
Scalable Mechanisms for Rational Secret Sharing

Varsha Dani ∗ Mahnush Movahedi ∗ Jared Saia ∗

Abstract

We consider the classical secret sharing problem in the case where all agents are
selfish but rational. In recent work, Kol and Naor show that, when there are two
players, in the non-simultaneous communication model, i.e. when rushing is possible,
there is no Nash equilibrium that ensures both players learn the secret. However,
they describe a mechanism for this problem, for any number of players, that is an
ε-Nash equilibrium, in that no player can gain more than ε utility by deviating from
it. Unfortunately, the Kol and Naor mechanism, and, to the best of our knowledge,
all previous mechanisms for this problem require each agent to send O(n) messages
in expectation, where n is the number of agents. This may be problematic for some
applications of rational secret sharing such as secure multi-party computation and
simulation of a mediator.

We address this issue by describing mechanisms for rational secret sharing that are
designed for large n. Both of our results hold for n ≥ 3, and are Nash equilbria, rather
than just ε-Nash equilbria. Our first result is a mechanism for n-out-of-n rational
secret sharing that is scalable in the sense that it requires each agent to send only
an expected O(log n) bits. Moreover, the latency of this mechanism is O(log n) in
expectation, compared to O(n) expected latency for the Kol and Naor result. Our
second result is a mechanism for a relaxed variant of rational m-out-of-n secret sharing
where m = Θ(n). It requires each processor to send O(log n) bits and has O(log n)
latency. Both of our mechanisms are non-cryptographic, and are not susceptible to
backwards induction.

“Three can keep a secret if two of them are dead.”
- Benjamin Franklin

1 Introduction

Secret sharing is one of the most fundamental problems in security, and is an important
primitive in many cryptographic protocols, including secure multiparty computation. Re-
cently, there has been interest in solving rational secret sharing [7, 4, 5, 1, 8]. In this setting,
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there are n selfish but rational agents, and we want to distribute shares of a secret to each
agent, and design a protocol for the agents ensures that: (1) if any group of m agents follow
the protocol they will all learn the secret; and (2) knowledge of less than m of the shares
reveals nothing about the secret. Moreover, we want our protocol to be a Nash equilibrium
in the sense that no player can improve their utility by deviating from the protocol, given
that all other players are following the protocol.

Unfortunately, all previous solutions to this problem require each agent to send O(n)
messages in expectation, and so do not scale to large networks. Rational secret sharing is a
primitive for rational multiparty computation, which can be used to compute an arbitrary
function in a completely decentralized manner, without a trusted external party. A typical
application of rational multiparty computation might be to either run an auction, or to hold
a lottery to assign resources in a network. It is easy to imagine such applications where the
number of players is large, and where it is important to have algorithms whose bandwidth
and latency costs scale well with the number of players. Moreover, in a game theoretic
setting, standard tricks to circumvent scalability issues, like running the protocol only on a
small subset of the players, may be undesirable since they could lead to increased likelihood
of bribery attacks.

In this paper, we address this issue by designing scalable mechanisms for rational secret
sharing. Our main result is a protocol for rational n-out-of-n secret sharing that (1) requires
each agent to send only an expected O(log n) bits; and (2) has O(log n) expected latency. We
also design scalable mechanisms for a relaxed variant of m-out-of-n rational secret sharing in
the case where m is Θ(n). We note however that we pay for these improvements by requiring
the payers to send O(log n) rather than a constant number of bits per round.

1.1 The Problem

Shares of a secret are to be dealt to n rational but selfish players, who will later reconstruct
the secret from the shares. The players are learning-preferring, in the sense that each player
prefers every outcome in which he learns the secret to any outcome in which he does not learn
the secret. We note that in some previous work [7, 1] it is further assumed that the players
are competitive: they prefer that others do not learn secret. However, this assumption is
used mainly for the purpose of proving lower bounds, and is omitted in the upper bounds.
We will not make this additional assumption.

The secret is an arbitrary element of a large (fixed) finite field Fq. At the beginning of
the game, a dealer provides the shares to the players. The dealer has no further role in the
game. The players must then communicate with each other in order to recover the secret.

Communication between the players is point-to-point and through secure private chan-
nels. In other words, if player A sends a message to player B, then a third player C is not
privy to the message that was sent, or indeed even to the fact of a message having been
sent. Communication is synchronous in that there is an upper-bound known on the max-
imum amount of time required to send a message from one player to another. However,
we assume non-simultaneous communication, and thus allow for the possibility of rushing,
where a player may receive messages from other players in a round before sending out his
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own messages.
Our goal is to provide protocols for the dealer and rational players such that the players

following the protocol can reconstruct the secret. Moreover, we want a protocol that is
scalable in the sense that the amount of communication and the latency of the protocol
should be a slow growing function of the number of players.

1.2 Related Work

Since its introduction by Halpern and Teague in [5], there has been significant work on the
problem of rational secret sharing, including results of Halpern and Teague [5], Gordon and
Katz [4], Abraham et al. [1], Lysyanskaya and Triandopoulos [8] and Kol and Naor [7]. All
of this related work except for [7], assumes the existence of simultaneous communication,
either by broadcast or private channels. Several of the protocols proposed [4, 1, 8] make use
of cryptographic assumptions and achieve equilibria under the assumption that the players
are computationally bounded. The protocol from [1] is robust to coalitions; and the protocol
from [8] works in the situation where players may be either rational or adversarial.

The work of Kol and Naor [7] is closest to our own work. They show that in the non-
simultaneous broadcast model (i.e., when rushing is possible), there is no Nash equilibrium
that ensures all agents learn the secret, at least for the case of two players. They thus
consider and solve the problem of designing an ε-Nash equilibrium for the problem in this
communication model. An ε-Nash equilibrium is close to an equilibrium in the sense that
no player can gain more than ε utility by unilaterally deviating from it. Furthermore, the
equilibrium they achieve is everlasting in the sense that after any history that is consistent
with all players following the protocol, following the protocol continues to be an ε-Nash
equilibrium. As we have already discussed, our protocols make use of several clever ideas
from their result.

The impossibility of a Nash equilibrium for two players carries over to the setting with
secure private channels, since there is no difference between private channels and broadcast
channels when there are only two players. However, one might hope that the algorithm of
Kol and Naor [7] could be simulated over secure private channels to give an everlasting ε-
Nash equilibrium. Unfortunately, simulation of broadcast over private channels is expensive,
requiring each player to send Θ(n) messages per round.

In [2] we overcame this difficulty, providing a scalable algorithm for rational secret sharing,
in which each player only sends O(1) bits per round and the expected number of rounds is
constant (although each round takes O(log n) time). Moreover, following the protocol is an
ε-Nash equilibrium. Unfortunately, a certain bad event with small but constant probability
caused some players, when they recognized it, to deviate from the protocol so that the
equilibrium is not everlasting. This paper is the full version of [2]. However, we improve on
the work in [2] in two ways. First, we remove all probability of error for n-out-of-n secret
sharing, and improve the probability of error for m-out-of-n from a constant to an inverse
polynomial. Second, we show that our new protocol is a Nash equilibrium, not just an ε-Nash
equilibrium, as long as n ≥ 3.
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1.3 Our Results

The main result of this paper is presented as Theorem 1. This theorem builds on work
from our extended abstract in [2]. It also improves on this result in two ways. First, our
new protocol eliminates the probability of failure when compared with the protocol in [2].
Second, our new protocol has the added advantage of being a Nash equilibrium, not merely
an ε-Nash equilibrium.

Theorem 1. Let n ≥ 3. There exists a protocol for rational n-out-of-n secret sharing with
the following properties.

• The protocol is an everlasting Nash equilibrium in which all players learn the secret.

• The protocol, in expectation, requires each player to send O(log n) bits, and has latency
O(log n).

We also consider the problem of m-out-of-n rational secret sharing for the case where
m < n. Designing scalable algorithms for this problem is challenging because of the tension
between reduced communication, and the need to ensure that any active set of m players
can reconstruct the secret. For example, consider the case where each player sends O(log n)
messages. If m = o(n/ log n), even if the set of active players is chosen randomly, it is likely
that there will be some active player that will never receive a message from any other active
player. Moreover, even if m = Θ(n), if the set of active players is chosen in a worst case
manner, it is easy to see that a small subset of the active players can easily be isolated
so that they never receive messages from the other active players, and are thus unable to
reconstruct the secret.

Despite the difficulty of the problem, scalable rational secret sharing for the m-out-of-n
case may still be of interest for applications like the Vanish peer-to-peer system [3]. To
determine what might at least be possible, we consider a significantly relaxed variant of the
problem. In particular, we require m = Θ(n) and that the set of m active players be chosen
independently of the random bits of the dealer. In this setting we prove the following.

Theorem 2. Let n ≥ 3. For any fixed positive k, λ, and threshold τ , there exists a protocol
for rational secret sharing with absent players, which with probability at least 1− 1

nk has the
following properties, provided that the subset of m active players is chosen independently of
the random bits of the dealer:

• The protocol is a Nash equilibrium.

• The protocol ensures that if at least a (τ + λ) fraction of the players are active, (i.e.
m/n ≥ τ + λ ) then all active players will learn the secret; and if less than a (τ − λ)
fraction of the players are active, (i.e. m/n ≤ τ − λ ) then the secret can not be
recovered

• The protocol requires each player to send O(log2 n) bits, and has latency O(log n)
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This is an improvement to the Θ(n)-out-of-n result we proved in [2], in the sense that
the probability of error in [2] is a small constant, but here it is 1/nk. However, we cannot
completely eliminate the probability of failure.

1.4 Our Approach

The difficulty in designing a Nash equilibrium in a communication model where rushing is
possible, is that the last player to send out his share has no incentive to actually do so.
He already has the shares of all the other players and can recover the secret alone. To get
around this, it is common (see [5, 1, 4, 8, 7]) for the protocol to have a number of fake
rounds designed to catch cheaters. The uncertainty in knowing which is the “definitive”
round, during which the true secret will be revealed causes players to cooperate.

In the work of Kol and Naor [7] this uncertainty is created by dealing one player only
enough data to play until the round preceding the definitive one. Thus, there is a single
“short” player and n − 1 “long” players. None of the players know whether they are short
or long. The long players must broadcast their information every round, since they cannot
predict the definitive round in advance. The short player knows the definitive round in
advance, but has no information about the secret. In the definitive round the short player
is the last to speak so that he (and all the other players) receives the shares of all the long
players and can recover the secret. His failure to broadcast a message is what cues the other
players to the end of the game, and they too can recover the secret. Moreover, having learned
the secret, the short player cannot pretend that he actually had a share for that round as the
messages sent by all the players are verified by a tag and hash scheme (see, e.g., [11, 9, 7]).
In fact, it is the small but positive chance of cracking the tag and hash scheme that results
in this being an ε-Nash equilibrium rather than a Nash equilibrium.

Here, we also use short and long players. However we introduce two novel techniques
to ensure scalable communication and to ensure a Nash equilibrium. The first technique is
to arrange players at the leaves and nodes of a complete binary tree, and require that the
players only communicate with their neighbors in the tree. The assignment of players to
the leaves is independently random every round, and their assignment to internal nodes is
related to their assignment to leaves by a labeling of the tree that is common knowledge.
Every round of the game, information travels up to the root where it is decoded and then
travels back down again to the leaves. The short players are the parents of the leaves in the
definitive round, so that now about half the players are short players.

The second main idea is that we make use of an iterated secret sharing scheme over this
tree in order to divide up shares of secrets among the players. This scheme is similar to that
used in recent work by King and Saia [6] on the problem of scalable Byzantine agreement,
and suggests a deeper connection between the two problems.

As in previous works [11, 9, 7] we use a tag-and-hash scheme to ensure that players cannot
forge messages in the protocol. We note however, that unlike in previous work, our use of
the verification scheme is such that even by breaking it, players who have learned the secret
cannot prevent other players from learning it as well. Thus, in our case the small probability
of forging messages without detection does not translate into the protocol being an ε-Nash

5



equilibrium. Instead we show that our protocol is a Nash equilibrium for all the players.

1.5 Paper Organization

The rest of this paper is laid out as follows. In Section 2, we give notation and preliminaries.
In Section 3, we describe our algorithm for scalable n-out-of-n secret sharing. In Section 4, we
analyze this algorithm; the main result of this section is a proof of Theorem 1. In Section 5,
we give our algorithm and analysis for scalable m-out-of-n secret sharing where m = θ(n);
the main result of this section is a proof of Theorem 2. Finally in Section 6, we conclude
and give directions for future work.

2 Notation and Preliminaries

The secret to be shared is an arbitrary element of a set S. There are n players with distinct
player IDs in [n] = {1, 2, . . . n}. During the course of the algorithm, we will want to do
arithmetic manipulations with player IDs and shares of the secret, including adding in, or
multiplying by random elements to preserve secrecy. In order to be able to do these sorts of
manipulations, we embed the sets S and [n] into a finite field F of size q > max{n, |S|}. The
latter embedding will be the canonical one; the former may be arbitrary, but is assumed to
be known to all parties.

The messages sent by players in the algorithm will be elements of F. The length of any
such message is log q = Ω(log n). Since our goal is to provide a scalable algorithm we cannot
afford the message lengths to be much bigger than that. We will choose F to be a prime field
of size q = O(n). We remark that although generally S is of constant size, we can tolerate
|S| = O(n).

2.1 Utility Functions

We will denote the utility function of player j by uj. As mentioned before, we assume
that the players are learning preferring, i.e., each player prefers any outcome in which he
learns the secret to every outcome in which he does not learn the secret. More formally, for
outcome o of the game, let R(o) denote the set of players who learn the secret. If o and
o′ are outcomes of the game such that j ∈ R(o) \ R(o′), then uj(o) > uj(o

′). As in [7], we
denote

U+
j = max{uj(o) | j ∈ R(o)}
Uj = min{uj(o) | j ∈ R(o)}
U−j = max{uj(o) | j /∈ R(o)}.

Thus U+
j is the utility to player j of the best possible outcome for j, Uj is the utility to j

of the worst possible outcome in which j still learns the secret, and U−j is the best possible
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utility to j when he does not learn the secret. By the learning-preferring assumption, we
have for all j,

U+
j ≥ Uj > U−j .

We will denote by U , the quantity

U := max
j∈[n]

U+
j − U−j
Uj − U−j

.

Note that U ≥ 1. We assume that U is constant, i.e., that it does not depend on n.1

We also assume that the utilities are such that a priori the players have an incentive to
play the game rather than just guess the secret at random. In other words, we require that

U < |S|. (1)

We have said earlier that |S| may be as big as n. If that is the case, then (1) is trivially
satisfied since U = O(1). When S is of constant size however, (1) is a genuine constraint.

2.2 Game Theoretic Concepts

In this section we review some game theoretic solution concepts.
Recall that an n-tuple of strategies for an n player game is called a Nash equilibrium if

no player has an incentive to unilaterally deviate from the equilibrium strategy, when all
others are following it.

In games of incomplete information which have multiple rounds, there is the further
question of whether the players are forced to commit to their strategies before the start of
the game or whether they have the option to change strategies in the middle of the game,
after some rounds have been played and they may learn some new information. Kol and
Naor [7] defined a Nash equilibrium to be everlasting if after any history that is consistent
with all players following the equilibrium strategy, it is still true (despite whatever new
information the players may have learned over that history) that a player choosing to deviate
unilaterally cannot gain in expectation, i.e., following the prescribed strategy remains a Nash
equilibrium. This is a stronger concept than the usual Nash equilibrium, where the strategies
are committed to up front.

3 Algorithm For All Players Present

We now describe our scalable mechanism for n-out-of-n secret sharing. First, in Section 3.1
we describe the communication tree that is used by the dealer and players. An informal
description of the mechanism follows in Section 3.2. The formal descriptions of the dealer’s
and players’ protocols appear respectively as Algorithms 1 and 4.

1Technically, we can achieve scalable (polylog) communication even if we allow U to be as big as polylog(n)
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Figure 1: Communication trees for five players and six players

3.1 The Communication Tree

Recall that a complete binary tree is a binary tree in which all the internal nodes have
exactly two descendants, all the leaves are at the two deepest levels, and the leaves on the
deepest level are as far left as possible.

Our communication tree is a complete binary tree with n leaves. The leaves will be
labelled 1 to n from left to right. Next every internal node which is a parent of two leaves
is labelled with the odd label from among its two children. Finally, the remaining internal
nodes are labelled in order with even numbers, proceeding top to bottom and left to right,
starting with 2 at the root. If n is odd, then each even number appears at some internal
node. If n is even, we will place the last even number, n at the root, along with 2 (so the
root will have two labels.) The tree thus labelled has the following properties:

• Every even label occurs at some internal node. (Note that if n is odd, there will be
an odd label that occurs only at a leaf and not at any internal node. This will not
matter.)

• No even labelled internal node has an odd labelled node above it.

• Every path from root to leaf has exactly one odd label (the same odd label may occur
once or twice on the path.)

Figure 1 illustrates the labelling scheme for five and six players.

3.2 Our Algorithm

The dealer is active only once at the beginning of the game, and during this phase of the
game the players’ inputs are prepared.

The dealer independently samples two random variables X and Y from a geometric
distribution with parameter β (to be determined later). X will be the definitive iteration, or
the round of the game in which the true secret is revealed. Y will be the amount of padding
on the long players’ input. Note we have two kinds of players: short players will receive
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Algorithm 1 Dealer’s Protocol

F field of size q (to represent messages in the algorithm) n players with distinct identifiers in
[n] ↪→ F, β ∈ (0, 1): geometric distribution parameter. Complete binary tree with n leaves,
labelled as described in Section 3.1 known to everyone.

1. Choose X, Y, independently from a geometric distribution with parameter β. Round
X is the definitive one. Short players will receive full input for X − 1 rounds and
partial input for round X. Long players will receive full input for X + Y − 1 rounds
and partial input for round X + Y . For convenience we will create all the inputs for
X + Y rounds, and truncate them appropriately before sending them to the players.

2. For each round t between 1 and L = X + Y :

• If t < X + Y , choose a random permutation πt ∈ Sn. If t = X + Y choose a
permutation πL which is random subject to the constraint that all the long players
(determined by πX) are assigned to odd labels under πL. For round t player j will
be assigned to all nodes marked πt(j) in the tree.

• If t = 1, m1 = 0 // (Otherwise mt was set in the previous round)

• For every player j, (πt(j), (π
−1
t (i)|node i is a neighbor of node πt(j) in the tree.)),

is a tuple of elements of F representing j’s position and the identities
of his neighbors in the tree for round t. P j

t = (πt(j) + mt, ((π
−1
t (i) +

mt|node i is a neighbor of node πt(j) in the tree.)) is a masked version.

• Choose a random mask mt+1 ∈ F (for the next round.)

• Create shares of mt+1 by calling RecursiveShares (root,mt+1).

• If t = X st ← true secret.
Otherwise, st ← random element of S
• Create shares of st by calling RecursiveShares (root, st).

• Create tags and verification functions for all the messages to be sent in round t

• For each player j, j’s (full) input Ijt for round t consists of P j
t , shares of mt+1 and

st corresponding to node πt(j), tags to authenticate all messages to be sent by j
and verification vectors for all the messages to be received by j. Partial input Ĩjt
consists of all of the above except the authentication tags for sending messages to
your children (in the down-stage).

3. Identify the short players as those players j who are at odd numbered nodes in the
definitive iteration, i.e., πX(j) is odd.

4. For each short player j, send j the list Ij1 , . . . I
j
X−1, Ĩ

j
X .

5. For each long player j, send j the list Ij1 , . . . I
j
L−1, Ĩ

j
L.
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Algorithm 2 RecursiveShares (node w , F-element y):

n-leaf complete binary tree global data structure V ; for node w′, V w′ denotes the location
for the data associated with w′.
Initially called with the root node and the value for which shares are to be created, this
function populates V with intermediate values. The values at the leaves are the shares for
the players at the corresponding leaves of the communication tree.

1. V w ← y.

2. If w has children `(w) and r(w):

(a) Choose random slope µ from field F.

(b) Let f be the line with slope µ and y-intercept y.

(c) RecursiveShares(`(w), f(−1)).

(d) RecursiveShares(r(w), f(1)).

Algorithm 3 Create Authentication Data (F-element y,): // y is the message to be trans-
mitted

1. Choose a ∈ F and b ∈ F∗ = F \ {0} independently, uniformly at random.

2. c = y + b ∗ a.

3. a is the tag, to be given to the sender of message y, (b, c) is the verification vector, to
be given to the recipient of the message y.

10



Algorithm 4 Protocol for Player j
S=0; M=0
If at any time you receive spurious messages (messages not expected uder the protocol),
ignore them.
On round t:

Up-Stage:

1. mt = M

2. Subtract mt from all elements of P j
t to find out your position in the tree and the

identities of your neighbors for round t.

3. (as player at a leaf) Send your shares of st and mt+1 along with their tags to your
parent in the tree.

4. (as player at an internal node)

(a) Receive (intermediate) shares of st and mt+1 and tags from left and right chi-
dren. Use the appropriate verification vectors to check that correct messages
have been sent. If a fault is detected (missing or incorrect message) output
S and quit.

(b) For each of st and mt+1: interpolate a degree 1 polynomial f from
(−1, left-share) and (1, right-share). Evaluate f(0). This is your share.

(c) If you are not at the root, send the above reconstructed shares of st and mt+1

to your parent(s) along with the appropriate tags. If you are at the root,
these shares are the actual values of st and mt+1.

Down-Stage:

1. If you are at the root, set S = st and M = mt+1 and send these values along with
authentification tags to your left and right children.

2. Else

(a) (as a non-root internal node) Receive st and mt+1 and tags from your parent
and use verificaton vectors to check them. If fault detected, output S and
quit.

(b) Set S = st and M = mt+1.

(c) Send st and mt+1 to your children along with the appropriate tags. If you are
a short player and have no authentication tags, output st and quit.

t← t+ 1
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enough input to last for X rounds of the game while long players will receive enough input
to last for X+Y rounds of the game. The partitioning of players into short and long will be
random, and the players themselves will not know which are which. This is critical in our
analysis as is discussed in Section 4.

Communication between the players in our protocol will be restricted to sending messages
to their neighbors in the communication tree. In order not to reveal which players are the
short players, the players will be reassigned to new positions in the tree in each round. This
is accomplished by choosing a random permutation of the players each round and assigning
them to labelled nodes of the tree according to it. The short players are the ones who are
at odd labelled nodes in the definitive round.

Since the players must be at different nodes in the tree each round, their input must
contain this information. At the same time, the positions of the players for all the rounds
cannot be revealed up front, since this may give away information about who the short
players are. A naive idea to solve this problem is, in each round, to distribute shares of
the permutation for the next round. Then during each round, the players could reconstruct
the permutation from the shares and use it to reposition for the next round. Unfortunately,
there is a problem with this approach. To represent permutations of n symbols, we need
a field of size at least n!. To transmit elements of such a field, players would need to send
messages of length log(n!) ∼ n log n. This is unacceptable if we desire scalability.

To get around this problem, we note that it is not really necessary for players to know
the entire permutation. Each player only needs to know its own position and the identities
of its neighbors. We only need a field of size order n to encode this, and so, symbols of
this field may be transmitted with messages of length log n. Since it is dificult via share
reconstruction to transmit different messages to the leaves of the tree, we simply provide
each player with a list of positional data for the entire game. But in order that players do
not know their positional data for a round before actually getting to that round, this data
is masked by adding in a random element of the field. Positional data for the first round
is sent unmasked. The players also receive iterated shares of the masks for the next round.
Thus, in each round, players reconstruct a mask, and use it to unmask the positional data
and reposition themselves for the next round.

For each round, the full input consists of the following:

• iterated shares of a purported secret (the true secret in the definitive round);

• masked versions of positional data for the current round (position and identities of
neighbors in the tree);

• shares of the mask for the next round of positional data;

• tags for all the messages to be sent; and

• verification vectors for all the messages to be received.

The iterated shares the players receive are constructed by starting with the symbol to
be reconstructed at the root and recursively constructing 2-out-of-2 Shamir shares down the
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Figure 2: Construction of the iterated shares

tree, all the way down to the leaves. The shares at the leaves are the iterated shares the
players receive. See Figure 2 and Algorithm 2 for details of how the iterated shares are
constructed. At reconstruction time, shares are sent up the tree. At each internal node,
a pair of shares received from the two children is reconstructed into a degree 1 polynomial
which is used to obtain the value to be sent further up the tree. At the root, the original
symbol is reconstructed and transmitted down the tree. Note that the advantage of this
scheme over simply using n-out-of-n Shamir shares is that the size of the messages does not
increase as the messages are transmitted up the tree.

As mentioned earlier, round X is the definitive round, when the encoded symbol is the
true secret. Short players receive full input for every round prior to this round. For round X
they only receive partial input. Long players receive input for X+Y rounds. However, they,
too receive only partial input for their last block of input. Otherwise, a player would be able
to distinguish whether or not he is a short player by looking at his last block of input. Here,
partial input consists of all of the pieces of data from the full input, except the tags to send
the decoded message to your children in the down stage of the round.

Since, in the definitive round the short players (with odd labels) are in the level above
the leaves, and all the long players are at internal nodes higher than that in the tree, the
long players have learned the secret before the short players, although since they have input
for more rounds of the game, they do not know (i.e., cannot guess) that it is the definitive
round, and that the secret they have learned is in fact the true secret. Thus they send the
secret down the tree, and eventually it gets to the short players. Thus the short players
learn the secret as well. Since they have no more input they know that the game is over
and the secret is the true one. However, since they do not have any more authentication
data, they cannot gain by remaining in the game and trying to fool the others into thinking
that the secret has not yet been reconstructed. Finally, when the long players do not receive
a message at the end of the definitive iteration, they too realize the game has ended and
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output the correct secret.

4 Analysis of Algorithm for All Players Present

In this section we will prove Theorem 1, which shows that the secret sharing scheme we have
described is in fact a scalable n-out-of-n secret sharing scheme, and that it is an everlasting
Nash equilibrium in which all the players learn the secret.

We begin by showing that our rescursive scheme for encoding a symbol into n iterated
shares (Algorithm 2) is an n-out-of-n scheme.

Lemma 3. Let σ ∈ F be a symbol that is encoded into n iterated shares, σ1, . . . σn, by
Algorithm 2. Then σ can be decoded from all n of the shares, but knowledge of fewer than
n of the shares reveals no information about σ

Proof. That σ can be decoded from all n shares follows easily from the fact that two points
on a line determine it. Since the value at a node is the y-intercept of a line passing through
the points (−1, left-child value) and (1, right-child value), it can be reconstructed using
interpolation. Starting with the shares σ1 . . . σn at the leaves of the tree, we can reconstruct
the values bottom-up, and the value at the root is σ since this is exactly the reverse of the
process used to create these shares.

To see why fewer than n shares give us no information about σ, observe that the values
at the two children of the root were created by choosing a random slope in F for a line
with y intercept σ, and then evaluating that line at -1 and 1. Both of these values together
determine the line, but a single one of them does not eliminate any line as a possibility.
Thus the values at the children of the root individually contain no information about the
value of the root, and in order to decode the value at the root, we need both the values at
its children. But now, this reasoning applies recursively to all the internal nodes, relative to
their children. Suppose there is a leaf of the tree at which the share is missing. Then the
share of its parent cannot be decoded because it is equally likely to be any element of the F.
This propagates up to its grandparent, and then its great-grandparent and so on all the way
to the root, so that the root cannot be decoded. Thus, if even one of the shares is missing,
the remaining shares provide no information about the value of σ.

Next, we discuss the tag-and-hash verification scheme used in the protocol. This scheme
makes it hard for a sender to successfully fool the intended recipient of a message by sending
a faked message. At the same time, it does not give the recipient of the message any
information about the message prior to receiving it. Such schemes have been used before
(see e.g. [11, 9, 7]); we include the following proposition for completeness. See Lemma 1
of [9] for the proof.

Proposition 4. The verification scheme (Algorithm 3) has the following properties:

1. The verification vector contains no information about the message, i.e., the probabil-
ity of correctly guessing the message given the verification vector is the same as the
unconditional probability of guessing the message
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2. The probability that a faked message will satisfy the verification function is 1
q−1

We will now focus our attention on showing that it is a Nash equilibrium for all the
players to follow our protocol. Consider player j and suppose that all other players are
committed to following the protocol. The next lemma gives a necessary criterion for j to
have an incentive to cheat.

Lemma 5. If all other players are following the protocol, player j prefers to also follow the

protocol, unless his probability of successfully cheating is at least
Uj−U−j
U+
j −U

−
j

.

Proof. Suppose j is considering deviating from the protocol. We will consider the deviation
to be successful if either j learns the secret right away, with or without being caught, or
he does not get caught and is therefore still in a position to learn it later. The deviation
will have failed if it is detected, causing the game to end without j learning the secret. Let
pj be the probability that the deviation succeeds. The maximum utility that j can get is
U+
j . With probability 1 − pj, the game ends without j learning the secret, in which case

the maximum payoff possible is U−j . Thus a player’s expected utility from cheating while
everyone else follows the protocol is at most pjU

+
j + (1− pj)U−j .

On the other hand, if everyone else follows the protocol, then following the protocol
guarantees a utility of at least Uj. Thus the protocol will be a Nash equilibrium if

Uj > pjU
+
j + (1− pj)U−j

Rearranging terms, we have a Nash equilibrium if

pj <
Uj − U−j
U+
j − U−j

.

When and how might a player cheat? We note that since players are not required to
commit to their strategy before starting the game, and since the progression of the game
reveals information, a player may as well defer his decision to cheat in a future round until
that future round. Thus, at any given time, the decision facing the player is whether to cheat
in the current round. In order to weigh the benefits of such a decision, the player needs an
estimate of whether the current round is likely to be the definitive one.

As remarked earlier, the purpose of having short and long players is to create uncer-
tainty about when the definitive round of the game is, until it is too late to gain from this
information.

The players know that X is chosen from a geometric distribution with parameter β. Thus,
a priori the probability that X takes on any particular value is at most β, the most likely
being X = 1, whose probability is exactly β. As the game progresses, players receive partial
information about the value of X; as soon as they receive their inputs they can eliminate all
values of X larger than their input length, if the game did not end on the first round, they
learn that X 6= 1 and so on. Clearly, when a player reaches his last block of input, he knows
that the current round is definitive. The next lemma shows that until that stage, a player’s
estimate that the current round is definitive remains small.
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Lemma 6. Let j be a player who initially received input for k > 1 rounds of the game. and
let 1 ≤ t < k be the current round. Then j’s estimate of the probability that the current
round is definitive, conditioned on all the information he has learned, is at most 2β.

Proof. Let Lj denote the random variable which is the initial input length of player j. Then
we know that

Lj =

{
X if j is a short player

X + Y if j is a long player
(2)

Also, let Lj denote the event that j is a long player and LC
j the event that j is a short player.

By hypothesis, the current round is t ≥ 1, and player j received an initial input of length
k > t. What information does player j know in round t?

• Since his initial input was of length k he knows that Lj = k and X ≤ k and moreover,
that X = k if and only if LC

j .

• Since the game has entered round t he knows that X ≥ t.

• He knows his position πt(j) and the identities of his neighbors in round t

• He also has learned st, mt+1 and using the latter to unmask his positional data, he
knows πt+1(j) and the identities of his neighbors in round t+ 1. Technically, he learns
these just prior to his turn in the downstage in round t, but this is fine, as we will
argue later that no player ever has any reason to cheat during the upstage of a round.

We note that knowing st does not benefit player j in any way as far as estimating the
probability that X = t goes, since st is equally likely to be any element of S, independently
of X. Similarly, knowing the identities of his neighbors does not affect his estimate, since all
other players are equally likely to be his neighbors independently of X.

On the other hand, knowing πt(j) and πt+i(j) does affect the estimate. By construction:

• In the definitive iteration, short players have odd labels, and long players have even
labels; and

• Each player has an odd label in his last round of input

Thus if πt(j) is odd, then player j knows that the current round is not definitive, since if
X = t, then k > t implies that j is a long player and should have an even label. In particular,
conditioned on everything he knows, Pr(X = t) = 0. Since 2β > 0 the lemma is proved in
this case.

For the remainder of the proof we will assume that πt(j) is even and denote this event
Et.

Now what about πt+1(j)? If k = t+ 1, then we know that πt+1(j) is odd by construction
and knowing this contains no additional information over knowing Lj = k. On the other
hand when k > t+ 1, if πt+1(j) is odd, then player j knows that X cannot be t+ 1 and this
affects the probability that X = t.
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Let b ∈ {0, 1} be the observed parity of πt+1(j) and let Ebt+1 denote the event that the
parity of πt+1(j) is b. Note that if k = t+ 1 we must have b = 1.

Let Pj,t be player j’s estimate that the current round, t, is definitive, conditioned on
everything he knows. Then

Pj,t = Pr(X = t | Lj = k ∧ t ≤ X ≤ k ∧ Et ∧ Ebt+1)

=
Pr(X = t ∧ Lj = k ∧ Et ∧ Ebt+1)

Pr(Lj = k ∧ t ≤ X ≤ k ∧ Et ∧ Ebt+1)

≤ Pr(X = t ∧ Lj = k ∧ Et ∧ Ebt+1)

Pr(Lj = k ∧ X ∈ {t, k} ∧ Et ∧ Ebt+1)
.

where the inequality follows from the fact that the event X ∈ {t, k}) is a subset of the event
t ≤ X ≤ k.

Now, if the current round is definitive i.e., X = t, then j is not a short player, and
Lj = X + Y . So the event X = t ∧ Lj = k ∧ Et ∧ Ebt+1 is the same as the event
Lj ∧ X = t ∧ Y = k− t ∧ Ebt+1. Note that Et is implied by Lj ∧ X = t and can therefore
be dropped.

For the denominator, the event Lj = k ∧ X ∈ {t, k} ∧ Et ∧ Ebt+1 can be split into the
union of disjoint events LC

j ∧ X = k ∧ Et ∧ Ebt+1 and Lj ∧ X = t ∧ Y = k− t ∧ Ebt+1. The
latter summand is the same as the numerator, and loses the Et term for the same reason.

Making these substitutions in the above expression, we get

Pj,t ≤
Pr(Lj ∧ X = t ∧ Y = k − t ∧ Ebt+1)

Pr(LC
j ∧ X = k ∧ Et ∧ Ebt+1) + Pr(Lj ∧ X = t ∧ Y = k − t ∧ Ebt+1)

The random variables X, Y and the indicator that j is a long player are independent. Thus
the numerator of the above expression becomes

Pr(Lj ∧ X = t ∧ Y = k − t ∧ Ebt+1)

= Pr(Ebt+1|Lj ∧ X = t ∧ Y = k − t) Pr(Lj) Pr(X = t) Pr(Y = k − t)

= Pr(Ebt+1|Lj ∧ X = t ∧ Y = k − t)bn/2c
n

(1− β)t−1β(1− β)k−t−1β

= Pr(Ebt+1|Lj ∧ X = t ∧ Y = k − t)bn/2c
n

(1− β)k−2β2

Similarly we tackle the first term in the denominator. Since X and all the πi are independent
and k 6= t, then πt and πX are independent conditioned on X = k. It follows that the events
LC
j = πX(j) is odd; Et = πt(j) is even; and X = t are independent. Thus, we have the
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following.

Pr(LC
j ∧ X = k ∧ Et ∧ Ebt+1)

= Pr(Ebt+1|LC
j ∧ X = k ∧ Et) Pr(LC

j ∧ X = k ∧ Et)
= Pr(Ebt+1|LC

j ∧ X = k ∧ Et) Pr(LC
j ) Pr(Et) Pr(X = k)

= Pr(Ebt+1|LC
j ∧ X = k ∧ Et)

dn/2ebn/2c
n2

(1− β)k−1β

≥ Pr(Ebt+1|LC
j ∧ X = k ∧ Et)

bn/2c
2n

(1− β)k−1β

Now, if k > t + 1 then πX and πt+1 are independent conditioned on X being either t or
k, and hence, the events Ebt+1 and Lj ∧ X = t ∧ Y = k − t are independent, as are the
events Ebt+1 and LC

j ∧ X = k ∧ Et. It follows that Pr(Ebt+1|Lj ∧ X = t ∧ Y = k − t)
and Pr(Ebt+1|LC

j ∧ X = k ∧ Et) both equal Pr(Ebt+1). On the other hand if k = t + 1 then
b = 1 and Ebt+1 is implied in both cases Thus, Pr(Ebt+1|Lj ∧ X = t ∧ Y = k − t) and
Pr(Ebt+1|LC

j ∧ X = k ∧ Et) are both 1. Either way, they are equal, and since their common
value occurs in the numerator as well as in both terms in the denominator, it simply cancels
out.

Putting everything together we see that

Pj,t ≤
bn/2c
n

(1− β)k−2β2

bn/2c
2n

(1− β)k−1β + bn/2c
n

(1− β)k−2β2

=
β

1
2
(1− β) + β

≤ 2β

We remark that although in the above proof we have bounded player j’s estimate during
the down-stage, a nearly identical proof shows the same bound for the up-stage (when πt+1(j)
is unknown).

We are now ready to prove the main theorem.

Proof of Theorem 1. We will begin by showing that the protocol is a Nash equlibrium in
which all the players learn the secret.

Suppose all the players follow the protocol. Then every round, during the up-stage players
send their shares up toward the root where they are decoded, and during the down-stage
the reconstructed secret and mask are sent back toward the leaves. If the odd players in
the round do not drop out at the end of the round then play continues into the next round.
In the definitive round, the real secret is reconstructed at the root and all the even labelled
players, who are long players learn it first. Once it gets to the short players with odd labels,
they drop out of the game since they have no tags to send any more messages. This signals
the end of the game to the long players who then realize that the current reconstructed secret
is the true one. Thus if all the players follow the protocol, everyone learns the secret.

18



Now suppose all players other than j are following the protocol. We want to show that
player j prefers following the protocol over deviating.

At the beginning of the game, each player has set their current guess for the secret to 0.
If no cheating occurred before the current round t then during round t − 1 all the players
set their current guess to st−1. Thus, at the beginning of round t, all players have the same
guess for the secret. (Round t−1 has been eliminated as the definitive one, but st−1 still has
probability 1/|S| of being the true secret.) Moreover, since by Lemma 3 partial information
about the shares reveals no information about the symbol they encode, throughout the up-
stage player j has no better guess than st−1 for the secret. Since U < |S|, it is strictly better
for j not to leave the game in the up-stage. If j sends incorrect messages in the up-stage,
then even if he is not caught(which results in not learning the secret), this deviation will
cause an incorrect value to be decoded instead of st. This results in j not learning the secret
if t happened to be the definitive round. Thus, j has no incentive to deviate in the up-stage.

Now what about the down-stage? If j is on his last round of input, then he is a short
player, and knows that the current round is definitive. At the same time, this means that
he is an odd-labelled player and by the construction of the communication tree he cannot
prevent anyone from learning the secret. Moreover, even if he successfully fakes a tag in order
to convince the unique long player below him that the game has not ended, that player will
detect in the next round that all other players have left the game and will therefore still
output the correct secret. Thus this deviation does not change the outcome of the game,
namely that all players learn the secret. It follows that j does not gain anything by this
deviation. (Although he also does not lose anything by it.) Effectively, if j is a short player
on his last round of input, it is too late for him to improve his payoff by deviating.

If j is not on his last round of input and is at an odd labelled node then, as remarked
in the proof of Lemma 6, he knows the current round is not definitive, so cheating would
be equivalent to randomly guessing the secret, which is correct with probability only 1/|S|,
This is worse than following the protocol by equation (1).

Now suppose that the current round, t, is not j’s last round of input and j is at an
even labelled node. Note that any spurious messages sent by Player j to players that are
not expecting them, will be ignored. Also, any action involving not sending a message
that is expected will be detected immediately, only by the involved players at first, but the
knowledge will quickly propagates to all the players, before the end of the up-stage of the
next round. Since detection of deviation causes other players to quit immediately, effectively
such actions amount to player j leaving the game. Thus, the possible deviations we need to
analyze for player j are:

• Leave the game, with or without sending fake messages first, and;

• Send fake messages to one or both children and hope to stay in the game by not being
caught.

Let Pj,t be j’s estimate of the probability that the current round is definitive. Then by
Lemma 6, Pj,t ≤ 2β.
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If player j leaves the game and outputs the value st then the probability that he has
output the right value is Pj,t + (1−Pj,t)/|S|, and since he has left the game, he has no later
opportunity to improve that probability. By Lemma 5, in order to discourage this deviation
it is sufficient if

Pj,t +
(1− Pj,t)
|S| ≤

Uj − U−j
U+
j − U−j

(3)

Now consider the other kind of deviation. Suppose instead of sending st to his descen-
dents, player j sends a fake value to one or both of them. Let α be the probability that he
is not caught. By Proposition 4 we know that α = 1

q−1 if he sends a fake message to only
one of his children, and, since the two verification functions are chosen independently by the
dealer, α = 1

(q−1)2 if he fakes both messages. If he is not caught, and if the current round is
definitive, then player j has learned the true secret and has prevented some of his descen-
dants from learning it. If the current round was not definitive and his deviation was not
detected, the game continues and since the values si are all independent, it does not affect
the next round.2 This means that player j can either revert to following the protocol and
guarantee learning the secret along with everyone else, or he may find further opportunities
to cheat.

On the other hand, if the faked message is detected, which happens with probability
1 − α, then the game ends right away and player j outputs st. In this case, there is still
a Pj,t chance that the current round was definitive and an additional (1 − Pj,t)/|S| chance
that the value st was correct despite the current round not having been definitive. So the
probability that the deviation succeeds is

α + (1− α)

(
Pj,t +

(1− Pj,t)
|S|

)
.

As this quantity is bigger when α = 1
q−1 , faking only one message dominates faking both

messages. Thus, again by Lemma 5, to discourage this deviation, it is sufficient if

1

q − 1
+
q − 2

q − 1

(
Pj,t +

(1− Pj,t)
|S|

)
≤

Uj − U−j
U+
j − U−j

. (4)

Moreover, note that (4) implies (3). Thus for a Nash equilibrium, it is sufficient to show (4).
For the remainder of the proof, we are going to assume that n is sufficiently large,

specifically that n ≥ 2U|S|
|S|−U . We will discuss the modifications required when 3 ≤ n < 2U|S|

|S|−U
in Section 4.1.1.

We have so far not specified β. We do this now. Let

β =
|S| − U
4U|S|

Then 1/β = O(1) so that the expected number of rounds in the game is constant.

2This is why player j does not try to fake the mask mt+1 - an successfully transmitted incorrect mt+1

will wreak havoc in the next round, since some players will be talking to the wrong players.
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To show (4), recall that q > n, so that q − 1 ≥ n. We have

1

q − 1
+
q − 2

q − 1

(
Pj,t +

(1− Pj,t)
|S|

)
<

1

n
+

(
Pj,t +

(1− Pj,t)
|S|

)
=

1

n
+
|S| − 1)

|S| Pj,t +
1

|S|

≤ |S| − U
2U|S| + 2β +

1

|S|

≤ |S| − U
2U|S| + 2

|S| − U
4U|S| +

1

|S|

=
|S| − U
U|S| +

1

|S|
=

1

U
as desired.

Finally, we analyze the resource costs of our protocol. The communication tree has 2n−1
nodes. In each round, each player is mapped to one leaf and one internal node. Players only
communicate with their neighbors in the tree. So on each round, during the up-stage each
player sends up to three messages: one to his parent when he is a leaf; one to his parent
when he is an non-root internal node; and if he is a child of the root and n is even, he has
to send an additional message because there are two players at the root.

During the down stage each player sends two messages, one each to his two children.
Thus each player sends at most five messages per round. Each message consists of four
elements of F (shares of st, mt+1 and two tags) each of which is represented as O(log n),
since n < q ≤ 2n Thus each player send O(log n) bits per round. The expected number of
rounds is 1/β which is constant and so each player sends only O(log n) bits during the course
of the game. Finally since the tree has depth O(log n) the number of rounds is constant (in
expectation) and the communication is synchronous, it follows that the expected latency is
O(log n).

4.1 Some Remarks

4.1.1 The Case of a Small Number of Players

When the number of players is a constant greater than 2, then scalability is not an issue,
and one might hope to simply use the algorithm of Kol and Naor [7] by simulating non-
simultaneous broadcast channels with secure private channels. Unfortunately their algorithm
only provides an ε-Nash equilibrium, since the unique short player has a small chance of
successfully pretending the game has not ended.

In our algorithm, dn/2e players are short players. In particular, even for n = 3, there are
at least two short players, and none of the short players can increase their expected payoff by
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cheating alone. Thus, we obtain a Nash equilibrium, provided that we can prove inequality
(4). The above proof used the fact that n was at least 2U|S|

|S|−U , so we need a separate argument.
However since when n is constant, scalability is immediate, we have more leeway to

choose a larger field to work with.3 So we can work in a prime field of size q where

max{|S|, 2U|S|
|S| − U } < q ≤ 2 max{|S|, 2U|S|

|S| − U }

and the proof of (4) goes through as before, giving us a Nash equilibrium.

4.1.2 Nash equilibria vs. Strict Nash equilibria

An n-tuple of strategies is called a strict Nash equilibrium if when all other players are
following the prescribed strategy, a player unilaterally deviating achieves a strictly worse
expected payoff than he would by following the equilibrium strategy.

Our algorithm fails to be a strict Nash equilibrium, for the following reasons:

• Any player may, at any time, send spurious messages that are not part of the protocol,
to players that are not his neighbors in the tree. Such messages will be ignored by
their recipients, who are following the protocol.

• At the end of the definitive round, a short player may try to fake a tag and send
a message to the long player below him. This may go undetected with some small
probability, but as noted in the proof, even in this case, it cannot fool that long player
into outputting the wrong secret.

Our proof shows that our algorithm does have the property that any player deviating from
the protocol in one of the above ways does not increase his payoff, and moreover does not
affect any other player’s payoff either. In other words, if a player deviating unilaterally from
our protocol, does so in a manner that changes some other player’s payoff, then he strictly
reduces his own expected payoff. In this weaker sense, the equilibrium is strict.

4.1.3 A Note on Backwards Induction

The backwards induction problem arises when a multi-round protocol has a last round num-
ber that is known to all players. In particular, if it is globally known that the last round of
the protocol is `, then on the `-th round, there is no longer any fear or reprisal to persuade
a player to follow the protocol. But then if no player follows the protocol in the `-th round,
then in the (` − 1)-th round, there is no reason for any player to follow the protocol. This
same logic continues backwards to the very first round.

The backwards induction problem can occur with protocols that make cryptographic
assumptions, since there will always be some round number, `, in which enough time has
passed so that even a computationally bounded player can break the cryptography. Even

3The upper bound of O(n) on the field size came from the desire to keep 4 log q, which is the size of an
individual message, small.
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though ` may be far off in the future, it is globally known that the protocol will end at round
`, and so by backwards induction, even in the first round, there is no incentive for a player
to follow the protocol.

As in [7], we protect against backwards induction by having both long and short play-
ers. As the above analysis shows, if N is chosen sufficiently large, we can ensure that the
probability of making a correct guess as to when the protocol ends is too small to enable
profitable cheating for any player. Thus, even when a player gets to the second to the last
element in all his lists, he can not be very sure that the protocol will end in the next round.
All players are aware of these probabilities at the beginning of the protocol, and thus each
player knows that no other player will be able to accurately guess when the protocol ends.

5 Algorithm for Case of Absent Players

In this section we discuss m-out-of-n secret sharing where m < n. Here we want a subset
of m or more of the players to be able to reconstruct the secret even when the remaining
players are absent. However, fewer than m players should not be able to reconstruct the
secret on their own.

As discussed previously, it does not seem possible to design scalable algorithms for secret
sharing in the case when either m is much smaller than n, or when the subset of m active
players may be chosen in a completely arbitrary manner. We now address the situation
where (1) m < n, but m = Θ(n); and (2) the subset of active players does not depend on
the random bits of the dealer. More precisely, we will present an algorithm with parameters
τ and λ such that when m > (τ + λ)n then with high probability the algorithm is an Nash
equilibrium for the active players, and all the active players learn the secret. On the other
hand, if m < (τ − λ)n, then with high probability the active players cannot reconstruct the
secret.

We will assume, as in previous work, that the set of active players is known to all the
active players, before the start of the players’ protocol. However, this set is not known to the
dealer at the time of share creation. The set of active players may be arbitrary or randomly
chosen, but it does not depend on the randomness used by the dealer for the algorithm.

Since the algorithm is a variant of the n-out-of-n scheme, for conciseness, we now describe
only the places where the two algorithms differ. Let c be a large constant, which we will
specify later. First, the dealer partitions the players into Q = n

c logn
pairwise disjoint groups

of c log n players each.4 This is done using a random permutation of the players, where the
first c log n players in the permutation are the first group, the next c log n are the second
group and so on. The groups are labelled 1, 2, . . . , Q. The communication tree used for the
algorithm is the labelled Q-out-of-Q tree, except that all of the nodes are supernodes, in
that they correspond to groups of c log n players instead of single players. An edge of this

4It is convenient to assume that c log n is an integer and divides n, and that the quotient Q is odd. In fact

it is always possible to choose c so that Q is odd, and for arbitrary n, there will be Q =
⌊

n
dc logne

⌋
groups,

each with either dc log ne or dc log ne+ 1 players.
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communication tree will correspond to all-to-all communication between the active members
of the groups at the endpoints of the edge.

As in Algorithm 1, the dealer samples X and Y independently from G(β). (Here β =
(|S| − U)/4U|S| is the same parameter as in the n-out-of-n algorithm.) For each round
t, the dealer essentially implements the corresponding round of the Q-out-of-Q algorithm.
For t 6= X, he picks random secret st for the round. If t = X, sX is the true secret. The
dealer then picks a random permutation πt ∈ SQ to determine which group is assigned to
which node for that round; and picks a random mask mt+1 to encode positional data. A
key difference is that now the positional data constitutes not only which node your group is
at and which groups are you neighbors, but also which c log n players are in all the relevant
groups. For this reason we still need to work in a field with size bigger than n; a field of size
merely bigger than Q is not enough.

The dealer then creates Q-out-of-Q iterated shares for st and mt+1. Finally, the values of
these Q-out-of-Q iterated shares at the leaves are further encoded into τc log n-out-of-c log n
shares via Shaimr’s scheme [10]. These are the shares that will be distributed to the players
for round t. This last step is to avoid all the players in a group having the same share,
because if that were the case, then the secret could be decoded by Q = o(m) = o(n) players,
one from each group. As before, the dealer, creates authentication data for all the messages
to be sent in the algorithm5; identifies the short players as the members of the groups at the
odd labeled nodes in round X; truncates shares appropriately; and sends the shares to the
players.

The players’ protocol is very similar to Algorithm 4. The only differences are that each
active player must send his messages to all active players at neighboring nodes, and at the
beginning of each round the active players at each leaf node must first reconstruct the value
at the leaf using their τc log n-out-of-c log n Shamir shares. This means that unless there are
at least τc log n active players in each group, the algorithm will fail. Herein lies the reason
for the δ failure probability of the algorithm.

Formal descriptions of the protocols for the dealer and players are presented as Algo-
rithms 5 and 6.

5.1 Analysis

In order to show correctness of the algorithm, we need to make two arguments. The first
argument is that the active players are well distributed among the groups, so that at any stage
of the players’ protocol sufficiently many shares are available to do the desired reconstruction.
The second argument is that, the protocol is an Nash equilibrium for the active players. The
proof of this part is essentially identical to the proof that the n-out-of-n protocol was a Nash
equilibrium for all the players, and we omit it here. In the remainder of this section, we
sketch why reconstruction is possible with high probability, despite absent players.

We note that in any round, for the value at an internal node to be reconstructed it is

5Technically this is not necessary. Since there is all-to-all communication between adjacent groups,
messages sent by individuals can be checked against those sent by other members of the group.
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Algorithm 5 Dealer’s Protocol
F field of size q (to represent messages in the algorithm) n players with distinct identifiers in
[n] ↪→ F, β ∈ (0, 1): geometric distribution parameter. τ, λ, k threshold parameters.

1. Choose X,Y, independently from a geometric distribution with parameter β. Round X is
the definitive one. Short players will receive full input for X − 1 rounds and partial input
for round X. Long players will receive full input for X + Y − 1 rounds and partial input for
round X + Y .

2. Let c = 2(k+1)
λ2

and Q = n
c logn Choose a random permutation π ∈ Sn, and use it to divide

players into Q groups (numbered 1, 2, . . . , Q) of size c log n. Use the complete binary tree
with Q leaves described in Section 3.1.

3. For each round t between 1 and L = X + Y :

• If t < L, choose a random permutation πt ∈ SQ. If t = L choose a permutation πL
which is random subject to the constraint that all the long player groups (determined
by πX) are assigned to odd labels under πL. For round t player g will be assigned to
all nodes marked πt(g) in the tree. If t = 1, m1 = 0 // (Otherwise mt was set in the
previous round)

• For every group g, use πt and mt to create masked positional data for g for round t.
Positional data consists of the group’s position and members, neighboring groups and
their members.

• Choose a random mask mt+1 ∈ F (for the next round.)

• Create shares of mt+1 by calling RecursiveShares (root,mt+1).

• If t = X st ← true secret.
Otherwise, st ← random element of S

• Create shares of st by calling RecursiveShares (root, st).

• Create τc log n-out-of-c log n Shamir shares of each of the leaf values of the shares created
by RecursiveShares (one for each player in the group corresponding to the leaf.)

• Create authentication data.

• For each g, for each player j ∈ g, j’s (full) input Ijt for round t consists of positional data,
Shamir shares of recursive shares of mt+1 and st corresponding to node πt(g), and au-
thentication data. Partial input Ĩjt consists of all of the above except the authentication
tags for sending messages to your children (in the down-stage).

4. Identify the short players as those players j who are in groups at odd numbered nodes in the
definitive iteration, i.e., πX(j) is odd.

5. For each short player j, send j the list Ij1 , . . . I
j
X−1, Ĩ

j
X .

6. For each long player j, send j the list Ij1 , . . . I
j
L−1, Ĩ

j
L.
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Algorithm 6 Protocol for Player j
S=0; M=0
If at any time you receive spurious messages (messages not expected uder the protocol), ignore
them.
On round t:

Up-Stage:

1. mt = M

2. Use mt to unmask and discover your position in the tree and the identities of your group
members and neighbors for round t.

3. (as player at a leaf) Send your Shamir share to all active members of your group.
Receive Shamir shares from all active members of your group. If insufficient shares
received, output S and quit. Otherwise, reconstruct the leaf values of the recursive
shares of st and mt+1 and send them along with their tags to all active members of the
group at your parent node in the tree.

4. (as player at an internal node)

(a) Receive copies of (intermediate) shares of st andmt+1 and tags from active members
of the groups at your left and right children nodes. Check that correct messages
have been sent. If a fault is detected (missing or incorrect message) output S and
quit.

(b) For each of st and mt+1: interpolate a degree 1 polynomial f from (−1, left-share)
and (1, right-share). Evaluate f(0). This is your share.

(c) If you are not at the root, send the above reconstructed shares of st and mt+1 to
all active members of the group at your parent node. If you are at the root, these
shares are the actual values of st and mt+1.

Down-Stage:

1. If you are at the root, set S = st and M = mt+1 and send these values along with
authentification tags to all active members of the groups at your left and right children
nodes.

2. Else

(a) (as a non-root internal node) Receive copies of st and mt+1 and tags from all active
members of the group at your parent node and check them. If fault detected, output
S and quit.

(b) Set S = st and M = mt+1.

(c) Send st and mt+1 to all active members of the groups at your children nodes. If
you are a short player and have no authentication tags, output st and quit.

t← t+ 1
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necessary that the values of both of its children be received. Therefore, it is necessary that
there is at least one active player at each internal node. Since no other reconstruction is to be
done at internal nodes, this is also sufficient. However, note that the group of c log n players
assigned to an internal node is the same group as those assigned to some leaf node. Hence if
there are no active players at some internal node, then there is a leaf node at which there are
also no active players. Since at the leaf nodes we will have a more stringent requirement for
how many players need to be active, it is sufficient to consider the failure of the algorithm
at the leaf nodes.

Now, the value at a leaf node is distributed as τc log n-out-of-c log n Shamir shares to the
c log n players associated with that leaf node. Thus, this value can be reconstructed if and
only if there are at least τc log n active players at the leaf node. Moreover, in order for the
protocol to succeed, the values at all the leaf nodes must be reconstructible.

Recall that the players are assigned to leaf nodes by their group number so all leaf node
values are reconstructible in a particular round if and only if all the groups have at least
τc log n active players in that round. Moreover, since the same groups are used for all rounds,
though not the same assignment of them to leaves, and each player is either active or absent
for the entire game, the following lemma holds.

Lemma 7. All the leaves are reconstructible throughout the algorithm if and only if all the
groups have at least τc log n active players.

Now recall that the players are assigned to groups by the following random process.
The dealer chooses a random permutation of the n players, and partition the players into
Q = n

c logn
pairwise disjoint groups by choosing successive contiguous blocks of length c log n

in the permutation. Moreover, the choice of which players are active is made independently
of the above process. It turns out that in this case, the number of active players in a fixed
block (i.e. group) is tightly concentrated around its mean. A more precise statement is in
the following lemma, whose proof is a simple application of the Azuma-Hoeffding inequality.
We omit the details here.

Lemma 8. Let b1, b2, . . . , bn be n bits such that exactly m of them are 1 and n − m of
them are 0. Let σ ∈ Sn be a random permutation of n symbols and bσ(1), bσ(2), . . . , bσ(n) be
the induced permutation on bits. Fix any contiguous block bσ(i+1), bσ(i+2), . . . , bσ(i+c logn) of
length c log n, and let random variable Z denote the number of bits in the block which are
1. Then Z has expectation mc logn

n
and satisfies the following concentration inequalities:

Pr

(
Z − mc log n

n
> λc log n

)
≤ e−(λ

2c logn)/2

and

Pr

(
Z − mc log n

n
< −λc log n

)
≤ e−(λ

2c logn)/2

We apply the above concentration inequality to show the following.
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Lemma 9. Let k ≥ 1, and let m denote the number of active players. If all the active
players follow the algorithm, then with probability at least 1− 1

nk ,

• If m ≥ (τ + λ)n, all active players learn the secret.

• If m ≤ (τ − λ)n, the secret cannot be reconstructed.

Proof. As already remarked in Lemma 7 all the leaf values of the iterated shares of the secret
can be reconstructed every round if and only if each group has at least τc log n players. Also,
by Lemma 3 the iterated shares can be decoded into the secret if and only if all the shares
at the leaves are available. Thus, provided the active players follow the protocol, the secret
is recovered if and only if each group has at least τc log n players, so that is what we need
to prove.

Imagine the permutation of players is a bit string such that every bit corresponds to
one player. If a bit is 1 it means the corresponding player is active and if a bit is 0 the
corresponding player is inactive. There are two cases.

Case (1) m ≥ (τ + λ)n. Consider a particular group g and let Zg denote the number of
active players at g. By Lemma 8,

Pr(Zg < τc log n) = Pr

(
Zg −

mc log n

n
<
(
τ − m

n

)
c log n

)
≤ Pr

(
Zg −

mc log n

n
< −λc log n

)
≤ e−(λ

2c logn)/2

Taking a union bound over all the n
c logn

groups we see that the probability that the algorithm
fails to recover the secret, which happens only when some group does not have enough active
players, is at most ne−(λ

2c logn)/2 = n1−λ2c/2. Setting c = 2(k+1)
λ2

we see that the probability
that the algorithm fails is at most 1/nk.

Case (2) m ≤ (τ − λ)n. Once again consider a particular group g and let Zg denote the
number of active players at g. By Lemma 8,

Pr(Zg > τc log n) = Pr

(
Zg −

mc log n

n
>
(
τ − m

n

)
c log n

)
≤ Pr

(
Zg −

mc log n

n
> λc log n

)
≤ e−(λ

2c logn)/2

Therefore with probability at least 1 − e−(λ2c logn)/2 = 1 − 1/nk+1, g does not have enough
active players. Since the failure of a single group to have enough active players is sufficient
to break the protocol completely (by Lemma 3) it follows that with probability at least
1− 1/nk+1 ≥ 1− 1/nk the algorithm fails to recover the secret.
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Why do players follow the protocol? As in the n-out-of-n case, we can argue that a player
looking at his remaining input has a very low estimate of the current round being definitive,
unless he is actually on his last round. In his last round of input, there is nothing he can do
to prevent others from learning the secret that would not also prevent himself from learning
it. We omit the details, which are essentially the same as in the proofs of Lemma 6 and
Theorem 1. We conclude with

Proof of Theorem 2. Lemma 9 shows that with high probability, when the fraction of active
players is higher than τ + λ, all active players following the algorithm leads to their all
learning the secret, while if the fraction is less than τ − λ then nobody learns it. We have
also remarked that no player can do better by deviating from the protocol, so that it is a Nash
equilibrum. The communication tree has depth logQ = log n− log log n− log c = O(log n).
On each round, each player sends messages to Θ(log n) others, and the messages themselves
are log q = O(log n) bits. The algorithm runs for 1/β = O(1) steps in expectation. It
follows that the algorithm has latency O(log n) and each player sends O(log2 n) bits in
expectation.

6 Conclusion

We have presented scalable mechanisms for rational secret sharing problems. Our algorithms
are scalable in the sense that the number of bits sent by each player isO(log n) and the latency
is at most logarithmic in the number of players. For n-out-of-n rational secret sharing, we
give a scalable algorithm that is a Nash equilibrium to solve this problem. For m-out-of-
n rational secret sharing where (1) m = Θ(n); and (2) the set of active players is chosen
independently of the random bits of the dealer, we give a scalable algorithm with threshold
parameter τ that is a Nash equilibrium and ensures that for any fixed, positive λ that if (1)
at least a m/n > τ + λ fraction of the players are active, all players will learn the secret;
and (2) if fewer than a τ − λ fraction of the players are active, then the secret can not be
recovered.

Several open problems remain. First, while our algorithms lead to a Θ(n) multiplicative
reduction in communication costs for rational secure multiparty computation (SMPC), the
overall bandwidth for this problem is still very high. We ask: Can we design scalable
algorithms for rational SMPC? This is related to our second open problem which is: Can we
design scalable algorithms for simulating a class of well-motivated mediators? In some sense,
this problem may be harder than the SMPC problem, since some types of mediators offer
different advice to different players. In other ways, the problem is easier: a simple global
coin toss is an effective mediator for many games. A final important problem is: Can we
design coalition-resistant scalable algorithms for rational secret sharing?
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