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Abstract

We give a theoretical treatment of ratcheting, lifting it from a technique used in secure

messaging protocols to a cryptographic primitive. To allow a modular treatment, we decouple

the creation of keys from their use. We define ratcheted key exchange and give a protocol proven

to achieve it. We then define ratcheted encryption and show how to achieve it generically from

ratcheted key exchange and standard encryption.
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1 Introduction

In 2015, the number of text messages sent worldwide reached 8.3 trillion (Portio Research). This

year, WhatsApp alone reports handling 42 billion text messages per day. Protecting the privacy and

integrity of all this data is urgent. Providers recognize this, and a large number of secure-messaging

apps have emerged [1], for example: WhatsApp, Viber, LINE, Telegram, Kakao Talk, Signal Private

Messenger, Cyber Dust, ChatSecure, Threema, Wickr Secure Messenger, Cyphr, CoverMe, iMessage

and GoldBug.

With these offerings, providers are seizing the opportunity to provide security that aims to be

better, in several ways, than the security than is currently provided by TLS-based web services.

The first way it aims to be better is in being end-to-end. In Gmail, the connection between users

and Google is secured (via TLS), but Google has the data in the clear. Secure messaging apps in

contrast encrypt messages under the keys of the communicants and even the server does not see

data in the clear. The second way it aims to be better is through the use of a technique called

ratcheting that changes keys with high frequency. Ratcheting, in some form, is used in almost all

the above-mentioned secure-messaging apps, and has an importance peculiar to this domain due

to the long-lived nature of messaging conversations.

This paper initiates a theoretical treatment of ratcheting. We aim to figure out and formalize

the goals and give proven-secure schemes. The topic, we found, is more complex than it may seem.

Ratcheting. Secure messaging (as with TLS), uses the ubiquitous paradigm in which (1) the parties

run an (explicit or implicit) authenticated key exchange to get a session key K, and then (2) secure

(encrypt and authenticate) data using the session key K. Ratcheting is employed in (2). We will

not be concerned with (1). Our setting is thus a simple symmetric one of two parties starting with

a shared key K, and we are concerned with secure communication under it.

In TLS, all data is secured underK with an authenticated encryption scheme. Under ratcheting,

the key is constantly changing. The method was introduced by Borisov, Goldberg and Brewer

(BGB) [12] in their highly influential OTR (Off the Record) Communication system. (They do not

call it ratcheting, this term originating later.) Roughly it works like this:

B → A: gb1 ; A→ B: ga1 , E(K1,M1) ; B → A: gb2 , E(K2,M2) ; . . . (1)

Here ai and bi are random exponents picked by A and B respectively; K1 = H(gb1a1), K2 =

H(ga1b2), . . .; H is a hash function; E is an encryption function taking key and message to return

a ciphertext; and g is the generator of an underlying group. Each party deletes its exponents and

keys once they are no longer needed for encryption or decryption.

Different messaging apps specify and implement different variants and extensions. Exactly what

security goals these types of methods target or achieve is nebulous. In their SOK (Systemization of

Knowledge) paper on secure messaging, UDBFPGS [21] survey many of the systems that existed

at the time and attempt to classify them in terms of security. They note that security claims

about ratcheting in different places include “forward-secrecy,” “backward-secrecy,” “self-healing”

and “future secrecy.” They conclude: “The terms are controversial and vague in the literature”

[21, Section 2.D].

Contributions. This paper aims to lift ratcheting from a technique to a cryptographic primitive,

with a precise syntax and formally-defined security goals. Once this is done, we specify and prove

secure some protocols that are closely related to the in-use ones.

If ratcheting is to be a primitive, a syntax is the first requirement. This was already a consider-
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able challenge. As employed, the ratcheting technique is used within a larger protocol, and one has

to ask what it might mean in isolation. To allow a modular treatment, we decouple the creation

of keys from their use, defining two primitives, ratcheted key exchange and ratcheted encryption.

For each, we give a syntax. While ratcheting in apps is typically per message, our model is general

and flexible, allowing the sender to ratchet the key at any time and encrypt as many messages as

it likes under a given key before ratcheting again.

Next we give formal, game-based definitions of security for both ratcheted key exchange and

ratcheted encryption. At the highest level, the requirement is that compromise (exposure in our

model) revealing a party’s current key and state should have only a local and temporary effect

on security: a small hiccup, not compromising prior communications and after whose passage

both privacy and integrity are somehow restored. This covers forward security (prior keys or

communications remain secure) and backward security (future keys and communications remain

secure). Formalizing this involves figuring out what is the best achievable and gets quite delicate.

Amongst the issues is that following exposure there is some (necessary) time lag before security is

regained, and that privacy and integrity are related. For ratcheted key exchange, un-exposed keys

are required to be indistinguishable from random in the spirit of [8] —rather than merely, say, hard

to recover— to allow them to be later securely used. For ratcheted encryption, the requirement

is in the spirit of nonce-based authenticated encryption [19], so that authenticity in particular is

provided. The definitions are strong, asking for the most that might be achievable.

The definitions are chosen to allow a modular approach to constructions. We exemplify by

showing how to build ratcheted encryption generically from ratcheted key-exchange and multi-

user-secure nonce-based encryption [10]. This allows us to focus on ratcheted key exchange.

We give a protocol for ratcheted key exchange that is based on DH key exchanges. The core

technique is the same as in [12] and the in-use protocols, but there are small but important differ-

ences, including MAC-based authentication of the transferred ephemeral ga values and the way keys

are derived. Proving that the protocol meets our definition of secure ratcheted key-exchange turns

out to be challenging. Our proof is based on the SCDH (Strong Computational Diffie-Hellman)

assumption [4] and is in the random-oracle model [7]. It is obtained in two steps. The first, that we

give, is a standard-model reduction to an assumption we call ODHE (Oracle Diffie-Hellman with

Exposures). The second, that can be obtained via techniques from [7] and we accordingly omit, is

a validation of ODHE under SCDH in the ROM.

We treat the core ratcheting problem, that we call one-sided. (One party is a sender and the

other a receiver, rather than both playing both roles.) This already involves considerable complex-

ity. We will briefly discuss extensions to two-sided ratcheting as well as to double-ratcheting [3].

Model and syntax. Our syntax specifies a scheme RKE for ratcheted key exchange via three algo-

rithms: initial key generation RKE.IKg, sender key generation RKE.SKg and receiver key generation

RKE.RKg, modeling the following process. (See Fig. 3 for an illustration.) The parties maintain

output keys (representing the keys they are producing for an overlying application like ratcheted

encryption) and session keys (local state for their internal use). At any time, the sender A can run

RKE.SKg on its current keys to get an ephemeral public key that it sends to the receiver, as well as

updated keys for itself. The receiver B correspondingly will run RKE.RKg on a received ephemeral

public key and its current keys to get updated keys, transmitting nothing. RKE.IKg provides initial

output keys (the same for both parties) and initial session keys. These in practice would be derived

from the assumed shared (authentic) symmetric key given by a higher-level process that RKE.IKg

allows us to remove from the picture so as to isolate ratcheting as a stand-alone primitive. We
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additionally have RKE.IKg issue the receiver a secret key lsk whose associated public key lpk is

held by the sender. This is not a “real” public key, by which we mean that it does not need a

certificate. It is rather a convenient abstraction boundary, representing the first DH value lpk = gb

sent by the receiver in Equation (1). In practice it should be sent authenticated. A ratcheted

encryption scheme RE maintains the same three key-generation algorithms, now denoted RE.IKg,

RE.SKg and RE.RKg, and adds an encryption algorithm RE.Enc for the sender —in the nonce-based

vein [19], taking a key, nonce, message and header to deterministically return a ciphertext— and a

corresponding decryption algorithm RE.Dec for the receiver. The key for encryption and decryption

is what ratcheted key exchange referred to as the output key.

The correctness requirement is more demanding than is usual, asking for some robustness: if the

receiver receives an incorrect ephemeral public key that it rejects, it maintains its state and will still

accept a subsequent correct ephemeral public key. This prevents a denial-of-service attack in which

a single incorrect ephemeral public key sent to the receiver results in all future communications

being rejected.

Security. In the spirit of [8] we give the adversary complete control of communication. Our definition

of security for ratcheted key exchange in Section 4.2 is via a single game KIND that captures both

privacy and integrity. After (trusted) initial key-generation, the game gives the adversary oracles

to invoke either sender or receiver key generation and also to expose sender keys (both output

and session). Roughly the requirement is that un-exposed keys be indistinguishable from random.

The delicate issue is that this is true only under some conditions. Thus, exposure in one session

will compromise the next session. Also, a post-expose active attack on the receiver (in which the

adversary supplies the ephemeral public key) can result in continued violation of integrity. Our game

carefully makes the necessary restrictions to capture these and other situations, ultimately asking for

the best possible security. For ratcheted encryption, we again give in Section 5 a single game RAE

capturing ratcheted authenticated encryption with nonce-based security. The additional oracles for

the adversary are encryption and decryption. The requirement is that, for un-exposed and properly

restricted keys, the adversary cannot distinguish whether its encryption and decryption oracles are

real, or return random ciphertexts and ⊥ respectively.

Schemes. Our ratcheted key exchange scheme in Section 4.3 is simple and efficient and uses the same

basic DH technique as ratcheting in OTR [12] or WhatsApp, but analysis is quite involved. The

receiver long term public key is a group element gb. An ephemeral public key is a ga accompanied by

a mac under the prior session key. We explain why the mac is crucial to security. The output and

next session key are derived via a hash function applied to gab. Theorem 4.1 establishes that the

scheme meets our stringent notion of security for ratcheted key exchange. The proof uses a game

sequence that includes a hybrid argument to reduce the security of the ratcheted key exchange

to our ODHE (Oracle Diffie-Hellman with Exposures) assumption. The latter is an extension of

the ODH assumption of [4] and, like the latter, can be validated in the ROM under the SCDH

assumption of [4], which in turn is a variant of the Gap-DH assumption of [18]. Ultimately, this

yields a proof of security for our ratcheted key exchange protocol under the SCDH assumption in

the ROM.

Our construction of a ratcheted encryption scheme in Section 5 is a generic combination of any

ratcheted key exchange scheme (meeting our definition of security) and any nonce-based authenti-

cated encryption scheme. Theorem 5.1 establishes that the scheme meets our notion of security for

ratcheted encryption. The analysis is facilitated by assuming multi-user security for the base nonce-

based encryption scheme as defined in [10], but a hybrid argument reduces this to the standard
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single-user security defined in [19]. Encryption schemes meeting this notion are readily available.

Discussion and related work. Messaging sessions tend to be longer lived than typical TLS sessions,

with conversations that are on-going for months. This is part of why messaging security seeks,

via ratcheting, fine-grained forward and backward security. Still, exactly what threat ratcheting

prevents in practice needs careful consideration. This is to some extent outside our scope, since

messaging-app providers taking the threat seriously enough to implement ratcheting motivates

cryptographers seriously evaluating ratcheting, but is still worth discussion. If the threat is malware

on a communicant’s phone that can directly exfiltrate text of conversations, ratcheting will not help.

Ratcheting will be of more help when users delete old messages, when the malware is exfiltrating

keys rather than text, and when its presence on the phone is limited through software security.

Whisper Systems’s Signal protocol [3] uses double-ratcheting— if A sends multiple messages be-

fore receiving a reply, it will send a single ga, and then advance its key for every message by hashing

the prior key. Most current secure messaging apps adapt the Signal protocol. Double ratcheting is

effectively a combination of two studied primitives, the first being our (single) ratcheting, and the

other being forward-secure pseudorandom generators and key exchange [11], and might be treated

in this way. We do not undertake such a treatment here. Messaging apps also implement two-sided

ratcheting, where the parties alternate sender and receiver roles and the DH values are intertwined

as in Equation (1). We focused on one-sided ratcheting as more basic and already complex enough.

Treating the two-sided version would require an extension of our work.

Our work was instigated by WhatsApp’s white paper [22] and their announcement of their move

to default end-to-end security. If ratcheting was to be used 42 billion times a day, we’d like to

know precisely what it does. In the end, our work represents our view of what ratcheting aims

to do and how to do it securely, but we stop well short of claiming an analysis or proof of what

WhatsApp actually implements. Their full system is not only more complex than ours but we are

not even sure exactly what it is. We did not feel we got a fully detailed specification from the

white paper [22]. We were also confused by the latter contradicting pseudocode [2]. In our work we

have thus stepped back and, in the tradition of cryptographic research, given ourselves the freedom

to deviate somewhat from what may be implemented, or even be in designer’s minds, to study,

understand, formalize and achieve ratcheting as a goal in its own right.

Key-insulated cryptography [14, 15, 16] also targets forward and backward security but in a

model where there is a trusted helper and an assumed-secure channel from helper to user that is

employed to update keys. Implementing the secure channel is problematic due to the exposures [6].

Ratcheting in contrast works in a model where all communication is under adversary control.

Cohn-Gordon, Cremers and Garratt [13] study and compare different kinds of post-compromise

security in contexts including authenticated key exchange. They mention ratcheting as a technique

for maintaining security in the face of compromise.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative integers. Let ε denote

the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes its i-th bit,

and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we use mem[p] to denote the

element of the table that is indexed by p. By x ∥ y we denote a uniquely decodable concatenation

of strings x and y (if lengths of x and y are fixed then x ∥ y can be implemented using standard
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Game SUFCMAF
F

fk←$ {0, 1}F.kl
win← false
FTag,Verify

Return win

Tag(m)

σ ← F.Ev(fk,m)

S ← S ∪ {(m,σ)}
Return σ

Verify(m,σ)

σ′ ← F.Ev(fk,m)

If (σ = σ′) and ((m,σ) ̸∈ S) then

win← true
Return (σ = σ′)

Game MAEN
SE

b← {0, 1} ; v ← 0

b′←$NNew,Enc,Dec ; Return (b′ = b)

New

v ← v + 1 ; sk[v]←$ {0, 1}SE.kl

Enc(i, n,m, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n) ∈ U then return ⊥
c1 ← SE.Enc(sk[i], n,m, h) ; c0←$ {0, 1}SE.cl(|m|)

U ← U ∪ {(i, n)} ; S ← S ∪ {(i, n, cb, h)}
Return cb

Dec(i, n, c, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n, c, h) ∈ S then return ⊥
m← SE.Dec(sk[i], n, c, h)
If b = 1 then return m else return ⊥

Figure 1: Games defining strong unforgeability of function family F under chosen message attack,
and multi-user authenticated encryption security of SE.

string concatenation). If X is a finite set, we let x←$ X denote picking an element of X uniformly

at random and assigning it to x. We use a special symbol ⊥ to denote an empty table position,

and we also return it as an error code indicating an invalid input; we assume that adversaries never

pass ⊥ as input to their oracles.

Algorithms may be randomized unless otherwise indicated. Running time is worst case. If A is

an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and

assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting

y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with

inputs x1, . . .. Adversaries are algorithms.

We use the code based game playing framework of [9]. (See Fig. 1 for an example.) We let

Pr[G] denote the probability that game G returns true. In code, uninitialized integers are assumed

to be initialized to 0, Booleans to false, strings to the empty string, sets to the empty set, and

tables are assumed to be initially empty.

Function families. A family of functions F specifies a deterministic algorithm F.Ev. Associated to F

is a key length F.kl ∈ N, an input set F.In, and an output set F.Out. Evaluation algorithm F.Ev

takes fk ∈ {0, 1}F.kl and an input x ∈ F.In to return an output y ∈ F.Out.

Strong unforgeability under chosen message attack. Consider game SUFCMA of Fig. 1, associated to

a function family F and an adversary F . In order to win the game, adversary F has to produce a

valid tag σforge for any message mforge. The requirement is that F did not previously receive σforge as

a result of calling its Tag oracle for mforge. The advantage of F in breaking the SUFCMA security

of F is defined as Advsufcma
F,F = Pr[SUFCMAF

F ]. If no adversaries can achieve a high advantage in

breaking the SUFCMA security of F while using only bounded resources, we refer to F as a MAC

algorithm and we refer to its key fk as a MAC key.

Symmetric encryption schemes. A symmetric encryption scheme SE specifies deterministic algo-
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rithms SE.Enc and SE.Dec. Associated to SE is a key length SE.kl ∈ N, a nonce space SE.NS,

and a ciphertext length function SE.cl : N→ N. Encryption algorithm SE.Enc takes sk ∈ {0, 1}SE.kl,
a nonce n ∈ SE.NS, a message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext

c ∈ {0, 1}SE.cl(|m|). Decryption algorithm SE.Dec takes sk, n, c, h to return message m ∈ {0, 1}∗ ∪
{⊥}, where ⊥ denotes incorrect decryption. Decryption correctness requires that SE.Dec(sk, n,

SE.Enc(sk, n,m, h), h) = m for all sk ∈ {0, 1}SE.kl, all n ∈ SE.NS, allm ∈ {0, 1}∗, and all h ∈ {0, 1}∗.
In this work we consider only nonce-based encryption schemes with associated data, and we therefore

omit stating these qualifiers. Nonce-based symmetric encryption was introduced in [20], whereas [19]

also considers it in the setting with associated data.

Multi-user authenticated encryption. Consider game MAE of Fig. 1, associated to a symmetric en-

cryption scheme SE and an adversary N . It extends the definition of authenticated encryption

with associated data for nonce-based schemes [19] to the multi-user setting, the latter case first

formalized in [10]. The adversary is allowed to increase the number of users by calling oracle New.

For any of the generated user keys, N can request encryptions of plaintext messages by calling

oracle Enc and decryptions of ciphertexts by calling oracle Dec. In the real world Enc and Dec

provide correct encryptions and decryptions, whereas in the random world Enc returns uniformly

random ciphertexts and Dec always returns the incorrect decryption symbol ⊥. The goal of the

adversary is to distinguish between these two cases. In order to avoid trivial attacks, N is not

allowed to call Dec with ciphertexts that were returned by Enc. We allow N to call Enc only

once for every unique user-nonce pair (i, n). The definition could be extended to not allow repeated

queries of (i, n,m, h), but this requirement is satisfied by fewer schemes. The advantage of N in

breaking the MAE security of SE is defined as Advmae
SE,N = 2Pr[MAEN

SE]− 1.

3 Oracle Diffie-Hellman with exposures

The oracle Diffie-Hellman assumption [5] in a cyclic group requires that it is hard to distinguish

between a random string and a hash function H applied to gxy given gx, gy, and an access to an

oracle that returns H(Xy) for arbitrary X (excluding X = gx). We extend this assumption to

allow multiple queries (with exposures) and broader classes of inputs to the hash function.

Oracle Diffie-Hellman assumption with exposures. Let G be a cyclic group of order p ∈ N, and let G∗

denote the set of its generators. Let H be a function family such that H.In = {0, 1}∗. Consider

game ODHE of Fig. 2 associated to G,H and an adversary O, where O is required to call oracle

Up at least once prior to making any oracle queries to Ch and Exp. The game starts by sampling

a function key hk, a group generator g and a secret exponent y. The adversary is given hk, g, gy

and it has access to oracles Up, Ch, Exp, Hash. Oracle Up generates a new challenge exponent x

and returns gx, along with increasing the integer counter i0 that denotes the number of the current

challenge exponent (indexed from 0). Oracle Hash takes an arbitrary integer i, an arbitrary string

s and a group element X to return H.Ev(hk, i ∥ s ∥Xy). For each of the challenge exponents x,

adversary can choose to either call oracle Exp to get the value of x, or call oracle Ch with input

s to get a challenge value that is generated as follows. In the real world (when b = 1) oracle Ch

returns H.Ev(hk, i0 ∥ s ∥ gxy), and in the random world (when b = 0) it returns a uniformly random

string. The goal of the adversary is to distinguish between these two cases. In order to avoid trivial

attacks, O is not allowed to make equivalent queries to oracles Ch and Hash. Note that adversary

is allowed to win the game if it happens to guess a future challenge exponent x and query it to
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Game ODHEO
G,H

b←$ {0, 1} ; hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; i0 ← −1
b′←$OUp,Ch,Exp,Hash(hk, g, gy) ; Return (b′ = b)

Up

op← ε ; x←$ Zp ; i0 ← i0 + 1 ; Return gx

Ch(s)

If (op = “exp”) or ((i0, s, g
x) ∈ Shash) then return ⊥

op← “ch” ; Sch ← Sch ∪ {(i0, s, gx)}
If mem[i0, s, g

x] =⊥ then mem[i0, s, g
x]←$ H.Out

r1 ← H.Ev(hk, i0 ∥ s ∥ gxy) ; r0 ← mem[i0, s, g
x] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x

Hash(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i ≤ i0 then Shash ← Shash ∪ {(i, s,X)}
Return H.Ev(hk, i ∥ s ∥Xy)

Figure 2: Game defining oracle Diffie-Hellman assumption with exposures in G,H.

oracle Hash ahead of time (the corresponding triple (i, s,X) will not be added to the set of inputs

that are not allowed to be made to oracle Ch). Finally, our definition of string concatenation ∥
requires that the result of i0 ∥ s ∥ gxy is a uniquely decodable string, meaning that the encoding of

(i, s, gxy) into strings is injective. The advantage of O in breaking the ODHE security of G,H is

defined as AdvodheG,H,O = 2Pr[ODHEO
G,H]− 1.

Plausibility of the assumption. We do not know of any standard model group and function family

which can be shown to achieve this security notion. The original oracle Diffie-Hellman assump-

tion of [5] was justified by a reduction in the random oracle model to the strong Diffie-Hellman

assumption. The latter was defined in [5] and is a weaker version of the gap Diffie-Hellman as-

sumption from [18]. We note that an analogous result could be obtained for our expanded oracle

Diffie-Hellman notion. Therefore, we do not provide the proof of this in our work.

4 Ratcheted key exchange

Ratcheted key exchange allows users to agree on shared secret keys while providing very strong

security guarantees. In this work we consider a setting that encompasses two parties, and we assume

that only one of them sends key agreement messages. We call this party a sender, and the other

party – a receiver. We also assume that the receiver owns a key pair consisting of a public key and

a secret key, such that the public key is available to the sender. This enables us to make the first

steps towards modeling the schemes that are used in the real world messaging applications. Future

work could extend our model to allow both parties to send key agreement messages, and consider

the group chat setting where multiple users engage in shared conversations.
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Figure 3: The interaction between ratcheted key exchange algorithms.

4.1 Definition of ratcheted key exchange

Consider Fig. 3 for an informal overview of algorithms that constitute a racheted key exchange

scheme RKE, and the interaction between them. We define three algorithms RKE.IKg, RKE.SKg

and RKE.RKg as follows. Initial key generation algorithm RKE.IKg generates and distributes the

following keys. Receiver’s key pair (lpk, lsk) consists of a long-term public key lpk and a long-term

secret key lsk. Output key k is the initial shared secret key that can be used by both parties for

any purpose such as running a symmetric encryption scheme. Session keys sek0 and sek1 contain

secret information that is required for future key exchanges, such as MAC keys (to ensure the

authenticity of key exchange) and temporary secrets (that could be used for the generation of the

next output keys). As a result of running RKE.IKg, the sender gets lpk, sek0, k0 and the receiver

gets lsk, sek1, k1, where k0 = k1 = k.

Whenever the sender wants to generate a new shared secret key, it runs sender’s key generation

algorithm RKE.SKg. Algorithm RKE.SKg takes receiver’s long-term public key lpk and sender’s

session key sek0. It generates a new output key k0, updates sender’s session key sek0, and outputs

an ephemeral key ephk. The latter can be used by the receiver in order to generate the same output

key.

Receiver’s key generation algorithm RKE.RKg takes long-term public key lpk, long-term secret

key lsk, receiver’s session key sek1, ephemeral key ephk (received from the sender) and the current

shared output key k1. It returns a (possibly new) output key k1, updates receiver’s session key

sek1, and sets a Boolean flag acc indicating whether a new output key was succesfully generated.

The correctness of key generation is two-fold. First, if the receiver gets a valid ephemeral key ephk,

then algorithm RKE.RKg must set acc = true and produce a new receiver’s output key k1 that is

equal to the corresponding sender’s output key k0. Otherwise, RKE.RKg must set acc = false and

leave the keys k1, sek1 unchanged; this requirement is the reason why RKE.RKg takes the old value

of k1 as one of its inputs. We now formalize the described scheme and its correctness requirements.

Ratcheted key exchange schemes.A ratcheted key exchange scheme RKE specifies algorithms RKE.IKg,

RKE.SKg and RKE.RKg. Associated to RKE is an output key length RKE.kl ∈ N and sender’s key
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Game CORC
RATCHET

bad← false ; (k, sek0, (lpk, lsk, sek1))← RATCHET.IKg ; k0 ← k ; k1 ← k

CUp,RatRec // For a key exchange scheme RATCHET
CUp,RatRec,Enc // For an encryption scheme RATCHET
Return (bad = false)

Up

r←$ RATCHET.RS ; (sek0, k0, ephk)←$ RATCHET.SKg(lpk, sek0; r)

(sek1, k1, acc)←$ RATCHET.RKg(lpk, lsk, sek1, ephk, k1)

If (acc = false) or (k0 ̸= k1) then bad← true

RatRec(ephk)

(sek′, k′, acc)←$ RATCHET.RKg(lpk, lsk, sek1, ephk, k1)

If (acc = false) and ((k′ ̸= k1) or (sek
′ ̸= sek1)) then bad← true

Enc(n,m, h)

c← RATCHET.Enc(k0, n,m, h) ; m′ ← RATCHET.Dec(k1, n, c, h)
If (m′ ̸= m) then bad← true

Figure 4: Game simultaneously defining correctness of ratcheted key exchange scheme RATCHET,
and correctness of ratcheted encryption scheme RATCHET. Encryption oracle Enc is defined only
for the latter case.

generation randomness space RKE.RS. Initial key generation algorithm RKE.IKg returns k, sek0,

(lpk, lsk, sek1), where k ∈ {0, 1}RKE.kl is an output key, sek0 is a sender’s session key, and lpk, lsk, sek1

are receiver’s long-term public key, receiver’s long-term secret key and receiver’s session key, respec-

tively. Sender’s key generation algorithm RKE.SKg takes lpk, sek0 and randomness r ∈ RKE.RS

to return a new sender’s session key sek0, a new sender’s output key k0 ∈ {0, 1}RKE.kl, and an

ephemeral key ephk. Receiver’s key generation algorithm RKE.RKg takes lpk, lsk, sek1, ephk and

receiver’s output key k1 ∈ {0, 1}RKE.kl to return a new receiver’s session key sek1, a new receiver’s

output key k1 ∈ {0, 1}RKE.kl, and a flag acc ∈ {true, false}.

Correctness of ratcheted key exchange. Consider game COR of Fig. 4 associated to a ratcheted key

exchange scheme RATCHET and an adversary C, where C is provided with an access to oracles

Up and RatRec. Oracle Up runs algorithm RKE.SKg to generate a new sender’s output key k0
with the corresponding ephemeral key ephk; it then runs RKE.RKg with ephk as input to generate

a new receiver’s output key k1. It is required that acc = true and k0 = k1 at the end of every

Up call. Oracle RatRec takes an ephemeral key ephk of adversary’s choice and attempts to run

RKE.RKg with ephk (and current receiver’s keys) as input. The correctness requires that if the

receiver’s key update fails (meaning acc = false) then the receiver’s keys k1, sek1 remain unchanged.

We consider an unbounded adversary and allow it to call its oracles in any order. The advantage

of C breaking the correctness of RATCHET is defined as AdvcorRATCHET,C = 1 − Pr[CORC
RATCHET].

Correctness property requires that AdvcorRATCHET,C = 0 for all unbounded adversaries C.

4.2 Security of ratcheted key exchange

Ratcheted key exchange attempts to provide strong security guarantees even in the presence of an

adversary that can steal the secrets stored by the sender. We consider an active attacker who is

able to intercept and modify any ephemeral keys sent between the sender and the receiver. The
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goal is that the attacker cannot make them agree on different secret keys or distinguish these secret

keys from random strings. Furthermore, we desire certain stronger security properties to hold even

if an attacker manages to steal the secrets stored by sender, which we refer to as forward security

and future security. Forward security requires that such an attacker cannot distinguish prior keys

from random. Future security requires that the knowledge of sender secrets at the current time

period can not be used to distinguish future validly generated keys from random strings.

It is clear that if an attacker steals the secret information of the sender it can create its own

ephemeral keys resulting in the receiver agreeing on a “secret” key which is known by the attacker.

At this point, it can be difficult to say what restrictions should be placed on the keys the attacker

makes the receiver agree to. For example, is it a further breach of security if the attacker then

later causes the sender and receiver to agree on the same secret key? What should happen if the

attacker later sends a validly generated ephmeral key to the receiver?

In our security model we choose to insist on two straightforward policies in this scenario. The

first is that whenever a non-validly generated ephemeral key is accepted by the receiver (which

we emphasize should only be possible when an attacker has stolen the sender’s secrets) then even

full knowledge of the key the receiver has generated should not leak any information about other

correctly generated keys. The second is that at any point in time, if a validly generated ephemeral

key is accepted by the receiver then it should agree with the sender on what the key is and the

adversary should not be able to distinguish it from random.

Key indistinguishability of ratcheted key exchange schemes. Consider game KIND on the left side of

Fig. 5 associated to a ratcheted key exchange scheme RKE and an adversary D. The advantage of

D in breaking the KIND security of RKE is defined as AdvkindRKE,D = 2Pr[KINDD
RKE]− 1.

The adversary is given receiver’s long-term public key lpk as well as access to oracles RatSend,

RatRec, Exp, ChSend, and ChRec. It can call oracle RatSend to receive validly generated

ephemeral keys ephk from the sender, and it can call oracle RatRec to pass arbitary ephemeral

keys to the receiver. Oracle Exp returns the current secrets sek0, k0 possessed by the sender as

well as the random seed r that was used to create the most recent ephk in RatSend.

The challenge oracles ChSend and ChRec provide the adversary with keys k0 and k1 in the

real world (when b = 1), or with uniformly random bit strings in the random world (when b = 0).

The goal of the adversary is to distinguish between these two worlds. To disallow trivial attacks

the game makes use of tables op and auth (initialized as empty) as well as a boolean flag restricted

(initialized as false). Specifically, op keeps track of the oracle calls made by the adversary and is

used to ensure that it can not trivially win the game by calling oracle Exp to get secrets that were

used for one of the challenge queries. Table auth keeps track of the ephemeral keys ephk validly

generated by RatSend so that we can set the flag restricted whenever the adversary has taken

advantage of an Exp query to send maliciouly generated ephk to RatRec. In this case we do not

expect the receiver’s key k1 to look random or match the sender’s key k0 so ChRec is “restricted”

and will return k1 in both the real and random worlds.

Authenticity of key exchange. Our security definition implicitly requires the authenticity of key ex-

change. Specifically, assume that an adversary can violate the authenticity in a non-trivial way,

meaning without using Exp oracle to acquire the relevant secrets. This means that the adversary

can construct a malicious ephemeral key ephk∗ that is accepted by the receiver, while not setting

the restricted flag to true. By making the receiver accept ephk∗, the adversary achieves the situation

when the sender and the receiver produce different output keys k0 ̸= k1. Now adversary can call

oracles ChSend and ChRec to get both keys and compare them to win the game. In the real
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world (when b = 1) the returned keys will be different, whereas in the random world (when b = 0)

they will be the same.

Allowing recovery from failures. Consider a situation when an attacker steals all sender’s secrets. At

this point, the attacker has an ability to impersonate the sender. It would drop all further packets

sent by the sender and instead use the exposed secrets to agree on its own shared secret keys with

the receiver. In the security game this corresponds to the case when the adversary calls Exp and

then starts calling oracle RatRec with maliciously generated ephemeral keys ephk. This sets the

restricted flag to true, making the ChRec oracle always return the real receiver’s key k1 regardless

of the value of game’s challenge bit b. The design decision at this point is – do we want to allow

the game to recover from this state, meaning should the restricted flag be ever set back to false?

Our decision on this matter was determined by the two “policies” discussed above. As long the

adversary keeps sending maliciously generated ephemeral keys ephk we keep restricted set to true,

thereby requiring that real receiver’s key k1 returned from ChRec is of no help in distinguishing

the real sender’s key k0 from random as desired from the first policy. To match the second policy,

if the adversary the validly generated ephk (i.e. ephk = auth[i1]) to RatRec and it is accepted,

the restricted flag is set back to false so that the output of ChRec again depends on the bit, thus

requiring k1 to be equal to k0 and indistinguishable from random.

4.3 Construction of ratcheted key exchange

In this section we construct a ratcheted key exchange scheme, and deduce a bound on the success

of any adversary attacking its KIND security. The idea of our construction is as follows. We let the

sender and the receiver perform the Diffie-Hellman key exchange. The receiver’s long-term secret

key contains a secret DH exponent lsk = y, and its long-term public key contains the corresponding

public value lpk = gy (working in some cyclic group with generator g). In order to generate a new

shared secret key, the sender picks its own secret exponent x and computes the output key (roughly)

as k0 = H(lpkx) = H(gxy), where H is some hash function. The sender then sends an ephemeral

key containing gx to the receiver, enabling the latter to compute the same output key. In order to

ensure the authenticity of key exchange, both parties use a shared MAC key, meaning the ephemeral

key also includes a tag of gx.

Note that the used MAC key should be regularly renewed in order to ensure that the scheme

provides future security against exposures. As a result, the output of applying the hash function

on gxy is also used to derive a new MAC key. The initial key generation provides both parties with

a shared MAC key and a shared secret key that are sampled uniformly at random. The formal

definition of our key exchange scheme is as follows.

Ratcheted key exchange scheme RATCHET-KE. Let G be a cyclic group of order p ∈ N, and let G∗

denote the set of its generators. Let F be a function family such that F.In = G. Let H be a function

family such that H.In = {0, 1}∗ and H.Out = {0, 1}κ for some κ > F.kl. We build a ratcheted key

exchange scheme RKE = RATCHET-KE[G,F,H] as defined in Fig. 6, with RKE.kl = κ − F.kl and

RKE.RS = Zp.

Design considerations. In the construction of RATCHET-KE, function H(hk, ·) takes a string w =

i ∥σi ∥ gxi ∥ gxiy as input. The most straightforward part of w is gxiy, which provides unpredictabil-

ity to ensure that the generated keys are indistinguishable from uniformly random strings. String w

also includes the counter i, and the corresponding ephemeral key ephki = (gxi , σi). Including i in w

ensures that an attaker cannot cause the sender and recevier to agree on the same keys in different
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Game KINDD
RKE

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0
(k, sek0, (lpk, lsk, sek1))←$ RKE.IKg
k0 ← k ; k1 ← k
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(lpk)
Return (b′ = b)

RatSend

r←$ RKE.RS
(sek0, k0, ephk)← RKE.SKg(lpk, sek0; r)
auth[i0]← ephk ; i0 ← i0 + 1
Return ephk

RatRec(ephk)

z←$ RKE.RKg(lpk, lsk, sek1, ephk, k1)
(sek1, k1, acc)← z
If not acc then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then restricted← false
i1 ← i1 + 1 ; Return true

Exp

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; Return (r, sek0, k0)

ChSend

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If rkey[i0] =⊥ then rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0 else return rkey[i0]

ChRec

If restricted then return k1
If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If rkey[i1] =⊥ then rkey[i1]←$ {0, 1}RKE.kl
If b = 1 then return k1 else return rkey[i1]

Game RAEA
RE

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0
(k, sek0, (lpk, lsk, sek1))←$ RE.IKg
k0 ← k ; k1 ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(lpk)
Return (b′ = b)

RatSend

r←$ RE.RS
(sek0, k0, ephk)← RE.SKg(lpk, sek0; r)
auth[i0]← ephk ; i0 ← i0 + 1
Return ephk

RatRec(ephk)

z←$ RE.RKg(lpk, lsk, sek1, ephk, k1)
(sek1, k1, acc)← z
If not acc then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then restricted← false
i1 ← i1 + 1 ; Return true

Exp

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; Return (r, sek0, k0)

Enc(n,m, h)

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If (i0, n) ∈ U then return ⊥
c1 ← RE.Enc(k0, n,m, h)
c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(i0, n)}
S ← S ∪ {(i0, n, cb, h)}
Return cb

Dec(n, c, h)

If restricted then
Return RE.Dec(k1, n, c, h)

If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If (i1, n, c, h) ∈ S then return ⊥
m← RE.Dec(k1, n, c, h)
If b = 1 then return m else return ⊥

Figure 5: Games defining key indistinguishability of ratcheted key exchange scheme
RKE, and authenticated encryption security of ratcheted encryption scheme RE.

orders. Below we describe an active “key-collision” attack against the KIND security of the scheme

that is prevented by including ephki in w. Finally, note that our concatenation operator ∥ is de-

fined to produce uniquely decodable strings, meaning that the encoding that maps (i, σi, g
xi , gxiy)

into a string w is injective; this helps to avoid attacks that attempt to take advantage of malleable

encodings.

Key-collision attacks. We now describe an attack idea that does not work against our construction

but would have been possible if the ephmeral key ephk were not included in the hash function.
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Algorithm RKE.IKg

k←$ {0, 1}RKE.kl
fk←$ {0, 1}F.kl
hk←$ {0, 1}H.kl
g←$ G∗ ; y←$ Zp

lpk ← (hk, g, gy) ; lsk ← y
sek0 ← (0, fk)
sek1 ← (0, fk)
z ← (k, sek0, (lpk, lsk, sek1))
Return z

Algorithm RKE.SKg((hk, g, Y ), (i0, fk0); r)

x← r ; X ← gx ; σ ← F.Ev(fk0, X)
s← H.Ev(hk, i0 ∥σ ∥X ∥Y x)
k0 ← s[1 . . .RKE.kl]
fk0 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ((i0 + 1, fk0), k0, (X,σ))

Algorithm RKE.RKg((hk, g, Y ), y, (i1, fk1), (X,σ), k1)

acc ← (σ = F.Ev(fk1, X))
If not acc then return ((i1, fk1), k1, acc)
s← H.Ev(hk, i1 ∥σ ∥X ∥Xy)
k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ((i1 + 1, fk1), k1, acc)

Figure 6: Ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H].

Consider changing RATCHET-KE[G,F,H] to have H(hk, ·) take inputs strings of the form w =

i ∥ gxiy. This enables the following attack. Assume that an attacker compromises sender’s keys k0
and fk0 at some time period i, and immediately uses the compromised authenticity to establish new

keys k∗ and fk∗, shared between the attacker and the receiver. Now let ephki+1 = (gxi+1 , σi+1) be

a valid ephemeral key, produced by the sender at a time period i+ 1. The attacker can construct

a malicious ephemeral key ephk∗ = (gxi+1 , σ∗), where σ∗ = F.Ev(fk∗, gxi+1), and send it to the

receiver. The receiver would accept ephk∗ and use the output of H.Ev(hk, (i+1) ∥ gxi+1y) as a new

key material, resulting in the same keys as those generated by the sender along with the ephemeral

key ephki+1. This is a clear violation of our policy that keys derived from modified ephmeral keys

should not leak information about validly generated keys.

Security Theorem. We now present our theorem bounding the advantage of an adversary breaking

the KIND-security of ratcheted encryption scheme RKE = RATCHET-KE[G,F,H] to the SUFCMA-

security of F and the ODHE-security of G,H.

Theorem 4.1 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let F be a function family such that F.In = G. Let H be a function family such that H.In = {0, 1}∗
and H.Out = {0, 1}κ for some κ > F.kl. Let RKE = RATCHET-KE[G,F,H]. Let D be an adversary

attacking the KIND-security of RKE that makes qRatSend queries to its RatSend oracle, qRatRec

queries to its RatRec oracle, qExp queries to its Exp oracle, qChSend queries to its ChSend oracle,

and qChRec queries to its ChRec oracle. Then there is an adversary F attacking the SUFCMA-

security of F, and adversaries O1,O2 attacking the ODHE-security of G,H, such that

AdvkindRKE,D ≤ 2 ·
(
(qRatSend + 1) · Advsufcma

F,F + qRatSend · AdvodheG,H,O1
+ AdvodheG,H,O2

)
.

Adversary F makes at most qRatSend queries to its Tag oracle and qRatRec queries to its Verify

oracle. Adversary O1 makes at most qRatSend queries to its Up oracle, 2 queries to its Ch oracle,

qExp queries to its Exp oracle, and qRatSend+qRatRec−2 queries to its Hash oracle. Adversary O2

makes at most qRatSend queries to its Up oracle, qRatSend + qRatRec queries to its Ch oracle,qExp
queries to its Exp oracle, and qRatRec + qExp queries to its Hash oracle.

Proving this theorem is highly non-trivial, requiring a careful eye for detail lest one fall into subtle
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traps. The most natural proof method may be to proceed one RatSend query at a time, first

replacing the output of the hash function with random bits (unless an expose happens) and then

using the security of the MAC to argue that the adversary cannot produce any modified ephemeral

keys that will be accepted by the receiver without exposing. Unfortunately, there is a subtle flaw

with this proof technique. The adversary may attempt to create a forged ephk before it has decided

whether or not to expose. In this case we need to check the validity of their forgery with a MAC

key fk, before we know whether it should be random or valid output of the hash function.

To avoid this problem we first use a hybrid argument to show that no such forgery is possible

before replacing all non-exposed keys with random. We proceed one RatSend query at a time,

showing that we can temporarily replace the key with random when checking the sort of attempted

forgery described above. This then allows us to use the security of the MAC to assume that the

forgery attempt failed without us having to commit to a key to verify with. We thus are able to

show one step at a time that all such forgery attempts can be assumed to fail without having to

check.

Once this is done, we are never forced to use a key before the adversary has committed to

whether it will perform a relevant exposure of the secret state. As such we can safely delay our

decision of whether or not the key should be replaced by random values until it is known whether

an expose will happen.

Proof of Theorem 4.1: Consider the sequence of games shown in Fig. 7. Lines not annotated

with comments are common to all games. G0,0 is identical to KINDD
RKE with the code of RKE

inserted. Additionally, a flag valid has been added. This flag keeps track of whether the most

recent ephemeral key was passed unchanged from the sender to the receiver and thus the keys k1
and fk1 should be indistinguishable from random to adversary D. In this case, the adversary should

not be able to create an ephemeral key ephk that is accepted by RatRec unless it calls Exp or

forwards along the validly generated ephk. We prove this with a hybrid argument over the games

G0,0, . . . ,G0,qRatSend+1. Game G0,j assumes forgery attempts fail for the first j keys, sets a bad flag

if D is successful at forging against the (j+1)-th key, and performs normally for all following keys.

Game G∗
0,j is the same except it also acts as if D failed to forge even when the bad flag is set.

The above gives us

Pr[G0,0] = Pr[KINDD
RKE], (2)

and for all j ∈ {0, . . . , qRatSend} we have

Pr[G∗
0,j ] = Pr[G0,j+1]. (3)

Furthermore, for all j ∈ {1, . . . , qRatSend} games G0,j and G∗
0,j are identical until bad, so the

fundamental lemma of game playing [9] gives:

Pr[G0,j ]− Pr[G∗
0,j ] ≤ Pr[badG

∗
0,j ], (4)

where Pr[badQ] denotes the probability of setting bad flag in game Q.

Now consider the relationship between games G∗
0,j and Ij (the latter also shown in Fig. 7). Game

Ij is identical to G∗
0,j , except that in Ij the output of hash function H is replaced with a uniformly

random string whenever i+ 1 = j.
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Games G0,j ,G
∗
0,j ,Ij

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0 ; valid← true ; rand←$ H.Out
k0←$ {0, 1}RKE.kl ; k1 ← k0 ; fk0←$ {0, 1}F.kl ; fk1 ← fk0

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; lpk ← (hk, g, gy)

b′←$DRatSend,RatRec,Exp,ChSend,ChRec(lpk) ; Return (b′ = b)

RatSend

If op[i0] = ⊥ then op[i0]← “ch”

x←$ Zp ; σ ← F.Ev(fk0, g
x) ; ephk ← (gx, σ)

s← H.Ev(hk, i0 ∥σ ∥ gx ∥ gxy)
If i0 + 1 = j then s← rand // Ij
auth[i0]← ephk ; i0 ← i0 + 1 ; k0 ← s[1 . . .RKE.kl]
fk0 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return ephk

RatRec(ephk)

(X,σ)← ephk

If valid and (op[i1] ̸= “exp”) and (ephk ̸= auth[i1]) then
If i1 < j then return false
If i1 = j then

If σ ̸= F.Ev(fk1, X) then return false
bad← true
Return false // G∗

0,j ,Ij
If σ ̸= F.Ev(fk1, X) then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then
valid← true ; restricted← false

Else

valid← false
s← H.Ev(hk, i1 ∥σ ∥X ∥Xy)

If i1 + 1 = j then s← rand // Ij
i1 ← i1 + 1 ; k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return true

Exp

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; Return (x, (i0, fk0), k0)

ChSend

If op[i0] = “exp” then return ⊥
op[i0]← “ch”

If rkey[i0] =⊥ then rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0 else return rkey[i0]

ChRec

If restricted then return k1
If op[i1] = “exp” then return ⊥
op[i1]← “ch”

If rkey[i1] =⊥ then rkey[i1]←$ {0, 1}RKE.kl
If b = 1 then return k1 else return rkey[i1]

Figure 7: Games G0,j, G
∗
0,j, Ij for proof of Theorem 4.1.
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Adversary OUp,Ch,Exp,Hash
1 (hk, g, Y )

j′←$ {1, . . . , qRatSend} ; b←$ {0, 1} ; b′ ← 0
i0 ← 0 ; i1 ← 0 ; valid← true
k0←$ {0, 1}RKE.kl ; k1 ← k0
fk0←$ {0, 1}F.kl ; fk1 ← fk0 ; lpk ← (hk, g, Y )
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(lpk)
Return b′

RatRecSim(ephk)

(X,σ)← ephk
forge← ((op[i1] ̸= “exp”) ∧ (ephk ̸= auth[i1]))
If valid and forge then
If i1 < j′ then return false
If i1 = j′ then
If σ ̸= F.Ev(fk1, X) then return false
bad← true ; b′ ← 1 ; Return false

If σ ̸= F.Ev(fk1, X) then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then
valid← true ; restricted← false

Else
valid← false

If i1 + 1 ̸= j′ then s← Hash(i1, σ ∥X,X)
Else s← Ch(σ ∥X)
i1 ← i1 + 1 ; k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return true

ExpSim

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; x← Exp
Return (x, (i0, fk0), k0)

RatSendSim

If op[i0] = ⊥ then op[i0]← “ch”
X ← Up ; σ ← F.Ev(fk0, X)
ephk ← (X,σ)
If i0 + 1 ̸= j′ then

s← Hash(i0, σ ∥X,X)
Else

s← Ch(σ ∥X)
auth[i0]← ephk ; i0 ← i0 + 1
k0 ← s[1 . . .RKE.kl]
fk0 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ephk

ChSendSim

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If rkey[i0] =⊥ then

rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0
Else return rkey[i0]

ChRecSim

If restricted then return k1
If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If rkey[i1] =⊥ then

rkey[i1]←$ {0, 1}RKE.kl
If b = 1 then return k1
Else return rkey[i1]

Figure 8: Adversary O1 for proof of Theorem 4.1.

Note that if j = 0 then games G∗
0,j and Ij are identical so Pr[badG

∗
0,0 ] = Pr[badI0 ]. For other values

of j we relate the probability that these games set bad to the advantage of the oracle Diffie-Hellman

adversary O1 that is defined in Fig. 8. Let bodhe denote the challenge bit in game ODHEO1
G,H, and

let b′ denote the corresponding guess made by the adversary O1. Let j′ be the value sampled in

the first step of O1. For each choice of j′, adversary O1 perfectly simulates the view of D in either

G∗
0,j′ or Ij′ depending on whether its Ch oracle is returning real output of the hash function or

a random value. If D performs an action that would prevent bad from being set (such as calling

Exp when i0 = j′) then O1 no longer perfectly simulates the view of D, but it is irrelevant for our
analysis. Thus for all j ∈ {1, . . . , qRatSend}, we have

Pr[badG
∗
0,j ] = Pr[ b′ = 1 | bodhe = 1, j′ = j ] and Pr[badIj ] = Pr[ b′ = 1 | bodhe = 0, j′ = j ].

Combining the above for all possible values of j (and the fact that Pr[badG
∗
0,0 ] = Pr[badI0 ]) gives

AdvodheG,H,O1
=

qRatSend∑
j=0

Pr[badG
∗
0,j ]

qRatSend
−

qRatSend∑
j=0

Pr[badIj ]

qRatSend
. (5)
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Adversary FTag,Verify

j′←$ {0, . . . , qRatSend} ; b←$ {0, 1}
i0 ← 0 ; i1 ← 0 ; valid← true
rand←$ H.Out ; k0←$ {0, 1}RKE.kl ; k1 ← k0
fk0←$ {0, 1}F.kl ; fk1 ← fk0 ; hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp ; lpk ← (hk, g, gy)
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(lpk)

RatRecSim(ephk)

(X,σ)← ephk
forge← ((op[i1] ̸= “exp”) ∧ (ephk ̸= auth[i1]))
If valid and forge then
If i1 < j′ then return false
If i1 = j′ then
If not Verify(X,σ) then return false
bad← true
Return false

If (i1 = j′) then
If not Verify(X,σ) then return false

Else
If σ ̸= F.Ev(fk1, X) then return false

If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then
valid← true ; restricted← false

Else
valid← false

s← H.Ev(hk, i1 ∥σ ∥X ∥Xy)
If i1 + 1 = j then s← rand
i1 ← i1 + 1 ; k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return true

RatSendSim

If op[i0] = ⊥ then op[i0]← “ch”
x←$ Zp

If i0 = j′ then σ ← Tag(gx)
Else σ ← F.Ev(fk0, g

x)
s← H.Ev(hk, i0 ∥σ ∥ gx ∥ gxy)
If i0 + 1 = j then s← rand
ephk ← (gx, σ) ; auth[i0]← ephk
i0 ← i0 + 1 ; k0 ← s[1 . . .RKE.kl]
fk0 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ephk

ExpSim

If op[i0] = “ch” then return ⊥
op[i0]← “exp”
Return (x, (i0, fk0), k0)

ChSendSim

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If rkey[i0] =⊥ then

rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0
Else return rkey[i0]

ChRecSim

If restricted then return k1
If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If rkey[i1] =⊥ then

rkey[i1]←$ {0, 1}RKE.kl
If b = 1 then return k1
Else return rkey[i1]

Figure 9: Adversary F for proof of Theorem 4.1.

To complete our hybrid argument, we can finally bound the probability that bad gets set true in Ij .

Doing so requires adversary D to successfully forge a MAC tag for a uniformly random key, allowing

us to reduce to the security of F. Formally, we use D to construct an adversary F attacking the

SUFCMA security of F. Adversary F (shown in Fig. 9) simulates adversary D and guesses when

it will first create a forgery. F simulates game Ij for adversary D until that point, and uses it’s

own SUFCMA oracles to answer D’s queries at the time when it expects the forgery. Similar to the

earlier case when O1 simulated D, adversary F may fail to simulate Ij for adversary D when the

latter performs certain actions that preclude bad from being set; this does not affect our analysis.

Thus for j ∈ {0, . . . , qRatSend},

Pr[badIj ] ≤ Pr[ SUFCMAF
F | j′ = j ]. (6)

The above work allows us to transition to game G0,qRatSend+1. From there we will move to games

G1,G2 shown in Fig. 10.
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Games G1–G2

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0 ; valid← true
k0[0]←$ {0, 1}RKE.kl ; k1 ← k0[0] ; fk0[0]←$ {0, 1}F.kl ; fk1 ← fk0[0]

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; lpk ← (hk, g, gy)

b′←$DRatSend,RatRec,Exp,ChSend,ChRec(lpk) ; Return (b′ = b)

RatSend

If op[i0] = ⊥ then op[i0]← “ch”

x←$ Zp ; σ ← F.Ev(fk0[i0], g
x) ; ephk ← (gx, σ)

s← H.Ev(hk, i0 ∥σ ∥ gx ∥ gxy) // G1

s←$ H.Out // G2

auth[i0]← ephk ; i0 ← i0 + 1 ; k0[i0]← s[1 . . .RKE.kl]
fk0[i0]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return ephk

RatRec(ephk)

(X,σ)← ephk

If valid and (op[i1] ̸= “exp”) and (ephk ̸= auth[i1]) then
Return false

If valid then fk1 ← fk0[i1]

If (σ ̸= F.Ev(fk1, X)) then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1]
valid← true ; restricted← false ; i1 ← i1 + 1

Else

valid← false
s← H.Ev(hk, i1 ∥σ ∥X ∥Xy)

i1 ← i1 + 1 ; k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

Return true

Exp

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; (X,σ)← auth[i0 − 1]

s← H.Ev(hk, (i0 − 1) ∥σ ∥X ∥Xy) ; k0[i0]← s[1 . . .RKE.kl]
fk0[i0]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return (x, (i0, fk0[i0]), k0[i0])

ChSend

If op[i0] = “exp” then return ⊥
op[i0]← “ch”

If rkey[i0] =⊥ then rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0[i0] else return rkey[i0]

ChRec

If restricted then return k1
If op[i1] = “exp” then return ⊥
op[i1]← “ch”

If rkey[i1] =⊥ then rkey[i1]←$ {0, 1}RKE.kl
If valid then k1 ← k0[i1]

If b = 1 then return k1 else return rkey[i1]

Figure 10: Games G1–G2 for proof of Theorem 4.1.
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Adversary OUp,Ch,Exp,Hash
2 (hk, g, Y )

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0 ; valid← true
k0[0]←$ {0, 1}RKE.kl ; k1 ← k0[0]
fk0[0]←$ {0, 1}F.kl ; fk1 ← fk0[0] ; hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp ; lpk ← (hk, g, Y ) ;
b′←$DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(lpk)
If (b′ = b) then return 1 else return 0

RatSendSim

If op[i0] = ⊥ then
op[i0]← “ch”
If i0 ̸= 0 then
(X,σ)← auth[i0 − 1] ; s← Ch(σ||X)
SaveKeys(i0, s)

X ← Up ; σ ← F.Ev(fk0[i0], X) ; ephk ← (X,σ)
auth[i0]← ephk ; i0 ← i0 + 1 ; Return ephk

RatRecSim(ephk)

(X,σ)← ephk
forge← ((op[i1] ̸= “exp”) ∧ (ephk ̸= auth[i1]))
If valid and forge then return false
If valid then fk1 ← fk0[i1]
If (σ ̸= F.Ev(fk1, X)) then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1]
valid← true ; restricted← false ; i1 ← i1 + 1

Else
valid← false ; s← Hash(i1, σ||X,X)
i1 ← i1 + 1 ; k1 ← s[1 . . .RKE.kl]
fk1 ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

Return true

SaveKeys(i, s)

k0[i]← s[1 . . .RKE.kl]
fk0[i]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

ExpSim

If op[i0] = “ch” then return ⊥
If op[i0] =⊥ ∧i0 ̸= 0 then
x← Exp
(X,σ)← auth[i0 − 1]
s← Hash(i0 − 1, σ||X,X)
SaveKeys(i0, s)

op[i0]← “exp”
Return (x, (i0, fk0[i0]), k0[i0])

ChSendSim

If op[i0] = “exp” then return ⊥
If op[i0] =⊥ ∧i0 ̸= 0 then
(X,σ)← auth[i0 − 1]
s← Ch(σ||X)
SaveKeys(i0, s)

op[i0]← “ch”
If rkey[i0] =⊥ then

rkey[i0]←$ {0, 1}RKE.kl
If b = 1 then return k0[i0]
Else return rkey[i0]

ChRecSim

If restricted then return k1
If op[i1] = “exp” then return ⊥
If op[i1] =⊥ ∧i1 ̸= 0 then
(X,σ)← auth[i1 − 1]
s← Ch(σ||X)
SaveKeys(i1, s)

op[i1]← “ch”
If rkey[i1] =⊥ then

rkey[i1]←$ {0, 1}RKE.kl
If valid then k1 ← k0[i1]
If b = 1 then return k1
Else return rkey[i1]

Figure 11: Adversary O2 for proof of Theorem 4.1.

Game G1 is identical to G0,qRatSend+1, but has been rewritten to allow the final game transition of

our proof. The complicated, nested if-condition at the beginning of RatRec has been simplified

because i1 < qRatSend + 1 always holds when valid is true. Additionally, when valid is true (and

thus a valid ephk has been forwarded between RatSend and RatRec) we delay setting k1, fk1

until they are about to be used, at which point they are set to match the appropriate k0, fk0 that

have been stored in a table. We have

Pr[G0,qRatSend+1] = Pr[G1]. (7)

Games Pr[G1] and Pr[G2] differ only in that, in G2, values of k0 and fk0 are chosen at random

instead of as the output of H (unless Exp is called in which case we reset them to the correct output

of H). We bound the difference between Pr[G1] and Pr[G2] by the advantage of the Diffie-Hellman

adversary O2 that is defined in Fig. 11. Let bodhe denote the challenge bit in game ODHEO2
G,H, and

let b′ denote the corresponding guess made by the adversary O2. O2 perfectly simulates the view
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of D in G1 when bodhe = 1, and it perfectly simulates the view of G2 when bodhe = 0. Thus,

Pr[G1] = Pr[ b′ = 1 | bodhe = 1 ] and Pr[G2] = Pr[ b′ = 1 | bodhe = 0 ].

It follows that

AdvodheG,H,O2
= Pr[G1]− Pr[G2]. (8)

As a result of the above equations, we get:

Pr[KINDD
RKE] = Pr[G0,0] = Pr[G1] +

qRatSend∑
j=0

Pr[badG
∗
0,j ]

= Pr[G1] + qRatSend · AdvodheG,H,O1
+

qRatSend∑
j=0

Pr[badIj ]

≤ qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + Pr[G1]

= qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + AdvodheG,H,O2
+ Pr[G2].

Finally, Pr[G2] =
1
2 because the view of D is independent of b in G2. To see this, first note that

oracle ChSend returns uniformly random bits regardless of the challenge bit. So we only need to

verify that the ChRec returns the same random bits if its last if-statement is reached. This could

only fail to occur if ChRec was called when restricted and valid are both false. However, flags

restricted and valid can only be simultaneously false at the end of an oracle call to RatRec if they

were already false at the time when this oracle was called.

5 Ratcheted encryption

We now define ratcheted encryption schemes, and show how to construct one by composing a

ratcheted key exchange scheme with a symmetric encryption scheme. In our composition the

output keys of the ratcheted key exchange scheme are used as encryption keys for the symmetric

encryption scheme. We define a security notion for ratcheted encryption and reduce the security

of our construction to the security of the underlying schemes.

The results in this section serve as an example of building new schemes by composing ratcheted

key exchange with other primitives. There is a lot of room for capturing different security goals and

building the corresponding schemes. One of the important goals is to model the Double Ratchet

Algorithm [3] used in multiple real-world messaging applications, such as in WhatsApp [22] and

in the Secret Conversations mode of Facebook Messenger [17]. This would require to introduce a

second layer of key ratcheting, which can be possibly done by using the output keys of ratcheted key

exchange to initialize a forward-secure symmetric encryption scheme. We currently do not capture

this possibility; both the syntax and the security definitions we use would need to be extended for

this purpose.

Ratcheted encryption schemes. Our definition of ratcheted encryption schemes extends the defini-

tion of ratcheted key exchange schemes to add an encryption algorithm RE.Enc and a decryption

algorithm RE.Dec. Likewise, the correctness property that we require from ratcheted encryption

schemes extends the correctness property of ratcheted key exchange schemes to add the require-

ment that any messages encrypted using sender’s key should be correctly decryptable using the
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Algorithm RE.IKg

(k, sek0, (lpk, lsk, sek1))←$ RKE.IKg
Return (k, sek0, (lpk, lsk, sek1))

Algorithm RE.SKg(lpk, sek0; r)

(sek0, k0, ephk)← RKE.SKg(lpk, sek0; r)
Return (sek0, k0, ephk)

Algorithm RE.RKg(lpk, lsk, sek1, ephk, k1)

(sek1, k1, acc)←$ RKE.RKg(lpk, lsk, sek1, ephk, k1)
Return (sek1, k1, acc)

Algorithm RE.Enc(k0, n,m, h)

c← SE.Enc(k0, n,m, h)
Return c

Algorithm RE.Dec(k1, n, c, h)

m← SE.Dec(k1, n, c, h)
Return m

Figure 12: Ratcheted encryption scheme RE = RATCHET-ENC[RKE, SE].

corresponding receiver’s key.

A ratcheted encryption scheme RE specifies algorithms RE.IKg, RE.SKg, RE.RKg, RE.Enc and

RE.Dec, where RE.Enc and RE.Dec are deterministic. Associated to RE is a nonce space RE.NS,

sender’s key generation randomness space RE.RS, and a ciphertext length function RE.cl : N → N.
Initial key generation algorithm RE.IKg returns k, sek0, (lpk, lsk, sek1), where k is a (symmetric)

encryption key, sek0 is a sender’s session key, and lpk, lsk, sek1 are receiver’s long-term public key,

receiver’s long-term secret key, and receiver’s session key, respectively. Sender’s key generation algo-

rithm RE.SKg takes lpk, sek0 and randomness r ∈ RE.RS to return a new sender’s session key sek0,

a new sender’s encryption key k0, and an ephemeral key ephk. Receiver’s key generation algorithm

RE.RKg takes lpk, lsk, sek1, ephk and receiver’s encryption key k1 to return a new receiver’s session

key sek1, a new receiver’s encryption key k1, and a flag acc ∈ {true, false}. Encryption algorithm

RE.Enc takes k0, a nonce n ∈ RE.NS, a plaintext message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗
to return a ciphertext c ∈ {0, 1}RE.cl(|m|). Decryption algorithm RE.Dec takes k1, n, c, h to return

m ∈ {0, 1}∗ ∪ {⊥}.
Consider game COR of Fig. 4 associated to a ratcheted encryption scheme RATCHET and an

adversary C, where C is provided with an access to oracles Up, RatRec and Enc. The advantage

of C breaking the correctness of RATCHET is defined as AdvcorRATCHET,C = 1 − Pr[CORC
RATCHET].

Correctness property requires that AdvcorRATCHET,C = 0 for all unbounded adversaries C.

Ratcheted authenticated encryption. Consider game RAE on the right side of Fig. 5 associated to a

ratcheted encryption scheme RE and an adversary A. It extends the security definition of ratcheted

key exchange (as defined in game KIND on the left side of Fig. 5) by replacing oracles ChSend

and ChRec of the latter with oracles Enc and Dec. Oracles RatSend, RatRec, Exp are the

same in both games. Oracles Enc and Dec are defined to allow functionality that is similar to the

standard definition of nonce-based authenticated encryption, the main difference being that Enc

uses the sender’s key to encrypt messages and Dec uses the receiver’s key to decrypt messages.

In the real world (when b = 1) oracle Enc encrypts messages under the sender’s key, and oracle

Dec decrypts ciphertexts under the receiver’s key. In the random world (when b = 0) oracle Enc

returns uniformly random strings, and oracle Dec always returns an incorrect decryption symbol

⊥. The goal of the adversary is to distinguish between these two cases.

We note that the adversary is only allowed to get a single encryption for each unique pair of

(i0, n). This restriction stems from the fact that most known nonce-based encryption schemes are

not resistant to nonce-misuse. Our definition can be relaxed to only prevent queries where (i0, n,m)

(or even (i0, n,m, h)) are repeated, but it would increasingly limit the choice of the underlying
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Games G0–G1

(k, sek0, (lpk, lsk, sek1))←$ RKE.IKg
b←$ {0, 1} ; i0 ← 0 ; i1 ← 0 ; k0 ← k ; k1 ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(lpk) ; Return (b′ = b)

RatSend

r←$ RKE.RS ; (sek0, k0, ephk)← RKE.SKg(lpk, sek0; r)
auth[i0]← ephk ; i0 ← i0 + 1 ; Return ephk

RatRec(ephk)

(sek1, k1, acc)←$ RKE.RKg(lpk, lsk, sek1, ephk, k1)
If not acc then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then restricted← false
i1 ← i1 + 1 ; Return true

Exp

If op[i0] = “ch” then return ⊥
op[i0]← “exp” ; Return (r, sek0, k0)

Enc(n,m, h)

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If (i0, n) ∈ U then return ⊥
c1 ← SE.Enc(k0, n,m, h) // G0

If rkey[i0] =⊥ then rkey[i0]←$ {0, 1}RKE.kl // G1

c1 ← SE.Enc(rkey[i0], n,m, h) // G1

c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(i0, n)}
S ← S ∪ {(i0, n, cb, h)} ; Return cb

Dec(n, c, h)

If restricted then return SE.Dec(k1, n, c, h)
If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If (i1, n, c, h) ∈ S then return ⊥
m← SE.Dec(k1, n, c, h) // G0

If rkey[i1] =⊥ then rkey[i1]←$ {0, 1}RKE.kl // G1

m← SE.Dec(rkey[i1], n, c, h) // G1

If b = 1 then return m else return ⊥

Figure 13: Games for proof of Theorem 5.1.

symmetric schemes that can be used for this purpose (fewer schemes would satisfy stronger security

definitions of multi-user authenticated encryption). The advantage of A in breaking the RAE

security of RE is defined as AdvraeRE,A = 2Pr[RAEA
RE]− 1.

Ratcheted encryption scheme RATCHET-ENC. Let RKE be a ratcheted key exchange scheme. Let

SE be a symmetric encryption scheme such that SE.kl = RKE.kl. We build a ratcheted encryption

scheme RE = RATCHET-ENC[RKE,SE] as defined in Fig. 12, with RE.NS = SE.NS, RE.RS =

RKE.RS and RE.cl = SE.cl.

Theorem 5.1 Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric encryption

scheme such that SE.kl = RKE.kl. Let RE = RATCHET-ENC[RKE, SE]. Let A be an adversary

attacking the RAE-security of RE that makes qRatSend queries to its RatSend oracle, qRatRec
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Adversary DRatSend,RatRec,Exp,ChSend,ChRec(lpk)

b←$ {0, 1} ; i0 ← 0 ; i1 ← 0
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(lpk)
If (b′ = b) then return 1 else return 0

EncSim(n,m, h)

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
If (i0, n) ∈ U then return ⊥
k0←$ ChSend ; c1 ← SE.Enc(k0, n,m, h)
c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(i0, n)}
S ← S ∪ {(i0, n, cb, h)} ; Return cb

DecSim(n, c, h)

If restricted then
k1←$ ChRec ; Return SE.Dec(k1, n, c, h)

If op[i1] = “exp” then return ⊥
op[i1]← “ch”
If (i1, n, c, h) ∈ S then return ⊥
k1←$ ChRec ; m← SE.Dec(k1, n, c, h)
If b = 1 then return m else return ⊥

RatSendSim

ephk←$ RatSend
auth[i0]← ephk
i0 ← i0 + 1
Return ephk

RatRecSim(ephk)

success←$ RatRec(ephk)
If success then
u0 ← (op[i1] = “exp”)
u1 ← (ephk = auth[i1])
If u0 then restricted← true
If u1 then restricted← false
i1 ← i1 + 1

Return success

ExpSim

If op[i0] = “ch” then return ⊥
op[i0]← “exp”
Return Exp

Figure 14: Adversary D for proof of Theorem 5.1.

queries to its RatRec oracle, qExp queries to its Exp oracle, qEnc queries to its Enc oracle, and

qDec queries to its Dec oracle. Then there is an adversary D attacking the KIND-security of RKE

and an adversary N attacking the MAE-security of SE such that

AdvraeRE,A ≤ 2 · AdvkindRKE,D + Advmae
SE,N .

Adversary D makes at most qExp queries to its Exp oracle, qEnc queries to its ChSend oracle, qDec

queries to its ChRec oracle, and the same number of queries as A to oracles RatSend, RatRec.

Adversary N makes at most max(qRatSend, qRatRec) queries to its New oracle, qEnc queries to its

Enc oracle, and qDec queries to its Dec oracle.

Proof of Theorem 5.1: Consider games G0,G1 of Fig. 13. Lines not annotated with comments

are common to both games. Game G0 is equivalent to RAEA
RE, so

AdvraeRE,A = 2Pr[G0]− 1. (9)

Game G1 differs from game G0 by using uniformly random keys to answer Enc and Dec oracle

queries. Both games use real keys to answer Exp oracle queries.

First, we construct an adversary D against the KIND-security of RKE, as defined in Fig. 14.

Adversary D simulates adversary A as follows. A’s oracle queries to RatSend, RatRec and

Exp are directly answered by the corresponding D’s oracles (but D also does some bookkeeping

to maintain the states that are necessary for simulating other oracle queries). D simulates A’s
queries to Enc and Dec by calling it’s own oracles ChSend and ChRec and using the received

challenge keys to encrypt and decrypt the messages itself. Let b denote the challenge bit in game

KINDD
RKE, and let b′ denote the corresponding guess made by the adversary D. We have Pr[G0] =

24



Adversary NNew,Enc,Dec

(k, sek0, (lpk, lsk, sek1))←$ RKE.IKg
v ← 0 ; i0 ← 0 ; i1 ← 0 ; k0 ← k ; k1 ← k
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(lpk)
Return b′

RatSendSim

r←$ RKE.RS ; z ← RKE.SKg(lpk, sek0; r)
(sek0, k0, ephk)← z ; auth[i0]← ephk ; i0 ← i0 + 1
While v < i0 do
New ; v ← v + 1

Return ephk

RatRecSim(ephk)

(sek1, k1, acc)←$ RKE.RKg(lpk, lsk, sek1, ephk, k1)
If not acc then return false
If op[i1] = “exp” then restricted← true
If ephk = auth[i1] then restricted← false
i1 ← i1 + 1
While v < i1 do
New ; v ← v + 1

Return true

ExpSim

If op[i0] = “ch” then return ⊥
op[i0]← “exp”
Return (r, sek0, k0)

Enc(n,m, h)

If op[i0] = “exp” then return ⊥
op[i0]← “ch”
Return Enc(i0, n,m, h)

Dec(n, c, h)

If restricted then
Return SE.Dec(k1, n, c, h)

If op[i1] = “exp” then return ⊥
op[i1]← “ch”
Return Dec(i1, n, c, h)

Figure 15: Adversary N for proof of Theorem 5.1.

Pr[ b′ = 1 | b = 1 ] and Pr[G1] = Pr[ b′ = 1 | b = 0 ]. It follows that

Pr[G0]− Pr[G1] = AdvkindRKE,D. (10)

Next, we construct an adversaryN against the MAE-security of SE, as defined in Fig. 15. Adversary

N generates its own keys for the ratcheted key exchange scheme RKE, and uses them to answer A’s
queries to oracles RatSend, RatRec and Exp (as well as A’s queries to Dec in the case when

restricted is true). Furthermore, A’s calls to Enc and Dec are answered using the corresponding

oracles that are provided to N in game MAE. We have Pr[G1] = MAEN
SE, so

Advmae
SE,N = 2Pr[G1]− 1. (11)

The theorem statement follows from equations (9)–(11).
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