing C̃ and the simulator
of ΠSS. We thus briefly discuss these two.

The circuit C̃. We wish to have C̃ compute C’s output
from n multiplicative shares of C’s input (which will be
chosen at random). If this were the only requirement, then
we could simply set C̃ equal to the circuit that, given as
input n shares ~α(1), . . . , ~α(n) ∈ Fm, first combines the
share into ~α := (

∏n
j=1 α

(j)
1 , . . . ,

∏n
j=1 α

(j)
m ) ∈ Fm and

then computes C(~α). Unfortunately, such a circuit is not
in the class C† (so cannot invoke Lemma IV.3 to securely
evaluate C̃). The difficulty thus lies in constructing a
circuit C̃ that computes the same function (perhaps with
some additional, though simulatable, outputs) and that,
moreover, is in C†.

We thus take an alternative approach, which leverages
the fact that C lies in C?. For each gate g in C, we add
to C̃ a sub-circuit, consisting of O(n) new gates, that
combines a value computed so far with all the shares
of g’s other input (which is, by definition of C?, an
input of C). Crucially, each of these sub-circuits, as well
as their combination, lies in C†. For example, suppose
for simplicity that C actually has no gates that take
more than one left input (i.e. all gates either multiply
a constant by an input wire, or a previous output wire
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Fig. 2. Two examples of a circuit C in C? and the corresponding
circuit C̃ := T1(C, n) in C† for n = 2 parties. Multiplications are
denoted by “×”, and additions by “+”. The blue arrows in C denote
the output wires of C; the blue arrows in C̃ denote the output wires
of C̃ that compute outputs of C (while the remaining output wires
carry partial computations).

by an input wire). Then C̃ contains n copies of C as a
sub-circuit, each to be evaluated by a separate party, and
corresponding gates’ outputs, across the sub-circuits, are
multiplied together by letting each party multiplicatively
add a new share. See the first diagram in Figure 2.

However, when there are gates for which the left input
is a non-trivial linear combination (i.e., has multiple
terms), then the construction becomes somewhat more
complex, because each party cannot anymore separately
evaluate a copy of the circuit and rely on later gates
to combine all the parties’ evaluations. Roughly, the
reason is that while multiplicative sharing commutes
with “pure multiplications”, they do not commute with
additions. Therefore, we need to break the circuit down
into components separated by linear combinations, and
apply the above idea separately to each. In-between
components each linear combination requires inputs that
already aggregate all the parties’ shares. See the second
diagram in Figure 2 for an example.

A crucial efficiency feature of our reduction is that
it ensures that the †-depth of C̃, which determines the
number of rounds required to securely evaluate C̃, is
“small”, i.e., bounded above by n times the ?-depth
of C. Indeed, there are multiple ways to combine the
aforementioned sub-circuits, but many such ways yield
much worse efficiency, e.g., †-depth that is as worse as
n times the (standard) depth of C. Since the circuits
C that we encounter in this paper’s application have a

small ?-depth, this efficiency is crucial.

The simulator in ΠSS. The construction of C̃ must
not only respect syntactic and efficiency requirements
(e.g., lie in C†, not have more than n · size(C) gates,
and so on), but must also be secure, in the sense that
the ideal functionality implemented by the evaluation
protocol ΠSE for C̃ actually gives rise (with some small
changes) to a sampling protocol ΠSS that implements
the ideal functionality of C. Since our construction of C̃
introduces additional, spurious outputs, the simulator in
ΠSS must be able to reproduce the view of the adversary
when only having access to C’s output (rather than C̃’s
output). Intuitively, this requires showing that partial
computations that carry information about a subset of the
parties’ shares (but not all shares) do not leak additional
information beyond the outputs that incorporate every
party’s share.

For an arbitrary circuit in C† such an argument cannot
be carried out. However, for the particular circuit C̃ that
is constructed from C we show that it is possible to
“back compute” the circuit: given the output of C, the
simulator can complete it into an output of C̃ by sampling
an assignment to the remaining (spurious) output wires
of C̃, such that the simulated output is indistinguishable
from an evaluation of C̃. This is done by taking each sub-
circuit in C̃ and computing backwards from its output.

B. Sketch of Evaluation Protocol

We sketch the proof of Lemma IV.3 (see Appendix B
for a detailed proof). The evaluation protocol ΠSE = (Π,
V, S) proceeds as follows. In the first round, (t = 1),
each party i individually commits to each one of his
own private inputs, i.e., each party i commits to the
values assigned to wires in inputs(C, i), and proves, in
zero knowledge, knowledge of the committed values
(using relation RA of Figure 1). In each one of the
subsequent depth†(C) rounds (t = 2, . . . , depth†(C) +
1), each party i determines if there are any gates g in
gates(C) such that the †-depth of output(g) equals the
round number minus 1 (i.e, t− 1) and R-deps(g) = {i};
if so, then party i individually evaluates each such gate
(in topological order) and broadcasts the result, along
with a zero-knowledge proof that the evaluation was
correct (using relation RB of Figure 1). In this way,
the parties prove correct evaluation of all gates of C,
first processing all gates whose outputs have †-depth
1, then all those whose outputs have †-depth 2, and so
on. After depth†(C) such rounds, in the last round (t =
depth†(C) + 2), party 1 consults the broadcast messages
in order to collect, and then broadcast in a single message,
the encoding of the value of every output wire of C.
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(This only purpose of the last round is to construct a
syntactically well-formed output of the protocol; letting
party 1 do this operation is an arbitrary choice.)

Since C ∈ C†, by definition of C†, whenever a party
is supposed to prove correct evaluation of a gate g, the
left input has already been either computed by that party
or broadcast; and the right input is either a constant or
an input known to the party (since R-deps(g) = {i}).
This ensures that the party can evaluate the gate and
knows an a witness to the NP statement about that gate’s
correct evaluation.

Also, since C ∈ C†, every gate’s output wire is also
an output wire of C, so the broadcast of gate outputs do
not leak information.

The transcript can be verified by checking that input
commitments carry valid proofs and, for each gate, that
the party responsible for that gate has produced valid
proofs for its evaluation (based on suitable prior values);
this ensures that the circuit has been evaluated on the
parties’ private inputs. Moreover, the transcript can be
simulated, having access to the encoding of the circuit’s
output, by simulating each proof of correct evaluation.

V. OPTIMIZATIONS FOR DUPLEX-PAIRING GROUPS

While Theorem IV.1 holds for any choice of prime-
order group G, we obtain a particularly-efficient instan-
tiation when G is a duplex-pairing group of order r. We
describe this instantiation below.

Recall that the construction of the sampling protocol
(Theorem IV.1) uses a reduction from sampling to
evaluation (Lemma IV.2) and an evaluation protocol
(Lemma IV.3). The reduction is quite efficient, so we
focus on optimizing the construction of the evaluation
algorithm, which uses commitments and NIZKs.

Choice of commitment scheme. We instantiate the
commitment scheme COMM with Pedersen commit-
ments [49]. Let P and Q be two generators of G, for
which there is no known linear relation (if G is an
elliptic curve group then such P and Q can be found,
for example, by applying point decompressing to two
pseudorandom strings, e.g. SHA256(0) and SHA256(1)).
A Pedersen commitment cm for a value x is obtained
by letting trapdoor trap be a random element of Fr
and computing cm := x · P + trap · Q. Recall that
Pedersen commitments are statistically hiding (as trap·Q
is uniformly random in G) and computationally binding
(as decommitting cm in two different ways yields a linear
relation between Q and P).

Choice of NIZK for the relation RA. To prove knowl-
edge of a commited value x encoded in a commitment
cm, we use an adapted version of Schnorr’s protocol

[58] for zero-knowledge proof-of-knowledge of discrete
logarithm. In the interactive version of the protocol, the
prover first chooses random α and β in Fr and produces
R = α ·P+β ·Q. The verifier responds with a uniformly
sampled element c of Fr, to which final prover message
is u := α+ c · x, v := β + c · trap. The verifier accepts
iff u · P + v · Q = R + c · cm. The protocol is made
non-interactive by applying Fiat-Shamir heuristic [59] (in
our concrete implementation, using SHA256 hashing).

Choice of NIZK for the relation RB. We find that
in our implementation we only need a special case of
the relation RB. For this special case what needs to be
proved are the following two kinds of statements:

1) that a multiplicative relationship holds between a
committed to value and two elements of G: (P, α,
R, 0, c) ∈ RB ⇔ R := ασ · P , where σ is equal to
a value commited to in the commitment cm; and

2) that a multiplicative relationship holds between three
elements of G: (P, α,R, 1, c) ∈ RB ⇔ R := ασ ·P ,
where σ := logG c.

When G is a duplex pairing group, the proof for a
statement of the second kind is just the empty string, as
anyone can verify the statement by checking e(αP, c) =
e(R,G).

To efficiently prove the statements of the first kind,
we slightly modify the construction of Lemma IV.3.
We insert an additional round after the first round
(in which all parties commit to their inputs). In this
additional round each party, for each of its inputs
x samples a random generator P of G, computes
R := x · P and outputs (P,R). Moreover, the party
outputs a NIZK proof-of-knowledge that the implicitly
defined x̂ := logP R is indeed consistent with the
corresponding commitment cm, i.e. cm for x decommits
to logP R. Call the corresponding relation Raux. Note
that, publishing such encodings (P, x · P) of inputs x
does not break confidentiality: a pair (Q, x·Q) (for some
Q) is necessarily output every time an input x is used
in a multiplication gate. By a hybrid argument, having
polynomially many such pairs is as helpful as having
just one. Equipped with such encodings checking RB

can be done just via pairing evaluations.

Finally, a NIZK proof for relation Raux is obtained by
combining the Σ-protocol for knowledge of a Pedersen
commitment, and Schnorr’s Σ-protocol for knowledge
of discrete logarithm in equality composition [60]. As
above, we make the resulting Σ-protocol non-interactive
by applying Fiat-Shamir heuristic.
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VI. IMPLEMENTATION

Our system. We built a system that implements our
constructions. Given a prime r, an order-r duplex-
pairing group G = 〈G〉, and an Fr-arithmetic circuit
C : Fmr → Fhr in the class C?, our system provides a
multi-party protocol for securely sampling C(~α) · G for
random ~α in Fmr . Specifically, the system implements the
constructions underlying Section IV’s theorems, in the
case when G is a duplex-pairing group. (As discussed
in Section V, if G is duplex-pairing, one can instantiate
hiding commitments and NIZKs very efficiently.) Our
system comprises 1141 lines of C++.

Application to zk-SNARKs via integration with
libsnark. The parameter generator of many
zk-SNARK constructions works as follows: evaluate
a certain circuit C at a random input ~α, and then
output pp := C(~α) · G as the proof system’s public
parameters. (See discussion in Section I-A.) Thus, our
system can be used to securely sample public parameters
of a zk-SNARK, provided that the circuit used in its
generator belongs to the circuit class C?. To facilitate
this application, we have integrated our code with
libsnark [46], a C++ library for zk-SNARKs. (In
particular, the sampled pp can be used directly by
libsnark.)

Two zk-SNARK constructions. We worked out cir-
cuits for parameter generation for two (preprocessing)
zk-SNARK constructions: the one of [21], [25] and the
one of [31]. The first zk-SNARK “natively” supports
proving satisfiability of arithmetic circuits, while the
second zk-SNARK that of boolean circuits.8

Specifically, we wrote code that lays out a circuit
CPGHR ∈ C? that can be used to generate public
parameters for [21], [25]’s zk-SNARK; likewise for
laying out a circuit CDFGK ∈ C? for [31]’s zk-SNARK.
We have invoked our system on both circuit types, and
demonstrated the secure sampling of respective public
parameters.

See Appendix C for more information about these
examples. A critical issue discussed there is ensuring
that CPGHR and CDFGK have size quasilinear in the circuit
whose satisfiability is being proved. A naive imitation of
the computation pattern of the zk-SNARK’s generator
results in circuits that are not in C?; conversely, a naive
implementation in C? results in circuits of quadratic size.
Via careful design, quasilinear-size circuits in C? can
be obtained.

8More precisely, both [21], [25] and [31] actually support more
general NP relations (phrased in terms of systems of equations), but
we ignore this technical detail in this and later discussions.

VII. EVALUATION

We describe the evaluation of our system, which
provides a multi-party protocol for securely sampling
C(~α) · G, where ~α is random, for circuits C that belong
to the circuit class C? (see Section VI).
Setup. We evaluated our system on a desktop PC with
a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of
RAM available. All experiments are in single-thread
mode (though our code also supports multiple-thread
mode). When invoking functionality from libsnark
(with which our code is integrated), we selected the
build option CURVE=BN128, which means that group
arithmetic is conducted over a certain Barreto–Naehrig
curve [61] at 128 bits of security.
Costs for the general case. Our system’s efficiency
only depends on the size and ?-depth of the circuit C
in C?, and also n (the number of participating parties).
In Figure 4 we report approximate costs for several
complexity measures: the number of rounds, each party’s
time complexity, the number of broadcast messages,
the transcript size, and the transcript verification time.
(Figure 4 also displays costs for two concrete examples,
discussed further down below.)
Costs for two zk-SNARK constructions. When ap-
plying our system to generate public parameters for a
zk-SNARK, the circuit C is designed so that C(~α) · G
(for random ~α) equals the zk-SNARK’s generator output
distribution. This distribution depends on the particular
NP relation given as input to the generator; thus, the
circuit C also depends on this NP relation. Moreover,
different zk-SNARK constructions “natively” support
different classes of NP relations.

In order to shed light on our system’s efficiency when
applied to generate zk-SNARK public parameters, we
report the size and ?-depth of the circuit C as a function
of the input NP relation, relative to two zk-SNARK
constructions.
• The zk-SNARK [31]. This zk-SNARK supports

boolean circuit satisfiability: the generator receives as
input a boolean circuit D, and outputs public parame-
ters for proving D’s satisfiability. If D has Nw wires
and Ng gates, our code outputs a corresponding circuit
C := CDFGK with size 2 ·Nw + 2dlog2Nge(dlog2Nge+
1) + 10 and ?-depth 2.

• The zk-SNARK of [21], [25]. This zk-SNARK supports
arithmetic circuit satisfiability: the generator receives
as input an arithmetic circuit D, and outputs public
parameters for proving D’s satisfiability. If D has Nw

wires and Ng gates, our code outputs a circuit C :=
CPGHR with size 11·Nw+2dlog2Nge(dlog2Nge+1)+38
and ?-depth 3.
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In Figure 3 we summarize these costs, alongside costs
for two concrete examples, which we discuss next.
Costs for two concrete examples. We also report
costs for the following concrete choices of a circuit
C := CPGHR.
• Example #1: the circuit C targets Zerocash [44].

Namely, C(~α) · G (for random ~α) equals the output
distribution of the generator of the preprocessing
zk-SNARK on which Zerocash is based. We selected
this example because [44] ’s authors had acknowledged
the need, in practice, to securely sample Zerocash’s
parameters.

• Example #2: the circuit C targets the scalable
zk-SNARK of [39]. Namely, C(~α) · G (for random
~α) equals the output distribution of the generator used
to set up the scalable zk-SNARK. We selected this
example because, in this case, the generator’s output
is universal (it suffices for proving any computation
expressed as machine code on a certain RISC machine),
so that the zk-SNARK’s parameters can be securely
sampled once and for all.

In Figure 3 we report the size and ?-depth of C for
these two examples, and in Figure 4 we report the
corresponding costs of our system when run on these
choices of C.

VIII. CONCLUSION

Like time and space, trust is also a costly resource.
To facilitate the deployment of NIZKs and, in particular,
zk-SNARKs in various applications, it is not only
important to minimize the time and space requirements of
proving and verification, but also the trust requirements
of parameter generation.

The system that we have presented in this paper can be
used to reduce the trust requirements of parameter gener-
ation for a class of zk-SNARKs: the system provides a
multi-party broadcast protocol in which only one honest
party, out of n participating ones, is required to securely
sample the public parameters. Integration of our system
with libsnark greatly facilitates this application. As
a demonstration, we have used our system for securely
sampling public parameters for the zk-SNARKs of [21],
[25], [31].

It is an interesting question to extend our system so to
support circuits C that are not in the circuit class C?. Can
use continue to rely on relatively “light” cryptographic
techniques? Such a system would be able to support
parameter generation of essentially all preprocessing
zk-SNARKs.

Finally, in this work we have not attempted to
tackle the “human component” of parameter generation.
Namely, once we have a system that allows secure

sampling via a multi-party protocol, how should we
choose the participating parties? What penalties should
be put in place for misbehavior, if any? Where and
how should the protocol be conducted? These questions,
too, need good answers in order to convincingly sample
public parameters via the multi-party protocol.

APPENDIX A
PROOF OF LEMMA IV.2

We prove Lemma IV.2. Specifically, first we describe
the construction of the circuit transformation T1, and
then the construction of the protocol transformation T2;
afterwards, we explain why these constructions work.
Construction of T1. On input a positive integer n and a
circuit C : Fmr → Fhr in the class C?, the transformation
T1 outputs a circuit C̃ in the class C†.

First we describe high-level properties of the circuit
C̃. The number of wires, gates, inputs, and outputs
of C̃ is a multiplicative factor of n larger than those
of C: #wires(C̃) = n · #wires(C), #gates(C̃) =
n · #gates(C), #inputs(C̃) = n · #inputs(C), and
#outputs(C̃) = n ·#outputs(C). The inputs of C̃ are
partitioned into n disjoint sets each of size m and, for
each i, size(C̃, i) = O(size(C)). In particular, we can
write C̃ : Fm1×· · ·×Fmn → Fnh with each mi equal to
m. The †-depth of C̃ is n times larger than the ?-depth
of C: depth†(C̃) = n · depth?(C).

Moreover, there is a wire embedding from C to C̃,
i.e., a map φ : outputs(C) → outputs(C̃) that works
as follows. Consider any ~α(1), . . . , ~α(n) ∈ Fm and let
~α := (

∏n
j=1 α

(j)
1 , . . . ,

∏n
j=1 α

(j)
m ) ∈ Fm. Then, for

every output wire w of C, the value assigned to w
when computing C(~α) equals the value assigned to φ(w)
when computing C̃(~α(1), . . . , ~α(n)). In other words, if
C̃’s input corresponds to a multiplicative sharing, among
n parties, of C’s input, then C̃’s output contains C’s
output (as well as other values), and φ specifies the
embedding from the latter into the former. In particular,
if each of the shares are non-zero and at least one party’s
shares are all random, then the distribution of C̃’s output
coincides with the distribution obtained by evaluating C
at a random input (having no zeros).

We now turn to the construction of the circuit C̃
from C. We assume, for notational convenience, that
C’s wires have an order: for every wire w ∈ wires(C),
idx(w) denotes the wire’s index in {1, . . . ,#wires(C)}
of w according to this order; moreover, C’s input wires
have indexes from 1 to m. Initialize C̃ to be a gate-less
circuit with domain Fm1×· · ·×Fmn (recall the definition
of circuits with a split domain, in Section III-D), and
denote by w̃in

i,k the i-th input wire of C̃’s k-th input set
(here i ranges from 1 to m, while k ranges from 1 to
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zk-SNARK Circuit satisfiability of D when D is Circuit C in C?

size(C) depth?(C)

Danezis et al. [31] a Nw-wire Ng-gate boolean circuit 2 ·Nw + 2dlog2 Nge(dlog2Nge+ 1) + 10 2

Parno et al., Ben-Sasson et al. [21], [25] a Nw-wire Ng-gate arithmetic circuit 11 ·Nw + 2dlog2 Nge(dlog2Nge+ 1) + 38 3

Ben-Sasson et al. [44] Example #1’s arithmetic circuit 138467206 3

Ben-Sasson et al. [39] Example #2’s arithmetic circuit 8027609 6

Fig. 3. Size and ?-depth of the circuit C in C? obtained from D, for various choices of D.

Complexity measure Cost for
general case Example #1 Example #2

number of rounds n · depth?(C) + 3 3 · n+ 3 6 · n+ 6

each party’s time complexity 0.035 · size(C) ms 14124 s 4048 s

number of broadcast messages n · (depth?(C) + 3) 6 · n 6 · n
transcript size 0.072 · n · size(C) kB 12877 · n MB 906 · n MB

transcript verification time 1.03 · n · size(C) ms 196208 · n s 50945 · n s

Fig. 4. Our system’s costs for the general case, Example #1, and Example #2.

n). The procedure described below iteratively adds gates
and wires to C̃ by considering in turn each wire of C. It
also builds an #outputs(C)-size vector ~φ representing
the wire embedding φ

For each non-input wire w of C (i.e., in wires(C) \
inputs(C)) taken in topological order, do the following.

1) Denote i = idx(w). Let g be the gate in gates(C) that
computes (αL

0 +
∑dL

j=1 α
L
jw

L
j) · (αR

0 +
∑dR

j=1 α
R
jw

R
j)→

w. Note that as C ∈ C?, we have dR ≤ 1 and αR
0 = 0

if dR = 1.
2) Distinguish between several cases, depending on g:
• dL = 0 ∧ dR = 1 (i.e., g is a “constant-times-input”

gate).
a) Set r := idx(wR

1).
b) Add n new wires w̃i,1, . . . , w̃i,n to C̃, and also

n new gates g̃1, . . . , g̃n.
c) Have g̃1 compute αL

0 · (αR
1w̃in

r,1)→ w̃i,1 and for
k = 2, . . . , n have g̃k compute 1 · w̃in

r,k → w̃i,k.
d) Add n − 1 new wires w̃′i,1, . . . , w̃

′
i,n−1 to C̃,

and also n− 1 new gates g̃′i,1, . . . , g̃
′
i,n−1.

e) Have g̃′i,1 compute w̃i,1 · w̃i,2 → w̃′i,1 and for
k = 2, . . . , n − 1 have g̃′i,k compute w̃′i,k−1 ·
w̃i,k → w̃′i,k.

• (dL = 1 ∧ αL
0 = 0) ∧ dR = 1 (i.e., g is an

“output-times-input” gate).
a) Set l := idx(wL

1) and r := idx(wR
1); let gl be

the gate in gates(C) that computes wl with
idx(wl) = l.

b) Add n new wires w̃i,1, . . . , w̃i,n to C̃, and also
n new gates g̃1, . . . , g̃n.

c) If |L-inputs(gl)| = 1 and L-coeffs(gl)[0] = 0,
then have g̃1 compute (αL

1w̃l,1) · (αR
1w̃in

r,1) →
w̃i,1 and for k = 2, . . . , n have g̃k compute

w̃l,k · w̃in
r,k → w̃i,k.

d) If |L-inputs(gl)| > 1 or L-coeffs(gl)[0] 6= 0,
then have g̃1 compute (αL

1w̃l,n) · (αR
1w̃in

r,1) →
w̃i,1 and for k = 2, . . . , n have g̃k compute
1 · w̃in

r,k → w̃i,k.
e) Add n − 1 new wires w̃′i,1, . . . , w̃

′
i,n−1 to C̃,

and also n− 1 new gates g̃′i,1, . . . , g̃
′
i,n−1.

f) Have g̃′i,1 compute w̃i,1 · w̃i,2 → w̃′i,1 and for
k = 2, . . . , n − 1 have g̃′i,k compute w̃′i,k−1 ·
w̃i,k → w̃′i,k.

•
(
dL ≥ 2 ∨ (dL = 1 ∧ αL

0 6= 0)
)
∧ dR = 1 (i.e., g

is a “linear-combination-times-input” gate).
a) Set l1 := idx(wL

1), . . . , ldL := idx(wL

dL).
b) Add n new wires w̃i,1, . . . , w̃i,n to C̃, and also

n new gates g̃1, . . . , g̃n.
c) Have g̃1 compute (αL

0 +
∑dL

j=1 α
L
jw̃
′
j,n−1) ·

(αR
1w̃in

r,k) → w̃i,1 and for k = 2, . . . , n have
g̃k compute w̃l,k · w̃in

r,k → w̃i,k.
d) Henceforth for k = 1, . . . , n − 1 treat all

references to w̃′i,k as a reference to the single
wire w̃i.

• dL = 0 ∧ dR = 0 (i.e., g is “constant-times-constant”
gate).
a) Add a new wire w̃i to C̃, and a new gate g̃.
b) Have g̃ compute αL

0 · αR
0 → w̃i.

c) Henceforth for k = 1, . . . , n − 1 treat all
references to w̃′i,k as a reference to the single
wire w̃i.

• (dL = 1 ∧ αL
0 = 0) ∧ dR = 0 (i.e., g is an

“output-times-constant” gate).
a) Set l := idx(wL

1).
b) Add a new wire w̃i to C̃, and a new gate g̃.
c) Have g̃ compute (αL

1w̃′l,n−1) · αR
0 → w̃i.
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d) Henceforth for k = 1, . . . , n − 1 treat all
references to w̃′i,k as a reference to the single
wire w̃i.

•
(
dL ≥ 2 ∨ (dL = 1 ∧ αL

0 6= 0)
)
∧ dR = 0 (g is

a “linear-combination-times-constant” gate).
a) Set l1 := idx(wL

1), . . . , ldL := idx(wL

dL).
b) Add a new wire w̃i to C̃, and a new gate g̃.
c) Have g̃ compute (αL

0+
∑dL

j=1 α
L
jw̃
′
j,n−1)·αR

0 →
w̃i,k.

d) Henceforth for k = 1, . . . , n − 1 treat all
references to w̃′i,k as a reference to the single
wire w̃i.

3) Set ~φ[i] := idx(w̃′i,n−1).
4) Require that outputs of gates added to C̃ are also

outputs of C̃.
Note that, above, for each gate of C, we add O(n)

gates and O(n) wires to C̃; hence, size(C̃) = O(n ·
size(C)). Moreover, the gates of C̃ that reference w̃in

correspond to gates of C that a reference win; if a gate g
of C references an input wire win, then the corresponding
n gates of C̃ will reference one wire from each parties’
shares; hence, size(C̃) = O(n·size(C)) and size(C̃, i) =
O(size(C)) for i = 1, . . . , n. Finally, it’s easy to check
that depth†(C̃) = n · depth?(C).

Construction of T2. On input a secure evaluation
broadcast protocol ΠSE = (Π, V, S) with n parties for
C̃, the transformation T2 outputs a triple ΠSS = (Π′,
V ′, S′) that is constructed as follows. (Allegedly, ΠSS

is a secure sampling broadcast protocol with n parties
for C.)
• Construction of Π′. Let Π = (S,Σ1, . . . ,Σn). Con-

struct Π′ := (S′,Σ′1, . . . ,Σ
′
n) as follows. The schedule

S′ is

S′(t) :=


S(t) if 0 < t ≤ ROUND(Π)

{1} if t = ROUND(Π) + 1

∅ otherwise
.

Next, for i = 1, . . . , n, the strategy Σ′i, on input (xi, t)
and with oracle access to the history of messages
broadcast so far, works as follows.
– If 0 < t ≤ ROUND(Π), do the following. Run Σi

(on the same inputs received by Σ′i) and output its
output message msgt,i.

– If t = ROUND(Π) + 1 and i = 1, do the following.
Collect the encoding of the value of every output
wire of C. This can be done by using the wire
embedding φ to select values from the last message
broadcast so far because, by definition (being the
last message broadcast in Π), this message contains
the encoding of the value of every output wire of
C̃. Set msgt,i equal to the vector of these selected

encodings and output msgt,i.

Namely, the first ROUND(Π) rounds of Π′ coincide
with the first ROUND(Π) rounds of Π. Then, in the
last round of Π′, party 1 (chosen arbitrarily) collects
from the output of Π the encodings needed to create
the output for Π′.

• Construction of V ′. On input a transcript tr, the verifier
V ′ works as follows. Let m̃sg denote the last message
in tr, and t̃r the transcript obtained by removing m̃sg
from tr. Check that V (t̃r) = 1. Then check that m̃sg
equals the message obtained by using φ to select from
the last message in t̃r the outputs of C.

• Construction of S′. On input an adversary A and set J
of corrupted parties, the simulator S′ works as follows.
(We assume that |J | > 0, for otherwise the simulation
is trivial.)
1) Construct a new adversary Ã. The simulator first

modifies the adversary A, which is an adversary
against the sampling protocol ΠSS = (Π′, V ′, S′),
to an adversary Ã against the evaluation protocol
ΠSE = (Π, V, S). By construction of Π′, this can
be done by designing Ã so that (i) Ã runs A and
lets it interact with the outside world up to and
including round ROUND(Π) (up to this round, Π′

and Π are identical); and (ii) Ã simulates for A
the last round (the only round at which Π′ and Π
differ). The last round can be easily simulated by
Ã because, consisting merely of collecting some
values from past messages, it is a public operation
on the view of A.

2) Run ΠSE’s simulator on the new adversary Ã. The
simulator runs S on input the new adversary Ã
and the set J of corrupted parties. When S outputs,
for each i ∈ J , the (extracted) malicious input
~σi
∗ := (σ∗i,j)

mi
j=1 for party i, the simulator forwards

it to the trusted party.
At the same time, each honest party i ∈ J sends
to the trusted party his own vector σi := (σi,j)

mi
j=1.

The trusted party, broadcasts the output fSSC,G(~σ∗),
where ~σ∗ combines (~σi

∗)i∈J and (~σi)i6∈J in order
of i. Note that each malicious input ~σi

∗ was not
intended as an input to the function fSSC,G , but
instead to fSE

C̃,G . Though, while different, the two
functions have the same domain, and thus the
trusted party’s output is well-defined.
Next, the simulator must relay to S a value for fSE

C̃,G ,
while only having access to the trusted party’s out-
put, fSSC,G(~σ∗) := C

(
(
∏n
i=1 σ

∗
i,1, . . . ,

∏n
i=1 σ

∗
i,m)

)
·

G, and the (extracted) malicious inputs, (~σi
∗)i∈J .

Crucially, the relayed value must be indistinguish-
able from the value that S would have seen if S
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had accessed the function fSE
C̃,G . This particular

simulation is the core of the simulator and is
discussed separately in the next step.

3) Simulation of fSE
C̃,G(~σ∗). Let ~X be the distribution

over Fm1 × · · · × Fmn (i.e., C̃’s domain) defined
as follows: for each i ∈ J , set ~χi := ~σi

∗ (where
~σi
∗ is the extracted malicious input for party i);

for each i 6∈ J , set ~χi to be random in Fmi ; output
~χ := (~χi)

n
i=1. The simulator must relay to S a

sample from the distribution

D :=
{
fSE
C̃,G(~χ)

∣∣∣ ~χ← ~X
}
fSS
C,G(~χ)=fSS

C,G(~σ∗)
.

We now explain how the simulator can efficiently
generate a sample from D, despite the fact that the
simulator does not know the honest parties’ inputs
(i.e., the i-th coordinate of ~σ∗ for i 6∈ J).
By construction of C̃, fSE

C̃,G(~α) contains fSSC,G(~α)

for any input ~α. However, fSE
C̃,G(~α) also contains

additional outputs; these are the values of wires
that carry partial shares of an output of C. Our
strategy is to “compute backwards” all the output
wires of C̃, starting from its output wires that are
also outputs of C (because these values are the
ones we know); this strategy leverages the specific
structure of the circuit C̃ and does not apply to
every circuit in C†. More precisely, we proceed as
follows.
Let H be a (potentially empty) subset of
{1, . . . , n}\J with |H| = n−|J |−1. Initialize ~B
to be a vector of #inputs(C) components such
that the j-th component ~B[j] is a vector of n
components where, for i = 1, . . . , n, the i-th
component ~B[j, i] is chosen as follows: if i ∈ J ,
then it equals σ∗i,j ; if i ∈ H , then it equals an
element drawn uniformly at random from Fr; if
i is the single index neither in J nor H then it
equals ⊥. Intuitively, ~B[j] is a multiplicative share
of the j-th input of C; we know the shares of
malicious parties and, for honest parties, we guess
at random for all but one (as we cannot guess at
random for all of them, for otherwise we cannot
achieve consistency with the output of the trusted
party).
Initialize ~E to be a vector of #wires(C̃) empty
coordinates; the r-th coordinate will be assigned
the encoding of the value of the r-th wire in C̃.
For each output wire w of C, letting i := idx(w),
do the following:
a) Let g be the gate in gates(C) that computes

(αL
0 +

∑dL

j=1 α
L
jw

L
j) · (αR

0 +
∑dR

j=1 α
R
jw

R
j)→ w.

b) Let R be the G-element that encodes w’s value
in fSSC,G(~σ∗).

c) Set ~E[idx(φ(w))] := R.
d) Use ~B to deduce from R the encodings of all

wires associated to gate g (by referring to the
different cases spelled out in the construction
of C̃).

4) Extend the output of S. Extend t̃r with an additional
message, fSSC,G(~σ∗), and denote the result by tr.
This last message reflects the additional round
present in Π′ (as compared to Π), and its goal
is merely to re-format the output of the protocol.
Also, since extending t̃r to tr does not require
additional randomness, we can set r := r̃.

5) Output. Output tr (the transcript), (~σi)i∈J
(the inputs of the corrupted parties), and r
(the adversary’s randomness).

APPENDIX B
PROOF OF LEMMA IV.3

We prove Lemma IV.3. Specifically, first we describe
the construction of ΠSE = (Π, V, S) by describing, for ev-
ery positive integer n and circuit C : Fm1

r ×· · ·×Fmn
r →

Fhr in C†, the multi-party broadcast protocol Πn,C , the
verifier Vn,C , and the simulator Sn,C ; afterwards, we
explain why the construction of ΠSE works.

Below, we use the following cryptographic ingredients:
a hiding commitment scheme COMM (see Section III-B);
and two NIZKs (see Section III-C), NIZKRA

for the NP
relation RA and NIZKRB

for the NP relation RB. (These
two relations are defined in Figure 1.)
Construction of Πn,C . The n-party broadcast protocol
Πn,C is a tuple (S,Σ1, . . . ,Σn) that is constructed as
follows. The schedule S is

S(t) :=

{1, . . . , n} if t = 1

{i | ∃w ∈ wires(C) s.t.
depth†(w) = t− 1

and R-deps(gw) = {i}} if 1 < t ≤ depth†(C) + 1

{1} if t = depth†(C) + 2

∅ otherwise

.

Next, for i = 1, . . . , n, the strategy Σi, on input (xi, t)
and with oracle access to the history of messages
broadcast so far, works as follows.
• If t = 1, do the following. Parse inputs(C, i) as
{wi,j}mi

j=1 and xi as (σi,j)
mi
j=1; each σi,j is an Fr-

element and represents the value assigned to wire
wi,j . Set Ui :=

(
(wi,j , σi,j)

)mi

j=1
. For j = 1, . . . ,mi,

sample (cmi,j , trapi,j)← COMM.Gen(σi,j) and then
compute πi,j := NIZKRA

.P(crs, cmi,j , (σi,j , trapi,j)).
Store, for later use, the list Ui and trapdoors
(trapi,1, . . . , trapi,mi

). Output the message msgt,i :=
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(cmi,1, πi,1, . . . , cmi,mi
, πi,mi

).
• If 1 < t ≤ depth†(C) + 1, do the following. Define

the set of wires

Wt,i :=

{
w ∈ wires(C)

∣∣∣∣ depth†(w) = t− 1
R-deps(gw) = {i}

}
.

(1)
If Wt,i is empty, halt and do not output any messages
(since party i has no gates to process during this round).
Otherwise, initialize the message msgt,i to be an empty
list and, for each wire w ∈Wt,i taken in topological
order, perform the following steps.
1) Let g be the gate in gates(C) that computes (αL

0 +∑dL

j=1 α
L
jw

L
j) · (αR

0 +
∑dR

j=1 α
R
jw

R
j) → w. Namely,

(αL
j)
dL

j=0 are the left coefficients, (αR
j)
dR

j=0 the right
coefficients, {wL

j}d
L

j=1 the left input wires, {wR
j}d

R

j=1

the right input wires, and w the (single) output
wire.

2) For j = 1, . . . , dL, consult the history of messages
broadcast so far (or previous iterations of this
loop) to obtain a triple (wj ,Rj , πj) with wj = wL

j .
Allegedly, Rj encodes wj’s value and πj is a NIZK
proof that attests to this.

3) Compute the G-element P := αL
0 · G +

∑dL

j=1(αL
j ·

Rj); allegedly, P encodes g’s left linear combina-
tion.

4) For j = 1, . . . , dR, consult Ui to obtain a pair
(w′j , σj) with w′j = wR

j ; the Fr-element σj is w′j’s
value.

5) Compute the Fr-element σ := αR
0+
∑dR

j=1 α
R
jσj and

the G-element R := σ · P . Allegedly, R encodes
g’s output.

6) For each j = 1, . . . , dR:
– if w′j = wi,j′ for some wi,j′ ∈ inputs(C, i), set
bj := 0, cj := cmi,j′ , and trapj := trapi,j′ .

– otherwise, set bj := 1, cj := σj ·G, and trapj :=
⊥.

7) Set ~b := (bj)
dR

j=1, ~α := (αR
j)
dR

j=0, ~c := (cj)
dR

j=1,
~σ := (σj)

dR

j=1, and ~trap := (trapj)
dR

j=1.
8) Construct the instance x := (R,P, dR, ~α,~b,~c) and

witness w := (~σ, ~trap). Allegedly, the pair (x,w)
belongs to the NP relation RB. Compute the NIZK
proof π := NIZKRB

.P(crs′, x,w).
9) Append (w,R, π) to msgt,i and (w, σ) to Ui.
Output the message msgt,i.

• If t = 2 + depth†(C) and i = 1, do the following.
Parse outputs(C) as {wout

j }hj=1. Consult the history of
messages broadcast so far to collect the encoding of ev-
ery output of C, i.e., to collect

(
(wj ,Rj , πj)

)h
j=1

with
wj = wout

j . Output the message msgt,i := (Rj)hj=1.
Construction of Vn,C . On input a transcript tr, the

verifier Vn,C first uses Πn,C’s schedule to parse tr as
a sequence of messages msgt,i where msgt,i is the t-th
message broadcast by party i (or ⊥ if party i does not act
in round t). Here, i ranges from 1 to n, while t ranges
from 1 to 2 + depth†(C); if tr cannot be parsed in this
way, the verifier rejects. Next, the verifier performs the
following checks.
• Check that parties’ inputs are committed. For i =

1, . . . , n, check that msg1,i equals a vector of mi

commitments and NIZK proofs, which we denote by
(cmi,1, πi,1, . . . , cmi,mi

, πi,mi
). Also check that, for

j = 1, . . . ,mi, NIZKRA
.V(crs, cmi,j , πt,i,j) = 1.

• Check that each gate in C is correctly evaluated. For
i = 1, . . . , n and t = 2, . . . , 1 + depth†(C) do the
following. First define the set Wt,i as in Equation 1.
Then check that msgt,i equals a list of |Wt,i| triples
(wt,i,j ,Rt,i,j , πt,i,j), where each wt,i,j is a wire of C,
each Rt,i,j is an element of G, and each πt,i,j is a
NIZK proof; also, check that {wt,i,j}j = Wt,i. Next,
for each j, check that NIZKRB .V(crs′, xt,i,j , πt,i,j) =

1, where xt,i,j := (Rt,i,j ,P, dR, ~α,~b,~c) is an instance
for the NP relation RB that is constructed as follows.
Letting g be the gate of C whose output is wt,i,j , P
equals the linear combination, using g’s left coeffi-
cients, of the elements of G that encode the values
of g’s left inputs (these encodings can be found by
consulting suitable parts of the transcript), dR equals
the number of right inputs of g, ~α equals the 1 + dR

right coefficients of g, ~b is a vector of dR bits in which
the k-th bit equals 1 if and only if the k-th right input
wire of g is also in inputs(C, i), and ~c is a vector of
dR components in which the k-th component equals
cmi,` if the k-th right input wire of g is the `-th wire
in inputs(C, i) and equals ⊥ if the k-th right input
wire of g is not in inputs(C, i). (The construction of
xt,i,j is analogous to the construction of the NIZK
instance in Step 8 above in Σi’s description.)

• Check that party 1 collected all the encodings of
outputs. Collect, among the aforementioned triples
of the form (w,R, π), encodings of the values of
output wires of C, and check that the vector whose
entries equals these encodings matches the message
msg2+depth†(C),1.

Construction of Sn,C . On input an adversary A and
set J of corrupted parties, the simulator Sn,C works as
follows.

1) Initialization. The simulator initializes an empty
transcript tr; over the course of running the adversary,
the simulator will add to tr both simulated messages
(on behalf of honest parties) and messages output
by A (on behalf of corrupted parties). The simulator
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samples common random strings with an extraction
trapdoor for NIZKRA

and a simulation trapdoor
for NIZKRB : (crsext, trapext) ← NIZKRA .E1 and
(crs′sim, trap′sim) ← NIZKRB .S1. The common ran-
dom string shown to the adversary is (crsext, crs′sim).
The simulator samples a random string r for the
adversary, and then runs the adversary, on inputs
(~σi)i∈J and with randomness r, until the adversary
asks for the first round’s messages of the honest
parties.

2) Simulation of the first round. The adversary
expects to receive, for each i 6∈ J , a message
msg1,i. The simulator, for each i 6∈ J , does
the following. For j = 1, . . . ,mi, sample
(cmi,j , trapi,j) ← COMM.Gen(ρi,j) for a random
ρi,j in Fr and then compute the NIZK proof
πi,j := NIZKRA

.P(crsext, cmi,j , (ρi,j , trapi,j));
then answer with the message msg1,i :=
(cmi,1, πi,1, . . . , cmi,mi

, πi,mi
).

The adversary outputs, for each i ∈ J , a message
msg1,i of his choice. The simulator adds all the third-
round messages (the messages that are simulated and
those output by the adversary) to the transcript tr.

3) Invocation of the trusted party. The simulator, for
each i ∈ J , does the following. For j = 1, . . . ,mi,
extract σ∗i,j , the j-th input chosen by the ad-
versary for party i, from the commitment cmi,j

and proof πi,j in msg1,i, by computing σ∗i,j :=
NIZKRA

.E2(crsext, trapext, cmi,j , πi,j); then send to
the trusted party the vector ~σi

∗ := (σ∗i,j)
mi
j=1 as the

private input of party i.
At the same time, each honest party i ∈ J sends
to the trusted party his own vector σi := (σi,j)

mi
j=1.

The trusted party, broadcasts the output fSEC,G(~σ∗) :=
C(~σ∗) · G, where ~σ∗ combines (~σi

∗)i∈J and (~σi)i 6∈J
in order of i.

4) Parsing the trusted party’s output. The simulator re-
organizes fSEC,G(~σ∗) into a data structure that allows
for easy lookup of information in the next step:
initialize E to be an empty list; then, for each output
wire w of C, add to E the pair (w,R) where R
encodes w’s value (and can be found in fSEC,G(~σ∗) by
definition).

5) Simulation of the rounds 2 through 1 + depth†(C).
For t ranging from 2 to 1+ depth†(C), the adversary
expects to receive, for each i 6∈ J , a message msgt,i.
The simulator, for each i 6∈ J , does the following.
Define Wt,i as in Equation 1. Initialize msgt,i as
an empty list and, for each wire w ∈ Wt,i taken in
topological order, perform the following steps.

a) Let g be the gate in gates(C) that computes

(αL
0 +

∑dL

j=1 α
L
jw

L
j) · (αR

0 +
∑dR

j=1 α
R
jw

R
j) → w.

Namely, (αL
j)
dL

j=0 are the left coefficients, (αR
j)
dR

j=0

the right coefficients, {wL
j}d

L

j=1 the left input wires,
{wR

j}d
R

j=1 the right input wires, and w the (single)
output wire.

b) For j = 1, . . . , dL, consult E to obtain the
G-element Rj that encodes wL

j’s value. Note
that C ∈ C† implies that each wL

j is not in
inputs(C, i), thus its value can be found in E.

c) For j = 1, . . . , dR, if wR
j 6∈ inputs(C, i), consult

E to obtain the G-element Sj that encodes wR
j’s

value.
d) Consult E to obtain the G-element R that

encodes w’s value.
e) Compute the G-element P := αL

0 ·G+
∑dL

j=1(αL
j ·

Rj).
f) For each j = 1, . . . , dR: (i) if wL

j = wi,j′ for some
wi,j′ ∈ inputs(C, i), set bj := 0 and cj := cmi,j′

(where cmi,j′ is in msg1,i). (ii) otherwise, set
bj := 1 and cj := Sj .

g) Set ~b := (bj)
dR

j=1, ~α := (αR
j)
dR

j=0, and ~c :=

(cj)
dR

j=1.
h) Construct the instance x := (R,P, dR, ~α,~b,~c)

and compute the NIZK proof π :=
NIZKRB

.S2(crs′sim, trap′sim, x).
i) Append (w,R, π) to msgt,i.

Answer the adversary with the message msgt,i.
The adversary outputs, for each i ∈ J , a message
msgt,i of his choice. The simulator adds all the round-
t messages (the messages that are simulated and those
that are output by the adversary) to the transcript tr.

6) Simulation of the last round. If 1 6∈ J , the adver-
sary expects to receive a message msg2+depth†(C),1;
the simulator answers with msg2+depth†(C),1 :=

fSEC,G(~σ∗). If 1 ∈ J , the adversary does not ex-
pect any messages and instead outputs a message
msg2+depth†(C),1.
In either case, the simulator adds the the last-round
message msg2+depth†(C),1 to the transcript tr.

7) Output. Output tr (the transcript), (~σi)i∈J (the inputs
of the corrupted parties), and r (the adversary’s
randomness).

APPENDIX C
EXAMPLES OF CIRCUITS UNDERLYING GENERATORS

As discussed in Section I-A, the generator G of es-
sentially all known (preprocessing) zk-SNARK construc-
tions follows the same computation pattern. To generate
the public parameters pp for a given NP relation R, G
first constructs an Fr-arithmetic circuit C : Fmr → Fhr
(which is somehow related to R), then samples ~α in

18



Fmr at random, and finally outputs pp := C(~α) · G
(where G generates a certain group of order r). Different
zk-SNARK constructions differ in (i) which NP relations
R are “natively” supported, and (ii) how the circuit C
is obtained from R.

Below, we give two examples of how the generator
of a known zk-SNARK construction can be cast in the
above paradigm and, moreover, the resulting circuit C
lies in the class C?. Throughout, we denote by F[z] the
ring of univariate polynomials over F, and by F≤d[z]
the subring of polynomials of degree ≤ d.

A. Example for a QAP-based zk-SNARK

We describe how to cast the generator of [21]’s
zk-SNARK as computing the encoding of a random
evaluation of a circuit C that lies in C?. More precisely,
we consider [25]’s zk-SNARK, which modifies [21]’s.
Supported NP relations. The zk-SNARK supports
relations of the form RD = {(~x, ~w) ∈ Fnr × Fhr :
D(~x, ~w) = 0`} where D : Fnr × Fhr → F`r is an
Fr-arithmetic circuit; that is, the zk-SNARK supports
arithmetic circuit satisfiability (see Footnote 8).
QAPs. The construction is based on quadratic arith-
metic programs (QAP) [20]: a QAP of size m and degree
d over F is a tuple ( ~A, ~B, ~C,Z), where ~A, ~B, ~C are
three vectors, each of m+ 1 polynomials in F≤d−1[z],
and Z ∈ F[z] has degree exactly d. As shown in [20],
each relation RD can be reduced to a certain relation
R( ~A, ~B, ~C,Z), which captures “QAP satisfiability”, by
computing ( ~A, ~B, ~C,Z) := GetQAP(D) for a suitable
function GetQAP; if D has Nw wires and Ng gates, then
the resulting QAP has size m = Nw and degree d ≈ Ng.
The parameter generator. On input an Fr-arithmetic
circuit D : Fnr × Fhr → F`r, the generator does:
1) Compute ( ~A, ~B, ~C,Z) := GetQAP(D), and denote

by m and d the QAP’s size and degree; then construct
an Fr-arithmetic circuit C : F8

r → Fd+7m+n+22
r

such that C(τ, ρA, ρB, αA, αB, αC, β, γ) computes the
following outputs:(

1, τ, . . . , τd,

A0(τ)ρA, . . . , Am(τ)ρA, Z(τ)ρA,

A0(τ)ρAαA, . . . , Am(τ)ρAαA, Z(τ)ρAαA,

B0(τ)ρB, . . . , Bm(τ)ρB, Z(τ)ρB,

B0(τ)ρBαB, . . . , Bm(τ)ρBαB, Z(τ)ρBαB,

C0(τ)ρAρB, . . . , Cm(τ)ρAρB, Z(τ)ρAρB,

C0(τ)ρAρBαC, . . . , Cm(τ)ρAρBαC, Z(τ)ρAρBαC,

(A0(τ)ρA +B0(τ)ρB + C0(τ)ρAρB)β, . . . ,

(Am(τ)ρA +Bm(τ)ρB + Cm(τ)ρAρB)β,

(Z(τ)ρA + Z(τ)ρB + Z(τ)ρAρB)β,

αA, αB, αC, γ, γβ, Z(τ)ρAρB, A0(τ)ρA, . . . , An(τ)ρA

)
.

2) Sample ~α in F8
r at random.

3) Compute pp := C(~α) · G.
4) Output pp.9

B. Example for a SSP-based zk-SNARK

We explain how the generator of [31]’s zk-SNARK can
be cast as computing the encoding of a random evaluation
of a certain circuit C that lies in C?.

Supported NP relations. The zk-SNARK supports re-
lations RD = {(~x, ~w) ∈ {0, 1}n × {0, 1}h : D(~x, ~w) =
0`} where D : {0, 1}n ×{0, 1}h → {0, 1}` is a boolean
circuit; i.e., the zk-SNARK supports boolean circuit
satisfiability (see Footnote 8).

SSPs. The construction is based on square span
programs (SSP) [31]: a SSP of size m and degree d
over F is a tuple ( ~A,Z), where ~A is a vector of m+ 1
polynomials in F≤d−1[z] and Z ∈ F[z] has degree
exactly d. As shown in [31], each relation RD can be
reduced to a certain relation R( ~A,Z), which captures
“SSP satisfiability”, by computing ( ~A,Z) := GetSSP(D)
for a suitable function GetSSP; if D has Nw wires and
Ng gates, then the resulting SSP has size m = Nw and
degree d ≈ Nw +Ng.

The parameter generator. On input a boolean cir-
cuit D : {0, 1}n × {0, 1}h → {0, 1}`, the generator
does the following.
1) Compute ( ~A, ~B, ~C,Z) := GetSSP(D), and denote

by m and d the SSP’s size and degree; then construct
an Fr-arithmetic circuit C : F3

r → Fd+2m+n+9
r such

that C(τ, β, γ) computes the following outputs:(
1, τ, . . . , τd,

A0(τ), . . . , Am(τ), Z(τ),

A0(τ)β, . . . , Am(τ)β, Z(τ)β,

γ, γβ, Z(τ), A0(τ), . . . , An(τ)
)
.

2) Sample ~α in F3
r at random.

3) Compute pp := C(~α) · G.
4) Output pp.10
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