
1. Quaternion algebras

1.1. Definition and general properties. Let F be a field of characteristic
6= 2. Let a, b ∈ F×. As it is easily checked, there is a unique unital associative
F -algebra of dimension 4 with F -basis 1, i, j, k such that i2 = a, j2 = b and ij =
−ji = k (so k2 = −ab). We denote this F -algebra by(

a, b

F

)
.

Its presentation as an F -algebra is thus given by F{i, j}/(i2 − a, j2 − b, ij = −ji).

A quaternion algebra over F is an F -algebra isomorphic to such an algebra for
some a, b ∈ F×. If µ ∈ F×, there are F -algebra isomorphisms(

a, b

F

)
'

(
b, a

F

)
,

(
aµ2, b

F

)
'

(
a, b

F

)
,

(
1, b

F

)
' M2(F ),

induced respectively by (i, j) 7→ (j, i), (i, j) 7→ (iµ−1, j) and i 7→
(

1 0
0 −1

)
, j 7→(

0 b
1 0

)
. It follows that M2(F ) is a quaternion algebra, called the trivial or split

quaternion algebra. If F is algebraically closed, or even if any element of F is a
square, the formulae above show that M2(F ) is the unique quaternion algebra over
F . If F ′/F is a field extension, we have(

a, b

F

)
⊗F F ′ '

(
a, b

F ′

)
so D ⊗F F ' M2(F ) for any quaternion F -algebra D.

Proposition 1.2. If D is an F -algebra of rank 4, then the following properties
are equivalent : (a) D is a quaternion F -algebra, (b) D has center F and is simple
(i.e. it has no non-trivial two-sided ideal), (c) D ⊗F F ' M2(F ).

If these properties hold, either D ' M2(F ) or D is a division algebra.1

Proof — We have seen (a) ⇒ (c), and (c) ⇒ (b) follows at once from the fact that M2(F )
is simple with center F .

Assume now that (b) holds and let us check first the last assertion (and then (a)).

Assume that for some x 6= 0 ∈ D, Dx ( D. Then the set of proper left-ideals of
D is nonempty, hence has an element I of minimal F -dimension. The action by left-
translations of D on I induces an F -linear injection D → EndF (I) as D is simple, so I has
F -dimension 2 or 3. In the first case D ' M2(F ). In the second, each proper left-ideal of
D has dimension 3, hence there is a unique such ideal (consider intersection of such ideals),
which is I. It follows that I is a right-ideal as well, which is absurd. As a consequence,
either D ' M2(F ) or D is a division algebra.

To check (a) we may thus assume that D is a division algebra. In this case, for any
x ∈ D\F then F [x] is a field of degree 2 over F as D is not commutative, and it coincides
with its centralizer in D for the same reason. Fix such an x. As the characteristic of F is
not 2, there is some i ∈ F [x]\F such that i2 = a and a ∈ F× is not a square in F . The
conjugation by i on D has order 2, and its 1-eigenspace is F (i) (by the remark above),

1This means that for any x ∈ D\{0}, there is a y ∈ D such that xy = yx = 1.
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and its −1-eigenspace is thus non-zero : there exists j ∈ D such that ij = −ji (again use
2 ∈ F×). But then j2 commutes with i, hence belongs to F (i), so j2 = ci + b, for c, b ∈ F .
If c 6= 0 then F (j) ) F (i) and F (j) = D : absurd, so c = 0 and b ∈ F×. It follows that
there is a natural F -algebra morphism

(
a,b
F

)
→ D, necessarily injective as the source is

simple, hence bijective. �

1.3. Quaternion algebras and quadratic forms. The F -linear automor-
phism x = (1, i, j, k) 7→ x∗ = (1,−i,−j,−k) defines an anti-involution of D =

(
a,b
F

)
:

(xy)∗ = y∗x∗ and (x∗)∗ = x. We define the trace and the norm of a quaternion x as
the elements T (x) = x + x∗ ∈ F and N(x) = xx∗ ∈ F .2 The trace is an F -linear
map D → F , the F -bilinear map (x, y) 7→ T (xy) is easily checked to be symmetric
and non-degenerated. The norm defines a 4-variables quadratic form over F

N(α + βi + γj + δk) = α2 − a β2 − b γ2 + ab δ2,

which is non-degenerated and has discriminant 1 ∈ F×/(F×)2. We have N(x+y) =
N(x) + N(y) + T (xy∗) for all x, y ∈ D.

Via the isomorphisms D ⊗F F ' M2(F ), one easily checks that T ⊗F F is the
usual trace and N ⊗F F is the determinant. As each F -automorphism of M2(F ) is
the conjugation by some element in GL2(F ), it follows that T and N only depends
on the F -algebra structure on D (and not on the choice of a, b defining D), as well as
x 7→ x∗ = T (x)− x. Moreover3, N(xy) = N(x)N(y) for all x, y ∈ D. By definition,
the fixed points of ∗ coincide with F ⊂ D and the subspace D0 ⊂ D where x∗ = −x
(or T (x) = 0) is the orthogonal complement of F in D for the norm. It is called the
space of pure quaternions. We have D = F ⊕D0 and D0 = Fi + Fj + Fk.

Proposition 1.4. The map D 7→ N|D0 defines a bijection between the set of
isomorphism classes of quaternion F -algebras and the equivalence classes of non-
degenerate quadratic forms on F 3 with discriminant 1. In this bijection, M2(F )
corresponds to the unique isotropic such form x2 − y2 − z2.

Proof — By the remarks above, if D is a quaternion algebra then the 3-dim quadratic
space Q(D) := (D0, N|D0) is well defined, non-degenerated, with discriminant 1. As any
such quadratic space has the form −ax2 − by2 + abz2 for some a, b ∈ F×, the map of
the statement is surjective. Note that for x ∈ D0 we have N(x) = xx∗ = −x2, and if
furthermore y ∈ D0, then x is orthogonal to y iff 0 = xy∗ + x∗y = −(xy + yx), i.e. iff
xy = −yx. It follows that if Q(D) ' Q(

(
a,b
F

)
), then D0 contains elements x, y such that

x2 = a, y2 = b and xy = −yx, thus D '
(

a,b
F

)
by the presentation of this latter algebra.

To check the last assertion, remark that by the multiplicativity of the norm and the relation
xx∗ = N(x) ∈ F , D is a division algebra if and only if N is anisotropic. As the quadratic
form N has 4 variables and discriminant 1, it turns out that its index is either 0 or 2 (but
not 1), thus N is anisotropic iff N|D0 is anisotropic. �

2Note that the Cayley-Hamilton identity x2−T (x)x+N(x) = 0 = (x−x)(x−x∗) holds in D.
3The reader can check as an exercise that N is the unique nonzero multiplicative quadratic

form on a quaternion algebra F .



1. QUATERNION ALGEBRAS 3

1.5. The case of local and global fields. If F×/(F×)2 is finite, there are
finitely many quaternion algebras over F by the simple isomorphisms above. This
applies to local fields, in which case we even have:

Proposition 1.6. If F is a local field and F 6= C, then there is exactly one
non-split quaternion algebra over F up to isomorphism. If F is a finite extension
of Qp this algebra is

(
a,π
F

)
where π is a uniformizer of F and a ∈ O×

F is an element
such that F (

√
a) is the quadratic unramified extension of F .

Proof — Indeed, over R, it is clear that Hamilton’s quaternions
(−1,−1

R

)
is the

unique non-trivial quaternion algebra. If F is a finite extension of Qp, it is a good
exercise that we leave to the reader to check that there is a unique anisotropic
quadratic form over F 3 with discriminant 1, which is isomorphic to

q(x, y, z) = −ax2 − πy2 + aπz2

where π ∈ F and a ∈ O×
F are as in the statement (use e.g. similar arguments as in

the proof of the examples below). Let us simply check here that for p > 2 this form
is indeed anisotropic. In this case the second assertion means that a is not a square
mod π. If (x, y, z) is a non-trivial zero in F 3, then we may assume that x, y, z ∈ OF

and that one of them is in O×
F . From q(x, y, z) = 0 we get that π|x, and dividing

everything by π and reducing mod π it follows that y2 ≡ az2 mod π. As a is not a
square mod π it follows that π divides y and z : absurd. When p = 2 one does the
same by arguing mod 4π, after the change of variables y = 2y′ and z = 2z′. �

The following classical theorem is the main theorem on the classification of
quaternion algebras over number fields, it follows from the Hasse-Minkowski the-
orem on quadratic form and of the study of the Hilbert symbol (see e.g. Serre’s
cours d’arithmétique for a complete study in the case F = Q, in that case the study
of the Hilbert symbol reduces to the quadratic reciprocity law : see the examples
below for some flavor).

Theorem 1.7. Let F be a number field. If D is a quaternion algebra over F ,
the set Ram(D) ⊂ S(F ) of places v such that D is ramified at v, i.e. such that
Dv := D ⊗F Fv is not split, is a finite set with an even number of elements.

For any finite set S ⊂ S(F ) such that |S| is even, there is a unique quaternion
algebra over F such that Ram(D) = S.

Definition 1.8. A quaternion algebra over Q is called definite if D∞ is not
split, indefinite otherwise. Of course

(
a,b
Q

)
is definite iff a and b are < 0.

Example 1.9. For each prime p, there is a unique (definite) quaternion algebra
D over Q ramified exactly at p and ∞. Concretely, we may take:

(i) D =
(
−1,−1

Q

)
if p = 2,

(ii) D =
(
−1,−p

Q

)
if p ≡ 3 mod 4,

(iii) D =
(
−2,−p

Q

)
if p ≡ 5 mod 8,

(iv) D =
(
−`,−p

Q

)
if p ≡ 1 mod 8 whenever ` is a prime ≡ 3 mod 4 which is a

square mod p (there always exist such primes!).
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Let us check that those D have the required properties using only Prop. 1.4.
First, they are obviously definite.

— Let q be an odd prime. If ai ∈ Z×q , observe that the form
∑n

i=1 aiX
2
i represents

0 in Qn
q if n ≥ 3. Indeed, by successive approximation mod qm, m ≥ 1, one easily

reduces to show that its reduction mod q represents 0, but it is well known that any
non-degenerate quadratic form in≥ 3 variables over a finite field of odd characteristic
represents 0. It follows from this that for any D as in the statement above, and for
each prime q 6= 2, p, with furthermore q 6= ` case (iv), then D is split at q.

— Remark that for a ∈ Z×p and p odd, the form aX2 + pY 2 + apZ2 represents 0
if and only if −a is a square mod p. It follows that the D in (ii) to (iv) is ramified
at p, as respectively −1, −2 and −` are not squares mod p in those cases. It also
shows that in case (iv) the algebra D is split at ` as −p is a square mod `.

— This shows in all cases that {∞} ⊂ Ram(D) ⊂ {∞, p}. If we allow ourselves
to use that |Ram(D)| is even, this concludes the proof.

— The behaviors at the prime 2 can of course be checked directly, for instance as
follows. To conclude in case (i), note that indeed X2 +Y 2 +Z2 does not represent 0
over Q2 : we may assume that (x, y, z) ∈ Z3

2\(2Z2)
3 and argue mod 4. In the other

cases, use the following observation that one checks by successive approximation : if
q =

∑n
i=1 aiX

2
i with ai ∈ Z2\{0} for all i, and if q(xi) ≡ 0 mod 8 for some (xi) ∈ Zn

2

with the property that xj ∈ Z×2 for some j such that aj ∈ Z×2 , then q represents 0
in Zn

2 . We leave as an exercise to the reader to show that 2 /∈ Ram(D) in cases (ii)
to (iv) using this criterion (multiply first the form by 2 in case (iii)).

Exercises: (i) Let F be a number field and D =
(

a,b
F

)
. Show that for each finite

prime v of odd residual characteristic and such that av, bv ∈ O×
Fv

, Dv is split. In
particular, Dv is split for all but finitely many v ∈ S(F ) (that is the easy part of
the theorem above).

(ii) Let q be a quadratic form on Q3
p with discriminant 1. Show that q represents

0 in any quadratic extension of Qp. For any real quadratic field F/Q, give an explicit
quaternion algebra D over F such that Ram(D) = S(F )R.

(iii) (Image of the norm) Let D be a quaternion algebra over F and consider
the group homomorphism N : D× → F×. Show that N is surjective if F is a finite
extension of Qp. If F is a number field, show that the image of N is the subgroup
of elements x ∈ F× such that xv > 0 for each v ∈ S(F )R such that Dv is not split
(use Hasse-Minkowski’s theorem).

2. Arithmetic of quaternion algebras over Q

As in the case of number fields, we shall use a local-global method to study the
arithmetic of quaternion algebras over Q.

2.1. Orders and fractional ideals of quaternion algebras over Qp. Let
D be a quaternion algebra over Qp. An order of D is a Zp-subalgebra O ⊂ D which
is a Zp-lattice of the underlying Qp-vector space of D. A fractional (right-)ideal of
O is a Zp-lattice I ⊂ D such that IO ⊂ I.
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An order O necessarily has rank 4 over Zp and is made of elements x which are
integral over Zp. In particular, the bilinear form T of D is Zp-valued on O and O
has a discriminant δ(O) : it is the ideal of Zp generated by the determinant of the
matrix T (xixj) for any Zp-basis xi of O. It is non-zero as T is non-degenerated on
D. It follows that any O is contained in a maximal order (for the inclusion).

Proposition 2.2. - When D = M2(Qp), the maximal orders are the
GL2(Qp)-conjugate of M2(Zp), they have discriminant 1.

- If D is the non-split quaternion algebra, there is a unique maximal order,
it has discriminant p2.

- In both cases, each fractional ideal I of a maximal order O of D has the
form xO for some x ∈ D× which is unique up to multiplication by O× on
the right.

Proof — Assume first D = M2(Qp). The order M2(Zp) is a maximal order as it has
discriminant (1). As any order O ⊂ D preserves a lattice in Q2

p, it follows that the
maximal orders are exactly of the stabilizers of lattices in Q2

p, i.e. the xM2(Zp)x
−1

for some x ∈ GL2(Qp) (note that maximal orders are not unique !). The map
I 7→ I(Z2

p) induces a bijection between the set of fractional ideals of M2(Zp) and
the set of Zp-lattices in Q2

p : this may be seen directly (exercise) or as a special case
of Morita equivalence. In particular, any fractional ideal of M2(Zp) is principal, i.e.
of the form xM2(Zp) for some x ∈ GL2(Qp). If xM2(Zp) = M2(Zp) then clearly
x ∈ GL2(Zp)

×.

Assume now that D is a field. As for finite extensions of Qp, the norm of Qp

extends uniquely to a multiplicative non-archimedean discretely valued norm |.| on
D. It follows that OD = {x ∈ D, |x| ≤ 1} is an order of D, containing all the
elements of D which are integral over Zp, hence all the orders of D : it is the
unique maximal order (note the difference with the split case). It follows that any
fractional ideal of OD is principal (and two-sided). The subset {x ∈ OD, |x| < 1} is
the maximal ideal of OD, fix π a generator. We have up = πe for some unique e ≥ 1
and u ∈ O×

D (i.e. |u| = 1). If pf is the cardinal of the finite field kD := OD/(π)
(necessariliy commutative) it follows that ef = [D : Qp] = 4. As any element of OD

has degree 2 over Zp, we see that f ≤ 2 and that e ≤ 2 so e = f = 2.

If we write

D =

(
a, p

Qp

)
where a ∈ Z×p is such that K = Qp(

√
a) is the unramified quadratic extension of

Qp, then OK + jOK is an order of D, thus

(2.1) OK + jOK ⊂ OD.

But OD has discriminant 6= 1 as j /∈ pOD (apply N) and T (jOD) ⊂ pZp. A
direct computation shows that the left-hand side has discriminant (p2), thus the
only possibility is that the inclusion (2.1) is an equality. �

Exercises: (i) Assume D = M2(Qp) and O = M2(Zp). Show that under the
bijection above, the right ideals of O containing p correspond to the lines in F2

p. In
particular, there are p + 1 such ideals and each of them has index p2 in O.
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(ii) Let D be a quaternion algebra over Qp and O a maximal order. Show that
for any fractional ideal I ⊂ O, [O : I] is a square.

(iii) Let D be the non trivial quaternion algebra over Qp and π a uniformizer of
D. Show that {1 + πnOD, n ≥ 1} is a basis of neighborhoods of 1 in D× consisting
of normal open subgroups of D×. Show that D×/Q×

p is a compact group. Deduce
that the smooth irreducible complex representations of D× are finite dimensional.
(Compare with the case D = M2(Qp)).

2.3. The ideal class set of a quaternion algebra over Q. Let D be a
quaternion algebra over Q. An order of D is a subring O ⊂ D which is a Z-lattice
in D, and a fractional ideal of O is a Z-lattice I ⊂ D such that IO ⊂ I. For
the same reasons as in the local case (non degeneracy of T on D), orders have a
non-zero discriminant in Z (this is even a well-defined number here) and each order
is included in a maximal order. We fix such a maximal order O. We assume from
now on that D is a division algebra.

Orders and fractional ideals can be studied by the local-global method. If Λ ⊂ D
is a Z-lattice, and if p is a prime, write Λp for the lattice ZpΛ ⊂ Dp = D ⊗Q Qp.

Lemma 2.4. (localization lemma) The map Λ 7→ (Λp) is a bijection between Z-
lattices in D and the set of collections of local lattices (Lp) for all primes p such that
Lp = Op for all but finitely many p. Furthermore, Λ is an order (resp. a maximal
order, resp. a fractional ideal of O) iff Λp has this property for each p (resp. Λp is
a fractional ideal of Op for each p).

Proof — The first statement would hold for any finite dimensional vector space
over Q replacing D with a given Z-lattice O. It follows from the fact that the functor
Λ 7→ Λ⊗Z Ẑ = (Λp) is exact on finitely generated abelian groups and preserves the
indices of sublattices : Ẑ is flat over Z and X = X ⊗Z Ẑ for any finite abelian group
X. For the second statement, note that a lattice O ⊂ D is an order iff the lattice
O.O is included in O. By the first statement this holds iff it holds at each prime
p, but clearly (O.O)p = Op.Op for each prime p. Thus O is an order iff each Op is,
and O is maximal iff each Op is. The statement about ideals is similar. �

It follows from this and the previous local computation (plus a simple archimedean
one) that

Corollary 2.5. The maximal orders of D are the orders with discriminant d2

where d is the (squarefree) product of the finite primes at which D is ramified. We
often call this number d the discriminant of D.

It follows from the classification theorem that for each squarefree positive d there
is a unique quaternion algebra with discriminant d. It is definite iff d has an odd
number of prime divisors.

We denote by Cl(O) the set of equivalence classes4 of fractional ideals of O for
the relation I ∼ J ⇔ I = xJ for some x ∈ D×. We denote by D×

f the subgroup of

4As any order O is necessarily stable by x 7→ x∗, we obtain a natural bijection between left
and right fractional ideals of O, and between the "left" and "right" ideal class sets.
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∏
p D×

p whose elements (xp) are such that xp ∈ O×
p for all but finitely many primes p.

The definition of D×
f is independent of O and the diagonal inclusion D× →

∏
p D×

p

falls inside D×
f .

Theorem 2.6. The class set Cl(O) is finite and there is a canonical bijection

Cl(O)
∼→ D×\D×

f /
∏

p

O×
p .

Its cardinal h does not depend on the choice of O. Moreover, there are at most h
D×-conjugacy classes of maximal orders in D.

Proof — By Prop. 2.2, the fractional ideals of Op are the xpOp where xp ∈ D×
p , the

element xp being unique up to multiplication by O×
p on the right. By this and the

localization lemma, the map I 7→ (xp) ∈ D×
f where Ip = xpOp for each p, induces

a bijection between Cl(O) and the double cosets of the statement. If O′ is another
maximal order of D, then we may find (zp) ∈ D×

f such that O′
p = z−1

p Opzp for all p,
by Prop. 2.2, thus the multiplication by (zp) on the right on the double coset space
induces a bijection

Cl(O) ' Cl(O′).

The last assertion follows as any two maximal orders are locally conjugate at each
prime p.

Let us check the finiteness statement now. Let I be a fractional ideal of O. Up
to equivalence we may assume that I ⊂ O. Choose x ∈ I such that the integer
|N(x)| is non-zero and minimal. Equip D∞ with the sup norm |.| with respect to a
Z-basis of its lattice O, view N as a function D∞ → R, and pick δ > 0 such that
|N(z)| < 1 for |z| < δ in D∞. By the almost euclidean algorithm applied to δ, D∞
and the lattice O, there is an integer M > 0 such that for each v ∈ D∞ there is a
z ∈ O and 1 ≤ k ≤ M such that |N(kv − z)| < 1. Apply this to v = x−1y where
y ∈ I. We get |N(kx−1y − z)| < 1, thus |N(ky − xz)| < |N(x)| and ky ∈ xO by
minimality of x. It follows that

M ! xO ⊂ M ! I ⊂ xO
thus I is equivalent to the fractional ideal x−1M !I which sits inside M !O and O :
there are only finitely many such ideals. �

Lemma 2.7. (Almost euclidean algorithm) Fix n ≥ 1 an integer, as well as δ > 0.
There exists an integer M such that for all v ∈ Rn there is a integer 1 ≤ k ≤ M
and a z ∈ Zn such that |kv − z|sup < δ.

Proof — This follows form the pigeon-hole principle : choose r ∈ N and write
v = (vi), the fractional parts vectors (〈kvi〉)n

i=1 for k = 0, . . . , rn all belong to [0, 1[n,
thus at least two of them are in the same box of size 1/r. To conclude pick r ≥ 1/δ
and M ≥ rn. �

In the following statement, we endow D×
f with its natural product topology. It is

a locally compact topological space. We set for short Ô× :=
∏

pO×
p , it is a compact

open subgroup and a neighborhood of 1 in D×
f .
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Proposition 2.8. If D is definite then :

(a) D× is a discrete subgroup of D×
f ,

(b) For any x ∈ D×
f then xD×x−1 ∩ Ô× is a finite group. In particular, O× is

a finite group,

Proof — To check that D× is discrete it is enough to show that D×∩Ô× is finite as
Ô× is an open neighborhood of 1 in D×

f . But D×∩Ô× = O× is the set of element of
norm 1 in O (−1 is not a possible norm as N is positive). As N is definite there are
only finitely many such elements. Part (b) follows from (a) as the given intersection
is at the same time discrete and compact. �

References: The arithmetic of quaternion algebras have been mostly dis-
covered by Deuring, and then studied by Eichler. See the book of Vigneras on
quaternion algebras for a modern treatment as well as many results.

2.9. Some examples. Using the strong approximation theorem, one can actu-
ally show that h = 1 if D is indefinite. The situation is very different for definite D,
what we assume now. Perhaps surprisingly compared to the case of number fields,
there is however a simple close formula for h = h(d) in terms of the discriminant d
of D. For instance if d is prime then h is the genus of X0(d) plus 1. In particular, in
this prime case we have h(d) = 1 iff d = 2, 3, 5, 7, 13, and h(d) = 2 iff d = 11, 17, 19.

Example A: (Hurwitz quaternions and Lagrange theorem) Let D =
(
−1,−1

Q

)
be the quaternion algebra of discriminant 2. It is well-known that in this case

O := Zi + Zj + Zk + Z(1 + i + j + k)/2

is a maximal order, and the approach below shows that it has class number 1 ("Hur-
witz quaternions"). It follows that this is the unique maximal order of D up to
conjugacy. The finite group O× has order5 24, it contains as a normal subgroup the
usual quaternion group of order 8, as well as the elements ±1±i±j±k

2
. A standard

application of Cl(O) = 1 is that any odd prime p is the sum of 4 squares of integers
in exactly 8(p + 1) ways (Lagrange, Jacobi). Indeed, considering congruences mod-
ulo the two-sided ideal (1 + i)O, whose quotient is F4 = F2[τ ] where τ = 1+i+j+k

2

(τ 3 = −1), one easily sees6 that it is equivalent to show that for any odd prime p,
the equation p = N(x) has 24(p + 1) solutions x ∈ O. But for x ∈ O, p = N(x)
if and only if xO is an ideal of index p2 in O. As Op ' M2(Zp) for p > 2, Op has
exactly p + 1 distinct ideals of index p2, so O has exactly p + 1 ideal of index p2 by
the localization lemma. All of them are principal as Cl(O) = 1. We conclude the
proof as xO = x′O iff x = ux′ for u ∈ O×, and |O×| = 24.

In general, Cl(O) is closely related to the set of equivalence classes of 4-variables
integral quadratic forms in the same genus as (O, N).

5The natural map O× → O×
3 = GL2(Z3) induces thus an isomorphism O× ∼→ SL2(F3).

6Remark that for x ∈ O×
2 , x ≡ 1 mod (1 + i) iff x ∈ Z2 + iZ2 + jZ2 + kZ2.
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Example B: Let D =
(
−1,−11

Q

)
be the quaternion algebra with discrimimant 11.

A discriminant computation shows that a maximal order O is given by Z[z] + iZ[z]
where z = 1+j

2
. If Q(u, v, w, t) = N(u + vz + wi + tiz) then

Q(u, v, w, t) = u2 + uv + 3v2 + w2 + tw + 3t2.

(the discriminant of the associated bilinear form, namely (x, y) 7→ T (xy∗), is 112.)
We see that O× = 〈i〉 has order 4. Note that this form represents 2 in exactly 4 =
|O×| ways.7 It follows that only one of the 3 ideals ofO of index 4 is principal, namely
(1 + i)O. In particular, |Cl(O)| > 1. Consider the index 4 ideal I = 2O+ (z − i)O.
One easily checks that I is the subset of a + bz + ci + dzi ∈ O with b− c and a− d
even. In particular 1 + i /∈ I and I is not principal. One can actually show that

Cl(O) = {[O], [I]}.
As a Z-module, I = Ze + Zf + Zg + Zh where e = z − i, f = z + i, g = 1 + zi
and h = 1 − zi. A computation shows that the quadratic form Q′(u, v, w, t) :=
1
2
N(ue + vf + wg + th) is

Q′(u, v, w, t) = 2(u2 + v2 + w2 + t2) + 2uv + ut + vw − 2wt,

which is another positive definite integral 4-variables quadratic form of discriminant
112, non equivalent8 to Q. Although we shall not use this, one could check that the
forms {Q,Q′} are the only two such forms up to Z-equivalence ! Note that there
are 12 elements x ∈ I such that N(x) = 4, namely ±e,±f,±g,±h,±2i± 2. Using
these elements one easily sees that the subgroup of u ∈ D× such that uI = I is the
group generated by g

2
= 1+zi

2
, which has order 6 and satisfies g

2
e = f .

Lagrange-Jacobi’s theorem admits the following variant in this setting. If p 6= 11
is a prime, and if J1 . . . Jp+1 are the p + 1 ideals of O of index p2 containing p, then
some of the Ji (say A) will belong to the class of [O] and some others (say B) to
the class [I]. We have A + B = p + 1 and a bit of quaternion arithmetic (see below)
shows that 4A (resp.9 6B) is also the number Qp (resp. Q′

p) of ways to represent p
by the integral form Q (resp. Q′). In particular,

Qp

4
+

Q′
p

6
= p + 1

but as we shall see below, to compute the individual Qp and Q′
p is more complicated

involves modular forms !

Exercise: (i) Let D =
(
−1,−11

Q

)
and τ =

−1+ i+k
2

2
. Show that τ 3 = 1 and that

Z[τ ] + jZ[τ ] is an order of D. If O′ is a maximal order containing that latter order,
show that O′ is not conjugate to the O chosen in the example above.

(ii) Let D be a definite quaternion algebra, O a maximal order, and I ⊂ O a
right ideal of index10 M2. Show that qI(x) := N(x)/M is an integral quadratic form
on I, which is in the same genus as (O, N(−)) (in particular, positive definite of

7Indeed, a2 + ab + 3b2 = (a + b/2)2 + 11b2/4.
8Check that Q′ does not represent 1.
9The explanation of the 6 here is that the subgroup of u ∈ D× such that uI = I has order 6.
10It may be convenient to observe the following facts. If I is a fractional ideal of O, the index

[O : I] ∈ Q× is actually the square of a rational that we sometimes denote by N(I) "the Norm of
I". Indeed, this can be checked locally, in which case it is a previous exercise. For x ∈ D× we see
that N(xI) = N(x)N(I), so N(xO) = N(x) is consistant with previous use.
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discriminant disc(O)), and whose equivalence class only depends on the ideal class
of I.

(iii) (continuation) Let p be a prime. Show that an ideal J ⊂ O of index p2 is
in the same class as I iff there exists x ∈ I such that pJ = x−1I. In this case, show
that x is unique up to multiplication by an element of the finite subgroup GI ⊂ D×

of elements u such that uI = I, and that qI represents p. If D is split at p, deduce
the formula

p + 1 =
∑

[I]∈Cl(O)

nI(p)

|GI |

where nI(p) is the number of ways to represent p by qI .

(iv) (continuation) Fix I as above. Show that the number of principal ideals
J ⊂ I of index p2 is nI(p)

|O×| .

3. Modular forms on definite quaternion algebras

3.1. Definition. Let D be the definite quaternion algebra over Q with discrim-
inant d and fix O a maximal order of D. Recall that Ô× =

∏
`O

×
` .

We shall typically denote by K a compact open subgroup of Ô× of the form∏
` K`. If (`, d) = 1, then11 K` = GL2(Zl), so for any integer N prime to D it makes

sense to define K1(N) ⊂ Ô× as the compact open subgroup of elements (x`) such
that for any `|N we have

x` ≡
(
∗ ∗
0 1

)
mod NZ`.

If k ≥ 2 is an integer, we denote by Wk the algebraic representation Symmk−2(C2)
of D×

C = GL2(C). Each such Wk can be viewed by restriction as a representation of
D×.

Definition 3.2. The space of modular forms of level K and weight k ≥ 2 for D
is the complex vector space Sk(K) of functions D×

f → Wk such that f(γxy) = γf(x)

for all γ ∈ D×, x ∈ D×
f , and y ∈ K. For (N, d) = 1 we set SD

k (N) = Sk(K1(N)).

As for modular forms there is an obvious definition for Sk(N, ε) such that
Sk(N) = ⊕εSk(N, ε) where ε runs over all the Dirichlet characters (Z/NZ)× → C×,
but we shall not really need this.

By the finiteness of the class number of O and prop 2.8, there is a finite number
s = s(K) of elements xi ∈ D×

f such that D×
f =

∐s
i=1 D×xiK, and the groups

Γi := D× ∩ xiKx−1
i are finite. We even have s ≤ h|Ô×/K|. We immediately get :

Theorem 3.3. The evaluation map f 7→ (f(xi)) induces an isomorphism

Sk(K) →
s∏
i

W Γi
k .

11This identification is well defined up to inner automorphisms of GL2(Z`), so the indetermi-
nacy is harmless and we shall never mention this problem again and even write K` = GL2(Zl) for
such an `.
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In particular, Sk(K) is finite dimensional of "explicit dimension".

Exercise: If K = K1(N) with N ≥ 5, show that Γi = {1} for each 1 ≤ i ≤ s(K).
In particular, for such a K we have dim Sk(N) = (k − 1)s(K).

We now deal with Hecke operators. The group D×
f acts by right translations on

the vector-space Sk of all the functions D×
f → Wk such that f(γx) = γf(x) for all

(γ, x) ∈ D××D×
f . By definition, the K-invariants are SK

k = Sk(K) and the subspace
of smooth vectors of this space is thus exactly

⋃
K Sk(K). It follows that each Sk(K)

inherits of an action of the Hecke-algebra of (D×
f , K), i.e. of the restricted tensor

product of the Hecke-algebra of the (D×
` , K`) for each `. Recall that if g` ∈ D×

` , the
double coset K`g`K` is compact open hence admits a finite decomposition

K`g`K` =
⋃
i

gi,`K`,

and the Hecke operator T (g`) : SW (K) → SW (K) is (well-)defined by the mean
formula

T (g`)(f)(x) =
∑

i

f(xgi).

Here we view gi as an adèle whose component is 1 at each prime different from `, and
is gi at `. Of course, two such T (g`) for two different ` commute. When ` splits D
and O×

` = K` ' GL2(Z`), the Hecke algebra of (D×
` , K`) is generated by the double

cosets of (1, `) and (`, `), the first class giving rise to the so-called T` operator. In
this case we have already encountered the explicit formula

GL2(Z`)

(
1 0
0 `

)
GL2(Zl) =

(
` 0
0 1

)
GL2(Z`) ∪

`−1∐
i=0

(
1 0
i `

)
GL2(Z`).

Again, T` and T ′
` obviously commute whenever they are defined and ` 6= `′. As for

modular forms, the most interesting modular forms will be the common eigenforms
for all the Hecke operators.

Definition 3.4. A quaternionic eigenform for D of level N and weight k ≥ 2
is a common eigenvector f 6= 0 ∈ SD

k (N) for all the T` operators with (`, Nd) = 1.

Lemma 3.5. If f is such a modular form, say such that T`(f) = a`f for each `,
the subfield Q({a`, `}) ⊂ C is a number field called the coefficient field of f .

Indeed, remark that there exists a number field F ⊂ C such that D ⊗Q F =
M2(F ), and Wk |D× is naturally defined over such an F , an F -structure being Symk−2(F 2).
An F -structure of Sk(K) is given by the sub-F -vector space of functions with value
in Symk−2(F 2). That it is indeed an F -structure follows at once from the theo-
rem above, as each Symk−2(F 2)Γi is an F -structure of W Γi

k (justify!). The formula
above show that Hecke operators preserves this F -structure, and the lemma follows.
(As we may choose two linearly disjoint (quadratic) F in the argument above, we
even also see that the characteristic polynomial of the Hecke operators have rational
coefficients.)
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3.6. A non-trivial example. S2(1) is simply the space of functions Cl(O) →
C. If (`, disc(O)) = 1 is a prime, and f such a function, then T`(f)([I]) =

∑`
i=0 f([Ii])

where Ii ⊂ I runs over the `+1 fractional ideals of index `2. In particular, the 1-dim
subspace of constant functions Ce is stable under each T`, with eigenvalue ` + 1.

Assume now that D =
(
−1,−11

Q

)
is the quaternion algebra of discriminant 11, so

that Cl(O) has 2 elements as we already said. Applying the definition we see that
the action of T` on the 1-dimensional quotient S2(1, 1)/Ce is the multiplication by
the element λ` which is the number of principal ideals inside O of index `2 minus
the number of principal ideals inside a non-trivial class I of index `2. Quaternion
arithmetic, i.e. the exercices related to Example B above, also expresses this number
as

λ` =
Q`

4
− Q′

`

4

where Q` and Q′
` are the number of ways to represent ` by Q and Q′ respectively.

This is a certainly very interesting collection of integers (λ`)` 6=11 but that is not quite
the end of the story (by the way, had we defined Tn for each n prime to 11, we would
have obtained the same formula for λn and obtained the rather non-trivial fact that
λnm = λnλm whenever (n,m) = 1 !).

Consider, for the two quadratic forms F = Q and Q′, the associated θ-series

ΘF =
∑
n≥0

qF (n) =
∑
n≥0

Fnq
n.

(so Fn is the number of ways F represents the integer n). As Q, Q′ are 4-variables
integral quadratic forms which are positive definite and with discriminant 112, it
can be shown that the two theta series above are modular forms of weight 2 for the
subgroup Γ0(11) (see for instance the book of A. Ogg on modular forms). We have
ΘQ = 1 + 4q + 4q2 + · · · and ΘQ′ = 1 + 12q2 + 12q3 + · · · so ΘQ−ΘQ′

4
= q− 2q2 + · · · .

But the space of modular forms of weight 2 and level Γ0(11) is well-known to have
dimension 2 : it is generated by an Eisenstein series not vanishing at ∞, namely
E2(q) − 11E2(q

11), and by the cusp form q
∏

n≥1(1 − qn)2(1 − q11n)2 =
∑

n≥1 anq
n.

Thus the only possibility is that

ΘQ(q)−ΘQ′(q)

4
= q

∏
n≥1

(1− qn)2(1− q11n)2

so λ` = a` for each ` 6= 11. This is a particular instance of the Jacquet-Langlands
correspondence. Remembering that those `+1−a` are also the number of points mod
` 6= 11 of the elliptic curve y2 + y = x3 − x2 over Q, we see that the collection of λ`

is indeed really interesting from an arthmetic point of view. From a computational
way, it even looks easier to compute λ` by counting first |E(F`)|.

A very similar story holds for instance for the quaternion algebra of discriminant
172 and for the elliptic curve y2 + xy + y = x3 − x2 − x of discriminant ... 17.

3.7. The Jacquet-Langlands correspondence. Recall the space Sk(N) =
⊕εSk(N, ε) of cuspidal modular forms of weight k and level N . The following theo-
rem is a special case of the Jacquet-Langlands correspondence.
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Theorem 3.8. (Jacquet-Langlands) Assume (N, d) = 1. If k > 2 there is a
C-linear embedding

SD
k (N) → Sk(Nd)

commuting with all the T` for (`, Nd) = 1. If k = 2, the same statement holds if we
replace SD

2 (N) by its quotient by the 1-dimensional subspace of constant functions.

In both cases, the image of this embedding is exactly the subspace Sk(Nd)d−new

of d-new forms as defined by Atkin-Lehner.

This correspondence, and its natural generality, is best understood in terms of
automorphic representations, and results from the comparison of the Arthur-Selberg
trace formula for the algebraic groups GL2 and D×. Of course we don’t have time to
explore this point of view here and we refer to the book of Jacquet and Langlands.
We have not defined what a d-new form is. Let us simply say that it has the following
properties, which characterize it :

– (NEW1) if f ∈ Sk(Nd)d−new, then f|kγ = f for all γ ∈ Γ0(d) ∩ Γ1(N),

– (NEW2) an eigenform f ∈ Sk(Nd) is in Sk(Nd)d−new iff there is no eigenform
g ∈ Sk(Nd′) for d′|d and d′ 6= d with the same eigenvalues of T` as f for each ` prime
to Nd,

– (NEW3) Sk(Nd)d−new ⊂ Sk(Nd) is a direct summand as C[{T`, (`, Nd) = 1}]-
module.

Example : Assume d prime. As there is no modular form of weight 2 and level
1, it follows that

Cl(O) = dim SD
2 (1) = 1 + dim S2(d, 1) = 1 + genus(X0(d)),

as mentionned earlier.

From the existence of Galois representations attached to modular forms we de-
duce the following important fact.

Corollary 3.9. Let f ∈ SD
k (N) is an eigenform, E its coefficient field and λ

a finite place of E above the prime p. There exists a unique continuous semisimple
p-adic representation

ρf,λ : Gal(Q/Q) → GL2(Eλ)

which is unramified outside Ndp, and such that trace(ρf,λ(Frob`)) = a` for each
prime ` prime to Ndp.

If k = 2 and f is a constant function, we have seen that T`(f) = (` + 1)f for
each (`, Np) = 1. In particular E = Q and we may define ρf,p as Qp ⊕Qp(−1).


