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Preface 

The aim of this book is to give the reader a general education in number 
theory, algebra and group theory and in the application of these parts of 
mathematics to computer science. The only prerequisite is knowledge of 
the elements of linear algebra and a certain mathematical maturity. 

The wide range covered - number theory, abstract algebra, modules, rings 
and fields, groups, Boolean algebra and automata - would not have been 
feasible if some parts of basic theory had not been left to the reader in 
the form of straight-forward exercises labelled R for Reader and referred 
to as proven results. Some of them serve to shorten some of the more 
barren stretches of definitions and simple properties of algebra. In others 
the reader is supposed to reap the fruits of mathematical theory himself. 
The authors hope that the serious purpose of these exercises will motivate 
the reader to work them through. The book also contains many ordinary 
exerCIses. 

The sections on computer science cover classical subjects like the cost of 
computing, pseudo-random numbers, the fast Fourier transform, algebraic 
complexity theory, shift registers and coding, counting of Boolean functions 
and the characterization of languages accepted by finite automata. 

We are indebted to Anders Melin for trying out our first draft in an 
algebra course. Dan Laksov and Johan Hastad read later drafts and saved 
us from many blunders. We also thank Nils Dencker for putting together 
(larsg.ty), a typesetting program selected from TEX. 

Lars Garding 1'orbjorn 1'arnbour 
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CHAPTER 1 

Number theory 

Number theory is the oldest branch of mathematics. In fact, counting 
was a necessity of even very primitive life. Counting without regard for the 
nature of the objects counted gave us the natural numbers 

N={1,2, ... }, 

the first mathematical model. In this chapter we shall study the simplest 
properties of divisibility, the primes, the Gaussian integers, and the alge­
braic numbers. 

1.1 Divisibility 

When a, b, c are natural numbers and a = bc, we say that b and c divide 
a or are divisors of a and that a is a multiple of band c. That b divides a 
is sometimes written as bla. 

Every natural number > 1 has at least two divisors, namely 1 and the 
number itself. These are the trivial divisors. A number is said to be prime 
if its only divisors are the trivial ones. The first primes are 

2,3,5,7,11,13,17,19,23, .... 

Note that 1 is not a prime. 

THEOREM. Every natural number> 1 is a product of primes. 

The proof (induction by size) is left to the reader. 
Our next theorem appears in Euclid's elements (300 BC). 

THEOREM. There are infinitely many primes. 

PROOF: Let Pl, ... ,Pn be n primes. Consider the number 

Pl·· ·Pn + 1. 

By the preceding theorem, there is a prime P and a natural number a such 
that 

ap = Pl .. . Pn + 1 

and hence 
ap - PI ... Pn = 1. 
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If P were one of the primes of the product, 1 would be divisible by P which 
is impossible. Hence, given any finite collection of primes, there is always 
a new one and this proves the theorem. 

R. Every prime> 2 is odd and hence of the form 4k + 1 or 4k + 3 with k 
an integer. Prove that there are infinitely many primes of the form 4k + 3. 
(Hint. Let q = Pl .. . Pn be a product of such primes. Factor 4q + 3.) 

Remark. Dirichlet proved in 1837 that every arithmetic progression ak + 
b, where k = 1,2, ... contains infinitely many primes when a and bare 
natural numbers which have no non-trivial common factor. 

Modules 

Let Z be the set of integers, 

Z = { ... , -3,-2, -1,0,1,2,3, ... } 

The notion of divisibility carries over to all integers which are not zero 
with the difference that the trivial divisors of an integer a are ±a and ±1. 
A non-empty subset M of Z is said to be a module or, more precisely, a 
Z-module, if 

a,b EM=} za + yb EM 

for all integers z and y. An example is the set Za of all integral multiples 
of a fixed integer a. Another example is the set Za+Zb of all numbers of 
the form za + yb with z and y arbitrary integers. 

R. Show that the definition of a module M amounts to M not being 
empty and 

a, b EM=} a - b E M. 

(Hint. Show first that M contains 0 and with every a also -a.) 

We shall now prove that every module M except zero has the form Zc 
for some natural number c. In fact, let c be the least positive number in 
M, and consider the module Zc contained in M. Marked out on the line, it 
appears as a grid of equidistant points as in the figure below. For the next 
few lines, the reader is referred to this figure. 

c.x u. c.(x+1) 
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If u is any integer outside Zc, there is an integer x such that u is strictly 
between xc and x(c + 1). In particular, u - xc is strictly between 0 and 
c. Hence, if u were also in M, M would contain u - xc contradicting the 
definition of c. Hence M = Zc. This proves the first part of our next 
theorem, whose second part is left to the reader. 

THEOREM. To every pair of natural numbers a,b there is a unique natural 
number c such that 

Za+Zb = Zc. 

The number c divides a and b and every number with this property divides 
c. 

The number c is called the greatest common divisor (GCD) of a and b, 
and it is denoted by (a,b). We say that a is prime to b (and b prime to a) 
if (a,b)=1. The same situation is also described by saying that a and bare 
coprime. 

R. Prove that if (a,b)=1, then xa+yb = 1 for some integers x and y (and 
conversely). 

R. Prove that if p is prime and p divides a product ab, then p divides a 
or b. (Hint. Show that p divides b when (p,a)=1.) 

Powers pR, n > 0 an integer, of a prime p are the primary numbers. It 
follows from our last R that two primary numbers are coprime unless the 
corresponding primes are equal. 

R. Prove the fundamental theorem of arithmetic: The factorization of 
a natural number > 1 into primes is unique apart from the order of the 
factors. (Hint. Any natural number is obviously a product of primary 
numbers belonging to different primes. Show that such a primary number 
is the largest power of the corresponding prime which divides the number 
in question.) 

R. Show that a natural number a divides another one b if and only if 
every primary number dividing a also divides b. 

Euclid's algorithm 

Let a> b > 0 be natural numbers. To find their greatest common divisor, 
one employs Euclid's algorithm whose first step is 

S: (a, b) -+ (b,c) 

where r ~ 0 and < b is the remainder term when a is divided by b, a = kb+r. 
It is obvious that any number which divides a and b also divides band r 
and conversely. In the second step of the algorithm, the pair (b, r) replaces 
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(a, b) and so on for the following steps. The algorithm ends when a pair 
(e,O) appears. The number e is then the greatest common divisor of a and 
b. In fact, by the preceding remark, every natural number which divides e 
also divides a and b and conversely. 

Running the algorithm backwards produces in the end numbers :c and 
y such that a:c + by = e. In fact, each member of a pair in the algorithm 
is a linear combination with integer coefficients of the members of the pre­
ceding pair and a linear combination of linear combinations is still a linear 
combination. 

Exercise 

Show that if a = 301, b = 211, then Euclid's algorithm stops after 6 steps 
and that the two numbers are coprime. Also find numbers :c and y such 
that 301:c + 211y = 1. 

R. Bases for the natural numbers. Let q > 1 be a natural number. Using 
Euclid's algorithm and induction, prove that every natural number a has a 
unique expansion 

where 0 ~ aj < q and n is the least number k with a < qH1. 

R. Let (b,e), (e,d), (d,e) be three consecutive pairs of Euclid's algorithm. 
Prove that d < b/2 and deduce from this that if an instance ofthe algorithm 
has 2n or 2n + 1 pairs and first element a, then 2n < a. 

R. Let the pairs (ak+1' arc), (arc, arc-t) for k = 0, ... , N -1 be consecutive 
pairs of an instance of Euclid's algorithm. Prove that arc ~ brc for all k where 
the brc are the Fibonacci numbers defined recursively by bo = 0, b1 = 1 and 
bk+1 = brc + brc- 1 for k = 2,3, .... (Hint. Use that ak+1 ~ arc + arc-1') 

Exercises 
1. Show that the equation 

Ze = Zm1 + ... + Zmn 

with integers m1, .. " mn implies that e is their greatest common divisor. 

2. Find integral solutions of 5:c + 73y = 1, of 112:c + 6y = 2 and of 
112:c + 6y = 4. 

3. Show that if the integers :c, y satsify a:c + by = 1, with integral a, b, e, 
then every other solution can be written :c +tb/d,y -td/b where d = (a, b) 
and t is an arbitrary integer. 

4. Show that (a,e) = 1, (b,e) = 1 implies (ab, e) = 1. 
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1.2 Congruences 

Let m be a fixed integer. We say that x is congruent to y modulo m (or 
mod m for short) if m divides x - y. This is written as 

x == y mod m or x == y( m). 

All numbers congruent to a given number x mod m form the congruence 
class x + Zm of x mod m. Computation mod m can be thought of as 
computation with these congruence classes as elements. A number in a 
congruence class is said to represent the class. 

R. Show that there are precisely Iml congruence classes mod m. 
R. Show that x == y(m) and z == u(m) implies that x ± z == y ± u (m) 

and zz == yu(m). 

Note. Let C(x) = x + Zx be the congruence class of x. The exercise 
above shows that the definitions 

C(x) ± C(y) = C(x ± y), C(xy) = C(x)C(y) 

of sums, differences, and products of congruence classes are independent of 
the choice of representatives. It follows that C(O) and C(l) serve as zero 
and 1 for the congruence classes, and it is a simple but somewhat tedious 
matter to verify that the associative laws for addition and multiplication 
and also the distributive law hold for congruence classes precisely as for the 
integers (see section 3.1). 

R. Given an integer a, show that there is another integer b such that 

ab == 1 (m) 

if and only if a and m are coprime, (a, m) = 1. 

A number b with the property above is called an inverse of a mod m 
and denoted by a-l(m). An inverse is unique mod m, for if ab == l(m) 
and ac == l(m), then a(b - c) == Oem), so that, since (a, m) = 1, we have 
b - c == Oem). Note that when m is prime, then every a not == Oem) has an 
inverse mod m and that if (a, m) = 1, then the congruence ax == y(m) has 
the unique solution x == a-ly(m). In this sense, the first congruence has 
been divided by a. 

Simultaneous congruences 

Consider simultaneous congruences 
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where ml, ... , mn are pairwise coprime, i.e., (ma, mj) = 1 unless i = j. 
These congruences can be solved step by step. In fact, according to the 
first one, x == al + mlY for some Y so that, substituting into the following 
ones, 

mlY == a2 - al (m2), ... , mlY == an - al (mn), 

where we can divide by ml since this number is prime to m2 etc. The result 
is r - 1 congruences of the form above with Y as unknown. But we can also 
solve the congruences in one stroke by a method known as the 

Chinese remainder theorem 

Put M = ml ... mn and Mk = M/mk. Clearly Mk and mk are coprime 
for all k. Hence there are solutions Ck of the congruences 

for all k. The number 

solves the congruences above. 

R. Verify this last statement. Show that the congruences are simulta­
neously solvable also when the left hand sides are replaced by b1x, ... , bnx 
and (bk' mk) = 1 for all k. Show that any solution is unique mod M. 

Example 
For x == 1 (2), x == 2 (3), x == 3 (5), the Mk are in order 15,10,6 and 

the Ck are 1,2,3 and we find that x = 23 satisfies all the congruences. The 
general solution is 53 + 30k with k arbitrary. 

R. There is another way of representing the solution of the Chinese re­
mainder problem above. Put 

with bk chosen so that Ek == l(mk). Prove that EjEk == O(M) when j ::/= k 
and == l(M) otherwise. Prove that if a is given and a == ak(mk), then 

a == LEkak mod M 

R. Say that the ak in this expansion are the coordinates of a. Prove that 
if b has the coordinates bk, then ak ± bk and akbk are the coordinates of 
a ± band ab, respectively. 
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Zeros of a polynomial modulo a prime 

A polynomial 
!(x) = ao + alX + ... + anxn 

is said to be unitary or monic of degree n when an = 1. 

7 

THEOREM. When p is a prime, and !(x) is unitary with integral coeffi­
cients, the equation !(x) == O(p) has at most n solutions mod p. 

Note the fact that x 2 == 1(8) has 4 solutions mod 8, namely ±1, ±3. 
PROOF: The theorem is obvious for n=1. Let a be any integer. Writing 
x = x - a + a and using the binomial theorem, we see that there is a unitary 
polynomial 9 with integral coefficients such that 

!(x) = (x - a)g(x) + !(a) 

If !(a) == O(P), we have !(x) == (x - a)g(x)(p) for all integers x. Since p is 
a prime, !(x) vanishes mod p if and only if x - a or g(x) or both vanish 
mod p. Hence an induction with respect to the degree finishes the proof. 

Exercises 
1. Discuss the congruence above when (a, b) > 1. Show that it has a 

solution if and only if (a, b) divides c. 
2. Find all integers x for which i) x == 2(4), x == 4(5) ii) x == 1(2), x == 

2(3), x == 3(5). 
3. Let !(x) be a polynomial with integral coefficients and let the integers 

m and n be coprime. Show that the number of roots mod mn of the 
equation !(x) == O(mn) is the product ofthe number of roots mod m and 
mod n. 

1.3 The theorems of Fermat, Euler, and Wilson 

For a natural number m, let <p(m) be the number of integers between 0 
and m which are prime to m. The function <p is called Euler's function. 

Example 
<p(2) = 1, <p(3) = 2, <p(6) = 2, <p(7) = 6. When p is a prime, then 

<p(p) = p - 1. 

THEOREM. (Euler - Fermat) If a and m are coprime, then 

a'P(m) == 1 (m). 

PROOF: Let ml, ... ,mk be the integers between 1 and m which are prime 
to m, so that k = <p(m). Consider the numbers 
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They are all different mod m, for if ami == amj, i.e. a(mi - mj) == O(m), 
then m must divide mi - mj since (a, m) = 1. Hence mi == mj(m), and 
the numbers above are the same mod m as the numbers m1, ... , mk. Mul­
tiplying we get 

k _ _ ( ) 
a m1 ... mk = am1 ... amk = m1 ... mk m. 

Here the product on the right is prime to m so that, dividing by it, we get 
the desired result. 

COROLLARY. (Fermat's Little Theorem) Ifp is prime and a is not divisible 
by p, then 

aP- 1 == 1 (p). 

Note. Multiplying by a we get 

aP - a == 0 (p), 

a formula that holds for all a. It implies Fermat's theorem, for if a is not 
divisible by p, then it has an inverse b mod p. Multiplying by b, the result 
follows. 

R. Prove our last formula in another way by noting that (a + b)P == 
aP + bP mod p when p is a prime and using induction. 

COROLLARY. (Wilson's Theorem) When p is a prime, then 

(p - 1)! == -1 (p). 

PROOF: Since the equation xp - 1 -1 == 0 (p) has the solutions 1,2, ... ,p-1 
and no others, 

xp - 1 - 1 == (x - 1)(x - 2) ... (x - p + 1) mod p 

for all integers x. Putting x = 0 proves the corollary. 

R. Prove the converse of Wilson's theorem. 

Exercises 
1. Verify that 310 == 1 (19) by explicit calculation. 
2. Compute cp(6), cp(32), and cp(18) and verify that Euler's theorem holds 

for m = 6 and 32 and some a > 1. 

Euler's function cp has some remarkable properties. We complete its 
definition by putting cp(1) = 1. 
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THEOREM. When q = pI: is primary and m and n are coprime, then 

<p(q) = q(l-l/p), <p(mn) = <p(m)<p(n). 

Note. It follows that 

<p(m) = m IT(1-1/p) 

where m is any integer> 1 and p runs through the prime numbers dividing 
m. 

Example 
<p(20) = 20· (1/2) . (4/5) = 8. 

PROOF: The divisors of q are the integers p, 2p, ... ,q which are q/p in 
number. Hence 

<p(q) = q - q/p = q(l - l/p) 

which proves the first part of the theorem. To prove the second part con­
sider integers of the form 

z =mz+ny 

where z and yare integers. If such a number is a multiple of mn, then 
zm == 0 (n) and yn == 0 (m) so that z == 0 (n) and y == 0 (m) since m and 
n are coprime. Next, let Z be the set integers z where z runs through the 
integers 1 to nand y through the integers 1 to m. Then Z has mn elements 
and, applying the result above to the differences of two integers of Z, we 
see that all elements of Z are incongruent mod mn. Hence they represent 
all congruence classes mod mn. Now an integer is prime to mn if and only 
if it is prime to both m and n. Hence an integer z in Z is prime to mn 
if and only if y is prime to m and z is prime to n. It follows immediately 
that <p(mn) = <p(m)<p(n). 

R. Show that m = E <p(d) where d runs through all divisors of m. (Hint. 
Compute explicitly when m is a primary number and go from there.) 

Moebius's Inversion Formula 

Euler's function has an interesting connection with a function 1'( n) from 
the natural numbers defined by Moebius. It is defined to be zero unless n 
is a product of k separate primes, in which case it equals (_1)1:. Hence it 
has the following properties 

J.t(mn) = J.t(m)J.t(n), J.t(p2) = 0, J.t(p) = 1, 1'(1) = 1 

where m, n are coprime and p is prime. 
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R. Prove that EJt(d) = 0 when d runs through the divisors> 1 of a 
number n > 1. (Hint. It suffices to consider the case when n is the product 
of k separate primes. It then reduces to the identity (1 - 1)1: = 0.) 

THEOREM. (Moebius's Inversion Formula) Suppose that f and g are real 
functions defined on the positive divisors of a natural number n. Then the 
following two formulas, where d runs over the positive divisors of n, are 
equivalent, 

f(n) = L:g(d), g(n) = L:Jt(d)f(n/d). 

Note. When f = g = I{J is Euler's function, we know the first formula to 
be true. The second one is the announced connection between I{J and Jt. 

R. Prove the inversion formula by direct verification using the previous 
exercise. (Hint. That the second formula follows from the first is rather 
direct. To prove the first formula from the second, write the first formula 
as f(n) = Eg(n/d).) 

Orders mod m 

The set Pr( m) of integers prime to a given integer m =1= 0 has some 
interesting properties. 

R. Let a in Pr(m) be given. Prove that all integers k such that al: == l(m) 
form a module. 

The order of an integer a in Pr(m), denoted by ord(a), is defined as the 
least integer n > 0 for which an == 1(m). By the preceding exercise, all 
integers k such that al: == l(m) are integral multiples of ord(a). 

R. Prove that the orders of Pr(15) are 1,2,4 and that 2 has order 20 = 
1{J(25) in Pr(25). 

THEOREM. When a and b are in Pr(m), the order ofab divides ord(a)ord(b) 
and there is equality if and only if the orders of a and b are coprime. All 
the orders divide the maximal order of integers in Pr( m). 

PROOF: Let j = ord(a), k = ord(b). Since (ab)il: == 1(m), ord(ab) divides 
jk. If (ab)t == 1(m), then atl: == 1(m) and btj == 1(m) and hence t is a 
multiple of j and k. When j and k are coprime, this means that t is a 
multiple of jk so that ord(ab) =ord(a)ord(b). The last statement of the 
theorem follows if we can prove 

LEMMA. Let a,b be in Pr(m). Unless ord(b) divides ord(a), there is an 
element c in Pr(m) such that ord(c) > ord(a). 

PROOF: Let n = ord(a), k = ord(b). Since k does not divide n, there is 
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a prime p and a power q ~ p of p such that pq divides k and q divides 
n but pq does not divide n. Put n = qn', k = pqk'. Then the orders n' 
and pq of a' = a9 and b' = bk are coprime. Hence the order of c = a'b' is 
n'pq >ord(a). This finishes the proof. 

Remark. The set CPr( m) of congruence classes of the elements of Pre m) 
has <p(m) elements and constitutes a commutative group under multipli­
cation (see section 3.1). The properties proved above use only the group 
axIOms. 

In an appendix to this chapter we shall list all m for which Pr(m) is 
cyclic, i.e., consists mod m of all powers of a single element. An equivalent 
condition is that the maximal order of the elements of Pr(m) is <p(m). 

1.4 Squares and the quadratic reciprocity theorem 

An integer a is said to be a square modulo another integer m if there is 
another integer b such that b2 :: a mod m. The number a is also said to 
be a quadratic residue mod m. Since the numbers 1 and 0 are their own 
squares, all integers are squares mod 2, but the study of squares modulo a 
prime p > 2 is a non-trivial matter. For p > 2 and q = (p - 1)/2, we have 

aP- 1 - 1 = (a9 + 1)(a9 - 1). 

Hence at least one of the factors is :: O(p). 

THEOREM. If a prime p does not divide a natural number a, then 

a(p-l)/2 :: 1 or - 1 mod p 

according as a is or is not a square mod p. There are as many squares as 
non-squares mod p. 

PROOF: If a is a square, a :: b2(p), we have the first case by Fermat's 
theorem. If a is not a square, collect the numbers 1, ... p - 1 in pairs x, x' 
such that xx' :: a(p). Note that x and x' are different mod p since a is not 
a square. We get q = (p - 1)/2 such pairs and hence 

(p-l)!::aQ (p) 

so that the theorem follows from Wilson's theorem. 

Example 
It follows from the theorem that -1 is a square mod p if and only if 

p:: 1(4). 
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For p a prime and (a,p) = 1, let the Legendre symbol (alp) (classi­
cal notation (~)), denote 1 when a is a square mod p and -1 when a is 
not a square mod p. With this notation, the previous theorem says that 
a(p-l)/2 == (alp)(p) when P is a prime and a is prime to p. The following 
important result will be proved in the third section of chapter 4. 

THE QUADRATIC RECIPROCITY THEOREM. Suppose that p and q are odd 
primes. Then 

(plq)(qlp) = (_I)(P-l)(Q-l)/4. 

Note. In other words, the product (plq)(qlp) equals 1 unless both p and 
q are == 3 mod 4, in which case it equals -1. 

Note. This result, first proved by Gauss in 1801, is one of the most 
famous and beautiful results in number theory. 

R. Define (alp) to be zero when P divides a. It is obvious that (alp) = (blp) 
when a == b (p). Prove that (ablp) = (alp)(blp). (Hint: This amounts to 
the statement that the product of two squares mod p is a square mod P 
etc. At one point it is useful to know that there are as many squares as 
non-squares. ) 

R. Verify that (-lip) = (_I)(p-l)/2 and that (aI2) = 1 for all odd integers 
a. 

Examples 
Any odd prime has the form 6k + f where f = ±l. Hence (pI3) = 

(6k + (13) = (fI3) = c, for 1 is a square mod 3 but not -1. Similarly, 
p == ±1 or ±2 mod 5. In the first case, (pI5) = 1, in the second (pI5) = -1. 

Exercise 
Do the same computations with 7 taking the place of 5. 

The quadratic reciprocity theorem has the following complement: 

THEOREM. When p > 2 is a prime, (2Ip) = (_I)C, where c = (p2 - 1)/8. 

Note. The proof below is similar to one of Gauss's proofs of the quadratic 
reciprocity theorem. 

Note. Using this result and the quadratic reciprocity theorem, we can 
compute any (nip) with p prime. In fact, reducing n modulo p, we can 
assume that 1 ~ n < p and then factor n into powers of primes. Since 
(ablp) = (alp)(blp), this reduces the problem to the quadratic reciprocity 
theorem and the computation of (2Ip). 

PROOF: We are going to consider the numbers C = {I, 2, ... , (p - 1)/2}, 
whose sum is c = (p2 - 1)/8, and the set 2C = {2,4, ... ,p - I}. Let 
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A = {a1,"" ar } be the numbers of 2C which are> (p - 1)/2 and let 
B = {b1, ••• , bt } be the others. Then the numbers 

are all > 0 and :$ (p-l)/2 and they form a permutation of the numbers in 
C. In fact, the first r ones are odd and different and the others are even and 
different. Now let 1I"(A) be the product of all the elements of A and the same 
for the other sets. By the construction of D, (-ly1l"(D) == 1I"(A U B) mod 
p. On the other hand, AU B = 2C, and hence 1I"(A U B) = 2(1'-1)/211"(C). 
Hence 

1I"(A)1I"(B) == 2(1'-1)/211"(C) == (-ly1l"(C) mod p. 

By the first theorem of this section, 2(1'-1)/2 equals (2Ip) mod p. Hence, 
since 11"( C) is not divisible by p, 

(2Ip) = (-IY· 

Next, let ITI denote the sum of the elements of a set T. We have ICI = c 
and 

21CI = IAI + IBI, 101 = pr -IAI + IBI 

so that, subtracting the two, c = ICI = -pr + 21AI == -pr == r mod 2. It 
follows that c == r mod 2 and this proves the theorem. 

The Jacobi Symbol 

Jacobi extended the Legendre symbol by putting 

when a is prime to N and N is the product of the primes P1, ... ,Pt, which 
need not be different. This symbol inherits from the Legendre symbol the 
multiplicative property 

(abIN) = (aIN)(bIN) 

and if a is a square mod N, then a is a square modulo every prime p which 
divides N and hence (aIN) = 1. But (aIN) = 1 is no guarantee that a 
is a square mod N. We have, for instance, (213) = (215) = -1 so that 
(2115) = 1, but z2 == 2(15) implies, for instance, z2 == 2(3). 

The utility of the Jacobi symbol stems from its multiplicative property 
and the following partial extension of the quadratic reciprocity theorem. 
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THEOREM. Let P and Q be odd, positive and coprime. Then 

R. Deduce this theorem from the two preceding ones by showing that 
f( P) == (P -1) /2 mod 2 has the property that f( P l P2) == f( Pt} +f( P2) mod 2 
when Pl and P2 are odd and that f(P) == (P2 - 1)/8 mod 2 has the same 
property. (Hint. Write odd numbers as 4k + 1 or 4j + 3.) 

Note. By this theorem and the property of the Jacobi symbol that 
(PIQ) = (RIQ) when P == R mod Q, any Jacobi or Legendre symbol can be 
computed without factoring into primes. Example: since 25 has the form 
4k + 1, (25163) = (63125) = (13125) = (25113) = (12113) = (2113)2(3113) = 
(1313) = (113) = 1. In the next chapter the Jacobi symbol will appear in a 
primality test. 

Exercises 
1. Show that (3173) = 1 and that (17173) = -1. 
2. Show that 2 is a quadratic residue of every prime of the form 8n ± 1 

but not a quadratic residue of the primes of the form 8n ± 3. 
3. Show that there are infinitely many primes of the form 4k + 1. (Hint. 

Let Pl, ... ,Pn be such primes and put N = 4(Pl .. . Pn)2 + 1. If P is a prime 
dividing N, then -1 is a square mod p.) 

1.5 The Gaussian integers 

Number theory has many objects which are called integers without being 
the usual or rational integers. Complex numbers of the form a + ib where 
a and b are rational integers are called Gaussian integers. The set of these 
numbers is denoted by Z[i]. It is clear that sums, products and the negatives 
of Gaussian integers are Gaussian integers. Divisibility is defined in the 
natural way, i.e. x divides y if there is a Gaussian integer z such that 
y = xz. The concept of a prime number can be transferred to the Gaussian 
integers, but not without surprises. There are rational primes, i.e. primes in 
Z, which are not primes in Z[i], e.g., 5 = (2 + i)(2 - i) and 2 = (1 + i)(l- i). 
When x a + ib is a Gaussian integer, let N (x) be its absolute value 
squared, 

N(x) = Ix l2 = a2 + b2. 

It is clear that N(xy) = N(x)N(y). If N(x) = 1, x is called a unit. 
Units are not considered to be primes. The following exercises are easy 
transplants of the corresponding ones for the integers. 

R. Show that 1, -1, i, -i are the only units and that every Gaussian 
integer is a unit times a product of primes. 
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R. Show that the Gaussian integers have an infinity of primes. (Hint: 
copy the proof for rational integers.) 

As we did for the rational integers, we can consider Z[~1-modules or Gaus­
sian modules of Z[z1, defined as non-empty subsets M of Z[~1 such that 

z, y EM=> uz + vy E M 

for all Gaussian integers u and v (it suffices that M is not empty and that 
z, y EM=> z - y E M and iz EM). All Gaussian integral multiples of a 
fixed Gaussian integer z is such a module. We note that it consists of the 
numbers 0, z, iz, z + iz which are the corners of a square Q in the complex 
plane. Geometrically, M consists of all corners of all squares Q + nz + imz 
with m and n in Z forming a square net in the complex plane. See the 
figure below. 

R. Prove the last statement. 

• 

• z+,[z 

..tz Q z. 

• 0 

• 

• 

• 

• • 

• 
lj • 
• 
• X 

• 

Figure. The dots denote complex numbers ofthe form Q+nz+imz where 
m, n are rational integers and Q a square with the corners 0, z, iz, z + iz 
with z a fixed Gaussian integer. 

Now suppose that M is a Gaussian module and let z be a member of 
M for which N(z) is minimal among all the non-zero numbers in M. In 
other words, the distance to 0 among all the other points of M is minimal 
for z. Next, let y be in M. Then y belongs to some square of the net 
corresponding to Z[z1z so that there must be a point z of this net whose 
distance to y is at most Izl/..j2, i.e., N(z - y) is at most N(z)/2. Since 
z - y is in M, this contradicts the property of z unless z = y. Hence 
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THEOREM. Any Gaussian module consists of all Gaussian multiples of a 
fixed Gaussian integer. 

We can now repeat the argument used for the integers to obtain a divis­
ibility theory for the Gaussian integers. 

R. Formulate and prove an analogue for the Gaussian integers of the 
fundamental theorem of arithmetic. 

In addition, we can prove a remarkable result of number theory proved 
by Fermat by another method. 

THEOREM. Every rational prime of the form 4k+ 1 is the sum of the squares 
of two integers. 

R. Show that an odd number which is a sum of the squares of two integers 
must have the form 4k + 1. 

PROOF: Let p be such a prime. Then, as we have seen, -1 is a square 
mod p. In other words, p divides q2 + 1 for at least one integer q. But 
then p divides (q + i)(q - i) but none of the factors, for if p divides one 
of them, it divides the other by conjugation, and hence also 2i, which 
is impossible. Hence p is not a Gaussian prime. We conclude that p is a 
product (a+ib)(c+id) of two Gaussian integers which are not units. Hence 
p2 = (a2 + b2 )( c2 + d2) so we must have p = a2 + b2 = c2 + d2, in particular, 
p = (a + ib)(a - ib). 

R. Prove that a prime p of the form 4k + 3 is also a Gaussian prime. 
(Hint. Suppose that p = (a + ib)( c + id). Then p2 = (a2 + b2 )( c2 + d2) and, 
if p is not a Gaussian prime, then p is the sum of two squares.) 

Note. It can be shown that 1 + i, the numbers a + ib above (i.e., such 
that (a + ib)( a - ib) is a rational prime) and all rational primes of the form 
4k + 3 when multiplied by units constitute all Gaussian primes. 

1.6 Algebraic numbers 

A real or complex number a is said to be algebraic if it is a root of some 
equation 

(1) 

with rational coefficients Ck. The least number n for which this situation 
holds is called the degree of a. When all the coefficients above are rational 
integers, a is said to be an algebraic integer. (Note that the polynomial 
above is unitary.) 
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Using the language of linear algebra, we can say that a is algebraic of 
degree at most n if the power an of a is a linear combination with rational 
coefficents of its powers with exponent < n. 

R. Show that in this case, all powers of a are linear rational combinations 
of the powers with exponent < n. 

We can rephrase this last result as follows where Q denotes the rational 
numbers: If a is algebraic of degree n, then all powers of a lie in the set 

The following fundamental lemma shows that this formulation is well cho­
sen. 

LEMMA. Suppose that Zl. ... ,Zn are complex numbers and that zm be­
longs to 

QZl + ···+Qzn 

for all m ~ O. Then Z is algebraic. 

PROOF: By assumption, the numbers 1, Z, .•. , zn are linear combinations 
with coefficients in Q of Zl. ... ,Zn. Hence, if Yo, . .. ,Yn are any numbers, 
then 

Yo + YlZ + ... + Yn zn = h(Y)Zl + ... + In(y)zn, 

where ft, ... , In are linear combinations of Yo, ... Yn with coefficients in Q. 
Now the system of equations for Yo, ... Yn, 

h(Y) = 0, ... ,/n(Y) = 0 

is linear and it has n equations with n + 1 unknowns. Hence, by linear 
algebra, it has a non-trivial solution 

with rational right sides. Hence Z is algebraic. 
Suppose now that all powers of Z and yare rational linear combinations 

of all products ZjYII:. Then, if a and b are rational, the binomial theorem 
shows that all powers of az + by are rational linear combinations of all 
products ZjYII:. This proves an important result. 

THEOREM. Rational multiples, sums and products of algebraic numbers 
are algebraic. 

R. If Z is algebraic and not 0, prove that l/z is algebraic. 
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R. Using the proof of the theorem above, show that if x and yare alge­
braic of degrees m and n respectively, then x + y and xy are algebraic of 
degree at most mn. 

Algebraic integers 

Next, consider the situation when xl, ... ,Xn are complex numbers such 
that one of them is 1 and all products XjXk are linear combinations with 
integral coefficients of xl, ... ,Xn . 

LEMMA. Under these conditions, every x in ZXl + ... + ZXn is an algebraic 
integer. 

PROOF: We have 
XXj = aj1X1 + ... + ajnXn 

with integer ajk. This can be written as 

(au - X)X1+ ... + a1nXn = 0, 
a21X1 + (a22 - X)X2+ ... + a2nXn = 0, 

an1Xn+ ... + (ann - x)xn = O. 

If A is the matrix (ajk), and D(x) = det (A - x1), I the unit matrix, this 
gives D(X)Xk = 0 for all k so that D(x) = O. Since D(x) = (_1)nxn + ... 
has integral coefficients, x is entire algebraic. 

R. Prove that integer multiples, sums and products of algebraic integers 
are algebraic integers. 

Exercises 
1. We know that v'2+V3 is an algebraic integer, i.e. the root of a unitary 

polynomial with integral coefficients. Find such a equation and all its roots. 
2. Show that 2cos27r/n is an algebraic integer for every integer n > O. 

(Hint. Write it as the sum of two algebraic integers.) 
3. Let x be an algebraic number. Show that mx is an algebraic integer 

for some natural number m. 

1.7 Appendix. Primitive elements and a theorem by Gauss 

When c,o( m) is the maximal order of Pr( m) or, in other words, when 
Pr(m) has an element a of order c,o(m) , we say that Pr(m) is cyclic and 
that a is a primitive element or a generator of Pr(m). Our next aim is 
the existence and construction of such elements. The proofs give a taste of 
serious number theory with plenty of separation of cases. 
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THEOREM. When m = p is prime, the maximal order is p - 1. 

PROOF: Let k be the maximal order. Then, since every order divides the 
maximal order, xk == l(p) for all numbers in Pr(p). But there are at most 
k integral solutions mod p of this equation (see the last theorem of section 
1.2). Hence k = p - 1. 

To continue we shall use the following lemma. 

LEMMA. When p > 2 is a prime, (u,p) = 1, / > 0 and r > 0 are integers, 
then 

(1) 

The same holds for p = 2 and / > 1 while 

(2) 

PROOF: When p > 2, the binomial coefficients m are divisible by p unless 
k = 0 or p and this proves (1) when r = 1. Taking the pth power proves 
the formula for r = 2 and so on. If (1) holds for p = 2 and / > 1, then, 
squaring the right side gives a number 

Since r> 0, / > 0, we have 2/ + 2r ~ / + r + 2 so that (1) holds for r + 1. 
Finally, for / = 1 we have 

(1 + 2u)2 = 1 + 4u + 4u2 = 1 + 8v 

where v is an integer. Induction in the manner above then proves that (2) 
holds. The proof is finished. 

THEOREM. Let q = pi be primary. When p > 2, the maximal order 
mod q is <p(q) = (p_l)pi-l and the primitive elements a are the primitive 
elements mod p for which aP- 1 ¢. 1 mod p2. When p = 2, the maximal 
order mod q is <p(q)/2 = 21- 2, and the elements of maximal order are the 
numbers == 3 (4) when q = 4 and the numbers == 3,5 (q) when q ~ 8. 

PROOF: Let p > 2 and let a have the properties listed. Then 

(3) aP- 1 == 1 + up mod p2, (u,p) = 1. 

Hence the order of a is <p(q) by the formula (1). The same formula shows 
that a cannot be a primitive element when aP- 1 == 1 mod p2. To complete 
the first part of the theorem, we have to prove that there are elements a 
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with the property (3). This is clear. In fact, take a b such that bP- 1 == 1 
mod p2 and put a = b + p. Then 

so that a has the property (3). This proves the first part of the theorem. 
The second part is a matter of immediate verification except when / > 2 

in which case (1) and (2) show 3 and 5 to have the order 2/ - 2 mod 2J. 
The larger odd numbers> 2 have the form 1 + 2t u, u odd and t > 2 and 
the formulas (1) and (2) prove that they are not primitive elements mod 
2J. This finishes the proof. 

We can now prove a general result due to Gauss. 

THEOREM. The maximal order ofPr(m) divides the least common multiple 
of the numbers <p(q) where q runs through the primary divisors ofm. This 
order equals <pC m) if and only if m = 2,4, pA: ,2pA: where p is an odd prime. 

PROOF: Let mA: for k = 1, ... , n be the primary factors of m. Let M 
be the least common multiple of <pC ml), ... , <pC mn ). By Euler's theorem, 
aM == l(mi) for every i and hence aM == l(m). It follows that the maximal 
order of Pre m) is at most the least common multiple of the numbers <pc mi) 
and hence less than <p(m) when two of the numbers <p(mi) have a common 
factor> 1. Since <p(q) = (q/p)(p - 1) is divisible by 2 when q is a power 
of an odd prime or q is a power of 2 greater than 4, this excludes every m 
with two primary factors belonging to odd primes. It also excludes every 
m which is the product of a primary factor and a power of 2 greater than 
2. The remaining cases for m are those listed in the theorem and, since 
<p(2) = 1, <p(4) = 3, also the powers of 2 greater than 4. But they are 
excluded by the previous theorem. 

It remains to exhibit primitive elements for the cases listed. When m = 
pA: ,k > 0, p a prime > 2, Pre m) is cyclic and the previous theorem gives 
the primitive elements. The cases m = 2,4 are true by direct verification. 
Finally, let m = 2pk+l = 2q and let a have order <p(q) mod q. Let b be one 
of the numbers a and a + q, whichever one is odd. Then b has order <p(2q) 
mod 2q. This finishes the proof. 

Literature 

The first systematic account of number theory is Disquisitiones Arith­
meticae by Gauss, first publishes in 1801 (also Springer 1986) and thereafter 
a model for all books on elementary number theory. The present chapter 
covers about the first quarter of Disquisitiones. The Gaussian integers ap­
peared for the first time in an article from 1832. 



CHAPTER 2 

Number theory and computing 

Number theory has many connections with computer science. Some of 
them are touched upon in this chapter, namely the cost of arithmetic oper­
ations and the use of the Chinese remainder theorem, the cost of identifying 
primes and factoring into primes and the Public key code and, finally, a 
classical construction of pseudo-random numbers in which number theory 
plays a part. 

2.1 The cost of arithmetic operations 

One of the branches of computer science has to do with estimates of 
running time or cost of arithmetic operations. In order to get very precise 
results, one has to take into account the capabilities of the machine used. 
Here we shall only derive rough upper bounds which have some credibility 
for the handling of large numbers. 

Addition and subtraction 

In practice, numbers are written in systems whose base is a power of 2, 
mostly 16. We shall consider the simplest case when the base is 2 and we 
shall write 

N = [ ... abc.de! ... ] 

when 

where each coefficient is 0 or 1. An integer whose format is n binary digits 
will be called an n-bit integer. 

When a computer adds two n-bit integers, it proceeds in a number of 
steps realized by one action of a logical gate. Each step, for instance adding 
1 and 1, is counted as a bit operation. Leaving the details of this aside, 
we are going to start from the axiom that addition or subtraction of two 
n-bit integers requires at most a fixed constant times n bit operations, or, 
for simplicity, O(n) bits. Without specification of the constant, such an 
estimate is useless in practice, but the estimates below are of some interest 
for the handling of large numbers. 
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Multiplication 

The classical algorithm for multiplying two n-bit integers amounts to 
adding n suitably shifted n-bit integers. If we perform the additions suc­
cessively, we may eventually have to deal with close to 2n-bit integers and 
hence muItplication of two n-bit integers costs at most O( n2 ) bits. We get 
the same estimate if we write our integers as 

where the sums run from 0 to n. Then 

where r runs from 0 to 2n and j + k = r, 0 ~ j, k ~ n in the second sum. The 
number of terms in the sum for w( r) is at most n -1 and this happens when 
r = n. Hence w costs O(n2 ) bits to compute with no immediate prospect for 
improvement. The following trick reduces our present estimate somewhat. 

Let us write two 2n-bit integers if the form a = :c + 2ny, b = z + 2n u 
where :c,y,z,u are n-bit integers. The product 

apparently requires 4 multiplications of at most 2n-bit integers. But if we 
write 

:cu + zy = (:c + z)(u + v) -:cz - uy. 

we need only 3 multiplications (and 4 additions) of at most 2n-bit integers. 
The idea is now to make an induction from n to 2n to estimate the total bit 
cost under repetitions of the trick. Let c( n) be the bit cost of multiplying 
in this way the product of two n-bit integers. Our step requires 3 multi­
plications of n-bit integers and 4 additions of at most (n + I)-bit integers. 
The cost of the additions is at most 2An for some A > O. Hence 

c(2n) ~ 3c(n) + 2An. 

Since this recursion formula implies that 

c(2n) + 2A2n ~ 3(c(n) + 2An) 

when n ~ 1, we get 
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where c = log23 = 1.76.... This improves the previous result when n is 
a power of 2. Enclosing n between to successive powers of 2 proves that 
c(n) = O(nC ). 

Remark. In section 4.2, the fast Fourier transfrom will be used to com­
pute the coefficients w(r) above. This together with a choice of basis de­
pending on n gives another method, the Schonhage-Strassen algorithm. It 
multiplies two n-bit integers at the bit cost of O(nlognloglogn). 

Division 

There is high precision algorithm for computing the inverse of a number 
A > 0 which depends on the properties of the function /(z) = 2z - Az2. 
It is positive when 0 < z < 2/A and has a maximum l/A when z = l/A. 
Hence an iteration 

z -+ /(z) 

should increase rapidly to l/A if we start in the interval between 0 and 
l/A. 

Reciprocal 

Let 
A = [1.a(l )a(2) ... ] 

be a real number and let A(j) = [1.a(l) ... a(2i)]. Approximations B(k) to 
l/A are given by the recursion formula 

B(O) = [0.1], B(k + 1) = 2B(k) - A(k + 1)B(k)2 

where k = 0,1,2, .... 
That the algorithm has quadratic convergence follows from 

LEMMA. The approximations B(k) to l/A satisfy the following inequalities 

for all k. 

PROOF: It suffices to prove that S(k) = 1 - A(k)B(k) satisfies the same 
inequality as B - B(k). In fact, we have AB = 1 and hence, if A = 
A(k) + A'(k), B = B(k) + B'(k), then 

A(k)B'(k) + A'(k)B(k) + A'(k)B'(k) = 1 - A(k)B(k) 

where all the terms on the left are positive. Hence B'(k) :::; S(k) with strict 
inequality when A(k) > 1. 
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Clearly A(O)B(O) = [0.11] when a(l) = 1 and A(O)B(O) = [0.1] when 
a(l) = 0 so that the desired inequality for 8(k) holds for k = O. Now, 
if A(k + 1) = A(k) + C(k), the recursion formula shows that 8(k + 1) = 
1 - A(k + l)B(k + 1) equals 

1 - 2B(A + C) + B2(A + C)2 = (1 - BA - BC)2 = (8 - BC)2, 

where A, B, C, 8 have the argument k. By induction, 0 ~ 8(k) ~ 2- 210 and 
by construction, 0 ~ C(k) ~ 2-2 •• Also, 

B(k) ~ A(k)B(k) = 1 - 8(k) < 1. 

Hence 8(k + 1) ~ 2-2.+1 which finishes the proof. 
Although our algorithm computes n digits of the reciprocal of an n-bit 

integer in about log n steps, the step k requires three multiplications and 
one addition of k-bit integers. Hence the cost of the step k is at most 

for some A. Here M(2k) is the bit cost of computing the product of two 
k-bit integers. If we make the reasonable assumption that 

(1) M(n/2) ~ cM(n) 

for n a power of 2 and some c < 1, we can sum the total bit cost of our 
algorithm, say R(n), to at most 

O(M(n) + n) = O(M(n» 

when n is a power of 2. It is also possible to go the other way. Since 
4ab = (a + b)2 - (a - b)2, we have M(n) = 0(8(n» where 8(n) is the bit 
cost of squaring two n-bit integers. One also has 

1 
P(P + 1) = 11' 

P+1 - P 

from which it follows that M(n) = O(R(n». Hence we have proved 

THEOREM. Under the hypothesis (1), the bit costs of multiplying, squaring 
and inverting n-bit integers are of the same order. 

Remark. One simple, interesting and useful way of looking at the cost 
of arithmetic without division is to assume that every multiplication costs 
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one unit and addition and subtraction nothing. Consider for instance the 
cost of computing the value of a polynomial 

!(x) = ao + alX + ... + anxn. 

As it is written, the cost is 2 + 3 + ... + n + 1 = n(n + 3)/2. A better way 
is to use Horner's rule: compute in order 

anx, (anx + an_lx)x, ... 

which gives the cost n. That this is best possible will be shown in Chapter 
6 as an application of the theory of polynomial rings. 

Arithmetic using the Chinese Remainder Theorem 

Suppose that the positive integers 

ml,···,mn 

are pairwise coprime and let M be their product. According to one ver­
sion of the Chinese remainder theorem (see section 1.2), every integer is 
congruent mod M to a sum 

U = ulEl + ... + unEn 

where the coefficients Uk of U are residues of u mod mk and the numbers 
Ek have the property that Ek == 1 mod mk and E~ == 0 mod M when 
j #: k. The integers Ek == tkMk are constructed by finding integers tk such 
that 

tkMk == l(mk), Mk = Mlmk. 
These formulas reduce addition, subtraction and multiplication mod M to 
the corresponding operations mod mk for all k. In fact, the coefficients of 
u ± v and uv are given by the residues of these numbers mod mk. 

The gain may be illusory since the computation of the numbers tk and 
the Mk and Ek involves multiplication of large numbers. But when the Ek 
are computed once and for all and many computations have to be made 
there might be some gain over multiplication mod M. The numbers tk are 
obtained using Euclid's algorithm. The computation of the Mk may be 
facilitated by successive partitions into groups. For instance, when n = 4, 
then ml2 = mlm2 and m34 = m3m4 are computed first. 

Note. If M(b) majorizes the bit cost of computing the product of two 
b-bit numbers, the total bit cost of computing the numbers Ek when the Mk 
are b-bit numbers has been estimated to O(M(bn) log n + O(nM(b)Iogb)) 
(see Aho-Hopcroft-Ullman (1974)). 

2.2 Primes and factoring 

Most of the properties of primes can be used to prove that an integer is 
composite. For instance 
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THEOREM. A natural number N is a prime if and only if for every prime 
p dividing N - 1, there is an integer a such that 

aN - 1 == 1(N), a,(N-l)/P,¢ 1(N). 

PROOF: Let Pr(N) be the set of integers prime to N. When N is a prime, 
just choose the order of a to be I{)(N) = N - 1. Otherwise, let n be the 
order of a in Pr(N). By the first condition, n divides N - 1 and by the 
the second condition, (N - 1)/p is not a multiple of n. Hence the primary 
decompositions of N and n must have the same power q of p. It follows 
that I{)(N) , of which n is a factor, has the factor q. Hence I{)(N) ~ N - 1 
has all the primary factors of N -1 so that I{)(N -1) = N -1 and N must 
be a prime. 

This criterion, which is due to Lehmer, is especially efficient when applied 
to Fermat numbers 

F(n) = 22" + 1 

among which there are primes and non-primes. Lehmer's criterion contains 
the sufficiency part of the following result. 

PEPIN'S THEOREM. A necessary and sufficient condition for F(n) to be a 
prime is that 

3(F(n)-1)/2 == -1 mod F(n). 

The necessity is a consequence of the quadratic reciprocity theorem. In 
fact, F(n) == -1(3) so that (F(n)13) = -1. In addition, (F(n) -1)(3 -1)/4 
is even and hence (3IF(n» = -1 when F(n) is a prime and this implies the 
equality above. 

The properties of the Jacobi symbol gives another primality test. Let 
J(N) be the set of congruence classes mod N which are prime to Nand 
satisfy the congruence 

(1) (aIN) == a(N-l)/2 mod N. 

THEOREM. When N is odd and not a prime, J(N) is a proper subgroup 
ofPr(N). 

Note. If N is a prime, J(N) = Pr(N), (section 1.4). If J(N) is a proper 
subgroup of Pr(N), its order is at most half that of Pr(N). Solovayand 
Strassen (1977) have the same result with an incomplete proof. 

PROOF: Since Pr(N) is a group and the Jacobi symbol and the right side 
of (1) are multiplicative, J(N) is a group. Suppose that J(N) = Pr(N) 
so that (1) holds for all a in Pr(N). If N = pk is primary but not prime, 
Pr(N) is cyclic of order I{)(N) = pk-l(p - 1) by Gauss' theorem. Squaring 
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(1), this order divides N - 1 which is impossible. Hence N = rs with r, s 
coprime. If there is an a in Pr(N) with (aIN) = -1, using the Chinese 
remainder theorem, we can choose b in Pr( N) with b == a mod rand b == 1 
mod s. Then b == a mod N 

b(N-l)/2 == (aIN) = -1 mod r, b(N-l)/2 == 1 mod s. 

Hence, if(1) holds for b, it follows that (biN) = 1 and -1 at the same time 
which is impossible. Hence, if J(N) = Pr(N), then (aIN) = 1 for all a in 
Pr(N). Let 

N = llpm(p) 

be the primary decomposition of N. Let q be one of the primes in the 
product and choose a number c such that (clq) = -1. By the Chinese 
remainder theorem, there is an a such that a == c mod q and a == 1 mod p 
when p -I q. But then a and N are coprime and, by the definition of the 
Jacobi symbol, (aIN) = (_1)m(p). It follows that N has to be a square 
when (aIN) = 1 for all a in Pr(N). But if N = M2 with an an integral M, 
1 + M is prime to N and putting a = 1 + Min (1), squaring and using the 
binomial theorem gives -M == 0 mod M2 which is a contradiction. The 
proof is finished. 

Some primality tests are based on trial and error and have the property 
that a given number is composite decreases considerably with every step of 
the algorithm. We shall describe one such test due to Solovay and Strassen 
(1977), which uses the preceding theorem. It has one repetitive step with 
the following substeps: 

1) Choose a at random between 2 and N. 
2) if (a, N) > 1 end. 
3) if (a, N) = 1 and (1) does not hold, end. 
4) go to 1). 
By the theorem and the note after it, the chance of N being composite 

when the algorithm has not stopped after one step is at most 1/2. Hence, if 
the algorithm has not stopped after n steps, the chance that N is composite 
is at most 2-n . 

The practical value of the test is of course bound by the cost of computing 
(a, N) and the two sides of (1). Since Euclid's algorithm for the pair N, a has 
at most O(log N) steps, (see the exercises p. 4), the bit cost of computing 
(a, N) is also O(log N). The cost of computing the right side of (1) has the 
same upper bound (Knuth (1977) p. 409) and the generalized quadratic 
reciprocity formula (p. 14) makes the cost of computing the Jacobi symbol 
(aIN) comparable to that of (a, N) and hence it is at most O(log N). Hence 
this is also the cost of carrying through one step of the algorithm above. 
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Factoring large numbers 

The methods of factoring large numbers (only odd ones are relevant) are 
all more or less based on trial and error. A simple first step is to have a 
list of the first primes and use Euclid's algorithm to check whether they are 
factors. If the given number is N, it is of course only necessary to check 
the primes ~ ..[N. If the primes available are too few to reach this limit or 
if one wants to proceed faster, other methods are necessary. Most of them 
are listed in Knuth (1981) and some are treated in Riesel (1985). Here we 
shall only mention one method which has been very successful (see Knuth 
for references). It uses a given collection of primes in a clever way. 

The first step is to look for integers %, Y between 0 and N such that 
%2 _ y2 == O(N) but % + Y ~ O(N). Then N has the proper factor % - y. 
The second step is to look for squares mod N which are close to N and can 
be factored mod N into products 

of primes in a given collection PI, ... Pn. If a set {%1' ... , %r} of such num­
bers % have been found with the property that the sum of the vectors of 
their exponents has even components 2/(0), ... , 2/(n), then 

have the property that %2 - y2 == O( N) and except for the mishap that 
% ± y == O(N), a proper factor of N has been found. 

This method was used to prove that the Fermat number 2128 + 1 is 
not a prime. Its bit cost has been estimated to Nf(N) where e(N) = 
O( .jlog N log log N). 

'Dapdoors and Public Key 

A trapdoor function is a bijection of a set M such that its values 1(%) are 
easy to compute but the inverse of 1 is difficult to compute without some 
secret information. The best known instance is the Public Key or RSA 
code after Rivest, Shamir and Adleman (1978). It relies on the following 
piece of number theory. 

THEOREM. If N is a product of distinct primes p and t(N) is the least 
common multiple of all so(p) , then 

at (N)+1 == a mod N 
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for all in tegers a. 

PROOF: It suffices to prove that the desired congruence holds modulo all 
prime factors p of N. When a == O(p), the congruence holds modulo p. 
When (a,p) = 1, then aP- 1 == l(p) by Fermat's theorem and hence also 
af(N) == l(p) since t(N) is divisible by p-1. Hence af(N)+l == a(N) always, 
and this proves the theorem. 

This theorem and the difficulties of factoring large numbers if the basis 
of the Public key. Suppose that N is the product of distinct and very large 
primes and suppose that there are two positive integers k and k' such that 
kk' = t(N) + 1. Then any message which can be represented by a number 
a > 0 and < N can be coded as b = ak and recovered by raising b to the 
power k' and doing the computations modulo N. A possible use of this 
is the following. A person A wants to receive messages from a circle C 
of other persons but he wants the messages to be kept secret during the 
transmission. He then arranges for the persons in C to know the numbers 
k and N and the encoding procedure a -+ ak • Then A is not in trouble if 
the encoding procedure becomes public knowledge. In fact, decoding the 
message requires knowledge of the number k' which can more easily be kept 
secret. One way of breaking the code is to guess the coding principle and 
then factor N which requires a computer and the knowledge of a specialist. 
Hence decoding seems practically impossible and this is the origin of the 
term Public Key. 

Note. It has been guessed but not proved that breaking the Public Key 
is equivalent to factoring. 

2.3 Pseudo-random numbers 

Sometimes a computer is required to produce something like random 
numbers in an interval. The word random taken in the strict sense means 
that every number has the same probability of occurring regardless of the 
preceding ones. This ideal situation is not possible in practice. A computer 
can only produce sequences of numbers which appear to be random by 
some kind of irregularity. These are the pseudo-random numbers. There 
are several ways of producing them most of which introduced by computing 
modulo some fixed number m. (A similar way where the number m is 
replaced by a polynomial is described at the end of section 8.1). 

A commonly used method which requires very little memory space is to 
choose a bijection f of the numbers mod m and generate a sequence 

S : 8(0),8(1), ... , 8(n), ... 

such that 8(n+ 1) == f(8(n)) mod m for all n ~ O. The number 8(0), called 
the seed of the sequence, is not generated. One could for instance let m 
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be the maximal capacity of the arithmetic unit and let the machine store 
the last user's last number as a seed for the next user. This introduces an 
element of randomness. 

Sequences generated by iteration has some general properties. 

R. Let 1 be invertible mod m. Prove that all integers n > 0 for which 
s(n) == s(O) mod m consist of all positive multiples of the least of them, 
say d > 0, and that d divides m. The number d will be called the order 
of 1 mod m. (Hint. Compare the figure of section 1.1. By definition dis 
the smallest number n > 0 such that s(n) == s(O) mod m, or, equivalently, 
since 1 is a bijection, s(n + j) == s(j) mod m for all j ;::: 0.) 

LEMMA 1. When Ie > 0 divides m, the order of 1 mod Ie divides the order 
of 1 mod m. When m is a product j Ie and the orders r, s of 1 mod j and 
1 mod Ie are coprime, then rs divides the order of 1 mod m. 

PROOF: When d is the order of 1 mod Ie, then s(d) == s(O) mod Ie so that 
s(d) == s(O) mod m and hence d is a multiple of the order of 1 mod m. 
Hence, when m = jle, the order mod m of 1 is a multiple of the order r 
of 1 mod Ie and the order s of 1 mod j. Since rand s are coprime, rs 
divides the order of 1 mod m. This finishes the proof. 

When 1 serves as a generator of pseudo-random numbers between 0 and 
m, a minimal requirement is the 1 be a bijection mod m, i.e. that the 
order of 1 equals m. We shall see that this is possible even for simple 
functions like first order polynomials I(:r:) = a:r: + 6, provided the integers a 
and b satisfy certain conditions. Before passing to the statement and proof 
of this result, it is convenient to have the lemma of section 1.7 available. It 
is reproduced here as 

LEMMA 2. When p > 2 is a prime, when (u,p) = 1,e > 0 and r > 0 are 
integers, then 

(1) 

The same holds when p = 2 and e > 1 while 

(2) 

THEOREM. Let I(:r:) = a:r: + 6, a and 6 integers. The order of 1 mod m 
equals m if and only if a and 6 are prime to m, every prime which divides 
m also divides a - 1 and 4 divides a - 1 when 4 divides m. 

PROOF: A simple induction shows that 

(3) s(n) = j<n)(o) = 6(an - 1)/(a - 1) = 6(1 + a + ... + an-I) 
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for all n > o. Assume that the order of f mod m is m. Then it is obvious 
that m and b must be coprime. If d > 1 divides m and a, then all terms 
of s(n) are == 0 mod d so that s(m) == 0 mod m implies that d divides b 
which was seen to be impossible. Hence (a, m) = 1 so that f is invertible 
mod m. Hence Lemma 1 shows that the order mod q of f equals q for 
all primary divisors of m in its primary decomposition. Let q be such a 
prime and write q = pC. If p does not divide a-I then (3) with n = q 
shows that p divides all - 1 so that the order of a in Pr(p) divides q. Since 
the order in question also divides p - 1, we are left only with the case 
p = 2, q = 2c , a = 1 + 2u with u odd. Then (2) shows that the left side of 
(3) is 2C and the right side divisible by 2c+1 which is a contradiction. This 
proves that the conditions of the theorem are necessary. 

Assume now that the conditions of the theorem hold. Lemma 1 shows 
that in order to prove that f has order m mod m, it suffices to show that 
f has the order q for every primary number q in the primary decomposition 
of m. Hence it suffices to prove that 

s(n) = b(an - 1)/(a - 1) 

is not congruent to 0 mod q when n is a power p. < q of the prime p 
belonging to q = pC. But this follows from the formula (2) of Lemma 2, 
since, by hypothesis, a has the form 1 + upc where c > 0, (u,p) = 1 and 
c > 1 when p = 2. 

How random? 

One of the functions satisfying the conditions of the preceding theorem 
is g(z) = z + 1. Its order mod m is m, but the sequence it generates, 
0,1, ... ,m - 1, cannot be said to be random. We shall measure the ran­
domness of a sequence mod m, 

S : s(O), s(I), ... , s(n), ... 

by considering its first element t = s(O) as a random variable equally dis­
tributed among the integers mod m. This makes any following term s( n) 
a random variable h(n,t). A simple way of measuring the interdependence 
of two such variables is to compute the mean value 

M(j, k) = E(e(h(j, t) - h(k, t))). 

Here e(z) = e2riz/m maps the congruence classes mod m onto m equidistant 
points on the unit circle. That M(j, k) = 0 is then an indication that the 
variables h(j, t) and h(k, t) may be independent in some loose sense. 
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THEOREM. Let f(x) = ax + b satisfy the requirements of the preceding 
theorem. Then M(j, k) = 0 unless j - k is a multiple of the order of a in 
Pr(m), in which case h(j, t) - h(k, t) is constant. The order of a in Pr(m) 
is m/8 where 8 is the product of the primary divisors of a-I which divide 
m. 

Note. The ideal situation would be that M(j, k) = 0 unless j - k == 0 
mod m. Our theorem shows that this is impossible. But the exceptions 
should be as few as possible and from this point of view, a-I should be 
small and a prime. The best choices are 7 and 11. In the second case m 
may be a large power of 10. This simple classical pseudo-random sequence, 
subject here to a simple statistical test, also withstands others (Knuth 
(1981)). 

PROOF OF THE THEOREM: A simple induction shows that 

h(n, t) = ant + c(n), c(n) = b(1 + a + ... + an-l). 

Hence 
e(h(j, t) - h(k, t)) = e(c(j) - c(k))e(ai - aA:)'. 

Since 1 + z + ... + zm-l = 0 or 1 according as z =F 0 or z = 1 when 
zm = 1, this shows that M(j, k) = 0 unless ai - aA: == 0 mod m, i.e., since 
(a, m) = 1, ai-A: == 1 mod m. Hence M(j, k) = 0 unless j - k is a multiple 
of the order of a in Pr(m), in which case h(j, t) - h(k, t) is the constant 
c(j) - c(k). By basic number theory, the order of a in Pr(m) is the product 
of the orders of a mod q where q runs through the primary divisors of a 
(in its primary decomposition) provided these orders are coprime. When m 
has a primary factor q with prime divisor p, then a - 1 has the divisor p so 
that a = 1 + up/ with (u,p) = 1 and f > O. By Lemma 2 above, the order 
of a mod q is then max(1,q/P/) and this holds also when p = 2. Since all 
these orders are coprime and their product is m/8, the proof is finished. 

Recent developments 

When more complicated functions than linear ones are used to generate 
pseudo-random sequences, the requirements on randomness can be sharp­
ened. One method which has been suggested is to choose a n-bit prime 
p, an n-bit seed 8, a generator a of Pr(p) and then generate a sequence 
S = (8(0),8(1), ... ) where 8(0) = 8 and 8(k + 1) == a6 (A:) mod p when 
k > O. Under the assumption that the inverse of x -+ aZ(p) cannot be 
computed at a bit cost which is polynomial in p, Blum and Micali (1984) 
have shown that, with 8,p,a, chosen at random, no reasonable statistical 
test is able to detect a correlation between a bit of S and the following bit. 
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Their paper gives the precise formulation of this and other similar results 
and references to some of the recent literature. 

Litera.ture 

The bible of arithmetic and other algoritms is Knuth (1973), (1981). The 
main source for this chapter has been Aho-Hopcroft-Ullma.n (1974). 



CHAPTER 3 

Abstract algebra and modules 

This chapter introduces the basic notions of abstract algebra as they are 
used in mathematics today. The notions are illustrated in detail with a 
study of modules, also called a.belia.n groups, and defined as sets equipped 
with addition and subtraction (additive module) or commutative multi­
plication and division (commutative or abelian group). From an abstract 
point of view these two are the same, but it is useful to distinguish between 
them in practice. 

The modules are very useful for a first acquaintance with the terminol­
ogy of algebra, in particular direct sum, quotient, and morphisms. Most 
examples are from number theory where the additive module of congru­
ence classes mod m and the group of congruence classes mod m which are 
coprime to m are all important. 

The chapter ends with the structure theorem for finitely generated mod­
ules. This requires more patience and imagination of the reader than the 
preceding text. 

The next chapter deals with some applications of module theory, in par­
ticular the finite Fourier transform and the fast Fourier transform. 

3.1 The four operations of arithmetic 

The point of algebra is to have abstract models which fit into many spe­
cial cases. The four operations of arithmetic transplanted into an abstract 
landscape are such models. Here foll<;>ws the precise definitions. All of them 
are described in terms of an unspecified set A with elements a, b, c, . ... The 
text below can be used as a reference when the words addition etc. are used 
in the sequel. 

Addition 

To every pair of elements a, b of A there is a unique third element, called 
the sum of a and b and denoted by a + b, with the following properties, 

a + b = b + a (the commutative law) 

and 
(a + b) + c = a + (b + c) (the associative law) 

for all a and b. 
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Note. The sign + is used for simplicity. In principle, any other sign 
could do, for instance 1,0, I and so on. The sum a + b is also a function of 
a and b with values in A. If we denote it by f(a, b), the rules above read 
f(a,b) = f(b,a) and f(f(a,b),c) = f(a,J(b,c)). The same remark applies 
to the ensuing definitions. 

Subtraction 

The set A has an addition and there is one element of A called zero such 
that 

a+O=O+a=a 

for all a in A. To every a there is an element called the opposite or additive 
inverse of a and denoted by -a such that 

a + (-a) = 0 

Note. There is just one zero element for if 0 and 0' have the properites of 
a zero, then 0 = 0+0' = 0'. Similarly, there isjust one opposite b of a for if 
there were another one, c, then c+O = c+(a+b) = (c+a)+b = O+b = b. 

Note. The sum a + (-b) is also written a-b. 

Multiplication 

To every pair of elements a, b of A there is a unique third element of A 
called the product of a and b and denoted by ab such that 

(ab)c = a(bc) (the associative law) 

for all a, b, c in A. 

Division 

The set A has a multiplication and there is in A an element called the 
unit or one and denoted by 1 or e such that 

al = la = a 

for all a in A. To every non-zero a in A there is one element called the 
inverse of a and denoted by a-l such that 

R. Prove that any two units are the same and also any two inverses. 
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Distributivity 

The set A has both addition (or addition and subtraction) and multipli­
cation connected by the left and right distributive laws 

a(b+c)=ab+ac, (b+c)a=ba+ca 

for all a, b, c in A. 
Note. MUltiplication is perhaps the most primitive law. Composition of 

functions J(x) from a set X to itself defined by (fg)(x) = J(g(x» for all x 
in X satisfies the associative law and hence is a multiplication. Composition 
of functions is only rarely commutative. For instance, if J( x) = x + b and 
g(x) = ax with a, b, x real, then (fg)(x) = ax + b but (gJ)(x) = ax + abo 

R. Suppose that A has addition and subtraction connected with multi­
plication by the distributive laws. Show that aO = Oa = 0 for all a in A. 
Show also that (-a)( -b) = ab for all a and b. 

Terminology 

For sets provided with one or several of the abstract arithmetic opera-
tions,the following list of terms is used. 

Monoid or semigroup: multiplication 
Group: multiplication and division 
Module: addition and subtraction 
Ring: module with multiplication and the distributive laws 
Division ring: ring where every element i: 0 has a multiplicative inverse 
Field: division ring with commutative multiplication 
There are examples of all these notions in number theory with the nat­

ural arithmetic operations. The rational, real and complex numbers i: 0 
constitute three groups under multiplication. But the integers i: 0 do not 
form a group under multiplication since I/a is not an integer when a is an 
integer #; ±1. The set Zm with m a fixed integer is both a module and a 
ring in the abstract sense and has a commutative multiplication. It has a 
unit only when m = ±1. Z is not a field since ±I are the only invertible 
elements. The rational numbers Q on the other hand constitute a field 
since rational numbers #; 0 have multiplicative inverses. The real numbers 
R and the complex numbers C are also fields. 

R. Verify that the invertible elements of a monoid with a unit form a 
group. Special case: the elements #; 0 of a division ring form a multiplica­
tive group. 

From the abstract point of view there is no difference between a module 
and a commutative group. We just have to write addition and subtrac­
tion instead of multiplication and division and vice versa. In this way, a 
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multiplicative unit and the zero for addition correspond to each other. The 
distinction between the two concepts is just traditional and terminologically 
convenient. 

Number theory and arithmetic mod m offer a non-trivial example of a 
commutative ring, namely the set Zm of congruence classes 

C(z) = z+mZ 

mod m. Here z is any integer, said to represent the class C(z). Addition, 
subtraction and multiplication in this set are defined by the formulas 

(1) C(z) ± C(y) = C(z ± y), C(z)C(y) = C(zy). 

In order to verify that these definitions make sense and satisfy the axioms 
we first note that z and y belong to the same class C(z) if and only if 
z - z == 0 (m) and y - z == 0 (m) from which follows that z - y == 0 (m). 
Now if z == z' (m) and y == y' (m), we know that z ± y == z' ± y' (m) 
and zy == z'y' (m). Hence the right sides above do not depend on the 
choice of representatives of the classes C(z) and C(y). The axioms are 
now easy to verify. Since (z + y) + z = z + (y + z) for integers, we have 
C«z + y) + z) = C(z + (y + z» and hence, by the rules (1), 

C(z + y) + C(z) = C(z) + C(y + z) 

and again by the rules (1), 

(C(z) + C(y» + C(z) = C(z) + (C(y) + C(z». 

The other axioms are verified in the same way. It is clear that C(O) and 
C(I) are the zero and unit of Zm. We have now proved most of 

THEOREM. The set Zm of congruence classes mod m constitutes a ring. It 
is a field if and only if m is a prime. 

PROOF: When m = p is a prime and a is not divisible by p, we know that 
there is an integer b such that ab == 1 (p) which means that C(a)C(b) = 
C(I). 

R. Prove that Zm is not a field when m is not a prime. 

The set of invertible elements of Zm constitute a commutative group 
denoted by Zm·. It consists of all classes C( z) with z prime to m. In 
fact, then and only then is there an integer y such that zy == 1 (m). This 
group has <p(m) elements and mayor may not be cyclic, i.e., consist of 
all powers of a suitable element. The cases when it is cyclic are listed in 
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section 1.7. The general structure theorem in section 3.5 below applies to 
this group, but does not describe all details. They depend on the number 
m in a complicated way. 

Note. Congruence classes mod m are sometimes written in a simpler way, 
for instance as (z) or z. 

Examples 
The group Zs*, which is known under the name of Klein's four group, 

has four elements C(I), C(3), C(5),C(7). If, for simplicity, we denote them 
bye, a, b, c, then e is the unit, all squares are 1 because 32 = 1 (8) etc. and 
ab = ba = c (because 3·5-7 = 0 (8)). This describes the group completely, 
for multiplying ab = c by a and b we get b = ac and a = bc. This describes 
all 16 products. The group has the following multiplication table: 

* e a b c 
e e a b c 
a a e c b 
b b c e a 
c c b a e 

where an element of the inner 3 x 3 matrix is the product of the two outer 
elements in the same row and column. 

R. Compute the corresponding table when m = 12. 

The purpose of the next section is to present some standard construc­
tions of abstract algebra when applied to the simplest case of modules and 
commutative groups. 

3.2 Modules 

An abstract module is a non-empty set M = {a,b,c, ... } with addition 
and subtraction in the abstact sense. Let 0 be the zero of a module M. 
(There is no risk of confusion with the ordinary zero.) If we put 

Oa = 0, ma = a + ... + a, (m terms), -ma = m( -a), 

where m > 0 is an integer and a any element of M, it is easy to check that 
all na with n in Z and a in M are elements of M for which we have the 
following rules 

(m + n)a = ma + na, m(a + b) = ma + mb, m(na) = (mn)a, 

for all m and n in Z and a and b in M. We express this by saying that Z 
operates on M, or that M is a Z-module. 
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For a group, the rules above, namely 

are the familiar rules for exponentiation. 

Submodules 

A non-empty subset N of a module M is called a submodule if a - b is 
in N when a and bare. 

R. Prove that every submodule is itself a module. (Hint: If N contains 
an element a, it also contains a - a = 0, then 0 - a = -a, etc.) 

Any finite subset {a, b, ... , c} of a module M generates a submodule, 
namely the set 

of sums ma + nb + ... + rc of integral multiples of a, b, ... ,c. The elements 
a, b, ... , c are called the generators of this submodule. 

Cyclic modules 

A module Za with just one generator a is said to be cyclic. If its elements 

... - 2a, -a,O, a, 2a, ... 

are all different, it behaves just like the integers under addition and sub­
traction. Under all circumstances, the integers r such that ra = 0 form a 
module of integers, for if ra = 0 and sa = 0, then (r - s)a = O. We know 
that such a module has the form Zm, m ~ O. If m = 0, all the multiples of 
a are different. Otherwise 

O,a, ... ,(m-l)a 

are all the elements of Za and they are all different. Addition and subtrac­
tion in Za are performed under the condition that ma = O. This determines 
these operations completely; we have ra = sa if and only if r == s (m). This 
module is said to be cyclic of order m , where 'order' means the number of 
elements. When a = 0, Za contains only the element O. The elements of a 
cyclic module of order m behaves exactly as the congruence classes mod m 
under addition and subtraction. 

The basis of additive number theory as it is presented in Chapter 1 is 
that every module of integers is cyclic. Using this fact we can prove an 
abstract version. 
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THEOREM. Every submodule N of a cyclic module M is cyclic. When the 
order of M is finite, the order of N divides that of M. 

PROOF: N consists of multiples ka of the generator of M. Since N is a 
submodule, (k - j)a = ka - kj is in N when ka and ja are. It follows 
that all k such that ka is in N constitute a module T of integers and hence 
T =Zn for some integer n 2:: O. When n = 0, T = 0, when n = 1, T = M. 
In general na generates N so that N is cyclic. When M has finite order m, 
then ma = 0 so that m belongs to the module T. It follows that n divides 
m, m = nr and that 0, na, ... , (r - l)na are the elements of N and that 
they are all different. Hence r is the order of N. The proof is finished. 

The properties of coprime integers produce the next result. 

THEOREM. Let A and B be cyclic submodules of a module M and suppose 
that the orders m and n of A and B are coprime. Then A+B is a cyclic 
module of order mn. 

PROOF: The elements of A + B have the form a + b with a in A and b in 
B. Hence A + B is a module. Let a be the generator of A and b that of B. 
Then c = a + b has the order mn. In fact, if rc = 0, then 0 = ra + rb so 
that 0 = mra = -mrb. It follows that n divides r. Similarly, m divides r. 
Hence r is a multiple of mn which is also the order of c. Since A + B has 
at most mn elements, c generates A + B. This finishes the proof. 

Group notation 

For commutative groups, the notion of submodule corresponds to sub­
group. A part H of a group G is called a subgroup if not empty and ab- 1 

is in H when a and b are. It follows that H is a group. A subset {a, b, ... } 
of G is said to generate G if every element of G is a product of powers of 
these elements. A cyclic group G is one generated by a single element a 
and then it consists of all powers of a. When G has a finite number n of 
elements, these elements are 

As for cyclic modules one proves that the subgroups of a cyclic group G 
are cyclic and that the order of a subgroup divides the order of G. 

We have seen in section 1.4 that the group of congruence classes mod m 
which are coprime to m is cyclic only when m is a power of a prime> 2, 
when m is twice such a number and when m is 2 or 4, but in no other case. 
This class of groups will serve to illustrate the structure theorem for finite 
groups proved later in this chapter. 
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Exercise 
How many elements of order 5 are there in a cyclic module of order 

20? How many in one of order 10? Show that Klein's four group has three 
proper subgroups, i.e., subgroups not equal to the unit element or the entire 
group. 

Quotients 

The constructions which follow imitate the construction of Zm considered 
as a module. 

Associated with any submodule N of a module M is the quotient module 
MIN whose elements are the cosets 

(a)=a+N 

of N. (We could also use a function notation f(a) = a + N for the cosets.) 
The cosets inherit a module structure from M if we let (0) = N be the zero 
of MIN, (-a) the opposite of (a) and define addition by 

(a) + (b) = (a + b). 

This statement is easy to prove and we shall do it. 
A partition of a set X is a collection of subsets Y of X, no two of which 

have an element in common, with the property that they cover X: every 
x in X belongs to some Y in the collection. The reader should visualize 
partitions of finite sets and note that there is no condition on the nature of 
the subsets or their number. 

We first show that the cosets (a) form a partition of M. In fact, any a is 
in its coset (a) and if two cosets (a) and (b) have an element in common, 
a+c = b+d, then a+N = b+d-c+N = b+N since, obviously, e = d-c 
is in Nand e + N = N for any e in N. 

Since (0) + (a) = (0 + a) = (a) for all a, (0) is the zero of MIN, and 
since (-a) + (a) = (0), (-a) is the opposite of (a). Next we have to show 
that (a + b) is a function of (a) and (b). In fact, (a) = (a') and (b) = (b') if 
and only if a - a' and b - b' are in N and then 

(a' - b') = a' - b' + N = (a - b) + (a' - a) + (b' - b) + N = a - b + N = (a - b). 

The proof that the addition in MIN is associative is left to the reader. 

Examples 
When Za is infinite cyclic and m > 0 is an integer, the quotient ZalmZa 

is a cyclic module with m elements generated by the coset (a) = a + mZa. 
When a = 1 is in Z we get the important module 

Zm = Z/mZ 
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of the familiar congruence or residue classes mod m. The quotient module 
M 10M is of course the same as M itself for any module M. 

In group notation, quotients amount to the following. If G is a commu­
tative group and H is a subgroup, the elements of the quotient G I Hare 
the cosets aH of elements a of G. Carrying over the proof above, one sees 
that the cosets partition G and that 

(aH)(bH) = abH 

turns the set of cosets into a group. 

Exercise 
Let G = {e,a,b,c} be Klein's four group and H the subgroup generated 

by a. List the cosets of H and establish a multiplication table for the group 
GIH. 

Direct sums of modules 

When M and N are modules, we can form their direct sum M EB N 
consisting of pairs (a, b) with a in M and b in N subject to the following 
rules. The zero of M EB N is the pair of zeros of M and N, the opposite of 
(a, b) is (-a, -b), addition is performed according to the formula 

(a, b) + (c, d) = (a + c, b + d) 

(componentwise addition) and similarly for subtraction. 
The same construction can be expressed somewhat differently and then 

also generalized. Let X be a set and suppose that there is a module M:r; 
for every x E X. Then all functions I from X such that I(x) is an element 
of M:r; form a module where the zero is the zero function, the opposite of 
I(x) is -/(x) and addition is performed by the rule for adding functions, 

(f + g)(x) = I(x) + g(x). 

In particular, X can be the set {I, 2, ... ,n} and we get the direct sum of 
n modules. 

R. Let M and N be modules with m and n elements respectively. Prove 
that the direct sum M EB N has mn elements. 

Note that a direct sum is not the same as an ordinary sum. Suppose for 
instance that a = b. Then Za + Zb = Za is generated by one element in 
contrast to the direct sum Za EB Za which has two generators, (a,O) and 
(O,a). 
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Y E H. Multiplication is done componentwise, 

(z,y)(u,v) = (zu,yv). 

It follows that multiplication is commutative (since it is so in G and H). 
The unit of the product is (e, f) where e is the unit of G and 1 is that of 
H. The inverse of(z, y) is (z-1, y-1). 

Exercise 
How many elements of order 5 are there in the direct product of two 

cyclic groups of order 20 and 10? (Answer: 7) 

3.3 Module morphisms. Kernels and images 

Together with modules it is important to consider also maps between 
them. A map 1 : M -+ M' from one module M = {a, b, c, ... } to another 
one M' = {a', b' , c' , ... } is said to be a homomorphism or, more precisely, 
a module morphism if it p'reserves the module structure in the sense that 

I(a + b) = I(a) + I(b) 

for all a and b in M. An endomorphism is a homomorphism from M to 
itself. A bijective homomorphism is called an isomorphism and, if M = M', 
an automorphism. 

R. Prove that any two cyclic modules A and B of the same order are 
isomorphic. (Hint. If a and b are the generators, verify that na -+ nb, n 
any integer, is an isomorphism.) Construct a homomorphism A -+ B when 
the order of B divides that of A. (Hint. If the order of A is k times that of 
B, consider the map na -+ nkb.) 

Examples 
If M is a direct sum L(f)N with elements (a, b), both maps (a, b) -+ a and 

(a, b) -+ b, called projections to Land N respectively, are homomorphisms. 
Also, if N is a sub module of a module M and MIN is the quotient with 
elements (a) = a + N, the map I( a) = (a) is, by its very definition, a 
homomorphism frOm M to MIN. The map n -+ na from Z to any cyclic 
module Za is a homomorphism; if Za is infinite, it is an isomorphism. 

The following simple theorem shows that a simple sum is sometimes 
isomorphic to the direct sum. 

THEOREM. The sum A + B of two submodules A and B of a module Mis 
isomorphic to the direct sum A (f) B if An B = O. 

PROOF: If a, a' are in A ~nd b, b' in Band a+b = a' +b' then a-a' = b'-b 
belongs to An B and hence vanishes. It follows that the pair (a, b) is a 
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function ofthe sum a + b. The map a + b -+ (a, b) from A + B to the direct 
sum A $ B is a module morphism, for 

(a + b) - (a' + b') = a - a' + b - b' -+ (a - a', b - b') = (a, b) - (a', b'). 

R. If A and B are cyclic submodules of coprime orders m and n, prove 
that A n B = O. Prove also that if a and b are the generators of A and B, 
then a + b has order mn. Prove that 

(ra, sb) -+ (rm' + sn')(a + b) 

where mm' + nn' = 1 is an isomorphism from A $ B to the cyclic module 
generated by a + b. 

Exercise 
Let M and N be modules. Show that the direct sums M $ Nand N $ M 

are isomorphic. 

Let 1 : M -+ M' be a module morphism. Then the image 

iml = I(M) 

of 1 is a submodule of M'. To see this, note that if I(a) and I(b) are images 
of elements in M, so is I(a) - I(b) = I(a - b). 

The set of eleme~ts in M which are mapped by 1 to the zero 0' of M' is 
called the kernel of I, ker I. It is a submodule of M, for if I( a) = I(b) = 0, 
then I( a - b) = 0'. We provide a picture of the situation below. 

M 

ker 6 

6 

M' 

im 6 
o 
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R. Prove that a module morphism is injective if and only if its kernel 
vanishes. 

R. Prove that the kernel of the homomorphism a -+ (a) from M to MIN 
is the module N. 

R. Let f be a homomorphism from the direct sum Za $ Zb of two cyclic 
modules·. Show that f(a,O) and f(O,b) generate im f. Show that these 
elements of the receiving module can be given arbitrarily when Za and Zb 
are infinite cyclic modules but not otherwise. 

The following theorem is an important terminological exercise. It will 
appear again and again in different disguises. Stating it here in a simple 
situation, we hope to be able to treat it more lightly in connection with 
rings and groups. 

MODULE MORPHISM THEOREM. When f: M -+ N is a module morphism, 
the image of f is isomorphic to the quotient M Ikerf. 

PROOF: The elements of the quotient Mlkerf are the cosets 

(a) = a + kerf. 

The coset (a) is mapped by f into f(a), since f(a+b) = f(a)+ f(b) = f(a) 
when f(b) vanishes in N. It is also clear that f«a) - (b» = f«a» - f«b». 
In fact, this says nothing more than f(a - b) = f(a) - f(b). The map f is 
surjective to im f and if f«a» is zero, then (a) = kerf, which is precisely 
the zero of Mlkerf. 

R. Let Za be a cyclic module with m elements. Show that Za and ZlmZ 
are isomorphic. 

R. Let LeN C M be three modules. Note that NIL can be considered 
as a submodule of MIL. Show that (MIL)/(NIL) is isomorphic to MIN. 
(The second homomorphism theorem. Hint. Use the module morphism 
theorem.) 

The modules Hom(M, N) 

Let M and N be two modules and f,g: M -+ N two module morphisms. 
Define their sum f + g by 

(f + g)(x) = f(x) + g(x). 

This gives the structure of a module to the set Hom(M, N) of all homo­
morphisms from M to N. 

R. Verify this statement. 
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R. Let M and N be cyclic modules with m and n elements respectively. 
Show that Hom(M, N) = 0 when m and n are coprime. (Hint. m annihi­
lates the image of M in N.) 

Group morphisms 

To carryover this section to groups is just a matter of notation. A 
homomorphism from a group G to another one H is a map f : G -+ H such 
that f(xy) = f(x)f(y). The kernel of f consists of the elements of G for 
which f(x) is the unit of H. The image of f is im f = f(G). 

R. Prove that the kernel and the image of a group homomorphism f from 
G to H are subgroups of G and H respectively. Prove that the image f( G) 
of G is isomorphic to the quotient G/kerf. 

R. Prove that Klein's four group {e, a, b, c} is isomorphic to the direct 
product of the subgroups generated by a and b (or any two of the elements 
a,b, c). 

Exercises 
1. Let M and N be cyclic modules with 8 and 12 elements respectively. 

How many elements does Hom(M, N) have? 
2. Let M and N be finite modules. Show that the maximal order of 

Hom(M, N) divides the maximal order of N. 
3. Let M and N be cyclic modules with 18 and 8 elements respectively. 

How many elements of Hom(M, N) are surjective and how many are injec­
tive? 

4. Let M be a cyclic module with 4 elements and put N = M Ell M. 
Show that Hom(N, N) has 256 elements of which 96 are isomorphisms. 

3.4 The structure of finite modules 

This section, which is more than a terminological exercise, will show 
how finite modules are built from cyclic ones. Changed to multiplicative 
notation, the results also apply to commutative groups. 

We know that the order of any of its elements divides the order of a finite 
cyclic module. For use later we shall now prove a stronger statement. First 

LEMMA. Let a and b be elements of orders m and n in a module M. If m 
and n are coprime, the order of a + b is mn. If n does not divide m, then 
the module Za + Zb has elements of order> m. 

Note. The proof is the same as for the last lemma of section 1.3 but we 
give it here again or the convenience of the reader. 

PROOF: Let r be the order of a+b. Then ra+rb = 0 so that rna = rmb = O. 
It follows that m divides rn and that n divides rm. Hence both nand m 
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divide T. This proves the first part of the lemma. To prove the second 
part, let us write m and n as products of powers of primes. Since n does 
not divide m, there is a prime p and a power q of p such that q but not pq 
divides m but pq divides n. Write m = m'q, n = n'pq. Then qa has order 
m' and n'b has order pq. Since m' and pq are coprime, qa + n'b has order 
m' pq = mp > m. This finishes the proof. 

The maximal order of a module M is defined to be the maximum of all 
the orders of the elements of M. The following important result follows 
immediately from the lemma. 

LEMMA 1. The order of any element of a finite module M divides its max­
imal order. 

PROOF: Let m be the maximal order and a an element of M with the order 
m. Take any element b E M and apply the lemma. 

Before proving the structure theorem for finite modules, we shall list and 
prove two more lemmas. 

LEMMA 2. Let C be a cyclic module of order m and suppose that d divides 
m, m = dd'. Then the equation dx = y has a solution if and only if d' y = O. 

PROOF: If dx = y, then 0 = dd'x = d'y. Conversely, let z be a generator 
of C. Since d'y = 0, y is a multiple of dz, y = sdz, and it suffices to take 
x = sz. 

LEMMA 3. Let B be a submodule of a finite module A and let f : A -+ B 
be a morphism from B to a cyclic module of order m. Suppose that mx = 0 
for all x in A. Then f can be extended to a morphism F : A -+ B. 

PROOF: It is obviously enough to prove that f extends to some submodule 
of A of which B is a proper part. Let y be an element of A outside B. 
Then B' = A + Zy is such a submodule. All integers k for which ky is in 
B form a module in Z and hence they are all multiples of an integer d > 1 
and, since my = 0 by assumption, we have m = dd' for some integer d'. 

If a morphism F existed with the desired properties and F(y) = c, we 
should have 

F(x + ny) = f(x) + nc 

for all integers n. We shall see that there is a C such that this formula 
defines the desired morphism from B' to C. Since f(dy) is in C and 

d' f(dy) = f(dd'y) = f(my) = 0, 

Lemma 2 shows that f(dy) = dc for some c in C. This c will be our choice. 
Then, if x + ny = x' + n'y, x - x' = (n' - n)y is a multiple kdy of y and we 
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get 

!(x) + nc - !(x') - n'c = !(x - x') + (n - n')c = !(kdy) - kdc = O. 

R. Verify that F is a module morphism. 

We are now ready for 

THE STRUCTURE THEOREM FOR FINITE MODULES. Every finite module A 
oflorder > 1 is the direct sum of non-trivial cyclic submodules AI, ... ,An 
which can be chosen so that the order of each module divides the order of 
the preceding one. 

Note. It is shown in exercises below that these orders (but not the mod­
ules themselves) are then uniquely determined by A. 

Note. Groups. The theorem carries over to commutative groups and 
direct products. Examples are provided by the group Pr(m) of congruence 
classes mod m which are coprime to m. We know from section 1.7 which of 
these groups are cyclic. The simplest non-cyclic group, Klein's four group, 
occurs when m = 8. If is a group of order 4 and the direct product of 
two subgroups of order 2. The group Pr(100) has 4>(100) = 40 elements. 
One finds that 3 generates a subgroup of order 20 and that the group is a 
direct product of the groups generated by the congruence classes of 3 and 
-1. There are also more complicated examples but no easy way to find the 
decompositions. The theorem is a pure existence result. 

Note. It will be shown in an appendix to this chapter that every finitely 
generated module A is a direct sum of a finite module T and a direct sum 
F of infinite cyclic modules. The module T, which consists of all elements 
x of A for which nx = 0 for some integer n, is called the torsion submodule 
of A and F the free part. 

PROOF: When A itself is cyclic, we are done. If A is not cyclic, its maximal 
order m is a proper divisor of the order IAI of A. Choose an element x of 
A of maximal order m and put B = Zx. We shall see that there is a 
submodule C of A such that A = B EB C. If we use induction, this proves 
the theorem, for ICI < IAI and, by Lemma 1, the order of any element of 
C divides m. 

To show that C exists, we extend the identical map from B to itself to 
a morphism F : A ~ B. Lemma 3 shows that this is possible, since B is 
cyclic and mA = O. We now claim that ker F will do as C. To show this, 
take a z in A and write 

z = F(z) + (z - F(z)). 
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Here the first term on the right is in B and the second is in ker F, for F is 
the identity on B and hence 

F(z - F(z)) = F(z) - F(F(z)) = F(z) - F(z) = O. 

R. Complete the proof by verifying that Band ker F have only 0 in 
common. 

Exponents and types 

The maximal order of a module A can also be described as the least 
integer m that annihilates A, mA = O. The number m is called the exponent 
of A and the succession of exponents ml, ... , mn of the modules Al , ... , An 
the type of A. In the form of exercises we shall show below that two finite 
modules are isomorphic if and only if they have the same type. 

R. Show that a finite module is cyclic if and only if its order and type 
are the same. 

The divisibility condition for types implies restrictions 

R. Show that (50) and (10,5) are the only types of a module of order 50 
and that (16), (8,2), (4,4), (4,2,2), (2,2,2,2) are the only possible types 
when the order is 16. 

R. Show that if a number d divides the order of a finite module, then it 
has a submodule of order d. (Hint. Use the theorem.) 

R. Let z and y be two elements of order m and n of a module. Show 
that z + y has the order mn only if m and and n are coprime. 

R. Show that the direct sum of two cyclic modules is cyclic if and only if 
the orders are coprime. 

Uniqueness 

The following exercises give a proof that two isomorphic finite modules 
have the same type. Since cyclic modules of the same order are isomorphic, 
the converse is trivial. 

When A is a module and m > 0 an integer, let A( m) be the set of 
elements of A annihilated by m, mz = O. 

R. Let p be a prime. Show that 

is an increasing sequence of submodules of A and that the order of any 
element of any of them is a power of p. 
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Modules which are annihilated by a power of a prime p are called p­
modules. Since we are dealing with finite modules, the chain of p-modules 
above becomes constant for a certain power of p, pR. It is clear that n is the 
same for isomorphic modules. This remark is the basis for all that follows. 

R. Show that A(mn) is the direct sum of A(n) and A(m) when m and n 
are coprime. 

R. Let A be a finite module of order m. Let ql, . .. , qR be the primary 
factors of m and let PI, ... , PR be the corresponding primes. Show that A 
is the direct sum of the modules B" = A(q,,) and that B" is the maximal 
p,,-submodule of A. 

R. Let B be a module whose type is the following powers of a prime p, 

(nl, ... ,nl, ... ,nt, ... ,nt) 

where nl > n2 > ... and ni is repeated ri times. Show that IB(pi)1 is p to 
the power l(j), where 

l(j) = rlmin(nl,j) + ... + rtmin(nt,j) 

is an increasing piecewise linear function of j. Show that 

o = ntH < nt < ... < nl 

are the successive break points in the graph of 1 and that the graph has 
slope rl + ... + ri between niH and ni. It follows that this function defines 
the type of B. Hence isomorphic p-modules have the same type. 

R. Show that if a finite module has the type 

(ml, ... ,m,l, 

and qi = pRj is the largest power of p dividing mi, then the type of A(qi) is 
(nl, ... , n,l. Hence the type of A is determined by the type of its maximal 
p-module and hence is the same for isomorphic modules. 

Exercises 
1. Prove that Pr(75) has the type (20,2) and write the group explicitly 

as a direct product of two cyclic groups. (Hint. IPr(75)1 = 40 and we know 
that Pr(75) is not cyclic. Try 2 for an element of maximal order.) 

2. What is the type of Pr(lOO)? 
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3.5 Appendix. Finitely generated modules 

Let A be a module. We say that A is finitely generated if there is a finite 
set of elements aI, ... ,ak of A such that every a in A can be written 

for some integers nl, ... ,nk. The elements aI, ... ,ak are called generators 
of A. If A is finitely generated, we say that it is free (on al,'" ,ak) if 

When A is a module, we denote by T(A) the submodule of A consisting of 
all elements a of A such that na = 0 for some integer n i= O. Such elements 
are called torsion elements and T(A) is called the torsion submodule of A. 

R. Verify that T(A) is a module. 

We are going to prove that every finitely generated A module can be 
written A = FEB T(A), where F is free and finitely generated. We begin 
with a 

LEMMA. A submodule of a finitely generated free module is free. 

PROOF: Let A be a finitely generated free module and B a submodule. 
We will use induction over the number of generators of A. We leave it to 
the reader to verify that a submodule of a free module generated by one 
element is free. Let aI, ... ,ak be a set of generators of A such that 

Define a morphism p : A - Zak by 

The kernel B' of the restriction of p to B is contained in 

hence is free by the induction hypothesis. If p(B) = 0, then we are finished. 
Otherwise p( B) is generated by some nak, n i= 0 (since p( B) is contained 
in the cyclic module Zak). Suppose that p(b) = nak. We claim that B = 
B' EB Zb. For if x is in Band p(x) = n'nak, then p(x - n'b) = 0, and 
so x - n'b is in B'. Furthermore, if x is in B' n Zb, say x = n'b, then 
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0= p(z) = n'nak, and n' = O. Hence z = 0 and B' n Zb = O. This finishes 
the proof. 

It follows from the proof that there is a finite set of generators b1, ••• , b, 
such that B is free on b1, ... , b, and 1 $ k. It is not difficult to prove that 
the number 1 is uniquely determined by B. For let C1, C2, • •• be another set 
(not necessarily finite) of generators on which B is free and assume that it 
has at least m elements. It is enough to show that m $ I. If p is a prime, 
then B/pB is isomorphic to the direct sum of 1 copies of Z/Zp, whence 
IB/pBI = pl. But B/pB also contains a submodule isomorphic to m copies 
of Z/Zp, so pm $ pl. The number 1 is called the rank of B. 

THEOREM. If A is a finitely generated module, then A = F $ T(A), where 
F is finitely generated and free. 

PROOF: Let A' = A/T(A) and denote the quotient map A -+ A' by a -+ a. 
If A' = 0, then we are finished. Otherwise take a maximal set of elements 
a1,"" ak of A such that 

n1 a1 + ... + nkak = 0 => n1 = ... = nk = O. 

Let A = Za1 + ... + Zak ~ A'. Then A is free. If a is in A', then there are 
integers n '" 0, n1, ... ,nk such that 

na + n1 a1 + ... + nkak = O. 

Since A' is finitely generated (why?), there is an integer m '" 0 such that 
ma E A for all a E A', or mA' ~ A. But A' is torsion-free, so the map 
a -+ ma is injective, and A' is isomorphic to a submodule of the free module 
A. Hence A' is free by the lemma. 

Define 
F = Za1 + ... + Zak. 

Then F is free. In fact, if n1a1 + ... + nkak = 0, then n1a1 + ... + nkak = 0 
and n1 = ... = nk = O. We claim that A is the direct sum of F and T(A). 
For if a is in A, then a = n1a1 + ... + nkak for some integers nl, ... ,nk. 
Hence a - n1a1 - ... - nkak E T(A) since its image in A' vanishes. It 
remains to prove that F n T(A) = O. Suppose that a E F n T(A). Write 
a = n1a1 +. +nkak. Then 0 = a = n1a1 +. ·+nkak and n1 = ... = nk = 0 
since A' is free. Hence a = O. The proof is finished. 

R. Prove that T(A) is finite if A is finitely generated. 

Literature 

The study of modules first appeared in number theory. The alternative 
name of abelian group stems from Abel's work on algebraic equations. A 
reader who wants to proceed to the general theory of modules over a ring 
can consult any comprehensive algebra text. 



CHAPTER 4 

The finite Fourier transform 

The Fourier transform is one of the main tools of analysis with a large 
number of important applications in physics, technology and statistics. In 
numerical applications it has to appear in discrete form as the finite Fourier 
transform. This transform is associated with the theory of characters of 
finite modules (abelian groups) which forms the first part of this chap­
ter. The remaining parts are devoted to applications, first a proof of the 
quadratic reciprocity theorem and then numerical applications, in partic­
ular the method of computing the finite Fourier transform which is called 
the fast Fourier transform, FFT. 

4.1 Characters of modules 

When z is a complex number, let Izl denote its absolute value. Since 
Izwl = Izllwl, all complex numbers of absolute value 1, i.e. those on the 
unit circle, constitute a commutative group under multiplication. When 
n> 0 is an integer, all z such that zn = 1, the nth roots of unity, constitute 
a subgroup of order n. Generators of this group are the primitive nth roots 
of unity with the property that zk =/: 1 when 0 < k < n. An obvious nth 
root of unity is a number with absolute value 1 and argument 21r/n. By 
the theory of cyclic modules, every other primitive nth root of unity is a 
power zk where k and n are coprime. 

Characters 

A map 1 from a module M = {a, b, c, ... } to the non-zero complex 
numbers with the property that 

I(a + b) = l(a)/(b) 

is called a character of M. Since 1(0) = 1(0 + 0) = 1(0)2, we must have 
1(0) = 1 and since 1(0) = I(a - a) = l(a)/( -a), I( -a) = 1/I(a). Hence 
the image of 1 is a commutative group (see also the generalities of Chapter 
3). 

R. Show that a character is uniquely determined by its values on a set of 
generators. Show that a product of characters is a character. 
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R. The exponential function I(z) = a~ with a complex a =# 0 (and with 
a definite argument) is a character of the real numbers R. Show that it is 
a bounded function of z if and only if lal = 1. 

R. Let k -+ I(k) = aJ: be a bounded character of the integers. Show that 
it is an injection if and only if a is not a rational root of unity. Show that 
if a is an nth root of unity, then the same map defines a character of the 
module Zn = Z/nZ and that the character is a bijection if and only if a is 
a primitive root. 

R. Show that a cyclic module of order n has n different characters con­
sidered as functions from the module. 

R. Let M and N be modules with characters I and g. Show that h( a, b) = 
l(a)/(b) for all a in M and b in N defines a character of the direct sum 
M ED N. Show that every character has this form when M and N are cyclic. 
(Hint. Consider the number of different characters which have this form.) 

Note. Since every module is the direct sum of cyclic ones, the last 
exercise shows that every module has as many characters as elements. 
The characters form themselves a commutative group under multiplication, 
(lg)( a) = I(a)g(a), I-l(a) = I( -a). 

Note. The situation described above becomes more symmetric if we con­
sider the characters I, g, ... of a finite commutative group G = {a, b, c, ... } 
defined by the property that I(ab) = l(a)/(b) for all a and b. Then G 
has as many characters as elements and the characters form a commutative 
group under multiplication called the dual of G and sometimes denoted by 
0*. The group 0* also has characters, among them maps I -+ f(a) with 
a fixed in G. In fact, the equation (lg)(a) = I(a)g(a) says that they are 
characters. Since there are as many characters as elements of G and since 
l(a)/(b) = I(ab) where I runs through 0*, we conclude that the bidual 
G** of G is isomorphic to G itself. 

4.2 The finite Fourier transform 

LEMMA. Let w be an nth root of unity. Then the sum 

vanishes unless w=l and then its value is n. 

R. Prove this. 

In the simplest case, the discrete Fourier transform maps a complex func­
tion I defined on the integers mod n to another such function T I defined 
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by 
n-l 

(Tf)(k) = L W kj f(j) 
o 

where w is a primitive nth root of unity. The basic property of this map is 
the following 

THEOREM. Putting (T'f)(k) = Tf(-k), the maps TT' and T'T are both 
n times the identity. In other words, 

T- 1 = T'/n. 

PROOF: We have 

where all sums run from 0 to n - 1. By the lemma above, the sum over 
j yields 0 unless u;P-k = 1. Since n - 1 ~ p - k ~ -(n - 1), this can 
only happen when p = k. Hence the sum on the right equals nTf(k). This 
proves the first part of the theorem. The proof of the second part is entirely 
similar. 

If we put T f = f' ,the Fourier transform and its inverse are given by the 
following formulas 

(1) f'(j) = L wi k f(k), f(k) = L w-jk f'(k)/n 

with summations over k and j respectively. 
Notice that the right sides do not change if k and j are replaced by, 

respectively, k + mn and j + mn. This is consistent with the functions f 
and f' being functions from Zn to the complex numbers. 

Note. We can also consider the Fourier transform T as a linear map from 
en to itself with the matrix (e(jk)) where e(z) = exp 27riz/n. The theorem 
shows that T2f(k) = nf(-k) for all k and f and hence that T4 = n2[ 
where [ is the unit matrix. It follows for instance that the sum of the 
eigenvalues of T is its trace 

Such sums were considered by Gauss. We shall return to this point in 
section 4.3 where the finite Fourier transform is used to prove the quadratic 
reciprocity law. 
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One of the basic properties of the Fourier transform is that it converts a 
convolution 

n-1 

(2) f * g(k) = E f(k - j)g(j) 
o 

into multiplication of the transforms. In fact, taking the Fourier transform 
of the f * g, we have to compute the sum 

where all sums run over Zn. Summing independently over j - k and k shows 
that 

(3) (f * g)' = f'g', 

i.e. the Fourier transform of a convolution is the product of the Fourier 
transform of its factors. 

R. Prove that 

Limit passa.ge to Fourier series 

Letting n tend to infinity, the finite Fourier transform gives the Fourier 
series of functions defined in the unit interval. In fact, put w = e-21ri/n , 
write f(k/n) for f(k), put n = 2m + 1 and let the sums above run from 
-m to m. Then 

n-1 

f'(j)/n = Ef(k/n)e21rijk/n. 
k=O 

Here the right side is a Riemann sum of the integral 

aj = 11 f(z)e- 21r#dz 

where j runs over all integers. A passage to the limit in the other formula 
(1) then gives 

f(z) = Ee21rikxak. 

All our limits are of course formal but easy to justify under suitable pre­
cautions, for instance that f(z) is once continuously differentiable. 



4.2 The finite Fourier transform 57 

The finite Fourier transform for direct sums 

To every direct sum M = Ml E9 ... E9 Mr of finite cyclic modules, there 
is a finite Fourier transform 

(5) f'(j) = L wile f(k) 

with the inversion formula 

(6) 

Here j = (it, ... , jr) and k = (k1, .•. , kr) are in M, the sums run over M 
and m is the order of M, m = ml ... mr with m8 the order of M 8 • The 
characters wile are products of characters 

with p = j8, q = k8 and W8 a primitive n8th root of unity. As for cyclic 
modules, the proof relies on the fact that Lie wile = 0 unless all j8 vanish 
in which case the sum is m. 

R. Prove this statement. Prove also that the Fourier transform of a 
convolution is the product of the Fourier transforms of its factors. 

Note. The general form of the Fourier transform for a finite module 
M = {a,b,c, ... } uses its dual M' = {a,,B,,,),, ... } of characters and runs 
as follows 

f'(a) = Ef(a)a(a), f(a) = Ef'(a)a(a)-l/n. 
a a 

Here n is the order of M and sums run over M and M' respectively. To 
fit (1) and (2) into this format, note that wi'" is the value of the character 
p ~ a(p) = wi '" of Zn for p = k. 

R. Let a be an element of M. Prove that there is a character ,B such that 
,B(a) =fi 1 unless a = O. (Hint. Use the decomposition of M.) 

R. Show that L a( a) = 0 when a =fi 0 and the sum runs over all char­
acters. (Hint. Let f(a) be the sum. Prove that ,B(a)f(a) = 0 for every 
character ,B and use the previous exercise.) Use this information for a di­
rect proof of the inversion formulas above. 
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4.3 The finite Fourier transform and the quadratic reciprocity 
law 

The finite Fourier transform leads to a simple proof of the quadratic 
reciprocity law 

(plq)(plq) = (_1)(P-I)(Q-I)/4 

where p and q are odd primes. Here (nip) = 1 when n is a square mod q 
and -1 otherwise. This symbol has the property that 

(1) 2: e(nj2 /p) = (nip) 2: e(j2 /p) 

when n is not divisible by p. Here e(r) = e2lrir and the sums, called 
Gaussian sums, run over Zn. In fact, when n is a square mod p, then the 
sequence np and p both run through the squares mod p so that the two 
sides are equal. When n is not a square mod p, the same sequences run 
through, respectively, the non-squares and the squares so that the sum on 
left plus the sum on the right equals ,,£e(j/p) for j = 0, ... ,p - 1 which 
vanishes. This proves (1) since (nip) = -1 in this case. 

The connection with with the finite Fourier transform Tp on Zn , 

Tpu(j) = 2:e(jk/p)u(k) 

with the matrix (e(jk/p)) , stems from the fact that its trace, tr Tp IS 

precisely 

(2) 

Combining (1) and (2) yields 

Here the sum on the right equals "£ e«pj + qk)2 / pq) which is nothing but 
tr Tpq. Hence the quadratic reciprocity law follows if we can evalute the 
right side of 

(3) 

THEOREM. The trace of -fiiTn, n > 2, equals (1 + i-n)/(1 + i-I). 

Before the proof, let us deduce the quadratic reciprocity law from the 
theorem and (3). By (3), tr-fiiTn equals 1 + i, 1,0, i according as n == 
0,1,2,3(4). Hence, for odd n, -fiitrTn equals 1 and i according as n == 10r 
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n == 3 mod 4. Hence the right side of (3) is 1 unless both p and q are -1 in 
which case it equals -l. 

To prove the theorem we shall compute trTn by developing the function 

n-1 

g(x) = LI(x + k), I(x) = e(ix2 /n) = e21riz2/n 

o 

in a Fourier series. This will give two expressions for trTn = g(O). The 
function g(x) is periodic with period 1 and its Fourier coefficients are 

am = 11 g(x)e(-imx)dx 

Replacing 9 by 1 in the integral, we get 

so that, replacing x by x + k and summing, 

The factor in front of the integral is 1 when m is even and i-m when m is 
odd and the integral equals 

1(nm+n)/2 
e(ix2 )dx. 

(nm-n)/2 

The union of the intervals of integration is R when m runs over the odd 
integers and over the even integers. Hence 

which equals 

Since g(O) = trTn, this finishes the proof modulo the computation of the 
integral in (4) and the fact that a continuously differentiable function with 
period 211" is the sum of its Fourier series. 
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4.4 The fast Fourier transform 

The ordinary Fourier transform is a tool of supreme importance in analy­
sis and has all kinds of applications, especially in electronics. Its importance 
stems from the fact that convolution appears naturally in processes where 
something that happens at a certain point in time depends linearly on what 
has happened before that time. Since the Fourier transform turns a convo­
lution into a simpler operation, multiplication, it is very useful in analyzing 
such processes. 

Numerically, the Fourier transform has to be implemented on a discrete 
grid and the computations should of course not take too long. From this 
point of view, the finite Fourier transform on a cyclic module presents 
certain disadvantages. In the first place, the roots of unity are complex 
numbers so that the Fourier transform leads to complex numbers. Secondly, 
to compute a Fourier transform with n arguments 

n-1 

f'(k) = L: l(j)wi" 
o 

seems to require n( n -1) additions and the same number of multiplications. 
A smart bookkeeping trick, which is called the fast Fourier transform, FFT, 
makes it possible to do better when n is a composite number. 

To shorten the exposition, a transform S : I --+ f' given by the formula 
n-1 

(1) f'(k) = E wi" f(j) 
o 

will be called a Fourier transform of order n also when w is a primitive nth 
root of some complex number, not necessarily equal to 1. 

First, let us observe that the formula (1) shows that computing the values 
of a Fourier transform of order n of a function I amounts to computing the 
values of the polynomial 

(2) P(z) = 1(0) + 1(1)z + ... + I(n _1)zn-1 

when z runs through all the nth roots of unity. The fast Fourier transform 
is based on the following lemma which could be phrased briefly as: the com­
putation of a Fourier transform of order n = pq reduces to the computation 
of p Fourier transforms of order q. 

LEMMA 1. Suppose that n = pq factors in natural numbers p and q and let 
t be a complex number. The values of the polynomial (2) as z runs through 
the nth roots oft are the same as the values of 

q-1 p-1 

Pu(z) = L:(L: l(jq + k)uj)z" 
"=0 ;=0 
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as z runs through the qth roots of u and u through the pth roots oft. 

PROOF: Let w be a primitive pqth root of t. Then we can split the sum 
(2) as 

q-l p-l 

(3) L:(L/(jq + k)w jq )w1:. 
1:=0 j=O 

Putting z = wand u = wq , (3) follows. 

Example 
Let n=4 and t=1. With u = 1, -1, the two polynomials above are 

Pl (z) = (/(0) + 1(2)) + (/(1) + 1(3))z 

and 
P-1(z) = (/(0) - 1(2)) + (/(1) - 1(3))z. 

For each of these polynomials we can apply lemma 1 again with u = ±1 
and u = ±i. Hence the four values of the transform of 1 are 

(/(0) + 1(2)) + (/(1) + 1(3)), 

(/(0) - 1(2)) + (/(1) - 1(2))i, 

(/(0) + 1(2)) - (/(1) + 1(3)), 

(/(0) - 1(2)) - (/(1) - 1(3))i. 

The total number of additions is 4+4=8. 

Cost estimates for FFT 

The Fast Fourier transform, FFT, is a cover name for numerical schemes 
which split the computation of a finite Fourier transform in steps using 
Lemma 1. That the cost measured in terms of the number of additions and 
multiplications may be drastic will be seen below. 

As remarked above, a straightforward computation of the Fourier trans­
form (1) requires n(n - 1) additions and at most the same number of mul­
tiplications. On the other and, if n = pq and Lemma 1 is used, q(p - 1) 
are required just to compute the coefficients of Pu(z) and then q(q - 1) 
additions are required to compute all the values of Pu ' Hence the total 
number of additions for the p functions Pu and hence for the computation 
of the Fourier transform of 1 is at most 

(4) qp(p - 1) + pq( q - 1) = pq(p - 1 + q - 1) 

A count of the number of multiplications gives at most the same number. 
Since the last factor on the right of (4) is in general considerably less than 
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pq - 1, the use of Lemma 1 has greatly improved the economy of the com­
putation of the Fourier transform of f. The theorem to follow uses the full 
power of Lemma 1. 

The number of additions, subtractions included, used in some method 
of computation will be called its additive cost and the total number of 
additions and multiplications its arithmetic cost. 

Example 
The additive cost of a straightforward computation of a Fourier transform 

of order n is precisely n(n - 1), the arithmetic cost at most 2n(n - 1). 

THEOREM. Let p and q be natural numbers. Suppose that a(p) and a(q) 
are the arithmetic costs of computing Fourier transforms of order p and q 
respectively. If the formula (3) is used to compute a Fourier transform of 
order pq, the corresponding arithmetic cost is 

(5) pa(q) + qa(p). 

The same inequality holds when a denotes additive cost. 

PROOF: There are p polynomials Pu of degree q to consider. Together they 
have pq coefficients which appear in groups of p such that all coefficients 
in one group are the values of a Fourier transform of order p. Hence the 
arithmetic cost of computing all coefficients is qa(p). The arithmetic cost 
of computing the values of all polynomials Pu of degree q is also the cost of 
computing p Fourier transforms of order q. Hence (5) follows and the same 
reasoning for additive cost finishes the proof of the theorem. 

Relative arithmetic cost. The theorem invites a new notion, namely the 
relative arithmetic cost or arithmetic cost per order of a Fourier transform, 
defined to be c(m) = a(m)/m. According to (5), the relative arithmetic 
cost of computing a Fourier transform of order pq is at most c(p) + c( q) 
where c(p) and c(q) are the relative arithmetic costs for transforms of order 
p and q respectively. The same goes for the additive cost. Using these 
terms, the theorem has the following corollary. 

COROLLARY. Let n = pm. Using Lemma 1 repeatedly, the relative arith­
metic cost of computing a Fourier transform of order n is mc{p) and hence 
at most 2m{p - 1). The arithmetic cost itself is at most 2pm+lm(p - 1). 
In particular, when p = 2, the arithmetic cost is at most 2m +1 m and the 
additive cost at most half that amount. 

Note. These upper bounds are not the best possible ones (see for instance 
Auslander-Feig-Winograd (1984) and Winograd (1980». Best bounds also 
depend on the class of algorithms used. For p = 2 it will be proved in 
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section 6.3 that the additive estimate is best possible for a certain class 
of algorithms which includes FFT. It will also be proved that FFT uses 
exactly (n - 1 )2n + 1 multiplications by roots of unity not equal to 1 and 
that this is also best possible. 

The case used in practice is p = 2. When computing a finite Fourier 
transform of order n, one is not bound by n being a power of 2. It is 
possible to choose a number k such that 21: ~ n < 21:+1 and, when n > 21:, 
imbed functions with n arguments as functions of 21:+1 arguments with 
the last 21:+1 - n arguments put equal to zero. By the lemma above, it 
is then possible to compute the corresponding Fourier transform using at 
most O( n log n) additions and multiplications. 

R. Let n = I1pm be the prime decomposition of a natural number n, p 
running over the primes dividing dividing n and pm is the corresponding 
primary number. Prove that the relative arithmetic cost of computing a 
Fourier transform of order n is at most L: mc(p) , where c(p) is the relative 
arithmetic cost for a transform of order p. 

An algorithm for FFT of order 2m 

The 2Pth roots of unity will be parametrized by the formula 

e(J) = exp 211'i[J]/2P 

where [J] = jo + ... + jp_12P-1 has III = p binary digits. Then the two 
square roots of e(J) are e(J,j) with j = 0,1. Let 

P(z) = Lf([K])z[Kl, IKI = m 

be the polynomial associated to the Fourier transform of order 2m with the 
coefficients numbered using m binary digits. We shall present an algorithm 
based on Lemma 1 which computes the Fourier transform of fusing m 
generations of polynomials. Those of generation pare 2P in number and 
have the degree 2m - p - 1. They will be denoted by 

P(J,z) = La(J;K)z[Kl 

where IJI = p and the sum runs over all K with m - p digits. 

FFT algorithm 

Starting from P(J, z) = P(z) when IJI = 0, construct the polynomial 
P(J,j, z) from P(J, z) and the binary digit j by the formula 

a(J,j;L) = a(J; L, 0) + e(J,j)a(J; L, 1) 

where IJI + IKI = m - 1. End: the polynomials with IJI = m. 

This algorithm is justified by the following 
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LEMMA 2. The polynomials P(J, z) have the property that p(J, z) = p(z) 
when z is an (m - IJDth root of e(J) and all values of P(z) when z is an 
2m th root of unity is obtained in this way. 

Note. Apart from complicated notations, this is just Lemma 1. 

PROOF: When z2"'-P = e(J), then Z2"'-P-l is a square root of e(J), j = 
0,1. Then if K = L, r with r = 0,1, we have [K] = [L] + 2m - p - 1r, so that 

z[Kl = z[Lle(J,jt 

and hence 

P(J, z) = L a(J; L, r)z[Lle(J,jr = L(a(J; L, 0) + a(J; L, l)e(J,j))z[Ll. 

An induction with respect to IJI completes the proof. 

R. Construct an analogous algorithm for Fourier transforms of order pm. 

Applications to convolutions and multiplication of polynomials 

THEOREM. Let fand g be complex functions from 0, ... ,n-1. Using FFT, 
the arithmetic cost of computing the convolution, 

n-l 

(f * g)(k) = L f(k - j)g(j) 
j=O 

or all the coefficients of the polynomial 

2n-2 j 

(fg)(z) = f(z)g(z) = L (Lf(j - k)g(k))zj 
j=O '\:=0 

is O( n log n) in both cases. 

R. Prove both assertions by using the formula 

f = T-1(TfTg). 

The fast Fourier transform in modular arithmetic 

In our cost estimates so far we have ignored the imprecisions of additions 
and multiplications which are inevitable when non-rational numbers are 
involved. In order to deal with the arithmetic of large integers it is often 
both necessary and convenient to use computation modulo some suitably 
chosen number. In this connection, a modular version of the fast Fourier 
transform has been used. In the modular version the complex numbers are 
replaced by Zm and the primitive nth root of unity e21fi / n by an integer with 
the corresponding properties mod m. A suitable choice is the following 
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LEMMA. Let nand w be positive powers of 2 and put m = wn / 2 + 1. Then 
n has a multiplicative inverse mod m and 

(1) 
n-l 

L wip == 0 mod m when 1 ~ p ~ n - 1. 
o 

Note. Since wn / 2 == -1 mod m, w is a primitive nth root of unity in 
Zm. 
PROOF: Since m and n are obviously coprime, the first assertion follows. 
Let n = 2k. The proof of the second depends on the identity 

To prove this, it suffices to note that multiplication by 1 - a gives the same 
result 1 - a2k for both sides. When a = 1, the identity is obvious. 

The identity above reduces the proof of (1) to a proof that 

1 + w2' == 0 mod m 

for some i ~ 1 and < k depending on p. When p is odd, it suffices to choose 
i = k -1 for then w2k - 1 = wn / 2 == -1 mod m. When p is not odd, p = 2tp/, 
p' odd and t < k. Hence a choice of i realizing the desired congruence is 
always possible and this proves the lemma. 

The Fourier transform T f of order n of a function f with values in Zm 
is now defined by 

n-l 

(2) (Tf)(j) = E wi k f(k) 
k=O 

By the lemma above, this formula is inverted by 

n-l 

f(k) = n-1 L w-jk(Tf)(j). 
j=O 

All calculations are of course performed in Zm, i.e. modulo m. 

THEOREM. Let m and n be as in the Lemma. Using modular FFT, the 
computation mod m of a Fourier transform of order n (or its inverse) 
requires at most O(n2 Iognlogw) bit operations. 

PROOF: Since the algebra is the same as for the finite Fourier transform of 
order n, we can use FFT to compute the Fourier transform (2) or its inverse 
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using at most O( n log n) additions and multiplications. It remains to esti­
mate the bit cost of carrying out all these operations mod m. The integers 
mod m can be written with 6 = (n/2) log w + 1 binary digits. Addition 
mod m then requires at most 0(6) binary operations and multiplication by 
powers of w also O(b) binary operations. Hence the computation of the 
Fourier transform requires at most O( n2 10g n log w) bit operations. 

The Schonhage-Strassen algorithm for the multiplication of large integers 

Under the bisection method, the bit cost of computing the product of 
two N-bit integers is 0(N1.8 ). A logarithmic bisection involving a step 
from N to -IN combined with a fast modular Fourier transform has led 
to a new algorithm, the Schonhage-Strassen algorithm, which computes 
the same product a the bit cost of O(NlogNloglogN). The interest of 
this algorithm, which has some delicate features, is mainly theoretical. The 
version presented below computes the product mod 2N + 1 which is sufficient 
since the order of the bit cost above is unchanged when when N is replaced 
by 2N. For the same reason, it suffices to establish the algorithm when N 
is a power of 2. 

The SchOnhage-Strassen algorithm 

Input: N = 2r , r an integer> 0, two N-bit integers x and y. 
Output: the product z = xy mod 2N + 1. 
1. If r < 4, compute z by some method. 
2. If r ~ 4, set 6 = n = 2r/ 2 when r is even and n = 2(r-l)/2, b = 2(r+1)/2, 

when r is odd. Set m = 2" + 1 and w = 2411/n. 

Note. By construction, 6n = Nand w = 24 ,28 according as r is even or 
odd. Since wn / 2 = 2 211 , W is a primitive nth root of unity mod m. 

3. Define xU) = y(j) = 0 when j < 0 or j > n - 1 and by 

n-l 

X = LxU)2jll , 

j=O 

Hn-l 

y = L y(j)2j b 

j=O 

otherwise. Define z(j) = Lj;~ x(j - k)y(k) and t(j) = z(j) - z(j + n) 
when j = 0, ... , n - 1. 

Note. This defines x(j) and y(j) as b-bit integers. We also have 

(1) 
n-l 

xy == L t(j)2jb mod 2N + 1. 
j=O 

In fact, 2(n+j)b z(j + n) == - 2jb z(j + n) mod m since 2 nb = 2N. Also, 
z(j) ~ j22b and z( n+ j) ~ (n- j -1 )22b so that (n- j -1 )22b ~ t(j) ~ _ j22b. 
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The difference between the two bounds is (n - 1)226 and hence it suffices 
to know t(j) modulo, for instance, n(226 + 1) = mn and, since the two 
factors are coprime, modulo m and n separately. This observation is the 
gist of the algorithm. The residue of t(j) mod m will be computed using a 
modular Fourier transform and the algorithm itself with N replaced by 2b. 
The residue modulo n, which is a much smaller number than m, is obtained 
by simpler means. 

4. Define u = 226/n and f(j) = ui x(j), g(j) = ui y(j) for j = 0, ... , n-1. 
Let T be the Fourier transform mod m of order n with w as a primitive 
nth root of unity mod m. Put F(j) = (Tf)(j), G(j) = (Tg)(j) for j = 
0, ... , n - 1. Define h = T-l(FG) where (FG)(j) = F(j)G(j). Define 

t'(j) == u-i h(j) mod m. 

Note. The powers of u stagger the b-bit integers x(j) and y(j) by inserting 
strings of zeros between them. Another essential effect of introducing the 
powers of u is that t'(j) == u-i mod m. In fact, when 0 ~ j < n, then 
h(j) = ui z(j) + ui+nz(j + n) == uit(j) mod m since un == -1 mod m. 

5. Compute F, G by the fast version of T, the products F(j)G(j) of 
2b-bit numbers by the present algorithm, compute h by the fast version of 
T. 

6. Define x"(j), y"(j) to be the residues mod n of the integers x(j) and 
y(j) respectively. Putting n = 2t, multiply the numbers 

n-l n-l 

U = L x"(j)23ti , v = Ly"(j)23ti 
i=O i=O 

by the bisection method. The integers z"(j) == z(j) mod n then appear 
as 2t-bit sequences separated by sequences of t zeros. Compute t"(j) == 
z"(j) - z"(j + n). 

7. Compute t(j) exactly by the formula 

t(j) == m(t"(j) - t'(j» + t'(j) mod mn 

and the condition that t(j) be between (n - 1 - j)226 and (j + 1)226. 
Note. Since b = n or 2n, nand m = 226 + 1 are coprime and hence 

the right side above is == t(j) mod mn. By the note under step 3, t(j) lies 
between the assigned boundaries. 

8. Compute xy mod 2N + 1 using (1). 
It is clear from the notes above that the algorithm achieves its purpose. 
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THEOREM. The bit cost of the Schonhage-Strassen algorithm for the prod­
uct of two N-bit integers is O(NlogNloglogN). 

PROOF: As remarked before, it suffices to verify the theorem when N is a 
power of 2 and the multiplication is done modulo 2N + 1. Let M(N) be 
the actual bit cost in this case. By the previous theorem, the bit cost of 
step 5 above is O(n2 logn + nM(2b». In fact, the first term is the bit cost 
of the three Fourier transforms and the last term majorizes the bit cost 
of computing the n terms F(j)G(j) where each factor is at most a 2b bit 
number. Since the numbers u and v under step 6 have at most 3n log n bits, 
the bit cost of multiplying them is at most O«2nlogn)1.8) = O(n2 ).The 
other operations are shift which cost at most O(N). Hence 

M(N)/N ~ O(logN) + (2bn/N)(M(2b)/2b). 

To simplify this inequality, write N = 2r and f(r) = M(2r)/2r. By the 
definition of b, 2b equals 2h(r) where h(r) = r/2 + 1 when r is even and 
h(r) = r/2 + 3/2 when r is odd. Hence we get 

(2) f(r) ~ cr + 2f(h(r» 

for some constant c and, for instance, r ~ 4. For r < 4, f(r) is less than a 
fixed number a. Iterations of (2) give 

, 
(3) f(r) ~ L 2I:h(I:)(r) + 21+1 !(h(6+l)(r» 

1:=0 

as long as M')(r) ~ 4. Here MI:) is the kth iterate of h with h(O)(r) = r. 
Since r/2 + 1 $ h(r) $ r/2 + 3/2, an easy calculation shows that 

(4) 

Since h{I:)(r) decreases to zero as k increases, we can choose 8 such that 

(5) 

According to (4), (5) implies that 2-'r + 3> 4 > 2-'r which means that 
2' ~ r ~ 2'+3, i.e. 8 ~ logr ~ 8 + 3. The estimate (4) shows that the sum 
of (3) is at most (8+ l)r+3.2,+1 = O(r logr). By (5), the first term of the 
right side of (3) is at most a2,+l. Hence f(r) = O(r log r) which proves the 
theorem. (Note the delicate balance between the factor 2 in (2) and the 
factor 1/2 of r in h(r).) 
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CHAPTER 5 

Rings and fields 

This chapter provides its reader with a quick view of the basic algebraic 
notions of ring and field illustrated with familiar examples. Its last section 
is devoted to the elements of linear algebra. The many easy R-exercises are 
supposed to make the reader familiar with the definitions and the terminol­
ogy. The text is also a preparation for Chapter 6 on algebraic complexity 
theory. 

5.1 Definitions and simple examples 

A ring is a module R = {a, b, c, ... } with a multiplication, not necessarily 
commutative, and connected with the module operation by the distributive 
laws, 

(a + b)c = ac + bc, c(a + b) = ca + abo 

When the multiplication is commutative, ab = ba for all a, b in R, the ring 
is said to be commutative. A subring of a ring R is a non-empty part 
S of R such that a - b and ab are in S when a and b are. It is then 
itself a ring, since the associative and distributive laws are automatic in 
S and, by a previous result, S is a module. The simplest of all rings is 
the ring Z of integers of which every mZ, m a. fixed integer, is a suhring. 
The ra.tional numbers, the real numbers and the complex numbers are also 
rings. According to Chapter 1, all entire algebraic numbers constitute a 
ring and also all algebraic numbers. All of these are subrings of the ring of 
complex numbers. 

These rings are all commutative. A very general model for rings, in 
general not commutative (see below under matrix rings) is the endomor­
phism ring A =Hom(M,M) of a module M, multiplication being defined 
by composition, 

(lg)(z) = /(g(z)), 

for all /,g in A and z in M. 

R. Verify that /g is an endomorphism and that the associative and dis­
tributive laws hold. 

R. Let a be an element of a ring A. Write na for a + ... + a (n terms). 
Show that all finite sums 



5.1 Definitions and simple examples 71 

with integral coefficients n1, ... form a sub ring of A and that it is the least 
subring containing a. Show that Aa, aA and all finite sums 

b1ac1 + b2a2c2 + ... 

with b1, C1, ••• in A form subrings of A. 

Exercises 
1. Let R = {a,b,c, ... } be a ring and let R' = {a',b',c', ... } be a copy 

of R as a set and isomorphic to R as a module. Define a product in R' by 

a'b' = (ba)'. 

Verify that R' is a ring. (R' is called the transpose of R.) 
2. Let R be a ring and a, b two commuting elements of it. Show that 

the least subring of R containing a and b is the set of integral multiples of 
products of powers of a and b. 

3. Which is the least subring of the real numbers containing i) V2 ii) 4 
and V2 iii) V2 and va ? 

Polynomial rings 

The polynomial ring R[z] over a ring R consists of all polynomials 

(finite sums) with coefficients in R, z being an indeterminate commuting 
with everything in R, subject to the rule that a polynomial is zero if and 
only if all its coefficients are zero. If 

g(z) = bo + b1z + ... 

is another polynomial, the sum and difference 1 ± 9 and the product 1 9 are 
defined by the familiar formulas 

Also when R is not commutative it is easy to verify that R[z), equipped with 
these operations, is a ring. It is a subring of the ring R[[z)) of formal power 
series with coefficients in R. Its elements are the formal sums, possibly 
infinite, 

l(z)=aO+alz+ .... 

Subtraction and multiplication are defined in the same way as for polynomi­
als. Since a given coefficient of Ig is a finite sum of products of coefficients 
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of 1 and g, there are no difficulties with infinite sums of elements of R. The 
nth partial sum In(x) of the formal power series is defined by 

which we can also write as In(x) == I(x) mod xn+l. In this notation, the 
definition of an equality I(x)g(x) = h(x) for formal power series is that 
I(x)g(x) == h(x) mod xn+1 for all integers n ~ o. 

Note. Formal power series with coefficients in Z2 have applications to 
shift registers. See Chapter 8. 

R. If I(x), g(x), h(x) have coefficients ai, bj, Ck, prove that (fg)(x)h(x) 
and I(x)(gh)(x) have coefficients 

d, = L aibjCk. 

i+j+k:' 

This proves that multiplication of polynomials is associative. The proof of 
distributivity is similar, only simpler. 

Direct sum and direct product 

When M = {x, y, ... } is a set and there is a ring Rx for every x in M, 
the direct product 

consists of all functions I(x) from M such that I(x) is in Rx for all x. The 
ring operations are defined by 

(f ± g)(x) = I(x) ± g(x), (fg)(x) = I(x)g(x). 

The sub ring of I1Rx consisting of all functions I(x) such that I(x) I- 0 
only for a finite number of x's is called the direct sum of the rings Rx. It 
is denoted by 

R. Verify that the direct sum is a subring of the direct product. 

When M has a finite number of elements, say M = {I, 2, ... , n}, the 
direct sum and the direct product are equal. We write them as 
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R. When all Rle are equal to the real numbers R or the complex numbers 
C, the direct sum is a wellknown object. Which one? 

Unit 

A ring R mayor may not have a unit, i.e., an element e such that 
ae = ea = a for all a in R. 

R. Show that R[z] and R[[zll have units when R has a unit. Show that 
a direct product has a unit when all rings involved have units. Show that 
the direct sum $zeM Rz has a unit if and only if M is finite. 

Exercises 
1. Show that a ring cannot have more than one unit. (Hint. If there are 

two of them, consider their product.) 
2. An element a of a ring R with a unit is said to have a left (right) 

inverse if there is a b in the ring such that ba = e (ab = e). Show that if 
both exist, they must be equal. 

Fini te rings 

The quotient modules Zm = Z/mZ, m > 0, are examples of finite rings, 
the product of cosets (a) = a + mZ being defined by 

(a) (b) = (ab). 

R. Prove that the right side is a function of the left side, i.e., that if a' 
and b' differ from a and b by multiples of m, then a'b' - ab is a multiple of 
m. Prove associativity and distributivity. 

Note. What has been done here is simply a pedantic verification that 
addition and multiplication mod m behaves just like ordinary addition and 
multiplication. 

Characteristic 

The integers m such that ma = 0 for all a in a ring R form a module 
Zn, n = 0 or > O. The number n is called the characteristic of R. The 
characteristic of Z is 0, that of Z/mZ is m. 

Matrix rings 

Consider the set M (n, R) of all n x n matrices A = (aj Ie) with entries in 
a ring R. Addition and multiplication are defined by the usual rules 

n 

A + B = (ajle + bjle), AB = (Lajibile). 
;=1 
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R. Describe the zero and unit. Verify the associative and distributive 
laws. The set M(n, R) is thus itself a ring. 

R. Find two 2 x 2 matrices with integral entries which do not commute. 

Matrices as endomorphisms 

Consider the direct sum 

of n infinite cyclic modules. When x = C1e1 + ... + cnen is in X and 
A = (ail:) is in M(n, Z), put 

n n 

Ax = L: cl:Ael:, Ael: = L: ail:ei· 
1:=1 i=l 

In this way, the matrix A is made into an endomorphism of X. In fact, by 
direct computation one finds that 

A(x + y) = Ax + Ay, A(Bx) = (AB)x 

for all x, y in X and A, Bin M(n, Z). Hence we can think of the elements 
of M(n,Z) as endomorph isms of the module X. 

Exercise 
Show that the following conditions on matrices A = (ajk) give sub­

rings of M(n, R), R a commutative ring. i) Let It, ... , It be a partition 
of {I, 2, ... , n} and let ail: = 0 unless j and k belong to the same set Ir . ii) 
ail: = 0 when j < k. iii) ail: = 0 when j < k+p, p > 0 fixed. Draw pictures 
under i) (for a simple partition) and under ii) and iii). Show that the sub­
rings R(p) defined under iii) have the property that M(n, R)R(p) ~ R(p) 
and that R(p)R(q) ~ R(p + q). 

Invertible elements and zero divisors 

An element a of a ring with unit whose multiplicative inverse a- 1 exists 
is said to be invertible. When a is invertible and ab = 0 or ba = 0, we 
get b = 0 for 0 = a-lab = b and similarly in the other case. Products of 
invertible elements are invertible, for if a, b are invertible, then ab has the 
inverse b- 1a- 1 • Typical non-invertible elements are the left (right) zero 
divisors, i.e., non-zero elements a for which ab = 0 for some b not equal to 
zero. 
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Examples 
A matrix A in M (n, Q) is invertible if and only if its determinant (denoted 

by det A) does not vanish (why?). When A E M(n, Z), A is invertible when 
det A = lor -1, but may not be invertible otherwise. When R = {a, b, ... } 
is a ring, non-zero elements (a,O) and (0, a) of the direct sum REB Rare 
zero divisors unless R itself is zero. 

R. Show that an element a of Zm is invertible if and only if (a, m) = 1, 
and that the other non-zero elements are zero divisors. 

R. Show that a formal power series 

with elements in a commutative ring R (with unit) is invertible. (Hint. 
Write f(x) = 1 + xg(x). Show first that 

h(x) = 1- xg(x) + x2g(x)2 + ... 

is in fact a formal power series by checking that if the right side is written 
as a power series, then any coefficient is a finite sum of elements of R. Note 
that the degrees of the terms of a power (xg(x))k are at least k. Finally, to 
check that fh = hf = 1, check that f(x)h(x) == 1 mod xn+l for all n ~ 0.) 

Exercises 
1. Let R be a ring with a unit where every element equals its own square 

(Boolean ring). Show that R has characteristic 2 and is commutative. 
(Hint. Square 1 + x and x + y.) 

2. Show that a ring without zero divisors containing a non-zero element 
e such that e2 = e must have e as a unit. 

3. Let R be a finite ring with a unit. Show that an element is invertible 
if and only if it is not a zero divisor. (Hint. Look at the maps R -+ Ra and 
R -+ aR.) 

Division rings and fields 

A ring in which every non-zero element is invertible is called a division 
ring. When commutative it is said to be a field. The classical fields are Q, 
R, C and the field of algebraic numbers. 

R. Show that Zm is a field if and only if m is a prime. 

The simplest non-commutative division ring is the ring of quaternions, a 
real vector space generated by four elements 1, i, j, k. A quaternion p is a 
linear combination 
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ak E R, where 1 is the unit and i, j, k have the following multiplication 
table 

i 2 = j2 = k2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j. 

Notice the cyclic arrangement ij = k,jk = i,ki = j. The conjugate of a 
quaternion is defined by 

R. Use the rules above and the distributivity to show that 

- - 2+ + 2 pp = pp = ao . . . a3, 

and deduce from this that the quaternions form a division ring. 

Note. We have left out the tedious verifications that the quaternions 
form a ring. 

Exercises 
1. Is the direct product of division rings a division ring? 
2. Show that all a + b.../2 with a and b rational numbers form a subfield 

of the real numbers. 

Rin!,S of quotients 

The construction of fractions from the integers is a venerable invention 
of the human spirit. Without any difficulty it can be carried over to com­
mutative rings. 

Let R be a commutative ring and S a non-empty subset of R whose 
elements are not zero-divisors. Assume that S is multiplicatively closed, i.e., 
that st is in S when sand t are. Any such S can be used as denominators 
in a ring consisting of fractions al s with a in Rand s in S. We identify 
al s with atl st for any t in S and add and multiply according to the usual 
rules 

a b at + bs a b ab -+ - = ---,-- =-. 
s t st st st 

Simple but tedious verifications show that this construction produces a ring 
which we shall denote by Rs and describe as the ring of quotients of R with 
denominators in S. 

R. Prove that Rs has a unit and that every s in S can be inverted in Rs. 
R. What is Rs when R = Z and S = mZ \ 0 with a fixed integer m > 0 ? 
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R. What is Rs when R = Z and S is generated by all primes except one, 
say p? Show that in this case p is the only prime in Rs being defined as it 
is for Z. 

Integral domains 

A commutative ring R is said to be an integral domain if it contains no 
zero divisors. Then we can take S = R \ 0 in the construction above. 

R. Show that Rs is a field in this case. 

The field Rs is called the fieJd of fractions. Taking R = Z we get the 
rational numbers. 

R. Prove that R[z] is an integral domain when R is. (Hint. When an is 
not zero, we say that the polynomial 

has degree n, and write n =deg f. Prove that 

deg(fg) = deg f + deg 9 

for non-zero polynomials and go from there.) 

Rational functions 

Let F be a field. Then the ring F[z] is an integral domain and the 
elements of its quotient field F(z), i.e., quotients 

I(z) 
g(z) 

where f and 9 ::f:. 0 are polynomials with coefficients in F, are called 
rational functions. If F is the field R or C, these are well-known from 
elementary analysis. 

Mixed exercises for 5.1 
1. Let M = Zz ::f:. 0 be a module generated by a single element z. Prove 

that there is only one ring structure on M consistent with the requirement 
that z2 = mz for a fixed integer m. Prove that zi zk = mHk- 1 z and that 
the ring so obtained is isomorphic to the ring Zm. 

2. Let E(j, k) denote an n x n matrix which has 1 in the jth row and 
the kth column and zeros elsewhere. Check that they are multiplied by the 
rule that E(j, k)E(p, q) = E(j, q) when k = p and zero otherwise. Prove 
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that the entire ring R = M(n, F), F a field, is generated by any non-zero 
matrix A in the sense that all sums of elements of RAR constitute all of R. 
(Hint. Write A as a linear combination ofthe E(j, k) and start operating.) 

3. Consider the module Q/Z, i.e., the rational numbers modulo the 
integers. Show that if a is in Q/Z, then a/n, naturally interpreted, is in 
Q/Z for all natural numbers n =I O. Deduce from this that ab = 0 for all 
a and b is the only way of making Q/Z into a ring respecting the module 
structure. 

5.2 Modules over a ring. Ideals and morphisms 

It is useful to let rings operate on modules the same way the integers 
operate on any module. A ring R = {a, b, c, ... } is said to operate on the 
left on a module M = {z, y, ... } if there is a function (a, z) - az from 
R x M - M which is associative and distributive in both factors, 

a(bz) = (ab)z, (a + b)z = az + bz, a(z + y) = az + ay, 

for all a, b in Rand z, y in M. Operation on the right is defined in the 
same way: a function (z, a) - za from M x R - M such that 

z(ab) = (za)b, z(a + b) = za + zb, (z + y)a = za + ya. 

When such operations are defined, M is said to be an R-module or a module 
over R. More precisely as the case may be, a left, right or two-sided R­
module. When R is commutative, one does not distinguish between left 
and right modules. 

R. Show that all n x 1 matrices with elements in a ring Rare natural left 
M(n, R)-modules. Is there a corresponding right module? 

The ring R itself is of course an R-module, but there are plenty of others. 

Example 
For any ring R, the direct sum 

is a two-sided module. In fact, if A = (a1' ... ,an) is in S, put 

aA = (aa1,'" ,aan) and Aa = (ala, ... , ana). 

There are also R-modules properly contained in R. For a fixed a E R, Ra 
is a left and aR a right R-module. All finite sums 
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with b1, Cl etc. arbitrary in R constitute a two-sided R-module. 

Ideals 

For an R-module contained in R there is another name, namely ideal. 
The word itself comes from an old divisibility theory for algebraic numbers 
based on 'ideal numbers' (Kummer, nineteenth century). As for R-modules 
there are left, right, and two-sided ideals. The set containing only the 
element 0 and R itself are the trivial ideals. All other ideals are said to be 
proper. 

Any subset S of R generates a left ideal, viz. the set of finite sums 

with bl, b2, .•• in Sand al, a2, • .. in R. Ideals generated by a single element 
are said to be principal. 

R. Show that every ideal is a sub ring and find an example where the 
converse does not hold. 

R. Let E(j, k) be the elementary matrices of M(n, F), F a field. Show 
that the left ideal generated by E(I, 1) consists of all linear combinations 
of E(I, 1), E(2, 1), ... , E(n, 1). Show that the entire ring considered as a 
left module over itself is the direct sum of n similar left ideals. 

Note. An exercise at the end ofthe preceding section shows that 0 and the 
entire ring M(n, F) are its only two-sided ideals. Rings with this property 
for ideals are said to be simple. 

R. Let R = {a, b, c, ... } be a ring and I a left ideal of R. Then, in 
particular, I is a submodule, and we may form the quotient module R/ I. 
Show that the definition 

b( a + I) = ba + I 

makes R/I a left R-module (and not just a module). 

R. Let R be a ring and I a two-sided ideal. Show that in this case the 
module R/ I has a ring structure defined by 

(a + 1)( b + I) = ab + I. 

The ring R/ I is called the quotient ring of R over I. 

Examples 
All elements of the form (0, s) form a two-sided ideal in the direct sum 

R = TEllS of two rings. The elements of the quotient R/ I are the cosets 
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(t, S) with t E T. The sub module mZ of Z is also an ideal and the quotient 
Z/mZ is nothing but the ring of integers mod m. 

R. A proper ideal I in a commutative ring R = {a, b, c, ... } with e as 
unit is said to be maximal if there is no ideal properly included between I 
and R. Show that the quotient R/ I is a field if and only if I is maximal. 
(Hint. If a is in R but outside I, then e = ab + c for some band c in I.) 

R. Show that a commutative ring =f:. ° is a field if and only if ° and Rare 
its only ideals. 

R. Let R be the ring of continuous real functions f(x) from a compact 
interval. Show that f( x) = ° for x fixed defines a maximal ideal of R. 

Exercise 
Let R be a commutative ring with a unit. Show that an element of R is 

invertible if and only if it is outside every proper ideal. 

Ring morphisms 

A map f : R -+ R' from one ring R = {a, b, c, ... } to another one 
R' = {a', b', c', ... } is called a homomorphism or a ring morphism if 

f(a - b) = f(a) - f(b), f(ab) = f(a)f(b) 

for all a, b in R. If surjective and injective it is called an isomorphism. 
When R = R' one uses the corresponding terms endomorphism and auto­
morphism. The identical map f( a) = a for all a is a trivial automorphism. 

Examples 
Let R = S EB S be the direct sum of two copies of the same ring S. The 

maps (a,b) -+ (a,O) and (a,b) -+ (O,b) are endomorphisms and the map 
(a,b) -+ (b,a) is an automorphism. 

R. Let R[x] be the ring of polynomials over a commutative ring R. Show 
that the maps f(x) -+ f(a) with a fixed in R are ring morphisms from R[x] 
to R. (Hint. This follows directly from the definitions of sums, differences 
and products of polynomials.) 

R. For a fixed integer a the map x -+ ax of the integers is a module 
morphism. Show that it is a ring morphism if and only if it is the identity. 

R. Let c be a fixed invertible element of a ring R = {a, b, ... }. Show that 

is an automorphism of R. 
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Kernels and images 

The kernel of a ring morphism I : R - R' is the set of elements of R 
which are mapped into the zero 0' of R'. It is denoted by ker I. The image 
of I, im I, is simply the subset I(R) of R'. 

R. Show that the kernel is a two-sided ideal of R and the image a subring 
of R'. 

R. Let F[z] be a polynomial ring over a field F. Describe the kernels and 
images of the maps I(z) - I(a). 

We have now collected enough terminology and examples to state the 
morphism theorem for rings. 

THEOREM. When I : R - R' is a ring morphism, the image of I is iso­
morphic to the quotient Rlkerl of R by the kernel of I. 

R. Prove the morphism theorem using your experience of the correspond­
ing result for modules. 

Exercise 
Let R = Rl EfJ R2 be the direct sum of two rings. Put It (a, b) = a and 

f2(a,b) = b. Show that the maps b: : R - R" are surjective homomor­
phisms and that Rlker/" is isomorphic to R". 

Module morphisms 

When M and N are two modules over a ring R, we say that a map 
I : M - N is an R-module morphism if I(az + by) = al(x) + bl(Y) 
for all a, b in R and x, Y in M (in case M and N are left R-modules). 
The kernel of I, ker I, is defined as the set of elements x of M such that 
I(x) = 0 and the image im I is I(M). An R-module morphism I is said 
to be an isomorphism if it is bijective, an endomorphism if M = Nand 
an automorphism if it is an isomorphism from M to itself. A subset N of 
an R-module M is called a submodule if it is an R-module in itself, i.e., if 
x - Y and ax are in N when Z,y are in N and a is in R. 

R. Show that the kernel and the image are submodules of M and N 
respecti vely. 

R. Show that an R-module morphism I is injective if and only if ker I 
IS zero. 

R. Let N £; M be modules over a ring R. Show that the quotient MIN 
is an R-module in a natural way. 

R. Let M and N be two modules over a ring R and I : M - N an 
R-module morphism. Show that the quotient M Iker I is isomorphic to the 
image of I (the module morphism theorem). 
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R. Let M and N be two modules over a commutative ring R. Show that 

(af + bg)(z) = af(z) + bg(z) 

makes the set HomR(M, N) of R-module morphisms from M to N into an 
R-module. Show that if M = N, then composition of morphisms gives a 
ring structure to HomR(M, N). 

R. Any commutative ring R is a module over itself. In particular, to 
every a in R there is an endomorphism fa : R -+ R of R-modules defined 
by 

fa(z) = az 

for all z in R. Show that the map a -+ fa from R to the endomorphism 
ring Hom(R, R) of R is a ring morphism. Show that it reduces to an 
isomorphism when R has a unit. 

Note. We saw earlier that n x n matrices with integer entries can be 
regarded as endomorphisms of the module Zel ED ... ED Zen. In the same 
manner, n x n matrices with entries in a ring R can be regarded as endo­
morphisms of the module RED··· ED R with n terms (verify this). 

Mixed exercises for 5.2 
1. Are the matrix rings A and B with elements 

respectively, with a, b, c in a field isomorphic? 
2. When d is an integer let Z[v'd] be the ring with elements a + bVd, a, b 

integers. Are the rings corresponding to d = 2,3 isomorphic? 
3. Show that the ideals given by i) a = 0, ii) c = 0, b = da, d fix, iii) 

a = b = ° are the only two-sided ideals different from zero and the ring 
itself in the ring of triangular matrices 

with elements in a field. 
4. Let m and n be integers and coprime. Show that the ring Zmn is 

isomorphic to the direct sum Zm ED Zn. 
5. When [ is an ideal in a commutative ring R, we let [2 be the set of 

all (finite) sums ZlYl + Z2Y2 + ... with Zi, Yi in [. Show that [2 is an ideal. 
Let [ be a minimal ideal in a commutative ring R, i.e., there are no ideal 
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properly contained between I and O. Show that 12 = 0 or else that I is a 
field. 

6. An element a of a commutative ring R is said to be nilpotent if an = 0 
for some natural number n. Show that the sum of two nilpotent elements 
is nilpotent. Also show that if b is in R and a is nilpotent, then ab is 
nilpotent. Conclude that the set of nilpotent elements form an ideal. This 
ideal is denoted by N(R). Show that the quotient R/N(R) does not have 
any nilpotent elements. 

7. Let f : R -+ R' be a ring morphism. Show that the inverse image of 
an ideal of R', i.e., all the elements of R which are mapped by f into this 
ideal, form themselves an ideal. 

8. Let f : A -+ B be a ring morphism. Show that f is injective or zero 
when A is a field. 

9. Let R be a commutative ring with a unit and I, J two ideals such that 
R = I + J. Show that R = 12 + J2. (12 consists of all sums L ab with a 
and b in I.) 

10. An ideal P in a commutative ring R is said to be prime if a product 
cannot belong to P unless one of the factors does belong. Show that the 
quotient R/ P is an integral domain if and only if P is prime. 

11. Show that the polynomials 2x - 1 and x - 2 do not generate the 
entire ring Z[x]. 

12. Describe all ideals of the ring Z E9 Z and the corresponding quotients. 
13. Describe the integers m for which Zm contains nilpotent elements 

different from zero. 
14. Let m be a natural number. Show that the ring Zm does not contain 

a field unless m is prime. For another natural number n, let A be the 
set of elements x of Zm for which nx = O. Show that A is a ring with 
k = m/(m, n) elements generated by the class of (m, n) in Zm. 

15. Let z and w be Gaussian integers and (z) and (w) the corresponding 
principal ideals in Z[i]. Show that Z[i]/(zx) is isomorphic to the direct sum 
Z[i]/(z) E9 Z[i]/(w) when z and ware coprime. 

16. Let a + ib be a Gaussian integer. Show that every coset of the 
ideal (a + ib) contains a unique Gaussian integer x + iy in the rectangle 
0< x < m,O < y < (a2 + b2 )/m where m is the greatest common divisor 
of a and b. This proves in particular that the quotient Z[i]/(a + ib) has 
a2 + b2 elements. (Hint. Show that mod (a + ib) one can simultanously 
reduce the real part of a Gaussian integer mod m and its imaginary part 
mod (a2 + b2)/m.) 

17. A ring A with a unit is said to be Boolean if x 2 = x for all x E A. 
Show that every prime ideal in A is maximal. 
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5.3 Abstract linear algebra 

Modules over a field are called vector spaces. Their theory is largely 
independent of the field and hence is the same as for the case when the 
field is the field of the real numbers. Although the reader is certainly 
familiar with this variant, the short exposition of the theory given here 
may be useful. 

Let M = {x,y, ... } be a vector space over a field F = {a,b, ... }. A 
finite or infinite subset 8 = {x, y, ... , u, ... } of M generates subspace, i.e., 
a submodule, of M, namely its linear span L(8) defined as the set of linear 
combinations 

w = ax + by + ... + fu + ... 

of x, y, ... with coefficients a, b, ... in F. The sum is supposed to be fi­
nite in the sense that at most a finite number of coefficients are different 
from zero. The elements of 8 are said to be linearly independent when a 
linear combination of them vanishes only when all its coefficients vanish. 
Otherwise they are linearly dependent. When the elements x, y, ... , u, ... 
are linearly independent and w E L( {x, y, ... }), the coefficients a, b, ... are 
uniquely determined. For if w = ax + by + ... = a'x + b'y + ... , then 
(a - a')x + (b - b')y + ... = 0 and hence a = a' etc. 

Examples 
The real numbers form a vector space over the rational numbers. The 

complex numbers form a vector space over the real numbers and also over 
the rational numbers. All real functions f(t) from an interval T on the real 
axis form a vector space over the real numbers. The direct sum FEB· .. EB F 
of n copies of F is a vector space over F, which we shall denote by Fn. 

The main results of linear algebra follow from 

EXCHANGE LEMMA. Let 8 be a subset of linearly independent elements of 
a vector space M and x ~ 0 an element of L(8). Then there is an element 
y of 8 such that the elements ofT = (8 \ y) U x are linearly independent 
and L(8) = L(T). 

PROOF: By hypothesis, x is a linear combination 

x = ay+bz+ ... 

of elements of 8. Since x ~ 0 at least one of the coefficients does not vanish. 
Let it be a. Then 

y = a-Ix - a- l bz - ... 

is in the linear span ofT = (8\y) Ux. But then every element of L(8) has 
the same property. The only way that the elements of T can be linearly 
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dependent is when x is a linear combination of the elements of S \ y. But 
this means that a = ° in the expression above, which is a contradiction. 
The proof is finished. 

Bases and dimension 

A basis B of a vector space M is a collection of linearly independent 
elements such that M = L(B). 

Example 
The elements e" = (0, ... , 1,0, ... ,0) with 1 in the kth place form a basis 

of Fn. 

LEMMA. Let M be a vector space, S a subset of M such that M = L(S), 
and assume that T ~ S consists of linearly independent elements. Then 
there is a basis B of M such that T ~ B ~ S. 

PROOF: Note that if Xl, X2, ... are linearly independent and xo, Xl, X2, ... 
are linearly dependent, then Xo E L({X1' X2, ... }). Order the subsets of M 
consisting of linearly independent elements and containing T by inclusion. 
If B1 ~ B2 ~ ... are subsets consisting of linearly independent elements 
and containing T, then their union UB" also consists of linearly indepen­
dent elements. By Zorn's lemma, M has a maximal subset B of linearly 
independent elements such that T ~ B. If X E M \ B, then, by the ob­
servation above, X is a linear combination of elements of B. Hence B is a 
basis. 

Note. By the lemma, R has a basis as a vector space over Q. It has more 
than countably many elements (why?) and is called a Hamel basis. We 
note that it requires the axiom of choice (represented by Zorn's lemma) for 
its construction . Here we shall restrict ourselves to vector spaces which 
possess bases with a finite number of elements, the finite-dimensional vector 
spaces. 

THEOREM. In a finite dimensional vector space, all bases have the same 
number of elements. 

Notation. The number of elements in a basis of a vector space M is called 
the dimension of M and denoted by dim FM or dim M if it is clear what 
the field is. 

PROOF: Let B be a basis of M with n elements and suppose that B' is 
another basis. It is enough to prove that the number of elements of B' is 
~ n. Suppose that B' has at least n elements. (Note that we do not assume 
that B' has a finite number of elements). By the exchange lemma, we can 
successively replace elements of B' by elements of B in such a way that all 
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sets obtained consists of linearly independent elements and have the same 
linear span as B' (namely M). In the end we get a set A = B U C where C 
is a subset of B' (possibly empty), such that the elements of A are linearly 
independent and L(A) = M. But by hypothesis, L(B) = M, wherefore the 
elements of C are linear combinations of the elements of B. But then C 
must be empty. 

Coordinates 

When B = {ut. ... , un} is a basis of a vector space M over a field F, 
every z E M is a unique linear combination 

of the basis elements with coefficients al = al(z), ... ,an = an(z) in F. 
The numbers a1; are called the coordinates of z with respect to the basis 
B and the functions z -+ a1;(z) are called the coordinate functions. The 
coordinate functions a1; are examples of linear functions, i.e., morphisms I 
from one space M to another N. In fact, if z and y have the coordinates 
a1; and b1; respectively, then az + by has the coordinates aa1; + bb1; (where 
a and b are elements of F). 

R. Let It, ... , In be coordinates on a vector space M. Prove that 

z -+ (11 (z), ... , fn(z» 

is an isomorphism from M to Fn. In thjs sense every vector space of 
dimension n over a field F is essentially an Fn, but this statement does not 
do justice to the geometry of vector spaces. 

Linear forms and dual spaces 

Let M be finite dimensional vector space over a field F. Linear maps 
(i.e. morphisms) I: M -+ F are called linear forms. Example: coordinate 
functions with respect to a basis. All linear forms constitute themselves a 
vector space over F. We just define the linear combination al + bg of two 
linear forms by 

(al + bg)(z) = al(z) + bg(z) 

for all z in M. 

R. Verify that al + bg is a linear function. 

The vector space of all linear forms from a vector space M is called the 
dual space of M and will be denoted by M*. 
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THEOREM. If B = {Ul, ... , un} is a basis of M, then the corresponding 
coordinate functions constitute a basis of M*. In particular, dim M 
dim M*. If It, ... ,/k are linearly independent in M*, the equations 

It(x) = 0, ... ,/k(X) = 0 

define a linear subspace of M of dimension n -Ie. 

PROOF: The coordinate functions It, ... ,In are defined by the expansion 

of x. Hence, if I is any linear form, then 

which means that I is a linear combination of the coordinate functions. If 

is a linear combination of the coordinate functions which vanishes, it van­
ishes on every basis element Uk and hence I(Uk) = Ck = 0 for all Ie so that 
I(x) = 0 for all x. Hence the n coordinate functions constitute a basis of 
M*. 

To prove the second part we shall use induction. First, let Ie = 1. Then 
It = I 1= 0 so that there is a U in M with I(u) = 1. Complete U to a basis 
Ul = U, U2, ••• , Un of M. Then the elements 

are linearly independent and I(Vk) = 0 for all Ie and this is the desired 
result for Ie = 1. By induction we can assume that h(x) = 0, ... '/k(X) = 0 
defines a linear subspace of M of dimension n - Ie + 1. On this subspace 
It(x) does not vanish and hence It(x) = 0 defines a subspace of dimension 
n - Ie with a basis constructed as above. This proves the theorem. 

R. Prove that any n =dim M linearly independent linear forms on M 
are the coordinate functions of some basis of M. 

The following result is useful. 

LEMMA. Let N be a linear subspace of a linear space M and let x E M \ N. 
Then there is a linear form which vanishes on N and equals 1 on x. If 
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It, ... ,In are coordinate functions on M there is a subset gl, ... , gk of 
them for which 

z -+ (gl(Z), ... ,gk(Z» 

is an isomorphism from N to Fk. 

PROOF: If C is a basis of N, the set C U z is linearly independent, and 
can be completed to a basis B of M. The coordinate which vanishes on 
all elements of B except z has the desired property. To prove the second 
part, note that It, ... ,In are linear forms also on N. Let gb ... ,gk be a 
linearly independent subset of them with a maximal number of elements. 
Now any linear form h(z) on N extends to a linear form on M and hence 
to a linear form on M and hence to a linear combination of the Ij. But 
then its restriction to N is a linear combination of the gj. Hence the gj 
form a basis for all linear forms on N. This finishes the proof. 

Bilinear forms 

Let M be a vector space over a field F. A bilinear form on M is a function 
I(z, y) from M x M to F which is linear in each argument separately, 

I(az + by, z) = al(z, z) + bl(y, z), I(z, ay + bz) = al(z, y) + bl(z, z) 

for all a, bE F and z, y, z EM. Such a form is said to be non-degenerate if 

I(z,y) = 0 for all y => z = 0, I(z,y) = 0 for all z => y = O. 

R. Prove that I is entirely determined by its values I( Uj, Uk) on pairs 
of elements of a oasis and that these values can be given arbitrarily. (The 
theory of systems of linear equations then proves that each of the conditions 
above implies the other.) 

R. Let I( Uj, Uk) :f:. 0 when j = k and 0 otherwise. Prove that I is 
non-degenerate. 

R. Via the bilinear form I, every z gives rise to a linear form y -+ 

I(z, V). Prove that if some elements of M are linearly independent so are 
the corresponding linear forms when I is non-degenerate. 

THEOREM. When I is a non-degenerate form and Ut, .•. , Uk are linearly 
independent elements of M, the equations 

I(ut, y) = 0, ... ,/(Uk, y) = 0 

define a linear subspace of M of dimension dim M - k. 

Note. When M is a vector space and N a subspace, the number dim 
M -dim N is called the codimension of N in M, and denoted by codimM N. 
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R. Prove the theorem via the induced linear forms. 

Note. The theorem shows that if the bilinear form is non-degenerate, then 
the construction of orthogonal complements in geometry carries over to the 
abstract case. Every linear subspace N of M has a kind of complement N.l 
defined by the equations I(x, y) = 0 for all x E N. It is of course sufficient 
to let x run through a basis of N. The dimension of N.l is the co dimension 
of N and conversely. 

Quotients 

Let M be a vector space and N a subspace. As usual, we can form the 
quotient MIN consisting of the congruence classes x + N. 

THEOREM. dim MIN = dim M - dim N 

PROOF: Let C be a basis of N and complete it to a basis B = CUD of 
M. Then the image of D in MIN is a basis of MIN, for all elements of 
D are linearly independent modulo the elements of N = L(C), and every 
element of M is a linear combination of elements of D modulo N = L(C). 
This proves the theorem. 

Linear maps 

An important part of linear algebra is the study of morphisms, or linear 
maps between vector spaces. That 1 : M ~ N is a linear map from the 
space M to the space N means that 

I(ax + by) = al(x) + bl(y) 

for all a,b E F and x,y E M. 

R. Prove that a linear function is determined by its values on a basis of 
M and that these values can be given arbitrarily in N. 

R. Prove that the image im 1 = I(M) of a linear map 1 is a subspace 
of N and that the kernel ker 1 consisting of the elements x of M such that 
I( x) = 0 is a subspace of M. Prove also that 1 is injective if and only if 
ker 1 = o. 

R. When F is a field and M, N two vector spaces over F, the space 
Homp(M, N) is usually denoted by L(M, N). Prove that if M and N are 
finite-dimensional, dim L(M, N) =dim Mdim N. 

R. When 1 : M ~ N is a morphism of two modules over a commutative 
ring F, prove the module morphism theorem: M Iker 1 is isomorphic to im 
I. (Hint: Copy the proof of the corresponding theorem for modules over 
z.) 
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Most of the properties of linear maps between vector spaces are given by 
the following 

MAIN THEOREM. If I : M -+ N is a linear map from a finite-dimensional 
vector space M to another vector space N, then 

dim(kerf) + dim(imf) = dim M. 

PROOF: We just collect some results: 

dim M - dim(kerf) = dim Mlkerl = dim(imf). 

We can use this theorem to prove a result on systems of linear equations. 
Consider the quadratic system 

where the Zk are unknowns and the bk are elements of the field F. The 
Ik define a linear function I : Fn -+ Fn by I(z) = (l1(z), ... '/n(z». 
Obviously the system is solvable if and only if (b1, . .. , bn ) is in im I. Since 
im I = Fn if and only if ker I = 0 by the main theorem, the system is 
solvable for all right sides if and only if the homogeneous system 11 (z) = 
0, ... , In (z) = 0 has the unique solution Z = O. 

R. Prove that if the homogeneous system only has the solution z = 0, 
then the system has a unique solution for every right side. 

R. Let l1(z) == b1, ... , Im(z) = bm, z = (Z1,'" ,zn), be a system of 
linear equations, not necessarily quadratic. Prove that it is solvable if and 
only if 

for all sequences C1, ••• , Cm , where the Ik are considered as functions from 
Fn to F. 

Literature 

In spite of its abstract form, the material of this chapter is old and of 
varied origin. It can be found in almost any textbook on algebra. 



CHAPTER 6 

Algebraic complexity theory 

Complexity theory is one of the spin-offs of computer science. So far it is 
a chapter with some solved and plenty of unsolved problems. One exception 
is the theory of cost of computations where additions and subtractions are 
considered to cost nothing and the total cost is measured in terms of the 
number of multiplications and divisions ne~essary to achieve the algorithm. 
The essential tool is very simple: abstract linear algebra, but the results are 
far from trivial. They are the subject of the second section of this chapter, 
the first one contains some preliminary generalities on rings generated by 
indeterminates. 

6.1 Polynomial rings in several variables 

Polynomial rings in one or several variables are special cases of more 
general constructions defined below. 

Let X = {x, y, ... } be a monoid, i.e. a set X equipped with an associative 
multiplication x, y -+ xy and let R = {a, b, ... } be a ring. Provided X has 
the property 

(P) every element of X is the product of at most a finite number of other 
elements, a possible unit excepted, 

we are going to construct a ring M = R[[X]] whose elements are all 
functions x -+ a(x) from X to R. We shall write them as formal power 
series over X with coefficients in R, 

(1) f = La(x)x, 

the sum running over X. If 9 = L: b( x)x is another element of M and c is 
in R, we define the difference f - g, the product cf and the product Ig as 
follows 

(2) 1 - 9 = ~)a(x) - b(x»x 

(3) cl = I)ca(x»x 
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(4) Ig = L:c(z)z, c(z) = L:a(x)b(y) for xy = z. 
Note that (P) means that all sums here are finite. By the exercise below, 
R[[X]] is a ring. When both 1 and 9 are polynomials in the sense that the 
sum (1) is finite, i.e. a(x) :F 0 for at most a finite number of elements of X 
and analogously for g, then Ig is defined also without the condition (P). It 
also follows that the set R[X] of polynomials (over X with coefficients in 
R) is itself a ring. 

R. Prove that R[[X]] is a ring when (P) holds. (Hint. The set of func­
tions from X to R is a natural left R-module. Prove the associativity and 
distributivity by noting that Ig = E E a(x)b(y)xy. Prove that (fg)h and 
I(gh), I(g+h) and Ig+ Ih, (g+h)1 and gl +hl have the same coefficients.) 

R. Prove that the rings above are commutative when X is commutative . 

.Free monoids 

A set S with elements u, v, ... is said to generate a monoid X if every 
element of X is a finite product of elements of S and X is said to be free 
when two products are the same if and only if they have the same non-unit 
factors in the same order. When X is commutative, this definition has to 
be changed to: )( is free if any two products of the generators are equal 
if and only if they contain the same non-unit elements the same number 
of times, but the order between them is arbitrary. It is clear that the 
property P holds in both cases. The generators of a free monoid are said to 
be indeterminates, commuting or not commuting according as the monoid 
is commuting or not. Monoids with a finite number of generators are said 
to be finitely generated. 

Rings of polynomials over free monoids 

In the sequel we shall restrict ourselves to rings R[X] of polynomials 
over finitely generated free commutative monoids X. The ring R is also 
supposed to be commutative. If the generators of X are x(1), ... , x(n), we 
shall also write R[X] = R[x(1), ... ,x(n)] and denote a polynomial in this 
ring by 

l(x(1), ... ,x(n» = L:a(u)u 

where each u , called a monomial, is a product 

u = x(1)1:(1) ... x(n)l:(n) 

where k(1), ... , k(n) are non-negative integers. When they all vanish, u is 
the unique unit element. Rings of this kind have the following important 
property. 
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HOMOMORPHISM THEOREM. Let R[X] be a polynomial ring over a com­
mutative ring R with free generators x(1), ... , x(n) and let y(1), ... , y(n) 
be any elements of a commutative ring S containing R. Then the map 

H : l(x(1), ... , x(n)) - l(y(1), ... , y(n)) 

is a ring homomorphism R[X] - S. 

Note. We can take S = R or let S be a sub ring of R[x] generated by 
some of its generators and map the rest of the generators to elements of R. 

PROOF: Since two polynomials are the same if and only if their coefficients 
are the same, the map above is well defined. If 1 = E I( u)u is the expansion 
of 1 in monomials, the image H(f) of 1 is Ea(u)H(u). Hence H(f - g) = 
H(f)-H(g), H(af) = aH(f) when a is in R and, since, by the distributivity 
in S, 

La(u)H(u) Lb(u)H(u) = Lc(t)H(t), 

where c(t) = Ea(u)b(v) for uv = t, we have H(f)H(g) = H(fg). This 
finishes the proof. 

R. Why must the ring S be commutative for H to be defined? (Hint. 
Consider polynomials in two indeterminates.) 

Degree 

By definition, any monomial in a polynomial ring R[X] is a product of 
generators of the monoid X. The number of times a generator appears as a 
factor is called its multiplicity in the monomial. The number of generators 
of the product, the unit excluded and multiplicity included, is called the 
degree of the monomial. It follows that deg( uv) = deg u + deg v when u 
and v are monomials. If we define the degree of a polynomial 1 = E a( u)u 
as the highest degree of any monomial u wich appears with a non-zero 
coefficient in I, and set the degree of 0 (the zero polynomial) to -00, we 
have the following rules 

deg(f + g) :S max(deg I, deg g), deg(fg) = deg 1 + deg 9 

provided R does not have zero divisors, i.e. a =F 0, b =F 0 => ab =F 0 for all 
elements of R. Special case: R is a field. 

R. Verify these rules for the examples below and then prove them in 
general. 
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Examples 

The degrees of the polynomials 2zy + 3z2z + 13y + 3 and z + y + z + z13 
of Z[z, y, z] are 3 and 13 respectively. 

Homogeneity 

A polynomial whose non-zero terms have all the same degree m is said to 
be homogeneous of degree m. The set of these polynomials together with 
the zero polynomial form a submodule Rm[X] of R[z] and one has 

When a polynomial 1 = I(z) is homogeneous of degree m then I(az) = 
am I(z) for all a in R. 

Ideals and quotients 

From now on we shall consider polynomial rings F[X] over a field F. A 
polynomial ring F[X] has plenty of ideals, for instance any ideal generated 
by an arbitrary set of polynomials. A simple such example is the ideal 
1( m) of polynomials 1 = E a( u)u such that a( u) = 0 when deg u ~ a fixed 
number m. 

R. Verify that 1m is an ideal. 

The quotient Q(m) = F[X]/lm can be desribed as follows. Q(O) is 
isomorphic to F. As a module, Q(l) is isomorphic to the direct sum 

F $ Fz(l) $ ... $ Fz(n) 

where z(l), ... ,z(n) are the generators of X. Its ring structure is given by 
the rule that z(j)z(k) = 0 for all j and k. In the general case, computations 
mod l(m) are performed by throwing away all terms of a polynomial of 
degree ~ m before and after performing the ring operations. 

Exercise 

Multiply the polynomials az2+by+z and zy2+z+zy in the ring Z[z, y, z] 
mod 1(4). (Answer: az2z + byz + bzy2 + z2 + zyz). 

Linear dependence 

A number of polynomials l1(z), ... ,/n(z) of a polynomial ring F[X] 
where F is a field generate a linear space F 11 (z) + ... + F In( z) . To decide 
whether they are linearly independent, i.e. if 
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with coefficients in F implies that the coefficients vanish, it is often conve­
nient to use the Homomorphism Theorem above. In general, it suffices to 
substitute for z = (z(I), ... ,z(n)) or part of it different values in F which 
gives a system of linear equations for the coefficients. 

Example 
Are the polynomals :r:y, ZZ, zy + Z2 linearly independent when F = Q? 

Consider an equation azy + bzz + c(zy + z2) = O. With y = 0, we get 
bzz+cz2 = O. Putting here z = 1 and z = 1, -1 gives b+c = 0, -b+c = 0 
so that b = c = 0 and hence also a = O. 

Note. Two non-zero polynomials whch are linear combinations of sep­
arate sets of monomials are of course linearly independent. Special case: 
two polynomials of different degrees of homogeneity. 

Note. Whether or not two polynomials are linearly independent depends 
on the choice of the field F. The polynomials zy + yz and zy - yz are 
linearly independent when F = Q, but they are the same polynomial when 
F=Z2. 

6.2 Complexity with respect to multiplication 

We now have more than enough preparation for the study of algebraic 
complexity theory. First we need a formal definition of an algorithm. Let 
F be a field and G a ring which is also a F-module. 

Definition 

An algorithm A consists of 
1) a subset of B called the input to A, 
2) a computation C which is a sequence 

C = (1(1), ... , f(n)) 

of elements of G called the steps of A. The first steps, called the input 
steps, are the elements of B. Each following step is then either a linear 
function of the preceding steps (linear step) or a product of two such linear 
functions (product step). 

3) an output D which is simply a part of C. 
Note. That f(k) is a linear function of the preceding steps means that it 

is a linear combination ofthem with coefficients in F plus an element of F. 

The number of product steps of an algortihm is also referred to as its 
multiplicative complexity (cost). Two algorithms with the same input and 
output are said to be equivalent and an algorithm with a given input and 
minimal multiplicative complexity is said to be optimal. The following 
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simple application of abstract linear algebra provides a lower bound for the 
multiplicative complexity of an algorithm with a given output. When H is 
any part of G, let L(H) be the linear span of H with coefficients in F. 

THEOREM. Let A be an algorithm and let M(A) be the number ofproduct 
steps of C. Then 

dim(L(D) + L(B»/L(B):5 dimL(C)/L(B):5 M(A). 

Note. The left side depends only on the input and output of the algo­
rithm. This means that if equality holds at both places, the algorithm is 
optimal in the sense given above. 

PROOF: Let C(k) be the first k steps of C. When f(k + 1) is a linear step, 
dimL(C(k + 1»/L(B) equals dimL(C(k»/L(B). Hence only the product 
steps increase dimL(C(k»/L(B). This proves the theorem. 

Applications 

In the applications of this general result, the elements of the input Bare 
taken as indeterminates generating the ring G which may be commutative 
or not. When D has many elements, the lower bound given by the theorem 
may be the number of product steps of an optimal algorithm. Here are a 
few examples. 

1) A product (x + ty)(z + tu) = xz + t(xu + yz) + t2yu where t is a 
power of 10, input B = (x,y,z,u) and output D = (zz,zu+yz,yu), 
i.e. the coefficients of the powers of t in the product. The field F is the 
rational numbers. Here dim(L(D)+L(B»/ L(B) is 3 and there is an optimal 
algorithm as follows: 

z,y,z, u,xz,yu,(x + z)(z + u), (z + z)(z + u) - xz - yu(= xu + yz). 

As we have seen in section 2.1, repeated applications of this algorithm 
reduces somewhat the cost of multiplication of large integers compared to 
the cost of the traditional algorithm. 

2) Products of square matrices. Let x = (x(j, k» and y = (y(j, k» be 
two n X n matrices and z = (z(j, k» their product defined by 

n 

z(j, k) = Lx(j, i)y(i, k). 
;=1 

Let A be an algorithm with input B = x, y and output D = z. If the 
elements of x and yare taken as indeterminates, dim(L(D) + L(B»/ L(B) 
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is n2 • In fact, L(D) n L(B) = 0 by homogeneity and all elements z(j, k) 
are linearly independent. To see this, put all elements of x equal to zero 
except x(j,j) and all elements of y equal to zero except y(j, k). Then 
z(j, k) = x(j,j)y(j, k) is the only non-zero element of z. Hence the elements 
of z are linearly independent over any field F. It follows that any algorithm 
computing the product of two n x n matrices has at least n2 product steps. 
This seems to be a bad lower bound since an algorithm which computes all 
the products of the formula above separately has n3 product steps and it 
seems difficult to do any better. It was therefore somewhat of a sensation 
when Strassen (1969) found an algorithm which computes the product using 
less than n3 product steps, at least asymptotically. 

The basis is an algorithm which computes the product 

( a b) (x y) = (ax + bz ay + bU) 
e d z u ex + dz ey + du 

of two 2 x 2 matrices with 7 product steps, one less than the maximum 8. 
The input is (a, ... , u), the output the four elements of the product. The 
seven products are the following ones 

A = (a - d)(z + u),B = (a + d)(x + u),C = (a - e)(x + y), 

D = (a + b)u, E = a(y - u), F = d(z - x), G = (e + d)x. 

It is then a matter of straightforward verification to see that the four ele­
ments of the product matrix are 

( A+B-D-F D+E ) 
F+G B-C+E-G' 

One interesting feature is that these identities hold also when the indeter­
minates a, . .. ,u do not commute. This can be used to reduce the multi­
plication of two matrices of order 2k to seven multiplications of matrices 
of order k. A repetition of this procedure applied to two matrices whose 
order n is a power of 2, permits one to multiply them at the cost of O(nC) 
multiplications where c = log27=2.81 .... 

Note. Refinements of the procedure have given still better values of e. 
See Pan (1984) and, for the latest improvement c= 2.376, Coopersmith and 
Winograd (1987). 

3) The product of two polynomials. Let 

f(x) = a(O) + a(l)x + ... + a(n)xn 
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and 
g(x) = b(O) + b(l)x + ... + b(m)xm 

be two polynomials of degrees nand m and let 

hex) = c(O) + c(l)x + ... + c(m + n)xm+n 

be their product. The coefficients c(k) of hex) are given by the formula 

c(k) = :E a(i)b(j) 
i+j=J: 

where a( -i) = a( n + i) = 0 when i < 0 and correspondingly for the other 
polynomial. A count of the number of multiplications involved gives the 
number (m + l)(n + 1) for every coefficient of f meets every coefficient 
of 9 precisely once. On the other hand, if the coefficients of f and 9 are 
considered as indeterminates, the coefficients of hare m + n + 1 in number 
and linearly independent over the linear space over some field F spanned by 
the coefficients of f and g. Hence any algorithm computing the coefficients 
of h require at least n + m + 1 multiplications. An optimal algorithm is 
given by Lagrange's interpolation formula which runs as follows. Choose 
p = m+n+1 rational separate points t(l), ... , t(p) (this may not be possible 
when the field F is finite) and let 

QJ:(x) = II(x-t(j»/(t(k) -t(j» 
;# 

so that QJ:(t(j» = 1 when j = k and zero otherwise. The difference 

m+n+l 

f(x)g(x) - L QJ:(x)f(t(k»g(t(k» 
1 

is then a polynomial of degree m + n vanishing at m + n + 1 separate 
points and hence zero. This permits us to recover the coefficients of h( x) 
in a roundabout way from the n + m + 1 products f(t(k»g(t(k» of linear 
combinations of the coefficients of f and 9 by collecting all the coefficients 
of a given power of x. Since the number of operations in the field F is 
very large and introduces rounding errors when F is the rational numbers, 
the method may not be practicable in this case. This point illustrates one 
weakness of the axiomatic approach. 

4) The interior product. Let x and y be vectors with n components 
x(j) and y(j) taken as indeterminates. Our theorem above applied to an 
algorithm A with input B = (x, y) and output the interior product 

z = x(l)y(l) + ... + x(n)y(n) 
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gives the trivial result that A must contain one product step. The correct 
result is n steps and this may be proved as follows. 

Assume that the result holds for < n components. Let 

(L(y) + M)(L'(y) + M') 

be the first product step involving y of an algorithm A computing z. Here 
L(y) and L'(Y) are linear functions of y with coefficients in F not both 
zero and M and M' are polynomials in z. That the first product step 
involving y has this form is clear since the preceding steps can only give 
linear functions of the input and polynomials in z. If we renumber the 
elements of y suitably, we can assume that L or L' contain y(n). Hence 
there are n -1 elements of F, h(1), ... ,h(n -1), and a polynomial h(O) in 
z such that the product step vanishes when 

y(n) = h(O) + h(1)y(1) + ... + h(n - 1)y(n - 1). 

Next, let A' be the algorithm we get from A by substituting the above value 
of y(n) into A and putting z(n) = O. Then A' has one product step less 
than A and computes 

(z(1) + h(1»y(1) + ... + (z(n - 1) + h(n - 1»y(n -1). 

Taking z(j) + h(j) as new indeterminates and applying the induction hy­
pothesis, we conclude that A' has at least n - 1 product steps. Hence A 
has at least n of them and this finishes the proof. 

Note. By the same kind of reasoning one proves that any algorithm 
computing an expression 

a(l)y(l) + ... + a(n)y(n) 

where y(1), . .. , y(n) are indeterminates and a(1), .. . , a(n) are elements of 
a ring generated by other indeterminates z(1), ... , z(m), has at least q 
product steps where q is the dimension of the linear space over the field F 
spanned by the elements b(1), . .. ,b(n) where b(k) = a(k) minus its constant 
term. The same result extends to several expressions of the form above if the 
coefficients a(1) etc. are replaced by the corresponding columns (Winograd 
(1980), Laksov (1986». 

Quadratic and bilinear algorithms 

Consider the polynomial ring G = F[z] with z = (z(1), ... , z(n» com­
muting indeterminates. When P(z) is a polynomial, let Pm be the part of 
P of degree ~ m. Since P - Pm is a ring homomorphism, we have the 
following simple result. 
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LEMMA. Suppose that the input to an algorithm A consists offield F and 
a set of indeterminates z(I), ... , z(n) and that the output consists of a 
collection of polynomials P(z) of degree at most m. Then A is equivalent 
to an algorithm A' whose steps are polynomials of degree at most m. 

PROOF: Just compute all products modulo polynomials of degree ~ m in 
all steps of A. 

When m = 2 this rsult can be sharpened. 

THEOREM. An algorithm A as in the lemma with an output of degree at 
most two is equivalent to an algorithm with at most the same number of 
product steps where all of them are products of two linear functions of the 
input indeterminates. 

PROOF: By the lemma we may assume that the degrees of the steps are 
at most two. Since reduction modulo linear steps can be made without 
multiplication, we may also assume that if a linear step has the form I +g+h 
where I, g, h are homogeneous polynomials of degrees 0,1,2 respectively, 
then we may split it into three linear steps I,g, h. Now let (J+g+h)(J'+g'+ 
h' with I, g, h homogeneous of degree 0,1,2 and the same for /', g', h be the 
first product step where I and I' are not both zero. Then I, h, g, I', g' , h' 
all occur as earlier steps. Hence, modulo linear combinations of earlier steps 
and modulo terms of degree < 2, the product equals gg' which is a product 
of linear functions. Hence, by successive modifications of A, we can find an 
equivalent algorithm with the same number of product steps where these 
are as indicated. This finishes the proof. 

An algorithm A as above is said to be bilinear when the input indetermi­
nates are grouped into two sets y = (y(I), ... , y(p)) and z = (z(I), ... , z(q)) 
and all product steps are products of a linear function of y by a linear func­
tion of z. The output of the algorithm is then bilinear, i.e. a collection of 
bilinear forms 

b(z, y) = I)(j, k)y(j)z(k). 
i,J: 

The condition that a bilinear output should be produced by a bilinear algo­
rithm is a real restriction. There are outputs which require more product 
steps when produced by a bilinear algorithm than by a general one (see 
Laksov 1986). 

The problem of the minimal number of product steps for a number of 
bilinear forms 

li(z, y) = L a(i, j, k)z(j)y(k), i = 1, ... , r 
i,J: 
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and bilinear algorithms has an interesting connection with a different math­
ematical problem. In any bilinear algorithm, every every Ii is obtained as 
a sum 

Lb(j,k)Lj(z)MA:(Y) 
j,A: 

of products of linear forms in z and y. Hence, with z(1), ... , zen) as new 
indeterminates, we have 

(1) La(i,j, k)z(i)z(j)y(k) = LNA:(z)LA:(Y)MA:(z) 
i,j,A: A: 

where NA:(z) = Eb(i,k)z(i). The right side of (1), say I(z,y,z), is known 
as a trilinear form in the indeterminates z, y, z and the least number of 
linear forms in z,y and z for which I can be written as above is called the 
rank of I. If n is the multiplicative complexity of a bilinear algorithm with 
output ft, ... , Ir, the formulas above shows that the rank of I is at most 
n. On the other hand, if we identify the coefficients of z(1), ... , zen) in an 
identity of the form above, we see that every Ii is a linear combination of 
n products of linear forms. Hence we have proved the following result, 

THEOREM. The minimal multiplicative complexity of a number of bilinear 
forms 

li(Z,y) = La(i,j,k)z(j)y(k) 
j,A: 

is precisely the rank of the trilinear form 

I(z,y,z) = La(i,j,k)z(i)z(j)y(k). 

Note. There are no general methods for computing the rank of an 
arbitrary trilinear form, but when there is just one bilinear form, say 
Ej,A: a(j, k)z(j)y(k), in the output of a bilinear algorithm, its minimal mul­
tiplicative complexity is just the rank of the matrix aU, k). 

The symmetry of the definition of the rank of a trilinear form I( z, y, z) = 
Ei,j,A: a(i,j, k)z(i)z(j)y(k) implies that the multiplicative complexities of 
the three bilinear algorithms with the outputs 

La(i,j, k)z(j)y(k), La(i,j, k)z(i)y(k), La(i,j, k)z(i)z(j) 
j,A: i,A: i,j 

are the same. 
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6.3 Appendix. The fast Fourier transform is optimal 

We are going to show that the fast Fourier transform is optimal among 
a certain restricted class of algorithms. 

A class of algorithms 

For reasons which will be clear below, the algorithms we shall consider 
will be called additive. They concern the computation of expressions of the 
form 

a(O)co(Z) + ... + a(n)cn(z) 

where the coefficients a(O), ... , a(n) are given indeterminates, Z generates 
a cyclic group C commuting with the coefficients and the CI;(Z) are poly­
nomials in Z with integral coefficients. The unit of C is identified with the 
integer 1 and the integer n is fixed. It is clear that all such expressions, 
conveniently called strings, form a Z[z]-module in a natural way. 

An additive algorithm has the following properties, 

(i) it computes a finite number of strings 

(1) Pm(z) = a(O)zm(o) + a(l)zm(l) + ... + a(n)zm(n) 

where the m(O), ... , m(n) are non-negative integers, 
(ii) The algorithm consists of a finite sequence of strings 

Po(z),Pl(Z), .. ·,Pi(Z), ... 

the first n+ 1 being the indeterminates a(O), ... , a(n). The sequence finally 
contains all Pm(z). 

(iii) When j > n + 1 strings are constructed, Pi(z) is either the product 
of an earlier string by z or else the sum of two such strings. 

When a string Pi(z) is constructed using one or two others according to 
(iii), we say that these precede Pi(z). It is clear that this defines a transitive 
relation 'precedes' and that only the strings which precede a Pm(z) are 
necessary for the computation of it. 

We can also conclude that any such string either does not contain a 
given indeterminate a( i) or else contains a( i) multiplied by some power of 
z. In fact, the algorithm only permits additions so that if another situ­
ation (multiplication by a general polynomial) occurs, it must also occur 
in some Pm(z) which is impossible. (Note that this argument holds also 
when zm = 1 for some m > 0.) Observe also that if the algorithm also 
permits subtractions, the polynomials which precede some polynomial to 
be computed may have the general form (1). Then the proof below is no 
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longer valid and FFT may not be optimal. This is in fact also the case. 
Winograd (1980) has shown that this kind of algorithms require at least 
2n - 2 multiplications, a bound which has been obtained for at least n = 3. 
Nevertheless, this section may be of some interest. 

Example 
When just one string (polynomial), P = a(O) + a(l)z + ... + a(n)zn 

with n > 0 is to be computed, it is obvious that at least n additions are 
required. We shall see that at least the same number of multiplications 
are required. In fact, this is true for n = 1 and since any algorithm which 
computes P also computes P when a(n) = 0, it must, by induction, have 
n - 1 multiplications. But it also computes P when a(n) is arbitrary and 
this involves at least one additional multiplication. Note that Horner's 
algorithm realizes the optimal number of additions and multiplications at 
the same time. 

The FFT algorithm uses only the steps of an additive algorithm in the 
sense above. We shall see below that it is an optimal one. 

LEMMA 1. All polynomials of an algorithm above preceding Pm(Z) have 
the form 

(1) zP(a(i)zm(i) + a(k)zm(J:) + ... ) 

where p ~ 0 and i, k, ... are all separate. 

PROOF: We know that they have the form above with a(i), a(k), ... sepa­
rate but multiplied by some powers of z. Consider such a polynomial, 

Q(z) = a(i)zt(i) + a(k)t(j) + .... 

Then the polynomials which it precedes can only have the form zPQ(z) + 
R(z) where R(z) does not contain the coefficients of Q(z). This applies in 
particular to Pm(z) itself and hence 

p + t(i) = m(i), p + t(k) = m(k), ... 

This proves the lemma. 

We remarked above that when an additive algorithm computes just one 
ordinary polynomial of degree n, it must necessarily involve at least n - 1 
additions. If the values of more than one polynomial are computed, the 
number of additions may be less than 2( n - 1) if polynomials of the form 
(1) can be used for both of them. This happens very often in the fast 
Fourier transform and is the basis of its economy. 
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Application to the finite Fourier transform 

Consider now the Fourier transform of order 2n , 

(2) F(u) = 1(0) + 1(1)u + ... + 1(2)u2 + ... + 1(2n - 1)u2"-1, 

where u runs through all 2n th roots of unity. All these roots form a cyclic 
multiplicative group of order 2n. Define the order of a root u of unity to 
be the least number m > 0 for which urn = 1. By elementary theory, all 
orders of the 2n th roots of unity are powers of 2. Those of order 2n are said 
to be primitive. All primitive roots are odd powers of anyone of them, the 
others are even powers. 

We are going to find the minimal arithmetic cost of the Fourier transform 
when additive algorithms are used. This means in particular that the values 
1 (0), 1 (1), . .. of 1 are considered to be indeterminates. It also means that 
the numerical 2n th roots of unity are now replaced by the elements of a 
cyclic group C of order 2n generated by z where z2" is identified with 1 but 
Z2"-1 is not identified with -1. 

Our polynomial algorithms compute all the values of F through a suc­
cession of expressions of the form (1). To have a convenient name, we shall 
call them substrings. The following lemma is important. 

LEMMA 2. When u is a primitive 2n th root of unity, no substring of F(u) 
is a substring of F( v) when v is not a primitive 2'" th root of unity. 

PROOF: Suppose that a substring for F(u) times some power of u is also 
a substring for F(v)v, 

for some p, q and separate i, k, ... and all I(i), I(k), .... (Note that the 
form of the substrings follows from Lemma 1.) Since the l(i),/(k), ... are 
arbitrary, this means that 

and hence that 
(V/U)k-i = 1. 

Now, v being of order < 2n is some power of u, 

v=uc, c=2t b, bodd, 

where t > 0 so that v/u equals u raised to some odd power. But then (2) 
shows that i - k == 0 mod 2n. But this is impossible since 0 $ i < k < 2n 

and the proof is finished. 
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As in section 4.4, let us now define the additive and multiplicative costs 
of an additive algorithm to be, respectively, the number of additions and 
multiplications it uses. The sum of these numbers will be called its arith­
metic cost. The following theorem completes the Corollary of section 4.4. 
and proves that the fast Fourier transform is optimal in a precise sense. 

THEOREM. The additive cost of an additive algorithm which computes a 
Fourier transform of order 2n is at least n2n. Its multiplicative cost is at 
least (n - 1)2n + 1. 

Note. According to section 4.4, the FFT algorithm realizes the minimal 
additive cost and it will be proved below that it also realizes the minimal 
multiplicative cost counted as the number of multiplications by roots of 
unity not equal to 1. 

PROOF: Let us call the values F(v) of the Fourier transform primitive 
when v is a primitive 2n th root of unity. By Lemma 2, no subsum used 
to compute these occur in the computation of the other values. Hence 
the additive and multiplicative costs for an algorithm is the sum of these 
costs for two groups. Let a( n) and m( n) be the minimal additive and 
multiplicative costs for Fourier transforms of order 2n and let ap(n) and 
mp(n) be the corresponding costs for the primitive roots. 

Any algorithm which computes the F( u) for u primitive also computes 
the same string where the second half a(2n - 1), ... of the indeterminates 
are put equal to zero. Hence ap(n) ~ a(n - 1). But this algorithm must 
also have at least one addition for every F( v) bearing on the second half of 
the indeterminates. Hence 

ap(n) ~ a(n -1) + 2n - 1. 

The same argument works for the strings F(v) with v not primitive and 
hence the right side above majorizes also a( n) - ap (n). Adding the two, we 
get the recurrence 

a(n)~2a(n-1)+2n, a(1)=2 

whose solution is a(n) ~ n2n. The same arguments works for the mul­
tiplicative costs with the exception that no multiplications are needed in 
F( v) for the second half of the indeterminates when v is no primitive. This 
gives the recurrence 

m(n) ~ 2m(n - 1) + 2n- 1, m(l) = 1 

whose solution is m(n) ~ (n - 1)2n + 1. This proves the theorem. 
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An inspection of the FFT algorithm of section 4.4 shows that the number 
of multiplications by roots of unity except 1 that it uses satisfies the same 
recurrence as men) but with equality. Hence it is optimal with respect to 
multiplication and addition. 

Literature 

The main sources for this chapter are Winograd (1980) and Laksov 
(1986). Winograd's book contains a lot of material not covered here, for 
instance algorithms for finite Fourier transforms of prime order. The refer­
ences for the latest results on the cost of matrix multiplication is Pan (1984) 
and Coppersmith-Winograd (1987). The theorem of section 6.3 seems to 
be new. 



CHAPTER 7 

Polynomial rings, algebraic fields, finite fields 

The material of this chapter, divisibility in polynomial rings, algebraic 
numbers over a field and finite fields are substantial pieces of mathematics, 
over 150 years old. Some of the results have found applications in computer 
SCIence. 

7.1 Divisibility in a polynomial ring 

When R is a commutative ring, let R[z] be the ring of polynomials 

with coefficients in R. We shall see that most of the familiar properties of 
R[z] and C[z], the rings of polynomials with real and complex coefficients, 
carryover to the general case of an arbitrary field k, for instance k = Zp, P 
a prime. We shall also deal with the ring Z[z] of polynomials with integer 
coefficients. 

In the study of divisibility in polynomial rings, it is often necessary to 
compare polynomial rings over different integral domains or fields. It is 
therefore convenient to start with an 

EXTENSION LEMMA. Any homomorphism <p : R -+ R'Jrom a commutative 
ring R to another one R', extends naturally to a homomorphism R[z] -+ 

R'[z] of the corresponding polynomial rings defined by 

When <p is an isomorphism, its extension has the same property. 

Example 
When R =Z, we have for instance 

Under the map a -+ a mod 2 from Z to Z2, this reduces to 
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(i.e. equality in the ring Z2), which is also a true formula. 

PROOF: When f(x) = ao + atX + ... is a polynomial in R[x], put for 
simplicity <pf(x) = <p(ao)+<p(adx+ .... We have to show that <p(f-g)(x) = 
<pf(x) - <pg(x) and <p(fg)(x) = <pf(x)<pg(x) when 

n m 

f(x) = ~ajxi and g(x) = ~bkXk 
i=O k=O 

are polynomials in R[x]. The first property is clear since 

where the right side is <pf(x) - <pg(x). The coefficients of the product 
f(x)g(x) = E~~n Cixi are given by 

Ci = ~ aibk. 
i+k=i 

The coefficients di of the product <pf(x)<pg(x) are obtained in the same way 
from the coefficients <p(ai) and <p(bk) of <pf(x) and <pg(x). Since 

<p(Ci) = ~ <p(ai)<p(bk), 
i+k=i 

we have di = <p(Ci) and hence <p(f(x)g(x)) = <p(f(x))<p(g(x)) and this 
finishes the proof since the last statement of the lemma is now obvious. 

The binomial theorem in characteristic m 

The binomial formula 

and the corresponding formula 

are true also in arbitrary characteristic. In fact, the coefficients are integers, 
and the formula in characteristic m is obtained simply by extending the 
homomorphism Z -+ Zm to polynomial rings and formal power series. 
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R. Let m = p be a prime. Show that (1 + x)P == 1 + xP mod p and, 
more generally, that g(xP) == g(x)P mod p when g(x) is a polynomial with 
integral coefficients. 

Degree 

Let us now restrict ourselves to polynomial rings over integral domains 
(i.e., commutative rings without zero divisors) and, as a special case, poly­
nomial rings over fields. Let 

be a polynomial with coefficients in an integral domain R. When an =I 0, 
the last term on the right side is called the leading term of the polynomial, 
and an the leading coeflicient. 

We say that the degree of I, deg I, is n if an =I 0 in the formula above. 
The degree of a constant polynomial =I 0 is zero. The degree of the zero 
polynomial is not defined (although in some cases it is convenient to let its 
degree be -00). 

Precisely as in the classical case one has 

deg(fg) = deg I + deg 9 

if I and 9 are non-zero. This equality expresses the fact that ifaxn and bxm 
are the leading terms of I and 9 respectively, then abxn+m is the leading 
term of Ig and that a, b =I 0 implies that ab =I 0, since we are working 
over an integral domain. It follows in particular that I(x )g(x) =I 0 when 
I(x),g(x) =I 0, i.e., that R[x] is an integral domain, too. 

Divisibility and primes in a polynomial ring 

The theory of divisibility in a polynomial ring k[x] over a field k is anal­
ogous to the same theory for integers. When the word polynomial is used 
below, it refers to an element of k[x] and the word unit refers to any non­
zero element of k. Polynomials with leading coefficient 1 are called monic. 
It is clear that h(x) is monic and h(x) = I(x)g(x), then I(x) and g(x) can 
be chosen to be monic by multiplication by units. 

A non-zero polynomial I( x) is called a divisor or factor of a polynomial 
h(x) when there is a third polynomial g(x) such that h(x) = I(x)g(x). 
Under the same circumstances, I(x) is said to divide h(x) and h(x) is said 
to be a multiple of I(x) (and of g(x». Every polynomial has trivial divisors, 
namely units and unit multiples of itself. 

A polynomial with only trivial divisors is said to be prime or irreducible. 
Powers of a prime polynomial are called primary and two polynomials whose 
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only common divisors are units, for instance two different monic prime 
polynomials, are said to be coprime. 

R. Using the properties of the degree, show that every prime polynomial 
has positive degree and that those of degree 1 are prime. 

The theory of divisibility in a polynomial ring over a field k depends 
on the fact that the division algorithm for real and complex polynomials 
extends to polynomials with coefficients in a field: if I and 9 are polynomials 
and 9 does not vanish, there exist polynomials q and r such that I = qg + r 
and degr < degg or else r = O. 

R. A reader not familiar with the division algorithm can prove it by 
repeated applications of the following step: given a polynomial I(z) and a 
polynomial g( z) such that deg 9 < deg I, there exists a polynomial s( z) such 
that deg(f - sg) < deg I. To see that s exists, let I(z) = az" + ... , g(z) = 
6zm + ... and put s(z) = iz"-m. It is clear from this why k has to be a 
field for the algorithm to work. 

R. Using the algorithm prove the factor theorem: a polynomial I(z) is 
divisible by z - a, a in k, if and only if I(a) = o. 

R. Using the division algorithm, show that every ideal I#;O in k[z] is 
principal, i.e., has the form 

1= k[z]f(z) 

for some polynomial I(z), unique apart from a constant factor, and called 
the generator of I. (Hint: There is an I(z) #; 0 in I of lowest degree. 
Prove that the division algorithm gives a contradiction unless every element 
of I is a multiple of I(z).) Prove that the generator h(z) of the ideal 
k[z]f(z) + k[z]g(z) is the greatest common divisor of I(z) and g(z). 

Note. The generator of a non-zero ideal is uniquely determined if we 
require it to be monic. 

R. Prove that if a prime polynomial divides a product, it divides at least 
one of the factors. (Hint: Suppose that I( z) is prime and divides a product 
g(z)h(z) but not g(z). Then I(z) and g(z) cannot have a common non­
trivial factor and hence, by the preceding exercise, there are polynomials 
a(z) and 6(z) such that 1 = a(z)/(z) + 6(z)g(z). Multiplying this identity 
by h(z) shows that I(z) divides h(z).) 

DIVISIBILITY THEOREM. Every non vanishing polynomial ofpositive degree 
in k[z], k a field, is a product of primary polynomials, unique apart from 
the order and constant factors. 

Note. Restriction to monic polynomials makes the product unique up to 
order. 
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PROOF: The properties of the degree shows that every polynomial is a 
product of prime polynomials and hence also a product of primary polyno­
mials belonging to prime polynomials which are pairwise coprime. Now, by 
an exercise above, a prime polynomial dividing J(z) has to divide precisely 
one primary factor. Hence a primary factor of J(z) is the highest power of 
the corresponding prime which divides J(z). This proves that the primary 
factors are unique apart from their order and multiplications by units and 
finishes the proof. 

Examples 
When k is the field of complex numbers, the fundamental theorem of 

algebra tells us that every polynomial is the product (apart from constants 
#; 0) of linear factors z - a, where a is a complex number. In particular 
these are all prime polynomials of the ring of complex polynomials. 

This result does not apply to real polynomials for the simple reason that 
the complex prime polynomials z - a may not have real coefficients. 

R. Prove, using the previous result and the fact that conjugation of the 
coefficients preserves a polynomial with real coefficients, that the prime 
polynomials of R[z] are the polynomials of degree 1 and the polynomials of 
degree 2 with no real zeros, the most well-known of this kind being z2 + 1. 

Example 
There is only one prime polynomial of degree two in Z2[Z], namely z2 + 

Z + 1. In fact, one finds that the three other polynomials of degree 2 have 
a zero 1 or 0 and hence are divisible by z - 1 and z respectively. 

In the general case, for arbitrary k, the prime polynomials have to be 
found by trial and error and there may be prime polynomials of arbitrarily 
high degree. 

Note. Imitating Euclid's proof that there are infinitely many primes one 
easily proves that there are infinitely many prime polynomials in k[z], k a 
field, but, as seen above, this statement does not say that there are prime 
polynomials of arbitrarily high degree. 

R. Prove that k[z] has prime polynomials of arbitrarily high degree when 
k has a finite number of elements. 

A note on divisibility in integral domains 

In the theory of divisibility in an integral domain I, one distinguishes 
between irreducible elements which do not permit factorization in non­
units and prime elements a with the property that if a divides a product, it 
divides at least one of the factors. The two need not coincide. The integral 
domain Z + HZ has irreducible elements which are not primes since, for 
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instance, 2.3 = (1 + V-S)(1 - .;::5), where each factor turns out to be 
irreducible. But, provided that 

(i) I does not have infinite sequences where each element is a proper 
(non-trivial) factor of the preceding one, 

(ii) every irreducible element is prime, 
the preceding proof goes through in I. In k[x], (i) holds by the properties 

of the degree and (ii) holds as a consequence of the division algorithm. It 
is not difficult to show that the divisibility theorem holds in every commu­
tative ring without zero divisors where (i) holds an every ideal is princi­
pal (principal ideal ring). A special case of these rings are the Euclidean 
domains, Le. integral domains R with an abstract Euclidean algorithm, 
defined simply as the existence of a degree function, i.e., a function d from 
R \ 0 to the natural numbers with the property that d(a) = 1 when a is 
invertible, d(a) < d(ab) for all a and b when b is not invertible, and that 
given non-zero elements a and b of R with d(a) > d(b), there are elements 
q and r of R such that a = qb + r and either d(r) < d(b) or r = O. 

R. Prove in the same way as with k[x] that if R is a Euclidean domain, 
then every ideal I of R is principal, I = Ra for some a in I. Prove that if 
Ra = Ra/, then a = ua' for some invertible element u. Finally, verify that 
R has the properties (i) and (ii) and hence has a unique factoriztion into 
primes. 

Rings of the form 

R = Z[vId] 

whose elements are a + b../d with a, b in Z, where d is an integer and not a 
square, mayor may not possess a Euclidean algorithm and those not having 
one may not have a unique factorization into primes. As we know (see the 
section in Chapter Ion the Gaussian integers), d = -1 gives the first case 
and it was indicated above that d = -5 gives the second. In algebraic 
number theory it is shown that unique factorization can be restored if one 
passes from primes and products of primes to ideals and products of ideals. 

R. Prove that Z[v'2] is a Euclidean domain. (Hint. Try d(a + bv'2) = 
la2 - 2b21·) 

Prime polynomials in Q[x] and Z[x] 

In Q[x] there are prime polynomials of arbitrary degree and no general 
irreducibility criteria. There is also the fact proved by Gauss that if a 
polynomial in Z[x] is prime (Le., not the product of two polynomials also in 
Z[x] of positive degrees) then it is also prime in Q[x]. This is a consequence 
of the following two lemmas. 
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GAUSS'S LEMMA 1. Let 

I(z) = ao + ... + anZn 

be a polynomial with integral coefficients. Suppose that a and b are integers 
with (a, b) = 1 and I(a/b) = O. Then a divides ao and b divides an. 

R. Prove the lemma by contemplating the following equation which fol­
lows from I(a/b) = 0, 

With I as above, let conti, the content of I, denote the greatest common 
divisor of its coefficients. 

GAUSS'S LEMMA 2. The content is a multiplicative function on polynomials 
with integral coefficients, i.e., one has 

cont(fg) = conti contg. 

PROOF: It is clear that if a prime number divides all the coefficients of I 
or g, then it divides all the coefficients of Ig. Hence it is enough to prove 
the lemma when the contents of I and 9 are 1. With I as above, let 

g(z) = bo + blZ + ... + bmzm. 

Suppose that p is a prime dividing the content of I 9 and let ai and bj be the 
first coefficients of I and 9 respectively that are not divisible by p. Then, 
if we compute mod p, (Le., use the extension lemma with the map a _ a 
mod p from Z to Zp), 

(fg)(z) == aibjzi+i + higher terms. 

Hence also the polynomial I(z)g(z) mod p has a first coefficient not divisible 
by p. This is a contradiction and the lemma is proved. 

R. Show that the second lemma implies the first one. 

COROLLARY. If I is a polynomial and prime in Z[z], then it is also prime 
in Q[z]. 

PROOF: Let I be in Z[z] and suppose that 1= gh, with 9 and h in Q[z]. 
Write 9 = ag' and h = bh' where a and b are rational numbers and g' and h' 
have integral coefficients and content 1. Since ul = vg' h' for some coprime 
integers u and v, Gauss's lemma 2 gives u = v so that I = g'h'. Hence I 
being prime in Z[z] implies that h' or g' equals 1 so that I is prime also in 
Q[z]. 

The following criterion is well known. 
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EISENSTEIN'S CRITERION. Suppose that 

I(z)=ao+···+anzn 

is a polynomial with integral coefficients and that there is a prime p dividing 
all coefficients except an and that p2 does not divide ao. Then I is prime. 

PROOF: Suppose that I = gh where 

g(z) = bo + ... + bmzm, h(z) = Co + ... + clJzlJ , 

where both degrees are positive. Since p but not p2 divides ao = boco, p 
must divide precisely one of the factors, say bo. Let ble be the first coefficient 
of 9 not divisible by p. There must be such a k > 0 since not all the 
coefficients of 9 are divisible by p. We have k < m and, computing mod p, 
we get 

I(z) == blecozle + higher terms. 

By assumption, p divides bleco, so that p must divide co, which gives a 
contradiction. 

Example 
Let 

where p is prime. Then 

I(z + 1) = (z + 1)' -1 = zp-l + pzp-2 + ... + p, 
z 

where, by the binomial theorem, the requirements of Eisenstein's criterion 
are fulfilled. Hence I(z) is irreducible. 

Note. The polynomials above belong to the class of cyclotomic polyno­
mials to be treated in the next section. 

Partial fractions 

The decomposition of a rational function into partial fractions is probably 
well-known from analysis. Here we will treat the general case. The result 
to prove is 

THEOREM. Let I(z)/g(z) be a rational function in k(z), k a field. Write 
g(z) = gl(Z)lJl .. . gm(z)IJ", where gl(Z), ... ,gm(z) are irreducible and dif­
ferent. Then there are uniquely determined polynomials h(z) and !ij(z), 
1 $ j $ qi, 1 $ i $ m, such that deg lij < deg gi and 

I(z) = h(z) + t(t lij(Z~). 
g(z) i=1 j=1 gi(Z)' 
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R. Carry through the proof in two steps. First, using that the polynomials 

are pairwise prime, prove that polynomials li(x) exist such that 

I(x) = hex) + t li(x) 
g(x) i=t gi(X)IJ; 

and deg Ii < deg g1; or Ii = O. Then prove that the expansion is unique. 
Secondly, prove the following lemma using Euclid's algorithm. 

LEMMA. Let I(x) and g(x) be two polynomia.ls in k[x] and assume that 
degg ~ 1. Then there are uniquely determined polynomials Ii (x), i = 
0,1, ... ,n such that deg Ii < deg 9 and 

I(x) = lo(x) + It (x)g(x) + ... + In (x)g(xt . 

R. Let I( x) and g( x) be polynomials in k[ x], k a field, n = deg I > deg g. 
Prove that 

g(x) ~ g(ai) 
I(x) = ~ I'(ai)(x - ai) 

where at, ... , an are the zeros of I(x), assumed to be separate. 

Exercises 
1. Let k be a field and consider the set I of polynomials I(x) in k[x] such 

that I(a) = 0 for every a in k. Show that I is an ideal and that I is not 0 
if and only if k is finite. 

2. Show that Z2[X] has precisely two irreducible polynomials of degree 3 
and that both are factors of x 7 + 1. 

3. Factor x4 - x3 + x2 - X + 1 into irreducible polynomials in Z2[X]. 
4. Factor x4 + x3 + x2 + X + 1 into irreducible factors in Z3[X]. 
5. How many polynomials of the form x2 +ax+b are irreducible in Z2[X]? 

7.2 Algebraic numbers and algebraic fields 

Let k be a field imbedded in an integral domain R, i.e., k is a subset 
of R, its algebraic operations are inherited from R and the 0 and 1 of R 
are also the 0 and 1 of k. Precisely as in the classical case when k = Q 
and R = C, we say that an element a of R is algebraic over k if there is a 
polynomial I(x) in k[x] such that I(a) = 0, the computations being carried 
out in R. The proof of the first theorem of section 1.6 carries over to the 
new situation, which gives 
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THEOREM. The algebraic elements over k form a field. 

R. Go through the proof in detail. 

LEMMA. Suppose k is a field embedded in an integral domain R and that 
a in R is algebraic over k. Then there is a unique irreducible monic poly­
nomial I(z) in k[z) such that I(a) = O. 

PROOF: Let I(z) be a monic polynomial of lowest possible degree in k[z) 
such that I(a) = O. Then I must be irreducible, since otherwise there 
would be a proper factor 9 of I such that g(a) = O. Suppose that h(z) is 
another irreducible, monic polynomial in k[z) such that h(a) = O. Since 
deg I ~ deg h, we may divide h by I and get h = ql+r, where deg r < deg I 
or r is the zero polynomial. But if r is not identically zero, then rea) = 0, 
which contradicts the choice of I. Hence I divides h, which is possible only 
if I = h, since h was irreducible. 

Existence 

Let k be any field. We shall show how to construct in an explicit way 
algebraic fields over k (or algebraic field extensions of k), i.e., fields K in 
which k is embedded and whose elements are all algebraic over k. Note 
that if K is any field in which k is embedded, then K is a vector space 
over k. We denote the dimension of K as a vector space over k by [K : k) 
and call it the degree of Kover k. It can be finite or infinite. If finite, the 
extension is said to be finite also. 

R. Show that if [K : k) = n is finite, then K is an algebraic extension 
of k. (Hint. If z is an element of K, then 1,z,z2, ... ,zn must be linearly 
dependent over k.) 

Note. The converse of this is not true. The field of algebraic numbers 
discussed in Chapter 1 is an algebraic extension of the field of rational 
numbers, but of infinite degree. 

LEMMA. Suppose that K is an extension of a field k and that F is an 
extension of K and that both are finite. Then F is a finite extension of k 
and [F : k) = [F : K][K : k). 

R. Prove the lemma. (Hint. If Ul, ... ,Urn is a basis for Kover k and 
Vl, ••• ,Vn a basis for F over K, show that UiVj is a basis for F over k. 

R. Prove that if either F is an infinite extension of K or K an infinite 
extension of k, then F is an infinite extension of k. Also prove the converse. 
Hence the lemma is valid also in this situation. 

The following basic result shows how to construct algebraic fields. 
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THEOREM. If /(x) is an irreducible polynomial in k[x] of positive degree 
and (/(x)) is the corresponding principal ideal k[x]J(x), then the quotient 

K = k[x]j(/(x)) 

is an algebraic field over k. If u is the image of x under the quotient 
map, then 1, u, ... , un - 1 is a basis for K as a vector space over k, where 
n = deg /. In particular, [K : k] = n. 

PROOF: It is clear that K is a ring. Let g(x) be any polynomial in k[x] 
which is not divisible by /(x). Since /(x) is irreducible, this means that 
the greatest common divisor of /(x) and g(x) has degree < 1 and hence 
there are polynomials a(x) and b(x) such that 

a(x)g(x) + b(x)/(x) = 1. 

It follows that a(x)g(x) == 1 mod /(x). Hence a(x) is an inverse of g(x) 
mod /(x) so that K is a field. The restriction of the quotient map to k is 
clearly injective, so k is embedded in K. If g( x) is a polynomial in k[x], 
then we can write g(x) = q(x)/(x) + r(x), where deg r < deg / or else r(x) 
is the zero polynomial. Hence the image of 9 in K equals the image of r. 
But this can clearly be written as a linear combination of 1, u, ... , un - 1 

with coefficients in k. Finally suppose that ao + a1 u + ... + an_1Un-1 = 0 
for some ai in k. Then ao + a1X + ... + an_1Xn-1 = g(x)/(x) for some 
polynomial g(x). But since deg / = n this is impossible unless all ai are 
zero. 

Note. A simple-minded description of K runs as follows: the elements 
of K are polynomials in u with which one computes as usual with the rule 
/(u) = 0 added. Repeated applications of this rule allows one to write 
every element of K as a polynomial of degree < n. 

Example 
If k is the field of real numbers and /( x) = x2 + 1, then K is the field of 

complex numbers and 1, i is a basis over R, where i is the image of x under 
the quotient map. This element is called the imaginary unit. 

Splitting fields 

The field constructed in the lemma above can be denoted simply by k(u). 
In this field /(x) has the zero u, so by the factor theorem it factors as 

/(x) = (x - u)g(x), 

where g(x) has coefficients in k(u). Write g(x) = g1(X) ... gk(X), where the 
gi(X) are irreducible over the field k(u). Now we can repeat our construction 
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with one ofthe irreducible factors, say gl(Z), getting a zero v of gl(Z), and 
hence of g(z), in a field k(u)(v). Finally we arrive at a field F where fez) 
splits into linear factors, 

fez) = a(z - u)(z - v)(z - w) ... , 

where a is the leading coefficient of f. In this way we have constructed 
a splitting field of fez), i.e., an extension of k over which fez) splits into 
linear factors and which has no proper subfields over which fez) splits into 
linear factors. 

Note. In the definition of splitting field for a polynomial fez), this does 
not have to be irreducible. Clearly we can construct splitting fields for 
reducible polynomials also by using the method above. We only start by 
factoring fez) into irreducible factors and then treat these one by one. 

The following theorem is important. 

THEOREM. Let k, k' be two fields and 'P : Ie -+ Ie' an isomorphism. Let 
fez) be a polynomial in k[z] and 'Pf(z) the corresponding one in k'[z]. 
Suppose that F and F' are splitting fields for fez) and 'Pf(z) over Ie and 
k' respectively. Then 'P extends to an isomorphism of F and F'. 

The proof of this theorem hinges on the following 

LEMMA. Let Ie, Ie' be two fields and 'P : Ie -+ k' an isomorphism. Suppose 
that k ~ F and k' ~ F' are extensions of Ie and Ie' respectively. Let fez) 
be an irreducible polynomial in Ie[z] and 'Pf(z) the corresponding one in 
Ie' [z]. Suppose that a is a zero of fez) in F and a' a zero of 'Pf(z) in F'. 
Then the fields Ie( a) and k' (a') are isomorphic. 

R. Prove the lemma. (Hint. Verify that 'P(a) = a' gives the required 
extension of 'P.) 

PROOF OF THE THEOREM: We will prove the theorem by using induction 
over the degrees of F and F' over Ie and k' respectively. If [F : Ie] = 1, 
then fez) splits already over k, and there is nothing to prove. Assume 
the theorem is true for all splitting fields of degree less than [F : Ie] and 
that [F : k] > 1. Then there is a factor p(z) of fez) and a zero a of p(z) 
in F which is outside k and a zero a' of 'Pp(z) in F' also outside Ie. By 
the lemma'P extends to an isomorphism 'P : k(a) -+ k(a'). Now clearly F 
and F' are splitting fields for fez) over k(a) and Ie'(a') respectively. But 
[F : k] = [F : Ie(a)][k(a) : Ie] > [F : k(a)] and by the induction hypothesis 
'P : k( a) -+ Ie' (a') extends to an isomorphism of F and F'. 
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Note. It can be shown that if f(x) E k[x] has degree n, then the degree 
of a splitting field over k is at most nL 

The following theorem has important applications. 

THEOREM. Let k be a field and let f(x) and g(x) be polynomials over k. 
Then g( x) divides f( x) if and only if g( x) splits in a splitting field of f( x) 
and every zero of g(x) in this splitting field is also a zero of f(x) and the 
multiplicity as a zero of g(x) is at most the multiplicity as a zero of f(x). 

PROOF: To prove "only if', we just write f(x) = h(x)g(x). On the other 
hand, if g( x) splits in a splitting field K of f( x) and every zero of g( x) in K is 
a zero of f(x) of at most the same multiplicity, then clearly f(x) = h(x)g( x), 
where h(x) has coefficients in K. We must prove that they actually belong 
to k. Let 

f(x) = aD + ... + anxn, g(x) = bo + ... + bnxn, h(x) = Co + ... + cnxn 

(where some coefficients presumably are zero). We get 

boco = aD 

blCo + bOCl = al 

bnco + ... + bocn = an 

which is a quadratic system of linear equations with the Ci as unknowns 
and with coefficients in k. The corresponding homogeneous system has 
obviously only the trivial solution. Hence, by a theorem in the section on 
linear algebra, the system has a unique solution in k for all right sides. This 
proves the theorem. 

Remark. If f(x) is a polynomial over the field of complex numbers, then 
f can be factored as f(x) = a(x - u)(x - v) ... , where u, v, . .. are the zeros 
of f(x) and a is the leading coefficient. Fields with this property are said 
to be algebraically closed. An example of a field which is not algebraically 
closed is the field R of real numbers, since the polynomial x 2 + 1 does not 
factor over R. If k is any field, it can be shown that there is an algebraically 
closed field k, called the algebraic closure of k, such that every element of 
k is algebraic over k. The algebraic closure of the rationals Q is the field of 
algebraic numbers (which is not equal to the field of complex numbers). 

Derivatives and multiple zeros 

When k is an arbitrary field, one defines the derivative of a polynomial 
f(x) = aD + aix + ... + anxn by the formula 

!,(x) = al + 2a2x + ... + nanxn- l . 
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Then one has the basic properties 

(I + g)'(z) = /,(z) + g'(z), (lg)'(z) = /'(z)g(z) + /(z)g'(z). 

R. Prove these formulas by direct computation. 

If fez) has degree n, i.e., an ::f:. 0, then /'(z) has degree n - 1 provided 
that nan ::f:. O. This is always true in characteristic 0, but may not be true 
if the characteristic is p > O. In spite of these complications we have 

THEOREM. An element u of a splitting field of fez) is a simple zero of / 
if and only if /,(u) ::f:. O. The zeros of the greatest common divisor of fez) 
and its derivative /'(z) are the zeros of fez) of multiplicity greater than 
one, provided that I'(z) is not identically zero. 

PROOF: Write fez) = (z - u)mg(z) where m is the multiplicity of u as a 
zero of fez) and g(z) has coefficients in the splitting field and g(u) ::f:. O. 
Since 

/,(z) = (z - u)m-l(mg(z) + (z - u)g'(z», 

the first assertion follows. 

R. Prove the second assertion. Note that the greatest common divisor 
has coefficients in the field k. 

COROLLARY. When / is irreducible and /' is not identically zero, then all 
zeros of f are simple. 

Prime polynomials in characteristic p 

When k has characteristic p > 0, it may happen that fez) has positive 
degree, but that /'(z) is identically zero, for instance when fez) = zP -
1. This means that iai = 0 for all coefficients ai of fez). This in turn 
is equivalent to the condition that fez) = g(zP) where g(z) is another 
polynomial with coefficients in k. When g'(z) is identically zero, 9 in turn 
has this form and finally we arrive at a power pi of p and a polynomial h( z) 
whose derivative is not identically zero and such that 

t 
fez) = h(zP ). 

When / is irreducible, 9 is of course also irreducible. The point of all this is 
that irreducible polynomials may have multiple zeros if the field has prime 
characteristic. If, however, k = Zp, we have aP = a for all a in k and, since 
(u + v)P = uP + vP in every field of characteristic p, the formula above reads 

t 
fez) = g(z)P , 
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and it follows that irreducible polynomials have simple zeros. Since the 
previous theorem shows that this holds whenever f' (z) is not identically 
zero, we have proved 

LEMMA. When a field k has characteristic zero or else k = Zp, all irre­
ducible polynomials in k[z] have simple zeros. 

R. Let I(z) be in k[z] and u a zero of I in a splitting field. Using the 
formulas above, prove that u is a simple zero of I if and only if I'(u) =F O. 

Application to cyclotomic polynomials 

In this section we will work over the rational numbers, i.e., k = Q. 
The complex zeros of the polynomial I(z) = zn - 1 are the nth roots of 

unity, 
E - e27rij/n J. - 0 1 n 1 ... j - ,- , , ... , - . 

They form a cyclic group under multiplication whose generators, also called 
primitive roots of unity, are the tj with (j, n) = 1. There are <pC n) of them. 

R. Prove that if I(z) and g(z) have integral coefficients and g(z) has 
leading coefficient 1, then there are polynomials q(z), r(z) in Z[z] such that 
I = qg + rand deg r < deg 9 or else r( z) is the zero polynomial. 

THEOREM. There is an irreducible monic polynomial of degree <pen) with 
integral coefficients, the nth cyclotomic polynomial, whose zeros are the the 
primitive nth roots of unity. 

PROOF: Define In(z) = TIU,n)=l(Z - tj). We want to show that In has 
integral coefficients and is irreducible. 

First it follows that zn - 1 = TIdln /d(z). In fact, both sides are monic 
and have the same zeros. Also, It (z) = z - 1 and 

zn -1 
In(z) = TI ( ). 

dln,d<n h z 

Hence the polynomials h(z) can be computed recursively and since all 
Id(z) have leading coefficient 1, it follows from the R above that In(z) has 
integral coefficients. It remains to prove irreducibility. 

Let w be a primitive nth root of unity and I( z) its minimal polynomial, 
i.e., the monic polynomial of lowest degree with rational coefficients such 
that I(w) = O. This I is uniquely determined (why?) and is irreducible. 
We have to prove that I = In. In any case, I divides zn - 1, so that 
zn - 1 = I(z)g(z), where by Gauss's lemma 2, both I and 9 have integral 
coefficients. We are going to show that every power wi' where p is a prime 
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not dividing n, is a zero of I(x). This suffices, because any primitive nth 
root of unity equals w raised to an exponent which is prime to n and every 
such exponent is a product of powers of primes which are prime to n. 

The desired statement follows if we can prove that wP cannnot be a zero 
of the factor g(x) above. Suppose that g(wP) = O. Then wP is a zero of 
g( xP) so that 

g(xP) = I(x)h(x) 

for some monic polynomial h(x) with integral coefficients. Now reduce this 
equality mod p. Then 

g(x)P == I(x)h(x) mod p. 

Here the left side cannot be a factor of h(x) mod p (why?). Hence I(x) 
and g(x) have a factor in common mod p. But then xn - 1 == I(x)g(x) 
mod p has a multiple factor. Since (xn - 1)' = nxn- 1 does not vanish mod 
p unless x = 0 mod p (remember that (p, n) = 1), this is a contradiction. 

R. There is an explicit formula for the In(x), namely 

In (x) = II(xn1d _1)p(d), 
din 

where I'(d) is the Mobius function. Prove this formula, which is essentially 
the Mobius inversion formula of section 1.3. 

Exercises 
1. Show that x 2 - 2 is irreducible over Q[.J3]. 
2. Determine an irreducible polynomial in Q[x] with the zero 2 +.;i. 
3. Determine an irreducible polynomial in Q[x] with the zero 2 +.;=5. 
4. Show that 

Q + QV2 + QV3 + Qv'6 

is a field. 
5. Let x and y be complex numbers such that x2 + x + 1 = 0 and 

y2 + 3 = O. Which of the fields Q(x), Q(y) and Q(v'3) are isomorphic? 
6. Determine the field automorphisms of a) Q, b) Q(v'i), c) Q(v'2). 
7. Prove that all extensions of the real numbers of degree 2 are isomor­

phic. 
8. Let F be a finite extension of the real numbers of degree > 1. Show 

that [F: R] = 2 and that F is isomorphic to the complex numbers. 
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7.3 Finite fields 

As we have seen before, Zp is a field when p is a prime. In particular Zp 
is a finite field, i.e., it has a finite number of elements. It is not difficult to 
construct all finite fields (up to isomorphism). 

If F is a finite field, it must have prime characteristic p in which case all 
integral multiples of the unit 1 form a field Fa, the prime field of F and 
isomorphic to Zp. If the degree [F : Fa] of F over Fa is n, then F must 
have q = pn elements. 

THEOREM. If u is an element of the finite field F with q elements, then 
u9 = u. In particular, ifu #; 0, then U9- 1 = 1. 

PROOF: Let F* be the set of non-zero elements of F. Ifu is in F*, then the 
map z -+ uz is a bijection of F*. Hence U9- 1Q = Q, where Q denotes the 
product of all the elements of F*. Since Q #; 0, this proves the theorem. 

Note. If F = Zp, this can be expressed as aP - 1 == 1 mod p for all 
non-zero elements of F, which is Fermat's little theorem. 

Existence 

It is easy to construct the field F above. In fact, let F be the splitting 
field of the polynomial 

f(z) = zP" -z 

over Zp, Since its derivative I'(z) = pnzp"-l - 1 = -1 identically, all the 
zeros are different. We shall see that they form a field. 

R. Using the identity 

(a+b)P =aP+bP, 

valid in any ring of characteristic p, show that if u and v are zeros of zP" -z, 
then so are u - v and uv. Show also that the inverse of a non-vanishing 
zero is a zero. 

Hence the splitting field must consist precisely of the zeros of zP" - z, 
so it has pn elements. On the other hand, if F' is another field with pn 
elements, then zP" - z splits over F' also, so F and F' are isomorphic. We 
have proved 

THEOREM. A finite field has prime characteristic p and pn elements for 
some natural number n. It is isomorphic to the splitting field of zP" - z. 

Note. The field we have constructed is called a Galois field of order pn 
after its discoverer. It will be denoted by GF(pn) in the sequel. 
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Primitive elements and primitive prime polynomials 

THEOREM. In every Galois field F there is a primitive element, i.e., an 
element u whose powers generate all of F except the zero. 

PROOF: The non-zero elements of F form an abelian group. From Lemma 
1 of section 3.4 we know that the order of any element divides the maximal 
order m. Hence every non-zero element of F is a zero of the polynomial 
zm - 1. Since this polynomial has at most m zeros in any splitting field, m 
must be the number of elements of F \ 0 and this proves the theorem. 

Note. In group theoretic terminology: the mUltiplicative group of any 
Galois field is cyclic. 

R. Let Ie be a field, not necessarily finite, and M a finite subgroup of 
Ie \ O. Show that M is cyclic. 

R. Let u be a primitive element ofGF(pR) and J(z) its minimal polyno­
mial in Zp[z]. Show that its degree equals n. Hence GF(pR) is isomorphic 
to Zp[z]/(f(z)). In other words, there are irreducible polynomials of every 
degree over Zp. 

Example 
Let J(z) = z2 + 1 be in Z3[Z]. Since J(a) is not zero for any a in Z3, J 

is a prime polynomial. Hence, if u is a zero of J in a splitting field, Z3(U) 
is a Galois field with 9 elements. 

Note. A polynomial J(z) in Zp[z] which has a zero that is a primitive 
element for GF(pR) will be called a primitive prime polynomial. 

Automorphisms of finite fields 

THEOREM. A finite field F with pR elements has precisely n automor­
phisms. They are given by a ..... apm for m = 0,1, ... ,n - 1. 

PROOF: Since the prime field Zp consists of the multiples 0, e, 2e, ... , (p­
l)e of the unit e, any automorphism must leave the prime field element wise 
fixed. Since (a + b)P = aP + bP, (ab)P = aPbP for all a, b in F, the map 
T : u ..... uP is an endomorphism. It is not the zero map, so its kernel is zero 
(for F is a field). Since F is finite, T must be an automorphism. Then all 
powers T" are also automorphisms. 

Conversely, let S be an automorphism of F and let c be a primitive 
element of F. Then S(c) is also a primitive element and hence S(c) = c" 
for some integer r > 0 and < pR and prime to pR - 1. It follows that the 
same equation holds for all powers of c and hence S(a) = a" for all a in 
F. Write r = r'p" where p does not divide r'. Then U = ST-" is another 
automorphism with the property that U(a) = a'" for all a. The equality 
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U(1 + a) = 1 + U(a) means that the polynomial (1 + zt' - 1 - zr' of 
degree r' - 1 < pn - 1 has pn zeros, namely all the elements of F. Hence 
it is identically zero, which means in particular that r' a = 0 for all a when 
r' > 1, i.e., that r' == 0 mod p. This is a contradiction and the theorem is 
proved. 

Exercises 
1. Show that 

p-l 

(a + b)p-l = ~) _1)kakV- 1- k 

k=O 

in every field of characteristic p. 
2. Let K be a field of characteristic p > O. Find all polynomials J(z) in 

K[z] such that J(z + y) = J(z) + J(y) for all z,y in K. 
3. Write down a multiplication table for a field with four elements. 
4. Show that the sum of all elements of a finite field with more that two 

elements vanishes. 
5. Show that the map z - z2 of a finite field is bijective if and only if 

its characteristic is two. 
6. Show that GF(34 ) does not have a subfield with 27 elements but one 

with 9 elements. 
7. Show that zm - 1 divides zn - 1 if and only if m divides n. 
8. Show that GF(pn) has a subfield with pm elements if and only if m 

divides n. (Hint. Use exercise 7.) 

Literature 

The material of this chapter can be found in most textbooks on algebra. 
Galois discovered the finite fields. His paper on the subject is from 1830. 
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Shift registers and coding 

Two of the most striking applications of finite fields to computer science 
are to the theory of shift registers and to coding. Both are of great practical 
importance. Here we will be concerned only with elementary theory. 

8.1 The theory of shift registers 

Periodical sequences 

Functions a from the integers ;::: 0 to some set will be called right se­
quences, a = (a(O), a(I), . .. ), and functions from all integers will be called 
full sequences, b = ( .. . b(-I),b(O),b(I), ... ). A period of a full sequence 
is defined to be any integer m ::f:. 0 such that b(j + m) = b(j) for all j, a 
period of a right sequence is defined by the same equalities with the restric­
tion that m > 0 and j ;::: O. Sequences possessing periods are said to be 
periodic. 

R. Let m > 0 be a period of a right sequence a. Prove that m is also a 
period of a unique associated full sequence b defined by b(j) = a(j) when 
j ;::: 0 and b(-km + j) = a(j) when k > 0 and j = 0, ... , m - 1. 

LEMMA. The periods of a right sequence are all positive integral multiples 
of the least period. 

PROOF: By the previous exercise, every period of a right sequence is also 
a period of the associated full sequence. For positive periods, the converse 
is trivial. Now it is obvious that 0 and all periods of the full sequence form 
a module over the integers and hence consists of all integral multiples of a 
positive integer m which is also the least positive period of a. 

R. The sequence a = (1,2,3,4,1,2,1,2 ... ) is not periodic but it is ulti­
mately periodic in the sense that it has ultimate periods, i.e numbers m ::f:. 0 
such that a(j + m) = a(j) for all sufficiently large j. Prove that 0 and all 
ultimate periods of a sequence form a module and hence that they consist 
of all integral multiples of a least positive period. 



8.1 Shift registers 127 

Shift registers 

A shift register is a device (for instance a computer program) which com­
putes the elements of a right sequence a = (a(O), a(l), ... ) with elements 
in some set S in such a way that the input a(O), ... , a(n - 1) is given in 
advance and the rest of the sequence is computed by the rule that 

(1) aU + n) = f(aU + n - 1), ... , aU)). 

for all j ~ O. Here f is a fixed function called the generating or feedback 
function or simply the feedback of the shift register. A device which com­
putes the function f is turned into a shift register if it is completed by 
a shift of the input one step to the right. This is the origin of the term 
shift register. Such devices have found many applications in all kinds of 
automata. 

R. Assume that the set S is finite. Prove that any sequence generated 
by a shift register is ultimately periodic. (Hint. Suppose that the input 
has n elements. The sequence a is then the union of parts A(O), A(l), ... 
where A( k) consists of all aU) with kn ~ j < (k + l)n and it is obvious 
that the register induces a map T such that A(l) = T A(O) and, in general, 
Tk AU) = AU + k) for j, k ~ O. Prove that there are numbers j < k such 
that AU) = A(k) and deduce from this that a is ultimately periodic with 
period k - j. 

Algebraic theory of linear feedbacks 

A feedback function is said to be linear when it generates sequences with 
elements in a field F and is itself linear and homogeneous, 

(2) a(n) = c(l)a(n - 1) + c(2)a(n - 2) + ... + c(n)a(O) 

with coefficients in F. The sequences generated by a linear feedback have 
a very precise algebraic theory. In this theory, a right sequence a = (aU)) 
is made to correspond to a formal power series 

00 

(3) a(t) = I:a(k)t k 

o 

in one indeterminate t and a feedback given by (2) is made to correspond 
to the polynomial 

(4) f(t) = 1 - c(l)t - ... - c(n)tn, 
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the feedback polynomial. Any polynomial with constant term 1 can serve 
in this capacity. Under the correspondences (3) and (4), every sequence 
generated by the feedback / corresponds to the formal power series 

aCt) = b(t)/ let) 

where bet) is a polynomial of degree < n. In fact, by (2), the coefficients 
of ti in a(t)/(t) vanish when j ~ m and the rest is just a polynomial of 
degree < m. We can now prove 

THEOREM. A formal power series aCt) has the period m if and only if 

(5) aCt) = b(t)/(1 - tm) 

for some polynomial bet) of degree < m. When J(t) is a polynomial and 
f(O)=l, the formal power series 1/ J(t) has the period m if and only if let) 
divides 1 - tm . 

Note. The last condition implies in particular that all the zeros of let) 
in a splitting field are roots of unity. When the field is finite, this is no 
restriction. In fact, then the splitting field is a Galois field all of whose 
elements except 0 are roots of unity. 

PROOF: If a power series aCt) is periodic with period m, then 

aCt) = bet) + tmb(t) + t2mb(t) + ... 

where bet) is the sum of the first m terms of aCt). Hence aCt) has the 
form announced. The converse is obvious. This proves the first part of the 
theorem. To prove the second part, note that 1/ J(t) = b(t)/(l-tm) means 
that /(t)b(t) = 1 - tm. 

R. Prove that a formal power series aCt) with coefficients in a field has 
an ultimate period if and only if (1- tm )a(t) is polynomial bet), i.e. aCt) = 
b(t)/(I- tm) with no restriction on the degree of bet). 

R. Let let) be a feedback polynomial of degree n and let bet) be a poly­
nomial of degree < n. Prove that 1/ let) and b(t)/ let) have the same least 
period if and only if let) and bet) are coprime. 

Least periods of feedback polynomials 

When let) is a feedback polynomial, let per/ denote the least period of 
the formal power series 1/ let). 
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THEOREM. The least period of a polynomial /(t) with /(0) = 1 and c~ 
eflicients in Zp, p a prime, is pi(pk - 1) where pi is the least power of p 
exceeding the largest multiplicity of a. zero of /(t) and GF(pk) is its split­
ting field. The maximal least positive period among polynomials of a. given 
degree d is pd - 1 and occurs for primitive irreducible polynomials. 

PROOF: According to the previous theorem, the least period is also the 
least number m > ° such that /(t) divides 1 - tm. Hence m + 1 is at least 
equal to the degree pk of the splitting field of /(t). Since all multiplicities 
of a polynomial of the form 1 - t m only occur when m is a multiple of p 
and (1- tmp ) = (1 - tm)P, the first statement of the theorem follows. To 
prove the second, note that if the degree of a polynomial is constant and its 
largest multiplicity decreases by one, then the degree of its splitting field 
must increase. Hence, since pi(pk - 1) can only increase when j decreases 
by one and k increases, a polynomial of a given degree with maximal least 
period cannot have multiple zeros. It follows that the degree of its splitting 
field must be maximal. This proves the theorem. 

Long periods and random numbers 

When /(t) is a primitive prime polynomial of degree n with coefficients 
in Zp, the previous theorem tells us that the corresponding formal power 
series 1/ /(t) has the period q - 1 where q = pn. It turns out that the 
corresponding sequence, say 

A = (a(O), a(I), a(2), .. . ), 

considered as a circular one, has remarkable homogeneity properties which 
makes it a good candidate for producing random numbers. For simplicity 
we put p = 2, q = 2n. Let T be the translation a(k) -+ a(k + 1) in A. 

THEOREM. With the assumptions above, let B be any k ::; n elements 
within a set of n consecutive elements of A. Then a sequence of k consecu­
tive zeros appears 2n - k -1 times and the others 2n - k times in the sequence 
B,TB, ... ,T9-1B. 

Note. The theorem indicates that if we let n successive elements of 
the sequence denote n-digit numbers, then we are reasonably sure that 
successive such numbers are reasonably independent. 

Example 
/(t) = t3 + t + 1 is a primitive prime polynomial with coefficients in Z2. 

The corresponding sequence A with initial elements 1,1,1 is the sequence 
1,1,1,0,0,0,1, ... and the successive translates of the initial sequence are 

1,1,1 0,0,1 1,0,0 0,0,1 0,0,1,0 1,0,1 0,1,1 
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i.e. all combinations of three zeros and ones except 0,0,0. In any place there 
are 4 ones and 3 zeros. The polynomial t35 + t2 + 1, which is primitive and 
irreducible, has been used in practice to generate pseudorandom numbers 
on machines whose numerical register holds 35 digits. The corresponding 
period is infinitely long for practical purposes. 

PROOF OF THE THEOREM: When an initial sequence a(O), ... ,a(n - 1) is 
transported around the sequence A, its consecutive translates run through 
all sets of n binary numbers except the set consisting only of zeros. It 
follows that the values taken by by the sequence of the theorem are those 
taken by k elements in fixed places when n binary numbers are combined 
in all possible ways with the exception of the set consisting only of zeros. 
Counting these possible ways completes the proof of the theorem. 

8.2 Generalities about coding 

Generally speaking, a code C is a bijection T from a set A of signs, called 
letters to another set B of letters. A message M written with the letters of 
A is encoded by T to a coded message T M written in the letters of Band 
the original message is recovered by applying T-l to TM, M = T-ITM. 
There are of course many codes. In a classical example A and B consist of 
the same letters and T is a permutation of them. 

Encoding messages is done with different aims. One of them is secrecy, 
the encoding should be difficult to encode. The other is reliability against 
errors of encoding, transmission and decoding. This is the origin of the 
important error-correcting codes. The utility of shift registers in both cases 
stem from their ability to encode and decode suitably constructed codes 
with great speed and without the aid of a large memory. 

Block codes 

A widely used class of codes are the block codes where the encoded 
message consists of code words w of fixed 'length (number ofletters) forming 
a subset of all words of the same length. Each code word has a message 
part m which can be chosen arbitrarily and a check part c which is used to 
complete the message part to a proper code word. If an error of transmission 
has occurred, resulting in a word u which is not a code word, it is then 
possible to see that that there has been an error and it may be possible to 
locate the original code word as the closest code word to u. 

For bit codes, i.e. codes where the letters are ° and 1, we can define 
a distance d( w, Wi) between two words wand Wi as the number of digit 
positions where the two words differ. 

R. Prove that this distance, called the Hamming distance, is symmetric, 
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d(w, wI) = d(w', w), and satisfies the triangle inequality d(w, w) ~ d(w, u)+ 
d(u,w'). 

The minimal distance between two different code words is called the 
separation of the code. The distance of a word to a code is defined to be 
the least distance to a code word. 

LEMMA. If the separation of a code is odd, say 2d + 1, then any word whose 
distance to the code is d has a unique nearest neighbor in the code. 

R. Prove this lemma using the triangle inequality. 

We shall consider codes, the block codes, in which the words, the mes­
sage and the check have, respectively, a fixed number of binary digits, say 
n, k, j = n - k. They are referred to as (n, k)-codes. When the separa­
tion d is exhibited, the notation (n, k, d) is used. For economic codes the 
separation should not be too small compared to the length of the check. 

Example 
The classical parity check code has just one check digit and the require­

ment that the sum of the digits of a code word should be even. This code 
does not correct errors but it discovers that some error has been committed. 

Linear codes 

The parity check is an example of a linear code where the digits of of the 
code words belong to some finite field F, for instance Za in case of a binary 
code, and constitute a linear subspace in a linear space of finite dimension 
over a finite field. This subspace is identified with the code. The basic 
properties of linear codes, stated in the exercises below, follow from the 
basic facts of abstract linear algebra (see section 5.3). 

R. Let C be a linear subspace of dimension k in Fn, F a field. Prove 
that, after a suitable permutation of the digit poSitions, C has a basis 
consisting of vectors e( 1), ... , e( k) whose first k components are zero except 
the jth component of e(j) which is one. In this way, the matrix with rows 
e(l), ... ,e(k) has the form (I,A) where I is the unit k x k matrix and A is 
some k x (n - k) matrix. 

R. Let C be a linear n-bit code. Prove that the Hamming distance d is 
invariant under translation, i.e. that d( u + w, v + w) = d( u, v) for all code 
words u, v, w. It follows from this that the separation of the code is also 
the minimal distance between zero and non-zero code words. Prove that 
the separation of the linear (5,3) binary code defined by 

a(4) = a(l) + a(3), a(5) = a(l) + a(2) + a(3) 
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is 2. 
R. Define the weight of a code word in a binary code to be the number of 

ones that it contains. Using the matrix (I, A) of basis elements of a linear 
(n, k, d) bit code, prove the Singleton bound: d ::; n - k + l.(Hint. The 
basis elements have weight at most n - k + 1.) 

Note. The Singleton bound is just one of many restrictions for error­
correcting codes oftype (n, k, d). Others are reviewed in the last section of 
this chapter. 

R. Let C· the dual space of C, be all vectors t = (t(I), ... ,t(n» which 
are orthogonal to C in the sense that the interior product 

t(l)a(l) + ... t(n)a(n) 

vanishes for all words a in C. Prove that C· is a linear space of dimension 
n - k and that C consists of all vectors orthogonal to C·. The code C· is 
said to be dual to C. 

8.3 Cyclic codes 

A famous class of linear codes are the cyclic n-bit codes with the property 
that if the code contains a word 

w = (a(O), ... ,a(n -1» 

it also contains the cyclically shifted word Sw defined by 

w -+ Sw = (a(n - 1), a(O), ... , a(n - 2». 

R. Prove that the dual code of a cyclic code is cyclic. (Hint. If (u, v) is 
the interior product introduced above, prove that (Su, v) = (u, S-lv).) 

Cyclic codes turn out to have nice properties when expressed in polyno­
mial form. For this, let every word w = (w(O), ... , w( n - 1» of given length 
n correspond to a polynomial 

wet) = w(O) + w(l)t + ... + wen - l)tn - 1 

in the quotient ring Tn = GF(2)[t]/«tn - 1», obtained by adding and 
multiplying polynomials under the rule that tn = 1. In particular, we can 
restrict ourselves to polynomials of degree < n. Using our polynomial nota­
tion, we have (Sw)(t) == tw(t). Iterations of this formula and the linearity 
prove that the code is cyclic if and only if the corresponding polynomials 
constitute an ideal I in Tn. If get) is a non-zero polynomial oflowest degree 
in I (and hence unique since its coefficients are binary digits), the division 
algorithm for polynomials shows that I consists of all polynomial multiples 
of g(t).Then tn - 1 = h(t)g(t) + ret) where deg ret) < deg g(t)and this is 
only posssible when ret) = 0, i.e. get) divides tn -1. Hence we have proved 
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LEMMA. Every cyclic (n, k) code in polynomial form consists of all mul­
tiples mod tn - 1 of a unique polynomial g(t) of degree n - k dividing 
tn -1. 

Note. The polynomial g(t) is said to generate the code. 

Example 
The Hamming (7,4) code has the generating polynomial 1 + t + t 3 which 

is irreducible in Z2[t]. Its zeros are u, u2, u4 where u generates GF(8). This 
code has the separation 3 and hence corrects one error. To see this, suppose 
that two code word polynomials differ in at most two places. Then their 
difference w(t) is a polynomial with at most two terms so that w(t) = tm 

or w(t) = tm + tn where 0 ~ m < n < 7. Since w(u) = 0, the first case is 
impossible and, with k = n - m, the second case gives 1 + uk = 0 which is 
imposssible since the order of u is 7. 

The previous lemma reduces some basic properties of cyclic codes to 
simple algebraic exercises. 

R. Let C1 and C2 be binary cyclic codes of length n with generating 
polynomials gl(t) and g2(t). Prove that C1 contains C2 if and only if g2(t) 
divides gl(t). 

R. Prove that a binary cyclic code C with generating polynomial g(t) 
has no word of even weight if and only if t + 1 divides g(t). (Hint. Prove 
that a word has even length if and only if the corresponding polynomial is 
divisible by t + 1.) 

R. Prove that a binary cyclic code possessing at least one word of odd 
length contains the word whose letters are all ones. (Hint. Prove that there 
is a polynomial f(t) such that 1 - tn = (t - l)f(t)g(t) and that f(t)g(t) 
corresponds to the desired word.) 

R. Prove that the interior product of two words u and v of the same 
length is the constant term of the product u(l/t)v(t). 

R. Let g(t) generate a cyclic (n, k) code C and let h(t) be the cofactor of 
g(t) in 1 - tn. Then h(t) = h(O) + h(l)t + ... + h(k)tk has degree k. Let 

h*(t) = tkh(l/t) = h(k) + h(k -1)t + ... + h(O)tk 

be the polynomial reciprocal to h(t). Prove that h*(t) generates the dual 
code of C. (Hint. Prove that all constant terms of the products 

r6h*(I/tW g(t) 

vanish when 0 ~ s < n - k and 0 ~ t < k.) 
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Encoding and decoding of cyclic codes 

The encoding of a cyclic (n, k) code can use an n-bit shift register. In 
fact, the generating polynomial g(t) gives a sequence 

9 = (g(O), ... , g(n - k - 1),0, ... ,0) 

and the polynomial ti g(t) corresponds to the sequence Si 9 which is the 
sequence 9 shifted j steps to the right. If the message is represented by 
the polynomial m(t) = Em(j)ti of degree ~ k, the encoded sequence is 
E m(j)Si 9 corresponding to the polynomial w(t) = g(t)m(t). Let h(t) be 
the cofactor of g(t) in 1-tn. Decoding is then performed by computing the 
product h(t)w(t) modulo I-tn. In fact, h(t)w(t) == m(t). Checking is done 
by verifying that w is orthogonal to all shifts of the word corresponding to 
the reciprocal polynomial of h(t). 

Idempotent generators and quadratic residue codes 

Let C be a cyclic n-bit code with generator polynomial g(t) and define 
h(t) by g(t)h(t) = tn -1. If n is odd, the derivative ofthe right side vanishes 
only when t = 0 and hence its zeros are separate. It follows that g(t) and 
h(t) are coprime and hence there are polynomials a(t) and b(t) such that 
1 = a(t)g(t) + b(t)h(t). Here e(t) = a(t)g(t) is in the ideal generated by 
g(t) and multiplication by g(t) shows that g(t) == a(t)g2(t) so that g(t) is 
also in the ideal generated by e(t). Further, e(t) == e2(t) so that e(t) is 
also idempotent. We have proved that cyclic n-bit codes have idempotent 
generators when n is odd. 

Idempotent generators are useful in the construction of quadratic residue 
codes. They are cyclic but they are also invariant under certain additional 
shifts. They are p-bit codes where p is a prime. If 

a = (a(O), ... ,a(p-l» 

is in the code, and t is a quadratic residue mod p, it is required that also 
the sequence (b(O), . .. , b(n - 1» where b(j) = a(k) with k == tj mod pis 
also in the code. We shall present the two simplest codes of this kind. 

Let p be a prime and let Q and N be the quadratic residues mod p and 
the quadratic non-residues respectively. Assume further that p2 == 1 mod 
8 which means, in particular, that 2 is a quadratic residue mod p. The 
polynomials 

Q(t) = Eti , N(t) = Eti 

for j in Q and N respectively, are then idempotents modulo tP - 1 for the 
map j -+ 2j is a permutation both of Q and of N. Let (Q) and (N) be the 
corresponding codes generated by Q(t) and N(t). We shall see that they 
have interesting properties. 
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THEOREM. When p == -1(8), (Q) and (N) have the dimension (p - 1)/2 
and a common separation d for which d2 > p. 

PROOF: By hypothesis, (p - 1)/2 is odd and hence, by an earlier exer­
cise of this section, the unit polynomial H(t) = E~-l tTc is an idempotent 
generating a code (H) belonging to both (Q) and (N). This means that 
H(t) == C(t)Q(t) for some C(t) so that H(t)Q(t) == Q(t) and the analogous 
formula for N(t). Combining this with H(t) = 1 + Q(t) + N(t) shows that 
H(t) == Q(t)N(t), i.e. (H) = (Q) n (N). Note that ti H(t) == H(t) for alli 
so that f(t)H(t) == H(t) for all polynomials f(t) which means that H(t) is 
the only element in (H). 

Next consider the additive automorphism of Zp induced by a change of 
sign, j -+ -j. It induces a multiplicative bijection S : ti -+ ri of the 
powers of t modulo tP - 1, which extends to a ring morphism TP -+ TP 
where P is the ring Zp [t] modulo the ideal generated by tP - 1. Since 
p == -1 mod 4, -1 is not a quadratic residue and this means that j -+ - j 
sends quadratic residues into non-residues and conversely. Hence S sends Q 
into N and vice versa. Now dim((Q)n(N)) = 1 and dim(Q) = dim(N) = p 
for any polynomial f(t) satisfies 

f(t) == f(t)(H(t) + Q(t) + N(t)) 

where, inside the parenthesis, H(t) == Q(t)N(t), so that (Q) + (N) is all of 
P. Since (Q) and (N) overlap in just one dimension, p = 2dim(Q) -1 so 
that dim(Q) = dim(N) = (p - 1)/2. 

To prove the last part of the theorem, note that the separations of (Q) 
and (N) are the same. This follows since S permutes the two. Let d be 
their common separation and let f(t) and g(t) be members of (Q) and (N) 
of weight d. Then f(t)g(t) belongs to (Q) n (N) and hence is == H(t) so 
that the weight of f(t)g(t) is at least p. Since it is obvious that this same 
weight is at most d2 , we have proved that d2 ~ p. Since equality cannot 
hold, this finishes the proof of the theorem. 

8.4 The BCH codes and the Reed-Solomon codes 

The proof given above that the Hamming (7,4) code has separation 3 
extends to certain other cyclic codes, the BCH codes, after their inventors 
Bose, Chaudhauri and Hoquenghem. The following lemma is used. 

LEMMA. Let F be a finite field and let u be a primitive nth root of unity. If 
a polynomial of degree ~ n with coefficients in F vanishes for d successive 
powers of u, it has at least d + 1 non-vanishing coefficients. 

PROOF: Let f(t) = Ea(k)tTc with k running over d separate integers 
r(O), ... , r(d - 1). Suppose that it vanishes for d successive powers of 
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u, u', U,+l, ... ,U,+d-l. Put V(p) = ur(P) and b(p) = a(r(p»v(p)' with 
p = 0, ... , d - 1. Then the equations I(u,+q) = 0 for q = 1, ... , d - 1 give 
us a system of equations as follows 

for p, q = 0, ... d - 1. Since u is a primitive nth root of unity, the algebraic 
numbers v(O), . .. ,v(d - 1) are all different so that, by the properties of the 
van der Monde determinant, (see the next exercise), all coefficients b(p) 
must vanish. This proves the lemma. 

R. Prove van der Monde's formula 

det(v(j)k)j,k=O, ... ,n_l = II(v(j) - v(k». 
j<k 

(Hint. Subtract suitable multiples of the first row (where j = 0) from the 
others to get zeros in the first column except at the top. Take out the 
factors v(k) - v(O) for k = 1, ... ,n - 1 and contemplate the result.) 

Application 

Consider binary codes and let u be a primitive element of GF(2n). Also, 
let I( u, t) denote the unique irreducible polynomial which has a zero u. 
Then the polynomial 

I(t) = LCM(I( u, t), I( u2 , t), ... ,I( u2k , t» 

where 2k < 2n vanishes for all powers of u between u and u2k and hence 
serves as the generating polynomial for a cyclic code with separation 2k + 1, 
which hence corrects k errors. The check length is the degree of I(t). The 
word length must of course exceed that number. 

R. Prove that the degree of I(t) is at most 2k. (Hint. If I(v) = 0 then 
I( v2) = 0 so the problem amounts to proving that at most k polynomials 
are needed in the product. Use induction.) 

Examples 
k = 1, u = 1 gives I(t) = 1 so that we get the parity check code. The 

case k = 2, n = 3 is realized by I(t) = t3 + t + 1 which gives the Hamming 
(7,4) code. In fact, I(t) is irreducible and if u is a zero so is u2 and they 
are separate. More examples are available in Macwilliams-Sloane (1977). 



8.5 Restrictions 137 

Reed-Solomon codes 

So far most of our code words have been written with binary letters. 
They can be replaced by the elements of a finite field, for instance n-tuples 
ofzeros and ones representing the elements ofthe field F = GF(2n). With 
this remark in mind, let u be a generator of the cyclic group F\O and let 
/(t) be the polynomial 

where 2j < 2n. Considered as a polynomial with coefficients in F, it has 
2j zeros which are consecutive powers of one element. Hence, by the argu­
ments above used in the construction of BCH codes, /(t) is the generating 
polynomial of a code with letters in F which corrects j errors. If we write 
the letters as binary n-tuples, and consider binary errors, we have a code 
which corrects a burst of consecutive binary errors as long as the burst 
does not cover more that j letters of F. Hence the maximal length of a 
correctable burst is n(j - 1) + 1. 

Example 
When n = 8, j = 5, the code corrects 5 errors when written in terms of 

F. Hence the code corrects bursts of 33 binary errors. 

8.5 Restrictions for error-correcting codes 

When C is a (n, k, d) code let R = kin be its rate and 6 = din be its 
relative separation. The Singleton bound (see the end of section 8.2), says 
that R + 6 :5 1 - lin. There are some other formulas of the same kind. 
Two of them use a function 

k 

F(n, k,q) = L (~) (q _l)i. 
i=O % 

1) Sphere-packing bound. Let C be a code of length n using q letters and 
define the Hamming distance beween two words as the number of places 
where they differ. Then a sphere of radius r around a given word w contains 

V(r) = F(n,r,q) 

words (and not only code words). In fact, the ith term of the sum F(n, r, q) 
is the precise number of words which differ from w in i places. Now, if the 
code corrects t errors, then the spheres of radius t around all qk code words 
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cover at most all qn possible words and this gives the Hamming inequality 
(1950) or sphere-packing bound 

Taking the q-Iogarithm of both sides gives the following estimate of the rate 
when t is given 

R ~ 1 - n-1log V(t). 

This is a numerical version of the fact that the rate decreases when t in­
creases and the word length is fixed. 

2) Varshamov-Gilbert bound 
R. Let C be a linear (n, k) block code with letters in a finite field F, 

let C* be the dual code consisting of all n-vectors t = (t(I), ... , t(n)) with 
coefficients in F wich are orthogonal to C in the sense that 

n 

I: w(k)t(k) = 0 
k=l 

for all n-vectors w = (w(I), ... , w(n)) corresponding to words in C. By the 
theory of abstract linear algebra, C* has a basis B which we can think of 
as a (n - k) x n matrix M, called the check matrix of C. Prove that C 
consists of all n-vectors orthogonal to the elements of B and that C has 
the minimal weight d if and only if any d - 1 columns of M are linearly 
independent. 

R. Prove that there are F(n, i, q) - 1 non-zero linear combinations (with 
coefficients in a field with q elements) of at most i out of n vectors. 

The announced estimate, due to Gilbert and Varshamov, says that as 
long as 

F(n -I,d - 2,q) < qn-k, 

it is possible to construct a linear (n, k) code with coefficients in GF(q) 
and minimal weight at least d. The proof relies on the preceding exercises. 
By the first exercise, it suffices to construct appropriate check matrices. 
Suppose that we have already constructed a (n - 1, k - 1, d - 1) code with 
the desired properties in form of a check matrix M of the type (n-k) x (n-l) 
where any d - 1 columns are linearly are independent. We shall try to add 
another column to M. We then have to avoid F(n-l, d- 2, q) -1 non-zero 
linear combinations of the already constructed columns and add another 
one if we can find one. Now, since n ~ k, the total number of non-zero 
columns available in the extended check matrix is qn-k - 1. Hence the 
desired result follows by induction. 
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Stated in another way, our bound says that 

R ~ 1- n-llogF(n - I,d - 2,q). 

3) Plotkin bound. For binary (n, k, d) codes where d < n/2, the rate is 
extremely limited. This follows from the Plotkin bound 

2k :S 2d/(2d - n). 

To prove this, consider the sum S of the distances between all pairs of 
non-identical code words. Since all these distances are at least d, S is at 
least dK(K - 1) where K = 2k. If we write the code words as as vectors 
(u(l), ... , u(n)), and arrange them into a matrix M, S equals 

L Ld(u(i), v(i)). 
utI! i 

Summing over i fixed gives the result L = 2x(i)(k - x(i)) where x(i) is the 
number of zeros of M in the ith column. Since L is at most K2/2, and 
since there are n columns we get 

2dK(K - 1) :S K 2n 

which is the desired result. 

Asymptotic bounds 

The origin of coding theory was Shannon's theorem about transmission 
in a noisy binary channel. He proved that if the probability of transmis­
sion error per one bit signal is p, then there are (n, k) codes with rates as 
close to 1 - H(p) as one wants which, when n is sufficiently large, permit 
a transmission with arbitrarily small error probability. Here H(p) is the 
entropy function 

1 1 
H(p) = plog - + (1 - p) log -1-' 

p -p 

log being log2. The entropy vanishes when p = 0,1 and has a maximum 1 
when p = 1/2. In the theory of error-correcting codes, there is no complete 
analogue of this result, but the entropy function appears in the asymptotic 
forms of the bounds above when q = 2. Estimating the binomial coefficients 
by Stirling's formula, one arrives at the following asymptotic bounds for R 
as a function of 0 = din, 
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R = 0 when 6 ~ 1/2, (Plotkin) 

R::; 1 - H(6/2), (sphere packing). 

The asymptotic Varshamov-Gilbert bound asserts the existence of arbi­
trarily long codes for which 

R ~ 1 - H(6) when 6::; 1/2. 

There are further necessary conditions which limit the pair (R, 6) to a 
crescent-shaped region sketched in the figure below. A good family of codes 
is currently defined as one containing arbitrarily long codes for which the 
rate exceeds the Varshamov-Gilbert bound. One such family is the Goppa 
codes, invented by Goppa in 1970 and further developed by the use of 
algebraic geometry over a finite field (see Lachud 1985). 

1 

R 

o 0.5 

Figure. The asymptotic region for good codes (shaded) lies above the 
asymptotic Varshamov-Gilbert bound (VG) and below certain other bounds 
including the sphere-packing bould (SPB). 
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references. A more elementary book dealing also with certain combinatory 
aspects not covered here is Vera Pless 1982. 



CHAPTER 9 

Groups 

One of the uses of group theory is to classify symmetries. It has therefore 
been argued, although with more enthusiasm than logic, that group theory 
is as old as the symmetric decorative patterns appearing in various cultures, 
for instance islam. 

The concept of a group as we know it was known to Lagrange, Abel and 
Galois, but it did not gain general importance until Camille Jordan wrote 
a book (1870) explaining the until then obscure writings of Galois. Groups 
became important in physics with the arrival of quantum physics and the 
necessity to study the symmetries of atomic orbitals. Nowadays, group 
theory is part of a general education in mathematics. This chapter ends 
with a short section on the applications of group theory to combinatorics. 

9.1 GENERAL THEORY 

The object of the first part of this chapter is to review the essentials ofthe 
general theory of groups. It has many features and part of the terminology 
in common with the theory of modules in the form of abelian groups. 

9.1.1 Groups and subgroups 

A group is a non-empty set G = {a, b, c, ... } with multiplication and 
division. In other words, there is a function (a,b) -+ ab from G x G to G 
called the product (or composition) such that 

(i) (ab)c = a(bc) for all a,b,c in G (associativity), 
(ii) G has a unit (identity element) e with the property that ae = ea = a 

for all a in G, 
(iii) every a in G has an inverse, i.e. an element b in G such that ba = 

ab = e. 
Note. The inverse of a is written a-I. 

If the multiplication is commutative, ab = ba for all a, b in G, the group is 
said to be commutative or abelian. Apart from the multiplicative notation, 
abelian groups are the same as the Z-modules of Chapter 2. 

R. Show that there is only one unit element and that no element of a 
group has two different inverses. 
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Examples 
We have already seen many groups, e.g. all modules. The set of non-zero 

elements of a field or a division ring form multiplicative groups and also 
the positive elements of Q and R. 

R. Show that the complex numbers of absolute value 1 form a commuta­
tive group under multiplication. 

R. Show that the set of all bijective affine functions in one variable, 
i.e. real functions / of the form /(z) = az + b, a i= 0, is a group under 
composition of functions (the affine group in one variable). Write down the 
inverse of / and the unit element. Is the group abelian? 

Show that this group is also represented by pairs (a, b) of real numbers, 
a i= 0, with the law of composition 

(a,b) . (c, d) = (ac, ad + b). 

A subgroup of a group G is a non-empty subset H of G which is itself a 
group under the multiplication in G. 

R. Show that a non-empty subset H of a group G is a subgroup if and 
only if 

a,b E H::} ab-1 E H. 

R. Show that the intersection of two subgroups of a group is again a 
subgroup. 

R. Show that the affine functions with i) a > 0, ii) a = 1 (the transla­
tions), iii) b = ° (the dilations) are subgroups of the affine group in one 
variable. Use this to show that the union of two subgroups need not be a 
subgroup. 

Any group G has some natural subgroups, e.g. its center cent(G) con­
sisting of all elements a of G which commute with all elements b, ab = ba. 
For every a in G there is also its centralizer C(a) consisting of all elements 
b which commute with a. While the center is always abelian, there is no 
reason why centralizers should be. 

R. Verify that the center and all centralizers are subgroups and that the 
center is the intersection of all centralizers. Show that the center of the 
affine group above consists of the unit element alone. 

R. Let G be the set of all invertible n x n matrices with entries in a 
field. Show that G is a group (under matrix multiplication). Show that the 
center of G consists of all matrices of the form ).[, where ~ is a scalar and 
I is the unit matrix.(Hint. Use triangular matrices.) 
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Genera.tors 

R. Let ab ... c be a product of elements of a group G. Show that its 
inverse is c-1 ••• b- 1a-1 • 

This exercise shows that every non-empty subset M of a group G gener­
ates a subgroup, namely the set of all products ala2 ... an where ai or ail 
is in M. 

Cyclic groups 

Any element a of a group G generates what is called a cyclic subgroup, 
namely the set 

{anjneZ} 

of all powers, positive or negative or zero, of a, the power with exponent 
zero. being the unit element. 

R. Show that a cyclic group is either infinite in which case all the powers 
an are different, or that there is an integer m > 0 such that the group has 
m elements, namely all powers of a with exponent ~ 0 and < m. 

R. Roots of unity. The nth roots of unity, i.e. the complex numbers z 
whose nth power is 1, form a natural abelian group of order n (i.e. it has n 
elements). Show that it is cyclic and that the kth power of a generator is a 
generator if and only if Ie and n are coprime. Generators of this group are 
also called primitive roots of unity (see also Chapter 7). Show that their 
number is 'P(n), where 'P is Euler's function. 

Direct product 

Corresponding to the direct sum of modules, we have the direct product 
G x H of two groups. Its elements are pairs (a,b), where a e G and b e H. 
The product is defined by 

(ai, b1)(a2, b2) = (ala2, b1b2). 

R. Prove that the direct product of two groups is a group. Write out the 
unit and inverses. 

Exercises 
1. Show that all functions from the complex plane of the form /(z) = 

az + b where an = 1 and b is an arbitrary complex number form a group. 
Determine its center. Determine the centralizer of the element g(z) = z+b, 
b# O. 

2. Let G be a group generated by four elements a, b, c, d for which ab = 
c, bc = d, cd = a, da = b. Show that G is cyclic of order 5. 
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9.1.2 Groups of bijections and normal subgroups 

Let X = {Xl, X2,"'} be a set. All bijections 1 : X - X from X to itself 
constitute a group under composition: 

(/g)(x) = I(g(x». 

The identity is the function X - X for all X and the inverse of 1 is the 
function I(x) - x. 

If X has a finite number of elements Xl, ••• , xn a bijection is just a 
permutation of X: the elements 

are the elements xl!' .. ,Xn in a certain order. 
Note. The group of all bijections of a set is also called the permutation 

group of the set regardless of how many elements the set has. Subgroups 
of such groups are universal examples of groups. In fact, we shall see later 
that every group is essentially such a subgroup. 

R. Show that the following conditions define subgroups in every group of 
bijections X - X (and not only the group of all bijections): 

1) all 1 with I(x) = X for a fixed X in X (the stabilizer of x), 
2) all 1 with I(Y) = Y where Y is a fixed subset of X. 

Examples 
In the affine group in two variables, i.e. the group of affine functions in 

two real variables X and y, those of the form 

I(x, y) = (ax + by, cx + dy), 

with real a, b, c, d and ac - bd i= 0, the functions that map the circle 

x 2 + y2 = 1 

onto itself constitute a group, the group of rotations about the origin and 
reflections in lines through the origin. Analytically, such functions can be 
written as 

I(x, y) = ({(cos Ox - sin Oy),sin Ox + cos Oy), 

where { = 1 means a rotation and { = -1 a reflection. 

Exercise 
Verify explicitly that the elements of the affine group in one variable 

whose parameters a, b satisfy an equation at + b = 0 with t a fixed real 
number form a subgroup. 
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Normal subgroups 

A subgroup H of a group G is said to be normal if 

a E H, bEG => bab-1 E H 

or, what is the same thing, bHb-1 = H or bH = Hb for all b in G. All 
subgroups of an abelian group are obviously normal, but in the general case 
normal subgroups are rather special. 

R. Show that the group of translations is a normal subgroup of the affine 
group in one variable but that the subgroup of dilations is not normal. 
Generalize to the affine group in two variables. 

R. Let G be that group of invertible n x n matrices with entries in a 
field. Show that the subset of all matrices with determinant 1 is a normal 
subgroup, but that the subgroup of matrices with zeros in the first row and 
the first column except that the top left element is 1 (or not zero) is not 
normal when n > 1. 

Groups of linear bijections (linear transformations) occur in linear alge­
bra. 

R. Let M be a vector space of dimension n over a field k. Show that all 
bijective linear maps from M to itself form a group. This group is called 
the general linear group of dimension n over k, GL(n, k). The special cases 
k = Rand k = C are among the s~called classical groups. In general one 
thinks of the elements of these groups as invertible n x n matrices with 
entries in k. 

Exercises 
1. Let Hand K be normal subgroups of a group G and assume that H 

and K have only the unit in common. Show that the elements of Hand ]( 
commute. (Hint. Rewrite hk = kh as h-1k-1hk = e.) 

2. Which are the finite subgroups of the multiplicative group of the 
non-zero complex numbers? 

3. Suppose that the equation %2 = e in a group has precisely one solution 
% =F e. Show that % belongs to the center of the group. 

4. Let R be a non-commutative ring with a unit e and let U be the group 
of invertible elements of R. Let I be a two-sided ideal of R and V the set of 
elements % of U such that e - % is in I. Show that V is a normal subgroup 
ofU. 

9.1.3 Groups acting on sets 

As we have seen, there are plenty of groups consisting of bijections of a 
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set X onto itself. Such groups are also very frequent and occur in situations 
which can be formalized as follows. 

A group G = {a, b, ... } is said to act on a set X = {x, y, ... } if there is 
a mapping G x X - X written as (a,x) - a.x, such that e.x = x for all x 
in X, e being the unit of G, and a.(b.x) = (ab).x for all a, bin G and x in 
X. 

Note. We have written the 'product' a.x with a point to distinguish it 
from the product ab of G. When the context shows what product is meant, 
we shall sometimes leave out the point. 

R. Show that these conditions imply that the map x - a.x from X 
to itself is a bijection fa for all a in G, that fob = fa/& in the sense of 
composition and that fe is the identity map. (Hint. The value of fa at x 
is fa(x) = a.x.) 

When a group G acts on a set X, every element x of X gives rise to a 
subgroup of G, namely its stabilizer, stab(x), consisting of all elements a 
in G such that a.x = x. 

R. Show that the intersection of all stabilizers is a normal subgroup. It 
follows that the center of a group is a normal subgroup. 

R. Let H be a subgroup of a group G and define a product a.b with a in 
Hand b in G by 

(i) a.b = ab, (ii) a.b = ba- l , (iii) a.b = aba-l. 
Show that all of them define actions of H on G. 

Orbits 

Let the group G act on the set X. An orbit of G in X is a subset of X 
defined by 

G.x = {g.x;g E G} 

with a fixed element x of X. This set is also written as orb(x) and is called 
the orbit through x. 

R. Show that if x is in orb(y), then orb(x) = orb(y). 
R. Let G be the group of rotations of a plane about a point. Describe 

the orbits of G in the plane. Describe the orbits of the group generated 
by one plane translation. Let G be the group generated by the function 
f(x) = -x + b, b i:- 0 and real. Show that every orbit of G acting on the 
real line has precisely two elements and that two orbits which have a point 
in common are identical. 

Our last exercise illustrates the following simple theorem which is basic 
in group theory. 



9.1.3 Groups acting on sets 147 

THEOREM. When a group 0 acts on a set, the orbits form a partition of 
it, i.e. the set is the disjoint union of the orbits. 

PROOF: Every z in the set X lies in at least one orbit, namely orb(z). If 
an element z of X lies in the orbits orb(z) and orb(y), then by the exercise 
above, orb(z) = orb(y), since both are equal to orb(z). 

R. A group 0 acting on a set X is said to act transitively when X is the 
only orbit. Prove that the affine group acts transitively on the real line. 

Conjugacy classes 

Let 0 be a group and define an action of 0 on itself by 

a.z = aza- 1• 

Its orbits are called conjugacy classes and two elements in the same orbit 
are said to be conjugate. In particular, 0 is the disjoint union of conju­
gacy classes. Conjugacy classes are only interesting for non-abelian groups, 
because every element of an abelian group is itself a conjugacy class. 

R. Show that a conjugacy class has only one element if and only if this 
element belongs to the center of the group. Show that the stabilizer of an 
element under the action above is its centralizer. 

Cosets 

A subgroup H of a group 0 acts on the bigger group by the formula 

a.z = az 

with a in Hand z in O. The orbits of this action are important subsets of 
o of the form 

Hz = {az;a E H}, 

called right cosets of H in O. Left cosets of H are the subsets zH of 0, 
orbits under the left action of H on O. 

R. If H = {e}, every element of 0 is a coset. Show that if Hand [( 
are subgroups of 0 and [( is contained in H, then the orbits under Hare 
partitioned by the orbits under K. 

The theorem above has the following important consequence. 

THEOREM. Any group is the disjoint union of the left (or the right) cosets 
of any subgroup. 

A subset M of 0 is called a set of representatives for a given subgroup 
when it contains precisely one element from every coset of the subgroup, 
left or right as the case may be. 
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Group morphisms and quotient groups 

The theorems on module morphisms and quotient modules in the theory 
of modules have counterparts for groups. First we state the definitions. 

A mapping f : G - H from one group to another is said to be a group 
morphism or a homomorphism if 

f(ab) = f(a)f(b) 

for all a, b is G. (Note that the multiplication on the right is that of the 
group H.) An isomorphism is a bijective homomorphism. 

Example 
The map x - eZ: is an isomorphism from R with addition to the positive 

reals with multiplication. 

R. Show that two cyclic groups with the same number of elements, finite 
or infinite, are isomorphic. It follows that a cyclic group of finite order n is 
isomorphic to Z/nZ and that one of infinite order is isomorphic to Z with 
addition. 

R. Let f : G - H be a group morphism. Show that the image of f, 
imf = f(G) is a subgroup of H. Define the kernel of f, kerf, as the set of 
elements of G which are mapped by f into the unit of H. Show that kerf 
is a normal subgroup of G. 

R. When !(x) = ax + b is an affine bijection and g(x) = ax, show that 
! - 9 is a homomorphism whose kernel is the group of translations of R. 

R. Show that a group morphism! : G - H is injective if and only if 
ker! consists only of the unit of H. 

Quotien t groups 

If H is a normal subgroup of a group G, then by definition, aH = H a 
for all a in G. In other words, a subgroup is normal if and only if every left 
coset is also a right coset. 

R. Verify this, i.e. show that aH = Hb => aH = H a. 

When M and N are subsets of G define their product M N as the set of 
elements ab of G with a in M and b in N. When H is a normal subgroup 
this gives 

HaHb = H 2ab = Hab 

(why is H2 = H?). Hence the product of two cosets is another coset. It is 
clear that HaH = Ha and HaHa- 1 = H. 

R. Show that this multiplication of cosets is associative. 
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All this shows that, if H is a normal sugroup of a group G, its cosets 
form a group under multiplication. This group is called the quotient group 
of G modulo H and is denoted by G / H precisely as for modules and rings. 

Note. One can say that 'subgroup' corresponds to 'subring' in ring theory 
and that 'normal subgroup' corresponds to 'ideal'. 

R. Show that the map a - aH from G to G / H is a group morphism 
which is an isomorphism if and only if H reduces to the unit element. 

R. What is the quotient group when G is the group of affine functions in 
two variables and H the subgroup of translations? 

R. Show that, for the same group, the subgroup of elements leaving the 
origin fixed is not a normal subgroup. 

The following theorem is analogous to the module morphism theorem 
and it is proved in the same way. 

GROUP MORPHISM THEOREM. Let f: G - H be a group morphism. Then 
G/kerf is isomorphic to imf. 

PROOF: Define a new function j: G/kerf - imf by putting j(zkerf) = 
f(z). Then j is well defined, for if zkerf = ykerf, then y-lz is in kerf, so 
that f(y-lz) is the unit of H and hence f(z) = f(y). It is injective, for if 
j{zkerf) = 1, then z is in kerf and so zkerf = kerf. Finally, the map j is 
clearly surjective. 

R. Show that G is isomorphic to imf if f is injective. 

The following two terminologically complicated exercises are optional. 

R. Let H and I( be two normal subgroups of a group G and suppose 
that I( is contained in H. Prove that (G / ]()/(H /1() is isomorphic to 
G/H. (Hint. Consider the map zI( - zH from G/I( to G/H and use the 
morphism theorem.) The result of this exercise is called the second group 
morphism theorem. 

R. Let H be a normal subgroup of a group G and I( another subgroup, 
not necessarily normal. Show that the product HI( is a group and that 
HK/K is isomorphic to H/H nK (the third group morphism theorem). 

Exercises 
1. Show that z - e2lfi~ is a group morphism from the real numbers R to 

the set T of complex numbers of absolute value 1 and that T is isomorphic 
to R/Z. 

2. Let S be a non-trivial subgroup of a group G. Show that the comple­
ment of S generates G. 
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3. Let G be a group where every element a satisfies an equation an = e for 
some integer n. Prove that every homomorphism I from G to the complex 
numbers has the property that I/(a)1 = 1 for all a. 

4. Let C be the complex plane completed by a point 00 at infinity. Prove 
that the functions 

I(z) = az + b, 
cz+d 

where a, b, c, d are complex numbers such that ad - bc = 1, form a subgroup 
of all bijections of C (the Moebius group). Write down the inverse of I. 

5. The commutator subgroup G' of a group G is the subgroup generated 
by all elements of the form ghg- 1 h -1. Show that G' is a normal subgroup 
and that the quotient group G/G' is abelian. Also show that if H is another 
normal subgroup of G such that G / H is abelian, then G' ~ H. 

9.2 FINITE GROUPS 

In this section all groups are assumed to be finite, i.e. to have a finite 
number of elements. 

9.2.1 Counting elements 

The number of elements of a set X is called its order and will be denoted 
by IXI. By the order of an element a of a group G we mean the order of the 
cyclic subgroup generated by a. This number n is also called the period, 
since all elements of the sequence of powers of a appear again after n steps. 
The number of cosets of a subgroup H of a group G is called the index of 
H in G and denoted by [G: H]. 

R. Prove that a subgroup H whose index is 2 is normal. (Hint. G is the 
disjoint union of the cosets of H.) 

The basic fact about finite groups is 

THEOREM. All cosets of a subgroup H of a finite group G ha.ve the same 
number of elements as H. 

PROOF: If two members ab and ac of a coset aH are equal, band c must 
be equal. 

Since the cosets form a partition of the big group we have the following 
classical result which shows that the theory of finite groups and number 
theory are connected. 

COROLLARY (LAGRANGE 1775). The order ofasubgroup divides the order 
of the group. Their quotient is the index of the subgroup. 
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R. Let a be an element of order n of a group G. Show that n divides IGI. 
Hence alGI = e. 

Note. When G is the group of invertible elements of the ring Z/nZ, this 
gives the Euler-Fermat theorem. 

R. Let p be a prime. Determine all groups of order p. 

The following important theorem is a variant of the corollary. 

THEOREM. Suppose that a finite group G acts on a set X. Then 

IGI = Istab(x)llorb(x)1 

for all x in X. 

PROOF: It suffices to show that the number of cosets of stab( x) is the same 
as the order of orb(x). Consider the map 

astab(x) -+ a.x. 

of cosets of stab(x) into orb(x). This is really a map, since if astab(x) = 
bstab(x), then b-1a is in stab(x), so that b-1a.x = x and a.x = b.x. Since 
a.x = x if and only if a is in stab(x), the map is injective. Surjectivity is 
evident and the theorem is proved. 

The class formula 

When x is an element of a group G, let CI(x) be the conjugacy class of 
x, i.e. the orbit of x under the action 

(conjugation) of the group on itself. The stabilizer of x under this action 
is the centralizer C( x) of x. By the theorem above, 

IGI 
ICI(x)1 = IC(x)I' 

If we combine this with the observation that every element of the center 
cent( G) of G is its own conjugacy class, we arrive at the class formula, 
which is very important in the analysis of the structure of finite groups. 

THE CLASS FORMULA. For every finite group, 

" IGI IGI = Icent(G)1 + L.J IC(x)1 
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where the sum runs over a set of representatives z of the conjugacy classes 
with more than one element. 

PROOF: The formula merely expresses the fact that G is the disjoint union 
of the conj ugacy classes. 

9.2.2 Symmetry groups and the dihedral groups 

Euclidean geometry, treated in Euclid's Elements (500 B.C.) and taught 
to generations of schoolchildren for at least four centuries, is the study of 
how objects in Euclidean space behave under congruence transformations. 
Analytically, Euclidean n-space is real n-space where the distance between 
two points x and y is defined by 

n 

Ix - yl = (~)Xl: - yl:)2)!. 
l:=1 

A congruence transformation is an affine function x -+ I(z) in n variables 
leaving all distances invariant, Iz - yl = I/(z) - l(y)1 for all x and y. 
Necessary and sufficient for this is that the homogeneous part of 1 be given 
by an orthogonal matrix. 

The symmetry group of an object A in Euclidean space is the subgroup 
of all congruence transformations leaving A invariant in the sense that 
I(A) = A. Many symmetry groups have beeen studied, for instance those 
of the platonic regular solids, i.e. the tetrahedron, the cube (hexahedron), 
the octahedron, the dodecahedron, and the icosahedron with, respectively, 
four, six, eight, twelve, and twenty sides. In physics, crystal lattices are 
studied via their symmetry groups. 

Here we shall limit ourselves to the study of the symmetry group of the 
plane n-gon, called the dihedral group Dn because the n-gon is considered to 
be situated in Euclidean 3-space and hence to have two sides. For simplicity, 
our treatment relies on ordinary geometrical intuition. 

Label the vertices 0, 1, ... ,n - 1 so that all vertices i, i + 1 are connected 
by a side. Let a be a rotation by 21r/n around the center of the n-gon. 
Then an = e, where e is the identity, and a(k) = k+ 1 if 0 :$ k <n-l and 
a(n - 1) = O. The orbit orb(O) of 0 under the action of the cyclic group 
generated by a consists of all the vertices. 

Let b be a reflection in the symmetry axis through 0, or, which is the 
same thing, a half-way turn around this axis in 3-space. Then b2 = e and 

al:ba-l:(j) = al:b(j - k) = al:(n - j + k) = n - j + 2k, 

so that al:ba-l: is a reflection in the symmetry axis through k. Hence a and 
b generate Dn. Since bab(j) = ba(n - j) = b(n - j + 1) = j - 1 = a- 1(j), 
we have bab = a- 1• 
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A regular octagon 

R. Show that the relation bab = a- 1 implies that every element of Dn 
can be written akbm , where 0 ~ k < n, 0 ~ m < 2. Hence Dn has order 
2n. 

Note. The 2-gon should be considered to have two sides. If it is considered 
to be just an interval, its symmetry group, isomorphic to the cyclic group 
C2 of order 2, is generated by a rotation half turn or, which gives the same 
result, a reflection in the midpoint. 

Exercises 
1. Let Hand K be subgroups of a group G of orders m and n respectively 

and assume that H n K has order k. Show that the set H K has mnjk 
elements. 

2. Show that there is an even number of elements of a group equal to 
their inverses when the group has even order. (Hint. Group the elements 
in pairs (x, x- 1).) 

3. Let G be a finite group. Show that the following conditions are 
equivalent: 

(i) IGI is odd 
(ii) every element of G has odd order 
(iii) the equation x 2 = a has a solution for all a in G 
(iv) the equation x 2 = a has a unique solution for all a in G 
(v) the equation x2 = e has the unique solution x = e. 
(Hint. Prove (i) ~ (ii) ~ (iii) ~ (iv) ~ (v) ~ (i).) 
4. Let G be a finite group in which the equation xn = e has at most 

n solutions for every n. Show that G is cyclic. (Hint. Let C be a cyclic 
group of order IGI. Let f(k) and g(k) be the number of elements of G and 
C respectively of order k. Show that f(k) = g(k) by first showing that 
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f(k) ~ g(k) and then summing over all k.) 

9.2.3 The symmetric and alternating groups 

The group of permutations of n objects, e.g. the first n natural numbers, 
is an important group called the symmetric group Sn. 

R. Prove that ISnl = n!. (Hint. Use induction and the fact that one 
integer can move to n places by permutations.) 

R. Show that S3 is isomorphic to the symmetry group of an equilateral 
triangle. (Note that rotating the triangle around a symmetry axis is an 
operation in 3-space.) 

R. Why is the symmetry group of a square a proper subgroup of S4? 
R. Prove Cayley's theorem: every group of order n is isomorphic to a 

subgroup of Sn. (Hint. Show that a -+ fa, fa defined by fa(x) = ax with 
a and x in G, is an injective homomorphism from G to the group that 
permutates the elements of G.) 

To compute the product (Le. the composition) of two permutations of 
1, ... ,n, one writes down their graphs, 

( 1 ... n) (1 ... n) 
f(l) ... f(n) , g(l) ... g(n) 

and operates as follows: k is mapped to g(k) by 9 which is mapped to 
f(g(k» by f. 

Example 

(1 2 3 4) (1 2 3 4) 
f= 2314 ,g= 4321 

Here 1 -+ 4 -+ 4, 2 -+ 3 -+ 1, 3 -+ 2 -+ 3, 4 -+ 1 -+ 2. The graph of the 
product is 

( 1 2 3 4) 
fg = 4 1 3 2 . 

Cycles 

To get a convenient, compact notation for a permutation f of 1, ... , n, 
one writes down the set of orbits of the cyclic group generated by f. These 
orbits are called cycles. For example, if 

( 1 2 3 4 5 6 75) 
f= 3 6 4 1 7 2 
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the cycle from 1, (1, /(1), P(I), ... ) is (134), that from 2 is (26) and that 
from 7 is (57) and we get 

/ = (134)(26)(57) 

which means that /(1) = 3,/(3) = 4,/(4) = 1,/(2) = 6,/(6) = 2,/(5) = 
7, /(7) = 5. Cycles with only one element is sometimes not written out in 
this notation. Cycles with two elements are called transpositions. Note that 
if 9 = (134), h = (26), I = (57), then / = ghl, where the factors commute 
since they permute disjoint sets of integers. 

R. Compute /g when / is as above and 9 = (124). 

It is clear from the example above that every permutation is the product 
of the cycles it generates and that the cycles commute. 

R. Show that the permutation 

(g(k),g/(k),g/2(k), ... ) ... 

is equal to g/ g-l when 9 is another permutation. Show that every cycle 
and hence every permutation is a product of transpositions. 

The preceding exercise (see the last formula) shows that the conjugacy 
class of a permutation / is characterized by the orders or lengths of its 
cycles. These can be written down in the form of a cycle index 

where Ci denotes the number of cycles of length i of /. Note that the 
numbers Ci are restricted by the condition that L: iCi = n. 

Example 
The cycle indices of the permutations / = (124)(3567) of S8 and 9 = 

(12)(34)(567) of S7 are, respectively, 

(0,0,1,1,0,0,0,0) and (0,2,1,0,0,0,0). 

The cycle index of the identity of Sn is (n, 0, ... ,0). 

It is not difficult to write down an explicit formula for the number of 
elements of a conjugacy class with a given cycle index. 

LEMMA. The number of elements of the conjugacy class of Sn with cycle 
index (C1, ... ,cn ) is 

n! 
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PROOF: Imagine a set of parentheses where there are Ci places in i of them 
and the total number of places is n. There are n! ways of distributing n 
numbers in these places. But some of the resulting permutations give the 
same permutation I. A cyclic permutation within a cycle does not change 
1 nor does a permutation of the cycles of the same length. This explains 
the denominator in the formula above. 

Note. The denominator of the lemma is also the number of permutations 
9 for which glg-1 = 1 where 1 is a permutation with the given cycle 
index. In this way, the lemma is an example of the general fact that IGI = 
Istab(z)lIorb(z)1 when G is a group acting on a set where z is an element. 

R. Prove that the center of Sn consists of the unit element alone. This 
means that the class formula for Sn reads as follows 

, 1 L n! n.= + n ,. " 
Ci·'c, 

where the sum runs over all possible cycle indices =1= (n, 0, ... ,0). 

Examples 
The group S3 has three conjugacy classes with 1,3,2 elements respectively. 

They are represented by, in order, the unit element, (12) and (123). The 
corresponding cycle indices are (3,0,0), (1,1,0) and (0,0,1). The class 
formula reads simply 6 = 1 + 2 + 3. 

R. Verify the following list of conjugacy classes of 84 : 

Cycle index 
(4,0,0,0) 
(2,1,0,0) 
(1,0,1,0) 
(0,2,0,0) 
(0,0,0,1) 

Number of elements 
1 
6 
8 
3 
6 

The alternating group An 

Representative 
unit element 

(1)(2)(34) 
(1)(234) 
(12)(34) 
(1234) 

Consider a permutation 1(1), ... , I(n) of 1, ... , n and consider pairs j, k 
with j < k. When l(j) > I(k) we say that there is a reversal at j with k 
in the second place. The number of all reversals is called the index i(f) of 

I· 
Example 
The identity has no reversals. If 1 changes 1234 to 4321, there are three 

reversals at 1, two reversals at 2 and one reversal at 3, so that the index 
i(f) is 6. 
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LEMMA. If l(j) and 1(1e) change places, the index of I changes by an odd 
number. 

PROOF: We may assume that j < k. When l(j) and 1(1e) change places 
and i < j, the possible reversals at i can only change places, so that their 
number does not change. When i > k, the reversals at i are not affected 
at all. Hence we only have to consider the t = Ie - j - 1 places i between j 
and Ie. Suppose that there are p reversals at j with an i in the second place 
and q reversals at an i with k in the second place. Then there are t - P 
non-reversals at j with an i in the second place and t - q non-reversals at 
an i with Ie in the second place. Hence, when we interchange l(j) and 1(1e), 
the reversals and non-reversals change places so that the index changes by 

(t - p) - p + (t - q) - q, 

which is an even number, and by 1 or -1 coming from the change of order 
between l(j) and 1(1e). This proves the lemma. 

The sign of a permutation I, denoted by sgn/, is put to 1 when its index 
is even and -1 when its index is odd, in other words 

sgnl = (_I)i(J). 

The terms even and odd are also used to the permutation itself. As we 
have seen above the sign of any transposition is -l. 

LEMMA. The function sgn : Sn - {±1} is a homomorphism. 

Note. The set {±1} is regarded as the group with two elements. 

PROOF: Any permutation is a product of transpositions. By the lemma, 
the number of these transpositions is even when 1 in Sn is even and odd 
when 1 is odd. Suppose that I is a product of r transpositions and 9 a 
product of s transpositions. Then Ig is a product of r + s transpositions. 
Hence the lemma follows from the addition table for even and odd numbers 
and the corresponding table for 1 and -l. 

It follows from the lemma that all even permutations of the symmetric 
group Sn (Le. the kernel of sgn) form a group, the alternating group An. 

R. Show that the alternating group has index two in the symmetric group. 
R. Show that the alternating group in three variables is isomorphic to 

the group of rotations of an isosceles triangle. 

Solvable groups 

A group G is said to be solvable if it has a chain of subgroups 

G = Go;2 Gl ;2 ... ;2 Gn = {e}, 
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where each group is a normal subgroup of the preceding one and all quo­
tients 

are abelian. 

R. Show that A3 is generated by (123) and that S3 is solvable. 
R. Show that A4 has a normal subgroup H with elements 

e, (12)(34), (13)(24), (14)(23), 

(Klein's four group) and that this group is solvable. Hence S4 is solvable. 
R. Show that Klein's four group is isomorohic to the direct product of 

two cyclic groups of order 2. 

Remark. It can be shown that the groups An with n ~ 5 are simple, 
i.e. they have no normal subgroups except the group itself and {e}. Hence 
the corresponding symmetric groups are not solvable. A famous theorem in 
Galois theory then implies that general algebraic equations of degree ~ 4 
over the complex numbers can be solved by extraction of roots, but that 
those of degree> 4 cannot. This result, due to Abel (1824), was made part 
of a systematic theory by Galois (1830). 

Exercises 
1. Let G be a group of order 2m, m odd. Show that G has a normal 

subgroup of order m. (Hint. Let s(g) be that sign of the permutation 
x -+ gx of G. Show that 8(g) = -1 when 9 has order 2.) 

2. Show that the quotient of the permutation group of four objects by 
Klein's four group is isomorphic to the permutation group of three objects. 

3. What is the order of the permutation 

and what is its cycle index? 

9.2.4 Groups of low order 

Ever since the beginning of group theory, there have been efforts to de­
termine all non-isomorphic groups of a given order. Here we will do this 
for small orders (the general problem is very difficult). In the sequel en 
denotes the cyclic group of order n. 

R. Let G be a group such that g2 = e for all 9 in G. Show that G is 
abelian. (Hint. ghgh = e.) 
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R. Show that a group of order 4 is isomorphic to either C4 or C2 x C2, 
which in turn is isomorphic to Klein's four group. 

We are going to determine all non-abelian groups of order 6 and 8 (abelian 
groups were dealt with in Chapter 3). 

A group G of order 6 must contain an element a of order 3 (why?). The 
corresponding subgroup H has index 2; hence it is normal in G. Take a b in 
G such that bH is the complement of H in G. From bHbH = H it follows 
that 

The two last possibilities gives b the order 6, which is impossible if G is 
non-abelian. Hence b2 = e. Since bH = Hb we have 

In the first case, G is abelian. Hence we have the second case, i.e. 

ab = ba2• 

This together with a3 = e and b2 = e determines all products of the ele­
ments of Hand bH and hence of G. 

R. Show that a -+ (123), b -+ (12) gives an isomorphism of G and S3. 
R. Let G be a non-abelian group of order 8. Show that it has a normal 

subgroup H of order 4 generated by one element a. Choose a b such that bH 
is the complement of H. Show that b2 is e or a2 and that these possibilities 
define two different groups, one defined by the relations 

the other by 
a4 = e, a2 = b2 , aba = b. 

The last one, isomorphic to the group generated by the elements i,j, k of 
the quaternions, is called the quaternion group. 

R. Which one is isomorphic to the symmetry group of a square? 
R. Show that there are two non-isomorphic groups of order 10. (Hint. 

In a group of order 10, there is a normal cyclic subgroup H of order 5 
generated by an element a and a b such that bH is the complement of H. 
Show that b2 = e. Then show that the group is known when one knows bab 
(necessarily in H). Show that this gives two possibilities.) 

Remark. In the last two exercises we have not, strictly speaking, proved 
the existence of the various groups. At this point, the reader has to rely on 
the word of the authors. 
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Use of the class formula 

The class formula is extensively used in group theory. Below there are 
some examples and some important results. 

PROPOSITION. A group of order 15 is cyclic. 

PROOF: Let G have order 15. First we show that G is abelian. In fact, if 
not then the center of the group has 1,3 or 5 elements. Since the stability 
groups of elements outside the center have either 3 or 5 elements, the other 
terms of the class equation have either 15/3 = 5 or 15/5 = 3 elements. The 
stability group of an element in a conjugacy class with 3 elements has 5 
elements and must be cyclic. Similarly, the stability group of an element 
of a conjugacy class with 5 elements has order 3. 

Let us first assume that the center has just one element. The 15 = 
1 + 3 + 3 + 3 + 5 is the only way of getting 15 by adding 1 and a number of 
3's and 5's. Hence there are 3 conjugacy classes with 3 elements and one 
with 5 elements. All the elements of the last class and no others have order 
3. Hence, if an element x is in the that class so is its inverse and it follows 
that the class has an even number of elements, a contradiction. 

Next, assume that the center has 3 elements. Then 15 = 3+3+3+3+3 is 
the only way of getting 15 by adding 3's and 5's to 3. Hence all the elements 
outside the center have stability groups of order 5. But the center of order 
3 is a subgroup of all stability groups which again is a contradiction. 

Finally, assume that the center has order 5. Then 15 = 5 + 5 + 5 is 
the only way of getting 15 by adding 3's and 5's to 5. Hence all stability 
groups of elements outside the center have order 3 and cannot contain the 
center. This produces a new contradiction and it follows that the center 
has order 15 and the group is abelian. From the main theorem on finite 
abelian groups in Chapter 3 it follows that G is cyclic. 

R. Prove in the same way that a group of order 33 is cyclic. 
R. By using for instance the class equation, prove that a group of order 

p2, P a prime, is abelian. 
R. Let G be a group of order pn, p a prime. Show that the center of G 

has at least p elements. Show that G is solvable. (Hint. For solvability: 
Use induction over the order of G. Note that G/cent(G) has lower order 
than G.) 

The following theorem generalizes the fact that a subgroup of index 2 is 
normal. 

THEOREM. A subgroup of a group G whose index is the smallest prime 
dividing the order of G is normal. 
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PROOF: Let H be such a subgroup, p its index and n the order of G. Then 
H has nip elements and p left cosets aH. Let T be the map from G to the 
permutation group of the cosets defined by 

T(b)aH = baH. 

The order of imT then divides p!. An element b is in kerT if and only if 
baH = aH for all a, i.e. ba e aH or be aHa- 1 for all a. In other words, 

kerT = naeGaH a-I ~ H. 

We have 
n = IGI = I kerT II imTI 

and this is only possible when imT has p elements so that kerT has nip 
elements, i.e. as many as H. It follows that H = kerT and that H is 
normal. 

As an application we shall show that every group whose order is the 
square of a prime is abelian (d. an R above). In fact, let G be the group 
and p the prime. If G is not abelian, then G has an element a of order p 
which, by the theorem, generates a normal subgroup. Hence, for every b in 
G there is a k such that 

Hence 

b2ab- 2 = bakb- 1 = (bab-1)k 

= (ak)k = ak'. 

Iteration gives bPab-P = ak' and a = ak', since bP = e. Hence we get the 
condition 

kP == 1 mod p. 

By Fermat's theorem, the only possibility for k is k == 1 mod p so that 
ab = ba and G is abelian. 

Finally, we shall give a short proof (due to McKay) of a result due to 
Cauchy. 

R. Let G be a group of order p", where p is a prime and n a natural 
number. Suppose that G acts on a finite set X and that p does not divide 
IXI. Show that there is an z in X such that g.z = z for all g in G (z is 
said to be a fixed point of G). (Hint. The set X is the disjoint union of the 
orbits and the length of an orbit divides the order of G.) 
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THEOREM. If a prime p divides the order of a group G, then the group has 
an element of order p. 

PROOF: Let X be the set of all p-tuples z = (gil ... , gp) of elements of G, 
not all equal to e, and such that gl .•• gp = e. Then IXI = IGIP-l - 1. The 
cyclic group Cp of order p acts on X by C.(gl, .•. ,gp) = (g2, ••• ,gp,gl), 
where c is a generator of Cpo By the R above, there is a fixed point of Cp 
in X. But such a point must have the form (g, ... , g), which means that 
uP = e. 

Exercises 
1. Let G be a group generated by the elements a and h of orders m and 

n respectively and suppose that 

for some r. Show that 
rn == 1 mod m. 

2. Let G be a group of order pq, where p < q are primes and p does not 
divide q - 1. 

a) Show that G has a normal cyclic subgroup H of order q. 
Suppose that H is generated by g. 
b) Show that Cl(gk) ~ H for all k and that ICl(l)1 ~ q - 1 for all k. 
c) Show that if G is not abelian, then ICl(gk)1 = p for all k not divisible 

by q. 
d) Show that G is abelian. 
e) Show that G is cyclic. 

9.2.5 Applications of group theory to combinatorics 

Let G = {a, h, ... } be a finite group acting on a finite set X. We have 
seen that IGI = lorb(z)IIstab(z)I for all z in X. Here we are going to 
calculate the number of orbits of X. We denote by X/G the set of orbits 
ofG in X. 

R. Show that stab(az) = astab(z)a- 1• 

For a in G we let fix(a) denote that number of z in X such that a.z = z 
(i.e. the number of fixed points of a). 

BURNSIDE'S LEMMA. We have 

1 1 
IX/GI = IGI ~ Istab(z)1 = IGI ~ Ifix(a)l· 

~ex oeG 
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PROOF: Consider the set S of pairs (a, x) for which a.x = x. For a fixed 
a, the number of pairs (a, x) is Ifix(a)1 and hence 

lSI = L: Ifix(a)l· 
oEG 

On the other hand, for a fixed x, the number of pairs is Istab(x)l, and so 

lSI = L: Istab(x)l· 
:rEX 

This last sum can be written 

L: (L: Istab(x)1) = L: 101· :~: = IGIIXIGI, 
OEX/G :rEO OeX/G 

since all stab(x) for x in a fixed orbit have the same number of elements. 
This proves the lemma. 

Example 
Consider the cyclic group C generated by a permutation I of n objects. 

Then the number of orbits of C is equal to the number of factors of I when 
I is written in the usual way as a product of cycles including I-cycles. The 
number of orbits can also be obtained from Burnside's lemma. In fact, in 
the sum of the number of elements of the fixed point sets for the powers of 
I, the I-cycles contribute 1 for every power of I, the 2-cycles contribute 2 
for every second power etc. The total number is the number of elements of 
the group times the number of cycles. 

Burnside's lemma leads to Polya enumeration when used as in the fol­
lowing theorem (as before we denote the set of orbits by XIG when the 
group G acts on the set X). 

THEOREM. Let F be the set of functions from a set X = {x, y, ... } to a 
set U and let a group G = {T,S, ... } act on X. Then G acts on F via the 
formula 

(1) (Tf)(x) = I(T-1(x». 

Suppose that U has N elements. Then 

(2) IFIGI = _1 L Nlx/(TlI, 
IGI TEG 
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where (T) is the cyclic subgroup ofG generated byT. 

Note. Since every T in G permutes the elements of X, the number of 
orbits in X of T and STS-l are the same. Hence we can sum in (2) over 
the conjugacy classes C of G. The result is 

(3) IF/GI = I~I L IClNlx/(Tc)l, 
c 

where {Tc} is a set of representatives for the conjugacy classes. 

R. Prove that (1) defines an action of G on F. 

PROOF: According to Burnside's lemma, the left side of (2) equals 

Here fixF(T) is the number of functions I for which TI = I, i.e. 

for all z. Since this condition implies that I(TJ:(z» = I(z) for all k, it is 
equivalent to the condition that I is constant on the orbits of (T) in X. 
Hence 

and this proves the theorem. 

Applications 

Our last theorem has a number of interesting applications. 

1. Cyclic groups 

LEMMA. Let F be that set of functions i - I(i) from I = {l,2, ... ,n} 
to a set with N elements and let T be the circular permutation i - i + 1 
mod n of I. Then the action of (T) on F has 

orbits. Here tp is Euler's function. 

Note. n = Edln tp(d). 
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Note. The number above also answers the following question: How many 
bracelets with n beads are there when every bead can carry N colours? A 
simple example: When n = 10, N = 2, there are 16(64 + 4 + 1)/10 = 112 
different bracelets. 

Note. When n = p is prime, (3) reads (NP + (p - I)N)/p, which proves 
Fermat's theorem. Hence (3) extends this theorem to composite numbers. 

PROOF: Adjusting the last theorem to the present situation, X is the set 
I and Gis (T). The number of orbits in I of (TA:) is 1 when (k, n) = 1. In 
the general case, the order ofTA: is d = n/(k, n) and the number of orbits is 
(k, n) = n/d. Since there are <p(d) elements of order d, the lemma follows. 

2. The symmetric group 

When X = I = {1,2, ... ,n} and G is the permutation group of I, (3) 
gives the number of G when acting on functions from I to a set with N 
elements provided we know the number of elements in each conjugacy class. 

Example 
When n = 3, the class of the identity is the identity itself, the class of 

(12) has three elements and the class of (123) has two elements. Hence the 
formula reads 

in this case. 

3. The symmetric group operating on switching functions 

Let B( 1) be the set offunctions i -+ z( i) from I = {I, 2, ... , n} taking 
the values 0 and 1. A switching function is a function z -+ J(z) from B(1) 
to to, I}. The origin of the word switching function will be explained in 
section lOA. The set of switching functions will be denoted by SW(1). 

Since B(1) has 2n elements, there are 22" switching functions. Via its 
action on B(1), 

(Tz)(i) = z(T-1(i», 

the symmetric group acts on SW(I) as follows: 

(TJ)(z) = f(T- 1(z». 

Before sketching a way of determining the number of equivalence classes of 
SW(I) under the action of 81 (the permutation group of I), we shall give 
an example. 
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Example 
Suppose that n = 3 so that B(I) is represented by three variables x, y, z 

which can take the values 0 and 1. Let the symmetric group G = S3 with 
6 elements permute these variables. The set of switching functions SW(1) 
has 256 elements. How many orbits of G are there in SW(I)? To solve this 
problem, we shall use Burnside's lemma in the form 

ISW(I)/GI = I~I L Ifix(T)I, 
TEG 

where the left side is the number of orbits of G in SW(1) and fix(T) is 
the number of switching functions 1 with TI = I. Since TI = 1 implies 
STS-1SI = SI and 1 --+ SI is a bijection, Ifix(T)I = Ifix(STS-l)1 for all S 
in G. Since G has three conjugacy classes with 1,3,2 elements represented by 
the permutations e =the identity, (12) and (123), we have only to compute 
Ilix(T)1 where T is any of these permutations. It is clear that fix(e) has 
28 = 256 elements. A function I(x, y, z) in fix«12» satisfies I(x, y, z) = 
I(y, x, z) and is completely determined by its values on (1,1, z), (1,0, z) 
and (0,0, z) where z is arbitrary 0 or 1, and these values are arbitrary. 
This shows that Ifix«12»1 = 64. Similarly, Ifix«123»1 = 16. Hence the 
number of orbits in SW(I) under the action of S3 is 

1 
6(256 + 3·64 + 2· 16) = 80. 

Let us now pass to the general case. To do this we shall reduce the 
computation of Ifix(T)I to the computation of IB(I)/(T}I. This is nothing 
but the formula (3) in the theorem, 

ISW(I)/GI = A L ICI2IB(1)/(Tc ll, 
n. c 

where C runs through the conjugacy classes of SI and {Tc} is a set of 
representatives for the conjugacy classes. Now we can use the formula (3) 
again for the action of (T) on B(1): 

IB(I)/(T)I = _1_ "211/(T·)I 
I(T)I L..J . 

Hence our problem is reduced to the computation of 11/ (Tk) I for all k and 
T in SI. But the number of orbits in I under the action of the cyclic 
group generated by Tk is nothing but the number of cycles in the cycle 
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decomposition of Tic. When T itself has a complicated cycle decomposition, 
this is not easily expressible in terms of a general formula. For instance, 
when n = 6 and T = (1)(23)(456), 11/(TIc ) I equals 6,3,4,5,4,3 in order for 
k = 0,1,2,3,4,5. Hence T has (64 + 8 + 16 + 32 + 16 + 8)/6 = 24 orbits 
when acting on B(/), where I = {I, 2, 3, 4, 5, 6}. 

Anyway, Burnside's lemma has carried us a long way in the computation 
of the number of switching functions which are inequivalent under the action 
of the permutation group although no general formula is available. 

Exercises 
1. Prove that there are (N4 + 2N + N2)/4 ways of colouring the corners 

of a square with N colours. (Hint. Here X is the four corners of the square 
and the group is the rotations of the square.) 

2. Let An be the regular n-gon with symmetry group Dn, and let n be 
odd. Prove that there are 

ways of attaching N colours to each corner which are inequivalent under 
the rotations and reflections of An. 

If n is even, prove that the same number is 

(Hint. The first terms in the parentheses come from the rotations, the rest 
from the reflections in a symmetry axis. When n is odd, each such reflection 
has Hn - 1) + 1 orbits. What happens when n is even?) 

Literature 

There are plenty of elementary and advanced books on group theory. 
Burnside's lemma appeared in Burnside (1897), 165-166, although he cred­
its Frobenius with the result. The origin of Poly a enumeration is Polya 
(1937), where Burnside is not quoted and generating series are used exten­
sively. 



CHAPTER 10 

Boolean algebra 

In his book The Laws of Thought (1854) George Boole discovered that 
algebraic formulas and arithmetic operations can be interpreted so that 
they cover ordinary logic. One of his aims was to analyze the complicated 
statements and long lines of reasoning of philosophers. In this he was not 
successful since, as he says himself, their basic concepts are too vague to 
lend themselves to mathematical treatment. Under more precise circum­
stances as in the analysis of complicated combinations of simple statements 
he was more successful. Today, the machinery he invented, the Boolean 
algebras and rings, is used to analyze switching circuits. This chapter is 
just a simple account of finite Boolean algebras with a last section on the 
equivalence of Boolean functions under permutation and complementation. 
It does not touch the important questions of the economy of construction 
and complexity of circuits. 

10.1 Boolean algebras and rings 

Boole's basic idea was to indentify his variables x, y, z, ... with classes of 
things and to give meaning to algebraic expressions like xy, x + y, x + y + z 
etc. He identified x, y, ... with classes of things and defined xy = yx to be 
the class of things which are both in x and in y and x + y as the class of 
things which are in x or in y (the inclusive addition). With these definitions 
he found the the distributive law 

x(y + z) = xy + xz 

to hold, but he had to accept that xx = x and x + x = x for all x. Using 
U for union and n for intersection, these formulas say that x n x = x and 
x U x = x, but we shall find it convenient to stick to Boole's notation. 
Their familiarity and the convention of arithmetic that multiplication is 
performed before addition in expressions such as xy + zu make them easier 
to read and saves a few parentheses. 

We shall consider x, y, ... to be subsets of a fixed set X, also denoted 
by 1. The algebra obtained in this way with xy being the intersection and 
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x + y the union of x and y, 0 the empty set and x' the complement of x in 
X, will be denoted by P(X) and called the set algebra of X. The nature 
of computations in P(X) is described in the following list of properties. 

(i) Addition is commutative and associative and x + 0 = x, 1 + x = 1 for 
all x 

(ii) multiplication is commutative and associative and 1x = x, xO = 0 
for all x 

(iii) the distributive law x(y + z) = xy + xz holds for all x, y, z 

(iv) every x has a complement x' for which x + x' = 1, xx' = O. 

Note. Some of these properties follow from the others, but we shall not 
go into the details of this. 

It is easy to prove all these properties directly by the elements of set 
theory, but there is also a computational thought-saving (but not space­
saving) way via characteristic functions. To every set x we associate a 
function x(t) from X to Z, the characteristic function of x, with the property 
that x(t) = 1 when t is in x and zero otherwise. 

Example 
The elements xy and x + y have the characteristic functions x(t)y(t) and 

x(t) + y(t) - x(t)y(t) respectively. If x(t), y(t), z(t) are denoted by, in order, 
a, b, c, it follows that the value of the characteristic function of (x + y) + z 
at t is 

(a + b - be) + e - e(a + b - be) = a + b + e - be - ba - ab - ae. 

The symmetry on the right shows that addition is associative. The other 
proofs are similar. 

R. Verify the distributive law in this way. 

Axiomatizing the properties above, we get the Boolean algebras. 

Definition. A Boolean algebra is a set B = {x, y, ... , 1,0, ... } with three 
operations, addition x, y -+ x + y, multiplication x, y -+ xy and comple­
mentation x -+ x' with the properties (i) to (iv) of the list above. 

Note. With this definition, every P(X) is a Boolean algebra. 

R. Prove that 0,1, x' are uniquely determined by their properties. Show 
that x" = x, l' = O. (Hint. If yx = O,x + y = 1, write y = y(x + x').) 



170 10 Boolean algebra 

LEMMA. In every Boolean algebra one has de Morgan's laws 

(z + y)' = z'1/, (zy)' = z' + y' 

for all z and y. 

PROOF: To prove the first formula, it suffices to verify that z'y' has all the 
properties of the complement of z + y. We have 

z + y + z'y' = z(y + V') + y + z'y' 
= (z + z')y' + zy + y = y + y' + zy = 1 + zy = 1 

and 
(z + y)z'1/ = zz'y + yy'z = 0 + 0 = O. 

R. Show that the second law follows from the first and conversely. Prove 
that z + zy = z for all z and y in a Boolean algebra. 

Subalgebras and morphisms 

A part C of a Boolean algebra B is said to be a subalgebra when z + y 
and zy are in B when z and yare. A unit and zero of C are adjoined when 
necessary. 

R. What is the sub algebra generated by 1) 0, 2) 1, 3) an element z 
different from the two, 4) two elements z, y different from each other and 
from 1 and 07 

A Boolean polynomial is any string which results from a finite number of 
Boolean operations on a finite number of elements. Repeated applications 
of de Morgan's laws show that in order to get the complement of a Boolean 
polynomial, on replaces all the variables by their complements and inter­
changes addition and multiplication. An interesting consequence of this 
procedure is that the distributive law holds when addition and multiplica­
tion change places, 

z + yz = (z + y)(z + z). 
R. Verify this statement. 

This becomes less surprising when when the rules of computation in 
P(X) are axiomatized with the symbols n and U for intersection and union, 
the parenthesis convention of arithmetic is not used and each operation is 
required to be distributive with respect to the other. The axioms are then 
symmetric when the two operations are interchanged. 
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R. Prove the formula above by complementing the ordinary distributive 
law. 

R. Prove that z + z = z, z2 = z and that zy = y => z + y = z when z 
and yare any elements of a Boolean algebra. Verify the distributive law 
(iii) above by multiplying out the right side. Note that the cancellation law 
does not hold in a Boolean algebra. It does not follow that z = y when 
z + z = y + z. Give an example! 

R. Let n be a fixed positive integer and let B be the set of all integers ~ 1 
and < n. Define addition as least common multiple and multiplication as 
greatest common divisor. Show that B is a natural Boolean algebra when 
n does not have multiple factors. (Hint. When n has multiple factors, there 
is no complement.) 

R. Partia.lorder. Let z, y, ... be elements of a Boolean algebra. We write 
that z ~ y when zy = y. (The intuitive content of z ~ y is that z contains 
y). Prove the following properties of the relation ~, 

z ~ z, (reflexivity) 

z ~ y ~ z => z ~ z, (transitivity) 

z ~ y ~ z => z = y, (antisymmetry). 

R. Show that 'divisible by' is a partial order in the positive integers. 

Boolean rings 

In his book, Boole also tried to let addition be defined by the exclusive 
or meaning either z or y. In oter words, he defined the sum z + y of two 
sets to be the set of elements belonging to z or to y but not to booth. 

R. Show that in this case, the properties (i) to (iv) hold except that 
1 + z = z'. (Hint. The characteristic function of z + y is now 

z(t) + y(t) - 2z(t)y(t). 

Direct reasoning is also possible.) 

Taking (i) to (iv) with 1 + z = z modified to 1 + z = z', in particular 
1+1=1 '=0, leads to an object called a Boolean ring with a unit. It is a ring 
simply because 

z + z = 1 + z' + z = 1 + 1 = 0 

for all z, so that addition has an inverse. The other axioms of a ring are 
among (i) to (iv). 
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R. A general Boolean ring is defined as a ring where every element equals 
its own square. Show that such a ring has characteristic 2. (Hint. Square 
1 +z.) 

10.2 Finite Boolean algebras 

We shall see in this section that every finite Boolean algebra B is iso­
morphic to some P(X) where X is a finite set. In particular, if X has n 
elements, then B has 2Fl elements. 

Let B = {z, y, ... } be a Boolean algebra. Say that z contains y when 
z ~ y, i.e. zy = y. Write z > y when z ~ y but z is not equal to yand 
say that an element y lies strictly between z and z when z > y > z. 

R. Show that if one element contains two others, it contains their sum. 

An element z of B is said to be an atom or a minimal element if it is not 
zero and there is no element strictly between z and zero. It is said to be 
maximal if it is not equal to 1 and there is no element between 1 and z. 

R. Show that the complement of a minimal element is maximal and 
conversely. 

R. Let B be the set of intervals (closed, open or half-closed) of the real 
line with rational endpoints. It is clear that B becomes a Boolean algebra 
under intersection and union. Show that this algebra does not have minimal 
and maximal elements. 

When B is finite, however, there are maximal and minimal elements. In 
fact, every z > 0 contains atom. To see this, we remark that if z is not an 
atom, there is an y such that z > y > O. If y is not an atom, repeat this 
process which, since B has a finite number of elements, must finish with an 
atom contained in z. 

R. Prove that the product of two atoms is zero unless they are identical. 

LEMMA. If z > y, then z contains an atom not contained in y. 

Proof. That z > y means that zy' is not zero. Hence this element 
contains an atom z, zuz = z. Hence zy = zyuz = 0 but, obviously, zz is 
not zero. This finishes the proof and also most of the proof of 

THEOREM. An element of a finite Boolean algebra is the sum of the atoms 
it contains and the product of the maximal elements which contain it. Two 
sums of atoms are the same if and only if their atoms are the same. 

PROOF: The first part of the theorem follows from the lemma and the 
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second one by complementation. To prove the third part, let 

Xl + ... + Xn = Yl + ... + Ym 

be two sums of atoms. Multiplying both sides by one atom of the left side 
reproduces it. Hence it must occur also on the other side. This proves that 
all atoms of the right side are contained in the left side and conversely. The 
proof is finished. 

R. Let B be a finite Boolean algebra, X the set of its atoms and f : 
B --+ P(X) a map which maps an element X of B to the set of its atoms. 
Prove that f is a morphism in the sense that it is bijective and turns the 
operations of B into the corresponding set operations. (Hint. Use the 
theorem.) 

When x is an element of a Boolean algebra and Yl, ... , Yn are all the 
atoms it contains, we have 

x = Yl + ... + Yn, 

a formula which in the applications is called the disjunctive normal form of 
x. Similarly, if Zl, ... ,Zn are the maximal elements containing x, we have 
the conjunctive normal form 

x = Zl ... Zn. 

R. Let E be a Boolean algebra with elements 0 and 1. Show that all 
functions from a set X to E constitute a Boolean algebra F(X, E) with the 
natural operations. Show that F(X, E) is isomorphic to P(X). Show that 
the atoms of F(X, E) are the functions fy(x) which take the value 1 when 
Y = x and 0 otherwise. 

Boolean functions 

Let E be a Boolean algebra with the elements 0 and 1 and let X = En 
be the product of n copies of E with elements x = (Xl, •.. , xn ) and let 
F = F(X, E) be the Boolean algebra of functions f(x) from X to E. The 
elements of such a Boolean algebra are called Boolean functions. In this 
way, Boolean polynomials in Xl, ... , Xn are elements of F. Two Boolean 
polynomials are said to be equal ifthey are equal as functions. This does not 
mean that they are the same as algebraic expressions. To get uniqueness, 
we have to write them in normal form" for instance in disjunctive form. 
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Example 

A Boolean algebra generated by two elements x, y not equal to each other 
or to 0 and 1 has four atoms, viz. xy, x'y, xy', x'y'. The element 1 is the 
sum of all of them, x equals xy + xy', x + y equals x(y + y') + y( x + x') = 
xy + xy' + yx' and so on. 

R. Write the following Boolean functions of x, y, z in disjunctive normal 
form: a) x + x'y, b) xy' + xz + xy, c) xyz + xy + xz. 

Applications to circuits 

A real world electrical circuit consists of wires connecting one or several 
voltage input gates with an output gate and it has a number of switches 
which disconnect or connect a wire. If we are only interested in presence or 
absence of voltage at the output gate, we can make an efficient mathemat­
ical model of the circuit by introducing a Boolean variable for each switch 
which equals 0 when the switch is open (does not let current through) and 
1 when it is closed. If Xl> .•• ,Xn correspond in this way to the switches the 
observed voltage at the output is a Boolean function /(X1' ••• ,xn) from En 
to E. Conversely, to every such function there is a corresponding circuit. 
For example, a product X1X2 is realized by a series coupling and the sum 
Xl + X2 as a parallell coupling according to the figure below. To construct a 
circuit for a given Boolean function / of a finite number of variables which 
generate a Boolean algebra, we only have to write it in disjunctive normal 
form and then realize the atoms, which are products of the generators and 
their complements as series couplings and then join them through parallel 
couplings. Practically, this is not quite perfect since in this way a gate cor­
responding to one variable may be along way from a gate corresponding to 
its complement. Anyway, Boolean algebra is a routine tool in the analysis 
and construction of circuits. 

---------,/-------~---------X Ij XIj 

Ij ---~ 
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Exercises 
1. Show that every non-empty subset a > z > b of a Boolean algebra is 

a subalgebra. 
2. How many elements are there in F(E, En)? 
3. Draw a circuit for 

and simplify it. 
4. Let a be a non-zero element of a Boolean ring A with a unit 1. Show 

that R is the direct sum of aR and (1 + a)R. Show that if R is finite, it is 
the direct sum of a finite number of Boolean rings isomorphic to Z2. 

10.3 Equivalence classes of switching functions 

Consider a circuit S with n switches I = {I, ... , n}. Let B( I) be the set 
of n-tuples z = (z(l), ... , z(n» where z(i) = 0 or 1 denotes the on and off 
position of the corresponding switch. The output voltage, 

F(z) = F(z(l), ... , z(n», 

observed at the output gate and also assumed to be 0 or 1, is then a Boolean 
function which in this case is also called a switching function. The set of 
switching functions on a set I of switches will be denoted by SW(I). 

In section 9.2.5 we have determined, in principle, the equivalence classes 
of switching functions under the action induced by permutations j - T(j) 
of switches and actions (Tz)(i) = z(T-l(i» on their positions. To this 
we shall now add permanent reversions of some of the switches. The cor­
responding operation on Boolean functions is to complement certain vari­
ables. i.e. replace certain variables z(i) by z(i)' where 0' = 1, l' = O. Our 
problem is compute the minimal number of switching devices which, by 
these modifications, generate all Boolean functions of n variables. Before 
going into the general situation, we give an example. 

R. Prove that the 6 Boolean polynomials I(z, y) = 1,0, zy, z, z + y, 1 + 
zy generate all 15 Boolean functions of two variables under the action of 
permutations and complementations of the variables. (Hint. If I(z, y) = z 
and z + yare chosen, they generate, in order, all Boolean functions with 
no, all, one, two and three ones in their ranges. Prove also that the number 
6 is minimal.) 

To treat the general situation, we shall make the values 0,1 of the vari­
ables z( i) elements of the Boolean ring Z2. In this way the operation 

z - z + y = (z(l) + y(l), ... ,z(n) + y(n» 
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expresses complementation of z( i) when y( i) = 1 and no complementation 
when y(i) = O. This gives a simple way of treating the group G(l) generated 
by of permutations and complementations ofthe space B(l) which now is a 
Boolean ring. This group acts in turn on Boolean functions via the formulas 

F(z) -+ F(T(z», F(z) -+ F(z + y). 

(For convenience we do not introduce separate notations for the functions 
after the arrows.) In terms of the group G(l), our problem is to compute 
the number of equivalence classes of Boolean functions under the action of 
G(l). Later we shall also consider the corresponding problem when also 
complementation F(z) -+ F(z), of their values is included. This corre­
sponds to a reversal of an output switch. 

Our computation will use Burnside's lemma and we therefore have to 
begin by a study of the group G( I) itself. 

The group G(l) of permutations of complementations of B(l) 

LEMMA. The permutations and complementations generate a group G(l) 
of bijections of B(l). Its order is n!2R and its elements z -+ fez) have the 
form 

(1) 

where y and the permutation T are uniquely determined by /. The product 
of / by g, given by g(z) = Sz + y, is 

(2) (lg)(z) = TSz + Tz + y, 

and the conjugate g/g-l of / by 9 is 

(3) 

The group of complementations form a normal subgroup of G(l) of order 
2R. 

Note. The formulas above show the complete analogy between G(l) and, 
for instance, the group of rotations and translations of Euclidean space. 

PROOF: The formula (2), which is the result of direct computation, shows 
that every element of G(l) has the form (1) where, obviously, fez) = z for 
all z if and only if y = 0 and T is the identity. Hence the order of G(I) is 
n!2R. The formula (3), also the result of direct computation, shows that the 
group of complementations z -+ z + y, form a normal subgroup, obviously 
of order 2R. This finishes the proof. 
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R. Prove that G(I) acts transitively on B(!), i.e. given any pair of 
elements Z,Y of B(!), there is an I in G(!) such that I(z) = y. 

The cycle structure ofG(I) 

Let (c(l), ... , c(n» be the cycle structure of the permutation T, i.e. c(k) 
is the number of orbits of T with k elements. As shown in the preceding 
chapter, the cycle index is a complete invariant of the class of Tin S(1), 
the group of permutations of I = {I, 2, ... , n}. More precisely, all elements 
of the conjugacy class ofT, i.e. permutations of the form STS-1 with San 
arbitrary permutation, and only these have the same cycle index as T. We 
shall now construct cycle indices of elements z -+ I(z) = Tz + y of G(1). 

Definition. The cycle index of I equals 

(c(l), ... ,c(n))[e(l), ... ,e(n)] 

where (c(l), ... , c(n» is the cycle index and e(k) is the number of cycles C 
ofT oflength k for which Ec y(j) = 1 (in B), i.e. y(j) = 1 an odd number 
of times for j in C. 

Note. The parentheses [.] are used only to set off the second part of the 
cycle index from the first part. 

THEOREM. The cycle index defined above characterizes completely the con­
jugacy class of I in G(1). 

PROOF: The kth iterate of an element I(z) = Tz + y of G(I) is 

1(1:)(z) = Tl: z + y + Ty + ... + TI:-1 y , 

which means that 

If I = CUD U ... is a partition of I into cycles of T, and B(C) denotes 
the set of functions j -+ z(j) = 0 or 1 with j in C, B(1) is the direct sum 

B(I) = B(C) $ B(C) $ .... 

It follows from (4) that I acts separately on each term and that if h = 
glg-1, then h acts on g(B(C» = B(S-1C) precisely as I acts on B(C). 
Hence it suffices to study the action of Ion a general cycle C ofT. If k = ICI 
is the number of elements ofC, then (4) shows that (f(I:)(z»(j) = (f(z»(j) 
if and only if Ec y(j) = O. Otherwise, the right side is (f(z)(j», and the 
order of I, restricted to C, is 2k. Next we shall see that the cycle indices 
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of f and h = gfg-l are the same. The cycle C for T corresponds to the 
cycle SC for STS-l, and to verify our statement, (3) shows that we only 
have to prove that the 

:Ey(i) = :Ey(S-li) + :E(z(i) + z(ST-lS-l(i)). 
e se se 

But this is clear since ST-lS-l is a bijection of SC so that the last sum 
on the right vanishes. 

Conversely, suppose that f and h(z) = Rz+u have the same cycle index. 
Then their first parts are the same so that, by the theory of the symmetric 
group (see section 9.2.3), there is a permutation S such that SRS- l = T. 
Hence, if g(z) = S(z) + z, the formula (3) shows that 

(ghg-l)(z) = Tz + Su + z + Tz 

and we have to solve the equation y = Su + z + Tz for z. It suffices to 
do this for every cycle C of T on I. We are then are free to choose our 
notations so that C = (1, ... ,k) and T(j) == j + 1 mod k. In this situation, 
the equation says that 

z(j) + z(j + 1) = y(j) + u(S-l(j)). 

By hypothesis, the sum over j on the right side vanishes and hence it suffices 
to prove that a system of equations 

z(j) + z(j + 1) = v(j) 

where z and v are functions from Zk to B is solvable when E v(j) = O. But 
this is clear. It suffices to put z(j) = v(l) + ... + v(j - 1) when j > 1 and 
z(l) = O. This gives two values for z(k), namely v(k) and v(l) + ... + v(k) 
and they are equal. This finishes the proof of the theorem. 

Cycle notation for the elements of G(I) 

A permutation T can be written as CD ... where C, D, ... are the orbits 
or cycles of T when acting on I, C = (j, Tj, ... ). A similar notation can 
be used for the bijections 

z-+f(z)=Tz+y 

of B(1). When y(k) = 1, we write k' instead of k in the cycle decomposition. 
The meaning of this is that 

(f(z))(k) = z(T-l(k)), (f(z»(j) = z(T-l(j)) when j 1:- k. 
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Examples 

«l'))(z) = (z(l)', z(2), ... ), 

((1'2))(z) = (z(2)', z(l), ... ), 
((1'2'))(z) = (z(2)', z(l)', ... ) 

etc. Orbits with an odd number of elements are said to be odd. 
By the previous lemma, every element of G( I) is conjugate to an element 

f whose cycle decomposition as above has at most one primed integer in 
every cycle of its permutation. 

The table below lists all cycle indices of G(I) when I has three elements, 
typical elements of the corresponding classes (typel), the number of ele­
ments of the corresponding conjugacy class (Ielsl), the number of orbits iIi 
B(I) of a member ofthe class (IB(I)orbl) and the number of elements with 
at least one odd orbit (Ioddorbl). 

Table of the action of G(I) on B(I) when III = 3. 

cycle index typel lelsl IB(I)orbl loddorbl 
(3,0,0) [0,0,1] (1)(2)(3) 1 8 8 

[1,0,0] (1')(2)(3) 3 4 0 
[2,0,0] (1')(2')(3) 3 4 0 
[3,0,0] (1') (2') (3') 1 4 0 

(1,1,0) [0,0,0] (1)(23) 6 6 6 
[1,0,0] (1')(23) 6 2 0 
[0,1,0] (1)(2'3) 6 4 0 
[1,1,0] (1')(2'3) 6 2 0 

(0,0,1) [0,0,0] (123) 8 4 8 
[0,0,1] (1'23) 8 2 0 

The number of orbits on B( I) have been computed by hand. For instance, 
the following actions 

(1'23) : (000) -+ (110) -+ (111) -+ (001) -+ (001) -+ (000) 

and 
(1'23) : (010) -+ (101) -+ (010) 

prove that the action of (1 '23) has two orbits on B(I) with 6 and 2 elements 
respectively. 

Our table permits an immediate computation of the number of orbits of 
the action of G(I) on SW(I) when I has three switches. Using the formula 
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(2) of section (9.2.5) we get 

(4) ISW(I)/G(I)I = (2:2Iorb/l)/48 
c 

where the sum runs over all conjugacy classes C of G(I), f is any element 
of C and orbf is the set of orbits of f acting on B(I). An insertion of 
the numbers of the table shows that there are 1056/48=22 inequivalent 
switching functions. Note that the corresponding number under equivalence 
only under permutation was 80 (see the end of section 9.2.5). 

R. Write down the corresponding table for n = 2 and verify that that 
there are 6 equivalence classes in this case. 

R. Prove that the Boolean polynomials f(z,y) = 1,zy,z + y generate 
all 16 Boolean functions of two variables under permutation and comple­
mentation of the variables and complementation of the output. (Hint. The 
preceding exercise.) 

Now consider actions 

F(z) - «(/, a)F)(z) = (/-l(z)) + a 

on switching functions where f is in G(I) and a is in B. The notation is 
meant to indicate that the pair (/, a) operates on the switching function F. 
It is obvious that (/, O)(g, 0) = (/g, 0), (/, O)(g, 1) = (/g, 1), (/, l)(g, 1) = 
(/g, 0), so that all these actions form a group H(I) with 2IG(I)1 = n!2n +1 

elements. To use Burnside's lemma for this group, we have to compute 
lfix(/, a)1 for all (/, a). 

LEMMA. The number of elements offix(/, 0) is 210rbJI where orb f means 
the set of orbits of f in G(I). The set fix(/, 1) is empty unless all orbits of 
f in G(I) have an even number of elements and in this cases it has 210rb/l 
elements. The number of elements in each case depends only on the class 
of fin G(I). 

PROOF: The first assertion is obvious since f only has two values on each 
orbit. To prove the second one, consider the kth iteration of the action 
above with a = 1, 

F(z) - F(/(1:)(z)) + k. 

It follows that for fix(/, 1) to be not empty, k has to vanish in B when 
f(1c)(z) = z and this for all z. This is the case if and only if all the cycles 
of f have an even number of elements. Hence the second assertion follows. 
The third one is a consequence of the invariance of cycle indices under 
conjugation. 
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The lemma shows how to compute the number of equivalence classes of 
SW(I) under the action of H(I). It follows from the table above that when 
III = 3, this number is 

22 - (L 210rbJI /96) 
c 

where now C runs over the conjugacy classes containing elements with at 
least one odd orbit and f is a representative of this class. According to the 
table above, the sum within parenthesis is 

28 + 626 + 824 = 768 = 8 x 96. 

It follows that SW(I) has 22 - 8 = 14 inequivalent functions under the 
action of H(I) when III = 3. 

The general ease 

For I = {I, 2, ... , n} with n arbitrary, one follows the path indicated in 
the case of three switches. In the first place one needs to know the number 
of elements of a conjugacy class C of G( I) with a given cycle index 

(e(l), . .. ,e(n))[e(l), ... , e(n)]. 

This number is given by the formula 

101 = n! II(2(i-l)c(i) /ic(i)(e(i) - e(i»!), 
i 

but the orbits of B(I) under a bijection fez) have still to be found by 
hand. The case III = 4 attracted interest in the sixties (Harrison 1965). 
He found 402 equivalence classes without complementation and 222 in the 
general case and he also listed 222 devices which generate all 65536 Boolean 
functions of four variables under permutations and complementations of the 
variables and the output. 

A reader who does not care for the practical use of switching functions 
with three of four variables may perhaps still appreciate the group theory 
used and the way it has made complicated bookkeeping problems tractable. 

Literature 

The cycle structure of the group of permutations and complementations 
of a finite Boolean algebra is due to A. Young (1929). The application to 
switching functions presented here is a simplified version of Harrison (1965). 



CHAPTER 11 

Monoids, automata, languages 

The origin of the modern theory of automata was a paper by Alan Thring 
in 1936. His automaton, the Thring machine, was designed to imitate step 
by step computing. The machine had a finite number of internal states 
and a printing head that could print zeros and ones on an infinite tape. In 
each step, the machine jumped from one state to another and the tape was 
moved left or not at all and printed 0 or 1. Which of these possibilities that 
ocurred was made to depend on the state of the machine before the step 
and the last printed symbol. 

The machine started from an initial state and an empty tape and the 
sequence of zeros and ones to the right of the original square was interpreted 
as a number between 0 and 1. The question that Thring asked was: can 
every number between 0 and 1 be produced by this machine if it is allowed 
to work indefinitely? Using a resoning analogous to Cantor's proof that 
the real numbers are uncountable, Thring gave a negative answer to his 
question. 

One of Turing's achievements in this paper was to use the notion of 
an automaton to define computability. This gave rise to a new branch of 
the theory of formal languages, namely the characterization of the formal 
languages which are produced by automata. This branch is now part of 
theoretical computer science. The aim of this chapter is to demonstrate 
the use of matrix calculus to prove one of the first results of the theory, 
namely Kleene's characterization of rational or regular languages as those 
produced by automata of a certain simple kind. 

11.1 Matrices with elements in a non-commutative algebra 

The part of classical algebra to be used in this chapter is the calculus of 
matrices with coefficients in an algebra, defined to be a set R = {a, b, c, ... } 
with associative addition and multiplication where the right and left dis­
tributive laws hold, 

a(b + c) = ab + ac, (b + c)a = ba + ca. 

Multiplication is not required to be commutative. An algebra in this sense 
differs from a ring in that subtraction is not required. 
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A matrix with elements in R is a rectangular scheme A with elements in 
R is written as 

A = (ajt), 

where j = 1, ... ,p and Ie = 1, ... , q and the pq elements ajt are in R. A 
matrix of this form is said to be of type p x q. Precisely as for matrices 
with with numerical elements, addition of two matrices of the same type is 
defined by 

A + B = (ajt + bjt). 

A product AB is only defined when A has type p x q and B has type q x r 
and then it is given by 

II 

AB = (L:ajtbtl) 
t=1 

where j = 1, ... p, Ie = I, ... , r. The order in the products is important. 
One verifies immediately that addition and multiplication are associative 
and that the distributive law holds from both sides when every term is 
defined. 

An important tool in matrix theory is the possibility to use block ma­
trices. Let N = {N1, ••• , Np } be a partition of {I, ... , n} into p blocks of 
integers which follow each other in the natural order. Let nr be the number 
of elements of Nr so that nl + ... + np = n, Any matrix of type n x n can 
be considered as a matrix (Ajt) of blocks Ajt of nj x nt matrices defined 
by 

Ajt = (apll ) with p in Nj, q in Nt. 

The point of this is that if Bj t are the corresponding blocks of another 
n x n matrix, then the blocks of the n x n matrix C = AB are 

p 

Gjt = (1: AjiBit), 
i=1 

precisely as for general matrix multiplication. The proof is immediate. The 
elements of Gjt are simply 

where p is in Nj and q is in Nt. Cutting up the sum into r pieces with tin 
Nl, N2 , ••• , Nr proves the desired result. 

11.2 Monoids and languages 
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A monoid M is simply a set of elements u, v, w, ... with an associative 
multiplication, not necessarily commutative. It mayor may not have a 
unit, i.e. an element e with the property that eu = ue = u for every u in 
M. A monoid with a unit differs from a group by not having inverses of 
all its elements. A submonoid of M is any part of M which is a monoid 
with the same multiplication. Any subset N of a monoid M generates a 
submonoid N* consisting of all products of elements of N. 

R. Let M be a monoid with a unit e. Let u be an element of M not equal 
to e and put N = u* U e with uO = e. Show that unless all powers of u are 
separate, there is a least natural number n for which there exists a number 
m < n such that urn = un. Show that, in the latter case, all elements of N 
are powers of u with exponent < n. When is N a group? 

Our main interest will be the free monoid E* generated by a finite set 
E just by forming all finite products uvwvuw. .. where u, v, w, . .. are el­
ements of E. The elements of E will be called letters, those of E* will be 
called words and E itself an alphabet. The word free means that two words 
are considered to be the same only when they consist of the same letters in 
the same order. The role of a unit is played by the empty word ( with the 
property that (w = w( = w for every word. Subsets of E* U ( will be called 
langua.ges. 

Example 
All written languages are languages in the abstract sense, in particular 

the programming languages of computer science. 

Formal series 

It is convenient to think of a language L as a formal series 

L= ~)L,w)w 

where w runs through the words of E* and L( w) is zero or 1 according as w 
is in L or not. Here 0 and 1 should be the elements of the Boolean algebra 
B = {O, I} with the structure 

0+0 = 0, 1 + 0 = 0 + 1 = 1, ,1 + 1 = 1, 00 = 0,10 = 01 = 0,11 = 1. 

The terms of a series L can be taken in any order such that every partial sum 
with a sufficient number of terms contains any given word of the language. 
In the sequel we shall identify a language and its series, also called formal 
power series. 

The sums and product of the formal series U and V are defined by 

U + V = L:((U,w) + (V,w»w, UV = L:(U, s)(V, t)w for w = st. 
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In this way the words of U + V is the union of the words of U and V and 
the words of UV are those of the form st where s is a word of U and t is a 
word of V. With these definitions, all languages with the alphabet E form 
an algebra B«E)) over B with addition and multiplication as above. It is 
easy to verify that both the left and right distributive laws are satisfied. 
The algebra has a zero, namely the zero language, (all (L, w) = 0), and its 
unit is f. where (f., w) = 0 except that (f., f.) = f.. Note that since addition 
in the Boolean algebra B does not have an inverse, the same is true of 
B«E)). The elements of B«E)) with a finite number of terms will be called 
polynomials. They generate an algebra which will be denoted by B (E). The 
corresponding languages are finite. 

R. Show that B «E}) is an idempotent algebra in the sense that U + U = 
U for every U in the algebra. 

R. By our identification of languages with power series, we have 

U· = f. + U + U2 + .... 

Show that (U·)· = U· by taking the limit of U·Un for n - 00. 

Note. Later we shall also use the notation 

U" = U + U2 + U3 + .... 

The right side of this formula will be called the pseudoinverse of U. 

Note. When B is replaced by a commutative ring A, the algebra 

A«E)) 

of formal series in E with coefficients in A. is a ring since the series - L 
with coefficients -(L, w) is the inverse of L. 

Polynomials. Rationallanguages 

All languages generated by a finite number of additions, multiplications 
and the operation U - u· starting from the empty language and the letters 
of a fixed alphabet E are said to be rational. 

Note. The use of the word rational comes from an analogy with the 
rational power series of complex rational functions which vanish at the 
origin. In fact, these rational functions all have the form 

J(z) = p(z)/(I- q(z» = p(z)q(z)* 

when p(O) = q(O) = O. It is immediately verified that they form a ring and 
that r has the same form as J. The same result holds for polynomials 
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in one variable with coefficients in a ring. The fact that there are more 
complex power series than the rational ones above is an indication that the 
same should hold for the general case, namely that the rational languages 
form just a small subset of all languages. 

Note. When B is replaced by an arbitrary algebra or ring, U* exists 
when (U, t) = 0, but may not exist otherwise, for instance not when E has 
one letter a and U = t + a. In fact, un = t + na. In these cases. the 
rational languages are defined as above but with U* replaced by U" 

Example 
If E has the letters a, b, c, the following series are rational, 

(a + b)* ,(a+bc*)*c*, (abc)*(c+a*cbca*)*. 

Expressions like these are not unique in any way. We have, for instance, 

(a + b)* = a*(ba*)*. 

In fact, every element of (a + b)* is a product of a power of a and products 
be where e is a power of a, 1 included and every such product occurs. 

In non-technical terms we may describe rational languages as follows. 
When writing the words of a rational language, one is allowed to write any 
finite sequence of words, repeat any part which one has just written any 
finite number of times and then start again. 

Exercise 
At this point we need a proof that not all languages are rational. To see 

this, consider languages generated by a single letter z. Define a gap in a 
power series (language) 

r= Lanzn, n=0,1, ... 
n~O 

to be a sequence of vanishing letters between two non-vanishing ones. Prove 
that a rational language does not have single power series with gaps of 
arbitrary length. (Hint. This is clear for polynomials. Prove it for sums, 
products and for the stars. Hence there are plenty of languages which are 
not rational.) 

11.3 Automata and rational languages 

Generally speaking, an automaton is a machine with a number of buttons 
and a number of states. Pushing down one button makes the machine 
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change (or not change) its state. At the same time the machine mayor may 
not print something. We shall ignore the printing and restrict ourselves to 
the case when the automaton has a finite number of buttons, called inputs, 
and a finite number of states. 

Our description of an automaton will be limited to listing its states and, 
for every change of state, the inputs which cause this change. A convenient 
way of doing this is to introduce its transition matrix. It is a square matrix 
M labelled by the states p, q, ... in such a way that the entry M(p, q) is 
the subset of inputs I which, when applied to the automaton in the state 
p, puts it into the state q. We shall write this as 

pM(p,q) = q, 

making the states in M(p, q) operate from the right. This is of course a 
rather theoretical situation but enough for the next item of interest, namely 
the language accepted by the automaton. This language has as letters E 
the entries of the transition matrix with the convention that an empty entry 
is replaced by f. 

Example 
Let the states be p and q and let the transition matrix be 

M= (~ ~) 
which means that xp = p, yp = q, uq = q. It is also possible to visualize this 
automaton by its graph. It has two points p, q and x, y, u are represented 
by directed lines connecting the two points or a point to itself. 

R. Draw this graph. 

Every automaton accepts a number of languages, namely the set of words 
with letters from its transition matrix which are generated when successions 
of inputs which, when are applied to a given state of the automaton, carry 
it into another given state. For the automaton above, this procedure gives 
four languages, namely 

p to p:x", p to q:x"yu", q to p:O, q to q:u". 

This can also be expressed in terms of the transition matrix M. We observe 
that the elements of M2 are the words with two letters taking a given state 
into a given state and similarly for the other powers. Hence the elements 
of 

MoO = LMk, k = 0,1,2, ... 

are precisely the four langauages of the preceding formula. We note that 
the four languages above and hence also their sum is rational. This fact is 
general and will be proved presently. 
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THEOREM. The languages accepted by a finite automaton with a rational 
transition matrix are rational. 

PROOF: Suppose that the transition matrix M of the automaton is a n x n 
matrix whose elements are rational series in B( (E)) with E a finite alphabet. 
Write M as 

M_(M(I,I) M(I,2») 
- M(2, 1) M(2,2) 

where M(I, 1) and M(2, 2) are square matrices of orders 1 and n-l respec­
tively and M(I,2) and M(2, 1) have the types 1 x (n -1) and (n - 1) x 1 
respectively. We shall see that the corresponding division of M* has the 
elements 

M*(I, 1) = 
M*(1,2) = 
M*(2, 1) = 
M*(2, 2) = 

(M(I, 1) + M(I, 2)M(2, 2)* M(2, 1))* 
M(I, 1)* M(I, 2)(M(2, 2)* + M(2, I)M(2, 2)* M(I, 2))* 
M(2, 2)* M(2, 1)(M(I, 1) + M(I, 2)M(2, 2)* M(2, 1))* 

(M(2, 2) + M(2, I)M(I, 1)* M(2, 1»* 

To see this let us first lump the states corresponding to the n - 1 last rows 
and columns of M to a state 2 and let state 1 be the remaining state. 

To prove the first formula, we simply note that any word with letters 
M(j, k) which maps the state 1 into itself is a product of elements where 
either no M(I, 2) and M(2, 1) appear and only M(I, 1) or else M(I, 2) and 
M(2, 1) appear together in this order with sequences of M(2, 2) between 
them and sequences of M(1, 1) between them when they are taken in op­
posite order. This proves that M*(I,I) and, by symmetry, also M*(2,2) 
has the form stated. 

To prove the second formula, note that a word taking state 1 to state 
2 starts with a sequence of M(I, 1) followed by M(I,2) which in turn is 
followed by any sequence mapping state 2 into state 2. Hence the form of 
M"'(1,2) follows and, by symmetry, also that of M*(2, 1). We can now prove 
the theorem. If the languages accepted by M(2, 2) are rational, the lemma 
shows that those accepted by M are also rational. Hence the theorem 
follows by induction over the number of states. 

11.4 Every rational language is accepted by a finite automaton 

The following conventions are followed in the literature. From the states 
s of a finite automaton, one state s, called the initial state, is singled out 
and also a subset F of S whose states are said to be final. The words of the 
language accepted by the automaton is defined as the set of words mapping 
s into a state in F. We can then arrange for s to label the first row of the 
transition matrix A and for the elements of F to label the columns. The 
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language (or powers series) accepted by the automaton is then simply the 
sum of the elements of the first row of A·. The following theorem is due to 
Kleene (1956) 

THEOREM. Every rational language is accepted by a finite automaton. 

Note. By suitable modifications in the proof below, this result holds 
also for formal power series with coefficients in an arbitrary commutative 
algebra (The Kleene-Schiitzenberger theorem). 

PROOF: Before proceding to the proof proper, we need som notation. The 
first row of an n x n matrix A will be denoted by 

Ai = (All, ... , Aln). 

The sum of the elements of a matrix C will be denoted by ICI. The sum 
of the elements of Ai, denoted by IIAII, is called the principal language 
generated by A. 

We shall first show that letters, sums, products and pseudoinverses of 
languages with a fixed alphabet are accepted by automata. 

To start with letters, let L be a letter and consider the automaton 

The first row of A· = A is the empty word and L and hence A accepts L. 
Next, consider sums. Let A and B be generating matrices of two automata 
and consider the matrix 

(
f Ai 

C= 0 A 
o 0 

Bl) o . 
B 

Reasoning as in the proof of the theorem of the last section, it is easy to 
see that 

( 

f AlA· 
C· = 0 A· 

o 0 

BiB.) o . 
B· 

The first row of this matrix is (f,A~,Bn. Hence the language accepted by 
C is the sum of those accepted by A and B. 

Next, consider products. Let A and B be square matrices of orders p and 
q and consider the matrix 

(A PQ) 
C= 0 B . 
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Here P is the p x q matrix whose first column has all its elements equal to 
f while all other elements are 0 and Q is a q x p matrix with f in the upper 
left corner and 0 in other places. The formula for M* of the last section 
shows that 

* _ (A* A* PQB*) 
C - 0 B* . 

Here A* P is a p X q matrix whose first row consists of the sums of the 
elements ofthe rows of A* while the others vanish and the first row of QB* 
is that of B* while the others vanish. Hence the first row of C* consists of 
the first row of QB* multiplied on the left by IIAII. Hence IIAIIIIBII is the 
language generated by C. 

Finally, we have to show that if a language L is generated by an automa­
ton, so is L*. Too see this, observe first that if the matrices P and Q above 
refer to square matrices, then 

IAll = QAP, IIAII = QA* P. 

If L = IIAII is accepted by an automaton with generating matrix A, consider 
an automaton with matrix 

( cI cI) 
B = OJ A+PQ ' 

where J is the unit matrix of the proper order. Then B* has the element 

(A + PQ)* = A*(PQA*)* 

in the upper left corner. The sum of the elements of the first row of this 
matrix is QA*(PQA*)* P. This sum in turn is a sum of elements 

(QA* P)(QA* P)" = (QA* P)"+1 = L"+1. 

Hence the total sum is L". Adding to this term the term f coming from 
the first row of cI, we see that our automaton accepts L * . 

We can now prove the theorem using the language of series. A rational 
series is obtained from the empty word by a finite sequence of the following 
operations on rational series, 

1) summing two series 
2) multiplying two series 
3) starring a series. 
One of the terms of 1) may just be a letter. If we proceed by induction 

after the number of operations performed, we may asssume that every term, 
factor and series to be dealt with is accepted by an automaton. By the first 
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part of the proof, the resulting sum, product or starred series is then also 
accepted by an automaton. This finishes the proof. 

R. Let 1 be the number of signs +, *, x which are used to define a language 
L. Prove by induction that there is an automaton with at most 21 states 
which accepts L. 

Literature 

The original paper by Kleene (1957) dealt with nerve nets including 
some input neurons. He also took time into account. The arrangement 
of Kleene's proof presented here is taken from Kuich and Saloma (1985). 
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