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THE NUMBER FIELD SIEVE

FOR INTEGERS OF LOW WEIGHT

OLIVER SCHIROKAUER

Abstract. We define the weight of an integer N to be the smallest w such
that N can be represented as

∑w
i=1 εi2

ci , with ε1, . . . , εw ∈ {1,−1}. Since
arithmetic modulo a prime of low weight is particularly efficient, it is tempt-
ing to use such primes in cryptographic protocols. In this paper we consider the
difficulty of the discrete logarithm problem modulo a prime N of low weight,
as well as the difficulty of factoring an integer N of low weight. We describe
a version of the number field sieve which handles both problems. In the case
that w = 2, the method is the same as the special number field sieve, which
runs conjecturally in time exp(((32/9)1/3+ o(1))(log N)1/3(log log N)2/3) for
N → ∞. For fixed w > 2, we conjecture that there is a constant ξ less than
(32/9)1/3((2w − 3)/(w − 1))1/3 such that the running time of the algorithm

is at most exp((ξ + o(1))(log N)1/3(log log N)2/3) for N → ∞. We further

conjecture that no ξ less than (32/9)1/3((
√
2w − 2

√
2 + 1)/(w − 1))2/3 has

this property. Our analysis reveals that on average the method performs sig-
nificantly better than it does in the worst case. We consider all the examples
given in a recent paper of Koblitz and Menezes and demonstrate that in ev-
ery case but one, our algorithm runs faster than the standard versions of the
number field sieve.

1. Introduction

We define the weight of an integer N to be the smallest w with the property
that there exists a representation of N as a sum

(1.1)
w∑
i=1

εi2
ci ,

with ε1, . . . , εw ∈ {1,−1}. In 1999, Solinas observed that arithmetic modulo a
prime can be made more efficient if the prime is chosen to be of small weight ([14]).
More recently, Koblitz and Menezes, in their investigation of the impact of high
security levels on cryptosystems which are based on the Weil and Tate pairings on
elliptic curves over finite fields have asked whether there is a downside to using a
field in this context whose characteristic has small weight ([6]). In particular, they
raise the concern that discrete logarithms modulo a prime N might be easier to
compute with the number field sieve (NFS) when N is of low weight than they are
in general. The increase in vulnerability may then offset any efficiency advantages
gained by implementing the protocol with a low weight prime.
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There is no doubt that for weight two primes, the concern about vulnerability
is justified. In this case the special number field sieve (SNFS) can be used to solve
the discrete logarithm problem. This algorithm, which is designed to compute
logarithms modulo primes N of the more general form krc + s, with k, r, and s
small, has a conjectural running time of

(1.2) LN [1/3; (32/9)1/3 + o(1)],

where

LN [ρ; ξ] = exp(ξ(log N)ρ(log log N)1−ρ)

and the o(1) is for N → ∞ with k, r, and s bounded in absolute value. By compar-
ison, the general NFS has a conjectural running time of

LN [1/3; (64/9)1/3 + o(1)],

for N → ∞. The suggestion, which is supported by the details of the running time
analyses, is that the time it takes to compute a discrete logarithm modulo a large
general prime N is about the time required for a special prime of size N2.

The purpose of this paper is to extend the SNFS to primes of arbitrary weight.
In all versions of the NFS, an extensive search takes place for smooth elements in
two different number rings. The goal at the outset of the algorithm is to choose
the best possible rings. In the SNFS, one ring is taken to be Z and the other is
generated over Z by the root of a polynomial with integral coefficients having a root
mod N . The reason the SNFS is faster than the NFS is that the special form of
the modulus N allows for the construction of a suitable polynomial with extremely
small coefficients. The algorithm we describe in the next section takes advantage
of the low weight of N in much the same way. In particular, we convert (1.1) into
a representation of a multiple of N as a sum of the form

w∑
i=1

εi2
ai+bie

and make use of the associated polynomial with coefficients εi2
ai and root 2e mod

N . Because our results are applicable to the problem of factoring as well as to the
discrete logarithm problem, and in order to avoid a discussion about the existence
of primes of fixed weight, we formulate our algorithm as a general method which
takes an arbitrary odd integer N as input and which can be incorporated either
into a method to factor N when N is composite or a method to compute discrete
logarithms mod N when N is prime.

In §3, we analyze the algorithm of the previous section. When w = 2, the method
is the same as the SNFS and so runs conjecturally in time (1.2) for N → ∞. For
fixed w > 2, we conjecture that the running time of the algorithm is at most
LN [1/3; ξ + o(1)], where ξ is a constant which is less than

(32
9

)1/3(2w − 3

w − 1

)1/3

and the o(1) is again for N → ∞. Thus, for fixed w, our algorithm is asymptotically
faster than the general NFS. We also exhibit, for each w, an infinite set S of integers
of weight w having the property that for N ∈ S tending to ∞, the conjectural
running time of the algorithm is bounded below by

LN [1/3; (32/9)1/3τ2/3 + o(1)],
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where

τ =

√
2w − 2

√
2 + 1

w − 1
.

The details of the running time analysis for these sets of inputs are set aside as an
appendix. The reader who consults Figure 3.11 will see that the difference between
((2w − 3)/(w − 1))1/3 and τ2/3 is quite small. Though the asymptotic results we
obtain are satisfying in that they indicate how to parametrize the gap between the
SNFS and general NFS running times in terms of w, their value is diminished by
the fact that the weight of an input only loosely determines the time required by
the method. As we will see, the spacing of the exponents in (1.1) has a significant
impact on the algorithm, producing a wide range of performances for a fixed weight.
To partially remedy the situation, we also investigate in §3 what happens on average
for inputs of a fixed weight.

In the fourth and final section of the paper, we turn to practical considerations.
To get a better sense of the speedup afforded by small weight inputs, we compare
the size of the numbers that are tested for smoothness in our algorithm with those
arising in other versions of the NFS. The discrete logarithm problems we use for
this investigation are the seven examples appearing in [6]. Of these, four involve a
finite field of degree two over its prime field. In all but one of the seven examples,
the method we describe in §2 is superior to the other versions of the NFS, and in
many of these cases, dramatically so.

One practical issue we do not discuss is how to determine whether a given input
N has low weight. We do, however, note that fast algorithms exist to determine
the weight of an integer and to produce all representations of the form displayed
in (1.1). Thus, for a value of N not given in this form, we can quickly determine
whether to look for a representation for use in the method of this paper. For more
on representing integers in signed-binary form, see [10].

2. The algorithm

Whether it is being used to factor an integer N or to compute discrete logarithms
in a prime field of size N , the number field sieve (NFS) begins with the selection
of two number rings R1 and R2 for which there exist maps φ1 : R1 → Z/NZ and
φ2 : R2 → Z/NZ. An element in a number ring is said to be smooth with respect
to a bound B if each prime factor of its norm in Z is at most B. Once R1 and R2

are obtained, sieving techniques are used to collect many pairs (β1, β2) ∈ R1 × R2

such that β1 and β2 are smooth with respect to an optimally chosen bound and
such that φ1(β1) = φ2(β2). Finally, a massive linear algebra computation leads to
the desired factors or logarithms. The challenge when choosing R1 and R2 is to
minimize the size of the norms being tested for smoothness. Our purpose in this
section is to describe a method for choosing rings which is particularly well-suited
to the case that N is of low weight.

The algorithm we present is an extension of the special number field sieve
(SNFS), which is designed for inputs N of the form krc + s. We give a brief
overview of the SNFS in the event that k = 1. In this case, one of the number
rings used is Z, and the other is obtained by adjoining to Z a root α ∈ C of the
polynomial

f = Xd + src
′−c,
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where d is the precomputed optimal degree of f and c′ is the smallest multiple of d
greater than or equal to c. Observe that rc

′/d is a root of f mod N . Therefore, the
canonical ring homomorphism from Z → Z/NZ can be extended to Z[α] by sending

α to rc
′/d+NZ. The pairs checked for smoothness in the algorithm are of the form

(a− brc
′/d, a− bα), with a, b ∈ Z. Since the norm of a− bα is equal to bdf(a/b), the

coefficients of f have a significant impact on the size of the smoothness candidates.
In the special case that |r| and |s| are small, these candidates are much smaller than
those arising in the general NFS, and as a result, the SNFS is the faster method.

Since our focus is on the polynomial construction that occurs at the beginning
of the NFS and since there are many good accounts of the NFS available, we do
not provide a complete description here of how to factor N or determine logarithms
mod N for a low weight input N . Instead, we carry the story line only through the
sieving stage. For a description of the remaining steps, see [1] and [15] in the case
of factoring and [3] and [13] in the case of discrete logarithms.

Algorithm 2.1 (Extended SNFS). This algorithm takes as input a positive, odd
integer N of weight w, represented as the sum

w∑
i=1

εi2
ci ,

with cw > cw−1 > . . . > c1 = 0 and ε1, . . . , εw ∈ {1,−1}, as well as integer
parameters e,B,M, J > 0, with e ≤ cw. Its purpose is to produce a matrix A
which can be used for factoring N or computing discrete logarithms mod N . In
what follows, B serves as a smoothness bound, M determines the size of the region
sieved for smooth elements, and J is used to specify how many smooth pairs are
needed.

Step 1. This step is devoted to producing a polynomial with integral coefficients
and a root mod N . The goal is to have the coefficients and root be small. For
i = 1, . . . , w, let c̄i be the least non-negative residue of ci mod e. In addition, let
c̄w+1 = e. Assume that σ is a permutation on the set {1, . . . , w, w+ 1} which fixes
w + 1 and has the property that the sequence

(2.2) c̄σ(1), c̄σ(2), . . . , c̄σ(w), c̄σ(w+1)

is non-decreasing, and let I be the largest number such that c̄σ(I+1)− c̄σ(I) is greater
than or equal to the difference between any other pair of consecutive terms in (2.2).
Finally, write µ for the quantity e− c̄σ(I+1), and let

f =

w∑
i=1

εi2
aixbi ,

where

ai = c̄i + µ and bi = �ci/e� if σ−1(i) ≤ I,

and

ai = c̄i − c̄σ(I+1) and bi = �ci/e�+ 1 if σ−1(i) > I.

It is a straightforward matter to verify that

(2.3) max |ai| = c̄σ(I) + µ = e− (c̄σ(I+1) − c̄σ(I))

and that

f(2e) = 2µN.
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Notice that the weight of N does not appear in (2.3) but instead influences the
bound on the size of the coefficients of f indirectly by imposing a lower bound on
the size of the maximal gap in sequence (2.2).

In the case that N is prime, it follows from a result in [4] that f is irreducible. In
the case that N is composite and f factors into a product g1 . . . gm of non-constant
irreducible polynomials, we either obtain a splitting of N by plugging 2e into the
factors of f or we find that gi(2

e) is a multiple of N for some i. In the former
case, our problem is solved, and in the latter, replacing f by gi only improves the
algorithm that follows. For this reason, we assume from this point onwards that f
is irreducible.

Let α ∈ C be a root of f and let O be the ring of integers of Q(α). If f is monic,
then the description of the next two steps is easily reconciled with the outline of the
NFS given at the beginning of this section. As in our sketch of the SNFS, the two
rings being used are Z and Z[α] and the pairs being tested for smoothness are of
the form (a−b2e, a−bα), where a and b are integers. If f is not monic, then almost
no adjustments are required in the computations in the algorithm but the algebraic
structure underlying the method is somewhat different. We refer the reader to §12
of [1] for a discussion of this case.

Step 2. Let d be the degree of f , let ∆ be the discriminant of f , and let T be the
set of prime ideals of degree one in O which lie over a rational prime which is prime
to ∆ and at most B. The objective of this step is to find all pairs (a, b) of relatively
prime integers satisfying |a| ≤ M and 0 < b ≤ M such that

(2.4) (a− b2e)bdf(a/b)

is B-smooth and prime to ∆. This can be accomplished by means of a sieve ([1],[9]).
Call the set of pairs passing the smoothness test U . If |U | < π(B) + |T |+ J , then
the algorithm is not successful and terminates.

Step 3. In this step, we construct the matrix A. For each rational prime q, let νq
denote the valuation of Q associated to q, and similarly, for each prime ideal q ∈ O,
let νq be the valuation of Q(α) corresponding to q. Let U ′ be a subset of U of size
π(B)+ |T |+ J . For each (a, b) ∈ U ′, compute νq(a− b2e) for q ≤ B and νq(a− bα)
for q ∈ T , and let v(a, b) be the vector whose coordinates are these values. Finally,
let A be the matrix whose columns are the vectors v(a, b). Note that the norm of
a− bα is

bdf(a/b)

k
,

where k is the leading coefficient of f , and that for q ∈ T lying over a rational
prime not dividing k, the coordinate νq(a− bα) is equal to the exponent to which
q divides bdf(a/b) in the case that k(a − bα) is in q and is 0 otherwise. The case
that q lies over a prime divisor of k is addressed in §12 of [1]. This completes the
description of Algorithm 2.1.

The sources cited prior to Algorithm 2.1 describe how to factor N or compute
logarithms mod N by solving one or more congruences of the form A′x ≡ v mod l,
where l is prime, v is a specified vector, x is unknown, and A′ is a modification of
the matrix A. The purpose of J is to ensure that A′ has enough columns so that
such a congruence is likely to have a solution. In general, J is small and in the
analysis that follows, we take it to be O(log N).
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3. Running time

In this section we provide a worst-case running time analysis of Algorithm 2.1
for inputs of a fixed weight. As revealed by equation (2.3), the maximum size of
the coefficients of the polynomial f appearing in Step 1, and in turn the running
time of the method, depend on the size of the largest gap in sequence (2.2). Since
this size can vary widely for different inputs of the same weight, we also consider
the performance of the method on average. In particular, we consider the set of all
non-decreasing sequences of a fixed length whose terms are non-negative integers
at most a given bound and determine the average size of the largest gap in such a
sequence. This result gives a better indication than the worst-case analysis of the
speedup that follows, both asymptotically and in practice, from using a low weight
input.

The special number field sieve (SNFS), described briefly in the previous section
and in detail in [9], serves as an initial point of reference. Its conjectural running
time for input N = krc + s is

(3.1) LN [1/3; (32/9)1/3 + o(1)]

for N → ∞ with k, r and s bounded in absolute value. This is a significant improve-
ment over the running time of the number field sieve (NFS) for general numbers,
which runs conjecturally in time

(3.2) LN [1/3; (64/9)1/3 + o(1)]

for N → ∞. In the case that w = 2, the method for finding f in Algorithm 2.1 is
the same technique as is used in the SNFS, and as w grows, we expect the running
time of Algorithm 2.1 to span the distance between (3.1) and (3.2). Our first task
is to determine precisely how this occurs.

Conjecture 3.3. Fix w and let θ = (2w−3)/(w−1). For each positive, odd integer
N of weight w, let J(N) be a positive integer and assume that J(N) is O(log N).
Then for each N as just described, there exists e,B, and M such that Algorithm
2.1, upon input of N and parameters e,B,M, and J = J(N), produces a matrix A
in time at most

(3.4) LN [1/3; (32θ/9)1/3 + o(1)]

for N → ∞.

Let N > 3 be an odd integer of weight w, represented as in Algorithm 2.1. That
is,

N =

w∑
i=1

εi2
ci ,

with cw > cw−1 > . . . > c1 = 0 and εi ∈ {1,−1}. To obtain (3.4) as a conjectural
running time, we let e = �cw/δ�, where

δ =
⌊( 3θ log N

2 log log N

)1/3⌋
.

As in §2, we denote by d the degree of the polynomial f produced in Step 1 of the
algorithm. We leave it to the reader to verify that for N sufficiently large, d = δ.
In particular, we see that

(3.5) d =
( (3θ + o(1)) log N

2 log log N

)1/3

for N → ∞.
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We proceed to determine the size of the numbers which are being tested for
smoothness in Step 2 of the algorithm, that is, the numbers given in (2.4). In
what follows, assume that N is sufficiently large that d = δ > 1. Since the least
non-negative residue of cw mod e is less than d, the largest gap in sequence (2.2),
call it γ, is at least

e
( 1

w − 1
− λ

)
,

where

λ =
d− 1

e(w − 1)
.

Recall that the coefficients of f are bounded in absolute value by 2e−γ . Thus the
quantity in (2.4) is at most

2dMd+1(2e)2−
1

w−1+λ.

Letting θ = (2w − 3)/(w − 1) and using the fact that e = �cw/d�, we see that this
bound is less than or equal to 2dMd+1(2cw)(θ+λ)/d, which is at most

(3.6) 2dMd+1(2N)
θ+λ
d .

The remainder of our argument in support of Conjecture 3.3 is the same as the one
given in §11 of [1]. We sketch only the first part here.

Consider the case that Algorithm 2.1 is run with e as given and with

B = M = LN [1/3; (4θ/9)1/3].

Let z equal the quantity in (3.6). For any positive real numbers x and y, let ψ(x, y)
denote the number of integers at most x which are y-smooth. It is shown in [2]
that for any ε > 0,

(3.7)
ψ(x, x1/w)

x
= w−w(1+o(1))

for w → ∞, uniformly for x ≥ ww(1+ε). It follows that

M2ψ(z,B)

z
= B1+o(1)

for N → ∞. Note that we have relied here on the fact that d satisfies (3.5) and
that λ = o(1) for N → ∞. We now adopt the assumption that for N sufficiently
large, the numbers tested for smoothness in the algorithm behave with respect to
the property of being B-smooth like random numbers at most z. The reason that
our result is conjectural is that this assumption is unproved. Since the number of
pairs (a, b) considered in Step 2 is approximately 12M2/π2, we conclude that this
step produces a set U of size B1+o(1) for N → ∞. Under the assumption that J
is O(log N), the threshold π(B) + |T |+ J given in Step 2 is also equal to B1+o(1).
Thus, we might expect that U is sufficiently large that the algorithm succeeds. In
fact, the values of B and M need only be adjusted slightly. To see that they can
be chosen so that

(3.8) B = M = LN [1/3; (4θ/9)1/3 + o(1)]

for N → ∞ and so that Step 2 succeeds, see the analysis supporting Conjecture
11.4 in [1]. Finally note that Step 2 runs in time M2+o(1) and that when d satisfies
(3.5) and J is O(log N), Step 3 runs in time at most B2+o(1), even in the case that
no information about the factorization of (2.4) is retained from the sieving process
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and trial division is used to compute the needed valuations. Both quantities equal
(3.4) when (3.8) holds. This concludes our argument in support of Conjecture 3.3.

The running time given in Conjecture 3.3 is best possible in the following sense.
Let z denote the quantity in (3.6), and assume that the input parameters B and
M satisfy

M2ψ(z,B)

z
≥ B1+o(1)

for N → ∞, as we believe they must for Algorithm 2.1 to succeed. Then it is
possible to show rigorously that M is at least LN [1/3; (4θ/9)1/3 + o(1)]. See §10
and §11 of [1] for details.

Conjecture 3.3, however, does not give the right answer. It turns out that for
w > 2, it is not possible to find an infinite set of integers for which the bound in
(3.6) is attained. Indeed, we might expect that for fixed w, Algorithm 2.1 would
run in time (3.4) for N of the form

2c +

w−2∑
i=0

2

⌊
η

w−1

⌋
i
,

where

η =
c(

3θ log 2c

2 log log 2c

)1/3 .
Certainly, for these numbers, if e is set equal to �η�, then Step 1 of Algorithm 2.1
produces a polynomial of degree d satisfying (3.5), the bound (3.6) is the right one
to use, and the algorithm runs in time (3.4). However, choosing e to be a little
larger improves the asymptotic running time by forcing the largest gap in sequence
(2.2) to be greater than e/(w − 1).

More generally, we have the following strategy. Assume we are given as input
an integer N of weight w, represented as

∑w
i=1 εi2

ci , with εi ∈ {1,−1} and cw > ci
for i = 1, . . . , w − 1. Assume also that cw ≥ w and let δ be a multiple of w which
is at most cw. We proceed by producing two polynomials according to the method
described in Step 1 of Algorithm 2.1, one with e equal to e1 = �cw/δ� and the
other with e set equal to e2 = �e1w/(w − 1)�. We then continue the algorithm
with the polynomial which produces the smaller smoothness candidates. It turns
out that when we optimize this method, we obtain for all w > 2, a running time
which is slightly better than that of Conjecture 3.3. To see why this is so, first
note that because w divides δ, the least non-negative residue of cw mod e2 is less
than 2δ and hence asymptotically negligible. Next let γ1 be the largest gap in
sequence (2.2) in the case that e1 is used, define γ2 analogously, and observe that
if γ1 is close to e1/(w− 1), then the least non-negative residue mod e1 of each ci is
necessarily close to a multiple of e1/(w− 1). It follows that, in this case, γ2 is close
to me1/(w− 1) with m ≥ 2. Thus, when e1 is not a good choice, γ2 is significantly
better than the worst-case value of e2/(w − 1). We leave the remaining details to
the interested reader and offer instead the following result, which shows that the
room for improvement over Conjecture 3.3 is quite small.

Conjecture 3.9. Fix w and let

τ =

√
2w − 2

√
2 + 1

w − 1
.
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Then there exists an infinite set of integers of weight w with the property that for
N in this set, the time required by Algorithm 2.1 to produce a matrix A is at least

(3.10) LN [1/3; (32τ2/9)1/3 + o(1)]

for N → ∞.

The secondary constant in (3.10) is, of course, bounded by the secondary con-
stant in the running time proposed in Conjecture 3.3. Figure 3.11 gives the values
of these constants for small values of w. All entries are rounded to the nearest
thousandth. We note that in the case that w = 2, our upper and lower bounds
equal (32/9)1/3 and that both constants approach (64/9)1/3 as w → ∞.

λ (32τ2/9)1/3 (32θ/9)1/3

w = 2 1.526 1.526 1.526
w = 3 1.729 1.730 1.747
w = 4 1.781 1.796 1.810
w = 5 1.805 1.828 1.839
w = 6 1.819 1.847 1.857
w = 7 1.828 1.860 1.868
w = 8 1.835 1.869 1.876
w = 9 1.840 1.876 1.882
w = 10 1.843 1.881 1.887

Figure 3.11

We delay the argument in support of Conjecture 3.9, in which we explicitly
demonstrate a set with the stated property, to the appendix at the end of the pa-
per. For now we observe that, although Conjectures 3.3 and 3.9 give important
information about Algorithm 2.1 and are easily juxtaposed with analogous conjec-
tures for the SNFS and the general NFS, they are deceptive. On the one hand, the
asymptotic improvement over the general NFS that they report suggests, overly
optimistically, that for a given integer N , Algorithm 2.1 should be the method
of choice. However, for a given weight w, this improvement is not necessarily re-
alized unless N is sufficiently large. Indeed, in §4 we observe that in the worst
case, Algorithm 2.1 runs faster than standard NFS methods only if w is at most
of the order of d, that is, of the order of (log N/ log log N)1/3. On the other hand,
Conjectures 3.3 and 3.9 are overly pessimistic. As noted earlier, for a given input
N , the running time of Algorithm 2.1 is not so much determined by the weight of
N but by the largest gap in sequence (2.2). As the next result shows, this gap is
significantly greater on average than the value e/(w− 1) used to obtain Conjecture
3.3, especially when w is small.

Proposition 3.12. Let w and e be integers greater than or equal to 2. Let S =
S(e, w) be the set of sequences of length w − 2 of non-negative integers less than
e. For s ∈ S, let g(s) be the largest difference between consecutive terms of the
sequence obtained by ordering the elements of s, together with the numbers 0 and
e, from smallest to largest. Then the average value of g(s) as s ranges over S is

(3.13)
1

ew−2

w−2∑
k=1

kw−2−k(e!)G(e, k + 2)

(e− k)!
,
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where

(3.14) G(e, k) =

e∑
g=� e

(k−1) �
g
� e
g �∑

j=1

(−1)j+1
(
k−1
j

) � e
jg �∑
l=1

(−1)l+1
(
k−2
l−1

)(e−1−(j+l−1)g
k−(j+2)

)
(

e
k−2

) .

Proof. For a given w, let S0 = S0(e, w) be the set of increasing sequences of length
w − 2 of non-negative integers less than e. We begin by calculating the average
value of g(s) as s varies over S0. We accomplish this by counting, for a given value
g, the number of s such that g(s) = g. The first step is to determine for a given
g, how many ways there are to partition e − g into w − 2 parts, subject to the
condition that each summand is at least 1 and at most g, and then to multiply by
w− 1 to account for the fact that the maximum gap g can occur at any one of the
w − 1 parts of e. Standard, elementary, combinatorial techniques yield the answer

(w − 1)

�e/g�∑
j=1

(−1)j+1

(
w − 2

j − 1

)(
e− 1− jg

w − 3

)
.

Of course, this tally is too large since those partitions of e containing more than
one g have been counted more than once. We thus need to subtract off the number
of ways to partition e − 2g into w − 3 parts, multiplied by

(
w−1
2

)
, add back in the

number of ways to partition e − 3g into w − 4 parts, multiplied by
(
w−1
3

)
, and so

on. Multiplying the resulting alternating sum by g, summing over all the possible
values of g, and dividing by |S0| yields the value G(e, w) given in (3.14).

Since G(e, w) is also the average value of g(s) as s ranges over the set of sequences
of length w−2 of distinct non-negative integers less than e, it only remains to handle
those sequences in S(e, w) with repeated terms. We classify these according to how
many distinct terms each such sequence contains. In particular, we observe that for
k = 1, . . . , w− 2, the number of sequences in S(e, w) containing k distinct terms is
kw−2−k|S0(e, k)|. The average value of g(s) for these sequences is G(e, k + 2). We
find, therefore, that the average value of g(s) over S(e, w) is

w−2∑
k=1

kw−2−k|S0(e, k)|G(e, k + 2)

|S(e, w)| .

This expression is the same as (3.13), and the proof of the proposition is complete.
�

Proposition 3.12 gives us an idea of what to expect when running Algorithm 2.1
on a number N of weight w. Let c be the largest exponent appearing in the weight
w representation of N . Then the quantity in (3.13) represents, roughly speaking,
the size of the gap we can expect in sequence (2.2) when Algorithm 2.1 is run
with e chosen so that the least non-negative residue of c mod e is negligible. It is
easy enough to compare this value with the worst-case value of e/(w − 1). We can
make a comparison, however, that does not depend on e by noting that (3.13) is
asymptotically linear in e. That is, as e → ∞ with w fixed, the ratio of (3.13) to e
approaches a constant which we call κw. In Figure 3.15, we give for small w, the
value of (3.13) divided by e when e = 200 and when e = 1000, the value of κw,
and for comparison, the value of 1/(w − 1). All entries are rounded to the nearest
thousandth.
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e = 200 e = 1000 κw 1/(w − 1)
w = 3 .753 .751 .750 .500
w = 4 .604 .610 .611 .333
w = 5 .508 .518 .521 .250
w = 6 .439 .453 .457 .200
w = 7 .386 .404 .408 .167
w = 8 .340 .364 .370 .143
w = 9 .301 .332 .340 .125
w = 10 .268 .305 .314 .111

Figure 3.15

The chart reveals clearly that one can expect in practice to fare much better
than one would in the worst case. Going one step further, we can substitute 2−κw

for θ in (3.6) and modify the statement of Conjecture 3.3 accordingly. In particular,
quantity (3.4) with θ replaced by 2− κw represents a kind of average running time
for Algorithm 2.1 to succeed upon input of an integer of weight w. We leave a
precise formulation of this statement to the reader.

We conclude this section by remarking that the algorithms which use the matrix
A produced by Algorithm 2.1 to factor N or compute discrete logarithms mod N
have running times dominated by a linear algebra computation which runs in time
B2+o(1) for N → ∞. Since (3.4) is equal to B2+o(1) for the value of B given in (3.8)
and since (3.10) is a lower bound, we see that Conjectures 3.3 and 3.9 apply to the
full factoring and discrete logarithm algorithms that incorporate Algorithm 2.1.

4. Examples

In practice, when confronted with a particular N which one wants to factor or
modulo which one wants to compute logarithms, asymptotic results are of limited
interest. One simply wants to choose the best method for the number at hand.
In this section, we compare the performance of Algorithm 2.1 with that of other
versions of the number field sieve (NFS).

The chief factor in determing how fast the sieving stage of these methods runs for
a given input is the size of the integers being tested for smoothness. The algorithm
to choose is the one with the smallest smoothness candidates. In the standard NFS
for factoring, these numbers are at most

(4.1) 2(d+ 1)Md+1N2/(d+1),

where M as usual is the bound on the size of the coefficients of the elements consid-
ered for smoothness and d is the degree of the proper extension of Q employed in
the algorithm. In the case of discrete logarithms modulo a prime, the best approach
is due to Joux and Lercier and makes use of two extensions of Q generated by the
roots of two polynomials which have a shared root mod N and whose degrees are
consecutive integers ([5]). The smoothness candidates in this method are bounded
by

(4.2)
(d2
4

+
3d

2
+ 2

)
Md+1N2/(d+2),

where d + 1 is the sum of the degrees of the two extensions. Note that this sum
is necessarily odd. The method of Joux and Lercier can be modified so that two
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extensions with degrees over Q of the same parity are used. In this case, however,
the bound on the smoothness candidates is at least as big as (4.1).

Comparison of (4.1) and (4.2) with the corresponding bound appearing in the
analysis supporting Conjecture 3.3 provides some information about how Algorithm
2.1 measures up to other versions of the NFS. For instance, if we ignore the small
factors in (3.6) and (4.1) and compare Md+1Nθ/d, where θ = (2w − 3)/(w − 1),
with Md+1N2/(d+1), we see that in the worst case Algorithm 2.1 only outperforms
other NFS methods if w is bounded by a value close to (d+3)/2. Since the optimal
value of d grows very slowly with respect to N , this condition represents a severe
restriction on w.

The usefulness of such a comparison, however, is compromised by the fact that
(3.6) is, in general, a poor estimate for the size of the largest smoothness candidate
tested in Algorithm 2.1, whereas the bounds for the other methods are generally
attained. A comparison of methods, therefore, should be made on a case by case
basis, using (4.1), (4.2) for d even, and a tighter bound for Algorithm 2.1. This is
precisely what we do with the examples from [6]. We begin with the three examples
that involve the computation of logarithms in prime fields. The remaining four
examples concern logarithms in fields of degree two and are discussed subsequently.

Let N be a prime input to Algorithm 2.1, given in signed-binary form. Let c be
the largest exponent appearing in this representation. The upper bound we use for
the size of the smoothness candidates arising in the algorithm is the quantity

2dMd+122e−γ ,

where for a given e, we let γ be the largest gap in sequence (2.2) and for a given d,
we choose e between c/(d+1) and c/(d− 1) so as to minimize the exponent 2e− γ.
For fixed d, we can easily compare this value to (4.1) and (4.2), since the Md+1 term
can be ignored. When we compare bounds for different values of d, however, the
dependency on M creates a problem. We overcome this difficulty by minimizing
for a given d, the maximum of M and the smoothness bound B, subject to the
constraint that sufficiently many smoothness pairs are found during the sieving
stage of the algorithm. We use the resulting minima for our rankings. Our choice
of max{M,B} as target function reflects our desire to take into account the linear
algebra step that dominates the NFS once the sieving is complete. Indeed, at least
asymptotically, this is the right function to minimize since the sieve in the NFS
runs in time M2+o(1) and the linear algebra runs in time B2+o(1).

Proceeding with the optimization, we approximate the number of smooth pairs
collected in the NFS, as we did in §3, by

(12/π2)M2ψ(z,B)

z
,

where z is a bound on the size of the smoothness candidates. The number of pairs
needed is roughly equal to the number of degree one prime ideals of norm at most
B in the two rings being used. For each ring, this number is approximately the
number of rational primes at most B ([16]), so we adopt the value 2B/ log B as
our estimate for the number of smooth pairs required. Finally, we use (3.7), with
the o(1) dropped, to approximate ψ(z,B)/z. We arrive then at the problem of
minimizing, for a given d and a given expression for the bound z, the value of
max{M,B} subject to the condition that
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M2u−u log B

B
≥ π2

6
,

where u = (log z)/ log B. By comparing the values produced, as we vary d and the
NFS version used, we can determine which algorithm is fastest for N and obtain an
estimate for its running time in this case. We caution, however, that the estimates
we find this way are very rough and are generally higher than those produced by
means of extrapolation techniques such as are used in [7].

For each example that follows, we report for a range of values of d, the bit length
of z/Md+1 evaluated for each of the three expressions for z under consideration
and the outcome of the optimization problem for the case that z/Md+1 is minimal.
Though they are not of practical interest, we include the values obtained when z
is given by (4.2) and d is odd. In no case do these yield an estimated running time
faster than the one obtained by considering the other bounds given.

For those N for which Algorithm 2.1 is the best choice, we also compute an
estimate of the size of a general prime for which the NFS variation of Joux and
Lercier runs in time approximately equal to that required by Algorithm 2.1 to
compute logarithms mod N . More specifically, we determine the bit length of the
smallest general prime having the property that, as we let d vary over the positive
even integers, the smallest solution to the optimization problem just described
using bound (4.2) is equal to the optimal value of max{M,B} associated to N .
This bit length then can be thought of as a measure of the NFS-security of N . The
reader can check that these security estimates do not change if the solutions to the
minimization problem using (4.1) for d odd are taken into account.

For each example that follows, we only include data for those d which are
close to optimal. In each case, the interval from �((3/2) log N/ log log N)1/3� to

(3 log N/ log log N)1/3� is contained in the range of values of d presented. All en-
tries in the charts are bit lengths. Only powers of 2 were considered when determin-
ing the optimal values of max{M,B}. In those cases that we give the NFS-security
of a prime, we round to the nearest 10.

Example 4.3. We consider the weight 7 prime

23202 − 23121 + 23038 + 22947 − 22865 + 22690 + 1.

In this case, we find that the method of Joux and Lercier beats Algorithm 2.1. The
values given below in the max{M,B} column are obtained using the bound from
the former method. We note that there are values of d for which the polynomial
obtained using Algorithm 2.1 is superior to the pair given by the method of Joux
and Lercier. Indeed, when the bit length of e is close to 90 or 180, the polynomial
produced by Algorithm 2.1 has very small coefficients. The degree in these cases,
however, is far too large to be practical.

2d22e−γ 2(d+ 1)N2/(d+1) (d
2

4 + 3d
2 + 2)N2/(d+2) max{M,B}

d = 5 975 1071 919 75
d = 6 819 919 805 73
d = 7 751 805 717 72
d = 8 661 716 646 72
d = 9 588 645 588 73
d = 10 547 587 540 74
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Example 4.4. Our second example, also of weight 7, is the prime

28376 − 28333 + 28288 − 27991 + 27947 + 27604 + 1.

In this case, we find that Algorithm 2.1 is the winner. Moreover, the value of 102
bits in the max{M,B} column corresponds to the optimal value of max{M,B}
obtained when using the method of Joux and Lercier on a prime of 7310 bits. Thus
the NFS-security of this prime is only about 7310 bits.

2d22e−γ 2(d+ 1)N2/(d+1) (d
2

4 + 3d
2 + 2)N2/(d+2) max{M,B}

d = 9 1428 1680 1529 105
d = 10 1252 1528 1402 102
d = 11 1157 1401 1295 103
d = 12 1090 1294 1203 104
d = 13 1026 1202 1123 105

Example 4.5. Our final example for discrete logarithms in a prime field is the
field of size

215474 − 214954 + 214432 + 1.

Once again, we find that Algorithm 2.1 is the best method. Based on the op-
timal max{M,B} for d = 14, we estimate the NFS-security of this prime to be
approximately 13030 bits.

2d22e−γ 2(d+ 1)N2/(d+1) (d
2

4 + 3d
2 + 2)N2/(d+2) max{M,B}

d = 12 1977 2386 2217 132
d = 13 1785 2216 2070 130
d = 14 1621 2069 1941 129
d− 15 1522 1940 1827 130
d = 16 1461 1826 1726 132

The remaining examples involve fields of degree two over their prime field. Let F
be such a field and denote by N its characteristic. Logarithms can be computed in
F using the NFS in much the same way as in the prime case. The major difference
stems from the fact that F cannot be represented as a quotient of Z but instead
is represented as the quotient of an order of a quadratic extension K of Q. As a
result, the number fields employed in the NFS are extensions ofK. In one approach,
K itself is used in conjunction with a field produced by adjoining to K the root
of a polynomial with integral coefficients, preferably small, which has a root mod
N , also preferably small ([13]). Such a polynomial can be obtained by the usual
methods employed in factoring versions of the NFS or, in the case that N has small
weight, by the technique given in the first step of Algorithm 2.1. A second approach
is to follow the method of Joux and Lercier and produce two polynomials with a
shared root mod N and, in turn, two extensions of K. Regardless of strategy,
if we define M suitably and make various simplifying assumptions regarding the
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complications introduced by the replacement of Q by K, we arrive at the same
optimization problem as in the prime case, except that the factors other than Md+1

appearing in the formula adopted for z must be squared. For the examples that
follow, therefore, we provide the same data as given in the charts above except that
the bit lengths in the first three columns are computed using the squares of the
expressions used previously. For each finite field, we again include an estimate of
the field’s NFS-security. Because the weights of the primes in these examples are
so low, Algorithm 2.1 registers significant gains.

Example 4.6. Our first example of a field of degree two is the one of characteristic

2520 + 2363 − 2360 − 1.

The optimal max{M,B} value of 42 for d = 6 and d = 7 corresponds to what we
expect for a degree-two field of approximately 850 bits. Note that the best bounds
for d = 2 and d = 5 are obtained using the expression associated to the method
of Joux and Lercier. Of course, in the case that d = 5, this bound is not realized
because d+ 1 is even.

4d222(2e−γ) 4(d+ 1)2(N2)2/(d+1) ( d
2

4
+ 3d

2
+ 2)2(N2)2/(d+2) max {M,B}

d = 2 685 699 526 50
d = 3 386 527 423 45
d = 4 327 423 354 44
d = 5 317 354 306 45
d = 6 216 305 269 42
d = 7 180 269 241 42
d = 8 199 240 218 47

Example 4.7. Our next example is the degree-two field of characteristic

21582 + 21551 − 21326 − 1.

Based on the case d = 7, we obtain an NFS-security of approximately 2240 bits,
which is significantly lower than the 3162 bit size of the field.

4d222(2e−γ) 4(d+ 1)2(N2)2/(d+1) ( d
2

4
+ 3d

2
+ 2)2(N2)2/(d+2) max {M,B}

d = 5 799 1062 912 70
d = 6 594 912 800 64
d = 7 520 800 713 63
d = 8 521 712 643 66
d = 9 521 642 586 70
d = 10 491 585 539 72

Example 4.8. In this example, we consider the prime

24231 − 23907 + 23847 − 1.

We estimate that the NFS-security of the field of degree two in this case is 5780
bits, again far below the size of the field.
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4d222(2e−γ) 4(d+ 1)2(N2)2/(d+1) ( d
2

4
+ 3d

2
+ 2)2(N2)2/(d+2) max {M,B}

d = 8 1477 1889 1703 103
d = 9 1243 1702 1549 99
d = 10 1055 1548 1422 96
d = 11 901 1420 1314 93
d = 12 830 1312 1221 94
d = 13 778 1219 1141 96

Example 4.9. Our final example is the weight 3 prime

27746 − 26704 − 1.

Our estimate for the NFS-security for the field in this case is merely 9520 bits.

4d222(2e−γ) 4(d+ 1)2(N2)2/(d+1) ( d
2

4
+ 3d

2
+ 2)2(N2)2/(d+2) max {M,B}

d = 9 2093 3107 2827 124
d = 10 2093 2826 2593 128
d = 11 2093 2592 2395 131
d = 12 1802 2393 2225 127
d = 13 1502 2223 2078 121
d = 14 1250 2076 1949 117
d = 15 1062 1947 1836 114
d = 16 1127 1833 1735 121

Appendix

This additional section is devoted to providing support for Conjecture 3.9, which
we relabel and restate here. We continue with the notation introduced in §2 and
in §3.
Conjecture A.1. Fix w, and let

τ =

√
2w − 2

√
2 + 1

w − 1
.

Then there exists an infinite set S of integers of weight w with the property that for
N ∈ S, the time required by Algorithm 2.1 to produce a matrix A is at least

(A.2) LN [1/3; (32τ2/9)1/3 + o(1)]

for N → ∞.

We proceed by exhibiting a set S with the stated property. Fix w and for any
positive real number ρ and any integer c ≥ 2, let

h = hρ(c) = ρ
( log 2c

log log 2c

)1/3

.

In the case that c ≥ (w − 1)(h+ 1), let

Nρ(c) = 2c +
w−2∑
i=0

2

⌊
c

(w−1)(h+1)

⌋
i.

Finally, let

ζ =

√
2 + 1

2( 23τ )
1/3

.
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Our set S then is the set of numbers Nζ(c).
To determine what happens when the numbers in S are input into Algorithm

2.1, we consider more generally how the algorithm performs on inputs of the form
N = Nρ(c) for some arbitrary but fixed ρ. We distinguish between three cases,
based on the size of the degree d of the polynomial f produced in Step 1. Critical
to our approach is the observation that, as a consequence of the way in which f is
formed, the parameter e and the degree d satisfy

c

d+ 1
≤ e ≤ c

d− 1
.

From this point forward, we write cw−1 in place of �c/((w − 1)(h+ 1))�(w − 2).

Case 1. Assume that d ≤ h. Then e ≥ c
d+1 ≥ c

h+1 , and consequently,

e− cw−1 ≥ c

h+ 1
− (w − 2)

⌊ c

(w − 1)(h+ 1)

⌋

≥ (w − 1)
⌊ c

(w − 1)(h+ 1)

⌋
− (w − 2)

⌊ c

(w − 1)(h+ 1)

⌋

≥
⌊ c

(w − 1)(h+ 1)

⌋
.

Because of the special form of N , the maximal gap in sequence (2.2) is equal either
to �c/((w − 1)(h+ 1))� or to e− cw−1, depending on where the least non-negative
residue of c mod e appears in the sequence. In both cases, this maximal gap is at
most e−cw−1, and we conclude that the maximum absolute value of the smoothness
candidates in Step 2 is at least

Md+1(2e − 1)2e−(e−cw−1) = Md+1(2e − 1)2(w−2)
⌊

c
(w−1)(h+1)

⌋
.

Note that this quantity is bounded below by

l1M
d+1(2c)

1
d+1+

w−2
(w−1)(h+1)

for some constant l1 which does not depend on c.

Case 2. Assume that

h < d ≤ (w − 1)h.

Then e ≤ c
d−1 < c

h−1 . If e is in addition less than cw−1, then the largest gap in

sequence (2.2) is at most �c/((w − 1)(h + 1))�. If e is not less than cw−1, then it
may be that the largest gap in (2.2) is equal to e− cw−1 and that this difference is
greater than �c/((w − 1)(h+ 1))�. However,

e− cw−1 ≤ c

h− 1
− (w − 2)

⌊ c

(w − 1)(h+ 1)

⌋
≤ c

(w − 1)(h+ 1)
+

2c

h2 − 1
+ w − 2.

We conclude that the maximum absolute value of the smoothness candidates in
Algorithm 2.1 is at least

Md+1(2e − 1)2
e− c

(w−1)(h+1)−
2c

h2−1
−(w−2)

,

which is at least

(A.3) l2M
d+1(2c)

2
d+1−

1
(w−1)(h+1)−

2
h2−1
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for some constant l2. Observe that the upper bound on d ensures that the exponent
on 2c in (A.3) is greater than or equal to

1

d+ 1
− 2

h2 − 1
,

which itself is bounded below by

1

d+ 1
− 2(w − 1)

(h− 1)(h(w − 1) + 1)
≥ 1 + o(1)

d+ 1
,

where the o(1) is for c → ∞, uniformly in d.

Case 3. Assume that d > (w− 1)h. In this case, we draw no conclusions about the
coefficients of the polynomial f and simply point out that the maximum absolute
value of the numbers tested for smoothness in Algorithm 2.1 is at leastMd+1(2e−1).
This lower bound, in turn, is at least

l3M
d+1(2c)

1
d+1

for some constant l3.

Considering Cases 1-3 together, we see that when Algorithm 2.1 is run with
input N = Nρ(c), the maximum absolute value of the smoothness candidates is at
least

z = z(c, d) = lMd+12cβ ,

where l is the minimum of l1, l2, and l3 and

β = β(c, d) =

⎧⎪⎨
⎪⎩

1
d+1 + w−2

(w−1)(h+1) if d ≤ h,
2

d+1 − 1
(w−1)(h+1) −

2
h2−1 if h < d ≤ (w − 1)h,

1
d+1 if (w − 1)h < d.

Recall here that h depends on ρ and is a function of c. Since we are interested
in a lower bound on the running time of Algorithm 2.1, we can assume that all
the smoothness candidates are, in fact, bounded by z in absolute value. If we
then assume that these numbers behave with respect to B-smoothness as random
numbers bounded by z, we find that any value of M which is sufficiently large that
the method succeeds must satisfy

(12/π2)M2ψ(z,B)

z
≥ π(B) + |T |+ J,

where T and J are as in the description of the algorithm.
Next, we rely on results from §10 of [1]. In particular, Lemma 10.1 tells us that

because π(B) + T + J ≥ B1+o(1) for B → ∞, we are guaranteed that

M2 ≥ Lz[1/2;
√
2 + o(1)],

where the o(1) is for z → ∞. Lemma 10.12 then supplies the necessary manipula-
tions to conclude that 2 log M is at least

(A.4) (1 + o(1))
(
d log d+

√
(d log d)2 + 2 log(2cβ) log log(2cβ)

)

for c → ∞, uniformly in d, as long as we restrict ourselves to pairs (c, d) such that
(i) log(2cβ) ≥ 1 for c sufficiently large and
(ii) d+ log(2cβ) → ∞ as c → ∞, uniformly in d.
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This constraint, however, is of no consequence. The fact that

(A.5) β ≥ 1 + o(1)

d+ 1

for c → ∞, uniformly in d, implies that condition (ii) is satisfied. With regard to
(i), observe that in Step 2 of Algorithm 2.1, the numbers tested for smoothness
are greater than 2d in absolute value whenever the coefficients a and b are greater
than 1. As stated in the discussion of Conjecture 3.3, the running time given in
that conjecture cannot be improved upon if we maintain the assumption that the
smoothness candidates in Step 2 behave like random positive integers at most the
quantity given in (3.6). The reader can verify that with all parameters optimized,
(3.6) is equal to LN [2/3; ζ] for some constant ζ. We conclude that the only (c, d)
of interest are those for which 2d ≤ LN [2/3; ζ], in which case d+1 < c/2. For such
(c, d), condition (i) is now met as a consequence of (A.5).

Our final task is to minimize (A.4). Following §11 of [1], we note that for each
of the three cases used to formulate the function β, this is accomplished by having
(d log d)2 be of the same order of magnitude as the term accompanying it under the
square root sign. Using (A.5) and the fact that β is bounded above by 2/(d + 1),
we determine that in each case, d must be of the same order of magnitude as
(log 2c/ log log 2c)1/3. We proceed to express (A.4) as a function of c by using the
definitions of β and h, and by substituting k(log 2c/ log log 2c)1/3 for d. As a result,
we find that the minimum of (A.4) is

(A.6) (m+ o(1))(log 2c)1/3(log log 2c)2/3,

where the o(1) is for c → ∞ and m is the minimum value of

fρ(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k
3 +

(
k2

9 + 4
3k + 4(w−2)

3(w−1)ρ

) 1
2

if k ≤ ρ,

k
3 +

(
k2

9 + 8
3k − 4

3(w−1)ρ

) 1
2

if ρ ≤ k ≤ (w − 1)ρ,

k
3 +

(
k2

9 + 4
3k

) 1
2

if k ≥ (w − 1)ρ.

Since 2c < Nρ(c) < 2c+1, we can replace the quantity 2c in (A.6) with Nρ(c). All
that remains then is to let ρ equal the constant ζ defined at the beginning of the
appendix. We leave it to the reader to verify that the minimum of fζ(k) occurs at

k = (3τ2/2)1/3 and k = (3τ2/2)1/3/
√
2 and is equal to (32τ2/9)1/3. Since (A.6) is a

lower bound for 2 log M and the time required by the sieve in Step 2 of Algorithm
2.1 is equal to M2+o(1), we see that the running time of the method is at least (A.2)
on the set of numbers Nζ(c). This concludes our argument in support of Conjecture
A.1.
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