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Preface to the 

Springer Edition 

This book was written as an introductory text for a one-semester course 
and, as such, it is far from a comprehensive reference work. Its lack of 
completeness is now more apparent than ever since, like most branches of 
mathematics, knot theory has expanded enormously during the last fifteen 
years. The book could certainly be rewritten by including more material and 
also by introducing topics in a more elegant and up-to-date style. Accomplish
ing these objectives would be extremely worthwhile. However, a significant 
revision of the original work along these lines, as opposed to writing a new 
book, would probably be a mistake. As inspired by its senior author, the late 
Ralph H. Fox, this book achieves qualities of effectiveness, brevity, elementary 
character, and unity. These characteristics would ~e jeopardized, if not lost, 
in a major revision. As a result, the book is being republished unchanged, 
except for minor corrections. The most important of these occurs in Chapter 
III, where the old sections 2 and 3 have been interchanged and somewhat 
modified. The original proof of the theorem that a group is free if and only 
if it is isomorphic to F[d] for some alphabet d contained an error, which 
has been corrected using the fact that equivalent reduced words are equal. 

I would like to include a tribute to Ralph Fox, who has been called the 
father of modern knot theory. He was indisputably a first-rate mathematician 
of international stature. More importantly, he was a great human being. His 
students and other friends respected him, and they also loved him. This 
edition of the book is dedicated to his memory. 

Dartmouth College 
1977 
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Preface 

Knot theory is a kind of geometry, and one whose appeal is very direct 
because the objects studied are perceivable and tangible in everyday physical 
space. It is a meeting ground of such diverse branches of mathematics as 
group theory, matrix theory, number theory, algebraic geometry, and 
differential geometry, to name some of the more prominent ones. It had its 
origins in the mathematical theory of electricity and in primitive atomic 
physics, and there are hints today of new applications in certain branches of 
chemistryJ The outlines of the modern topological theory were worked out 
by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As 
a subfield of topology, knot theory forms the core of a wide range of problems 
dealing with the position of one manifold imbedded within another. 

This book, which is an elaboration of a series of lectures given by Fox at 
Haverford College while a Philips Visitor there in the spring of 1956, is an 
attempt to make the subject accessible to everyone. Primarily it is a text
book for a course at the junior-senior level, but we believe that it can be used 
with profit also by graduate students. Because the algebra required is not 
the familiar commutative algebra, a disproportionate amount of the book 
is given over to necessary algebraic preliminaries. However, this is all to the 
good because the study of noncommutativity is not only essential for the 
development of knot theory but is itself an important and not overcultivated 
field. Perhaps the most fascinating aspect of knot theory is the interplay 
between geometry and this noncommutative algebra. 

For the past ,thirty years Kurt Reidemeister's Ergebnisse publication 
Knotentheorie has been virtually the only book on the subject. During that 
time many important advances have been made, and moreover the combina
torial point of view that dominates Knotentheorie has generally given way 
to a strictly topological approach. Accordingly, we have emphasized the 
topological invariance of the theory throughout. 

There is no doubt whatever in our minds but that the subject centers 
around the concepts: knot group, Alexander matrix, covering space, and our 
presentation is faithful to this point of view. We regret that, in the interest 
of keeping the material at as elementary a level as possible, we did not 
introduce and make systematic use of covering space theory. However, had 
we done so, this book would have become much longer, more difficult, and 

1 H.L. Frisch and E. Wasserman, "Chemical Topology," J. Am. Ohem. Soc., 83 (1961) 
3789-3795 
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viii PREFACE 

presumably also more expensive. For the mathematician with some maturity, 
for example one who has finished studying this book, a survey of this central 
core of the subject may be found in Fox's "A quick trip through knot theory" 
(1962).1 

The bibliography, although not complete, is comprehensive far beyond the 
needs of an introductory text. This is partly because the field is in dire need 
of such a bibliography and partly because we expect that our book will be 
of use to even sophisticated mathematicians well beyond their student days. 
To make this bibliography as useful as possible, we have included a guide 
to the literature. 

Finally, we thank the many mathematicians who had a hand in reading 
and criticizing the manuscript at the various stages of its development. 
In particular, we mention Lee Neuwirth, J. van Buskirk, and R. J. Aumann, 
and two Dartmouth undergraduates, Seth Zimmerman and Peter Rosmarin. 
We are also grateful to David S. Cochran for his assistance in updating the 
bibliography for the third printing of this book. 

1 See Bibliography 
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Prerequisites 

For an intelligent reading of this book a knowledge of the elements of 
modern algebra and point-set topology is sufficient. Specifically, we shall 
assume that the reader is familiar with the concept of a function (or mapping) 
and the attendant notions of domain, range, image, inverse image, one-one, 
onto, composition, restriction, and inclusion mapping; with the concepts 
of equivalence relation and equivalence class; with the _ definition and 
elementary properties of open set, closed set, neighborhood, closure, interior, 
induced topology, Cartesian product, continuous mapping, homeomorphism, 
compactness, connectedness, open cover(ing), and the Euclidean n-dimen
sional space Rn; and with the definition and basic properties of homomor
phism, automorphism, kernel, image, groups, normal subgroups, quotient 
groups, rings, (two-sided) ideals, permutation groups, determinants, and 
matrices. These matters are dealt with in many standard textbooks. We may, 
for example, refer the reader to A. H. Wallace, An Introduction to Algebraic 
Topology (Pergamon Press, 1957), Chapters I, II, and III, and to G. Birkhoff 
and S. MacLane, A Survey of Modem Algebra, Revised Edition (The Mac
millan Co., New York, 1953), Chapters III, §§1-3, 7, 8; VI, §§4-8, 11-14; VII, 
§5; X, § §1, 2; XIII, § §1-4. Some of these concepts are also defined in the 
index. 

In Appendix I an additional requirement is a knowledge of differential and 
integral calculus. 

The usual set theoretic symbols E, c, :=>, =, U, (\, and - are used. For 
the inclusion symbol we follow the common convention: A c B means that 
p E B whenever pEA. For the image and inverse image of A under f we 
write either fA andf-1A, or f(A) andf-l(A). For the restriction off to A we 
writef I A, and for the composition oftwo mappingsf: X -+ Y and g: Y -+ Z 
we write gf. 

When several mappings connecting several sets are to be considered at the 
same time, it is convenient to display them in a (mapping) diagram, such as 

f 
X~Y or 

II 

f II 
X ----+ Y ----+ Z 

~1/· 
w 

If each element in each set displayed in a diagram has at most one image ele
ment in any given set of the diagram, the diagram is said to be consistent. 

1 



2 PREREQUISITES 

Thus the first diagram is consistent if and only if gf = 1 and fg = 1, and the 
second diagram is consistent if and only if bf = a and cg = b (and hence 
cgf = a). 

The reader should note the following "diagram-filling" lemma, the proof of 
which is straightforward. 

If h: G ~ H and k: G ~ K are homomorphisms and h is onto, there 
exists a (necessarily unique) homomorphism f: H ~ K making the diagram 

G 

/~ 
H f ) K 

consistent if and only if the kernel of h is contained in the kernel of k. 



CHAPTER I 

Knots and Knot Types 

1. Definition of a knot. Almost everyone is familiar with at least the 
simplest of the common knots, e.g., the overhand knot, Figure 1, and the 
figure-eight knot, Figure 2. A little experimenting with a piece of rope will 
convince anyone that these two knots are different: one cannot be trans
formed into the other without passing a loop over one of the ends, i.e.,without 
"tying" or "untying." Nevertheless, failure to change the figure-eight into 
the overhand by hours of patient twisting is no proof that it can't be done. 
The problem that we shall consider is the problem of showing mathematically 
that these knots (and many others) are distinct from one another. 

e9 / 
Figure 1 Figure 2 

Mathematics never proves anything about anything except mathematics, 
and a piece of rope is a physical object and not a mathematical one. So before 
worrying about proofs, we must have a mathematical definition of what a 
knot is and another mathematical definition of when two knots are to be 
considered the same. This problem of formulating a mathematical model 
arises whenever one applies mathematics to a physical situation. The defini
tions should define mathematical objects that approximate the physical 
objects under cons.ideration as closely as possible. The model may be good or 
bad according as the correspondence between mathematics and reality is 
good or bad. There is, however, no way to prove (in the mathematIcal sense, 
and it is probably only in this sense that the word has a precise meaning) that 
the mathematical definitions describe the physical situation exactly. 

Obviously, the figure-eight knot can be transformed into the overhand 
knot by tying and untying-in fact all knots are equivalent if this operation 
is allowed. Thus tying and untying must be prohibited either in the definition 

3 



4 KNOTS AND KNOT TYPES Chap. I 

of when two knots are to be considered the same or from the beginning in the 
very definition of what a knot is. The latter course is easier and is the one 
we shall adopt. Essentially, we must get rid of the ends. One way would be to 
prolong the ends to infinity; but a simpler method is to splice them together. 
Accordingly, we shall consider a knot to be a subset of 3-dimensional space 
which is homeomorphic to a circle. The formal definition is: K is a knot if there 
exists a homeomorphism of the unit circle C into 3-dimensional space R3 
whose image is K. By the circle C is meant the set of points (x,y) in the plane 
R2 which satisfy the equation x2 + y2 = 1. 

The overhand knot and the figure-eight knot are now pictured as in Figure 
3 and Figure 4. Actually, in this form the overhand knot is often called the 
clover-leaf knot. Another common name for this knot is the trefoil. The figure
eight knot has been called both the four-knot and Listing's knot. 

Figure 3 Figure 4 

We next consider the question of when two knots KI and K2 are to be con
sidered the same. Notice, first of all, that this is not a question of whether or 
not KI and K2 are homeomorphic. They are both homeomorphic to the unit 
circle and, consequently, to each other. The property of being knotted is not 
an intrinsic topological property of the space consisting of the points of 
the knot, but is rather a characteristic of the way in which that space is 
imbedded in R3. Knot theory is a part of 3-dimensional topology and not of 
I-dimensional topology. If a piece of rope in one position is twisted into 
another, the deformation does indeed determine a one-one correspondence 
between the points of the two positions, and since cutting the rope is not 
allowed, the correspondence is bicontinuous. In addition, it is natural to 
think of the motion of the rope as accompanied by a motion of the surrounding 
air molecules which thus determines a bicontinuous permutation of the points 
of space. This picture suggests the definition: Knots KI and K2 are equivalent 
if there exists a homeomorphism of R3 onto itself which maps KI onto K 2• 
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It is a triviality that the relation of knot equivalence is a true equivalence 
relation. Equivalent knots are said to be of the same type, and each equiva
lence class of knots is a knot type. Those knots equivalent to the unknotted 
circle x2 + y2 = 1, Z = 0, are called trivial and constitute the trivial type.1 

Similarly, the type of the clover-leaf knot, or of the figure-eight knot is 
defined as the equivalence class of some particular representative knot. The 
informal statement that the clover-leaf lmot and the figure-eight knot are 
different is rigorously expressed by saying that they belong to distinct knot 
types. 

2. Tame versus wild knots. A polygonal knot is one which is the union of a 
finite number of closed straight-line segments called edges, whose endpoints 
are the veTtices of the knot. A knot is tame if it is equivalent to a polygonal 
knot; otherwise it is wild. This distinction is of fundamental importance. In 
fact, most of the knot theory developed in this book is applicable (as it stands) 
only to tame knots. The principal invariants of knot type, namely, the ele
mentary ideals and the knot polynomials, are not necessarily defined for a 
wild knot. Moreover, their evaluation is based on finding a polygonal repre
sentative to start with. The discovery that knot theory is largely confined to 
the study of polygonal knots may come as a surprise-especially to the reader 
who approaches the subject fresh from the abstract generality of point-set 
topology. It is natural to ask what kinds of knots other than polygonal are 
tame. A partial answer is given by the following theorem. 

(2.1) If a knot pammetTized by aTC length i8 of class 0 1 (i.e., is continuously 
dijJexentiable), then it is tame. 

A proof is given in Appendix I. It is complicated but straightforward, and 
it uses nothing beyond the standard techniques of advanced calculus. More 
explicitly, the assumptions on K are that it is rectifiable and given as the image 
of a vector-valued function p(s) = (x(s), y(s), z(s)) of arc length s with con
tinuous first derivatives. Thus, every sufficiently smooth knot is tame. 

It is by no means obvious that there exist any wild knots. For example, 
no knot that lies in a plane is wild. Although the study of wild knots is a corner 
of knot theory outside the scope of this book, Figure 5 gives an example 
of a knot known to be wild.2 This lmot is a remarkable curve. Except for the 
fact that the number ofloops increases without limit while their size decreases 
without limit (as is indicated in the figure by the dotted square about p), the 

1 Any knot which lies in a plane is necessarily trivial. This is a well-known and deep 
theorem of plane topology. See A. H. Newman, Elements of the Topology of Plane Sets of 
Points, Second edition (Cambridge University Press, Cambridge, 1951), p. 173. 

2 R. H. Fox, "A Remarkable Simple Closed Curve," Annals of Mathematics, Vol. 50 
(1949), pp. 264, 265. 



6 KNOTS AND KNOT TYPES Chap. I 

Figure 5 

knot could obviously be untied. Notice also that, except at the single point 
p, it is as smooth and differentiable as we like. 

3. Knot projections. A knot K is usually specified by a projection; for 
example, Figure 3 and Figure 4 show projected images of the clover-leaf knot 
and the figure-eight knot, respectively. Consider the parallel projection 

f!J: R3 --+ R3 

defined by f!J(x,y,z) = (x,y,O). A point p of the image f!J K is called a 
multiple point if the inverse image f!J-lp contains more than one point of K. 
The order of p E f!JK is the cardinality of (f!J-1p) n K. Thus, a double point 
is a multiple point of order 2, a triple point is one of order 3, and so on. 
Multiple points of infinite order can also occur. In general, the image f!JK 
may be quite complicated in the number and kinds of multiple points present. 
It is possible, however, that K is equivalent to another knot whose projected 
image is fairly simple. For a polygonal knot, the criterion for being fairly 
simple is that the knot be in what is called regular position. The definition is 
as follows: a polygonal knot K is in regular position if: (i) the only multiple 
points of K are double points, and there are only a finite number of them; 
(ii) no double point is the image of any vertex of K. The second condition 
insures that every double point depicts a genuine crossing, as in Figure 6a. 
The sort of double point shown in Figure 6b is prohibited. 

Figure 6a Figure 6b 
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Each double point of the projected image of a polygonal knot in regular 
position is the image of two points of the knot. The one with the larger 
z-coordinate is called an overcrossing, and the other is the corresponding 
undercrossing. 

(3.1) Any polygonal knot K is equivalent under an arbitrarily small rotation 
of R3 to a polygonal knot in regular position. 

Proof. The geometric idea is to hold K fixed and move the projectIon. 
Every bundle (or pencil) of parallel lines in R3 determines a unique parallel 
projection of R3 onto the plane through the origin perpendicular to the bundle. 
We shall assume the obvious extension of the above definition of regular 
position so that it makes sense to ask whether or not K is in regular position 
with respect to any parallel projection. It is convenient to consider R3 as a 
subset3 of a real projective 3-space P3. Then, to every parallel projection we 
associate the point of intersection of any line parallel to the direction of 
projection with the projective plane p2 at infinity. This correspondence is 
clearly one-one and onto. Let Q be the set of all points of p2 corresponding to 
projections with respect to which K is not in regular position. We shall show 
that Q is nowhere dense in P2. It then follows that there is a projection &0 
with respect to which K is in regular position and which is arbitrarily close 
to the original projection & along the z-axis. Any rotation of R3 which 
transforms the line &0-1(0,0,0) into the z-axis will suffice to complete the proof. 

In order to prove that Q is nowhere dense in p2, consider first the set of all 
straight lines which join a vertex of K to an edge of K. These intersect p2 in a 
finite number of straight-line segments whose union we denote by Q1. Any 
projection corresponding to a point of p2 - Q1 must obviously satisfy con
dition (ii) of the definition of regular position. Furthermore, it can have at 
most a finite number of multiple points, no one of which is of infinite order. 
It remains to show that multiple points of order n :2: 3 can be avoided, and 
this is done as follows. Consider any three mutually skew straight lines, each 
of which contains an edge of K. The locus of all straight lines which intersect 
these three is a quadric surface which intersects p2 in a conic section. 
(See the reference in the preceding footnote.) Set Q2 equal to the union of all 
such conics. Obviously, there are only a finite number of them. Furthermore, 
the image of K under any projection which corresponds to some point of 
p2 - (Q1 U Q2) has no multiple points of order n :2: 3. We have shown that 

Thus Q is a subset of Q1 U Q2' which is nowhere dense in P2. This completes 
the proof of (3.1). 

3 For an account of the concepts used in this proof, see O. Veblen and .T. VV. Young, 
Projective Geometry (Ginn and Company, Boston, Massachusetts, 1910), Vol. 1 pp. 11, 
299, 301. 
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Thus, every ta.me knot is equivalent to a polygonal knot in regular position. 
This fact is the starting point for calculating the basic invariants by which 
different knot types are distinguished. 

4. Isotopy type, amphicheiral and invertible knots. This section is not a 
prerequisite for the subsequent development of knot theory in this book. 
The contents are nonetheless important and worth reading even on the first 
time through. 

Our definition of knot type was motivated by the example of a rope in 
motion from one position in space to another and accompanied by a displace
ment of the surrounding air molecules. The resulting definition of equivalence 
of knots abstracted from this example represents a simplification of the 
physical situation, in that no account is taken of the motion during the transi
tion from the initial to the final position. A more elaborate construction, 
which does model the motion, is described in the definition of the isotopy 
type of a knot. An isotopic deformation of a topological space X is a family of 
homeomorphisms ht, 0 ::;; t ::;; 1, of X onto itself such that ho is the identity, 
i.e., ho(p) = p for all p in X, and the function H defined by H(t,p) = ht(p) is 
simultaneously continuous in t and p. This is a special case of the general 
definition of a deformation which will be studied in Chapter V. Knots Kl 
and K2 are said to belong to the same isotopy type if there exists an isotopic 
deformation {ht} of R3 such that hlKl = K 2• 'thelettert is intentionally chosen 
to suggest time. Thus, for a fixed point p E R3, the point ht(p) traces out, so to 
speak, the path of the molecule originally at p during the motion of the rope 
from its initial position at Kl to K 2• 

Obviously, if knots Kl and K2 belong to the sa.me isotopy type, they are 
equivalent. The converse, however, is false. The following discussion of 
orientation serves to illustrate the difference between the two definitions. 

Every homeomorphism h of R3 onto itself is either orientation preserving 
or orientation 1·eversing. Although a rigorous treatment of this concept is 
usually given by homology theory,4 the intuitive idea is simple. The homeo
morphism h preserves orientation if the image of every right (left)-hand screw 
is again a right (left)-hand screw; it reverses orientation if the image of every 
right (left)-hand screw is a left (right)-hand screw. The reason that there is 
no other possibility is that, owing to the continuity of h, the set of points of 
R3 at which the twist of a screw is preserved by h is an open set and the same 
is true of the set of points at which the twist is reversed. Since h is a homeo-

4 A homeomorphism k of the n-sphere sn, n ~ 1, onto itself is orientation preserving or 
reversing according as the isomorphism k.: H,,(Snl -> H n(snl is or is not the identity. Let 
Sn = En U{ oo} be the one point compactification of the real Cartesian n-space En. Any 
homeomorphism h of En onto itself has a unique extent ion to a homeomorphism k of 
Sn = En U{ oo} onto itself defined by k I En = hand k( 00 l = 00. Then, h is orientation 
p1'ese-rving or reversing according as k is orientation preserving or reversing. 
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morphism, every point of R3 belongs to one of these two disjoint sets; and 
since R3 is connected, it follows that one of the two sets is empty. The com
position of homeomorphisms follows the usual rule of parity: 

hl h2 hlhz 

preserving preserving preserving 
reversing preserving reversing 
preserving reversing reversing 
reversing reversing preserving 

Obviously, the identity mapping is orientation preserving. On the other 
hand, the reflection (x,y,z) ->- (x,y, -z) is orientation reversing. If h is a 
linear transformation, it is orientation preserving or reversing according as its 
determinant is positive or negative. Similarly, if both h and its inverse are Cl 
differentiable at every point of R3, then h preserves or reverses orientation 
according as its Jacobian is everywhere positive or everywher~ negative. 

Consider an isotopic deformation {ht} of R3. The fact that the identity is 
orientation preserving combined with the continuity of H(t,p) = ht(p), 
suggests that ht is orientation preserving for every t in the interval 0 :s:; t :s:; 1. 
This is true.5 As a result, we have that a necessary condition for two knots to 
be of the same isotopy type is that there exist an orientation preserving 
homeomorphism of R3 on itself which maps one knot onto the other. 

A knot K is said to be amphicheiral if there exists an orientation reversing 
homeomorphism h of R3 onto itself such that hK = K. An equivalent for
mulation of the definition, which is more appealing geometrically, is provided 
by the following lemma. By the mirror image of a knot K we shall mean the 
image of K under the reflection fYl defined by (x,y,z) -)- (x,y,-z). Then, 

(4.1) A knot K is amphicheiral ~f and only if there exists an orientation 
preserving homeomorphism of R3 onto itself which maps K onto its mirror image. 

Proof. If K is amphicheiral, the composition fYlh is orientation preserving 
and maps K onto its mirror image. Conversely, if h' is an orientation preserv
ing homeomorphism of R3 onto itself which maps K onto its mirror image, the 
composition fYlh' is orientation reversing and (fYlh')K = K. 

It is not hard to show that the figure-eight knot is amphicheiral. The 
experimental approach is the best; a rope which has been tied as a figure-eight 
and then spliced is quite easily twisted into its mirror image. The operation is 
illustrated in Figure 7. On the other hand, the clover-leaf knot is not amphi-

5 Any isotopic deformation {h,}, 0 ~ t ~ I, of the Cartesian n-space Rn definitely 
possesses a unique extension to an isotopic deformation (k,}, 0 ~ t ~ I, of the n-sphere 
sn, i.e., k, I Rn = h" and k,( XJ) = 00. For each t, the homeomorphism k, is homotopic to 
the ident,ity, and so the induced isomorphism (k,). on H n(sn) is the identity_ It follows 
that h, is orientation preserving for all t in 0 ~ t :S; l. (See also footnote 4.) 
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(1) 

(4) 

(2) 

(5) 

Figure·"; 

Chap. I 

(3) 

(6) 

cheiral. In this case, experimenting with a piece of rope accomplishes nothing 
except possibly to convince the skeptic that the question is nontrivial. 
Actually, to prove that the clover-Ieafis not amphicheiral is hard and requires 
fairly advanced techniques of knot theory. Assuming this result, however, we 
have that the clover-leaf knot and its mirror image are equivalent but not of 
the same isotopy type. 

It is natural to ask whether or not every orientation preserving homeo
morphism f of R3 onto itself is realizable by an isotopic deformation, i.e., 
givenf, does there exist {ht}, 0 ~ t ~ 1, such thatf = hI? If the answer were 
no, we would have a third kind of knot type. This question is not an easy one. 
The answer is, however, yes.6 

Just as every homeomorphism of R3 onto itself either preserves or reverses 
orientation, so does every homeomorphism f of a knot K onto itself. The 
geometric interpretation is analogous to, and simpler than, the situation in 
3-dimensional space. Having prescribed a direction on the knot, f preserves or 
reverses orientation according as the order of points of K is preserved or re
versed under f. A knot K is called invertible if there exists an orientation pre
serving homeomorphism h of R3 onto itself such that the restriction h I K 
is an orientation reversing homeomorphism of K onto itself. Both the clover-

6 G. M. Fisher, "On the Group of all Homeomorphisms of a Manifold," Transactions of 
the American Mathematical Society, Vol. 97 (1960), pp. 193-212. 
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leaf and figure-eight knots are invertible. One has only to turn them over 
(cf. Figure 8). 

Figure 8 

Until recently no example of a noninvertible knot was known. Trotter 
solved the problem by exhibiting an infinite set of noninvertible knots, one 
of which is shown in Figure 9.7 

Figure 9 

EXERCISES 

1. Show that any simple closed polygon in R2 belongs to the trivial knot 
type. 

2. Show that there are no knotted quadrilaterals or pentagons. What knot 
types are represented by hexagons? by septagons? 

7 H. F. Trotter, "Noninvertible knots exist." Topology, vol. 2 (1964), pp. 275-280. 
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3. Devise a method for constructing a table of knots, and use it to find the 
ten knots of not more than six crossings. (Do not consider the question of 
whether these are really distinct types.) 

4. Determine by experiment which of the above ten knots are obviously 
amphicheiral, and verify that they are all invertible. 

5. Show that the number of tame knot types is at most countable. 

6. (Brunn) Show that any knot is equivalent to one whose projection has 
at most one multiple point (perhaps of very high order). 

7. (Tait) A polygonal knot in regular position is said to be alternating 
if the undercrossings and overcrossings alternate around the knot. (A knot 
type is called alternating ifit has an alternating representative.) Show that if 
K is any knot in regular position there is an alternating knot (in regular 
position) that has the same projection as K. 

8. Show that the regions into which R2 is divided by a regular projection 
can' be colored black and white in such a way that adjacent regions are of 
opposite colors (as on a chessboard). 

9. Prove the assertion made in footnote 4 that any homeomorphism h of Rn 
onto itself has a unique extension to a homeomorphism k of S" = Rn U {oo} 
onto itself. 

10. Prove the assertion made in footnote 5 that any isotopic deformation 
{ht},O ::;; t ::;; 1, of Rn possesses a unique extension to an isotopic deformation 
{kt},O ::;; t ::;; 1, of sn. (Hint: Define F(p, t) = (ht(p),t), and use invariance of 
domain to prove that F is a homeomorphism of Rn X [0,1] onto itself.) 



CHAPTER II 

The Fundamental Group 

Introduction. Elementary analytic geometry provides a good example of 
the applications of formal algebraic techniques to the study of geometric 
concepts. A similar situation exists in algebraic topology, where one associates 
algebraic structures with the purely topological, or geometric, configurations. 
The two basic geometric entities of topology are topological spaces and con
tinuous functions mapping one space into another. The algebra involved, in 
contrast to that of ordinary analytic geometry, is what is frequently called 
modern algebra. To the spaces and continuous maps between them are made 
to correspond groups and group homomorphisms. The analogy with analytic 
geometry, however, breaks down in one essential feature. Whereas the 
coordinate algebra of analytic geometry completely reflects the geometry, the 
algebra of topology is only a partial characterization of the topology. This 
means that a typical theorem of algebraic topology will read: If topological 
spaces X and Yare homeomorphic, then such and such algebraic conditions 
are satisfied. The converse proposition, however, will generally be false. Thus, 
if the algebraic conditions are not satisfied, we know that X and Yare topo
logically distinct. If, on the other hand, they are fulfilled, we usually can 
conclude nothing. The bridge from topology to algebra is almost always a 
one-way road; but even with that one can do a lot. 

One of the most important entities of algebraic topology is the fundamental 
group of a topological space, and this chapter is devoted to its definition and 
elementary properties. In the first chapter we discussed the basic spaces and 
continuous maps of knot theory: the 3-dimensional space R3, the knots them
selves, and the homeomorphisms of R3 onto itself which carry one knot onto 
another of the same type. Another space of prime importance is the comple
mentary space R3 - K of a knot K, which consists of all of those points of R3 
that do not belong to K. All of the knot theory in this book is a study of the 
properties of the fundamental groups of the complementary spaces of knots, 
and this is indeed the central theme of the entire subject. In this chapter, 
however, the development of the fundamental group is made for an arbitrary 
topological space X and is independent of our later applications of the 
fundamental group to knot theory. 

13 
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1. Paths and loops. A particle moving in space during a certain interval 
of time describes a path. It will be convenient for us to assume that the motion 
begins at time t = 0 and continues until some stopping time, which may differ 
for different paths but may be either positive or zero. For any two real num
bers x and y with x :s::: y, we define [x,y] to be the set of all real numbers t 
satisfying x :s::: t :s::: y. A path a in a topological space X is then a continuous 
mapping 

a: [0,11 a IlJ -+ X. 

The number II a II is the stopping time, and it is assumed that II a II ;;::: O. The 
points a(O) and a( II a II) in X are the initial point and terminal point, respec
tively, of the path a. 

It is essential to distinguish a path a from the set of image points a(t) in X 
visited during the interval [0,11 a II], Different paths may very well have the 
same set of image points. For example, let X be the unit circle in the plane, 
given in polar coordinates as the set of all pairs (r,8) such that r = 1. The two 
paths 

a(t) = (I,t), O:s::: t :s::: 27T, 

b(t) = (1,2t), O:s::: t :s::: 27T, 

are distinct even though they have the same stopping time, same initial and 
terminal point, and same set of image points. Paths a and b are equal if and 
only if they have the same domain of definition, i.e., II a II = II b II, and, if for 
every t in that domain, a(t) = b(t). 

Consider any two paths a and b in X which are such that the terminal point 
of a coincides with the initial point of b, i.e., a( II a II) = b(O). The product a . b 
of the paths a and b is defined by the formula 

{
a(t) , 

(a· b)(t) = b(t _ II a II), 
o :s::: t :s::: II a II, 
II a II :s::: t :s::: II a II + II b II· 

It is obvious that this defines a continuous function, and a . b is therefore a 
path in X. Its stopping time is 

II a . b II = II a II + II b II· 
We emphasize that the product of two paths is not defined unless the terminal 
point ofthe first is the same as the initial point ofthe second. It is obvious that 
the three assertions 

(i) a' band b . c are defined, 
(ii) a· (b . c) is defined, 

(iii) (a· b) . c is defined, 

are equivalent and that whenever one of them holds, the aJ3sociative law, 

a' (b· c) = (a· b) . c, 
is valid. 

A path a is called an identity path, or simply an identity, if it has stopping 
time II a II = O. This teq:ninology reflects the fact that the set of all identity 
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paths in a topological space may be characterized as the set of all multipli
cative identities with respect to the product. That is, the path e is an identity 
if and only if e' a = a and b· e = b whenever e' a and b· e are defined. 
Obviously, an identity path has only one image point, and conversely, there 
is precisely one identity path for each point in the space. We call a path whose 
image is a single point a constant path. Every identity path is constant; but 
the converse is clearly false. 

For any path a, we denote by a-I the inverse path formed by traversing a 
in the opposite direction. Thus, 

a-I(t) = a( II a II - t), o ::;;; t ::;;; II a II. 

The reason for adopting this name and notation for a-I will become apparent 
as we proceed. At present, calling a-I an inverse is a misnomer. It is easy to 
see that a . a-I is an identity e if and only if a = e. 

The meager algebraic structure of the set of all paths of a topological space 
with respect to the product is certainly far from being that of a group. One 
way to improve the situation algebraically is to select an arbitrary point p in 
X and restrict our attention to paths which begin and end at p. A path whose 
initial and terminal points coincide is called a loop, its common endpoint 
is its basepoint, and a loop with basepoint p will frequently be referred to as 
p-based. The product of any two p-based loops is certainly defined and is 
again a p-based loop. Moreover, the identity path at p is a multiplicative 
identity. These remarks are summarizcd in the statement that the set of all 
p-based loops in X is a semi-group with identity. 

The semi-group ofloops is a step in the right direction; but it is not a group. 
Hence, we consider another approach. Returning to the set of all paths, we 
shall define in the next section a notion of equivalent paths. We shall then 
consider a new set, whose elements are the equivalence classes of paths. The 
fundamental group is obtained as a combination ofthis construction with the 
idea of a loop. 

2. Classes of paths and loops. A collection of paths hs in X, 0 ::;;; s ::;;; 1, will 
be called a continuous family of paths if 

(i) The stopping time II hs II depends continuously on s. 
(ii) The function h defined by the formula h(s,t) = hs(t) maps the closed 

region 0 ::;;; s ::;;; 1, 0 ::;;; t ::;;; II hs II continuously into X. 

It should be noted that a function of two variables which is continuous at 
every point of its domain of definition with respect to each variable is not 
necessarily continuous in both simultaneously. The functionf defined on the 
unit square 0 ::;;; s ::;;; 1, 0 ::;;; t ::;;; 1 by the formula 

{
I, 

f(s,t) = s + t 
. Vs2 + t2 ' 

if s = t = 0, 

otherwise, 
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is an example. The collection of paths {is} defined by fs(t) =f(s,t) is not, 
therefore, a continuous family. 

A fixed-endpoint family of paths is a continuous family {hs}' 0 :s;;: 8 :s;;: 1, 
such that hs(O) and hs( II hs II) are independent of s, i.e., there exist points p and 
q in X such that hs(O) = p and hs(il hs II) = q for all s in the interval 0 :s;;: 8 :s;;: l. 
The difference between a continuous family and a fixed-endpoint family is 
illustrated below in Figure 10. 

8 

h -

hI (t) 

h .. 
•

hS (lIh8I1l =Q 

haUl 
h,(O) =p 

Figure 10 

Let a and b be two paths in the topological space X. Then, a is said to be 
equivalent to b, written a ~ b, if there exists a fixed-endpoint family {hs}' 
o :s;;: s :s;;: 1, of paths in X such that a = ho and b = hi' 

The relation""'" is reflexive, i.e., for any path a, we have a ~ a, since we may 
obviously define hs(t) = a(t), 0 :s;;: s :s;;: 1. It is also 8ymmetric, i.e., a ~ b 
implies b ~ a, because we may define ks(t) = h1_s(t). Finally, ,...., is transitive, 
i.e., a ,....., band b ,...., c imply a ~ c. To verify the last statement, let us suppose 
that hs and ks are the fixed-endpoint families exhibiting the equivalences 
a ~ band b ~ c respectively. Then the collection of paths Us} defined by 

o :s;;: s :s;;: t, 
t :s;;: s :s;;: 1, 
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is a fixed-endpoint family proving a ~ c. To complete the arguments, the 
reader should convince himself that the collections defined above in showing 
reflexivity, symmetry, and transitivity actually do satisfy all the conditions 
for being path equivalences: fixed-endpoint, continuity of stopping time, and 
simultaneous continuity in 8 and t. 

Thus, the relation ~ is a true equivalence relation, and the set of all paths 
in the space X is therefore partitioned into equivalence classes. We denote 
the equivalence class containing an arbitrary path a by [al That is, [a] is the 
set of all paths b in X such that a ~ b. Hence, we have 

[a] = [b] if and only if a ~ b. 

The collection of all equivalence classes of paths in the topological space X 
will be denoted by r(X). It is called the fundamental groupoid of X. The 
definition of a groupoid as an abstract entity is given in Appendix II. 

Geometrically, paths a and b are equivalent if and only if one can be 
continuously deformed onto the other in X without moving the endpoints. 
The definition is the formal statement of this intuitive idea. As an example, 
let X be the annular region of the plane shown in Figure 11 and consider five 
loops e (identity), aI' a2 , a3 , a4 in X based at p. We have the following 
equivalences 

However, it is not true that 

~,....., a2~ e, 

a3 ~ a4 · 

Figure 11 shows that certain fundamental properties of X are reflected in the 
equivalence structure of the loops of X. If, for example, the points lying 
inside the inner boundary of X had been included as a part of X, i .e., if the 

Figure 11 
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hole were filled in, then all loops based at p would have been equivalent to the 
identity loop e. It is intended that the arrows in Figure 11 should imply that 
as the interval of the variable t is traversed for each ai' the image point runs 
around the circuit once in the direction of the arrow. It is essential that the 
idea of ai as a function be maintained. The image points of a path do not 
specify the path completely; for example, aa =1= aa . aa, and furthermore, we 
do not even have, aa ,...., aa . aa. 

We shall now show that path multiplication induces a multiplication in the 
fundamental groupoid r(X). As a result we shall transfer our attention from 
paths and products of paths to consideration of equivalence classes of paths 
and the induced multiplication between these classes. In so doing, we shall 
obtain the necessary algebraic structure for defining the fundamental group. 

(2.1) For any paths a, a', b, b' in X, if a· b is defined and a '""""' a' and 
b::::: b', then a' . b' is defined and a· b ,....., a' . b'. 

Proof. If {hs} and {ks} are the fixed-endpoint families exhibiting the 
equivalences a""'" a' and b '""""' b', respectively, then the collection of paths 
{h s • ks} is a fixed-endpoint family which gives a· b '""""' a'· b'. We observe, 
first of all, that the products hs . ks , are defined for every s in 0 :0;:: s :0;:: 1 
because 

hs( II hs II) = ho(ll ho II) = a( II a II) = b(O) = ko(O) = ks(O). 

In particular, a' . b' = hI· ki is defined. It is a straightforward matter to 
verify that the function h . k defined by 

(h . k)(s,t) = (hs . ks)(t), o :0;:: s :0;:: 1, 0 :0;:: t :0;:: II hs II + II ks II, 

is simultaneously continuous in sand t. Since II hs . ks II = II hs II + II ks II 
is a continuous function of s, the paths hs . ks form a continuous family. We 
have 

(hs · ks)(O) = hs(O) = a(O), 
and 

(hs · ks)(ll hs · ks II) = ks(11 ks II) = b(11 b 11), 

so that {hs . k s}, 0 :0;:: s :0;:: 1, is a fixed-endpoint family. Since ho . ko = a . b 

and hI· ki = a' . b', the proof is complete. 

Consider any two paths a and b in X such that a . b is defined. The product 
of the equivalence classes [a] and [bJ is defined by the formula 

[a] . [bJ = [a· b]. 

Multiplication in r(X) is well-defined as a result of (2.1). 
Since all paths belonging to a single equivalence class have the same initial 

point and the same terminal point, we may define the initial point and 
terminal point of an element (J. in f(X) to be those of an arbitrary represen
tative path in (J.. The product (J. • {3 of two elements (J. and (3 in r(X) is then 
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defined if the terminal point of a: coincides with the initial point of fJ. Since 
the mapping a --,)- [a] is product preserving, the associative law holds in r(X) 
whenever the relevant products are defined, exactly as it does for paths. 

An element E in r(X) is an identity if it contains an identity path. Just as 
before, we have that an element E is an identity if and only if E • a: = a: and 
fJ . E = fJ whenever E • a: and fJ . E are defined. This assertion follows almost 
trivially from the analogous statement for paths. For, let E be an identity, and 
suppose that E • a: is defined. Let e be an identity path in E and a a represent
ative path in a:. Then, e' a = a, and so E' a: = a:. Similarly, fJ· E = fJ. 
Conversely, suppose that E is not an identity. To prove that there exists an a: 
such that E • a: is defined and E • a:.-=/=- a:, select for a: the class containing the 
identity path corresponding to the terminal point of E. Then, E • a: is defined, 
and, since a: is an identity, E • a: = E. Hence, if E • a: = a:, the class E is an 
identity, which is contrary to assumption. This completes the proof. We con
clude that r(X) has at least as much algebraic structure as the set of paths in 
X. The significant thing, of course, is that it has more. 

(2.2) For any path a in X, there exist identity paths ~ and e2 such that 
a . a-I ~ el and a-I. a ~ e2• 

Proof. The paths ~ and e2 are obviously the identities corresponding to 
the initial and terminal points, respectively, of a. Consider the collection of 
paths {h.}, 0 ::;; s ::;; 1, defined by the formula 

(
a(t), 

h.(t) = 
a(2s II a II - t), 

o ::;; t ::;; s II a II, 

s II a II ::;; t ::;; 2s II a II. 

The domain of the mapping h defined by h(s,t) = h.(t) is the shaded area 
shown in Figure 12. On the line t = 0, i.e., on the s-axis, h is constantly equal 
to a(O). The same is true along the line t = 2s II a II. Hence the paths h. form a 

Figure 12 
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fixed-endpoint family. For values of t along the horizontal line s = 1, the 
function h behaves like a' a-I. We have 

ho = e1 

{
a{t), 

h1{t) = 
a{2 II a II - t), 

{
a{t), 

= a-1{t - II a II), 
= (a' a-I )(t), 

o :s:; t :s:; II a II, 

II a II :s:; t :s:; 2 II a II, 

o :s:; t :s:; II a II, 

II a II :s:; t :s:; 2 II a II, 

and the proof that a . a-I ~ e1 is complete. The other equivalence may, of 
course, be proved in the same way, but it is quicker to use the result just 
proved to conclude that a-I. (a-1)-1 ,...., e2. Since (a-1)-1 = a, the proof is 
complete. 

(2.3) For any paths a and b, if a ~ b, then a-I ~ b-1 . 

Proof. This result is a corollary of (2.1) and (2.2). We have 

On the basis of (2.3), we define the inverse of an arbitrary element a in r(X) 
by the formula 

a-I = [a-I], for any a in a. 

The element a-I depends only on a and not on the particular representative 
path a. That is, a-I is well-defined. This time there is no misnaming. As a 
corollary of (2.2), we have 

(2.4) For any a in r(X), there exist identities EI and E2 such that a . a-I = EI 

and a-I. a = E2. 

The additional abstract property possessed by the fundamental groupoid 
r(X) beyond those of the set of all paths in X is expressed in (2.4). We now 
obtain the fundamental group of X relative to the basepoint p by defining 
the exact analogue in r(X) of the p-based loops in the set of all paths: Set 
7T(X,p) equal to the subset of r(X) of all elements having p as both initial and 
terminal point. The assignment a --+ [a] determines a mapping of the semi
group of p-based loops into 7T{X,p) which is both product preserving and onto. 
It follows that 7T{X,p) is a semi-group with identity and, by virtue of (2.4), we 
have 

(2.5) The set 7T(X,p), together with the multiplication defined, is a group. It 
is by definition the fundamentalgroupl of X relative to the basepoint p. 

1 The customary notation in topology for this group is 7T,(X,P). There is a sequence of 
groups 7Tn (X,p), n :::::: I, called the homotopy groups of X relative to p. The fundamental 
group is the first one of the sequence. 
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We conclude this section with the useful observation that as far as equiva
lence classes go, constant paths are the same as identity paths. 

(2.6) Every constant path is equivalent to an identity path. 

Proof. Let k be an arbitrary constant path in X defined by 

k(t)=p,o:o;:t:o;:llkll,forsomepEX. 

Obviously, the collection of paths hs defined by the formula 

hs(t) = p, 0:0;: t :0;: silk II 

is a fixed-endpoint family, and hI = k and ho = e, where e is the identity path 
corresponding to p. 

3. Change of basepoint. The fundamental group 7T(X,p) of X is defined 
with respect to and depends on the choice of basepoint p. However we shall 
now show that if X is pathwise connected the fundamental groups of X 
defined for different basepoints are all isomorphic. A topological space X is 
pathwise connected2 if any two of its points can be joined by a path lying in X. 

(3.1) Let IX be any element of r(X) having initial point p and terminal point 
p'. Then, the assignment 

{3 -+ IX-I. {3 . IX for any {3 in 7T(X,p) 

is an isomorphism of 7T(X,p) onto 7T(X,p'). 

Proof. The product IX-I. {3 . IX is certainly defined, and it is clear that 
IX-I. {3 • IX E 7T(X,p'). For any {3I' {32 E 7T(X,p) 

{31 • {32 -+ IX-I. ({31 . {32) . IX = (IX-I. {31 • IX) . (IX-I. {32 . IX). 

So the mapping is a homomorphism. Next, suppose IX-I. {3' IX = 1 (= e). 
Then, 

{3 = IX' IX-I. {3 . IX . IX-I = IX' IX-I = 1, 

and we may conclude that the assignment is an isomorphism. Finally, for any 
y in 7T(X,p'), IX' Y . IX-I E 7T(X,p). Obviously, 

Thus the mapping is onto, and the proof is complete. 

2 This definition should be contrasted with that of connectedness. 
A topological space is connected if it is not the union of two disjoint nonempty open 

sets. It is easy to show that a pathwise connected space is necessarily connected, but that 
a connected space is not necessarily pathwise connected. 
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It is a corollary of (3.1) that the fundamental group ofa pathwise connected 
space is independent of the basepoint in the sense that the groups defined for 
any two basepoints are isomorphic. For this reason, the definition of the 
fundamental group is frequently restricted to path wise connected spaces for 
which it is customary to omit explicit reference to the basepoint and to speak 
simply of the fundamental group 7T(X) of X. Occasionally this omission can 
cause real confusion (if one is interested in properties of 7T(X,p) beyond those 
it possesses as an abstract group). In any event, 7T(X) always means 7T(X,p) 
for some choice of basepoint p in X. 

4. Induced homomorphisms of fundamental groups. Suppose we are given a 
continuous mappingf: X ---+ Y from one topological space X into another Y. 
Any path a in X determines a path fa in Y given by the composition 

a f 
[0, II a II] -+ X -+ Y, 

i.e.,fa(t) = f(a(t)). The stopping time offa is obviously the same as that of a, 
i.e., II fa II = II a II. Furthermore, the assignment a ---+ fa is product
preserving: 

(4.1) If the product a· b is defined, so is fa· fb, and f(a· b) = fa· fb. 

The proof is very simple. Since a' b is defined, a(11 a II) = b(O). Consequently, 

fa(llfa II) =fa(11 a II) =f(a(11 a II)) 
= f (b(O)) = fb(O), 

and the product fa . fb is therefore defined. Furthermore, 

f(a· b)(t) = f((a' b)(t)) 

{
f(a(t))' 

= f(b(t - II a II)), 

{
fa(t), 

= fb(t - II fa II), 

= (fa· fb)(t). 

It is obvious that, 

(4.2) If e is an identity, so is fe. 

Furthermore, 

(4.3) 

Proof· 

o :s;; t :s;; II a II, 

II a II :s;; t :s;; II a II + II b II, 
o :s;; t :s;; II fa II, 

II fa II :s;; t :s;; II fa II + II fb II, 

fa-Itt) = f(a-I(t)) = f(a(11 a II - t)) 

=fa(l!fa II - t) = (fa)-I(t). 
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For any continuous family of paths {hs}, 0 :c;; s :c;; I, in X, the collection of 
paths Uhs} is also a continuous family. In addition, Uhs} is a fixed-endpoint 
family provided {hs} is. Consequently, 

(4.4) If a ~ b, then fa ~ fb. 

Thus, f determines a mapping f * of the fundamental groupoid r(X) into the 
fundamental groupoid n Y) given by the formula 

The basic properties of the function f * are summarized in 

(4.5) 
(i) If E is an identity, then so is f * E. 

(ii) If the product (J.' (3 is defined, then so is f*(J.· f*{3 and f*((J.· (3) = 
f*(J.· f*{3· 

(iii) If f: X ---+ X is the identity funct'ion, i.e., f (x) = x, then f* is also 
the identity function, i.e., f*(J. = (J.. 

(iv) If X ~ Y ~ Z are continU07tS mappings and gf: X ---+ Z is the 

composition, then (gf)* = g*f*· 

The proofs of these propositions follow immediately from (4.1), (4.2), and the 
associativity of the composition of functions, i.e., (gf)a = g(ja). 

It is obvious that, for any choice of basepoint pin X,j* (7T(X,p)) C 7T(Y,jp). 
Thus, the function defined by restricting f* to 7T(X,p) (which we shall also 
denote by f *) determines a homomorphism 

which is called the homomorphistn induced by j. Notice that if X is pathwise 
connected, the algebraic properties of the homomorphism f * are independent 
of the choice of basepoint. More explicitly, for any two points p, q EO X, choose 
(J. EO r(X) with initial point p and terminal point q. Then the homomorphisms 

7T(X,p) ~ 7T(Y,jp) 

(4.6) {3 -+ (J.-l{3(J.l 1 y -+ (j*(J.)-ly(f*(J.) 

7T(X,q) ~ 7T( Y,jq) 

form a consistent diagram and the vertical mappings are isomorphisms onto 
(cf (3.1)). Thus, for example, if either one of the homomorphisms f* is one
one or onto, so is the other. 

As we have indicated in the introduction to this chapter, the notion of a 
homomorphism induced by a continuous mapping is fundamental to algebraic 
topology. The homomorphism of the fundamental group induced by a con
tinuous mapping provides the bridge from topology to algebra in knot theory. 
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The following important theorem shows how the topological properties of the 
function f are reflected in the homomorphism f *. 

(4.7) THEOREM. If f: X -+ Y is a homeomorphism of X onto Y, the in
duced homomorphism f*: 7T(X,p) -+ 7T( Y,fp) is an isomorphism onto for any 
basepoint pin X. 

The proof is a simple exercise using the properties formulated in (4.5). The 
functions 

X~Y~X 
induce homomorphisms 

f cr1)* 7T(X,p) ~ 7T(Y,fp) __ 7T(X,p). 

But the compositions f-If andf!-I are identity maps. Consequently, so are 
(j-lJ)* =f-\f* and (f!-I)* =f*f-\. It follows from this fact thatf* is 
an .isomorphism onto, which finishes the proof. 

Thus, ifpathwise connected topological spaces X and Yare homeomorphic, 
their fundamental groups are isomorphic. It was observed in consideration of 
Figure 11 that certain of the topological characteristics of X were reflected 
in the equivalence classes ofloops of X. Theorem (4.7) is a precise formulation 
of this observation. 

Suppose we are given two knots K and K' and we can show that the groups 
7T(R3 - K) and 7T(R3 - K') are not isomorphic. By the fundamental Theorem 
(4.7), it then follows that R3 - K and R3 - K' are not topologically equiva
lent spaces. But if K and K' were equivalent knots, there would exist a 
homeomorphism of R3 onto R3 transforming K onto K'. This mapping re
stricted to R3 - K would give a homeomorphism of R3 - K onto R3 - K'. 
We may conclude therefore that K and K' are knots of different type. It is by 
this method that many knots can be distinguished from one another. 

5. Fundamental group of the circle. With a little experience it is fre
quently rather easy to guess correctly what the fundamental group of a not
too-complicated topological space is. Justifying one's guess with a proof, 
however, is likely to require topological techniques beyond a simple knowledge 
of the definition of the fundamental group. Chapter V is devoted to a discussion 
of some of these methods. 

An exception to the foregoing remarks is the calculation of the fundamental 
group of any convex set. A subset of an n-dimensional vector space over the 
real or complex numbers is called convex if any two of its points can be joined 
by a straight line segment which is contained in the subset. Any p-based loop 
in such a set is equivalent to a constant path. To prove this we have only to 
set 

h.(t) = sp + (1 - s)a(t), 0::;:; t ::;:; II a II, 0::;:; 8 ::;:; 1. 
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The deformation is linear along the straight line joining p and a(t). A pathwise 
connected space is said to be simply-connected if its fundamental group is 
trivial. As a result we have 

(5.1) Every convex set is simply-connected. 

We next consider the problem of determining the fundamental group of the 
circle. Our solution is motivated by the theory of covering spaces,3 one of the 
topological techniques referred to in the first paragraph of this section. Let 
the field of real numbers be denoted by R and the subring of integers by J. 
We denote the additive subgroup consisting of all integers which are a 
multiple of 3 by 3J. The circle, whose fundamental group we propose to 
calculate, may be regarded as the factor group Rj3J with the identification 
topology, i.e., the largest topology such that the canonical homomorphism 
rfo: R -+ Rj3J is a continuous mapping. A good way to picture the situation 
is to regard Rj3J as a circle of circumference 3 mounted like a wheel on the 
real line R so that it may roll freely back and forth without skidding. The 
possible points of tangency determine the many-one correspondence rfo (cf. 
Figure 13). Incidentally, the reason for choosing Rj3J for our circle instead of 
RjJ (or RjxJ for some other x) is one of convenience and will become apparent 
as we proceed. 

-1 o 2 3 4 

Figure 13 

(5.2) The image under rfo of any open subset of R is an open subset of R/3J. 

Proof. For any subset B of Rj3J, B is open if and only if rfo-l(B) is open. 
Furthermore, for any subset X of R, 

rfo-lrfo(X) = U (3n + X), 
nEJ 

where 3n + X is the set of all real numbers 3n + x with x EX. Since trans
lation along R by a fixed amount is a homeomorphism, and the union of any 
collection of open sets is open, our contention follows. 

The mapping rfo restricted to any interval of R of length less than 3 is one
one and, by virtue of (5.2), is therefore also a homeomorphism on that interval. 

3 H. Seifert and W. Threlfall, Lehrbuch der Topologie, (Teubner, Leipzig and Berlin, 
1934), Ch. VIII. Reprinted by the Chelsea Publishing Co., New York, 1954. 
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Thus, 4> is locally a homeomorphism. For any integer n, we define the set C n 

to be the image under 4> of the open interval (n - 1, n + 1). It follows from 
(5.2) that each Cn is open and from the above remarks that the mapping 

4>n: (n - 1, n + 1) --+ Cn 

defined by setting 4>n(x) = 4>(x), n - 1 < x < n + 1, is a homeomorphism. 
The sets Cn form an open cover of the circle. However, this cover consists of 
only three distinct sets because, as is easily shown, 

Cn = C m if and only if 4>(n) = 4>(m). 

Moreover, the three points 

Po = 4>(0), PI = 4>(1), 

are the only distinct members of the image set 4>J. Geometrically, of course, 
Po' Pv P2' are three equally spaced points on the circle (cf. Figure 13), Co is the 
open, connected arc of length 2 running from PI to P2 and containing Po' etc. 

We next define a sequence of continuous functions "Pn by composing 4>n-1 

with the inclusion mapping into R. 
q,n-1 

Cn ) (n - 1, n + 1) 

~~. 
R 

The important properties of these mappings are summarized in 

(5.3) 

(i) 4>"Pn(P) = P, whenever "Pn(P) is defined. 
(ii) If "Pn(P) and "Pm(P) are defined, then they are equal if and only if 

/n-m/ <2. 
(iii) For any real x and integer n, if 4>(x) E C n' there is exactly one integer 

m - n (mod 3) such that 

Proof. (i) is immediate, so we pass to (ii). In one direction the result is 
obvious since, if / n - m/ :2: 2, the images of "Pn and "Pm are disjoint. The other 
direction may be proved by proving that if P E Cn n Cn+V then "Pn(P) = 

"Pn+l(P). By (i), we have that 

P = 4>"Pn(P) = 4>"Pn+1(P)· 

Hence "Pn(P) = "Pn+l(P) + 3r for some integer r. Since "Pn(P) and "Pn+l(P) E 

(n - 1, n + 2), it follows that r = 0, and the proof of (ii) is complete. In 
proving (iii), we observe first of all that uniqueness is an immediate con
sequence of (ii). Existence is proved as follows: If 4>(x) E Cn' then4>(x) = 4>(y) 
for some y E (n - 1, n + 1). Then, x = y + 3r, for some integer r, and 



Sect. 5 FUNDAMENTAL GROUP OF THE CIRCLE 

X E (3r + n - 1, 3r + n + 1). Hence, 

7Jl3r+n4>(X) = x, 

and we may set m = n + 3r. This completes the proof. 

27 

Consider two arbitrary non-negative real numbers (J and T and the rectangle 
E consisting of all pairs (s,t) such that ° :s;: s :s;: (J and ° :s;: t :s;: T. The major 
step in our derivation of the fundamental group of the circle is the following: 

(5.4) For any continuous mapping h: E ---+ Rj3J and real number x E R 
such that 4>(x) = h(O,O), there exists one and only one continuous function 
h: E ---+ R such that h(O,O) = x and h = 4>h,. 

Proof of uniqueness. Suppose there are two continuous mappings hand h' 
satisfying h = 4>h = 4>h' and x = h(O,O) = h'(O,O). Let Eo be the set of all 
points (s,t) E E for which h(s,t) = h'(s,t). Since R is a Hausdorff space, it is 
clear that, Eo is a closed subset of E. Moreover, Eo contains the point (0,0) and 
is therefore nonvoid. We contend that Eo is also open. Suppose h(so,to) = 
h'(so,to) = xo' For some integer n, Xo E (n - 1, n + 1) and consequently 
there exist open subsets U and U' of E containing (so,to) such that both 
hU and h'U' are subsets of (n - 1, n + 1). Then, for any (s,t) E U n U', 

h(s,t), h'(s,t) E (n - 1, n + 1), 
and 

4>nh(s,t) = h(s,t) = 4>nh' (s,t). 

Since 4>n is a homeomorphism, h(s,t) = h'(s,t), and our contention is proved. 
Since E is connected, it follows that Eo = E, and the proof of uniqueness is 
complete. 

Proof of existence. We first assume that the rectangle E is not degenerate, 
i.e., that both (J and T are positive. Consider a subdivision 

° = So < Sl < ... < Sk = (J, 

° = to < t1 < ... < tl = T 

which is so fine that each elementary rectangle Eij defined by the ineqllalities 
Si-1 :s;: S :s;: Si and tj_1 :s;: t :s;: tj is contained in one of the open sets h-1Cn. 
(Were no such subdivision to exist, there would have to be a point of E 
contained in rectangles of arbitrarily small diameter, no one of which would 
lie in any set of h-1C n' and this would quickly lead to a contradiction. 4) Then 
there exists a function y(i,j) = 0, 1, 2, such that 

i = 1 ... k 
h(E .. ) C C ( .. ) " , " v,,, j = 1, ... , l. 

4 M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Second Edition, 
(Cambridge University Press, Cambridge, 1951). p. 46. 
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The function h is constructed bit by bit by defining its values on a single 
elementary rectangle at a time. Starting with Ell' we have 

cp(x) = h(O,O) E G.(1,1)' 

Hence, by (5.3) (iii), there exists a unique integer .u(I,I) _ v(I,I) (mod 3) 
such that 

7fi 1l(l,I)h(O,O) = x. 

We define h(s,t) = 7fi 1l(1,1)h(s,t), for any (s,t) E En. We next assume that h is 
extended by adjoining elementary rectangles to its domain in some order 
subject only to the restriction that Ei,j-I and Ei-1,j are always adjoined before 
Eij' To extend to E ij , we use (5.3) (iii) again to obtain a unique integer 
.u(i,j) = v(i,j) (mod 3) such that 

7fi ll(i,nh(Si-l> tj _ l ) = h(Si_I' tj _ l ), 

and define lb(s,t) = 7fi 1l(i,j)h(s,t), for any (s,t) E Eij' That the extension fits 
continuously with the previous construction is proved by using the point 
h(Si_I' tj _ l ) and (5.3) (ii) in one direction in order to conclude that 

I .u(i - I,j) - .u(i,j) I < 2, 

I .u(i,j - 1) - .u(i,j) 1< 2. 

Then, from (5.3) (ii) in the other direction, it follows that h is well-defined on 
the left and bottom edges of E ij . In this manner h is extended to all of E. The 
proof for a degenerate E is a corollary of the result for a nondegenerate 
rectangle. For example, if a = 0 and T > 0, we choose an arbitrary a' > 0 
and define 

h'(s,t) = h(O,t), 0::::; t ::::; T, 0::::; S ::::; a'. 

The existence of h' is assured and we set 

h(O,t) = h' (O,t), 0::::; t ::::; T. 

The proof of (5.4) is complete. 

Consider a loop a in the circle based at Po = cp(O). Its domain [0, II a IIJ is a 
degenerate rectangle. It follows from (5.4) that there exists one and only 
one path a covering a and starting at 0, i.e., a = cpa and a(O) = O. Since 
cpa(1I a II) = cp(O), we know that a(1I a III = 3r for a uniquely determined 
integer r = ra , which we call the winding number of a. Geometrically, ra is the 
algebraic number of times the loop a wraps around the circle. 

(5.5) 

Proof. Let a and b be the paths starting at 0 and covering a and b, 
respectively. The function e defined by 

{
a( t), 

e(t) = 
b(t - II a II) + 3ra, 

o ::::; t ::::; II a II, 

II a II ::::; t ::::; II a II + II b II, 
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is obviously a path with initial point ° and covering the product a . b. Since 
there is only one such path, it follows immediately that 

3Ta-b = ('(II a II + II b II) = b(1I b II) + 3Ta 

= 3(Tb + Ta)· 

(5.6) Loops with equal winding mlrnbeTs aTe equivalent. 

PTOOj. This result is an immediate consequence of the obvious fact that all 
paths in R with the same initial point and the same terminal point are 
equivalent. Let a and b be two po-based loops in the circle whose winding 
numbers are equal and defined by paths a and bin R. The images hs = cphs' ° s s S 1, of any fixed-endpoint family {h.} which exhibits the equivalence 
of a and b constitute a continuous family which proves that a is equivalent 
to b. 

(5.7) Equivalent loops have equal winding nurnbeTs. 

Pmoj. It is here that the full force of (5.4) is used. We consider a con
tinuous family of po-based loops hs' ° s s s 1, in the circle. Let T be an upper 
bound of the set of real numbers II hs II, ° s s s 1. We define a continuous 
function h by 

° s s s 1 and ° S t s II hs II, 

° s s s 1 and II Its list s T. 

Then, where h is the unique function covering h, i.e., cph = hand h(O,O) = 0, 
we have 

cph(s, II hs II) = hs(11 hs II) = Po = cp(O). 

Hence, the set of image points h(s, II hs II), 0 s s s 1, is contained in the 
discrete set 3J. But a continuous function which rnaps a connected set into a 
discTete set rnust be constant on that set. With this fact and the uniqueness 
property of covering paths we have 

3ThO = 1~(0, II ho II) = h(l, II hI II) = 3Thl , 

and the proof is complete. 

By virtue of (5.7), we may unambiguously associate to any element of 
1T(R/3J,po) the winding number of any representative loop. The definition of 
multiplication in the fundamental group and (5.5) show that this association 
is a homomorphism into the additive group of integers. (5.6) proves that the 
homomorphism is, in fact, an isomorphism. With the observation that there 
exists a loop whose winding number equals any given integer we complete the 
proof of the following theorem. 

(5.8) The fundarnental gmup of the ciTcle is infinite cyclic. 
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EXERCISES 

1. Compute the fundamental group ofthe union of two cubes joined at one 
corner and otherwise disjoint. 

2. Compute the fundamental group of a five-pointed star (boundary plus 
interior). 

3. Prove that if IX,{J EO 7T(X,p) and a EO IX, b EO {J, then the loops a and bare 
freely equivalent (also called freely homotopic) if and only if IX and (J are 
conjugate in 7T(X,p). (The definitions of "conjugate" and "freely homotopic" 
are given in the index.) 

4. Show that if X is a simply connected space and f and g are paths from 
p EO X to q EO X, thenf and g belong to the same fixed-endpoint family. 

5. Letf: X -+ Y be a continuous mapping, andf*: 7T(X,p) -+ 7T(Y,fp) the 
induced homomorphism. Are the following statements true or false? 

(a) Iff is onto, thenf* is onto. 
(b) Iff is one-one, then f* is one-one. 

6. Prove that if X, Y, and X n Yare nonvoid, open, pathwise con
nected subsets of X u Y and if X and Yare simply-connected, then X U Y 
is also simply-connected. 

7. Let the definition of continuous family of paths be weakened by 
requiring that the function h be continuous in each variable separately instead 
of continuous in both simultaneously. Define the "not so fundamental group" 
7T(X,p) by using this weaker definition of equivalence. Show that the "not so 
fundamental group" of a circle is the trivial group. 



CHAPTER III 

The Free Groups 

Introduction. In many applications of group theory, and specifically in 
our subsequent analysis of the fundamental groups of the complementary 
spaces of knots, the groups are described by "defining relations," or, as we are 
going to say later, are "presented". We have here another (and completely 
different) analogy with analytic geometry. In analytic geometry a coordinate 
system is selected, and the geometric configuration to be studied is defined by 
a set of one or more equations. In the theory of group presentations the role 
that is played in analytic geometry by a coordinate system is played by a 
free group. Therefore, the study of group presentations must begin with a 
careful description of the free groups. 

1. The free group F[d]. Let us assume that we have been given a set d of 
cardinality Q. The elements a,b,c of d may be abstract symbols or they may 
be objects deriv.ed from some other mathematical context. We shall call d 
an alphabet and its members letters. By a, syllable we mean a symbol an where 
a is a letter of the alphabet d and the exponent n is an integer. By a word 
we mean a finite ordered sequence of syllables. For example b-3aOalc2c2aOcl is a 
seven-syllable word. In a word the syllables are written one after another in 
the form of a formal product. Every syllable is itself a word-a one-syllable 
word. A syllable may be repeated or followed by another syllable formed from 
the same letter. There is a unique word that has no syllables; it is called the 
empty word, and we denote it by the symbol 1. The syllables in a word are to 
be counted from the left. Thus in the example above a1 is the third syllable. 
For brevity a syllable of the form a1 is usually written simply as a. 

In the set W(d) of all words formed from the alphabet d there is defined 
a natural multiplication: the product of two words is formed simply by writing 
one after the other. The number of syllables in this product is the sum of the 
number of syllables in each word. It is obvious that this multiplication is 
associative and that the empty word 1 is both a left and a right identity. 
Thus W(d) is a semi-group. 

However W(d) is by no means a group. In fact, the only element of W(d) 
that has an inverse is 1. In order to form a group we collect the words together 
into equivalence classes, using a process analogous to that by which the fun
damental group is obtained from the semi-group of p-based loops. 

31 
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If a word u is of the form w1aow2, where WI and w2 are words, we say that the 
word v = W 1W 2 is obtained from u by an elementary contraction of type I or that 
u is obtained from v by an elementary expansion of type 1. If aO is the nth syll
able of the word Y, the contraction occurs at the nth syllable. 

If a word u is of the form wl a PaQw2, where wI and w2 are words, we say that 
the word v = w 1aPHw2 is obtained from u by an elementary contraction of type 
II or that u is obtained from v by an elementary expansion of type II. The 
contraction occurs at the nth syllable if aq is the nth syllable. 

Words u and v are called equivalent (the relation is written u "'"' v) if one 
can be obtained from the other by a finite sequence of elementary expansions 
and contractions. It is trivial that this is actually an equivalence relation; 
W(d) is thus partitioned into equivalence classes. As before, we denote by 
[u] the equivalence class represented by the word u. Thus, [u] = [v] means 
the same as u "'"' v. We denote by F[d] the set of equivalence classes of words. 

It is easy to verify that if v' is obtained from v byan elementary contraction, 
then uv' is also obtained from uv by an elementary contraction, and that if 
u' is obtained from u by an elementary contraction, then u'v' is also obtained 
from uv' by an elementary contraction. From this it is easy to deduce that if 
u "'"' u' and v "'"' v', then uv ,...., u' v'. In other words F[d] inherits the multi
plication of W(d), and the inherited multiplication is defined as follows: 
[u][v] = [uv]. The associativity of the multiplication in F[d] follows im
mediately from the associativity of the multiplication in W(d). The equi
valence class [1] is both a left and right identity. Thus F[d] inherits from 
W(d) its semi-group structure. However in F[d] every element also has an 
inverse: the inverse [u ]-1 of the class [u] is represented by the word u that is 
obtained from u by reversing the order of its syllables and changing the sign 
of the exponent of each syllable. For example, if u = b-3aOalc2c2aOcl, then 
u = c-IaOc-2c-2a-Iaob3. This shows that the semi-group F[d] is actually a 
group; it is called the free group on the alphabet d. Note that we allow the 
empty alphabet; the resulting free group is trivial. The free group on an 
alphabet of just one letter is an infinite cyclic group. The abstract definition of 
a free group will be given in the third section, and it will be shown that the 
group F[d] is, in fact, free according to this definition. The name "free 
group on the alphabet d" anticipates these developments. 

2. Reduced words_ It is important to be able to decide whether or not 
two given words u and v in W(d) are equivalent. Of course, if one tries to 
transform u into v by elementary expansions and contractions and succeeds, 
then that is all there is to it, but if one fails, the question of equivalence 
remains unanswered. What is wanted is a procedure, or algorithm, for 
making this decision. The problem of finding such a uniform procedure is 
usually called the word problem for the free groups F[d]. A solution to the 
problem is presented in the remainder of this section. 

A word w is called reduced if it is not possible to apply any elementary 
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contraction to it, i.e., if no syllable of w has exponent 0 and no two con
secutive syllables are on the same letter. It is obvious, since elementary 
contraction always reduces the number of syllables, that each equivalence 
class of words contains at least one word that is reduced. We propose now to 
show that there is only one. 

For any word w, the word p(w) is defined as follows: If w is reduced, then 
p(w) = w. If w is not reduced, then p(w) is the word obtained from w by an 
elementary contraction at the first possible syllable of w, i.e., the word p(w) 
is obtained from w by an elementary contraction at the jth syllable of w, 
where no elementary contraction is possible at the kth syllable for any 
k < j. Note that it may be possible to apply an elementary contraction of 
both types at the jth syllable of w. However, this situation causes no ambi
guity, for w must then be of the form w = uaPaov where uaP is a reduced 
word containing j - 1 syllables, and so either type of reduction yields 
p(w) = uaPv. Clearly, 

(2.1) w is reduced if and only if p(w) = w. 

(2.2) If u is not reduced, then p(uv) = p(u)v. 

The standard reduction of a word w is defined to be the sequence 

w = pO(w), p(w), p2(W), .... 

If a word is not reduced, an application of p reduces the number of syllables 
by 1. Hence, in the standard reduction of any word w there exists a smallest 
nonnegative integer r = r(w) such that pr(w) = pr+1(w). This number r is 
the reduction length of w, and we define w* = pr(w). Note that p(w*) = w* 
and therefore w* is a reduced word. In addition, the standard reduction 
becomes constant, i.e., 

pi(w) = w*, for every i > r(w). 

Since p(w) ,...., w, we conclude that 

(2.3) w* is reduced and w ,...., w*. 

Moreover, 

(2.4) w is reduced if and only if w = w*. 

The central proposition in our solution of the word problem is 

(2.5) u,...., v if and only if u* = v*. 

Proof. If u* = v*, then we have 

and so u '" v. In proving the converse, we may assume that v is obtained 
from u by an elementary contraction. 

Case 1. u = waow' and v = ww'. 
Let k equal the reduction length of w. We contend that 

pk+l(u) = pk(v). 
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The proof is by induction on k. First, suppose that k = 0, i.e., that w is 
reduced. Then, 

p(u) = ww' = v. 

Next, assume that k > O. By (2.2), we have 

p(u) = p(w)aOw', p(v) = p(w)w'. 

The reduction length of pew) is k - 1. So the inductive hypothesis yields 

pkp(u) = pk-lp(v), 

and the contention is proved. Since the words in the standard reductions of 
u and v are eventually the same, it follows that u* = v*. 

Case II. u = waJ'aqw' and v = wap+qw'. 

Again, let k equal the reduction length of w. We contend that 

pk+2(U) = pk+1(v). 

The proof is by induction on k. First, assume that k = 0, i.e., that w is reduced. 
We consider two possibilities. 

(a) The last syllable of w is not on the letter a. Then, 

p(u) = wap+qw' = v, 

p2(u) = p(v). 

(b) w = w"a'. Then w" is reduced and the last syllable of w" is not on a. 
Hence, 

p2(U) = w"ar+p+qw' = p(v), 

p2(U) = p(v). 

Next, suppose that k> O. By (2.2), we have 

p(u) = p(w)aPaqw', p(v) = p(w)ap+qw'. 

The reduction length of pew) is k - 1. Hence, the hypothesis of induction 
gives 

which is 
pk+2(U) = pk+l(V). 

Thus, the contention is proved. As in Case I, we conclude that u* = v*. This 
completes the proof. 

It follows directly from the preceding three propositions that 

(2.6) Each equivalence class of words contains one and only one reduced word. 
Furthermore, any sequence of elementary contractions of u must lead to the same 
reduced word u*. 

Thus we have a finite algorithm for determining whether or not u and v 
represent the same element of F[d]; one has only to find u* and v* and com
pare them syllable by syllable. 
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3. Free groups. Let G be an arbitrary group, and consider a subset E of 
G. The collection of subgroups of G that contain E is not vacuous since the 
improper subgroup G is a member of it. It is easily verified that the intersec
tion of this collection is itself a subgroup that contains E; it is called the 
subgroup generated by E. If E -=I=- 0, then the subgroup generated by E 
consists of all elements of G of the form gln1g2n2 . .. gin" where gr, g2, ... , gl E E 
and n1, n2, ... , nl are integers. On the other hand, the subgroup of G 
generated by the empty set is trivial. If the subgroup generated by E is G 
itself, E is called a generating set of elements of G. 

In the group F [d] each element can be wTitten (in many ways) as a product 
of integral powers of [a], [b], [c], .... For example, [a2b3c-2] = [a]2[b]3[c]-2. 
Thus the elements [a], [b], [c], ... constitute a generating set of elements of 
F[d]. We denote this generating set by Cd]. 

Let us call a generating set E of elements of a group G a free basis if, given 
any group H, any function 4>: E ---+ H can be extended to a homomorphism 
of G into H. (Since E generates G, such an extension is necessarily unique.) 
A group that has a free basis will be called free. The simplest free group is the 
trivial group 1; the empty set E = 0 is a free basis of it. 

(3.1) A group is free if and only if it is isomorphic to F[d] for some d. 

Proof. The group F[,.#] is free because Cd] is a free basis of it. To show 
this, consider a function 4>: Cd] -+ H. Denote by 4>' the induced mapping of 
d into H. Extend 4>' to a homomorphism into H of the semi-group W(d) of 
words by defining 

4>'(ambn ••• ) = (4)'(a))m(4>'(b))n . .. , 

and observe that if u '" v then 4>'(u) = 4>'(v). It follows that 4>' induces a 
homomorphism of F[d] into H. This homomorphism is clearly an extension 
of the function 4>: Cd] ->- H; thus Cd] is a free basis of F[d]. If now G is 
any group that is mapped onto F[d] by an isomorphism A, then E = A-l[d] 
is obviously a free basis of G, so that G must be a free group. 

Conversely let G be a free group, and let E be a free basis of G. Let F[d] be 
the free group on an alphabet d whose cardinality is the same as that of E. 
Every element of d is a reduced word. It follows that if a -=I=- b, then [a] -=I=- [b], 
and so there exists a natural one-one correspondence between d and [d]. 
Hence, there exists a one-one correspondence K: E -+ [d]. Since E is a free 
basis, the correspondence K extends to a homomorphism cp of .G into F[d]. 
Since [d] is a free basis of F[d], the function K-1 : [d] -+ E extends to a 
homomorphism rP of F[d] into G. The homomorphisms CprP: F[d] -+ F[d] 
and rPcp: G -+ G are extensions of the respective functions KK-l : [d] -+ [d] 
and K-1K: E -+ E. Since these functions are identities, they extend to the 
identity automorphisms of F[d] and G respectively. Since such extensions 
are unique, it follows that rP4> and 4>rP are identity automorphisms. Thus 
cp maps G isomorphically onto F[d] and rP = cp-1. This shows that G is 
isomorphic to F[d], and we 'are finished. 
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The above proof shows also that the cardinality of the free basis E of Gis 
equal to the cardinality a of the alphabet d. Thus free groups G, G' are 
certainly isomorphic if they respectively have free bases E, E' of the same 
cardinality. It will be shown (cf. (4.2) Chapter IV) that conversely, if free 
groups G, G' have bases E, E' of different cardinalities, then they are not 
isomorphic. Granting this, it follows that to each free group G there corre
sponds a number n such that each free basis of G has cardinality exactly n. 
The cardinal number n is called the rank of the free group G. 

(3.2) Any group is a homomorphic image of some free group. 

This fact is of the utmost importance for the theory of group presentations; 
it means that, using free groups as "coordinate systems," any group can be 
coordinatized. Its proof is, of course, quite trivial: Let E be any set of genera
tors of a given group G, and let F[d] be any free group on an alphabet .91 
whose cardinality a is equal to or greater than the cardinality of E. Let 
A: [.91] -+ E be any function whose image is all of E. Since [.91] is a free basis 
of F[d], the function A extends to a homomorphism of the free group F[d] 
onto G. 

EXERCISES 
I. In how many ways can the word a-2bb-1a7bb-1a-1 be reduced to a4 

by elementary contractions? 

2. Develop a finite algorithm for determining whether or not two given 
words represent conjugat.e elements of F[d]. 

3. Develop a finite algorithm for determining whether or not a given word 
represents the nth power of an element of F[d]. 

4. Prove that the elements y, xyx-1, x2yx-2, ... constitute a free basis of 
the subgroup of F(x,y) which they generate. Deduce that the free group of 
any given finite rank n can be mapped isomorphically into the free group 
of any given rank m ::=:0: 2. 

5. Prove that the free group of rank n cannot be generated by fewer than 
n elements. 

6. It is known (Nielsen, Schreier, etc.1) that every subgroup of a free group 
is free. Using this fact, prove that in a free group: 

(a) There are no elements of finite order (other than the identity). 
(b) If two elements commute they are powers of a third element. 
(c) If u md = vnd , where m and n are relatively prime, then there is an 

element w such that u = wn , V = wm . 

(d) Ifuvu = v then u = 1. 

7. In Exercise 6 prove (a), (b), (c), (d) directly without using the Nielsen 
theorem. 

8. Show that if u,v,u',v' are elements of a free group such that uvu-1v-1 = 

u'v'(U')-l(V')-l::/= I, thenu and u' need not commute. 

1 See R. H. Fox, "Free Differential Calculus III. Subgroups," Annals of Mathematics, 
Vol. 64 (1956), p. 408. 



CHAPTER IV 

Presentation of Groups 

Introduction. In this chapter we give a firm foundation to the concept of 
defining a group by generators and relations. This is an important step; for 
example, if one is not careful to distinguish between the elements of a group 
and the words that describe these elements, utter confusion is likely to ensue. 

The principal problem which arises is that of recognizing when two sets of 
generators and relations actually present the same group. Theoretically a 
solution is given by the Tietze theorem. However, this leads to practical results 
only when coupled with some kind of systematic simplification of the groups 
involved .. Such systematic simplification is accomplished very neatly by the 
so-called word subgroups, which are going to be introduced toward the end of 
this chapter. 

1. Development of the presentation concept. The concept of an abstract 
group was derived from the concept of a permutation group (or substitution 
group as it was called), and this was, naturally, a finite group. Thus, when 
workers began to develop a theory of abstract groups they centered attention 
almost exclusively on finite groups, and so a group was usually described by 
exhibiting its Cayley group table. Of course, the use of a group table is not 
usually possible for an infinite group, nor even very practical for a finite group 
of large order. Furthermore the group table contains redundant information, 
so that it is not a very efficient device. For example, the table 

I 

I I 
a a 
b b 

a 

a 
b 
I 

b 

b 
I 
a 

has nine entries, but, using the fact (obtained from the middle entry) that 
b = a2 , we can reduce the information necessary to determine the group to the 
statement that the elements of the group are I, a, and a2 and the fact that 
a3 = I. Thus the group in question is more efficiently depicted if we note that 
the element a generates the group, that the equation a3 = I is satisfied, and 
that neither of the equations a2 = I or a = I is satisfied. 

This leads to the method of describing a group by giving generators and 
relations for it. As introduced by Dyck in 1882-3, it ran about like this: a 
group G is determined if there is given a set of elements 1J1' 1J2' •••• called 
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(lenerators, that generate the group, and a set of equations f1((lV (12' ... ) = 1, 
f2((l1' (12' ... ) = 1, ... , called definin(l equations or definin(l relations, that 
have the property that every true relation that subsists among the elements 
(Iv (12' ... is an algebraic consequence of the given equations. 

Now from a stricter point of view this procedure is somewhat vague in that 
the left-hand sides of the equations do not have true existence. What kind of 
an object is fi((lV (/2' ... )? It cannot be an element of G, for if it were in G, it 
would have to be the identity element 1. In order to write down such equa
tions we must postulate the existence of some realm in which fi((ll> (12' ... ) 
has an independent existence. Clearly, the object required is just the free 
group. Thus we are led to the following reformation of the method of descrip
tion. 

Let F be a free group with free basis Xl' X 2, ••• in one-one correspondence 
with the generators (11' (/2' •.• of G. Let cp be the homomorphism of F onto G 
defined by cpxj = (lj' j = 1, 2, .. '. For each of the defining equations 
fi(9l> (/2' •.. ) = 1, set 

i = 1,2,···. 

That is, ri is the element of F obtained by replacing each occurrence of 
(lj, j = 1,2, ... , in the expression fi((ll> (12' ... ) by Xj' :For example, if the 
ith equation is (11(12(/1-1(12-1 = 1, then ri = X1X2X1-1X2-1. The assertion that the 
equation fi((/I> (12' ... ) = 1 holds in G is then equivalent to the statement that 
r i is in the kernel of cpo Thus, 

1 = cpri = fi((ll> (/2' •.. ). 

The elements rI> 1'2' ... are called relators. 
It is now easy to say exactly what it means for an equation to be an alge

braic consequence of some others. Remembering that we have replaced each 
equation fi((ll> (12' ... ) = 1 by a group element l'i' we see that the following 
must be meant. An element f of an arbitrary group Q is called a consequence of 
a set of elements f1' f2' ... in Q if every homomorphism 1jJ of Q into any group 
H that maps each of the elements f1' f2' ... into 1 also maps the element f 
into 1. Since every homomorphism of Q determines a normal subgroup, i.e., 
the kernel of the homomorphism, and conversely, since every normal sub
group of Q determines a homomorphism of which it is the kernel; the defini
tion can be rephrased as follows: An elementf ofQ is a consequence of elements 
fv f2' ... iff is contained in every normal subgroup of Q that contains all the 
elements fI> f2' .... Let us call the set of all consequences of fv f2' ... the 
consequence off1,f2' .... Then what we have found is that the consequence is 
the intersection of all the normal subgroups of Q which contain all the ele
ments f v f2' .... Since the intersection of any collection of normal subgroups 
is itself a normal subgroup, we can also say that the consequence off1'!2' ... 
is the smallest normal subgroup ofQ which contains all the elementsf1' f2' . . '. 

We can determine the consequences of f1>f2' ... even more explicitly. 
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Observe that any product of transforms of powers of these elements; i.e., any 
element k of the form 

I 

II h·fn(j)h.-l , .. (}) , 
j~l 

is mapped into 1 by any homomorphism that maps each of fl' f2' ... into l. 
Hence every such element k is a consequence of fl' f2' .... It is easy to see 
that the set of all such elements k constitutes a normal subgroup K of Q; thus 
K is contained in the consequence of flo f2' .... On the other hand, K is a 
normal subgroup of Q which contains all the elements f1> f2' ... , and so it is 
one of the normal subgroups belonging to the collection whose intersection is 
the consequence of flo f2' .... It follows that the consequence of iI, f2' ... 
is just K. We have therefore shown that an element of Q is a consequence of 
fv f2' ... if and only if it is of the form 

I 

II h f n(j)h -1 
j i(j) j • 

j~l 

We shall have occasion to use the following theorem. 

(1.1) Let gl' g2' ... be a set of elements of a group G, and let <jJ be a homo
morphism of G onto a group H. Then <jJ maps the consequence of gl' g2' ... onto 
the consequence of the set <jJgv <jJg2' ... of elements of H. 

Proof· Denote the consequence of gl' g2' ... by KG and the consequence of 
hI = <jJgl' hz = <jJg2' ... by K H' Since <jJKG contains all the elements hv hz, ... 
and is normal, <jJKG must contain K H . To prove the reverse inclusion, 
consider any element h of <jJKG and select an element g E KG such that <jJg = h. 
If 1jJ is any homomorphism of H that maps each of the elements hv h2' ... 
into 1, then 1jJ<jJ must map each of the elements gv gz, ... into 1. Since g E KG, 
we must have 1jJ<jJg = 1, that is to say, 1jJh = 1. Since h is mapped into 1 by 
every such homomorphism, h must belong to K H . This shows that <jJKG is 
contained in K H , and therefore <jJKG = K H . This completes the proof. 

Returning now to the homomorphism F ~ G, we denote by R the con
sequence of the relators r l , r 2 , •••. The assertion that the equations 

f;(gv g2' ... ) = 1, i = 1,2, ... , 

constitute a defining set of relations for G from which all others can be derived 
is simply the assertion that R equals the kernel of <jJ. In this case the group G 
is determined by the free basis xl' X 2' ••. and the elements r l , r 2, ••• because 
G is isomorphic to the factor group FIR. 

2. Presentations and presentation types. The following definitions forma
lize the ideas of the preceding section. Let F be a free group with a free basis E 
that is supposed to be large enough to include an inexhaustible supply of basic 
elements. 
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The set E is called the underlying set oj generators. A group presentation, 
denoted by (x : r), is an object that consists of a subset x of the underlying 
set of generators and a subset r of the subgroup F(x) generated in F by x. 
Notice that F(x) is isomorphic to the free group F[x] on the alphabet x. It is 
important to observe that F(x) is itself a free group and x is a free basis of it; 
this follows directly from the definition of free basis (without appealing to the 
deep Nielsen-Schreier theorem that asserts that any subgroup of a free group 
is free). The set X is called the set of generators of the presentation and the set 
r is called the set of relators of the presentation. The group oj, or defined by, a 
presentation (x : r) is the factor group I X : r I = F(x)jR, where R is the 
consequence in F(x) of r. 

A presentation oj a group G consists of a group presentation (x : r) and 
an isomorphism t ofthe group I X : r I onto G. Clearly, any homomorphism 4> 
of the free group F(x) onto a group G whose kernel is the consequence of r 
determines a presentation of G. Conversely, any presentation of G determines 
such a homomorphism. That is, if y denotes the canonical homomorphism of 
F(x) upon F(x)jR in the consistent diagram, then either one of 4> and t deter
mines the other uniquely. When the extra precision is desired, we write 

F(x) 

'l~ 
Ix:rl~G 

(x : r)" to indicate that (x : r) is a presentation of the group G with respect 
to the homomorphism 4>. 

The name "presentation" was selected to describe the situation in which a 
group G is studied by mapping a known group (the free group F(x)) onto it 
because it was felt that this is in some way dual to the situation in 'which a 
group G is studied by mapping it into a known group (e.g. a group of perm uta
tions); the latter mappings are what are called "representations" of G. 

Although there is no logical necessity for it we shall now reintroduce the 
concept of relation. The reason for doing this is that the manipulation of 
relations fits more easily into our accustomed patterns of thought than the 
manipulation of relators. For example, it is easy to see thatif a andb commute, 
then the fact that (ab)2 = 1 implies that a2b2 = 1, but it is not quite so easy 
to show that a2b2 is a consequence of the two relators aba-1b-1 and (ab)2. 
(In fact, a2b2 = b-1(aba-1b-1)-lb 0 b-1(ab)2b.) It is not difficult to put the 
"relation" concept on a sound footing as in the following: by the formula 
u = v is meant what would more properly be »Titten 'u == v (mod R), i.e., 
uv-1 E R. This is, of course, always with reference to a given presentation 
(x : r). On occasion we might even write (x : 1W-1 = 1, . 0 0) or (x : u = v, 
• 0 0) meaning the same thing as (x : uv-l, .. 0). There is no use in trying to be 
more prccise about it, as the only advantage of the use of relations in the 
place of relators lies in the informality tliat is achieved. 
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The presentation notation may be used consistently even when the set of 
relators is empty. Thus (x :) is a presentation ofthe free group F(x). Although 
it is unlikely that the occasion should often arise, we might even denote by 
(:) an especially simple presentation of the trivial group. 

A presentation (x : r) is finitely generated if X is finite, finitely related if r is 
finite. A finite presentation is one that is both finitely generated and finitely 
related. A group is said to be finitely generated if it has at least one finitely 
generated presentation, finitely related if it has at least one finitely related 
presentation, finitely presented if it has at least one finite presentation. 
Although nonfinite presentations are common enough and by no means 
pathological, we shall be primarily concerned with finite sets x and r. 

Just as the equations of a curve or of a surface take on different forms in 
different coordinate systems, so a group has many different presentations. 
For example, it may be shown that 

I x,y : xyx = yxy I kj I a,b : a3 = b2 I, 
and that 

The problem of determining whether or not two presentations determine 
isomorphic groups is the isomorphism problem. It is not possible to give a 
general solution of this problem!, but partial solutions can be found, and these 
are of great importance. These are usually of the nature of conditions on 
presentations that must be fulfilled if the groups presented are to be iso
morphic. Such conditions are of importance because they are the means of 
showing that certain groups are not isomorphic. The methodology of finding 
such partial solutions of the isomorphism problem will now be considered. 

A mapping f: (x : r) -+ (y : s) of presentations consists ofthetwopresenta
tions (x : r) and (y : s) and a homomorphismf: F(x) -+ F(y) which satisfies 
the condition that the image f(r) of r under f is contained in the consequence 
of s. 

Every presentation mapping f: (x : r) -+ (y : s) determines uniquely a 
group homomorphismf*: I x : r I -+ I y : S I satisfyingf*y = yf, where the 
canonical homomorphisms F(x) -+ I x r I and F(y) -+ I y : S I are both 
denoted by the symbol y. 

F(x) ~ F(y) 

Y~ ~Y 
Ix :rl~IY :sl 

1 There are a number of similar problems which are known to have no general solution: 
deciding whether or not the group defined by a given presentation is trivial (the triviality 
problem), is finite, is abelian, is free, etc; deciding whether or not a given word is a 
consequence of a given set of words (the word problem); and many others. See M. O. 
Rabin, "Recursive Unsolvability of Group Theoretic Problems," Annals of Mathematics, 
Vol. 67 (1958), pp. 172-194. 
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Composition of presentation maps is defined in the natural way. If we are 
givenmappingsf: (x : r)->-(y : s)andg: (y: s)-+(z: t),thecomposition 
gf consists of (x : r) and (z : t) and the homomorphism gf: F(x) --+ F(z). 
The associative law holds and there are identity mappings. Thus the collec
tion of presentations and presentation mappings forms a category. Moreover, 
1* = 1 and (gf)* = g*f*. 

Presentation mappings fl,f2: (x : r) --+ (y : s) are homotopic, written 
fl c:::: f2' if, for every x in x, the elementfl(x)f2(x-l) belongs to the consequence 
of s. 

The condition for homotopy of presentation mappings can be restated: 
yfl(U) = yf2(U) for every u E F(x). Since the definition of induced mapping 
gives fi*Y(U) = yUu), i = 1,2, we have shown 

(2.1) fl c:::: f2 if and only if f1* = f2*· 

Furthermore, 

We have seen that a presentation map f determines a homomorphism f*. 
Conversely, 

(2.3) For each homomorphism 6: 1 X : r 1 --+ 1 y : S I, there exists a 
presentation map f: (x : r) ->- (y : s) such that f* = 6. Furthermore, any two 
such presentation maps are homotopic. 

Proof. Consider the diagram 

F(x) F(y) 

yt yt 
B 

1 x : r 1----+ 1 y : S I· 

Since Y is onto, we can assign to each x E x an element fix) E F(y) in such a 
way that yf(x) = 6y(x). Since F(x) is a free group with basis x this assignment 
may be extended to a homomorphism f: F(x) --+ F(y) such that yf = 6y. The 
image fr is contained in the consequence of s; hence f is a presentation 
mapping, andf* = 6. The uniqueness offup to homotopy follows from (2.1). 

Thus the homotopy classes of presentation maps are in one-one corre
spondence with the homomorphisms between the groups presented. In 
addition, the correspondence is composition preserving. 

Presentations (x : r) and (y : s) are of the same type if there exist mappings 
f 

(x : r) ~ (y : s) such that gf c:::: 1 and fg c:::: 1. The pair of mappings f,g 
g 

(or either one separately) is called a presentation (or homotopy) equivalence. 

(2.4) Two presentations are of the same type if and only if their groups are 
isomorphic. 
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Proof. If f,g is a presentation equivalence; then 

g*f* = (gj)* = 1* = 1, 

f*g* = (jg)* = 1* = 1; 

43 

hence f* maps I x : r I isomorphically upon I y : S I (and g* = f* -1). Con
versely, if a maps I x : r I isomorphically upon I y : S I andf* =:' a, g* = a-I, 
then 

(gj)* = g*f* = 0-10 = 1 = (1)*, hence gf:::::::. 1, 

(jg)* =f*g* = 00-1 = 1 = (1)*, hencefg:::::::.1. 

3. The Tietze theorem. Among presentation equivalences special impor
tance is attached to the Tietze equivalences I, I', II, II' which will now· be 
considered. 

Let (x : r) be any presentation and let s be any consequence ofr. Consider 
the presentation (y : s) made up of y = x and s = r Us. In this case the 
consequence of r equals the consequence ofs. Hence (x : r), (y : s), and the 
identity automorphism 1 : F(x) ---+ F(y) define a presentation mapping 
I : (x : r) ---+ (y : s). Similarly, (y : s), (x : r), and the identity 1 define a 
presentation mapping I' : (y : s) ---+ (x : r). The pair of mappings I and 
I' is trivially a presentation equivalence. 

Starting again from an arbitrary presentation (x : r) let y be any member 
of the underlying set of generators that is not contained in x, and let ~ be any 
element of F(x). Consider the presentation (y : s) made up ofy = x U yand 
S = r U y~-l. The homomorphism II: F(x) ---+ Fly), defined by the rule 
II(x) = x for any x E x, maps r into the consequence of S so that (x : r), 
(y : s), and II: F(x) ---+ F(y) define a presentation map II: (x : r) ---+ (y : s). 
Also the homomorphism II': F(y) ---+ F(x) defined by the rule II'(x) = x for 
any x E X and II' (y) = ~ maps S onto r Uland hence into the consequence of 
r. It follows that (y : s), (x : r), and II': F(y) ---+ F(x) define a presentation 
map II': (y : s) ---+ (x : r). The composition II'II is the identity. Also for 
every x E x, II II'(x) . X-I = 1, and II II'(y) . y-l = IIW . y-l = ~y-l = 
(y~-I)-1 which belongs to the consequence of s, so that II II' :::::::. 1. Thus the 
pair II,II' is a presentation equivalence. Note that II: F(x) ---+ F(y) is an 
inclusion and II': F (y) -+ F (x) is a retraction.2 

Although theoretically I and I' are completely trivial and II and II' some
what less so, in practice the opposite is true. Actually checking that an 
element, or proposed relation, is a consequence of certain others can be quite 
difficult. (It is a special case of the word problem, cf. footnote 1 On page 41.) 
The same difficulty occurs in the proof of the fundamental Tietze theorem 
that we are getting ready to prove. It is precisely in order to verify the use 
of I and I' in that proof that the following lemma is needed. 

(3.1) Let x and y be disjoint sets of underlying basis elements, and let a be 
a retraction of F(x U y) onto F(x). Let (x : r),;, be a presentation of a group G. 

2 A retraction is any mappingf: X -+ Y such that Y c X andf(p) = p for every p E Y. 
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Then the kernel of the homomorphism cp8: F(x u y) ->- G is the consequence C 
of the 1lnion of r and the set of all elements y . 8(y)-I, Y E y. 

Proof. Clearly, cp8(r) = cp(r) = I for any r E r. Since 8 is a retraction, 
82 = 8, and hence cp8(y· 8(y)-I) = cp(8(y) . 8(y)-I) = cp(l) = 1. Thus C is 
contained in the kernel of cpO. 

To prove the converse, we consider the canonical homomorphism y of 
F(x u y) onto the factor group F(x U y)/C and its restriction y' = y I F(x). 

8 q, 
F(xuy) ~ F(x)~G 

~;/ 
F(x u y)/C 

We have y'8(x) = y'(x) = y(x) for x EX. Moreover, for y E y, we have 
y(y) . y'8(y)-1 = y(y) . y8(y)-1 = y(y. 8(y)-I) = I, hence y'8(y) = y(y). This 
sho~s that y'8 = y. Suppose now that u E F(x u y) such that cp8(u) = l. 
Then y(u· 8(u)-I) = y'8(u· 8(U)-I) = y'(8(u) . 8(U)-I) = y'(l) = I, and so 
u· 8(U)-1 E C. But, cp8(n) = I, so that 8(1l) is in the consequence of rand 
therefore lies in C. We conclude that n = n· 8(n)-1 . 8(n) E C. 

I 
(3.2) TIETZE THEOREM. Snppose that (x : r) ~ (y : s) is a presentation 

y 

eqnivalence and that the presentations (x : r) and (y : s) are both finite. Then 
there exists a finite seqnence Tv T I '; ••• ; T 1, Tz' of Tietze eqnivalences snch 
that f = T 1 • •• Tl and g = Tz' ... T I '· 

Proof. We shall first prove this under the assumption that X and yare 
disjoint sets. We consider the following diagram 

F(x u y) 

#~ 
I 

F(x) -( ,.. F(y) 
g 

yt t y 
I. 

I x : r I -( ) I y : S I 
y. 

where land 0 are inclusions, and p and a are retractions defined so that ply) = 

g(y) for y E y, and a(x) = f(x) for x E x. 
It is apparent that the presentation equivalence 

t 

(x : r) ~ (x u y : rub), 
p 
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where b = {y . p(y)-I}, can be factored into Tietze II equivalences T1,T1'; ... ; 
T m' T m', where m is the num bel' of elements of the set y, so that t = T 1 •.• T m' 

p = T m' •.• T/. Similarly the presentation equivalence 

o 

(y : s) ~ (x u y : sua), 
a 

where a = {x . a(x)-l}, can be factored into TietzeII equivalences 8 1 ,81'; ... ; 

8 m8 n', where n is the number of elements of the set x, so that 0 = 8 1 .•. 8 n, 
0'= 8 n"" 81'. 

Now it follows from (3.1) that the kernel of the homomorphism yp is the 
consequence of rub. But yp = g*ya, and ya(s u a) = 1; hence sua is 
contained in the consequence of rub. By the same argument rub is con
tained in the consequence of sua. Hence the presentation equivalences 

'" [3 
(x u y : rub) ~ (x u y : r us u a u b) ~ (x u y : sua) 

. ~ ~ 

carried by the identity automorphism of F(x u y) can be factored into 
Tietze I equivalences U1'U/;···; Uq+n,U~+nand VI,VI';"'; Vp+m'V~+m 
respectively, where p is the number of elements ofthe set rand q is the number 
of elements of the set s. Then, rt. = U1 •.. UHn , rt.' = U~+n ... U1', fJ = 
Tl ••• V fJ' ~ TT' ... V' and so r 1 p+n" ~ p +m 1 , 

f = afJ'rt.t = Sn'··· 81'V~+m'" VI'UI '" UHn T 1 ••• T m' 

g = prt.'fJo = T ' ... T ' U' ... U ' V ... V 8· .. 8 m 1 q+n 1 1 p+m 1 n' 

If x and yare not disjoint, we select from the underlying set of generators 
a subset z which is disjoint from x U y and is in one-one correspondence with 
x. This correspondence induces an isomorphism hI of F(x) onto F(z) and the 
inverse isomorphism h2 = h1- 1 of F(z) onto F(x). Let t = h1(r), k1 = fh2, and 
k2 = h1g, so that f = klh! and g = h2k2· 

(z : t) 

#.~ 
f 

(x : r) *(====== (y : s) 
g 

Clearly h1'h2 is a presentation equivalence. We claim that kl'k2 is also a 
presentation equivalence. Let the consequences of r, s, and t be denoted 
respectively by R, 8, and T. Then le1(t) = fh2(t) = f(r) c 8 and le2(s) = 

h1g(s) c h1(R) = T, so that leI and le2 are presentation maps; furthermore 
k2k] = h1gfh2 :::::' hl1h2 = 1 and kl k2 = fh2hlg = fg ""'" 1. Now we can apply 
the first part of the proof twice and we are finished. 
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The importance of the Tietze theorem is that it reduces the problem of 
showing that a given function of group presentations depends only on the 
group presented to one of checking that it is unaltered by the Tietze opera
tions I and n. For example, in Chapter VII we shall show how to compute a 
certain sequence of so-called elementary ideals from each finite group pre
sentation. Since presentations that differ by the two Tietze operations will be 
shown to give isomorphic sequences, we shall conclude that the elementary 
ideals are group invariants. 

As an example of how Tietze equivalences are used to obtain one presenta
tion from another, let us show that the groups 1 x,y,z : xyz = yzx 1 and 
1 x,y,a : xa = ax 1 are isomorphic: 

(x,y,z : xyz(yzX)-l) 

~ n 
(x,y,z,a : xyz(yzx)-l, a(yz)-l) 

~ I 

(x,y,z,a : xa(ax)-l, a(yz)-l, xyz(yzX)-l) 

~ I' 
(x,y,z,a : xa(ax)-l, a(yz)-l) 

~ I 

(x,y,z,a : xa(ax)-l, z(y-1a)-1, a(yz)-l) 

~ I' 
(x,y,a,z : xa(c£x)-I, z(y-la)-l) 

~ n' 
(x,y,a : xa(ax)-l). 

As another example let us show that 1 x,y : xyx = yxy 1 is isomorphic to 
1 a,b : a3 = b2 I. To see how this could be done, we begin by noticing that if 
we multiply both sides of xyx = yxy on the left by xyx, we get (xyx)(xyx) = 

(xy)(xy)(xy). Then we set a = xy and b = xyx and observe that these last two 
relations can be solved for x and y. This reasoning leads us to the following 
sequence of Tietze equivalences, which we now write in the informal style: 

(x,y : xyx = yxy) 
~ n (twice) 

(x,y,a,b : xyx = yxy, a = xy, b = xyx) 
~ I (thrice) 

(x,y,a,b : xyx = yxy, a3 = b2, a = xy, b = xyx, x = a-lb, y = b-la2 ) 

~ I' (thrice) 

(x,y,a,b : a3 = b2 , x = a-lb, y = b-la2 ) 

~ n' (twice) 

(a,b : a3 = b2 ). 
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4. Word subgroups and the associated homomorphisms. If one wishes to 
find necessary conditions in the isomorphism problem, one is almost forced to 
find some uniform method of simplifying groups. To accomplish this we are 
going to make use of the "word subgroups," as will now be explained. 

To define a word subgroup we begin by selecting a subset W of some free 
group F(x). (The elements of Ware represented by words in the underlying 
set of generators, and this is the origin of the term "word subgroup.") Given 
any group G we consider the set Q = Q(G) of all possible homomorphisms 
w of F(x) into G, and we denote by W(G) the subgroup of G generated by all 
the elements w(w), WE W, wE Q. Such a subgroup W(G), which is called a 
word subgroup, is necessarily a normal subgroup since it is unaltered by any 
inner automorphism of G. In fact W(G) has an even stronger property-it is 
mapped into itself by every endomorphism of G (such subgroups are called 
fully normal). For if a is any endomorphism of G and if wE Q, then aw E Q 

so that aIW(G)) c W(G). 
The simplest examples of word subgroups are the commutator subgroup and 

the power. To obtain the commutator subgroup we select X = {x,y} and W 
the subset of F(x,y) consisting of the single element [x,y] = xyx-1y-l. The 
resulting word subgroup W(G) is called the commutator subgroup and may be 
denoted [G,G]. It is the subgroup of G generated by all elements of the form 
glg2g1-1g2-1. The quotient group G/[G,G] is called the commutator quotient 
group or the abelianized group, and the canonical homomorphism G -+ G/[G,G] 
is called the abelianizer. The commutator quotient group is ln abelian group; 
abelianization just has the effect of making everything commute. 

To obtain the nth power (n 20) of G we select x = {x} and W the subset 
of F(x) consisting of the single element xn. The resulting word subgroup W(G) 
is called the nth power of G and may be denoted Gn. It is the subgroup of G 
generated by all elements of the form gn. It should be clear that GO = 1, 
Gl = G, and that am c Gn whenever m is divisible by n. Also it may be noted 
that [G,G] c G2; in fact, glg2g1-1g2-1 = (glg2)2 . (g2-1g1-1g2)2 . g2-2, and this 
means that G/G2 is always abelian. 

If cp: G1 -+ G2 is a group homomorphism and W is any subset of a free 
group, then cp W(G1) c W(G2) since cpw E Q(G2) for any wE Q(G1). Con
sequently, there is induced a unique homomorphism cp* such that 

~ ~ 
G1/W(G1) ~ G2/W(G 2) 

is a consistent diagram. It is straightforward to prove that 

(4.1) (a) If cp is the identity, so is cp*. (b) Given the composition G1 !.,. G2 ~ 
G3 , then (1pcp)* = 1p*cp*. (c) If cp is onto, so is cp*. (d) If cp is an isomorphism onto, 
so is cp*. 
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For example, if (a) and (b) have been verified, (d) follows by simply observ
ing 

identity = (cpcp-l)* = cp*(cp-l)* 

= (cp-Icp)* = (cp-l )*cp*. 

Notice that if (d) is altered by the omission of the word "onto," the result is 
false. 

Using (4.1), we can prove a result that was promised in Chapter III. 

(4.2) If m and n are distinct cardinal numbers, then the free groups of rank 
m and n are not isomorphic. 

Proof. Consider free groups Fm and F n of rank m and n respectively, and 
assume that they are isomorphic. Then by (4.1) we must have an isomorphism 
of F m/ Fm2 onto F n/ F n 2 • However the elements of these groups can be exhibited 
explicitly and counted; since F m/ F m 2 is abelian its elements are just the 
products X l OlX202 ••• xm"m, where Xv· •• ,Xm is a basis for F m' 0i = 0 or 1, 
and only a finite number of the exponents 0; are different from O. Thus the 
number of elements of F m/ Fm 2 is just the number of finite subsets of a set 
of cardinality m; it is 2m for finite m and mforinfinitem. If F m/ Fm2 ~ Fn/Fn2, 
then m and n must be both finite or both infinite, and hence m = n. 

From (4.1) there follows the most elementary of all necessary conditions 
in the isomorphism problem: 

(4.3) In order that 0 1 and O2 be isomorphic it is necessary that their com
mutator quotient groups 01/[OvOd and O2/[02,02] be isomorphic. 

The commutator quotient group 0/[0,0] of any group 0 is the largest 
abelian group which is a homomorphic image of O. This idea is expressed 
rigorously in the following way. Consider an arbitrary homomorphism (J of 0 
into an abelian group K. Then, there exists a unique homomorphism (J' 

mapping 0/[0,0] into K which IS consistent with (J and the abelianizer 
a: 0--+ 0/[0,0]. 

o >K 

'1/ O~O'a 
0/[0,0] 

To prove this assertion, consider an arbitrary commutator 

Since K is abelian, 

and, therefore the consequence of the commutators of 0 is contained in the 
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kernel of O. The group [G,G] generated by the commutators of G is ipso facto 
contained in their consequence; hence 0' is well-defined by 

O'crg = 8g, g EG. 

The uniqueness of 8' follows trivially. Notice that since [G,G] is a normal 
subgroup of G it actually equals the consequence of the commutators of G. 
The result just proved is succinctly summarized in the statement 

(4.4) Any homom01phism of a group into an abelian group can be factored 
through the commutator quotient g'roup. 

(4.5) If a group G is generated by gl' g2' ... , then its commutator subgTOup 
[G,G] is the consequence of the commutators [gi,g;J, i, j = 1, 2, .... 

Proof. The consequence K of the commutators [g;,gj] is contained in 
every normal subgroup of G that contains {[gi,gj]}. Hence K c [G,G]. To 
prove the ,converse we have to show that the commutator [u,v] of any two 
elements of G lies in K. 

For every element g E G, let l(g) denote the smallest non-negative integer 
n for which there exist El , E2, ••• , En = ±1 such that g = 11Z~lg{k. Obvi
ously l(g) = 0 if and only if g = 1. Our proof of the above proposition is by 
induction on l(u) + l(v), If either l(u) = 0 or l(v)= 0 then [u,v] = 1 E K. If 
l(u) = l(v) = 1 the commutator [u,v] is one of the following: 

[g;,gJ, 

[gi-l,gj] = g;-l[gj,g;]gi' 

[gi,gj-l] = gj-l[g;,gi]g;, 

[g;-l,gj-l] = Yi-1gj-l[gi,g;]g;gi' 

and each of these must belong to K. Assume next that either l(u) or l(v) is 
greater than 1. As a result of the identity 

[u,v] = [v,u]-l, 

we may assume that it is l(u) that is greater than 1. Then u = 1tl U 2 where 
l(u1) < l(u) and l(u2 ) < l(u). By the inductive hypothesis 

[U1U 2,V] = U l [u2,V]U1- 1[Ul>V] E K, 

and this completes the proof. 

(4.6) If (x : r) is any grmtp presentat1:on, then (x : r U ([xi,x;], i,j = 
1, 2, ... }) is a presentation of the abelianized group of 1 X : r I. 

Proof. Let y denote the canonical homomorphism of the free group F(x) 
onto the factor group 1 x : r I. The abelianizer of I X : r I is denoted as before 
by cr. We now have to show that the kernel of cry is the consequence K of 
r U {[Xi' X;]}. That K is contained in this kernel is trivial. To prove the 
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reverse inclusion select any element u of F(x) such that uyu = 1. By (4.5) 
yu is contained in the consequence of {[yxi,yx j]} = {y[xi,xjJ}. But, by (l.l), 
this is the image under y of the consequence of {[Xi,XjJ}. Thus yu = yv for 
some consequence v of {[Xi,XjJ}. Hence u = vw for some consequence w of r, 
and the proof is complete. 

5. Free abelian groups. In the theory of abelian groups, one encounters 
another kind of free group, which is quite analogous to, but different from, 
the free group as it is defined in this book. Specifically, a free abelian group of 
rank n is any group which is isomorphic to the abelianized group of a free 
group of rank n. Since the only commutative free groups are those of rank 0 
and 1, i.e., the trivial groups and the infinite cyclic groups, it is clear that the 
two notions overlap but do not coincide. Generally speaking, a free abelian 
group is not a free group. For both types, however, the rank is a complete 
invariant. Thus, 

(5.1) Two free abelian groups are isomorphic if and only if they have the 
same rank. 

It is not hard to construct a proof based on the same result for free groups, 
(4.3), and the technique used in proving (4.2) (cf. Exercise 2 below). 

There is an abstract characterization of the free abelian groups which is 
entirely analogous to that of the free groups. A generating set E of elements 
of an abelian group G is a basis if, given any abelian group H, any function 
cp: E __ H can be extended to a homomorphism of G into H. Then, 

(5.2) An abelian group is free abelian if and only if it has a basis. 

A proof based on (4.4) is straightforward. 
Because of (4.6) it is an easy matter to give simple presentations of the free 

abelian groups. For example (x,y : xy = yx) and (x,y,z : xy = yx, yz = zy, 
zx = xz) present the free abelian groups of rank 2 and 3 respectively. 

EXERCISES 

1. Prove the following addendum to (4.1) : If cp is an isomorphism into, then 
cp* need not be an isomorphism into. (One solution: G1 = (x:), G2 = (u,v:), 
cp(x) = uvu-1v-1, W(G) = [G,G].) 

2. If F n denotes the free group and An the free abelian group of rank n, 
show that Fn/Fn2 R:::! An/An2. Deduce (5.1) from this. 

3. Prove (5.2). 

4. How many different homomorphisms are there of the free group of rank 
2 onto the cyclic group of order 4? 

5. Show that the presentations (a,b : a2 = 1, b3 = 1, ab = ba) and 
(c : c6 = 1) describe the same group. 
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6. Show that the group presented by (x,y : xy2 = y3x, yx2 = x3y) is the 
trivial group. (This is a hard problem.) 

7. In the presentation (a,b,c,d : b = c-Iac, c = dbd-I, d = a-lea, a = bdb-1) 

verify that anyone of the relations is a consequence of the others. 

8. Show that the presentation (a,b : a3 = 1, b2 = 1, ab = ba2) describes 
the symmetric group of degree 3. 

9. Describe the word subgroup W{G) of an arbitrary groupG for (i) W = xy, 
(ii) W = X6y9, (iii) W = xyxy-l. 

10. Is theorem (1.1) necessarily true if 4> is not onto? 

11. Show that (4.5) is false if the words "consequence of" are replaced by 
the words "subgroup generated by". 



CHAPTER V 

Calculation of Fundamental Groups 

Introduction. It was remarked in Chapter II that a rigorous calculation of 
the fundamental group of a space X is rarely just a straightforward applica
tion of the definition of 7T(X). At this point the collection of topological spaces 
whose fundamental groups the reader can be expected to know (as a result of 
the theory so far developed in this book) consists of spaces topologically 
equivalent to the circle or to a convex set. This is not a very wide range, and 
the purpose of this chapter is to do something about increasing it. The 
techniques we shall consider are aimed in two directions. The first is con
cer.ned with what we may call spaces of the same shape. Figures 14, 15, and 
16 are examples of the sort of thing we have in mind. From an understanding 
of the fundamental group as formed from the set of classes of equivalent loops 
based at a point, it is geometrically apparent that the spaces shown in Figure 
14 below have the same, or isomorphic, fundamental groups. 

lid !.oru 

Figure 14 

52 

Plane annular 
region 

Pinched solid !.orus 



imilarly for Figur 15. 

phere 

And again in Figure 16. 

Ellipses with one 
point in common 
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'piny 'ph r 

Figure 15 

Spectacle frames 

Double plane annulus 

Figure 16 

We have purposely chosen these examples so that no two are topologically 
equivalent. (This fact is not obvious.1) Nevertheless, all spaces included in the 

1 Most of the above spaces under the same figure are distinguishable from one another 
because of the fact that the dimension of a topological space in the neighborhood of a 
point is a topological invariant, i.e., under a homeomorphism the local dimension for any 
point is the same as that of its image under the homeomorphism. See W. Hurewicz and 
H. Wallman, Dimension Theory, (Princeton University Press, Princeton, New Jersey, 
1948). 
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same figure have isomorphic fundamental groups and, in some sense, are of 
the same shape. In the first two sections of this chapter we shall study some 
of the mathematical terminology used in describing this concept precisely and 
its relation to the fundamental group. The definitions introduced will be 
those of retraction, deformation, deformation retract, and homotopy type. The 
relation of homotopy type is the rigorous replacement of our vague notion of 
spaces of the same shape. 

The second over-all topic of this chapter is the calculation of the funda
mental groups of spaces which are built up in a systematic way from simpler 
spaces whose fundamental groups are known. As a simple example, consider 
the space consisting of the union of two circles X and Y which have a single 
point p in common. Now it is very reasonable-and also correct--to guess 
that 7T(X U Y) is the free group on two generators: one generating 7T(X) and 
the other 7T( Y). However, this conclusion is certainly not an obvious corollary 
of any techniques so far developed. Clearly, it would be of tremendous impor
tance to have a general procedure for cementing together the fundamental 
groups which correspond to the spaces that are being joined. For a wide 
variety of spaces such a procedure exists; it is derived from the van Kampen 
theorem. Most spaces encountered in topology, specifically the so-called com
plexe8, do exhibit a decomposition as the union of structurally simple subsets. 
By repeated application of the van Kampen theorem to these components the 
collection of spaces whose fundamental groups are readily calculable is enor
mously enlarged. In Section 3 we shall give a precise statement of this all 
important tool and discuss its application in several examples. A proof for it 
appears in Appendix III. 

1. Retractions and deformations. A retraction of a topological space X 
onto a subspace Y is a continuous mapping p: X -+ Y such that, for any 
pin Y, p(p) = p. A space Y is called a retract of X if there exists a retraction 
p: X -+ Y. 

As an example, consider the square Q in 2-dimensional Euclidean space 
R2 defined by 0 ::;; x ::;; 1, 0 ::;; Y ::;; 1. A retraction of Q onto the edge E 
defined by 0 ::;; x ::;; 1, Y = 0 is given by 

p(x,y) = (x,O), o ::;; x,y ::;; 1. 

By restricting the domain of this function to the set Q consisting of all (x,y) 
in Q such that xy(x - l)(y - 1) = 0 (at least one ofthe factors must equal 
zero), we obtain a retraction of the boundary of the square onto the edge E. 
In addition, the origin (0,0) is a retract of the square, of its boundary Q, and 
also of the edge E. The retraction, with domain suitably chosen in each case, 
is given by the function 

p(x,y) = (0,0). 
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More generally, for any point p of an arbitrary topological space X, the con
stant mapping p: X --->- P is a retraction. A point is therefore a retract of any 
space that contains it. 

It follows from the above that any interior point p of a closed circular disc 
D is a retract of the disc. By projecting radially outward from p onto the 
boundary D of the disc, we see that D is a retract of the complementary space 
D - p. Analogous results hold in 3 dimensions. If p is the center of D and if 
D is rotated about a diameter to form a 3-cell B, then p is a retract of B, and 
the boundary sphere is a retract of B - p. If the disc D is rotated about a line 
lying in its exterior, D describes a solid torus V and p describes a circle C. 
We may conclude that C, forming the core of the solid torus, is a retract of V. 
Similarly the torus that constitutes the boundary of V is a retract of V-C. 

It is equally important, of course, to give examples of subspaces which are 
not retracts of their containing spaces. These are also readily available. The 
boundary of a square is not a retract of the square. Similarly, D is not a 
retract of the disc D. There is no retraction of 3-space R3 onto the solid torus 
V nor onto its core C. The equator is not a retract of the surface of the earth. 
Well, how do we know? How can one possibly prove the nonexistence of a 
retraction? An answer is given in the following theorem. 

(1.1) If p: X --->- Y is a retraction and X is pathwise connected, then, for 
any basepoint p E X, the induced homomorphism p*: 7T(X,p) --->- 7T( Y,pp) is 
onto. 

Proof. It was observed in Chapter II (cf. (4.6) and accompanying discus
sion) that the algebraic properties of any homomorphism induced by a con
tinuous mapping of a pathwise connected space are independent of the 
choice of basepoint. For this reason, it is sufficient to check (1.1) for a base
point p E Y. Consider the induced homomorphisms 

i* p* 7T(Y,p) -+ 7T(X,p) -+ 7T(Y,p), 

where i: Y --->- X is the inclusion. Since p is a retract, the composition pi 
is the identity. Hence (cf. (4.5), Chapter II), we have (pi)* = p*i* = identity, 
and it follows that p* is onto, and we are finished. 

The continuous image of a pathwise connected space is pathwise connected. 
Thus, the space Y appearing in (1.1) is connected too. Without the provision 
that X be pathwise connected, (1.1) would be false. 

The square, the disc, and the space R3 are convex sets and hence possess 
trivial fundamental groups. It is true that a proof of the fact that the funda
mental group of the sphere is trivial is not given until the end of this chapter. 
However, the fact that all loops on the sphere having a common basepoint 
can be contracted to that point certainly sounds plausible. Incidentally, the 
word "sphere" alone always means the surface of the solid cell. Thus, in all 
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the examples mentioned in the paragraph preceding (1.1), the fundamental 
group of the containing space X is the trivial group. The subspace Y, however, 
in each example has an infinite cyclic fundamental group. A group containing 
only one element can obviously not be mapped onto one containing more 
than one, and the contentions of that paragraph are therefore proved. 

We turn now to the notion of a deformation. The intuitive idea here is 
almost self-explanatory. A topological space X is deformable into a subspace 
Y if X can be continuously shrunk into Y. The words "into" and "onto" have 
their usual meaning. Hthe result ofthe shrinking is a set not only contained in 
Y but equal to Y, then we say X is deformable onto Y. For example, a square 
is deformable onto one of its edges. The appropriate definitions are: A deforma
tion of a topological space X is a family of mappings hs: X --+ X, 0 :s;: s :s;: 1, 
such that ho is the identity, i.e., ho(p) = p for all p in X, and the function h 
defined by h(s,p) = hs(p) is simultaneously continuous in the two variables 
sand p.2 A deformation of a space X into (or onto) a subspace Y is a deforma
tion {hs} of X such that the image h1X is contained in (or equal to) Y. We say 
that X is deformable into, or onto, a subspace Y if such a deformation exists. 

A square, for example, can be deformed onto an edge; a deformation in R2 
is given by 

(i) hs(x,y) = (x, (1 - s)y), 0 :s;: x,y,s :s;: 1. 

The family of functions 

(ii) hs(x,y) = ((1 - s)x, (1 - s)y), o :s;: x,y,s :s;: 1, 

is a deformation of the square onto the corner (0,0). The disc D defined with 
respect to polar coordinates by the inequality ° :s;: r :s;: 1 is deformed onto its 
center by the functions 

(iii) hs(r,()) = (r(1 - s), ()), {oo :s;: r,s :s;: 1, 

:s;: () < 277. 

The complementary space consisting of all points of D except the center can 
be deformed onto the boundary D of the disc. The deformation is given by 

(iv) hs(r,()) = (r(1 - s) + s, ()), (
0 < r :s;: 1, 

o :s;: s :s;: 1, 

o < () < 277. 

The reader should check that for ° < r :s;: 1, 0 :s;: s :s;: 1, the inequalities 
r :s;: r(1 - s) + s :s;: 1 are satisfied. Notice also that (iv) cannot be extended 
to a deformation of D onto D. As before, we may extend our considerations 
of a disc into 3 dimensions and conclude, for example, that a solid torus V 

2 A generalization is the definition of a deformation of X in a containing space Z as a 
family of mappings h,: X -+ Z, 0 ::; s ::; 1, satisfying ho(p) = p for all p in X and the 
condition of simultaneous continuity. The more restricted definition of deformation 
given above is suitable for pur purposes. 
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can be deformed onto a circle 0 forming its core, and that V - 0 can be 
deformed onto the torus that forms the boundary of V. 

A deformation of a disc onto its boundary can be constructed as follows: 
Let the disc D be defined with respect to polar coordinates to be the set of all 
points (r,e) that satisfy 0 :s;: r :s;: sin e. (See Figure 17.) The boundary iJ is 

y 

x 

Figure 17 

the set of points defined by r = sin e. The deformation occurs in two steps: 
In the interval 0 :s;: s :s;: t, the entire disc is shrunk to the origin p. Then, in 
t :s;: s :s;: I, points are moved along the boundary iJ in the counterclockwise 
direction with increasing rand s. Specifically, for any ordered pair (r,e) such 
that 0 :s;: r :s;: sin e, we set 

{(r(I - 2s), e), 
hs(r,e) = 

(sin 7Tr(2s - I), 7Tr(2s - I)), 

for 0 :s;: s :s;: t, 
for t :s;: s :s;: 1. 

It is not hard to convince oneself that this family of functions satisfies the 
requirement of simultaneous continuity prescribed by the definition of a 
deformation. This example is particularly interesting because we know from 
(1.1) that the boundary D is not a retract of the disc D. 

We have just seen an example of a topological space X which can be 
deformed onto a subspace which is not a retract of X. It is natural to ask 
whether, conversely, there exist retracts which cannot be obtained by de
formation. The answer is yes, and a good tool for finding examples is Theorem 
(1.3) below. We prove first, as a lemma, 

(1.2) If {hs}, 0 :s;: s :s;: I, is a deformation of X, then, for any basepoint p 
in X, the homomorphism (h1)*: 7T(X,p) --+ 7T(X,h1(p)) is an isomorphism onto. 

Proof. We define a path a with initial point p and terminal point q = h1(p) 
by the formula 

o :s;: t :s;: 1. 
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Let the equivalence class of paths in X containing a be denoted by (1... We 
shall show that, for any {J in 7T(X,p), 

(h1)*({J) = (1..-1 • {J . (1.., 

and the result then follows from (3.1), Chapter II. Consider therefore an 
arbitrary element (J ill 7T(X,p) and representative loop b in (J. Set 

ks(t) = hs(b(t)), o :c;; 8 :c;; 1, 0 :c;; t :c;; II b II. 

The collection {ks} is certainly a continuous family of loops; its domain is 
conveniently pictured in Figure 18. 

a k, a 

b '11bll 

Figure 18 

Another continuous family of paths is defined as follows and represented 
in Figure 19. 

{
a(1 - (t - 8)), 

js(t) = 
q, 

o :c;; 8 :c;; t :c;; 1, 

0:c;;t:C;;8:C;;1. 

Figure 19 

A final continuous family of paths is represented in Figure 20 and defined by 

{
a(8 + t), 

ls(t) = 
q, 

8 + t :c;; 1, 0 :c;; 8,t :c;; 1, 

8 + t ;::::: 1, 0 :c;; 8,t :c;; 1. 
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a 

a 

Figure 20 

The product family Us' ks . ls} is clearly defined and is a continuous family of 
paths. Itis represented in Figure 2l. 

s 

b a 

Figure 21 

Since Us' ks . ls} is a fixed-endpoint family, we have the equivalences 

where c is the constant path at q. The equivalence class containing any con· 
stant path is an identity (cf. (2.6), Chapter II). Hence, 

IX-I. {3' IX = [a-I. b . a] = [h1b] 

= (~)*{3, 
and the proof is complete. 

An arbitrary continuous mapping f: X -+ Y of a topological space X into 
a subspace Y is said to be realizable by a deformation of X if there exists a 
deformation {hs}' 0 :s;; 8 :s;; 1, of X such that hI = if, where i: Y -+ X is the 
inclusion mapping. As a corollary of (1.2), we have the following theorem. 
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(1.3) If a continuous mapping f: X ->- Y is realizable by a deformation of 
X, then, for any basepoint p in X, the induced homom01phism f*: 7T(X,p)-+ 
7T( Y,fp) is an iS01norphism into. 

Proof. Let i: Y -+ X be the inclusion mapping and {hs} a deformation of 
X such that hI = if. Since (h1)* = i*f* and since (h l )* is an isomorphism 
by (1.2), we may conclude thatf* is also an isomorphism. Note thatf* is, in 
general, not an onto mapping even though (hl )* is. 

Obviously, a space X is deformable into a subspace Y if and only if there 
exists a mapping f: X -+ Y which is realizable by a deformation of X. 
Consequently, by virtue of Theorem (1.3), it is easy to find examples of 
retracts which cannot be obtained by deformation. As we have seen, an edge 
E of a square Q is a retract of the boundary Q of the square. However, Q 
cannot be deformed into E. The fundamental group 7T(Q) is infinite cyclic and 
7T(E) is trivial, so no mapping of 7T(Q) into 7T(E) can be an isomorphism. 
Similarly, Q cannot be deformed onto a point. In contrast to a similar state
ment we observed to hold for retracts, it is certainly false that an arbitrary 
space X is deformable onto any point in X. 

We are now ready to combine the notions of retraction and deformation 
into a single definition. A subspace Y of a topological space X is a deformation 
retract of X if there exists a retraction p: X -+ Y which is realizable by a 
deformation of X. 

Since hl defines a retraction in each of the formulas (i), (ii), (iii), (iv), each 
exhibits a deformation retract. Thus, both an edge of a square and a corner 
point are deformation retracts of the square. An interior point p of a disc D 
is a deformation retract of D, and the boundary of D is a deformation retract 
of D - p. In the following theorem, which is a direct corollary of (1.1) and 
(1.3), we obtain an important property of deformation retracts. 

(1.4) If a subspace Y is a deformation retract of a pathwise connected 
topological space X, then 7T(X) "is isomorphic to 7T( Y). 

Notice in this theorem that Y must also be pathwise connected. A more 
informative statement of (1.4) is the following: 

If X is pathwise connected and the retraction p: X -+ Y is realizable by a 
deformation and if i: Y -+ X is the inclusion mapping, then, for any points 
p in X and q in Y, both induced homomorphisms 

are isomorphisms onto. 

p*: 7T(X,p) -+ 7T(Y,pp), 

i*: 7T( Y,q) -+ 7T(X,q), 

The first result is a direct corollary of (1.1) and (1.3). To prove the second, 
consider the mappings 

P. i. 
7T(X,q) -+ 7T(Y,q) -+ 7T(X,q). 
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We have already noted that p* is an isomorphism onto. Moreover, we know 
that there exists a deformation {lis} of X such that hI = ip. By (1.2), (h1 )* = 
i*p* is an isomorphism onto, and it follows immediately that i* is also an 
isomorphism onto. The big difference between the two statements of Theorem 
(1.4) is that the latter not only says that two groups are isomorphic, but also 
says explicitly what the two relevant isomorphisms are. 

The concepts of retraction, deformation, and deformation retract can be 
nicely summarized with the example of a square Q. Since there exists a 
homeomorphism of Q onto the circular disc D that carries the boundary Q 
onto the boundary D, we may conclude that the square, like the disc, may be 
deformed onto its boundary. We thus have the following diagram: 

Q (square) 

deformation 
retract 

retract 

deformation 
but not 
retract 

Q (boundary) 
retract 

but not hut not 
deformation deformation 

p (corner point) ( . E (edge). 
deformatIOn retract 

Let the closed disc defined by the polar coordinate inequality 0 :::;; l' :::;; 1 
be denoted by D, and its center by p. The open disc, defined by 0 :::;; l' < 1, 

is denoted by D. Notice that D = D - D. The deformation (iv) of D - p 
onto D can be extended as follows: For any 1',8,6 such that 0 < 1', 0 
o :::;; 6 < 217, set 

_ {(1'(1 - 8) + 8, 6), 
h8(1',6) - (1',6), 

if 0 < l' :::;; I, 

if 1:::;; 1'. 
, 

:::;; 8 :::;; 1, 

This extended deformation shows that the complement R2 - D of the open 
disc in the plane is a deformation retract of the punctured plane R2 - p. By 
rotating the disc D about an axis lying outside D, as we have done before, 

we obtain a solid torus V, whose surface and interior are denoted by V and V 
respectively. The point p describes a circle C under the rotation, and it is 
obvious that the torus V is a deformation retract of the complement V-C. 
Consider next a topological imbedding of the closed solid torus V into the 
3-dimensional space R3. The image of C under the imbedding is a knot K. The 
knotted torus which is the image of V and which contains K as a core, we 

denote by W. Its surface and interior are denoted by TV and iv, respectively. 
It can be proved that the imbedding of V into R3 must carry V onto TV and 

o 0 

V onto W. Consequently, it follows that TV is a deformation retract of W - K; 
since the points of TV remain fixed throughout the deformation, we may ex-

o 

tend the mapping to all of R3 - K and conclude that R3 - W is a deformation 
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retract of R3 - K. Thus, R3 - K and R3 - W have isomorphic fundamental 
groups.3 It is obvious that any knot of tame type is the core of such an open 
toroidal neighborhood. It has been proved4 that conversely, any knot which 
possesses such a toroidal neighborhood is tame. 

The following theorem, with which we conclude this section, is perhaps an 
unexpected result. At first glance, one is very likely to guess that it is false. 
As a matter of fact, the proof is almost a triviality. 

(1.5) If the space X can be deformed into Y and if there also exists a retrac
tion p of X onto Y, then Y is a deformation retract of X; moreover, p can be 
realized by a deformation. 

Proof. Let {hs} be a deformation of X into Y. We define a new deforma
tion {k.} of X as follows. For any point p in X, 

o :s:: s :s:: t, 
t :s:: s :s:: 1. 

Then, ko(p) = ho(p) = p. The condition of simultancous continuity in sand p 
is satisfied because the two definitions of kl agree. Using the top line, we get 
k1(p) = hl(p). Since hl(p) is by assumption in Y, we obtain from the second 
line k!(p) = phl(P) = hJ(p). The retraction p is realized by the deformation 
because kl(p) = pho(p) = p(p). 

2. Homotopy type. Topological spaces X and Yare of the same homotopy 
type if there exists a finite sequence 

X = Xo, Xv ... , Xn = Y 

of topological spaces such that, for each i = 1, ... , n, either Xi is topologi
cally equivalent to Xi_V or Xi is a deformation retract of Xi-I' or vice-versa.5 

The relation of belonging to the same homotopy type is obviously an equiv
alence relation. From (1.4) above, and (4.7) of Chapter II, we conclude that 

(2.1) If X and Yare pathwise connected spaces of the same homotopy type, 
then 1T(X) is isomorphic to 1T( Y). 

Any point in a convex set C is a deformation retract of C. It follows that 

3 However, the fundamental groups of E3 - K and E3 - W may not be isomorphic 
(the torus TV may be "horned"); See J. W. Alexander, "An Example of a Simply Con
nected Surface Bounding a Region which is not Simply Connected," Proceedings of the 
National Academy of Sciences, Vol. 10 (1924), pp. 8-10 . 

• E. Moise, "Affine Structures in 3-Manifolds, V. The Triangulation Theorem and 
Hauptvermutung," Ann. of Math. Vol. 56 (1952), pp. 96-114. 

5 For the usual definition of homotopy type see P. J. Hilton, An Introduction to 
Homotopy Theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 43 
(Cambridge University Press, Cambridge, 1953). For proof that Hilton's definition is the 
same as ours see R. H. Fox, "On Homotopy Type and Deformation Retracts," Ann. of 
Math. Vol. 44 (1943), pp. 40-50. 
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any convex set is of the same homotopy type as a point. Thus our collection 
of spaces of known fundamental group may be characterized as all those of 
the homotopy type of a circle or a point. Homotopy type is one of the most 
important equivalence relations in algebraic topology; most of the algebraic 
invariants are invariants of homotopy type. It is a much weaker relation than 
that of topological equivalence. Each of the spaces pictured in Figures 14, 
15, and 16 is of the same homotopy type as the others in the same figure. 

3. The van Kampen theorem. The formulation of this important result 
which appears in (3.1) does not, at first glance, look like a computational aid 
to finding fundamental groups. There are, however, distinct advantages to 
this abstract approach. One is conceptual simplicity: The statement of (3.1) 
reflects only the essential algebraic structure of the theorem and, for this 
reason, is the easiest and clearest one to prove. In addition, the important 
corollaries ((3.2), (3.3), and (3.4)) needed in the next chapter follow most 
easily and directly from the abstract presentation. The classical formulation 
of the van Kampen theorem in terms of generators and relators is derived 
and given in (3.6). 

Let X be a topological space which is the union X = Xl U X2 of open 
subsets Xl and X 2 such that Xl' X 2 , and Xo = Xl n X 2 are all path wise 
connected and nonvoid. Since the intersection Xo is nonvoid, it follows that 
the space X is pathwise connected. We select a basepoint p E Xo and set 
G = n(X,p) and Gi = n(Xi,p), i = 0, 1, 2. The homomorphisms induced 
by inclusion mappings form the consistent diagram 

(3.1) THE VAN KAMPEN THEOREM. The image groups WPi' i = 0, 1,2, 
generate G. Furthermore, if H is an arbitrary grmlp and 'lfJi: Gi -'>- H, i = 0,1,2, 
are homomorphisms which satisfy 'lfJo = 'lfJ161 = 'lfJ262' then there exists a unique 
hommnorphisrn A: G -'>- H such that 'lfJi = ).w i , i = 0, 1, 2. 

A proof is given in Appendix III. Notice that, in view of the consistency 
relation Wo = w161 = w262 , the assertion that wlGI and w2G2 generate Gis 
fully equivalent to and may replace the first sentence in (3.1). An immediate 
corollary is then 

(3.2) If Xl and X 2 are simply-connected, then so is X = Xl U X 2 . 
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As will be shown in detail among other examples at the end of this chapter, 
the next corollary of the van Kampen theorem solves the problem of deter
mining the fundamental group oftwo circles joined at a point (cf. Figure 22). 

(3.3) If Go is trivial and Gl and G2 are free groups with free bases {lXv 1X2' ... } 
and {tJv tJ2' ... }, respectively, then G is free and {WlIXV Wl 1X2, "', W 2tJl' 
W 2tJ2' ... } is a free basis. 

Proof. Let H be a free group with free basis {xv X 2' ... ,Yv Y2' ... } such 
that the functions "PI and "P2 defined by 

"PllX; = x;, 

"P2tJk = Yk' 

j = 1,2,"', 

k = 1,2,"', 

are one-one correspondences between {lXI' 1X2' •.. } and {xv X 2' ••• } and 
between {tJv tJ2' ... } (J,nd {yv Y2' ... }, respectively. Since Gl and G2 are free, 
these correspondences extend to homomorphisms 

i = 1,2. 

Since Go is trivial, there is a corresponding trivial homomorphism "Po: Go -+ H, 
and, in addition "Po = "Plel = "Pl)2' By the van Kampen theorem, there exists 
a homomorphism A: G -+ H such that "Pi = AWi , i = 0, 1, 2. Consequently 

j = 1,2,"', 

k = 1,2,···. 

Since H is free, there exists a homomorphism fl: H -+ G defined by 

j = 1, 2,"', 

k = 1, 2,···. 

Obviously, both compositions }'fl and flA are identity mappings. Hence, both 
are isomorphisms onto and inverses of each other, and the proof is complete. 

(3.4) If X 2 is simply-connected, then the homomorphism WI is onto. Further
more, if {lXI' 1X2' ... } generates Go' then the kernel of WI is the consequence of 
{e11X1, 8l 1X2, •.. }. 

Proof. Since G2 is trivial, the image group wlGl generates G. No group 
can be generated by a proper subgroup; so WlGl = G. Turning to the second 
assertion, we observe that 

j = 1,2,···. 

Hence, the consequence of {8l 1XV 8l 1X2, ... } is contained in the kernel of WI' 
Conversely, consider an arbitrary element tJ in the kernel of WI and the 
canonical homomorphism "PI: Gl ->- H, where H is the quotient group 
GIl (consequence of {8l 1XV 8l 1X2, ... }). The composition "P18V which we denote 
by "Po' is, of course, trivial. Denoting the trivial homomorphism of G2 into H 
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by "P2' we obtain the consistency relations "Po = "Pl)l = "PlJ2. By the van 
Kampen theorem, there exists a homomorphism A: G --+ H such that 
"PI = AWl· Therefore 

and it follows that f3 is a consequence of {8l iXV 8l iX2, ••• }. This completes the 
proof. 

We are now in a position to calculate the fundamental groups of some 
interesting topological spaces. One drawback, however, will be the condition 
imposed on Xl and X 2 by the van Kampen theorem that they be open sets. 
Most of the common examples don't come that way naturally, and we shall 
have to do a little prodding. Actually, under certain conditions, the van 
Kampen theorem holds for closed sets Xl' X2 and could be applied to all our 
examples directly.6 However, without introducing a good bit more termin
ology, it is difficult to describe the proper generalization succinctly. What has 
to be done in each case will become clear as we proceed. 

(i) The n-leaf~d rose. This space, denoted by C(n)' is the union of n topo
logical circles Xl' ... , Xn joined at a point p and otherwise disjoint (cf. 
Figure 22). The fundamental group of C(n) is free of rank n. More fully, if Xi 

X 4 

Figure 22 

6 E. R. van Kampen, "On the Connection between the Fundamental Groups of Some 
Related Spaces," American Journal of Mathematics, Vol. 55 (1933), pp. 261-267; P. Olum, 
"Nonabelian Cohomology and van Kampen's Theorem," Ann. of Math., Vol. 68 (1958), 
pp. 658-668. 
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is a generator of the in£nite cyclic group 7T(X;), and Wi: 7T(Xi ) ---+ 7T(G(n») is 
induced by inclusion, then 

7T(G(n») = Iwlxl> ... 'WnXn : I· 

The proof is by induction on n. The space G(1) is a circle, whose group has been 
shown in Chapter II to be infinite cyclic, i.e., free of rank 1. Consider 

G(n+1) = G(n) U X n+1' 

{p} = G(n) n Xn+l' 

Except for the fact that G(n)' X n+1' and {p} are not open subsets of G(n+1)' the 
desired conclusion follows immediately from (3.3). To get around the diffi. 
culty, consider an open neighborhood N of pin G(n+1) consisting of p and the 
union of2(n + 1) disjoint, open arcs each of which has p as one of its endpoints 
(cf. Figure 23). Then G(n)' X n+1' and {p} are deformation retracts of G(n) uN, 
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Figure 23 

X n+1 uN, and {p} uN, respectively. The latter are open subsets of G(n+1)' 

and (3.3) may be applied to complete the proof. In particular, for n = 2, we 
obtain the answer to the problem posed in the introduction to this chapter
that of computing the fundamental group of two circles joined at a point. 

(ii) The sphere. Let Xo be an open equatorial band dividing the sphere X 
into north and south polar caps. Set Xl equal to the union of Xo and the 
north polar cap and X 2' the union of Xo and the south polar cap. Clearly, 
Xl> X 2 , and Xo = Xl n X 2 are open, pathwise connected, and nonvoid in 
X = Xl U X 2• Moreover, the spaces Xl and X 2 are homeomorphic to convex 
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discs and hence are simply-connected. By (3.2), it follows that the sphere is 
also simply-connected. 

(iii) The sphere with n ::?: 1 holes. By stretching one hole to an equator and 
projecting the result on a plane, one can see that the sphere with n ::?: 1 holes, 
denoted by SIn)' is topologically equivalent to a disc with n - 1 holes. If 
n> 1, the disc contains an (n - I)-leafed rose as a deformation retract 
(cf. Figure 24). We conclude that 7T(S(n») is a free group of rank n - 1. (The 
trivial group is free of rank 0.) 

Figure 24 

(iv) The torus. We shall exhibit the torus X as the union of two open sub
sets Xl and X 2 such that X 2 is a disc and Xl contains a 2-leafed rose as a 
deformation retract. The decomposition is pictured in Figure 25. The subspace 
Xl is the torus minus a closed disc (or hole) D, and X 2 is an open disc of X 
which contains D. The intersection Xo = Xl n X 2 is an open annulus, 
and its fundamental group is therefore infinite cyclic. That Xl is of the 

Figure 25 
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homotopy type of a 2-leafed rose can be seen by stretching the hole D as 
indicated in Figure 26. Hence, 7T(XI ) is free of rank 2. A generator of 7T(XO) 
is represented by a path c running around the edge of X I and X 2• From 
Figure 26 it is clear that such a path is equivalent in Xl to one running first 

Topological 
eq ui valence 

Figure 26 

~otopy 
type 

around a, then b, then a in the opposite direction, and finally around b in the 
opposite direction. Hence 

[c] = [a ][b][ a ]-l[b ]-1, 

where the brackets indicate equivalence classes in Xl. Another good way to 
visualize this relation is to cut the torus along a and b and flatten it out as in 
Figure 27. The subsets Xl and X 2 are shown as the shaded regions, and it is 
easy to read the above relation from the third picture of Figure 27. To 
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b 

a 

b 

a a a 

b b 

Figure 27 

summarize: 7T(X1) is a free group and x = [a] and y = [b] const.it.ut.e a free 
basis, X 2 is simply-connected, and 7T(XO) is generat.ed by an element. whose 
image in 7T(XI) under t.he homomorphism induced by inclusion is xyx-1y-l. It. 
follows from (3.4) t.hat. t.he homomorphism (Ol: 7T(X1) -+ 7T(X) induced by 
inclusion is ont.o and t.hat. it.s kernel is t.he consequence of xyx-1y-l. Thus, t.he 
group of t.he t.orus has t.he present.at.ion 

(x,y : xyx-1y-l) 

or, in t.he language of relat.ions, 

(x,y : xy = yx). 

This group is t.he free abelian group of rank 2. 

The final object.ive of t.his chapt.er is t.o derive from (3.1) a formulat.ion of 
the van Kampen theorem in terms of group present.at.ions. The. spaces X 
and Xi' i = 0, 1, 2, are assumed t.o sat.isfy all the condit.ions imposed in t.he 
paragraph preceding (3.1), and the not.at.ion for t.he various fundamental 
groups and homomorphisms induced by inclusion is also t.hesame. In addit.ion, 
we assume given group presentations 

(3.5) 

G1 = I X 

G2 = I y 

Go = I z 
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The problem is to find a group presentation of G, and the solution is stated in 
(3.6). 

W'e denote by F I , F 2, and Fo the free groups which are the domains of 
cPI' cP2' and cPo' respectively. It is convenient to assume that X and yare dis
joint and that their union is a free basis of a free group F. Thus, FI and F2 
are subgroups of F. There exists a unique homomorphism cP: F -+ G such 
that 

i = 1,2. 

Notice that cPr = cPs = 1. Inasmuch as Fo is free, the mappings 61 and 62 

can be lifted to the free groups, i.e., there exist homomorphisms 8i : Fo -+ F i , 

i = 1, 2, so that 

is a consistent diagram. Where z = {Zl' Z2' ••• }, consider the set of all ele
ments 8I zk 82zk-I, k = 1, 2, ... , in F. Clearly, 

cPt 8lzk82zk -1) = (WlcPl 8lzk)( W2cP282Zk -1) 

= (wI6IcPOZk)(W262cPOZk-l) 

= WOcPO(Z0k-l ) = 1. 

Thus, the consequence of r u s u {8IZk82Zk -I} is contained in the kernel of cPo 
We contend that the converse is also true. To prove it, consider an arbitrary 
homomorphism 1jJ: F -+ H which maps r u s u {8lzk82zk -I} onto 1. It is then 
obvious that there exist homomorphisms 1jJi: Gi -+ H, i = 1, 2, so that 

Gi 

is consistent. Furthermore, since 1jJ8lzk = 1jJ82zk, k = 1, 2, ... , it follows by 
diagram chasing that 

k = 1,2,···. 

Since the elements cPozv cPOZ2' •.• generate Go, we may conclude that the homo
morphism 1jJo is well-defined by 

1jJo = 1jJ161 = 1jJ262' 

By the van Kampen theorem (3.1), there exists a homomorphism A: G -+ H 
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such that 'lfi = Il.wi' i = 0, I, 2. Consider, finally, an arbitrary element 
ui E F i , i = I, 2. Then, 

and hence 

It follows that anything in the kernel of ~ is also in the kernel of 'If, and our 
contention is proved. Thus, the kernel of ~ equals the consequence of 

r US U {elZke2Zk-l}, 
and we have proved 

(3.6) ALTERNATIVE FORMULATION OF THE VAN KAMPEN THEOREM. If 
the groups G1, G2, and Go have the presentations (3.5), then 

G = 1 X,Y : r,s, {elZke2Zk-l} I.,.· 

EXERCISES 

I. Consider the closed circular disc D with center p and boundary D as 
shown in Figure 17. We have seen that the complement in the plane R2 of the 

open disc D = D - iJ is a deformation retract of the punctured plane 
R2 - p. Prove that the complement R2 - D is not a deformation retract of 
R2 - p, but that R2 - D and R2 - p are of the same homotopy type. 

2. Prove that if X is a deformation retract of Y, and Y is a deformation 
retract of Z, then X is a deformation retract of Z. 

3. Find a presentation for the fundamental group of (a) a Klein bottle, 
(b) a double torus. 

4. Prove that the three spaces pictured in Figure 16 belong to the same 
homotopy type but to distinct topological types. 

5. What is the fundamental group of the complement R3 - X for (a) 
X = circle; (b) X = union of two separated circles; (c) X = union of two 
simply linked circles? 



CHAPTER VI 

Presentation of a Knot Group 

Introduction. In this chapter we return to knot theory. The major objec
tive here is the description and verification of a procedure for deriving from 
any polygonal knot K in regular position two presentations of the group of 
K, which are called respectively the over and under presentations. The 
classical Wirtinger presentation is obtained as a special case of the over 
presentation. In a later section we calculate over presentations of the groups 
of four separate knots explicitly, and the final section contains a proof of the 
existence of nontrivial knots, in that it is shown that the clover-leaf knot 
can-not be untied. The fact that our basic description in this chapter is con
cerned with a pair of group presentations represents a concession to later 
theory. It is of no significance at this stage. One presentation is plenty, and, 
for this reason, Section 4 is limited to examples of over presentations. The 
existence of a pair of over and under presentations is the basis for a duality 
theory which will be exploited in Chapter IX to prove one of the important 
theorems. 

If K is any knot in 3-dimensional space R3 and Po is any point in R3 - K, 
then the fundamental group 7T{R3 - K,po) is called the group of K. Since 
R3 - K is connected, different choices of basepoint yield isomorphic groups. 
For this reason, it is common practice to omit explicit reference to the base
point Po and speak simply of the group 7T{R3 - K) of the knot K. Nevertheless, 
the precise meaning of "the group of K" is always "the group 7T{R3 - K, Po) 
for some basepoint Po." It will be clear that the particular over and under 
presentations obtained from a given knot in regular position depend not only 
on the knot but also on a number of arbitrary choices. Hence, the terminology 
"the over and under presentations of the knot K" exemplifies to an even 
greater degree the same abuse of language as the phrase "the fundamental 
group of the space X." A knot in regular position has many pairs of over 
and under presentations. All of these will be seen to be of the same type. 

1. The over and under presentations. Let K be a polygonal knot in regular 
position and f!}> the projection f!}>{x,y,z) = (x,y,O) (cf. Chapter I, Section 3). 
For some positive integer n, we select a subset Q of K containing exactly 2n 
points no one of which is either an overcrossing or an undercrossing. These 
divide K into two classes of closed, connected segmented arcs, the overpa88e8 
and the underpas8e8, which alternate around the knot, i.e., each point in Q 
belongs to one overpass and one underpass. The subdivision is to be chosen 

72 
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so that no overpass contains an undercrossing and no underpass contains an 
overcrossing. The construction can, of course, be done in many different ways 
although ordinarily we would want n as small as possible. We denote the 
overpasses by Av ... ,An and their union Al U ... U An by A, the under
passes by Bv ... , Bn and their union BI U ... U Bn by B. The ordering is 
arbitrary. It should be obvious that there exists a semi-linear homeo
morphism l of R3 onto itself which displaces points vertically, i.e., parallel 
to the z-axis, such that the image of A - Q lies above the xy-plane R2 and 
that of B - Q lies below R2. Since K and its image under this homeomorphism 
are equivalent polygonal knots, we make the simplifying assumption that K 
is in the image position to begin with. It follows that Q c R2. 

Each presentation is made with respect to an orientation of K and of R3. 
Accordingly, one of the two directions along the knot is chosen as positive, 
i.e., we draw an arrow on K. In R3 we shall consistently refer orientations to a 
left-handed screw. Two basepoints are selected: one, Po, lying above the knot 
and the other, Po', below. For later convenience, we shall assume that Po = 

(O,O,zo) and Po' = (0,0, -zo) for some positive ZOo (Then (x,y,z) E K implies 
that -zo < z < zo.) Thus, a rotation of 1800 about the x-axis carries one 
basepoint onto the other. Finally, we choose a point qo E R2 - f!jJK. 

Let us call a path a in R2 simple if it satisfies the following three conditions: 
It is polygonal, neither initial nor terminal point belongs to f!jJK, and a 
intersects f!jJ K in only a finite number of points, no one of which is a vertex 
of a or a vertex of f!jJK. Let F(x) be an arbitrary free group freely generated 
by x = (xl' ... , xn ). To each simple path a in R2 - f!jJ B we assign an element 
a~ in F(x) defined as follows: 

where the projected overpasses crossed by a are, in order, f!jJ Ai , ... , f!jJ A,. , 
1 , 

and where Ek = lor -1 according as a crosses under Aik from left to right or 
from right to left (in other words, according as Aik and the path a form a 
left-handed or a right-handed screw). The assignment a --+ a~, illustrated in 
Figure 28, is clearly product preserving, 

(al . a2)# = al~a2#· 

It is not, however, necessarily a mapping onto F(x). For any point P E R2, let 
p be the path which runs linearly from Po parallel to R2 to a point directly 
over P and thence linearly down to p. For any path a in R2, we set 

*a = a(O) . a . a([[ a [f)-I. 

The group F(x) is to be the free group of the over presentation. A homo
morphism cP: F(x) --+ 7T(R3 - K, Po) is defined as follows: Let a; be a simple 

1 A mapping R3 ->- R3 is semi·linear if its restriction to every compact straight. line 
segment is linear at all but a finite number of points. Thus, polygons go into polygons. 
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path in R2 - f!)JB such that al = x;,j = 1, ... ,n. We define 

j = 1,'" ,n, 

where the square brackets indicate the equivalence class in R3 - K of the 
po-based loop *a;. It is obvious that cpx; is independent of the particular 
choice of representative path a;. The homomorphism cp is the unique exten
sion to the entire group F{x} of this assignment on the generators, Xl' ••• , x n . 

It follows that 
cpa# = [*a] , 

for any path a in R2 - f!)J B. It is our contention that the homomorphism cp 
is onto or, in other words, that cpXI' •.• , cpxn generate 1T{R3 - K, Po}. The 
proof is deferred until the next section; but it should be pointed out that the 
result is a very natural one. As suggested by Figure 29, it is geometrically 
almost obvious that every po-based loop in R3 - K is equivalent to a product 

Figure 29 
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of the loops *aj , j = 1, ... , n, and their inverses. It is hard to see what could 
go wrong. 

The generators for the under presentation are chosen in an entirely anal
ogous manner: Let F(y) be a free group freely generated by y = (YI' ... , Yn)' 
To each simple path b in R2 - f!JJ A we assign bP in F(y) defined by 

bP = y. 0, ••• y. Om 
)1 Jm ' 

where the projected underpasses crossed by b are in order f!JJ B j , ••• , f!JJ B j , 
1 m 

and Ok = 1 or -1 according as b crosses over Bh from left to right or from 
right to left (i.e., according as Bjk and b form a right-handed or a left-handed 
screw). The assignment b ---)0 bP is illustrated in Figure 30. 

I 

I 

A homomorphism cp': F(y) ---)0 7i'(R3 - K, Po') is defined in the same way: 
Where f!lt is the reflection f!lt(x,y,z) = (x,y, -z) and a is any path in R2, we set 
*a = f!lt*a. Let bi be a simple path in R2 - f!JJ A with b/ = Yi' i = 1, ... , n. 
Then, 

i = 1,"', n, 

where the square brackets indicate the equivalence class in 7i'(R3 - K, Po'). 
Again, we contend that the extension of this assignment on the generators is 
a homomorphism onto. 

The images fY' B i , i = 1, ... , n of the underpasses are disjoint segmented 
arcs. Hence we may select disjoint, simply-connected, open sets VI' ... , V n 

in R2 such that fY' Bi c Vi,i = 1, ... ,n, and such that their boundaries 
are the disjoint images of simple loops VI' ••. , vn which run counterclockwise 
(from above) around VI' ... , V n' respectively. Similarly, we choose simply
connected, disjoint, open sets UI ," ., Un in R2 such that f!JJAj C Uj, j = 

1, ... ,n, with boundaries that are the disjoint images of simple loops 
u I ' ... , Un' \\·hich run clockwise (from above) around UI ,' •• , Un' respec-
tively. We also insist that the previously chosen point go lie outside the 
closures of all the regions Vi' Uj , i, j = 1, ... , n. Next, we select a set of 
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simple paths cl' ... , cn such that each ci has initial point qo and terminal 

" point v;(O), and ci(t) E R2 - U v\ unless t = \I ci 11.0\ is the closure of V k ·) 
k=1 

Similarly, we choose a set of simple paths d1, ••• , dn such that d;(O) = qo' 
n 

and d;(11 d; II) = u;(O), and d;(t) E R2 - U Uk unless t = II d; II. These paths 
k=1 

may, of course, be chosen in several ways. Examples that illustrate these 
regions and paths are shown in Figures 32, 33, and 34. 

We are now in a position to describe the two presentations. The over 
pre8entation of 7T(R3 - K, Po) is 

(1.1) 

where ri = (C;' Vi • Ci - 1)#, i = 1,' . " n. The corresponding under pre8entation 
of 7T{R3 - K, Po') is 

(1.2) (Yl' ... ,y" : 81, ••• , 8")",,, 

where 8j = (d j • uj • dj - 1)11, j = 1, ... ,n. The validity of the equations 
cpri = 1 and f8j = 1, i, j = 1, ... ,n, is geometrically easy to see. We have 

i = 1,'" ,n, 
and 

j = 1,'" ,no 

The contraction of a typical loop *(ci ' Vi' Ci- 1) by sliding it below B; is 
illustrated in Figure 31. The analogous picture can, of course, be drawn for 
the under presentation. Incidentally, we do not claim that it is obvious that 
the relators r l' •.• , r nand 81, ••• , 8 n constitute defining sets. 

Figure 31 
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The description of the over and under presentations is almost as compli
cated as the subsequent proofs. We suggest that the reader carry out the 
construction in some examples. A fairly complicated sample computation is 
given below in Figures 32 and 33. Overpasses are drawn in heavy lines and 
underpasses in light. The paths ci ' di ' Vi' U i are drawn with dotted lines. It is 
convenient to indicate the generators Xi and Yi with small arrows, as we have 
done. Additional examples of over presentations are derived in Section 4. 

It remains to prove that the over and under presentations are what we 
claim they are, i.e., group presentations of 7T{R3 - K, Po) and 7T{R3 - K, Po'), 
respectively. The proof is given in the next section. An important corollary 
will be the theorem. 

(1.3) In any over presentation (1.1) [under presentation (1.2)], anyone of 
the relators rv ... , r n [Sl' ..• , sn] is a consequence of the other n - 1. 

Thus, in either presentation, anyone of the relators may be dropped. This 
fact is a substantial aid to computation. We shall also see that it has signifi
cant theoretical implications. 

VI r----------------- ----------.., 
I 
I 

r-------------r: :':-i--;':-':-':---= :~---------., 
I %6 I i I I~ _____ _______ _ 
I 1.1/, ,_I 
I 11'1' '-I 
: I 4: " ,~----- ----, I 

I : : 11/ -f----: ~ 
I v. : ... { X3 I I 

I I : Iqo t ~ ! l __ J : : V2 
, r- -------- ___ L ________ ---, I 
I , _ .. 1-+1 _-+0 ___ '" 
: L ___________ ..-__________ -1 : 
'I Va ~- -, : 

• I I I L _____________ ---------1 1 I ~ 

1 I I I • L _________________ _________ ~, I L __ _ 

I • 
x2 -r-- I, x. , 

r- _______ ---J l----------J 
I I 
~ ______________ J 

TI - %6 (%a %1 ~-IX.-'~XI-')%5-1 

T3 -~ %s%£I:taXI-' Xi' 

T2 - %3 %1 %.%,-1%3 1 %5- 1 

T. -%6%1%5- 1%£1 

Figure 32 
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Figure 33 

82 - Y3!11 Y5!11- 1Y3- l y.-1 

8. a!/a (YS Y2Ys-I yl-I)Ya-1 

2. The over and under presentations, continued. In this section we shall 
prove that the over and under presentations (1.1) and (1.2) are in fact group 
presentations of 7T(R3 - K, Po) and 7T(R3 - K, PO'), respectively. In so doing, 
we shall also obtain Theorem (1.3). We observe, first of all, that it is not 
necessary to give separate proofs for both presentations. An under presenta
tion can be characterized in terms of an over presentation by simply reversing 
the orientation of K and interchanging the roles of up and down. More 
explicitly, let h: R3 ->- R3 be the rotation of 1800 about the x-a:JI:is defined by 
h(x,y,z) = (x,-y,-z). Define K' = hK. The homeomorphism h induces the 
isomorphism h*: 7T(R3 - K', Po) ->- 7T(R3 - K, PO'). We take as the positive 
direction along K' the opposite of that induced by h from the orientation on 
K that was used in defining (1.1). Simply speaking, we turn K over and 
reverse the arrow. Let 

be any over presentation of 7T(R3 - K', Po) constructed in the same way as 
(1.1). We assume that the jth overpass of K' is hBf and that the ith relator is 
obtained by reading around f!JJhAi and, finally, that hqo is the common base-
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point in R2 of the loops determining the relators. Then, 

I Yl' ... 'Yn : 81, ••• , 8 n Ih., = rr(R3 - K, Po') 

obviously coincides with (1.2). To see that it is obvious, try an example. 
Figure 34 shows the over presentation obtained by rotating the knot of 
Figures 32 and 33 by 1800 and reversing the arrow. As a result of these remarks, 
we shall restrict our attention to the over presentation in the remainder of 
this section. 
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Figure 34 

Consider a closed square S (boundary plus interior) parallel to the plane 
R2, lying below K, and such that 

n 
(2.1) f}JK u {qo} u U Vi C f}JS. 

i~1 

For any subset L of K, we denote by L* the union of K, S, and the set of all 
points (x,y,z) which lie between Sand L, i.e., which satisfy Z1 :::;; Z :::;; Z2' where 
(X,y,Zl) E S, (x,y,z2) E L. For example, Q* is the union of K, S, and the 2n 
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vertical segments joining S to Q, the set of points of the original subdivision 
which separates the knot into overpasses and underpasses. The set K* for a 
typical clover-leaf knot is illustrated in Figure 35. 

Figure 35 

The derivation is a sequence of applications of the van Kampen theorem. The 
space R3 - K* is first shown to be simply-connected. Next, the set K* - Bit: 
is adjoined to R3 - K*, and it is proved that 7T{R3 - B*, Po} is a free group 
of rank n. A final application of the van Kampen theorem fills in B* - K and 
yields an over presentation of 7T{R3 - K, Po}. 

{2.2} The space R3 - K* is simply-connected. 

Proof. The result is geometrically obvious {cf. Figure 35}, but a formal 
proof using the van Kampen theorem can be given: Let X be the set of all 
points of R3 - K* which do not lie below S. That is, if S' is the set of all 
points {x,y,z'} such that {x,y,z} E Sand z' < z, then 

It is not only intuitively apparent but also easy to prove that X is simply
connected. In fact, the basepoint Po = {O,O,zo} is a deformation retract of X. 
This fact is obtained from the following two deformations: 

h.{x,y,z} = {x, y, (1 - s)z + sZo), ° :s;;: s :s;;: 1, 

k.(x,y,zo} = ((1 - s)x, (1 - s)y, zo), ° :s;;: s :s;;: 1, 

The first, {hs}' is a vertical deformation of X onto the horizontal plane con
taining Po; the second, {ks}' collapses this plane onto Po {cf. Exercise 2, 
Chapter V to justify composition of these deformations}. Next, set Yequal 
to the simply-connected space consisting of all points lying below the hori
zontal plane that contains the square S. Clearly, 
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The sets X, Y, and X n Yare nonvoid, open, and pathwise connected in 
X u Y. It follows from the van Kampen theorem, or more specifically 
Corollary (3.2), Chapter V, that X u Y is simply-connected, and the proof 
of (2.2) is complete. 

The set K* - B* is the disjoint union of n open topological discs F l , ... , 

F n' which we order so that F j consists of those points lying between Aj - Q 
and S, minus any points that happen also to lie on or below an underpass 
(cf. Figure 36). For each}, j = 1, ... , n, let a j be a simple path in R2 - g; B 

-
______ ~7~11~1~11~11~1'~7~11~11~1~11~1~11~11~1~11~11~1~11~1'~-~/ull~II~IUII~'L---___ S 

Figure 36 

which crosses under Aj once, from left to right. The loop *aj intersects F j once 
and is otherwise contained in R3 - K*. Let Wj be an open neighborhood of 
the union of F j and the set of image points of *aj chosen so that: 

(i) Wj is pathwise connected, and the group 7T(Wj,PO) is infinite cyclic 
and generated by the equivalence class of *aj in Wj' 

(ii) Wj n K* = F j . 
(iii) Wj - K* is simply-connected. 

That these sets can be constructed is geometrically obvious. Each Wj is 
just the union of F j and the image of *aj--both slightly "thickened" to an 
open set in R3. More explicitly, let E > 0 be so small that the open E-neighbor
hood W/ of the image of *aj satisfies W/ n K* c F j . Set W/, equal to the 
set of all points whose distance from F j is less than E and which are closer to 
F j than to K* - F j . Proving that Wj = W/ u W/, satisfies the above 
conditions (i), (ii), and (iii) would be admittedly tedious, but presumably 
possible. 

(2.3) R3 - B* is pathwise connected and 7T(R3 - B*, Po) is a free group. 
Furthermore, the set of equivalence classes xl' ... , Xn of the loops *a1 , ••• , *an 

is a free basis. 

Proof. Set 

j = 1,··· ,n. 
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Since W; n K* = F;, 

and so 

(R3 - K*) u Wj = R3 - (K* - Wj) = R3 - (K* - F j ) 

= (R3 - K*) U F j , 

j 

Xj = (R3 - K*) U U F k , 
k~l 

j = 1,"', n. 

In particular, 
Xn = (R3 - K*) u (K* - B*) 

= R3 - B*, 

Chap. VI 

and so the sequence terminates in the right space. Furthermore, since 

Fk n Wj = K* n Wk n Wj = Fk n F j = 0, 

it follows that 
X;_I n Wj = (R3 - K*) n W; 

= Wj - K*, 

and thus, by (iii), that X;_l n Wi is simply-connected. Lemma (2.2) states 
that Xo is simply-connected, and we take as an inductive hypothesis that 
X i - I is pathwise connected, l7(X j _ l ,po) is a free group, and the set of equiv
alence classes of *al , ••• , *aj_1 in X;_I is a free basis. Since Xj-I' Wi' and 
X j _ 1 n W; are pathwise connected, nonvoid, open subsets of X; = X j _ 1 U 
Wi' it follows by (i) above and by (3.3) of Chapter V, that the set of equiv
alence classes in Xi of *al , •.. , *ai is a free basis of l7(Xj ,PO)' Induction 
completes the proof. 

The elements xl> ... , Xn introduced in the preceding lemma are to be the 
generators of the over presentation. In other words, the group 17( R3 - B*, Po) 
is to be taken as the free group of the presentation. Notice that, where 

(2.4) 

is the homomorphism induced by inclusion, the element cpx;, j = 1, ... , n, 
is the equivalence class in R3 - K of the loop *a;. Thus, to within an iso
morphism, cp is identical with the homomorphism denoted by the same symbol 
in Section 1. For any simple path a in R2 - [!J B, the element aii will be 
understood to be a member of 17(R3 - B*, Po). In fact, ali' is just the equiv
alence class in R3 - B* of the loop *a. It is our final contention, which 
completes the derivation, that cp is onto and that its kernel is the consequence 
of any n - 1 of the relators 1"1> ••• ,1"n that occur in (1.1). Notice that this 
proposition includes Theorem (1.3). 

A proof is obtained by the same technique that was used to determine 
the group 17 (R3 - B*, Po). By adjoining to the space whose group is known an 
appropriate open neighborhood of the set to be filled in (here, B* - K), the 
unknown group structure is obtained by an application of the van Kampen 
theorem. To this end, consider a rectangular box T which contains the square S 
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in its interior and the knot K in its exterior. Topologically, T is just a sphere; 
but for convenience it will be assumed to be thin and fiat with two faces parallel 
to S. Let W be an open neighborhood of B* - K chosen so that: 

(iv) W is simply-connected and contains Po' 
(v) W n K = 0. 
(vi) T - B* is a deformation retract of W - B*. 

Such a set can be constructed in many ways. For instance, connect T to Po 
with a polygonal arc E which is disjoint to ]{ *. Let W' be the union of an 
E-neighborhood of T U E and the points inside T. Set W" equal to the set of 
all points whose distance from B* is less than E and which are closer to 
B* - ]{ than to ]{. For sufficiently small E, the set W' U W" may be taken 
as W. 

The goal of this section is the following theorem. 

(2.5) The knot group of K has the over presentation 

where rk ,indicates the deletion of the kth relator rk and cP is the homomorphism 
(2.4). 

Proof. We shall apply the van Kampen theorem to the groups of R3 - B*, 
fV, and (R3 - B*) n W. We first observe that 

B* - W = (K u (B* - K)) - W 

= (K - W) u ((B* - K) - W) = K. 
Hence, 

and so this union is the space whose group we are after. Also, 

and T - B* belong to the same homotopy type. The space T - B* is a box 
with n knife cuts in the top; it is therefore of the homotopy type of a sphere 
with n holes and its fundamental group is free of rank n - 1 (cf. Example 
(iii), Chapter V, Section 3). In greater detail: Let h be the vertical projection 
of the plane R2 upon the plane containing the top of T. It is a consequence of 
(2.1) that 

Since the closures V 1> ••• , V n of the regions V l' ... , V n are pairwise 
disjoint, we may select a set of polygonal paths e1, ••• , en in T - Ui=l hVi 

with the common initial point hqo and subject to the following restrictions: 
Each path ei is an arc (i.e., a homeomorphism) and its terminal point is 
h(Vi(O)) (Le., the image under h of the basepoint ofthe loop which bounds Vi)' 
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Figure 37 

The images of eI> ... , en are, except for the point hqo' pairwise disjoint and 
are contained, except for their terminal points, in T - Ui=1 h Vi (cf. Figure 
37). 

Set 
i = 1,"', n. 

Clearly, the union of the images of the loops wI> ... , wn is of the homotopy 
type of an n-leafed rose (cf. Example (iii), Chapter V). Furthermore, the 
union of the images of any n - 1 of WI' ••• , wn is a deformation retract of 
T - B*. Although a completely rigorous proof of this fact would admittedly 
be a nontrivial affair, the geometric idea is simple: First, widen all the knife 
cuts and push them back onto the curves hvi . Then, choose one of the holes 
and starting from it, push the rest of the box onto the remaining n - 1 loops 
Wi. In any event, we conclude that 7T"(T - B*, hqo) is a free group and the 
equivalence classes of any n - 1 of WI' ..• , wn constitute a free basis. It 
follows that the same is true of the group 7T"(W - B*, hqo), and finally, where 
a is a path in W - B* which runs from Po to hqo' the set of equivalence classes 
of any n - 1 of a' Wi • a-I, i = 1, ... ,n, is a free basis of 7T(W - B*, Po). 

It is then a direct consequence of Corollary (3.4), Chapter V, of the van 
Kampen theorem that the homomorphism rp is onto and that its kernel is the 
consequence of any n - 1 of the equivalence classes in R3 - B* of the loops 
a' Wi • a-I, i = 1, ... , n. Thus we obtain 

7T(R3 - K, Po) = 1 Xl' ... ,Xn : [a' Wi' a-I], i = 1, ... , fe , ... , n l.p. 

The proof is completed with the observation that, for each i = 1, ... , n , 
the element [a' Wi • a-I] is conjugate to v/J and, thence, to riO To prove this, 

consider a path bi (analogous to and equivalent to vi(O)) which runs in a 
straight horizontal line from Po to the point directly over vi(O) and thence 
straight down to hVi(O). It is obvious (cf. Figure 38) that in R3 - B* a valid 
equivalence is 

i = 1,"', n. 
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Po 

Figure 38 

Consequently, 

a . Wi . a-I = (a . ei ) . hVi . (a . ei )-1 

c:::'. (a· ei . bi-l) . bi . hVi . bi- 1 . (a' ei . bi- 1)-1 

c:::'.Ii· *Vi • Ii-I, 

where Ii = (a' ei • bi-1). As a result, 

[a' Wi' a-I] = [fi]Vi lt[!;]-I, i = I,"', n. 

85 

Since v/' is in turn conjugate to ri , the kernel of ~ is the consequence of 
r1 , ••• , Tk , ••• , r n' and the proof of (2.5) is complete. 

It is not unlikely that an intelligent reader, having worked his way through 
this section, will be unsatisfied. In the first place, the derivation is long and 
complicated. What is more unsettling, however, may be the feeling that, in 
spite of its length, it is still incomplete. At three places the existence of the 
complicated geometric construction essential to the argument is assumed 
without proof. In the interests of both economy and elegance, would it not 
be better simply to assume the desired conclusion and be done with it? The 
most honest answer is that there are degrees of the obvious. The first section 
of this chapter leaves two real questions unanswered: How do we really know 
that the elements ~Xl' ••• , ~xn generate the knot group? And the harder one: 
Why do any n - I of r 1> ••• , r n constitute a defining set of relators? In 
contrast, the assertions whose details we omitted are of a different sort. One 
wonders perhaps how to prove them in the best way, but not whether or not 
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they are true. In spite of this preamble, the main point of this paragraph is 
not to present an apology. It is rather to call attention to the fact that, 
although these omitted details are intricate, they are not profound. The 
reason simply stems from our exclusive use of finite polygonal constructions. 
Everything can be chopped up into a finite number of triangles and tetra
hedra, and these can be studied one at a time. It is tempting to try to eli
minate these restrictions of linearity-if for no other reason than that it is 
unnatural to draw segmented knots. To some degree this can be done. 
However, the existence of wild knots whose groups are not finitely generated 
means that more is involved than simply convenience. 

3. The Wirtinger presentation. An essential feature of any pair of corre
sponding over and under presentations is the common basepoint, denoted in 
Section 1 by qo' of the 2n simple paths in R2 whose images under ~ and b con
stitute the relators of the two presentations. The necessity of having a com
mon point will only become clear when the precise duality between over and 
under presentation is studied in Chapter IX. Notice, however, that whatever 
the reason may be, it has nothing to do with presentation type. The presenta
tion 

(3.1) (x ... x . v ~ ... V~) 
l' 'n' l' 'n ~ 

of 7T(R3 - K, Po) is obtained from the over presentation (1.1) by n applica
tions of Tietze operations land I'. (We recall that Vi is the loop in R2 - :?JB 
around the projected underpass :?J B i .) The main advantage of (3.1) over (1.1) 
is simply that there is less work in calculating it; one need not bother finding 
the elements c1#,···, cn~. Therefore, we have used this modified form of the 
over presentation exclusively in the examples in the next section. Of course, 
it is also true of (3.1) that anyone of the relators v1#, .•. ,vn# is a consequence of 
the remaining n - 1 of them and therefore may be omitted. 

A presentation (3.1) of the group of a given knot is called a Wirtinger 
presentation if each underpass contains exactly one undercrossing and each 
path Vi cuts the projected overpasses in just four places. These two con
ditions can always be imposed unless, of course, the knot has no under
crossings. That they are natural restrictions to make is evidenced by the fact 
that historically this presentation of a knot group was one of the first to be 
studied, and it is certainly the commonest one encountered in the literature. 
The presentations of the clover-leaf knot and of the figure-eight knot in the 
next section are examples. An attractive feature of the Wirtinger presentation 
is that the relators are particularly simple: written as a relation, each one is 
of the form X k = XtEXIXi-E, E = ±1 (cf. Figure 39). Notice, however, that 
unless the knot projection is alternating (i.e., as one traverses the knot, 
under crossings and over crossings alternate), the Wirtinger presentation is not 
the most economical in the number of generators and relators which might 
be obtained. 
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4. Examples of presentations. We give below over presentations of several 
knots. As remarked in the preceding section, we have used (3.1) as a model 
instead of (1.1) because it is simpler. In addition, we shall take advantage of 
the fact that an arbitrary one of the relators can be dropped. The resulting 
presentation is frequently still needlessly complex and can be further simpli
fied by using Tietze operations. Some of these reductions are illustrated in the 
following examples. 

(4.1) Trivial knot (Figure 40). 
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Figure 40 

The single overpass is drawn with a heavy line, the underpass with a double 
light line, and the path VI with a dotted line. The presentation is 

7T( R3 - K) = 1 x : I. 

Hence, the group of the trivial knot type is infinite cyclic. 
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(4.2) Clover-leaf knot (Figure 41). Again, the overpasses are shown in 
heavy lines and the loops VI' V2' V3 are drawn with dotted lines around the 
underpasses. We choose generators x,y,z such that 

Clearly, 

y 

Figure 41 

VIli' = x-Iyzy-l 

v/r = y-1zxz-1 

v} = z-Ixyx-I. 

Consequently, we obtain for the group 7T(R3 - K) of the clover-leaf knot K 
the presentation 

(x,y,z : x-1yzy-1, y-1zXZ-I), 

where V3 if has been dropped. 
Suppose we include in the presentation all three relators obtained by 

reading around the underpasses. Writing relations instead of the more formal 
relators, we get 

7T(R3 - K) = 1 x,y,z : x = yzy-l, y = zxz-l, z = xyx-1 I. 

Substitution of z = xyx-I in the other two relations yields 

7T(R3 - K) = 1 x,y : x = yxyx-IJjl, Y = xyxy-1x-1 I. 
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If the second relation is multiplied through on the right by xyx-1rl, one 
obtains the first. This is empirical verification of the claim that anyone of the 
relations obtained by reading around the underpasses of an over presentation 
is a consequence of the others. Finally, therefore, we obtain the following 
common presentation of the group Tr(R3 - K) of the clover-leaf knot: 

(x,y : xyx = yxy). 

(4.3) Figure-eight knot (Figure 42). Figure 42 shows a different projection 

Figure 42 

of the figure-eight knot from the ones given in Figures 4 and 7 of Chapter I. 
Using either a piece of string or a pencil and paper, one can easily show that 
the knot type represented below is the same. A Wirtinger presentation is 

(x,y,z,w : x = z-lwz, Y = wxw-l, z = x-1yx). 

Substituting z = x-1yx in the other two relations, we obtain 

Tr(R3 - K) = I x,y,w : x = x-1y-1xwx-1yx, Y = wxw-11. 

The first relation now gives w = x-1yxy-1x. Substitution in the second yields 

Finally, 
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(4.4) Three-lead fonr b£ght Turk's head knot (Figure 43). 2 

• "~I I"~ 
Xl Xl X4 X 1- 1 

x a x 2 x a- 1 
Xa 

• 

X2 X I Xii 

Figure 43 

7T(R3 - ]{) = I XVX2,X3'X4 Xi = (Xi+3X.i-:-~2Xi-:;\)(Xi+2Xi+1Xi+12)(Xi+3Xi+2Xi-+13)' 

i = 1, ... ,5, ... ,4 I 

We recall that the element [a,b] is the commntator, [a,b] = aba-1b-1. Notice 
that [a,b]-l = [b,a]. 

5. Existence of nontrivial knot types. We are now in a position to prove 
that different knot types exist. We shall prove that the clover-leaf knot 
cannot be untied, i.e., that its type is different from that of the trivial knot. 
We recall that if knots ]{ and]{1 are of the same type, then the complementary 
spaces R3 - ]{ and R3 - ]{I are homeomorphic and hence 7T(R3 - ]{) and 
7T(R3 - ]{I) are isomorphic fundamental groups. The fact that knots of the 
same type have isomorphic gronps is the principle by which we shall distinguish 
knot types in this book. The nontriviality of the clover-leaf knot will be 
established by proving that its group I x,y : xyx = yxy I is not infinite cyclic 
(cf. (4.1) and (4.2)). For this purpose, consider the symmetric group S3 of 
degree 3, which is generated by the cycles (12) and (23). We observe, first of 
all, that S3 is not abelian since 

(12)(23) = (132) =F (123) = (23)(12). 

2 Indices are mod 4; thus, X 3+ 2 = Xl> etc. 
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The over presentation (4.2) of the clover-Ieaflmot consists of a homomorphism 
r/> of the free group F, for which x and y constitute a free basis, onto the knot 
group, and the kernel of r/> is the consequence of xyx(yxy)-l. The homo
morphism 8 of F onto S3 defined by 

8(x) = (12) 8(y) = (23), 

induces a homomorphism of the knot group onto S3 provided 8(xyx) = 8(yxy). 
But 

8(xyx) = 8(x) 8(y) 8(x) = (12)(23)(12) = (13), 

8(yxy) = 8(y) 8(x) 8(y) = (23)(12)(23) = (13). 

Thus, the knot group of the clover-leaf knot can be mapped homomorphically 
onto a nonabelian group. It follows that the knot group itself is nonabelian, 
and hence it is certainly not infinite cyclic. We conclude that the clover-leaf 
knot cannot be untied. 

Likewise, in order to prove that the clover-leaf is distinct from the figure
eight knot, it is sufficient to show that their groups are not isomorphic. These 
groups are presented in (4.2) and (4.3). Unfortunately, there is no general 
procedure for determining whether or not two presentations determine iso
morphic groups. We do know, from the Tietze theorem, that if two groups are 
isomorphic, their finite presentations are related by the Tietze operations. 
However, attempting to show directly that the presentations given in (4.2) 
and (4.3) are not related by Tietze operations does not seem a potentially easy 
job.3 What is needed are some standard procedures for deriving from a group 
presentation some easily calculable algebraic quantities which are the same 
for isomorphic groups and hence are so-called group invariants. That is, the 
group of a knot type is usually too complicated an invariant, and so we must 
pass to one that is simpler and easier to handle. In so doing there is a danger 
of throwing the baby away with the bath water. In passing to simpler in
variants one invariably loses some information. What \ye want to do is to 
achieve readily distinguishable invariants which are still fine enough to 
distinguish the groups of at least a large number of different knots. The next 
two chapters are devoted to just this problem. 

3 Actually, the clover·leaf (group G) and the figure·eight lmot (group G') can be 
distinguished by the same method we used in demonstrating the nontriviality of the 
clover· leaf. If G "" G', there must exist a homomorphism ~ mapping G' onto the symmet
ric group 8 3 , Using the presentation G' = Ix,y : yx-1yxy-l = x-1yxy-1xl, and by sinlply ex
hausting the finite number of possibilities, one can check that no assignment of x and y 
into 8 3 extends to a homomorphism of G' onto 8 3 , (However this does not show that the 
figure. eight knot cannot be untied, although this will be shown true in Chapter VIII.) 
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EXERCISES 

1. For each of the following knots find a presentation of the group of the 
knot that has just two generators. 

(a) (b) ( C) Stevedore' s knot 

(d) (e) 

Figure 44 

2. For each of the five knots considered in Exercise I, determine the 
representations into the symmetric group of degree 3. 

3. A torus knot Kp,q of type p,q (where p and q are relatively prime 
integers) is a curve on the surface of the "unknotted" torus (r - 2)2 + Z2 = I 
that cuts a meridian in p points and a longitude in q points. It is represented 
by the equation r = 2 + cos (q8jp) , z = sin (q8jp). By dividing R3 - K 
into the part not interior to the torus and the part not exterior to it and 
applying van Kampen's theorem, prove that a presentation of the group of 
Kp,q is (a,b : a P = b q). 

4. (a) Show geometrically that the clover-leaf knot is the torus knot K 2,3' 

(b) Draw a picture of the torus knot K 2,5' 

5. Prove that the presentation of the group of the clover-leaf knot derived 
in (4.2) is of the same type as (a,b : a2 = b3 ). 

6. Let us say that a knot diagram has property l if it is possible to color the 
projected overpasses in three colors, assigning a color to each edge in such a 
way that (a) the three overpasses that meet at a crossing are either all colored 
the same or are all colored differently; (b) all three colors are actually used. 
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Show that a diagram of a knot K has property l if and only if the group of 
K can be mapped homomorphically onto the symmetric group of degree 3. 

7. Show that property l is equivalent to the following: It is possible to 
assign an integer to each edge in such a way that the sum of the three edges 
that meet at any crossing is divisible by 3. 

8. Show that no knot group can be represented upon the fundamental 
group of the Klein bottle. 

9. Using the fact that. the group G of the overhand knot has a presentation 
(a,b : a2 = b3) find all (classes of) representations of G onto the alternating 
group A5 of degree 5. 



CHAPTER VII 

The Free Calculus and the Elementary Ideals 

Introduction. In the last chapter a method was developed for calculating 
a presentation of the group of any knot in regular position. Unfortunately, it 
does not follow, as was pointed out, that it is now a simple matter to distin
guish knot groups, and thus knot types. There is no general algorithm for 
deciding whether or not two presentations define isomorphic groups, and even 
in particular examples the problem can be difficult. We are therefore con
cerned with deriving some powerful, yet effectively calculable, invariants of 
group presentation type. Such are the elementary ideals. In this chapter we 
shall study the necessary algebraic machinery for defining these invariants. 
Specialization to presentations of knot groups in Chapter VIII then leads 
naturally to the knot polynomials. With these invariants we can easily dis
tinguish many knot types. 

1. The group ring. With any multiplicative group G there is associated its 
group ring JG with respect to the ring J of integers. The elements of JG are 
the mappings v: G -+ J which satisfy v(g) = 0 except for at most a finite 
number of g E G. Addition and multiplication in JG are defined respectively 
by 

(VI + vz)g = vlg + v2g 

(VI v2)g = 2(vIh)(v2h-l g) 
kEG 

for any VI' v2 E JG and g E G. It is a straightforward matter to verify that JG 
is a ring with respect to these two operations. Multiplication by an integer 
n, which is defined in any ring, satisfies the equation 

(nv)g = n(vg) 

for any V EJG and g E G. 
There exists a mapping G -+ JG which assigns to each g E G the fUIlction 

g* defined by 

g*(h) = {Ol if h = g, 
otherwise. 

This mapping is one-one and product-preserving. Since the image of any 

94 



Sect. 1 THE GROUP RING 95 

product-preserving mapping of a group into a ring is a group, we conclude 
that the mapping g ~ g* is a group isomorphism of G onto its image. Where 
e E G denotes the identity, the element e* is a nonzero multiplicative identity 
for the ring J G. 

Let'JI be an arbitrary nonzero element of JG. Let gl' ... , gk' k ;:::0: 1, be the 
elements of G for which 'JI(g.J oF ° and let 

·i = 1,"', k. 
Then 

'JI = n 1(11* + ... + nkgk*. 

That is, the image of G under the mapping g -+ g* generates the additive 
group JG. Henceforth we identify g and g* and write elements of JG as finite 
integral combinations of elements of G. It then becomes obvious, for example, 
that 

(1.1) JG is a commutative ring if and only if G is a commutative group. 

It is trivial to prove that if n 1g1 + ... + nkgk = 0 and gl' ... ,gk are 
distinct, then n 1 = ... = nk = 0. It follows that a nonzero element of JG 
can be written as a finite sum of distinct group elements with nonzero 
coefficients in one and only one way. This fact implies that, as an additive 
group, JG satisfies the analogue of the characteristic property of free groups 
that was discussed in Chapter III: 

(1.2) An arbitrary mapping ¢ of G into an additive abelian group A has a 
uniq1te extension to an additive homomorphism ¢: J G -+ A. Moreover, if A is a 
ring and ¢ preserves products on G, the extension is a ring homomorphism. 

Proof. Set ¢O = O. Every nonzero element of JG has a unique expression 
n 1g1 + ... + nkgk where n i oF 0, i = 1, ... , k, and rJl' ... , gk are distinct. 
To obtain the extension, we define 

Next, we observe that if this equation holds under the imposed conditions, 
it also holds for arbitrary integers n1, ••• , nk and group elements gl' ... , gk' 
But then, ¢ is trivially addition-preserving. Since any extension of ¢ to an 
additive homomorphism JG -+ A must satisfy this equation, the uniqueness 
of the extension is assured. Finally, if A is a ring and ¢ is product-preserving 
in G, 

¢('2,nigi2,n/g/) = cP(2,nin/gig/) 
'i j 'U 

= (cP2,n ig;)(cP2,n/g/), 
and the proof is complete. i 

As an additive group, therefore, JG is free abelian and the subset G is a 
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basis. (Cf. Section 5, Chapter IV.) Another corollary of (1.2) is 

(1.3) Every group hmnomorphl:sm rp: G -+ G' has a unique extension to a 
ring homomorphism rp: J G -+ J G'. 

Notice that if anyone of the restrictions; (i) rp is the identity mapping; 
(ii) rp is onto; (iii) rp is one-one, is satisfied by the group homomorphism 
rp: G -+ G', then it also holds for the ring homomorphism rp: J G -+ J G'. 

Two homomorphisms defined on the group ring of every group come up 
sufficiently often to warrant special mention and notation. The first ofthese is 
the abelianizer, which was introduced in Section 4 of Chapter IV as the 
canonical homomorphism of a group onto its commutator quotient group. 
By the abelianizer we shall now mean either the group homomorphism 
a: G -+ G/[G,GJ, as before, or its unique extension on the group rings. The 
second homomorphism is the trivializer. For any group G consider the mapping 
t: G -+ J defined by t(g) = 1, for all g E G. The trivializer is the unique 
extension of t to the ring homomorphism t: J G -+ J. Clearly, 

t(~:nigi) = Lni • 
i i 

We conclude this section with the observation that the mapping J -+ JG 
defined by n -+ ne, where e EGis the identity, is a ring isomorphism. Hence, 
both G and J are considered as subsets of the group ring JG. 

2. The free calculus. By a derivative in a group ring JG will be meant any 
mapping D: JG->JG which satisfies 

(2.1 ) 

(2.2) 

D(VI + v2 ) = DVI + Dv2 , 

D(VIv2) = (Dv l )t(V2 ) + vl Dv2 , 

where t is the trivializer and VI' V2 E JG. For elements of G, (2.2) takes the 
simpler form 

(2.3) 

In fact, in view of (1.2), a derivative may be defined as the unique linear 
extension toJG of any mapping D of G intoJG which satisfies (2.3). Obviously, 
the constant mapping of JG onto the element 0 is a derivative. The question 
of whether or not nontrivial derivatives always exist in an arbitrary group 
ring is settled by the observation that the mapping g -+ g - 1, for any g E G, 
determines a derivative. Moreover, if D and D' are two derivatives in JG and 
va E JG is an arbitrary element, it is easy to check that the mappings D + D' 
and D 0 va defined respectively by 

(2.4) (D + D')v = Dv + D'V} 
v EJG 

(D 0 va)v = (Dv)va 

are also derivatives in JG. 
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It is worthwhile to note some of the consequences of the axioms for a 
derivative: 

(2.5) 

(2.6) 

(2.7) 

DC'i:.nigi) = 'i:.niDgi· 

Dn = 0, for any integer n. 

Dg-l = -g-lDg, for any g EO G. 

The first follows from the fact that D is an additive homomorphism. Since 
Dl = D(l·l) = Dl + D1, we conclude that D1 = ° and, more generally, 
that (2.6) holds. Lastly, the equations ° = D(g-l g) = Dg-l + g-l Dg estab
lish (2.7). It is useful to define, for any g EO G and integer n, the group ring 
element 

It follows that 

(2.8) 
gn _ 1 

Dgn = -- Dg. 
g-l 

ifn = 0, 

ifn > 0, 

if n < 0. 

The proof is by induction on the absolute value of n. For n = 0, +1, -1, 
the assertion reduces respectively to Dl = 0, Dg = Dg, and Dg-l = _g-l Dg. 
Next assume I n I > l. If n is positive, (2.3) and the hypothesis of induction 
yield 

Similarly, for negative n, 

n-1 
= L gi Dg + gn Dg 

i~O 

gn+1 _ 1 
------ Dg. g-l 

Dgn-l = Dgn + gn Dg-1 

and the proof is complete. 

-1 
= - L gi Dg - gn-1 Dg 

i=n 

gn-l _ 1 
---Dg, 

g - 1 

Another consequence of the axioms is the fact that any derivative is 
uniquely determined by its values on any generating subset of G. 

Although we have introduced the notion of a derivative in an arbitrary 
group ring, we are here really interested in, and henceforth shall confine our 
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attention to, derivatives in the group ring of a free group (hence the title of 
this section). Suppose F is a free group with a free basis of elements xl' x2' •••• 

An arbitrary element of the group ring J F is a finite sum of finite products of 
powers of these x's, and it is natural to think of such elements as polynomials 
in the variables Xl' X 2' •••. Of course they are not true polynomials since 
negative powers may occur and, what is more important, the variables do not 
commute. Nevertheless, an element of J F will be called a free polynomial and 
will be denoted generically asf(x) = 2:.niu i, u i E F. The action of the trivial
izer t on a free polynomial is indicated by writing tf(x) = f(l). 

(2.9) To each free generator Xj there corresponds a uniq1le derivative 

D j = %xj 

in J F, called the derivative with respect to Xj' which has the property 

ox. 
~ = Oij (Kronecker delta). 
UXj 

Proof. Since the values of the derivative 0/ OXj are specified on a genera t
ing subset of F, uniqueness is automatic. In order to prove existence, we 
consider an arbitrary set A of elements al> a2 , ••• in one-one correspondence 
with xl> x2, ••• under the assignment f)ai = Xi' From the results of Chapter 
III we know that f) extends to a product-preserving mapping ofthe semi-group 
W(A) of words onto the group F under which equivalent words in W(A) map 
onto the same group element in F. We propose to define, for each Xj' a map
ping A j : W(A) --+ J F which will induce the derivative %xj • The definition 
is by induction on the number of syllables in a word and is given by 

(*) [

Ajl = 0 (where 1 denotes the empty word), 

x.n -1 
Ap,t = ' Oil' 

Xi - 1 

AJ(a,na) = A,a,n + x,nAja, a E W(A). 

The reason for retreating to the semi-group W(A) for the basic definition 
should be clear. With the absence of any cancellation law in W(A), the 
function Aj is unambiguously defined by (*). We contend that 

(**) a,b E W(A). 

The proof is by induction on the number of syllables in abo If a is the empty 
word, the result holds trivially; so we assume that a contains at least one 
syllable. Hence, a = ainc and by (*) 

Aj(ab) = Aj(atcb) = Apt+ xtAj(cb). 

By the hypothesis of induction, therefore, 

Aj(ab) = Apt + x/'Ajc + xinf)c· Ajb = Ap + f)a· Ajb. 
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We next assert that if two words are equivalent, then their images under Aj 
are equal. The proof amounts to verifying 

Aj(aaiOb) = Aj(ab), 

Aiaa;:+nb) = Aj(aaimainb). 

With (**) available, these identities follow easily. For the first, we have 

Aj(aaiOb) = Aj(aaiO) + 8(aaiO) . Ajb 

= Ap + 8a ·Ajb 

= Aj(ab). 

For the second, we note first that 

Thus, Ap;:+n = Aj(aimat); hence, 

Aj(aa;:+nb) = Aj(aa;:+n) + 8(aa;:+n) . Ajb 

= j\p + ea· Aj(aimat) + e(aaimain) . Ajb 

= Aj(aaimatb), 

and the assertion is proved. The mapping ojOXj: F -+JF is now defined by 

(***) 
a 

::l 8a = Ap, 
UXj 

for any a E W(A). 

The function ojOXj is well-defined because 8 is onto and because if ea = eb, 
then a and b are equivalent words and so Aja = Ajb. (Notice that the proof 
that Aj depends only on equivalence classes of words depends on the fact that 
the same is true of e.) It follows immediately from (***) that oxdoxj = oij" 
To check that ojOXj determines a derivative in JF, we have only to verify 
Axiom (2.3): For any u = 8a and v = 8b in F, 

a a a a 
":lx. (uv) = ":lx. 8(ab) = A.(ab) = A.a + uA.b = - u + u - v, 
U 3 U 3 3 3 3 OXj OXj 

and the proof of (2.9) is complete. 

The preceding theorem is a remarkable result in that it reveals the entire 
structure of the set of derivatives in a free group ring. This assertion is 
formulated explicitly in the following important corollary: 

(2.10) FOT any fTee polynomials h1(x), h2(x), ... , theTe is one and only one 
deTivative D in JF such that DXj = hj(x), j = 1,2,···. MOTeoveT, fOT any 

f(x) EJF, 
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Proof. Again, uniqueness is automatic. It should next be checked that the 
above sum is a finite one. We leave it to the reader to prove that if the 

. . of (x) 
generator Xj does not occur ~n the free polynomwl f(x), then -0-- = O. (cf. 

Exercise 5). It then follows that the mappingf(x) ->-.L of h;(xtts a deriva
j OXj 

tive in JF (cf. (2.4)) with the desired property, and the proof is complete. 

We have already remarked that the mapping f(x) ->- f(x) - f(1) is a 
derivative in J F. As a corollary of (2.10), we thus obtain the fundamental 
formula 

(2.11) 
of 

f(x) - f(1) = t OXj (x; - 1). 

It follows that a free polynomial is determined by its derivatives and its value 
at 1. The analogy with the familiar law of the mean is obvious and is 
also capable of further interesting generalization. 

3. The Alexander matrix. The free calculus is the principal mathematical 
tool in our construction of useful invariants of group presentation types. 
Consider a group presentation (x : r). The set X = (xv X 2' ••• ) is a free basis of 
the free group F, and the group of the presentation is the factor group 

Ix:rl=F/R~F 

where R is the consequence of r = (r1' r 2, ... ) and y is the canonical homo
morphism. Both y and the abelianizer 0 possess unique extensions to homo
morphisms of their respective group rings. Denoting the abelianized group of 
I X : r I by H, we thus have the composition 

() 

~o Y a 
JF ~JF ---+J I x: r I---+JH. 

The Alexander matrix of (x: r) is the matrix II ail II defined by the formula 

(oro) 
ail = oy ox: . 

The effect of oy on ori/ox; is an immense simplification. The homomorphism 
y carries elements of J F into JI x : r I where every consequence of r equals 1. 
Even more important is the fact that 0 then takes everything into a com
mutative ring. In a commutative ring one can define determinants, and 
furthermore, for knot groups, JH is particularly simple. 

It should be remarked that the definition of the Alexander matrix assumes 
an ordering of the generators and relators whereas the original definition of a 
group presentation in Chapter IV did not. This is true but unimportant. We 
shall see in the next section that two matrices which differ only by a permu-
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tation of the rows or of the columns are considered equivalent anyway. The 
additional property of order could, of course, have been ascribed to group 
presentations in the first place. It is, however, (for us) an inessential feature 
and the definition seems simpler ,vithout it. 

4. The elementary ideals. Let R be an arbitrary commutative ring with a 
nonzero multiplicative identity 1, and consider an m (row) X n (colunm) 
matrix A with entries in R. For any non-negative integer k, we define the 
kth elementary ideal Ek(A) of A as follows: 

If ° < n - k :s;; m, then Ek(A) is the ideal generated by the determinants of 
all (n - k) X (n - k) submatrices of A. 

Ifn - k > m, then Ek(A) = 0. 
Ifn - k sO, then Ek(A) = R. 

Since the determinant of any matrix can be expanded as a combination of 
the cofactors of the elements of any row or column, we have immediately 

(4.1) The elementary ideals of A form an ascending chain 

If A and A' are two matrices with entries in R, we define A to be equivalent 
to A', denoted A r--> A', if there exists a finite sequence of matrices 

A = AI"'" An = A', 

such that Ai+l is obtained from Ai' or vice-versa, by one of the following 
operations: 

(i) Permuting rows 01' peTmuting columns. 

(ii) Adjoining a TOW of zeTOS, A --+ II ~ II· 
(iii) Adding to a TOW a linear combination of otheT TOWS. 
(iv) Adding to a column a lineaT combination of otheT columns. 
(v) Adjoining a new row and column such that the entTy in the intersection 

of the new TOW and column is 1, and the remaining entries in the new TOW and 

column are all 0, A --+ II ~ ~ II· 
lt is not hard to show that a matrix A is equivalent to the matrix obtained 

from A by adjoining a new row and column such that the entry in the inter
section of the new row and column is 1, the remaining entries in the new 
column are all 0, and the remaining entries in the new row are arbitrary. 
Hence, (v) may be replaced by the stronger 
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The proof of this assertion is obtained in one application of (v) and n applica
tions of (iv), where n is the number of columns in A. Thus, 

The present definition of matrix equivalence differs from the one we usually 
encounter in linear algebra most notably in respect to (ii) and (v). The familiar 
operations of multiplication of a row and of a column by a unit e ofthe ring R, 
however, still preserve equivalence. They may be accomplished as follows: 

II~II~ 
A A A A ~II~II. (vi) 

(iii) (i) (iii) 
a ~ a ~ ea ~ ea 
0 ea a a -e-1 ea 

(vii) II A a II ~ II ~ _:-1 ~ /I ~ II ~ ~e-l ~ II 

~II~ ea _:-III~II~ ea _~-111 0 0 

~II~ ea ~II ~IIA eal/. 0 

It should also be observed that matrix equivalence, as we have defined it, is 
trivially reflexive, symmetric, and transitive. That is, it is a true equivalence 
relation. 

(4.2) Equivalent matrices define the same chain of elementary ideals. 

Proof. The proof depends on the well-known elementary facts of deter
minant manipulation. Incidentally, these are purely combinatorial in nature 
and hold in any commutative ring. We must prove that Ek(A) = Ek(A') 
where A' is obtained from A by anyone of the above operations (i), ... , (v). 
For (i), (iii), and (iv), the result is immediate. For example, consider (iii): Any 
generator of Ek(A') is either already a generator of Ek(A) or, by expansion by 
the minors of a row, is a linear combination of generators of Ek(A). The same 
expansion shows, that the converse proposition is valid. 

Next, consider operation (ii): Since n = n' and m' = m + 1, we see that 
if 0 < n - k ::;; m, then 0 < n' - k ::;; m', and in this range we have 
Ek(A) = Ek(A'). The only other possibility that is not definitionally im
mediate is n - k = m'. In this case, Ek(A) = 0 follows trivially and Ek(A') is 
generated by the determinants of the m' X m' sub matrices of A'. Since the 
last row of each of these submatrices contains all zeros, Ek(A') = 0 holds as 
well. 

Finally, we must check operation (v). Here n' = n + 1 and m' = m + 1. 
If n - k > m, then n' - k = (n + 1) - k > m + 1 = m' and the 
identities Ek(A) = Ek(A') = 0 are immediate. If n - k ::;; 0, then 
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n' - k ::;;: 1. In this case, Ek(A) = R follows trivially, and the same is true 
for A' except when n' - k = 1. But En'_l(A') is the ideal generated by the 
elements of A'. Since one of these elements is 1, we conclude En'_l(A') = R. 
The remaining range is 0 < n - k ::;;: m. Any (n - k) X (n - k) sub
matrix of A can be enlarged to an (n' - k) X (n' k) submatrix of A' by 
adjoining appropriate elements of the new row and column of A' including 
thereby the element 1 in the intersection. Expansion by the minors of the new 
column shows that the determinants of these two submatrices are equal, 
except possibly for sign. Thus, Ek(A) C Ek(A'). Conversely, consider any 
(n' - k) X (n' - k) sub matrix of A' whose rows mayor may not include the 
new row of A' (note n' - k ;:::: 2). If they do, expansion by minors of the 
row shows that its determinant is a generator of Ek(A) and, consequently, 
belongs to Ek(A). If its rows do not include the new row of A', its determinant 
belongs to Ek-1(A), which by (4.1) is contained in Ek(A). We conclude that, 
under operation (v), Ek(A) :::> Ek(A'), and the proof is complete. 

Consider an arbitrary ring homomorphism cp: R ->- R' where Rand R' are 
any two commutative rings containing multiplicative identities. If A = II aij II 
is a matrix with entries in R, we define the image matrix 

cpA = II cp(aiJ) II· 
A useful result is 

(4.3) If cp is onto, then CPEk(A) = Ek(cpA). 

Pmoj. Of course, cp(O) = 0 automatically; but the equation cpR = R', 
which is needed if n - k ::;;: 0, is just the hypothesis that cp is onto. Ob
viously, the image of the set of determinants of all (n - k) X (n - k) sub
matrices of A equals the set of all determinants of all (n - k) X (n - k) 
submatrices of cpA. Thus, we have only to ask whether the image of an ideal 
generated by a set of elements av ... , aT in R is the ideal generated by the 
images cp(a1 ), ••• , cp(a r ) in R'. The answer is easily seen to be yes; but, again, 
only if cp is onto. 

For any finite group presentation (x : r) and non-negative integer k, we 
define the kth elementary ideal of (x : r) to be the kth elementary ideal of the 
Alexander matrix of (x : r). By virtue of (4.2), of course, the elementary ideals 
of a presentation may be calculated from any matrix equivalent to the 
Alexander matrix. In any specific example one naturally uses the simplest 
matrix one can find. 

The elementary ideals, defined for any finite group presentation, represent 
a generalization of the knot polynomials which we shall define in the next 
chapter for presentations of knot groups. There are several reasons for 
introducing the ideals before the polynomials. First of all, whereas the ideals 
are defined for arbitrary finitely presented groups, the polynomials exist and 
are unique only for a more restricted class of groups satisfying certain 
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algebraic conditions. In the next chapter we shall discuss these conditions 
and show that any tame knot group satisfies them. Furthermore, it is, if 
anything, easier to prove the invariance of the ideals than of the polynomials. 
Since the latter can be characterized in terms of the former, we can kill two 
birds with one stone. Finally, even where the polynomials do exist, the ideals 
contain more information. We shall exhibit two knots in Chapter VIII which 
are not distinguishable by their polynomials, but which do have different 
elementary ideals. 

The immediate problem is to prove that the elementary ideals of a finite 
presentation are invariants of the type ofthe presentation. The proof is based 
on the Tietze theorem, which reduces the problem to checking the invariance 
of the ideals under Tietze operations I and H. The essential part of the proof, 
therefore, is simply examining the effect on the Alexander matrices of each 
of these operations. For a clear understanding of the formulation of the 
invariance theorem which appears below, the reader may wish to review 
the basic definitions and results on presentation mappings and the Tietze 
theorem in Chapter IV. 

If f: (x: r) ---+ (y : s) is an arbitrary presentation mapping, there is induced 
a homomorphismf*: [x: r [---+ [y : S [ on the groups of the presentations. This 
mapping in turn induces a homomorphism f ** of the abelianized group of 
[ x : r [ into that of [ y : S [ (cf. (4.1), ChapterIV). If (x : r) and (y : s) are known 

to be of the same type, there exists a presentation equivalence (x : r) ~ 
{f 

(y : s) ---+ (x : r) and 
identity = (jrJ)* = f *rJ*, 

identity = (f *rJ*)* = f **rJ**· 

Similarly, rJ**f** is the identity. Thus, 

(4.4) If the pair f, rJ is a presentation equivalence, then each of f** and rJ** 
is an isomorphism onto and the inverse of the other. 

Notice that the same conclusion holds for the extensions off** and rJ** to 
their respective ring homomorphisms on the appropriate group rings. 

We recall that if the pair of mappings f,rJ is a presentation equivalence, 
then each of f and rJ may be called a presentation equivalence separately. To 
speak of one alone, however, always implies the existence of a mate. The 
statement that the elementary ideals of a finite group presentation are 
invariants of the presentation type is the following theorem: 

(4.5) THE INVARIANCE OF THE ELEMENTARY IDEALS. If (x: r) and (y : s) 
are finite rJroup presentations and 

f: (x: r) ---+ (y : s) 

is a presentation equivalence, then the kth elementary ideal of (x : r) is mapped 
by f** onto the kth elementary ideal of (y : s). 
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Proof. As a result of the Tietze theorem, the proof immediately reduces to 
checking only the Tietze equivalences I, I', II, and II'. Also observe that, 
in view of (4.4), if (4.5) holds for one member of a pair of presentation equi
valences, it holds automatically for the other. So we need check only Tietze 
I and II. 

Tietze I. This is the presentation mapping 

I 
(x : r) --+ (x : r U 8), 

where x = (Xl' ... , xn), r = (rl> ... , rm), the element 8 is a consequence ofr, 
and I: F(x) -+ F(x) is the identity mapping. It follows that 1* and 1** are 
also identities. Hence, the argument is completed by simply showing that 
(x : r) and (x : r U 8) have equivalent Alexander matrices. Since 8 is a con
sequence of r, we have 

But since 

However, 

and 

Hence, 

Thus, the Alexander matrix of (x : r U 8) is like that of (x : r) exceptfor having 
one additional row which is a linear combination ofthe other rows. So the two 
matrices are equivalent and the first part of the proof is complete. 
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Tietze IT. This is the presentation mapping 

II 
(x : r) ---+ (x U y : r U y~-l), 

Chap. VII 

where x = (xl' ... , Xn), r = (rv ... , r m) C F(x), ~ E F(x), y is a member of 
the underlying set of generators not contained in x, and IT: F(x) -+ F(x,y) is 
the inclusion mapping. Setting 

G = I x: r I, and G' = I XU Y : r U y~-ll , 

and H and H' equal to the abelianized groups of G and G' respectively, we 
have the following array of homomorphisms: 

II 
JF(x) ---+JF(x U y) 

y t Y'~ 
JG~JG' 
a~ a'~ 

y'll = IT*y, 
a'IT* = IT**a. 

JH~JH' 
We denote the Alexander matrices of (x: r) and 
A = II aij II and A' = II a i / II , respectively. Then 

(or.) 
aij = ay ::lx:. ' 

U , j = 1, ... , n, 
i = 1,"', m, 

and 

Clearly, 

(x U Y : r U y~-l) by 

Or. 
Oy' = 0, and 

o 
oy (y~-l) = 1. 

So, if we denote the row of elements 

a'y' (~y~-l), j = 1,' .. ,n, by a', we have 
OXj 

A' = II II:~A ~ II· 
Hence, by matrix operation (Vi) of page 101, 

A' ,.....,IT**A. 

It follows from (4.2) and (4.3) that 

E/c(A') = E/c(IT**A) = 1I**E/c(A), 

and the proof of the invariance theorem is complete. 
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A characteristic of the techniques of Chapter IV and of our approach to the 
Alexander matrix and the elementary ideals in this chapter has been the 
construction of a theory of group presentations independent of the particular 
groups from which the presentations may have come (e.g., in knot theory 
from the fundamental groups). Thus, we have defined both the Alexander 
matrix and the elementary ideals of a presentation rather than of a presentation 
of a group G. Similarly, the Tietze theorem asserts the existence of a factoriza
tion of presentation mappings; it is not given as a statement a bout presen
tations of the same group. We feel that the style which we have adopted is not 
only conceptually simpler but also corresponds more exactly to the actual 
computation of examples in knot theory. The alternative approach, however, 
is easily described: Consider a presentation 

(x : r),p 

of a gro1;lp G. The Alexander matrix is defined to be the matrix II aij II of 
elements 

(0 is, of course, the abelianizer of G), and the elementary ideals are those of 
this matrix. The invariance theorem then becomes 

(4.6) The elementary ideals are invariants of any finitely presented group G, 

i.e., any two finite presentations of G have the same chain of ideals. 

A proof of (4.6) from (4.5) is a simple exercise involving only the most basic 
properties of homomorphisms and factor groups. 

EXERCISES 

1. In the group ring of the free group F(x,y,z) calculate the following 
derivatives: 

o 0 
(a) ox (xyz2x-Iy-IZ-2), (b) OZ (xyz2x-Iy-IZ-2), 

o 0 
(c) ox [xm,y], (d) ox [x,yr, 

o 0 
(e) ox [xm,y]n, (f) oy [[x,ym],yn]. 

2. Prove that if F is a free group with free basis (xl> x2' ••• ) and if there 
n 

exist finitely many elements aI' ... , an in J F such that L ai(xi - 1) = 0, 
thena1.="'=qn=O. i~1 

3. If gl> g2' ... generate G, show directly that for any'}! EO JG thcre exists a 
n 

finite set of elements VI' ••. , Vn in JG such that'}! - tv = L vi(gj. - 1). 
(For example, gIg2 - 1 = gl(g2 - 1) + (gi - 1).) i~I' 
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4. One cannot help feeling that our proof of Theorem (2.9) is not quite as 
good as it might be because it relies essentially on the structure of the free 
group as it is derived from the semi- group of words. Is it not, after all, possible 
to give an elegant proof of (2.9) based on the definition of a free group as a 
group that has a free basis? For example a possible approach would be to 
prove Exercise 2 above independently of the existence of a/axj and then to 
combine this result with Exercise 3. Thus from Exercise 3 we getf(x) - f(l) 
= Laj(xj - 1) for some aj E J F. If one knew that the elements a j were 

uni~uely determined by f(x), one could simply define if to be aj' Wrestle 
with this a bit! Xj 

5. Using only (2.1), (2.2), and (2.9), prove that if the generator Xj does not 

occur in the free polynomialf(x), then af = O. Note that this is a problem aXj 

about elements of a free group, not about words. 

6. Calculate the derivatives of tv = [[a,b ],[c,d]]. What would be the effect 
on the Alexander matrix of adjoining to a presentation the relation tv = I? 

7. Denoting by G' the commutator subgroup of a group G and therefore by 
G" the commutator subgroup of G', discuss the relationship between the 
Alexander matrices of G and of G/G". 

S. By constructing the chain of elementary ideals, give another proof of 
the fact that the free groups of distinct finite ranles m and n are not 
isomorphic. 

9. Suppose e maps a group G1 homomorphically onto a group G2 in such a 
way that its kernel is contained in the commutator subgroup G1' of G1. Prove 
that the induced homomorphism e* of Gl/Gl ' onto G2/G2' is an isomorphism, 
and that, for each d, Ed(Gl ) is contained in Ed(G2 ). (Ed(G) is the dth ideal of 
the Alexander matrix of any of the presentations of G.) 

10. Calculate the chain of elementary ideals for the free abelian group of 
rank n, and conclude that, for n > 1, the free group of rank n is not abelian. 

11. Calculate the chain of elementary ideals for: 
(a) The fundamental group of a Klein bottle 1 a,b : aba-lb = 1 I; 
(b) The group 1 a,b : b2 = 1 I; 
(c) The group 1 a,b : b2 = 1, ab = ba 1 ; 

and use the result to show that these groups are not isomorphic. 

12. Calculate the chain of elementary ideals for the meta cyclic group 
1 a,x : aP = 1, x p - l = 1, xax-1 = ak I, where p is an odd prime and k is a 
primitive root modulo p (see the index for a definition of this term). Deduce 
that this group is not abelian. 

13. Calculate the chain of elementary ideals for the fundamental group of 
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h 

the orientable surface of genus h,1 aI' bl , ... , ah , bh : II [ai,b i ] = 1 I, and 
i=l 

deduce that if h ::2: 2 this group is neither free nor abelian. 
14. Calculate the chain of elementary ideals for 1 X,Y : (xy)n = (yx)n I, 

and deduce that, for n ::2: 2, this group is neither free nor abelian. 

15. Calculate the chain of elementary ideals for the group 

1 x,y,z : [[y-l,x],z] = [[Z-l,y],X] = [[x-l,z],y] = 1 I, 

and deduce that this group is neither free nor abelian. 

16. Calculate the chain of elementary ideals for the braid groupsi 

1

0'1' ..• , O'n : O'iO'i+lO'i = O'HIO';O'HI (i ~ 1, .... , n - 1),\ 
O'iO'j = O'jO'i' 1 t - J 1 oF 1 . 

17. Prove that if the free group of rank n can be mapped homomorphically 
onto a group G then En(G) = (1). 

18. Given any finite set of integral polynomials fI(t), ... ,fn(t) such that 
(f1(1), ... ,fn(l)) = 1, construct a group G such that GIG' = (t:) and 
EI(G) = (f1(t), ... ,fn(t))· 

1 E. Artin, "The Theory of Braids," American Scientist, Vol. 38, No.1 (1950), pp. 
112-119; F. Bohnenblust, "The AIgebraicaI Braid Group," Annals of JJ,iathematics, Vol. 
48 (1947), pp. 127-136. 



CHAPTER VIn 

The Knot Polynomials 

Introduction. The underlying knot-theoretic structure developed in this 
book is a chain of successively weaker invariants of knot type. The sequence 
of knot polynomials, to which this chapter is devoted, is the last in the chain 

knot type of K 

~ 
presentation type of 7T(R3 - K) 

i 
sequence of elementary ideals 

~ 
sequence of knot polynomials. 

The only complete invariant is the first, i.e., the knot type itself. It is complete 
for the not very profound reason that two knots are of the same type if and 
only if they are of the same type. If we stop here, we have a definition but no 
theory. For all we know, all knots are equivalent. The next step is the major 
advance. The theorem that knots of the same type possess isomorphic groups 
reduces the topological problem to a purely algebraic one. The remaining 
invariants are aimed at the very difficult problem of recognizing when two 
presentations present nonisomorphic groups. It is important to realize that 
at each step in the chain information is lost. In fact, for each invariant, we 
have given at the end of this chapter a pair of knots whose type is distinguished 
by that invariant but not by the succeeding one. The compensating gain is in 
the decision problem, i.e., the question of recognizing whether two values of 
an invariant are the same or different. As we have remarked elsewhere, this 
problem is unsolvable for group presentations in general. For the knot poly
nomials, however, it is a triviality. 

The knot polynomials can be defined in terms of the elementary ideals 
(cf. (3.2)). Unlike the ideals, however, which are defined for all finite presen
tations, the knot polynomials depend for their existence and uniqueness on 
the special algebraic properties of the abelianized group of a knot group. For 
this reason, the first section of this chapter is devoted to proving the theorem 
that the abelianized group of any knot group is infinite cyclic. The second 
section establishes the necessary algebraic properties of the group ring of an 
infinite cyclic group. We then define the knot polynomials, check their 

no 
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existence, uniqueness, and invariance, and study some of their properties. 
The final section contains examples of different khot types distinguished by 
calculation of their polynomials and ideals. It should be emphasized that we 
restrict ourselves throughout to khots whose groups we know possess over 
presentations. Bya knot group, therefore, we mean now a fundamental group 
of the complement of a tame khot. 

1. The abelianized knot group. Our contention is that the abelianized 
group of every knot group is infinite cyclic. The proof is based on consideration 
of the over presentation of a khot group. 

Let G be a knot group and (Xl' ... 'Xn : rv· .. ,r n)", an over presentation of 
G. A typical example of how a relator r i is derived by reading around an 
underpass is shoWD below in Figure 45. (It obviously doesn't really matter, but 

for simplicity we have used the modified over presentation (3.1), Chapter VI, 
instead of (1.1), Chapter Vr.) For any element u in the free group F generated 
by Xv ... ,xn ' we define the jth exponent sum of u to be the sum of the 
exponents of Xj at all occurrences of x; in u. We already have an expression for 

ou 
this quantity; the jth exponent sum of u is the image of - under the 

ox; 
trivialized: J F ~J. Let XK(i) and x}.(i) be the !Senerators corresponding to the 
two overpasses adjacent to the underpass with respect to which r i is defined. 
To be specific, we assume that, with respect to the orientation ofthe khot, the 
overpass corresponding to xK(i) precedes the overpass corresponding to x}'(i). 

The example shown in Figure 45 illustrates the fact that the K(i)th and A(i)th 
exponent sums of ri are respectively +1 and -I whereas the exponent sum 
of r i with respect to any other generator is O. Hence, if e is any homomorphism 
of G into an abelian group, we have 

I = ec/>ri = (ec/>XK(i))(ec/>X}'(i))~I. 

Since every knot projection is connected, we conclude that ec/>x; = ec/>x; for 
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every pair of generators Xi and xi' Thml any element in the image group eG is 
a power of the single element t = ecPxi' j = I, ... , n. We have proved 

(1.1) Every abelian homomorphic image of a knot group is cyclic. Further
more, the generators of any over presentation are all mapped onto a single 
generator. 

In particular, the abelianized group of any knot group is cyclic. It remains 
to prove that it cannot be finite. To prove this, consider again the over 
presentation of G, and denote by (t) an infinite cyclic group generated by t. 
Since F is a free group, the assignment SXi = t, j = I, ... , n can be extended 
to a homomorphism of F onto (t). It is easy to show that there exists 
a homomorphism e of G onto (t) such that the diagram 

F~(t) 

'1/ 
G 

is consistent. For, clearly, 

i = I,···, n, 

where Si is the sum over j of the exponent sums of ri with respect to Xi' We 
have 

Thus, sri = I, i = I, ... , n, and the consequence of r i , ••• , rk , ••• , r n' 

which is the kernel of cP, is contained in the kernel of S. It follows that e is 
well-defined by 

ecP u = Su, uEF. 

Since ~ is onto, so is e. Consider next the abelianizer Q: G --+ G/[G,GJ. We 
recall the important fact that any homomorphism of a group into an abelian 
group can be factored through the commutator quotient group (cf. (4.4), 
Chapter IV). As a result, there exists a homomorphism e' such that the diagram 

B 
G -----+ (t) 

,1/ 
G/[G,G] 

is consistent. Since e is onto, so is e'. A function whose image is infinite cannot 
have a finite domain; so we conclude that G/[G,G] is infinite. Combining this 
result with (1.1), we obtain 

(1.2) The abelianized group of any knot group is infinite cyclic. 
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Another way of arriving at (1.2) is by reducing a presentation by Tietze 
operations. If one begins, for example, with a \Virtinger presentation of G, 

then Gj[G,G] has the presentation (cf. (4.6), Chapter IV) 

which one can then reduce to 

Notice that this approach is based on the theorem (cf. (4.5), Chapter IV) that 
the consequence of the set of commutators [gi,g;], where gl' g2' ... generate 
a group, is the whole commutator subgroup. 

2. The group ring of an infinite cyclic group. A knowledge of some of the 
basic algebraic properties of the group ring of an infinite cyclic group His 
necessary for a proper understanding of the knot polynomials. In this section, 
therefore, we shall review some of the elementary concepts of divisibility in 
rings and integral domains in general and see how they apply to the group ring 
JH. 

Let R be an arbitrary ring having a multiplicative identity 1. An element 
u of R is called a unit if it has a left and a right inverse, i.e., if there exist 
v,w E R such that uv = wu = 1. The associative law implies that 

w = w(uv) = (wu)v = v. 

Hence, an equivalent definition is that a unit is an element having an inverse, 
which, by the same reasoning, must be unique. Since the product of any two 
units is again a unit, it is easy to see that the set of units of R is a multiplicative 
group. For example, the only units of the ring of integers are + 1 and -1. In 
a group ring, all group elements and their negatives are obviously units. They 
are the so-called trivial units ofthe group ring. The possibility ofthe existence 
of nontrivial units will be considered briefly somewhat later in this section. 

For any elements a and b of a commutative ring R, we say that a divides 
b, written a I b, if there exists c E R such that b = ac. Elements a and bare 
associates if a I band b I a. This relation is an equivalence relation provided 
R contains an identity 1. The only associate of 0 is 0 itself. A commutative 
ring is called an integral domain if it contains at least two elements and has 
the property that if a 0:/= 0 and b #- 0, then ab 0:/= O. 

(2.1) Two elements in an integral domain with identity 1 are associates if and 
only if one is a unit multiple of the other. 

Proof. If a and b are associates, there exist elements c and d such that 
a = bc and b = ad. Consequently, a = adc and 

a(l - dc) = O. 
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Since the ring is an integral domain, either a or (1 - dc) is O. If a = 0 it must 
also be true that b = 0, and we are done. If 1 - dc = 0, then d and care 
units, and the desired l'onclusion again follows. Conversely, suppose a = ub 
for some unit u. Thon, b = u-la and a and b are associates, and we are finished. 

A commutative ring R will be said to be associate to a subring Q of R ifthere 
exists a mapping p: R --+ Q such that, for any a, b E R, the elements a and 
pa are associates, and p(ab) = (pa)(pb). It is immediate that 

(2;2) If Q is an integral domain, then so is R. 

Proof. Consider nonzero elements a and b in R. Any associate of a non
zero element must also be nonzero; hence pa and pb are nonzero. Since Q 

is an integral domain, p(ab) = papb i= 0, and therefore ab i= O. 

An element d of a commutative ring R is called a greatest common divisor, 
abbreviated g.c.d., of a finite set of elements aI' ... , an E R if d [ ai' i = 1, 
... , n, and, for any e E R, if e [ ai' i = 1, ... , n, then e [ d. Obviously, any 
two g.c.d.'s of the same finite set are associates. There is no reason for 
supposing that every finite set of elements in an arbitrary commutative ring 
has a g.c.d. A counter-example to this conjecture is provided by the ring of all 

complex numbers m + nY -3 where m and n are integers. Since it is a non
trivial subring of the field of complex numbers, this ring is automatically an 
integral domain. The only units are 1 and -1. It is not difficult to show that 

any common divisor of 4 and 2(1 + Y -3) is one of the numbers 1, 2, 

1 + Y -3, 1 - Y -3, and their negatives. Since no one of these numbers is 

divisible by all of the others, it follows that 4 and 2(1 + Y -3) have no 
greatest common divisor. A ring will be called a g.c.d. domain ifit is an integral 
domain and every finite set of elements has a g.c.d. 

(2.3) If a commutative ring R is associate to a subring Q which is a g.c.d. 
domain, then R is also a g.c.d. domain. 

Proof. It follows from (2.2) that R is an integral domain. The product
preserving mapping of R into Q is denoted, as before, by p: R -+ Q. Consider 
any finite set of elements av ... , an in R, and let d be a g.c.d. in Q of pal' ... , 
pan' We contend that d is a g.c.d. in R of aI' ... , an' First of all, since d [ pai 
and pai [ ai' we have d [ ai' i = 1, ... , n. Next suppose e [ ai' i = 1, ... , n. 
Then, ai = bie and pai = pbipe; so pe divides pai in Q. Since d is a g.c.d., 
pe divides d in Q and therefore also in R. Thus, e [ pe and pe [ d, and so e [ d. 
This completes the proof. 

In an integral domain with identity, any two g.c.d.'s of the same finite set 
are unit multiples of each other. As a result, in such a ring it is customary to 
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speak of any greatest common divisor d of a finite set aI' ... , an as the 
greatest common divisor and to wTite d = g.c.d.(aJ> ... , aT). 

The concepts of unique factorization and of a prime are also relevant to 
the present discussion. An element P in an integral domain with identity is 
a prime if P is not a unit and if P = ab implies that either a or b is a unit. A 
unique factorization domain is an integral domain with identity in which every 
element which is neither zero nor a unit has an essentially unique factoriza· 
tion into primes. To say that factorization into primes is essentially unique 
means that, for any primes Pi' qj' i = 1, ... , m, j = 1, ... , n, if Pl' .. Pm = 

ql ... q71' then m = n and, for a suitable ordering, Pi and qi are associates, 
i = 1, ... , n. The statement that the ring of integers is a unique factoriza
tion domain is just the famous Fundamental Theorem of Arithmetic. 

(2.4) Every unique factorization domain is a g.c.d. domain. 

Proof. If a is any nonzero element of a unique factorization domain R, 
the primes which are associates may be combined and a factorization 

m ;;::::0, 

obtained in which no two of PI' ... ,Pm are associates, the nj are positive 
integers, and u is a unit. Any divisor of a has a factorizationu'p~l' ... p~in' 
where u' is a unit and the n/ are integers such that ° :::;: n/ :::;: n j . Similarly, 
if aI' ... , an are nonzero elements of R, there exist primes PI> ... , Pm> 
m ;;:::: 0, no two of which are associates, such that 

i = 1,"', n, 

where the nij are integers;;:::: 0, and the u i are units. The element 

nj = min (n ij ), 

i 

is obviously a greatest common divisor of aI' ... , an' An integral domain in 
which every finite set of nonzero elements has a g.c.d. is a g.c.d. domain; 
so the proof is complete. 

We assume that the reader has some familiarity with the definition and 
elementary facts about the ring R[t] of polynomials in one variable t with 
coefficients in an integral domain R. For example,l it is easy to show that if 
R is an integral domain, then R[t] is an integral domain whose only units are 
the units of R. A deeper result, the key point in the proof of which is due to 
Gauss, is the following theorem. 2 

(2.5) If R is a unique factorization doma1:n, then so is R[tJ. 

1 See N. Jacobson, Lectures in Abstract Algebra, Vol. 1 (D. van Nostrand Company, 
Inc.; Princeton, N.J., 1951), Chap. 3, Sects. 4, 5, 6. 

2 See N. Jacobson, Lectures in Abstract Algebra, Vol. 1 (D. van Nostrand Company, 
Inc.; Princeton, N.J., 1951), Chap. 4, Sect. 6. 
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We return now to the group ring ofthe infinite cyclic group H. For a choice 
of a generator t of H, an arbitrary element a of J H has a unique representation 

where all but a finite number of integers an are equal to zero. It follows that 
the polynomial ring J[t] is a subring of JH. For every nonzero element a in 
JH, we define ff(a) to be the smallest integer n such that an =1= o. For ex
ample, 

{((t3 + 2t - 7t-5 ) = -5, {((l) = O. 

If a = 0, we set {((a) = 00 with the usual convention that 00 + 00 = 00 and 
00 + n = n + 00 = 00. Then, 

(2.6) {((ab) = {((a) + {((b), fora, b EJH. 

Proof. If either a = 0 or b = 0, our convention gives the result; so we 
assume that both are nonzero. Let c = abo Then, if 

we have 

00 00 00 

a = .L: antn, b = .L: bntn, and c = "c tn £."n, 
- 00 - 00 -00 

00 00 

cn = .L: aib n- i = .L: aibn _ i· 
i=-co i=l'(a) 

If n < {((a) + {((b) and i ::2: {((a), then n - i ~ n - {((a) < {((b) and so 
aibn- i = O. Hence, 

cn = 0 for n < {((a) + {((b). 

If n = {((a) + {((b) and i > {((a), then n - i < n - {((a) = (((b) and so 
aibn_i = O. Thus, 

cl'(a)+I'(b) = al'(a)bl'(b) =1= 0 

because the ring of integers is an integral domain. This completes the proof. 

With the convention that t- 00 = 0, it is apparent that, for any a E JH, the 
element at-I«a) is a polynomial. Hence, the function given by pa = at-I'(a) 
defines a mappinb of J H into the subring J[t] of polynomials. The fact that 
any power of t is a unit of J H implies that, for any a E J H, a and pa are 
associates. Since t-I'(a)t-I'(b) = t-(I'(aHI«b» for any a, bE JH, it is a corollary of 
(2.6) that p is product-preserving. We conclude that JH is associate to the 
subring J[t] of polynomials. As a consequence of the Fundamental Theorem 
of Arithmetic and Lemmas (2.5) and (2.4), it follows that J[t] is a g.c.d. 
domain. Hence, by (2.3), we obtain our main theorem: 

(2.7) The group ring of an infinite cyclic group is a g.c.d. domain. 

It is worth noting that JH is an integral domain as a trivial consequence of 
(2.6). An example of a group ring which is not an integral domain is the group 
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ring of a cyclic group of order 2, in which 

(t + 1 )(t - 1) = t2 - 1 = 0 

is a valid equation. Another important result is 

(2.8) The group ring of an infinite cyclic gronp has only trivial units, i.e., 
the powers of a generator t and their negatives. 

Proof. Let a be a unit of J Hand b its inverse. Then, ab = 1 and 

(pa)(pb) = pI = 1. 

The only units of the polynomial ring J[t] are 1 and -1. Hence, 

pa = at-p(a) = ±1, 
a = ±tl'(a), 

and the proof is complete. 

For an ,example of nontrivial units in a group ring, eon sider the group 
ring of the cyclic group of order 5 generated by t. Then, 

(1 - t2 + t4 )(1 - t + t2)t2 = (1 - t + t3 - t5 + t6 )t2 

= (l - t + t3 - 1 + t)t2 

=t5 =1. 

Our eonclusions about the group ring of an infinite cyclic group are actually 
valid for the group ring of any finitely generated free abelian group. The 
proof is the same. Let K be a free abelian (multiplicative) group of rank'1n 
generated by tl , ..• , tm . Then, an arbitrary element a of J K has a unique 
representation 

w 

a = :L anl' .... nmttl ... tmnm, 
'Ii'I' ... , nrn = ~ 00 

where all but a finite number of the integers an ... n are zero. For a :f::. 0, 
l' , m 

we definc fJ-i(a) to be the smallest power of t; whieh occurs in a. The function 
p given by 

a:f::. 0, 

a = 0, 

defines a product-preserving mapping of J K into the polynomial ring in 1n 

variables J[tl , ... , tmJ. Clearly, every element is associate to its image under 
p, and so J K is associate to J[tl , •.. , t",J. Starting with the ring of integers, 
we obtain after 1n applications of Theorem (2.5) the fact that J[tl , ... , t",] 

is a unique factorization domain, and a similar argument shows that the only 
units are 1 and -1. Lemmas (2.4) and (2.3) together with the obvious ana
logue of (2.8) then complete the proof of 

(2.9) The group ring of a free abelian gronp of rank 1n ::2: 0 is a g.c.d. 
domain whose only units are group elements and their negatives. 
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The notion of a greatest common divisor can be elegantly described in 
terms of ideals. We recall that, in a commutative ring R with identity 1, 
the ideal E generated by a subset S is the set of all finite sums 

An equivalent characterization of E is as the smallest ideal containing S. 
By this is meant the intersection of all ideals of R which contain S. Since any 
ideal which contains S must contain the ideal generated by S, the equivalence 
of the two characterizations is obvious. An ideal is called a principal ideal if it 
is generated by a single element. It is a simple matter to check that any two 
associates generate the same ideal in R, and, conversely, any two generators of a 
principal ideal of R are associates. A notion we shall find useful is that of the 
smallest principal ideal containing a given finite set of elements. The only 
trouble is that, for commutative rings in general, there isn't any such thing. 
The smallest principal ideal containing a l , ... , an means the intersection of 
all principal ideals of the given ring which contain aI' ... , an' This inter
section is an ideal all right; but it doesn't have to be a principal ideal. 

(2.10) If R is a commutative ring with identity and av ... , an E R, then d 
'is a g.c.d. of aI' ... , an if and only if the intersection of all principal ideals of 
R which contain av ... , a'n is itself a principal ideal generated by d. 

Proof. Suppose first that the smallest principal ideal D containing 
av ... , an does exist and that d is a generator. Then we certainly have 
d I ai' i = 1, ... , n. Consider next an arbitrary e E R such that e I ai' 
i = 1, ... , n. The principal ideal E generated by e contains aI' ... , an and, 
therefore, also contains D. Thus dEE and so e I d. We conclude that d is a 
g.c.d. of at> ... , an' Conversely, suppose d is given as a g.c.d. of aI' ... , an 
and generates the principal ideal D. Since d I ai' i = 1, ... , n, it follows 
that D contains aI' ... , an' Consider next any principal ideal E containing 
av ... , an' If e is a generator of E, we have e I ai' i = 1, ... , n. Consequently, 
e I d and this implies that E contains D. Any member of a collection of sets 
which is a subset of every set in the collection must itself equal the inter
section of the collection. It follows that D is the smallest principal ideal 
containing aI' ... , an' and the proof of (2.10) is complete. As a corollary, we 
have 

(2.11) In a g.e.d. domain with identity, the g.c.d. of any finite set of elements 
is the generator of the smallest principal ideal that contains them. 

The generator of a principal ideal in such a ring is, of course, determined 
only to within unit multiples, and the same goes for the g.c.d. Thus this last 
result is true insofar as it makes sense; strictly speaking, it is the equivalence 
classes which are equal. 
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3. The knot polynomials. The group ring of an infinite cyclic group 
becomes, upon selection of a generator t of the group, what may be called a 
ring of L-polynomials in t. The letter "L" is suggested by the Laurent power 
series with negative exponents which arises in the theory of complex variables. 
More generally, a ring of L-polynomials in n variables t1, - .. , tn is the group 
ring of a free abelian group of rank n generated by tv ... , tn. Notice that, 
for one variable, the notion of L-polynomial coincides with that of free 
polynomial which was introduced in the last chapter. This is simply because 
an infinite cyclic group happens to be both free and free abelian. It should be 
emphasized that the ring of L-polynomials is not determined by the group 
ring alone. An element of the group ring of an infinite cyclic group generally 
has two representations as an L-polynomial, e.g., 

3t2 - 5t + t-3 and t3 - 5t-1 + 3t-2, 

depending on which of the two generators is set equal to t. Nevertheless, we 
commonly refer to an element of the group ring of a free abelian group as an 
L-polynomial. In fact, the following definition of the knot polynomials is an 
example of this practice. 

For any integer k 2: 0, the kth knot polynomial /:).lc of a finite presentation 
(x : r) = (xl' ... 'Xn : 1'1'· •• ,1'm ) of a knot group is the g.c.d. of the 
determinants of all (n - k) X (n - k) submatrices of the Alexander matrix 
of (x : r) where it is understood that 

if 

if 

n - k > m, 

n - k ::;;: o. 
The group I x : r I is canonically isomorphic to the knot group it presents; 
hence, by (1.2), the abelianized group is certainly infinite cyclic. It follows 
from (2.7) and (2.8) that the group ring of the abelianized group of I x : r I 
is a g.c.d. domain with only trivial units. We conclude that 

(3.1) The knot polynomials exist and are unique to within ±tn , where n is 
any integer and t is a generator of the infinite cyclic abelianized group of the 
presentation (x : r) of the knot group. 

The smallest principal ideal containing a given finite set of elements is the 
smallest principal ideal containing the ideal generated by this finite set of 
elements. Hence, as a consequence of (2.11) and the definitions of the poly
nomial /:).1< and the elementary ideal E lc , we obtain the following characteriza
tion of the knot polynomials. 

(3.2) Each knot polynomial /:).lc is the generator of the smallest principal ideal 
containing the elementary ideal Ek • 

A very important practical corollary of (3.2) and our result that equivalent 
matrices have the same elementary ideals is the fact that the knot poly-
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nomials of a presentation, like the elementary ideals, can be calculated from 
any matrix equivalent to the Alexander matrix. One naturally uses the 
simplest matrix one can find. 

(3.3) ~k+l I ~k' 
Proof. We shall use a corollary of (3.2) and the fact that the elementary 

ideals form an ascending chain (cf. (4.1), Chapter VII). Let (~k) and (~k+1) 
denote the principal ideals generated by ~k and ~k+V respectively. \Ve have 

(~k+l) :::> Ek+l :::> E k • 

Since (~k) is the smallest principal ideal containing Ek, 

Thus, ~k = a~lc+1' or ~k+1 I ~k' 
The next theorem is the analogue for knot groups of the invariance theorem 

for the elementary ideals, (4.5) of Chapter VII. Its essential content is that 
the knot polynomials are invariants of knot type. 

(3.4) INVARIANOE OF THE KNOT POLYNOMIALS. If (x : r) and (y : s) are 
finite presentations of knot groups and 

f: (x : r) -+ (y : s) 

is a presentation equivalence, then, to within 'llnits, the kth knot polynomial ~k 
of (x : r) is mapped by f ** onto the kth knot polynomial ~Jc' of (y : s). 

Proof. We shall use a corollary of (3.2) and the Invariance Theorem (4.5) 
of Chapter VII. We recall that f ** is the linear extension to the group rings 
of an induced isomorphism of the abelianized group of I X : r I onto that of 
I y : S I (cf. (4.4) and preceding paragraph in Chapter VII). Denote by (~Jc) 
and (~Jc') the principal ideals generated by ~k and ~k" respectively, and by 
Elc and Ek' the elementary ideals of (x : r) and (y : s), respectively. Then, 

Ek c (~k) and E k ' c (~k') and f**Ek = EJc'. 

Now, an isomorphic image of a principal ideal is principal, and f**(~k) :::> 

f **Elc = E1c'· Since (~k') is minimal, 

By the same argument, 

and so 

Sincef**(~k) is generated by f**~k' the elements ~k' andf**~k are associates 
and therefore unit multiples of each other. This completes the proof. 
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The preceding theorem is of fundamental importance. It implies directly 
that the knot polynomials are invariants of knot type. We recall the basic 
principles: (1) If two knots represent the same knot type, their groups are 
isomorphic (cf. (4.7) and the subsequent discussion in Chapter II). (2) Two 
presentations of isomorphic groups are of the same presentation type, and, 
hence, there exists a presentation equivalence between them (cf. (2.4) and 
accompanying discussion in Chapter IV). Let us see how this invariance 
theorem applies to a fictitious example. Suppose we are given two knots K 
and K', known to be of the same type, and are asked toobtain,forsomeinteger 
k, their respective polynomials /).k and /).k'. \Ve determine an over presentation 
of K, possibly simplify it, calculate the matrix of derivatives, select a genera
tor t of the abelianized group, and obtain the Alexander matrix. "Ve then 
manage to find a g.c.d. of all determinants of order n - k and, finally, end up 
with an L-polynomial, say L\k = 3t3 - 5t2 + t. Since the knot polynomials 
are unique only up to units, it is natural to normalize /).k to the polynomial 

/).k = 3t2 - 5t + 1, 

i.e., no negative powers of t and a positive constant term. Notice, however, 
that the form of the normalized polynomial /).k depends on the choice of 
generator of the abelianized group of the presentation. For if we select the 
other generator 8 = t-I, the final normalized polynomial is 

/).k = 82 - 58 + 3, 

which is not of the same form as 3t2 - 5t + 1 but is, in the ring JH, an 
associate of it. The next question is: If we go through a similar calculation 
for K' and obtain /).k', what must it look like? Let us assume that we have 
picked a generator x so that 6.k ' is an L-polynomial in x. Since K and K' are of 
the same type, their knot groups are isomorphic and there exists an iso
morphism!** between the abelianized groups ofthe presentations of the knot 
groups. Notice that regardless of how difficult it may be to describe the iso
morphism between the knot groups, the mapping !** is very simple. There 
are only two ways to map one infinite cyclic group isomorphically onto 
another: either !**(t) = x or !**(t) = X-I. In our example, therefore, either 

!**/).k = 3x2 - 5x + 1 or 3x-2 - 5x-I + l. 
By the Invariance Theorem (3.4), we have!**/).k = ±Xn/).k'. Hence, if /).k' is 
normalized, there are just the two possibilities 

/).k' = 3x2 - 5x + 1 or x2 - 5x + 3. 

As we have indicated above, these two reciprocal forms of the polynomial are 
equally good. 

The above fictitious example is very fictitious indeed. We shall prove in 
the next chapter that if /).k(t) = cntn + cn_Itn- I + ... + Co is an arbitrary 
normalized knot polynomial, then ci = cn_ i , i = 0, ... , n. As a result of this 
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symmetry, it follows that the normalized form of a knot polynomial is an 
invariant of knot type. Specifically, if the normalized knot polynomials 
11k and 11k' of respective knots K and K' are not identical for every k :;::0: 0, 
then K and K' represent distinct knot types. 

In any over presentation of a knot group any relator is a consequence of 
the others and therefore can be dropped (cf. (1.3), Chapter VI). Thus, every 
knot group has a presentation whose Alexander matrix is (n - 1) X n. 
Consequently, 

(3.5) The Oth elementary ideal and polynomial of a knot group are trivial: 
Eo = 110 = O. 

This is actually a special case of the more general fact that the Oth ele
mentary ideal of a finite presentation is trivial if and only if the abelianized 
group of the presentation is infinite. 

Let (x : r) = (Xl' ••• 'Xn : rl' •.• , rm) be a presentation of a given knot 
group. We denote by y the homomorphism of the free group generated by 
Xl' ••• , xn onto the factor group' X : r', and by a the abelianizer of, x : r ,. 
Suppose that all the generators of the presentation are mapped by ay onto a 
single element, i.e., 

(3.6) ayxi = ayxj' i,j=l,···,n. 

This condition is in fact satisfied by any over presentation (cf. (1.1)). The 
entries of the Alexander matrix A = II aij II of (x : r) are defined by 

(or.) 
aij = ay a;.' i = 1, ... , m and j = 1, ... , n. 

J 

By the fundamental formula (cf. (2.11), Chapter VII), 

n (or.) 
r i - 1 = . .L ~ (Xj - 1). 

2 =1 UXj 
Since yri = 1, 

n (or.) o = . .L ay ~ (ayXj - 1). 
2=1 UXj 

Since ayx1 = ayXj' j = 1, ... , n, we can write 

n 

o = (.L aij)(ayxi - 1). 
j=1 

The element ayxl is a generator of the infinite cyclic abelianized group of 
'x : r'; so (ayxl - 1) *- O. Since the group ring of an infinite cyclic group is 
an integral domain, n 

O=.L aij' 
j=1 

i.e., the sum of the column vectors of the Alexander matrix is the zero vector. 
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Hence, 

(3.7) The Alexander matrix A of any finite presentation of a knot group 
which satisfies (3.6) is equivalent to the matrix obtained by replacing any column 
of A with a column of zeros. 

Suppose (x : r) is an over presentation with n generators and n - 1 
relators. As remarked above, (3.6) holds, and so (3.7) is applicable. In this 
case, however, A is an (n - 1) X n matrix. If one column is replaced by 
zeros, there remains at most one (n - 1) X (n - 1) submatrix with non
zero determinant. Since equivalent matrices define the same elementary 
ideals, it follows that the 1st elementary ideal of (x : r) is principal. Hence, by 
(3.2), 

(3.8) The 1st elementary ideal of a knot group is a principal ideal generated 
by the 1st knot polynomial ill' 

The 1st knot polynomial ill is the most important member of the sequence 
of knot polynomials. It is called the Alexander polynomial of the knot group 
and is commonly written without the subscript. Thus, 

It also follows, of course, that the determinant of anyone of the (n - 1) X 

(n - 1) submatrices of A may be taken to be the polynomial ill' 

4. Knot types and knot polynomials. The following examples illustrate the 
power of the knot polynomials. It will become apparent that these invariants 
provide a systematic tool for distinguishing knot types on quite a respectable 
scale. The computational procedure is based on the results of the preceding 
sections. For example, it is a consequence of (1.1) that the Alexander matrix 
of an over presentation can be obtained from the matrix of derivatives simply 
by setting all generators Xi equal to t. On the other hand, it is usually to one's 
advantage to simplify an over presentation before starting to compute deriv
atives. However, if all the generators of one presentation of a knot group are 
mapped by oy onto a single generator of the abelianized group, the same will 
be true for any other presentation obtained from the first by means of Tietze 
operations I, I', and II'. So one may still set all generators Xi equal to t after 
simplifying an over presentation provided no new generators have been 
introduced in the process. Notice, moreover, that (3.7) is valid for such 
presentations. This fact obviously offers a substantial computational shortcut. 

More often than not, a group presentation is written with relations rather 
than the more formal relators: 
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The relation 1'i = Si corresponds to the relator r;s;-l. We have 

oris;-l ori _lOS; 
---=--r·s· -. 

OX; OX; "ox; 

Since the canonical homomorphism y maps every relator onto 1, computation 
of the entries aij of the Alexander matrix is simplified by the observation that 

In the examples which follow we consider first those knots for which we 
have already computed group presentations in Chapter VI. 

(4.1) Trivial knot (Figure 46). 

Figure 46. 7T(R3 - K) = Ix :1 

Rather than talk about a matrix with one column and no rows, we observe 
that the presentation (x :) is of the same type as (x : 1). Hence, the Alex
ander matrix is simply A = II 0 II and 

.6.k = 1 for k;:o- l. 

(4.2) Clover-leaf knot (Figure 47). 

x Y 

Figure .47. 7T(R3 - K) = I x,y : xyx = yxy I 
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The two entries of the Alexander matrix A = II all a12 II are 

() 
all = ay ox (xyx - yxy) = ay(l + xy - y), 

() 
a12 = ay oy (xyx - yxy) = ay(x - 1 - yx). 

Setting ayx = ayy = t, we obtain 

A=1I1-t+t2 -1 + t - t2 11. 
Hence, 

D..l = 1 - t + t2 and D..k = 1 for k;::::: 2. 

So the clover-leaf knot cannot be untied. We have, however, already proved 
this fact in Chapter VI. 

(4.3) lj'igure-eight knot. A Wirtinger presentation in which x and y cor
respond to the overpasses shown in Figure 48 can be simplified to give 

7T(R3 - K) = 1 x,y : yx-1yxy-l = x-1yxy-1x I. 

Figure 48 

Again, we set ayx = ayy = t. The computation is halved by the observation 
that since (3.7) holds for the above presentation, either one of the two entries 
of the Alexandcr matrix may be ,;et equal to the polynomial D..1. Thus 

= -I -+- t -+- t-1 - 1 - 1 = t - 3 + t-1• 

Xormalizing, ,,"c obtain 
ell = t2 - 3t + 1. 

Ohyiously, D..k = 1 for k 22. \Ve conclude that the figure·eight knot is not 
trivial and is of a different type from the clover-leaf. 
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(4.4) Three-lead four bight Turk's head knot (Figure 49). 

n(R3 - K) = 1 Xl>X2'X3'X4 : Xi = [Xi+3, xi-'/Z]Xi+l[Xi--:j\, Xi+3 ], 

i = 1, ... ,4 integers mod 41. 

Figure 49 

As can be read from Figure 49, this presentation is obtained by simplifying a 
Wirtinger presentation; the generators Xl' ••• , x4 are four of the original 
eight. Accordingly, we set ayxi = t, i = 1, ... ,4. The Alexander matrix 
A = II aij II is given by 

Hence, 

a ii = 1 

ai,i+l = -1 

ai ,i+2 = -t + 2 - t-1 

ai ,i+3 = t - 2 + t-1 

I 
>-

J 

i = 1, ... ,4; indices 
are integers mod 4. 

Anyone of the four relations is a consequence of the other three and may be 
discarded. As a result, we may drop the 4th row of the matrix and obtain 

1 2 3 4 

-1 -t --L .) 
I ~ 

_ t-1 t-2 + t-1 

A,-...; 2 t-2 + t-1 1 -1 -t , .) - t-I 

3 -t + 2 - t-1 t-2 + t-1 1 -1 
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The reader should check the operations in the following reduction of A to an 
equivalent matrix of simpler form. 

1 -1 -t + 2 - t-1 

:1 A"'"' t - 2 + t-1 1 -1 

0 t - 1 + t-1 0 01 

1 0 -t + 2 - t-1 0 

A,......., t - 2 + t-1 0 -1 0 

0 t - 1 + t-1 0 0 

0 0 -t + 1 - t-1 0 

A'"-' t - 3 + t-1 0 -1 0 

0 t - I + t-1 0 0 

(t - 3 + t-1)(-t + 1 - t-1) 0 0 0 

A,......., 0 0 -1 0 

0 t - 1 + t-1 0 0 

II (t - 3 + t-1)~ - 1 + t-1) 0 

:11 A,......., 
t - 1 + t-1 

Hence, the normalized polynomials are 

~1 = (t2 - 3t + 1)(t2 - t + 1)2, 

~2 = t2 - t + I, 

~,,= 1 for k:::::: 3. 

So this knot is neither trivial, nor the clover-leaf, nor the figure-eight. Notice 
that the elementary ideals E1 and E2 are both principal ideals: El generated 
by ~1 and E2 by ~2' 

(4.5) Stevedore's knot (Figure 50). 

x and yare Wirtinger generators, and we set ayx = ayy = t. Using (3.7), 
we have immediately 

a 
~1 = ay - [(xy-1)-2y (xy-1)2X - y(xy-1)-2y (xy-1)2] ox 

= -2 + 2t + t - (-2t + 2t2) 

= - 2t2 + 5t - 2. 
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The higher polynomials are, of course, all equal to 1. On normalizing, we 
obtain 

III = 2t2 - 5t + 2, 

Ilk = 1 for k;:::: 2. 

The higher elementary ideals are also trivial. 

(4.6) (Figure 51). 

El = (2t2 - 5t + 2), 

Ek = (1) for k;:::: 2. 

\ 

Figure 51 
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We omit the details; but one can simplify a Wirtinger presentation and obtain 

7T(R3 - K) = I x,y,z : rl>rzl 

where x, y, z are the Wirtinger generators indicated in Figure 51, and the 
relators r1 and rz correspond to the following relations. 

1'1 y-1xyx-1y = X-1zx-1ZXZ-1X, 

r 2 x-1ZXZ-1X = y-1zyz-1y . 

Under the mapping ay the generators x, y, z are each sent into t, and the 
Alexander matrix of the presentation can be written down quite easily. We 
get 

Consequently, 

(or1) -1 a13 = ay az = -2t + 1 

= -t-1 + 2 

(or) 
a23 = ay 0: = O. 

11
3t-1 - 3 

_t-1 + 2 
-2t~1 + 1 II 

II 3 - 3t 

-1 + 2t 

II 2 ~ t 

-1+2t 0011 
1 - 2t 

1 ~ 2t ~ II. 
Since 2 - t and 1 - 2t are distinct irreducibles, their g.c.d. is 1. Hence, 

Ll1 = (2 - t)(1 - 2t) = 2 - 5t + 2t2 , 

Llk = 1 for lc ~ 2. 

The second elementary ideal E2 is generated by 2 - t and 2t - 1. That this 
ideal is not the whole group ring JH of the abelianized group ofthe presenta-
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tion may be seen by mapping JH homomorphically onto the integers J by 
setting t ....... -1, t-1 ....... -1. Under this homomorphism the ideal E2 is mapped 
onto the integral ideal generated by 3 since 

We conclude 

2 - t ....... 3, 

1 - 2t ....... 3. 

El = (2t2 - 5t + 2), 

E2 = (2 - t, I - 2t) is not a principal ideal, 

Ek = (1) for k:;::o: 3. 

Comparison with the preceding example sho,,'s that the two knots exhibited 
in Figures 50 and 51 have the same knot polynomials but distinct elementary 
ideals. These examples verify the contention made in Chapter VII and in the 
introduction to this chapter that the elementary ideals are stronger invariants 
than the polynomials. 

(4.7) (Figures 52 and 53). 

Figure 53 

Figure 52 

The Alexander matrix of each of these knot types is equivalent to the matrix 

114t2 - 7t + 4 0 II. 
Thus, the methods developed in the last two chapters fail to distinguish them. Their 
groups can, however, be shown to be nonisomorphic by other methods. 3 

3 By the linking invariant of the second cyclic branched covering; cf. H. Seifert, "Die 
Verschlingungsinvarianten der zyklischen Knotenuberlagerungen," Hamb. Abh. 11 (1935) 
pp. 84-101. 
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(4.8) Granny knot and Square knot (Figures 54 and 55). 

x 

a .. 

~ 

a 

Figure 54 

a .. 

a 

Figure 55 
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It can be shown by more advanced techniques that the knots shown in 
Figure 54 and Figure 55 represent distinct knot types.4 However, the 
methods of this book fail to distinguish them from the very outset. Not only 
do they have equivalent Alexander matrices, but they even possess isomorphic 
groups. For each, we have 

7T(R3 - K) = 1 x,y,a a-1xa = xax-l, a-1ya = yay-l I. 

EXERCISES 

1. For each of the five knots in Exercise 1 of Chapter VI, find an Alexander 
matrix with one row and two columns. Compute the elementary ideals and 
knot polynomials. 

4 R. H. Fox, "On the Complementary Domains of a Certain Pair of Inequivalent 
Knots," Ned. Akademie Wetensch., Indag. Math. Vol. 14 (1952), pp. 37-40; H. Seifert, 
"Verschlingungsinvarianten," S. B. Preuss. Akad. WiS8. Berlin Vol. 26 (1933), pp. 
811-823. 
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2. Compute the elementary ideals and knot polynomials for each of the 
following four knots. 

(a) True lover's knot. (b) False lover's knot. 
(d) Bowline knot. (c) Chinese button knot. 

Figure 56a Figure 56b 

Figure 56e Figure 56d 

3. Using the presentation of the group of the torus knot Kp,q given in 
Chapter VI, Exercise 3, show that the Alexander polynomial is 

and E2 = 1. 

L).(t) _ _ W_Q_-_1 )_(t_-_1) 
- (tP - l)W - 1) , 

4. Prove that the degree of the normalized Alexander polynomial of a knot 
is not greater than the number of crossings of any of its diagrams. 

5. Show that the Alexander matrix class of the knot in Figure 57 is the 
same as that of a trivial knot. 

6. Prove that the group of the figure-eight cannot be mapped homomorphi
cally upon the group of the overhand knot. 

7. If we tie two knots on the same piece of string, the result is called a 
composite knot. Prove that the Alexander polynomial of a composite knot is 
the product of the polynomials of the constituent knots. 
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Figure 57 

8. Let k and n be positive integers and let us try to assign to each overpass 
x; of a regular knot projection an integer A; in such a way that corresponding 
to each crossing Xj ~ I ~ x;+1 the relation k(Ak - Ai) = Ak - Ai+l (mod n) 

hk 
holds. Prove that this can be done nontrivially if and only if ~(k) = 0 
(mod n). 

9. Prove that the group of a knot can be mapped homomorphically upon 
the group of Chapter VII, Exercise 12, if and only if ~(k) = 0 (mod p). 

10. Let f(t) be an integral polynomial and let us try to assign to each 
overpass xi of a regular knot projection an integral polynomial Ai(t) in such 
a way that corresponding to each crossing as shown in Exercise 8 the relation 
t(Ak(t) - A;(t)) = Ak(t) - A i+1(t) (mod f(t)) holds. Prove that this can be 
done nontrivially if and only if f(t) divides Ll(t). 



CHAPTER IX 

Characteristic Properties of the 

Knot Polynomials 

Introduction. A survey of the knot polynomials ~k(t) computed at the end 
of the preceding chapter shows that, for each of them, ~k( 1) = ± 1. A proof 
that this equation holds for all knot polynomials is the objective of the first 
section of the present chapter. The survey also substantiates the assertion 
that all knot polynomials are reciprocal polynomials, i.e., for every knot 
polynomial ~k(t), there exists an integer n such that ~k(t) = tn~k(t-l). Thus, 
if ~k(t) = cntn + cn_1tn - 1 + ... + co' the coefficients exhibit the symmetry 
Ci = cn- i ' i = 0, ... ,n. As was pointed out in Section 3 of Chapter VIII, 
this property is essential to our conclusion that knots of the same type possess 
identical polynomials. It is therefore important to close this gap in the theory. 
The proof that knot polynomials are reciprocal polynomials will be effected in 
Sections 2 and 3 by introducing the notion of dual group presentations, the 
crucial examples of which are the over and under presentations of knot groups 
defined in Chapter VI. It should be emphasized that our arguments apply only 
to tame knots, and throughout this chapter "knot" always means "tame knot." 

It is known1 that the two properties 

~l(l) = ±1, 
~l(t) is a reciprocal polynomial, 

characterize the 1st polynomial or Alexander polynomial ~l(t) of a knot; in 
other words any L-polynomial that has these two properties is the 1st poly
nomial of some knot. 

1. Operation of the trivializer. An element a of the group ring JH of an 
infinite cyclic group H has a representation as an L-polynomial 

CD 

a = a(t) = 2. antn, 
- 00 

where all but a finite number of the integers an are equal to zero. The image of a 

1 H. Seifert, "Uber das Geschlect von Knoten," Math. Ann. Vol. 110 (1934), pp. 571-
592; G. Torres and R. H. Fox, "Dual Presentations of the Group of a Knot," Ann. oj 
Math. Vol. 59 (1954), pp. 211-218. 

134 
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under the trivializing homomorphism t : J H -+ J is obtained by setting t = 1 
(cf. Section 1, Chapter VII). Thus, we write ta = all). An invariant of knot 
type, simpler than the knot polynomials £1k (t), is the sequence of integers 
[ £1k (I) [, k = 1,2, .. '. Although each knot polynomial is specified only to 
within a unit factor ±tn , the absolute value [ £1k (I) [ is uniquely determined 
by the isomorphism class ofthe knot group. This invariant, however, is useless 
as a tool for distinguishing knot types. In this section we shall prove the 
interesting theorem that, for any knot group, 

(1.1) [ £1k (l) [ = 1, k = 1,2,···. 

An equivalent result is 

(1.2) For any finite presentation (x : r) of a knot group and integer k 2 1, 
the image of the elementary ideal Ek of (x : r) under the trivializer t is the entire 
ring of integers, i.e., tEk = J, k = 1,2 .. '. 

It is easy to show that (1.1) and (1.2) are equivalent. Observe, first of all, 
that since £1k+l I £1k (cf. (3.3), Chapter VIII), (1.1) is equivalent to the statement 
that [ £11(1) [ = 1. Similarly, the elementary ideals form an ascending chain, 
and so (1.2) is equivalent to the equation tEl = J. We have shown that El is 
a principal ideal generated by £11 , It follows that tEl is generated by 
t£11 = £11(1). Thus, if [ £11(1) I = 1, then tEl = J. Conversely, since the 
generator of an ideal in an integral domain is unique to within units, if tEl = J, 
then I £11(1) I = 1. 

We now prove (1.2). Let (x : r) = (Xl' .•. ,xn : rv ... , r n) be a finite 
presentation of a knot group and A its Alexander matrix. As a result of (4.6) of 
Chapter IV, the abelianized group of the knot group can be presented by 
(x: r, [xi,xJ, i,j = 1, ... ,n). Denote the Alexander matrix of this presen
tation by A'. Since the abelianized group of any knot group is infinite cyclic, 
(x : r, [xi,x j ], i,j = 1,"', n) is of the same presentation type as (x :). The 
elementary ideals of the latter are Eo = (0), El = E2 = ... = (1). It follows 
from the fundamental invariance theorem for elementary ideals (cf. (4.5), 
Chapter VII) that 

E (A') = {(O), 
k (1), 

k =0, 
k21. 

The ideal (1), generated by the identity 1, is, of course, the entire ring. We 
next observe that the image of any Alexander matrix under the trivializer is 
identical with the image of the original matrix of free derivatives under the 
trivializer. Furthermore, 

And so, 

i, j, k = 1, ... , n. 
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Hence, 

lA' ~ ( II t ~:: II ) ~ e~) ~ tA 

Using the results of this paragraph and (4.2) and (4.3) of Chapter VII, we 
obtain 

and the proof of (1.2) is complete. 

if k = 0, 
if k ::::::: 1, 

2. Conjugation. The immediate objective of this and the next section is 
the theorem: 

(2_1) For any knot polynomial tlk(t), there exists an even integer n such that 

Notice that if (2.1) holds for a polynomial tlk(t), it also holds for any unit 
multiple of tlk(t). 

The degree of an arbitrary L-polynomial a(t) = ~ ':' 00 amtm (am = 0 for all but 
a finite number of values) is the difference between the largest and smallest 
values of m for which am * O. Since this number is unaffected by multipli
cation by a unit factor ±tk or by the change of variable s = t-1, the degree 
of a knot polynomial is a well-defined invariant of knot type. If the poly
nomial tlk(t) is chosen in normalized form (no negative powers of t and a 
positive constant term), then the integer n which appears in the statement of 
(2.1) above is obviously the degree of tlk(t). Thus, in addition to stating that 
knot polynomials are reciprocal polynomials, (2.1) implies that 

(2.2) Every knot polynomial is of even degree. 

The mapping ( )-1: G --+ G which assigns to every element g of an arbitrary 
group G its inverse g-l, is one-one and onto but not an isomorphism (unless G 
is abelian). Since it is product-reversing instead of preserving, i.e., 

g,h EG, 

it is called an anti-isomorphism. An important fact, albeit trivially verifiable, 
is that ( )-1 is consistent with homomorphisms: Given any homomorphism 
4>: G --+ H, the mapping diagram is consistent. The unique linear extension 

( )-1 
G ----+ G 

~ ~ ~ ~ 
( )-1 

H----+H 
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of ( )-1 to the group ring JG (cf. (1.2), Chapter VII) will be called conjugation 
and denoted by a bar. Thus, 

Using the theory of dual presentations developed in the next section, we shall 
prove the inIportant theorem 

(2.3) The elementary ideals Ek of any finite presentation of a knot group are 

invariant under conjugation, i.e., Ek = E k , k = 0, 1,2, .... 

Theorem (2.1) is a corollary of (2.3) and (1.1). The proof is as follows: 
Denote by (6.k ) the principal ideal generated by the knot polynomial6.k • We 
recall that (6.k ) is the smallest principal ideal containing E k • Since Ek c: (6.k ) , 

In the group ring of an abelian group, conjugation is a ring isomorphism. 

Hence, (6.k ) is a principal ideal, and (Xk ) = (6.k ). Since (6.k ) is mininIal, 

We conclude that 

Generators of a principal ideal in an integral domain are unique to within 
units; hence, 

6.k (t) = een6.k G) , 
where E = ±1. (Of course, 6.k (t) = 6.k and 6.k G) = Xk .) For k = 0, both 

sides of the equation are zero, and the value of E doesn't much matter. For 
k > 0, we know from (1.1) that 6.k (l) =1= 0. Hence, substituting t = 1 gives 
immediately E = 1. Writing 6.k (t) = Co + cIt + ... + cntn, we have ci = Cn- i , 

i = 0, ... ,n. If n were odd, we would have by (1.1) 

1 6.k (l) I = 1 = 21 Co + ... + c(n-I)/zl, 

which is impossible. Hence, n is even, and the proof of (2.1) from (2.3) and 
(1.1) is complete. 

3. Dual presentations. The definition of dual presentations is conveniently 
expressed using the terminology of congruences. If f: R -+ R' is any ring 
homomorphism and al,aZ E R, we write al = az (mod!), translated ~ i8 
congruent to az modulo f, whenever f~ = faz. (The expression appears most 
commonly in consideration of the homomorphism of the integers J onto the 
ring J n of residue classes.) Two finite group presentations (x : r) = 
(xl" . " Xn : rV' .. ,rn) and (y : s) = (Yv ••• 'Yn : 81,'" ,8n) consti-
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tute a pair of dual pre8entations if there exists a presentation equivalence 
(): (x : r) -+ (y : s) such that 

(mod ay), i = 1, ... , n, 

(ar. ) a8. 
(ii) () ax: (xi - I) = ay: (Yi - I) (mod ay), i,j = I, ... ,n. 

The homomorphism y is the extension to the group ring of the canonical 
homomorphism of the free group generated by Yl' ..• ,Yn onto the factor 
group I y : S I, and a is the abelianizer. 

Dual presentations are ip80 facto of the same type, and it therefore makes 
sense to speak of dual presentations of a given group. It is our contention 
that the group of any knot has a pair of dual presentations. Specifically, we 
shall prove that the over and under presentations (1.1) and (1.2), Chapter VI, 
are mutually dual. We assume that K is a polygonal knot in regular position 
situ!),ted as described in Section I, Chapter VI, and that overpasses, under
passes, orientations, basepoints, generators, etc. have been selected as there 
described. The notation will be the same. The presentations (1.1) and (1.2) 
are abbreviated (x : r) and (y : s) respectively, and the canonical homo
morphisms of F(x) and F(y) onto the factor groups I X : r I and I y : S I 
are both denoted by y. Let (f. be the equivalence class of a path in R3 - K 
with initial point Po' and terminal point Po' The mapping 'YI defined by 

'YIf3 = (f. • f3 • (f.-I 

for all f3 E 7T(R3 - K, Po) is an isomorphism of 7T(R3 - K, Po) onto 
7T(R3 - K, Po'), cf. (3.1), Chapter II. This isomorphism induces a natural 
isomorphism ()* of I x : r I onto I y : S I which is realizable by a presentation 
equivalence (): (x : r) -+ (y : s) (cf. (2.3) and (2.4), Chapter IV). All of 
these actually very simple ideas are summed up in the following completely 
consistent diagram. 

F(x) > F(y) 

~ \.'1 '. > I~,(i 
~ \ ~~ ~{ I' 

7T(R3 - K,po) ~ 7T(R3 - K,po') 

Consider an arbitrary underpass Bk adjacent to an overpass Ai' 'Vhere f3 
is the equivalence class of the path shown in Figure 58 below, it is clear that 

and that 
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a 

Hence, 

and so 

Figure 58 
p' o 
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where (j is the image of (ex' P-l) under the isomorphism 7T(R3 - K, Po') ~ 
1 y : S I. We denote the abelianizer on 1 x : r 1 and on 1 y : S 1 by the same 
letter a. Finally, therefore, 

This coupled with the fact (cf. (1.1), Chapter VIII) that 

(3.1) Xi = X; (mod ay), i,j = 1,'" ,n, 

implies 
(mod ay), 

and Condition (i) of the definition of dual presentations is established. 
It is a corollary of the preceding two equations that 

(3.2) Yi = Y; (mod ay), i,j=I,···,n. 

Moreover (cf. (1.1) and (1.2), Chapter VIII), the infinite cyclic abelianized 
group of 1 y : S 1 is generated by the single element 8 = aYYi' i = 1, ... ,n. 
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In order to establish (ii), we shall need the following lemma: 

(3.3) Let a and b be any two simple paths in R2 - f!}J B and R2 - f!}J A, 
respectively, having the same initial and terminal points (i.e., a(O) = b(O) and 
a( II a II ) = b( II b II ). Then, 

8a'J == (bP)-1 (mod ay). 

Proof. As a result of (3.1) and (3.2), we have 

a'J == xl! (mod ay), for some integer l, 

bP = ylm (mod ay), for some integer m. 

Next, choose a simple path c in R2 - f!}J A with the same initial and terminal 
points as a and b such that 

cP == YI! (mod ay). 

There are several ways to pick c. For example, one may simply follow along a 

as closely as possible skirting around every projected overpass encountered 
(cf. Figure 59). Suppose, for example, that the path a crosses under the 

X' 
J 

",..--'-----

a 
..---~-----

.... ------c-~---: 
I 

\ 

Figure 59 

, , 
\ 
\ 

\ 

overpass A; so that the resulting contribution to a'J is x/'. Then, as is illu
strated in Figure 59, in skirting around f!}J A; the contribution to c obtained by 
crossing underpasses is 

(y. <1 ••• y. <ply O(y:-<P ... y:-<l). 
21 2p k 1. p 1.1 

Thus the exponent sum of a'J and cP must be equal. Since cb-l is a closed 
path which cuts no projected overpasses, we have 
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Hence, 
(mod ay), 

and so 

Yl 1 - Ylm (mod ay). 

Since aYYl generates an infinite cyclic group, we conclude that l = m. Finally, 
using Condition (i), we obtain 

(mod ay), 

and the proof is complete. Notice, incidentally, that (3.3) includes (i) as a 
special case. 

The presentations (x : r) and (y : s) are unaffected by the size and shape 
of the regions VI> ... , V nand Ul , •.. , Un' Consequently, we shall assume 
that the points of each one remain close to the particular projected underpass 
or overpass covered. Consider an arbitrary pair of integers i, j = 1, ... , n. 
We have (cf. (l.l) and (1.2), Chapter VI) ri = cl' Vi~ • (Ci~)-l and 
8 j = dj r • u j r • (dir)-l. Notice that 

and similarly 
08. , ouo 
-' =d -'-
0Yi - i OYi 

(mody), 

(mod y). 

Thus, in checking (ii), we need only consider occurrences of Xj in Vi~ and Yi 

in uib• We shall say that the overpass Ai is adjacent to the underpass Bi if 
they have an endpoint in common, i.e., if they occur consecutively along K. 
The different cases may be classified as follows: 

CASE (1) The overpa88 A i neither C1'Osses over nor is adjacent to the ~mderpass 
B i . In this case, v/r does not contain Xi and u/ does not contain Yi' Hence, 

(mod y). 

CASE (2) The overpass Ai crosses over Bi at least once, but ,is not adjacent to 
B i . vVe include the possibility that Ai crosses Bi several times. However, 

each intersection of Vi with & Aj contributes a monomial term to ori , and 
~. ~. ~ 
~ is just the sum of these contributions. Similarly, -' is the sum of the 
~ ~ 
monomials contributed by the intersections of ui and & B i . Thus we may 
study one crossing at a time. The situation at a single crossing of Bi by Ai 
is shown in Figure 60. 
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Then, 

Hence, 

Therefore, 

ri = c/r(efrx/Jfrx;-€gfr)(C/,)-I, 

s; = dl(hPy/k'''Yi-6lP)(dl)-1. 

aari (xi - 1) == cbfr (l - fll)(x/ - 1) + ... 
xi 

as. 
-a ' (Yi - 1) - dlhP(l - kP)(y/ - 1) + ... 

Yi 

By the lemma (3.3), 

Hence, 

and it follows that 

ec/,e~ == (dlhP)-l 

ef~ == Yi-6 

exj == (kP)-l 

(mod oy), 

(mod oy), 

(mod oy). 

(mod oy), 

(mod oy). 

(mod oy), 

(ar. ) as· 
e -' (x; - 1) - -' (y, - 1) 

ax; aYi 
(mod oy). 
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CASE (3) The overpass Aj is adjacent to B i . The situation is illustrated in 
Figure 61. 

We have 

Hence, 

Figure 61 

r; = c/f(e~x/f~)(Ci#)-l, 

Sj = d/(gt>y/ht>)(d/)-l. 

ar. " " -a ' (Xj - 1) = c/e"(x/ - 1) + ... , 
xi 

as. 
-a ' (Yi - 1) = d/gb(y/ - 1) + .... 

Yi 

By the Lemma (3.3), 
O(c/el1 ) == (d/gt»-l (mod ay), 

Ox/, - Yi -£ (mod ay), 

and so 

(ar. ) o -' (xi - 1) _ (d/gt>)(y/ - 1) + ... aXi 
(mod ay). 

We have already observed in Case (2) that the contribution from the crossings 
of Ai over Bi yield terms that cancel in pairs (mod ay). It follows that 

(ar. ) as· o -' (xi - 1) = -' (Yi - 1) aXi aYi (mod ay). 

and the proof that (x : r) and (y : s) are dual presentations is complete. We 
have proved 

(3.4) Corresponding over and under presentations of the group of a knot are 
dual presentations. 
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The invariance under conjugation of the elementary ideals of a knot group, 
i.e., (2.3), is an easy corollary of Theorem (3.4). In view of (3.1) and (3.2) and 
Condition (i), we have the stronger result 

(ari) _ as; 
() - =-ax; aYi (mod oy) i,j=l,···,n. 

That is, if A and B are the Alexander matrices of (x : r) and (y s), 
respectively, then 

(3.5) ()**A = Bt. 

(The t indicates the transposed matrix.) The transpose of a square matrix 
obviously has the same elementary ideals as the original. Let us denote the 
kth elementary ideals of (x : r) and (y : s) by E~l) and E~2), respectively. 
The kth ideal of an arbitrary matrix M we denote by Ek(M). Thus E~l) = 

Ek(A) and E~2) = Ek(B). Finally, therefore (cf. Chapter VII, (4.3) and (4.5)), 

E~2) = ()**EP) = Eijjt) 

= Ek(B) = Ek(B) 

-E(2) 
- k' 

Hence Theorem (2.3) of this chapter is proved. 

EXERCISES 

I. Show that there exists an automorphism of the group G of the clover
leaf knot that induces conjugation on the group ring of the abelianized group 
G/G'. 

2. Use the result of Exercise 1 to prove directly (i.e., without using dual 
presentations) that the elementary ideals of the group ofthe clover-leaf knot 
are invariant under conjugation. 

3. Prove directly (i.e., without using dual presentations) that the elemen
tary ideals of any invertible knot are invariant under conjugation. 

4. Show that the Alexander polynomial Ll(t) of any knot can be written in the 
form 

Ll(t) = th + c1th-1(l - t)2 + c2th- 2(1 - t)4 + ... + ch(l - t)2h, 

and that, conversely, given any set of integers c1, ... , Ch there is a knot whose 
Alexander polynomial is 

h 

tIL + .2 cith- i(l - t)2i. 
i~l 

5. Prove that there is no knot whose group is 

1 x,y : xyx-1yx = yx-1yxy I. 
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6. Prove that ~(-1) is always an odd integer. 

7. If the Alexander polynomial ~(t) of a knot is of degree 2h and E is a 
complex number on the unit circle, show that ~(E)/Eh is real. 

8. If the Alexander polynomial ~(t) of a knot is of degree 2h and w is a 
primitive cube root of unity, show that ~(W)IWh is an integer. 

9. (See Exercise 8.) Show that ~(W)IWh = ~(w2)lw2h, and hence that 
t.(W)~(W2) is the square of an integer. 

10. Prove similarly that if i is a primitive fourth root of unity, then 
~(i)~( -i) is the square of an integer. 
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Differentiable knots are tame. Let K be a knot in 3-dimensional space R3 
whieh is rectifiable and which is given as the image of a periodic vector
valued function p(s) = (x(s), y(s), z(s)) of arc length s whose derivative 
p'(s) = (x'(s), y'(s), z'(s)) exists and is continuous for aIls. The period l is the 
length of K. We shall prove that K is tame, i.e., equivalent to a polygonal 
knot. 

We denote the norm, or length, of a vector P E R3 by II P II and the dot 
product of two vectors PI> pz E R3 by PI . Pz. If neither PI nor pz is zero, the 
angle between them is given by 

P 'P x (p P ) _ cos-1 1 2 
'j... l' Z - II PI II II P2 II 

Consider any three parameter values so' sl' S2 which satisfy So :::;; sl < S2' 

From 

follows 

(1) 

where 

Since parametrization is made with respect to arclength, we have II p'(so) II = l. 
Hence, 

and so 
11 - II Q III :::;; II p'(so) + Q II :::;; 1 + II Q II, 

II p'(so) + Q II = 1 + q 

for some number q which satisfies I q I :::;; II Q II. Thus, 

(2) 

Choose an arbitrary positive E :::;; t. Since the derivative p'(s) is continuous 
and hence uniformly continuous, there exists <5 > 0 so that if I s - s' I < <5, 
then II p'(s) - p'(s') II < E. Accordingly, we impose the restrictions2 - So < <5. 
Then, 

L82 

(S2 - SI) II Q II = II (p'(u) - p'(so)) du II 
81 

and 

(3) I q I:::;; II Q II :::;; E. 

147 
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Dividing (I) by (2), we obtain 

(4) 

where 

P{S2) - P{S1) _ ' s P 
II P(S2) - P(S1) II - p ( 0) + , 

P = Q - qp'{so) . 

1 + q 

Since q ;::::: -€ ;::::: -t, we have 1/{1 + q) ::;: 2. Hence, 

(5) II P II ::;: 2 II Q - qp'{so) II ::;: 2(11 Q II + I q i) ::;: 4€. 

We shall draw two conclusions from the equations of the preceding para
graph. The first, an immediate corollary of (2) and (3), is the well-known fact 

(1.1) The ratio of chord length to arc length along K approaches 1 as the 
latter approaches O. 

The second conclusion is the principal lemma on which our proof of the 
tameness of K depends. 

(1.2) For any angle rI.. > 0, there exists 0 > 0 such that, for any s, s', u, u' 
in an interval of length 0 and such that s < s' and u < u', 

-t (p(s') - p(s), p(u') - p(u)) < rI... 

Proof. This lemma is a consequence of (4) and (5). For if 

then 

Hence, 

where 

Consequently, 

. {' '} So = mm s, s , u, u , 

p{s') - p(s) _ ' s P 
II p(s') - p(s) II - p ( 0) + , 
p(u') - p(u) _ ' s P' 

II p(u') - p(u) Ii - p ( 0) + , 

II P II ::;: 4€, 

II P' II ::;:4€. 

p(s') - p{s) p(u') - p{u) _ 
-=-'--:'----::~~ . = 1 + q, 
II p(s') - p(s) II II p(u') - p(u) II 

ij = p'(so)' (P + P') + p. P'. 

I ij I ::;: II P II + II P' II + II P II II P' II ::;: 8€ + 16€2, 

which can be made arbitrarily small. Thus, cos -t (p(s') - p{s), p(u') - p(u)) 
can be made arbitrarily near 1, and (1.2) follows. 

We now turn to the main argument that K is tame. For any two points 
p, p' E K, let arc (p,p') be the shorter arc length between them along K. 
Note that if Is - s' I ::;: l/2, where l is the total length of the knot, then 
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arc (p(s),p(s')) = Is - s' I. Consider the function f: K X K -+ R defined by 

, {II p - p' II/arc (p,p'), 
f(p,p) = 

1, 

P=f:-P', 

p=p'. 

We have shown that the ratio of chord length to arc length approaches 1 as 
the latter approaches O~ Consequently,fis continuous. Since it is positive and 
its domain is compact, it has a positive minimum value m. Thus, 

(6) II p - p' II :;:::: marc (p,p'), p,p'EK. 

We next select a positive angle lXo < 7Tj4 such that tan lXo < mj2. For 
this angle iXo, choose <5 in accordance with Lemma (1.2). Let n be a positive 
integer so large that ljn < <5j2, and select parameter values {S;}i~ _ ro such 
that s;+1 - s; = ljn. Notice that p(s;) = p(Sj) if and only if i == j (mod n), 
so that the set {p(s;.)}t= _ ro consists of exactly n points of the kIlot. For each 
s;, we form the double solid cone a; with apex angle lXo whose axis is the 
chord joining P(Si) and P(Si+l) (cf. Figure 62). 

Figure 62 

The following four propositions are corollaries of (1.2) and (6). 

(1.3) Adjacent cones intersect only at their common apex. 

Proof. Since Si+2 - 8; = (Si+2 - 8;+1) + (Si+1 - Si) < <5 it follows that 
the acute angle between the axes of the cones ai and ai+1 is less than lXo' which 
in turn is less than 7Tj4. The apex angle of the cones is lXo' Thus, there is no 
chance of intersection except at the apex. 

(1.4) If Si ::;;; S ::;;; si+l' then p(s) E ai. 

Proof. We have 

<9:: (p(s) - P(Si)' p(si+1) - P(Si)) < lXo' 

<9:: (p(si+1) - p(s), P(Si+1) - P(Si)) < lXo' 

whence (1.4) follows immediately. 
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(1.5) For every perpendicular cross section D of any cone Ci' there is 
exactly one s in the interval [Si,Si+1] such that p(s)ED. 

Proof. The existence of s follows from (r.4) and the continuity of the 
function p. To get uniqueness, suppose that s; ::.;; s < s' :::;;: Si+1 and that p(s) 
and p(s') lie on a single plane perpendicular to the axis of Ci . Then the angle 
<}: (p(s') - p(s), p(si+1) - P(Si)) must, on the one hand, be equal to '7T/2 and, 
on the other hand, be less than 1Xo. This is a contradiction. 

(1.6) Nonadjacent cones are disjoint. 

Proof. Suppose otherwise, i.e., we assume that there exist nonadjacent 
cones Ci and Cj and a point p in their intersection, cf. Figure 63. Let p(s) be 

Figure 63 

the point with Si ::.;; s ::.;; Si+1 on the plane which contains p and is normal to 
the axis of Ci . The analogous point for Cj is p(s'). Then, 

II p(s) - p II ::.;; (~) tan (J(o' 

and the same inequality holds for p(s'). Since Ci and Cj are not adjacent along 
I , 

K, we know that- ::.;; arc (p(s),p(s )). Thus, 
n 

II p(s) - p(s') II ::.;; 2 arc (p(s), p(s')) tan (J(o < marc (p(s), p(s')). 

This contradicts (6), and (1.6) is proved. 
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The proof that K is tame is virtually complete. It only remains to verify 
that, for each double cone Gi , there exists a homeomorphism hi of Gi onto 
itself which is the identity on the boundary of the cone and maps K n Gi 

onto the axis. In view of (1.4) and (1.5), the construction of such a mapping is 
not hard. Consider an arbitrary closed circular disc D with center Po' We 
include the possibility that D is degenerate, i.e., D = {Po}. For every interior 
point P of D, a mapping fJn,p: D ---'>- D is defined by mapping any ray joining 
P to a point q on the circumference of D linearly onto the ray joining Po to q 
so that p ---'>- Po and q ---'>- q (cf. Figure 64).,It is obvious that fJn,p is a homeo-

Figure 64. Perpendicular cross section of a cone 

morphism of D onto itself which leaves the circumference fixed and maps 
p onto Po' Furthermore, fJn,p(P') is simultaneously continuous in p and p'. 

Returning to the double cone, we consider an arbitrary point p E Gi • Let 
p(s) be the intersection of the knot K with the plane containing p and normal 
to the axis of Gi . This plane intersects Gi in a disc (degenerate at the end
points) which we denote by DB' The desired homeomorphism hi: Gi ---'>- Gi is 
now defined by 

hi(p) = fJns,p(8)(P)· 

The existence and uniqueness of p(s) as an interior point of D. are conse
quences of (1.5) and the proof of (1.4). The final step is the extension of the 
homeomorphisms hi to a single mapping h of R3 onto itself which is defined by 

h(p) = i {
p if pi U G;, 

hi(p) if p E Gi . 

That h is a well-defined homeomorphism follows from (1.3) and (1.6) and the 
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fact that the homeomorphisms hi are the identity on the boundaries of the 
cones. We conclude 

(I.7) THEOREM. The knot K is tame. 

There are two interesting ramifications of this theorem which are worth 
mentioning. The first is that the cones Ci can clearly be chosen arbitrarily 
small, i.e., so that the maximum diameter is less than any preassigned e. As 
a result, the knot K is what is called e-equivalent to a polygonal knot. For 
anye > 0, there is a homeomorphism h of R3 onto itself so that hK is polygonal 
and II h(p) - p II < e for all p E R3. Furthermore, h moves only points lying 
within a distance e of the knot. The second remark is that h is realizable by 
an isotopic deformation of R3. This is simply because the mapping gn.p is 
isotopic to the identity. Using vector notation, we may set 

gn,p,t = gn,t(p-po)+Po' 

Thus differentiable knots (as defined in the first paragraph of the appendix) 
are tame in the strongest possible sense. 

The question of when a knot is tame has been studied by several authors. 
For example Milnor1 defines the total curvature K of an arbitrarily closed curve 
and proves (among other results) that if the total curvature of a knot is finite, 
the knot is tame. He also shows that if a closed curve C is given as the image 
of a function p(s) of arc length s with continuous 2nd derivative, then K is 
given by the usual integral formula 

K = L II p"(s) II ds. 

1 J. W. Milnor, "On the Total Curvature of Knots," Ann. of Math. Vol. 52 (1950), 
pp.248-257. 
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Categories and groupoids. The tendency of modern mathematics to isolate 
almost any set of properties from its original context, to name, and to develop 
an abstract theory has produced an amazing vocabulary and array of defini
tions. Obviously, these definitions differ widely in the scope of their appli
cability and in the depth of the concomitant abstract theories. A few, like that 
of a group or of a topological space, have a fundamental importance to the 
whole of mathematics that can hardly be exaggerated. Others are more in the 
nature of convenient, and often highly specialized, labels which serve 
principally to pigeonhole ideas. As far as this book is concerned, the notions of 
category and groupoid belong to the latter class.1 It is an interesting curiosity 
that they provide a convenient systematization of the ideas involved in 
developing the fundamental group. 

A set C is a category if, for some pairs of elements rJ., {3 in C, a product rJ. • {3 
in C is d~fined which satisfies Axioms (i) and (ii) below. An element € in C 
is an identity if, for any rJ. in C, whenever €. rJ. (or rJ.' €) is defined, then 
€ • rJ. = rJ. (or rJ. • € = rJ.). 

(i) The product rJ.' ({3 . y) is defined if and only if (rJ. • (3) . Y is defined. 
When either is defined the associative law holds: 

rJ. • ({3 • y) = (rJ. • (3) • y. 

Furthermore, rJ. • {3 . Y is defined (parentheses are dropped by virtue of associa
tivity) if and only if both products tf. • {3 and (3 . yare defined. 

(ii) For any element rJ. in C, the1'e exist identities €1 and €2 in C such that 
€1 • rJ. and rJ. • €2 are defined. 

The reader will recognize that we have come across these properties 
before. In fact a fair amount of the material in the beginning of Chapter II 
can be summarized in the following: Both the set of all paths in a topological 
space X and the fundamental groupoid r(X) are categories. The mapping of the 
former category into the latter which assigns to each path a its equivalence class 
[a] is onto, product-preserving, and carries the identities of one category onto 
those of the other. 

We may now observe how the constructions carried out in our development 
of the fundamental group may be paralleled in abstracto. We prove first 

(II.I) For each rJ. in the category C, the identities €1 and €2 such that €1 • rJ. 

and rJ. • €2 are defined, are unique. 

1 The idea of a category plays a basic role in the axiomatic development of homology 
theory. In fact the definition and Lemma (11.1) above are taken directly from Chapter IV 
of S. Eilenberg and N. Steenrod, Foundations oj Algebraic Topology (Princeton University 
Press; Princeton, N.J., 1952). 
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Proof. Suppose there exist identities 101 and 101' in C such that 101 • 0.: and 
101' • 0.: are defined. Then 101' • (101 • 0.:) is defined since 101 • 0.: = 0.:. Consequently, 
101' • 101 is defined, and hence 101' = 101' • 101 = 101' Similarly 102 is unique. 

For any category C and identity 10 in C, we denote by C E the set of all 
elements 0.: in C such that 10 • 0.: and 0.: • 10 are defined. 

(1I.2) CE is a semi-group with identity 10. 

Proof. The product of any identity with itself is always defined. Hence, 
10 E C E' Consider next arbitrary elements 0.: and (3 in C E' Since 0.: • 10 and 10 • (3 
are defined, (0.:' 10) • (3 is defined, and (0.:' 10) • (3 = 0.: • (3. Thus, the product 
of any two elements of CE is defined. Since the associative law is known to 
hold, the proof is complete. 

The set of all p-based loops in X and the fundamental group 7T'(X,p) are, 
of course, both examples of sets CE in their respective categories. 

An element 0.:-1 in a category C is an inverse of an element 0.: if there exist 
identities 101 and 102 in C such that 0.: • 0.:-1 = 101 and 0.:-1 • 0.: = 102' 

(1I.3) The products 101 • 0.:, 0.: • 102' 102' 0.:-1, and 0.:-1 • 101 are defined. 

Proof. Since 101 • 101 is defined, the products 101 • 0.: • 0.:-1 and 0.: • a-I. 101 are 
defined. It follows that 101 • 0.: and 0.:-1 • 101 are defined. The analogous argument 
holds for 0.: • 102 and 102' 0.:-1 • 

(II.4) If an inverse exists, it is unique. 

Proof. Suppose (3 and (3' are inverses of 0.:. It follows from (1I.3) and (II.I) 
that the identities 101 and 102 whose existence follows from the assumption of 
the existence of an inverse of 0.: are uniquely determined by 0.:. Consequently, 
we have 

0.: • (3 = 0.: • fJ' = 101 and fJ . 0.: = fJ' . 0.: = 102' 

Since, by (II.3), 102' fJ' is defined, we have 

fJ' = 102 • (3' = fJ . 0.: • fJ' = fJ . 101 = fJ, 
and we are done. 

A groupoid is a category in which every element has an inverse. In view of 
(2.4) of Chapter II, it is apparent that the set r(X) of equivalence classes of 
paths in X does satisfy the requirements of being a groupoid. 

(II.5) If C is a groupoid and 10 is any identity, then CE is a group. 

Proof. Consider any 0.: in C E' Since C is a groupoid, 0.: has an inverse 0.:-1, 

and there exist identities 101 and 102 in C such that 

and the products 101 • 0.:, 0.: • 102' 102 • 0.:-1 , and 0.:-1 • 101 are defined. Since 0.: E CE, 
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however, the products € 0 IX and IX 0 € are defined, and we may therefore con
clude from (11.1) that € = €1 = €20 Consequently, IX-I E CEo This conclusion, 
together with (11.2), completes the proof. 

The abstract parallel of Theorem (3.1), Chapter II, also holds. The proof 
is in all essentials identical: 

(II.6) Suppose C is a groupoid, €l and €2 are any two identities in C, and 
IX is an arbitrary element of C such that €l 0 IX and IX 0 €2 are defined. Then, for any 
f3 in C El' the product IX-I 0 f3 0 IX is defined, and the assignment f3 ~ IX-I 0 f3 0 IX is 
an isomorphism of CE onto C . 

1 Eo 
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Proof of the van Kampen theorem. This is stated in theorem (3.1) of 
Chapter V. There are two things to be proved: 

(IILI) The image groups WPi' i = 0, 1,2, generate G. 

Proof. Consider an arbitrary non-trivial element (/. E G and a p-based loop 
a: [0, II a II ] -+ X representing (/.. Since (/. i=- 1, we know that II a II > 0. We 
construct a subdivision 

° = to < t1 < ... < t" = II a II 

such that! each difference ti - ti _ 1 is contained in at least one of the inverse 
images a-lXi' i = 0, 1,2. We then choose an index function fl mapping the 
integers 1, ... ,n onto 0, 1,2 such that 

i = 1,"', n. 

For each point ti , i = 0, ... , n, of the subdivision we select a path bi in X 
subject to the conditions: 

(i) bi(O) = p and bi( II bi II ) = a(ti)' 

(ii) If a(ti) = p, then bi(t) = p for all t. 

(iii) bi(t) E X I'(i) n X I'(H 1)' ° :0;; t :0;; II bi II and i = 1, ... , n - 1. 

Notice that Condition (iii) may be satisfied becauseXI'(i) n XI'(H1) is one of 
the subspaces Xo' Xl' and X 2 , and each of these is pathwise-connected. Next, 
considerpathsai : [O,ti - ti- 1] -+ X, i = 1, ... ,n, defined byai(t) = a(t + ti- 1 ). 

Clearly " 
a = II ai · 

i=l 

Since each product bi- 1 • ai . bi- 1 is defined and bo and b" are identity paths, 

" a ':::'. II bi- 1 • ai . bi- 1. 
i=l 

Each path bi- 1 • ai • bi- 1 is a p-based loop whose image lies entirely in X I'(i) and 
which, therefore, is a representative loop of w I'(i)(/.i for some (/.i E G I'(i)' Thus 

" 
(/. = II WI'(i)(/.i' 

i=l 

and the proof of (IIL1) is complete. 

1 S. Lefschetz, Algebraic Topology (American Mathematical Society Colloquium Publi
cations Vol. 27; New York, 1942), p. 37. 
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The second part of the van Kampen theorem is 

(III.2) If H is an arbitrary group and "Pi: Gi -+ H, i = 0, 1,2, are homo
morphisms which satisfy "Po = "Pl)l = "P2()2' then there exists a unique homomor
phism A: G -+ H such that "Pi = AWi, i = 0, 1,2. 

Proof. The uniqueness of A is no problem. If it exists, the relations 
"Pi = AWi , i = 0, 1,2, together with the conclusion of (IILI) imply that it is 
unique. The only question is of existence, and there is an obvious construction. 
Let IX be an arbitrary element of G. We have shown that 

So we define 

n 

IX = II W l'(i)IXi · 
i=l 

n 

AIX = II "P1'(i)IXi· 
i=l 

The hard problem is to prove that A is well-defined. If it is, we are finished; 
for the preceding formula implies both that A is a homomorphism and that it 
satisfies !Pi = AWi , i = 0, 1, 2. The problem clearly amounts to proving that, 
for any finite set of elements IXi E G I'(i) , where i = 1, ... , rand f-l is any 
mapping of the integers 1, ... , r into 0, 1, 2, then 

r r 

II WI'(i)IXi = 1 implies II "P1'(i)IXi = 1. 
i=l i=l 

Verification of this proposition is the objective of the remainder of the proof. 
We select representative loops ai E lXi' i = 1, ... , r. Then the product 

r 

a = II wl'(i)ai 
i=l 

is equivalent to the identity path. (For simplicity we shall denote an inclusion 
mapping and its induced homomorphism of the fundamental groups by the 
same symbol.) The equivalence is effected by a fixed-endpoint family {hs} 
or, what amounts to the same thing, a continuous mapping h: R -+ X, 
where 

R = [0, II a II ] X [0, 11, 
which satisfies 

h(t,O) = a(t), 

h(O,s) = h(t,l) = h( II a II, s) = p. 

i 

The vertical lines t = L II ak II, i = 1, ... ,r, provide a decomposition of 
k=l 

the rectangle R, and we consider a refinement 

° = to < tl < ... < tn = II a II, 
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into subrectangles R ij , so fine l that each Rij is contained in at least one of the 
inverse images h-lXi, i = 0, 1,2. Each subrectangle Rij consists of all pairs 
(t,s) satisfying the inequalities ti- l :s;; t :s;; ti and Sj_l :s;; S :s;; Sj' i = 1, ... , n 
and j = 1, ... , m. The subdivision has been chosen so fine that there exists 
an index function Y(i,j) such that 

hRij C Xvli,j)' i = 1, ... ,n and j = 1, ... , m. 

For each lattice point (ti,Sj)' we select a path eij in X subject to the conditions: 

(iv) The initial and terminal points of eij are P and h(ti,sj)' respectively. 

(v) If h(ti,sj) = p, then eij(t) = P for all t. 

(vi) The image of the path eij is contained in 

(Assume X'(i,j) = X ifi = 0 or n + 1, or ifj = 0 or m + 1.) 
j-l j 

(vii) If 1 II ak II :s;; ti- l < ti :s;; 1 II ak II, then the image of eiO is a 
k=l k=l 

subset of Xp.(j). 

Conditions (iv), (v), and (vi) are entirely analogous to (i), (ii), and (iii), 

Figure 65 

respectively; (vii) is an additional complexity. We next define paths, (cf. 
Figure 65) 

and set 

cij(t) = h(t + ti_l , Sj), 

dij(s) = h(ti' S + Sj_l), 

O:s;; :s;; ti - ti_V 

° :s;; S :s;; Sj - Sj-'-V 

aij = ei-l,j • cij . e ij- l , 

bij = ei,j-l • dij . eii- l , 

i = 1, ... ,n and j = 0, ... , m, 

i = 0, ... ,n and j = 1, •.. , m. 

It is a consequence of (vi) that the image points of the loops aij, bii , ai,j-I> and 
bi-l,J all lie in X'(i,J)' Hence, they define group elements ocij , Pi}' oc i /' and piJ', 
respectively, in G'(i,i)' The product ai,J-l' bii . aiJ-l . bi-=-\'j is contractible 
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(i.e., equivalent to the identity path) in X; moreover, since the image of Ri; 

as well as the images of the four paths lies in Xvii,;), the product is also con
tractible in X v (;,;)' We conclude that 

(1) 'f3 -1(f3 ')-1 1 (J.i; i;(J.ij ij =. 

The central idea in the proof of (III.2) is the fact that if group elements (J. E G; 

and f3 E Gj, i,j = 0, 1,2, possess a common representative loop, then 'lfi rx = 'lfif3. 
The proof is easy: Since Xi n Xi = X k for some k = 0, 1, or 2, each of 

the two inclusion mappings 
X '11 X '1. X 

i+-- k----? j 

is either an identity mapping or one of ()1 and ()2' As a result, the induced 
homomorphisms 

G '11 G '1. G 
i+-- k----? i 

must be consistent with the homomorphisms 'lfo' 'lfl> and 'lf2' i.e., 

'lfi'YJl = 'lfk = 'lfj'YJ2' 

The assertion that rx and f3 possess a common representative loop states that 
there exists a p-based loop c in X k such that 'YJlc E rx and 'YJ2C E f3. Thus, if c 
defines Y E Gk , we have 

'YJ2Y = f3. 
Hence, 

and the assertion is proved. 
Applying this result, we obtain 

(2) 

Now apply the homomorphism 'lfv(i,j) to (1). The equation obtained says that 
the result of reading counterclockwise around each Ri} under 'lfv(i,j) is the 
identity. Equations (2) show that edges of adjacent rectangles will cancel. 
It follows (by induction) that the result of reading around the circumference 
of the large rectangle R is the identity. Furthermore, only the elements along 
the bottom edge, s = 0, are nontrivial. We conclude, therefore, that 

j 

n 

II 'lfv(i,l) rxil' = 1. 
i=l 

Since each ofthe numbers 111 ak lI,j = 1, ... ,r, is a member of {tl' ... ,tn}, 
k=I 

there exists an index function i(j) such that itO) = ° and 

j = 1,"', r. 
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Then, as a result of Conditions (iv) and (v), we have 

i(j) 

II a iO ~ W p(j)a;, j = 1,···, r. 
i=i(j-1)+1 

By virtue of (vii), we may assume that the equivalence is in Xp(j). Thus, each 
loop a iO' i = i(j - 1 ) + 1, ... ,i(j), determines a group element IY.;' E G p(j) 

and 
i(j) 

II IY.;' = IY.;. 
i=i(j-1)+1 

Since lY.il' and IY./ possess a common representative loop aiO' it follows from 
our central assertion that 

i = i(j - 1) + 1, ••• , i(j). 

Finally, therefore, 

r (i(j) ) r (i(j) ) 
1 = II II "P.(i,l)lY.il' = II II "Pp(j)lY./ 

j=l ;=i(j-1)+1 j=l i=i(j-1)+1 

r (i(j) ) r 
= II "Pp(j) II IY./ = II "Pp(j)lY.j' 

j=l ;=i(j-1)+1 J=l 

and the proof of (III.2) is complete. 

The above proof of the van Kampen theorem can be used to prove a more 
general theorem,2 from which the present proof is virtually copied. Instead of 
regarding X as the union of just two subspaces Xl and X 2' we consider an 
arbitrary collection of pathwise-connected, open subsets Xi (i may range 
over any index set whatever) which is closed under finite intersections and 
which satisfies 

X= UXi 

P E nXi' for some p. 

Let Gi = 7T(Xi ,p) and G = 7T(X,p) and consider all homomorphisms 
0u: Gt ~ G; and Wi: Gi ~ G induced by inclusion (the existence of Oil 
presupposes that Xi C X;). Then, the conclusions of the van Kampen 
theorem hold: The groups W;Gi generate G, and, for any group H and homomor
phisms "Pi: Gi ~ H which satisfy "Pi = "P;Oi;' there exists a unique homomor
phism A: G ~ H s1lch that "Pi = AWi • 

This generalization may be used to calculate the fundamental group of the 
union of an increasing nest of open sets each of whose groups is known. This 
result can be used to obtain presentations of the groups of wild knots and 
other wild imbeddings.3 

• R. H. Crowell, "On the van Kampen theorem," Pacific J. Math. Vol. 9, No.1 (1959). 
pp.43-50. 

3 R. H. Fox and E. Artin, "Some Wild Cells and Spheres in Three·dimensional Space." 
Ann. of Math. Vol. 49 (1948). pp. 979-990. 



Guide to the Literature 

The literature of knot theory is scattered, and some of it is difficult reading. 
The only comprehensive book on the subject is [Reidemeister 1932], and the 
literature has more than tripled since then. The following notes are intended 
to help the student find some of the more easily accessible papers and to 
orient him in the field. For the most part, the papers quoted are recent ones. 
The references are to the subsequent Bibliography, which is a chronological 
listing. Such references as [Fox 1954], [Brody 1960'], and [Murasugi 1958 ii] 

refer respectively to the first, second, and third paper of the author within 
the year indicated. Many important earlier papers that are not quoted 
in the Guide can be found in the Bibliography and in the bibliographies 
of the quoted papers. 

The problem with which we have been concerned in this book is a special 
case of the problem of placement: Given topological spaces X and Y, what 
are the different ways of imbedding X in Y? The case that we have studied 
is X = 8 1, Y = R3. Its significance is that it is the simplest interesting case 
and that the methods used to study it have, mutatis mutandis, general 
validity. 

Thus we may always consider the group G = 71"( Y - X) of a placement 
X c Y. If this group is finitely presented it has Alexander matrices and 
elementary ideals [Fox 1954], but if the group cannot be finitely presented 
its Alexander matrices are infinite matrices and things get more complicated 
[Brody 1960'J. 

If X is a link of fl components, i.e., the union of fl mutually disjoint simple 
closed curves in Y = R3, the commutator quotient group GIG' is free 
abelian of rank fl' so that we must deal with L-polynomials in fl variables. 
If the link is tame, a polynomial ~(tl ' ... , tlJ can be defined even when 
fl 2 2, and it has properties analogous to the Alexander polynomial in one 
variable [Reidemeister and Schumann 1934, Fox 1954, Torres and Fox 1954, 
Hosokawa 1958, Fox 1960']. If X is just anyone-dimensional complex in 
Y = R3, then the group GIG', though free abelian, may no longer have a 
preferred basis, and this causes special difficulties [Kinoshita 1958', 1959]. 

A natural generalization of knot theory is the case X an m-sphere, or 
union of fl (2 2) mutually disjoint m-spheres, and Y = Rn (n > m). It is 
reasonably well-established that the case of a single m-sphere (knotting) is 
really interesting only if m = n - 2, while the case of several m-spheres 
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(linking) is not interesting unless 
n-l 

2 
::;; m ::;; n - 2 [M. Brown 1960, 

Stallings 1961, Zeeman 1960]. If m = n - 2, GIG' is free abelian of rank ft, 
and the theory is very similar to that of knots and links in R3 [Artin 1925', 
van Kampen 1928, Andrews and Curtis 1959, Fox and Milnor 1957, Terasaka 
1959, Zeeman 1960, Kinoshita 1961], however for n> 3 the reciprocal 
character of the polynomial/). no longer holds in general. Naturally the case 
n = 4 has received the most attention. If X is a surface other than S2 in 
Jl4, GIG' may have elements of finite order, and this causes new difficulties 
[Fox 1960', Kinoshita 1961']. Knots and links in arbitrary 3-dimensional 
manifolds have been considered [Blanchfield 1957, Brody 1960] although 
much remains to be done. This is an especially interesting case because of 
the possibility of applying it to the yet unsolved problem of classifying the 
3-manifolds. The group itself is a more powerful invariant than the poly
nomial, so naturally less is known about its properties [Fox 1948, Torres and 
Fox 1954, Rapport 1960, Neuwirth 1959]. 

Placement of surfaces, with or without boundary, in R3 has some inter
esting and difficult problems that are relevant to knot theory [Alexander 
1924, Fox 1948, Kyle 1955]. Especial attention should be paid to the Dehn 
lemma, whose solution was one of topology's recent important breakthroughs 
[Papakyriakopoulos 1957, Shapiro and Whitehead 1958, Papakyriakopoulos 
1958]. An immediate consequence of Dehn's lemma is the fact that a tame 
knot (in R3) is trivial if and only if its group is cyclic [Dehn 1910]. 

A simple and elegant construction shows that a tame knot can always be 
spanned by an orientable surface, and this fact can be used to give an es
pecially practical form of the Alexander matrix [Seifert 1934, Wendt 1937, 
Fox 1960]. 

One of the most important chapters of knot theory has to do with covering 
spaces. Unbranched cQvering spaces are described, for example, in the book 
of Seifert and Threlfall 1934, and the description of branched ones has been 
recently formalized [Fox 1957]. Every closed orientable 3-manifold is a 
branched covering space of S3 [Alexander 1919 together with Clifford 1877]. 
By means of the branched cyclic covering spaces of a knot (or link) new 
geometric meaning can be attached to the various aspects of the Alexander 
matrix, and even more powerful invariants can be defined [Seifert 1933', 
1935, Blanchfield and Fox 1951, Kyle 1954, 1959, Fox 1956, 1960]. 

The theory of companionship of knots includes the multiplication (com
position), doubling, and cabling of knots [Schubert 1953, 1954, Whitehead 
1937, Seifert 1949]. To multiply two knots you simply tie one after the other 
in the same piece of string. Under this operation the tame knot types form a 
commutative semigroup S in which factorization is unique [Schubert 1949]. 
In this semigroup only the trivial type has an inverse; this proves that it is 
impossible to tie two knots in a piece of string in such a way that they 'cancel'. 
The problem "Which knot types can appear when a (locally flat) S2 in R4 
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is cut by a hyperplane R3?" leads to a classification of knot types such that 
these classes of types, with multiplication induced from S, form a group 
[Fox and Milnor 1957, Terasaka 1959]. Not much is known, as yet, about 
this group. 

There are interesting problems of knot theory centered about knot
diagrams, i.e., regular projections of knots. Thus aUernating knots, i.e., those 
that have projections whose crossings are alternately under and over around 
the knot, have some surprising properties [Murasugi 1958, 1958', 1958", 
1960, Crowell 1959, 1959'], one of which virtually amounts to a pun: the 
Alexander polynomial of an alternating knot is alternating. The problem of 
recognizing from their diagrams whether two knots are equivalent is in 
general unsolved, but a method has recently been given for deciding from a 
diagram whether a knot is trivial [Haken 1961], and the solutions of similar 
problems for alternating knots and links were already known [Crowell 1959]. 
If a knot has a diagram in which there is only one overpass it ~s obviously 
trivial; those knots that have diagrams containing just two overpasses have 
been completely classified [Schubert 1956]. It is known that any tame knot 
has a certain kind of diagram called a plat [Reidemeister 1960J; the simplest 
case is that of a plat with four strings (Viergeflechte) and this has received 
some attention [Bankwitz and Schumann 1934]. 

The homotopy groups 7Tk (k = 1, 2, ... ) generalize the fundamental group 
7T = 7TI, so it is natural to examine the homotopy groups of Y - X for a 
placement of X in Y. It is now known [Papakyriakopoulos 1957] that 
7Tk(S3 - X) is trivial for k ~ 2 for any tame knot X, and that if X is a link 
7T2(S3 - X) is trivial if and ·only if X cannot be "pulled apart into two 
pieces". An earlier investigation into this problem led to some highly inter
esting algebraic problems but no general solution [Whitehead 1939, Higman 
1948]. If X is an (n - 2)-sphere in sn or a union of mutually disjoint 
(n - 2)-spheres in sn, then 7T2(sn - X) mayor may not be trivial and some 
interesting problems arise [Andrews and Curtis 1959, Epstein 1960]. 

The most venerable invariant of knot theory is the linking number of a 
link of two components; this was first considered over a hundred years ago 
[Gauss 1833]. Its value can be read from a diagram [Brunn 1892] or from its 
polynomial [Reidemeister and Schumann 1934, Torres and Fox 1954]. It has 
been generalized in various ways that deserve further study [Pannwitz 1933, 
Eilenberg 1937, Milnor 1954, 1957, Plans 1957]. 

Can the set of fixed points of a transformation of R3 of finite period p be 
a (tame) knot? This problem is unsolved, although some results on it have 
been obtained [Montgomery and Samelson 1955, Kinoshita 1958', Fox 1958]. 
A related problem concerns the knots that can be mapped on themselves by 
transformations of period p [Trotter 1961], and it is also only slightly solved. 

The connections between knot theory and differential geometry [Fary 
1949, Milnor 1950, 1953, Fox 1950] and between knot theory and algebraic 
geometry [Zariski 1935, Reeve 1955] deserve further exploration. 
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There is a bewildering array of papers on wild knots and on wildness, of 
which we can indicate only a sampling [Borsuk 1947, Fox and Artin 1948, 
Fox 1949, Blankinship and Fox 1950, Kirkor 1958, 1958', Bing 1958, 
Debrunner and Fox 1960, Brody 1960']. 

Finally we must mention the closely related theory of braids [Artin 1925, 
1947, 1947', 1950, Newman 1942, Markoff 1935, Weinberg 1939, Fox and 
Neuwirth 1962] and several provocative papers of mysterious significance 
[Fox 1958', Kinoshita and Terasaka 1957, Hashizume and Hosokawa 1958, 
Curtis 1959]. 

The standard table of (prime) knots of 9 or fewer crossings may be found 
in the book of Reidemeister, 1932, pp. 25, 31, 41, 70-72. The tables on pp. 
70-72 were extended by various workers in the 19th century up through 10 
crossings and through the alternating 11 crossings. The corresponding ex
tension of the table on p. 41 of ~(t) has been made by machine but has not 
yet been published. No corresponding tables of links have ever been made. 

The Ashley book of knots [Ashley 1944] is an immense compendium of 
knots, as the term is understood by sailors, weavers, etc. 'With a little 
patience one can find in it all sorts of provocative examples of knots and 
links. 
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