1. Quaternion algebras

1.1. Definition and general properties. Let F' be a field of characteristic
% 2. Let a,b € F*. As it is easily checked, there is a unique unital associative
F-algebra of dimension 4 with F-basis 1,4, j, k such that 2 = a, j> = b and ij =
—ji =k (so k* = —ab). We denote this F-algebra by

a,b
Ik
Its presentation as an F-algebra is thus given by F{i,j}/(i® — a, j* — b,ij = —ji).

A quaternion algebra over F' is an F-algebra isomorphic to such an algebra for
some a,b € F*. If p € F*, there are F-algebra isomorphisms

()= (). (52)= (). (3) =00

induced respectively by (i,7) — (J,4), (i,7) — (ip~',j) and i — ( L0 ), j

0 -1
0 b . . . :
10 ) It follows that My(F') is a quaternion algebra, called the trivial or split
quaternion algebra. If F' is algebraically closed, or even if any element of F' is a

square, the formulae above show that M,(F") is the unique quaternion algebra over
F. If F'/F is a field extension, we have

a,b a,b
0 A i
so D ®p F ~ My(F) for any quaternion F-algebra D.

PROPOSITION 1.2. If D is an F'-algebra of rank 4, then the following properties
are equivalent : (a) D is a quaternion F-algebra, (b) D has center F and is simple
(i.e. it has no non-trivial two-sided ideal), (¢) D @p F ~ My(F).

If these properties hold, either D ~ My(F) or D is a division algebra.*

Proof — We have seen (a) = (c), and (c) = (b) follows at once from the fact that My (F)
is simple with center F.

Assume now that (b) holds and let us check first the last assertion (and then (a)).

Assume that for some x #% 0 € D, Dz C D. Then the set of proper left-ideals of
D is nonempty, hence has an element I of minimal F-dimension. The action by left-
translations of D on [ induces an F-linear injection D — Endp(I) as D is simple, so I has
F-dimension 2 or 3. In the first case D ~ Ms(F'). In the second, each proper left-ideal of
D has dimension 3, hence there is a unique such ideal (consider intersection of such ideals),
which is I. It follows that I is a right-ideal as well, which is absurd. As a consequence,
either D ~ Ms(F) or D is a division algebra.

To check (a) we may thus assume that D is a division algebra. In this case, for any
x € D\F then F[z] is a field of degree 2 over F as D is not commutative, and it coincides
with its centralizer in D for the same reason. Fix such an z. As the characteristic of F' is
not 2, there is some i € F[z]\F such that i = a and a € F* is not a square in F. The
conjugation by i on D has order 2, and its 1-eigenspace is F'(i) (by the remark above),

!This means that for any 2 € D\{0}, there is a y € D such that zy = yx = 1.
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and its —1-eigenspace is thus non-zero : there exists j € D such that ij = —ji (again use
2 € F*). But then j2 commutes with 4, hence belongs to F(i), so j2 = ci+b, for c,b € F.

If ¢ # 0 then F(j) 2 F(i) and F(j) = D : absurd, so ¢ = 0 and b € F*. It follows that

there is a natural F-algebra morphism (‘}b> — D, necessarily injective as the source is

simple, hence bijective. O

1.3. Quaternion algebras and quadratic forms. The F-linear automor-
phism x = (1,4, j,k) — z* = (1, —i, —j, —k) defines an anti-involution of D = (a?b)
(xy)* = y*z* and (2*)* = x. We define the trace and the norm of a quaternion z as
the elements T'(x) = z + 2* € F and N(z) = z2* € F.? The trace is an F-linear
map D — F, the F-bilinear map (z,y) — T'(zy) is easily checked to be symmetric

and non-degenerated. The norm defines a 4-variables quadratic form over F’
N(a+ Bi+~j +6k) = o —af* —by? +abd?,

which is non-degenerated and has discriminant 1 € F'*/(F*)%. We have N(z+y) =
N(z)+ N(y) + T(zy*) for all x,y € D.

Via the isomorphisms D ®@p F ~ My(F), one easily checks that T ®p F is the
usual trace and N ®p F is the determinant. As each F-automorphism of M(F) is
the conjugation by some element in GLy(F), it follows that 7' and N only depends
on the F-algebra structure on D (and not on the choice of a, b defining D), as well as
x +— x* = T(x) — 2. Moreover®, N(xy) = N(z)N(y) for all x,y € D. By definition,
the fixed points of * coincide with F' C D and the subspace D° C D where 2* = —x
(or T'(x) = 0) is the orthogonal complement of I in D for the norm. It is called the
space of pure quaternions. We have D = F @ D° and D° = Fi + Fj + Fk.

PROPOSITION 1.4. The map D +— Nipo defines a bijection between the set of
isomorphism classes of quaternion F-algebras and the equivalence classes of non-
degenerate quadratic forms on F3 with discriminant 1. In this bijection, My(F)

corresponds to the unique isotropic such form x® — y* — 22.

Proof — By the remarks above, if D is a quaternion algebra then the 3-dim quadratic
space Q(D) = (DO,N|D0) is well defined, non-degenerated, with discriminant 1. As any
such quadratic space has the form —ax? — by? + abz? for some a,b € F*, the map of
the statement is surjective. Note that for # € D° we have N(z) = zo* = —2?, and if
furthermore y € DY, then z is orthogonal to y iff 0 = zy* + 2*y = —(xy + yx), i.e. iff

xy = —yx. It follows that if Q(D) ~ Q((alj—,b)), then D° contains elements z,y such that

22 =a, y?> =band vy = —yz, thus D ~ (%) by the presentation of this latter algebra.

To check the last assertion, remark that by the multiplicativity of the norm and the relation
zx* = N(z) € F, D is a division algebra if and only if IV is anisotropic. As the quadratic
form N has 4 variables and discriminant 1, it turns out that its index is either 0 or 2 (but
not 1), thus N is anisotropic iff N, |po 1s anisotropic. O

2Note that the Cayley-Hamilton identity 2 —T'(z)z + N(z) = 0 = ( —2)(z —2*) holds in D.
3The reader can check as an exercise that N is the unique nonzero multiplicative quadratic
form on a quaternion algebra F.
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1.5. The case of local and global fields. If F’*/(F*)? is finite, there are
finitely many quaternion algebras over F' by the simple isomorphisms above. This
applies to local fields, in which case we even have:

PROPOSITION 1.6. If F' is a local field and F # C, then there is exactly one
non-split quaternion algebra over F up to isomorphism. If F is a finite extension
of Q, this algebra is (%) where m is a uniformizer of F' and a € OF is an element
such that F(y/a) is the quadratic unramified extension of F.

Proof — Indeed, over R, it is clear that Hamilton’s quaternions (_1]1’{1) is the
unique non-trivial quaternion algebra. If F'is a finite extension of Q,, it is a good
exercise that we leave to the reader to check that there is a unique anisotropic
quadratic form over F® with discriminant 1, which is isomorphic to

Q($7y7 Z) = _axQ 2

where 7 € F and a € OF are as in the statement (use e.g. similar arguments as in
the proof of the examples below). Let us simply check here that for p > 2 this form
is indeed anisotropic. In this case the second assertion means that a is not a square
mod 7. If (z,y, 2) is a non-trivial zero in F®, then we may assume that z,y, 2 € Op
and that one of them is in Op. From ¢(z,y,2) = 0 we get that 7|z, and dividing
everything by 7 and reducing mod 7 it follows that y> = az? mod 7. As a is not a
square mod 7 it follows that 7 divides y and z : absurd. When p = 2 one does the
same by arguing mod 47, after the change of variables y = 2y’ and z = 22’. OJ

— 7ry2 +arz

The following classical theorem is the main theorem on the classification of
quaternion algebras over number fields, it follows from the Hasse-Minkowski the-
orem on quadratic form and of the study of the Hilbert symbol (see e.g. Serre’s
cours d’arithmétique for a complete study in the case F' = Q, in that case the study
of the Hilbert symbol reduces to the quadratic reciprocity law : see the examples
below for some flavor).

THEOREM 1.7. Let F' be a number field. If D is a quaternion algebra over F,
the set Ram(D) C S(F) of places v such that D is ramified at v, i.e. such that
D, =D ®p F, is not split, is a finite set with an even number of elements.

For any finite set S C S(F) such that |S| is even, there is a unique quaternion
algebra over F' such that Ram(D) = S.
DEFINITION 1.8. A quaternion algebra over Q is called definite if Do, is not

split, indefinite otherwise. Of course (%’) is definite iff a and b are < 0.

EXAMPLE 1.9. For each prime p, there is a unique (definite) quaternion algebra
D over Q ramified exactly at p and co. Concretely, we may take:

i) D= () irp=2,
(i) D = (%) if p =3 mod 4,
(iii) D = (%) if p= 5mod 8,
(iv) D = (%) if p = 1 mod 8 whenever £ is a prime = 3 mod 4 which is a

square mod p (there always exist such primes!).



Let us check that those D have the required properties using only Prop. 1.4.
First, they are obviously definite.

— Let g be an odd prime. If a; € Z;, observe that the form S a; X? represents
0in Qj if n > 3. Indeed, by successive approximation mod ¢™, m > 1, one easily
reduces to show that its reduction mod ¢ represents 0, but it is well known that any
non-degenerate quadratic form in > 3 variables over a finite field of odd characteristic
represents 0. It follows from this that for any D as in the statement above, and for
each prime ¢ # 2, p, with furthermore ¢ # ¢ case (iv), then D is split at q.

— Remark that for a € ZX and p odd, the form aX? 4 pY? + apZ? represents 0
if and only if —a is a square mod p. It follows that the D in (ii) to (iv) is ramified
at p, as respectively —1, —2 and —/ are not squares mod p in those cases. It also
shows that in case (iv) the algebra D is split at £ as —p is a square mod /.

— This shows in all cases that {oo} C Ram(D) C {oo, p}. If we allow ourselves
to use that |[Ram(D)| is even, this concludes the proof.

— The behaviors at the prime 2 can of course be checked directly, for instance as
follows. To conclude in case (i), note that indeed X2+ Y2+ Z? does not represent 0
over Qy : we may assume that (z,y, z) € Z3\(2Z,)? and argue mod 4. In the other
cases, use the following observation that one checks by successive approximation : if
q =i, aX? with a; € Z,\{0} for all 4, and if ¢(x;) = 0 mod 8 for some (x;) € Z4
with the property that x; € ZJ for some j such that a; € Z3, then ¢ represents 0
in Z%. We leave as an exercise to the reader to show that 2 ¢ Ram(D) in cases (ii)
to (iv) using this criterion (multiply first the form by 2 in case (iii)).

Exercises: (i) Let F' be a number field and D = (%b) Show that for each finite
prime v of odd residual characteristic and such that a,,b, € O, , D, is split. In
particular, D, is split for all but finitely many v € S(F) (that is the easy part of
the theorem above).

(ii) Let ¢ be a quadratic form on (@f’, with discriminant 1. Show that ¢ represents
0 in any quadratic extension of Q,. For any real quadratic field £'/Q, give an explicit
quaternion algebra D over F' such that Ram(D) = S(F)g.

(i) (Image of the norm) Let D be a quaternion algebra over F' and consider
the group homomorphism N : D* — F*. Show that N is surjective if F'is a finite
extension of Q,. If F'is a number field, show that the image of NV is the subgroup
of elements x € F* such that z, > 0 for each v € S(F')g such that D, is not split
(use Hasse-Minkowski’s theorem).

2. Arithmetic of quaternion algebras over Q

As in the case of number fields, we shall use a local-global method to study the
arithmetic of quaternion algebras over Q.

2.1. Orders and fractional ideals of quaternion algebras over Q,. Let
D be a quaternion algebra over Q,. An order of D is a Z,-subalgebra O C D which
is a Z,-lattice of the underlying Q,-vector space of D. A fractional (right-)ideal of
O is a Zy-lattice I C D such that 1O C I.
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An order O necessarily has rank 4 over Z, and is made of elements z which are
integral over Z,. In particular, the bilinear form 7" of D is Z,-valued on O and O
has a discriminant §(QO) : it is the ideal of Z, generated by the determinant of the
matrix T'(z;x;) for any Z,-basis z; of O. It is non-zero as 7' is non-degenerated on
D. Tt follows that any O is contained in a maximal order (for the inclusion).

PROPOSITION 2.2. - When D = My(Q,), the mazimal orders are the
GL3(Q,)-conjugate of My(Z,), they have discriminant 1.

- If D s the non-split quaternion algebra, there is a unique maximal order,
it has discriminant p>.

- In both cases, each fractional ideal I of a mazximal order O of D has the
form xO for some x € D* which is unique up to multiplication by O on
the right.

Proof — Assume first D = M5(Q,). The order M»(Z,) is a maximal order as it has
discriminant (1). As any order O C D preserves a lattice in Q2, it follows that the
maximal orders are exactly of the stabilizers of lattices in QIQ,, ie. the xMy(Z,)z™?
for some z € GL3(Q,) (note that maximal orders are not unique !). The map
I — I(Z2) induces a bijection between the set of fractional ideals of M(Z,) and
the set of Z,-lattices in @2 : this may be seen directly (exercise) or as a special case

of Morita equivalence. In particular, any fractional ideal of M(Z,) is principal, i.e.
of the form zM5(Z,) for some x € GLy(Q,). If ®My(Z,) = Ms(Z,) then clearly
x € GL2 (Zp)x.

Assume now that D is a field. As for finite extensions of Q,, the norm of Q,
extends uniquely to a multiplicative non-archimedean discretely valued norm |.| on
D. It follows that Op = {z € D,|z| < 1} is an order of D, containing all the
elements of D which are integral over Z,, hence all the orders of D : it is the
unique maximal order (note the difference with the split case). It follows that any
fractional ideal of Op is principal (and two-sided). The subset {z € Op, |z| < 1} is
the maximal ideal of Op, fix 7 a generator. We have up = 7° for some unique e > 1
and u € OF (ie. |u| = 1). If p/ is the cardinal of the finite field kp := Op/(7)
(necessariliy commutative) it follows that ef = [D : Q,] = 4. As any element of Op
has degree 2 over Z,, we see that f <2 and that e <2soe= f =2.

a,p
D= (%P
(a,)
where a € Z) is such that K = Q,(y/a) is the unramified quadratic extension of
Qp, then Ok + jOk is an order of D, thus

(2.1) Ok + jOx C Op.

But Op has discriminant # 1 as j ¢ pOp (apply N) and T(jOp) C pZ,. A
direct computation shows that the left-hand side has discriminant (p?), thus the
only possibility is that the inclusion (2.1) is an equality. O

If we write

Exercises: (i) Assume D = M5(Q,) and O = My(Z,). Show that under the
bijection above, the right ideals of O containing p correspond to the lines in IF?D. In
particular, there are p + 1 such ideals and each of them has index p? in O.



(ii) Let D be a quaternion algebra over Q, and O a maximal order. Show that
for any fractional ideal I C O, [O : ] is a square.

(iii) Let D be the non trivial quaternion algebra over Q, and 7 a uniformizer of
D. Show that {1 4+ 7#"Op,n > 1} is a basis of neighborhoods of 1 in D* consisting
of normal open subgroups of D*. Show that D*/ Q, is a compact group. Deduce
that the smooth irreducible complex representations of D* are finite dimensional.
(Compare with the case D = M5(Q,)).

2.3. The ideal class set of a quaternion algebra over Q. Let D be a
quaternion algebra over (. An order of D is a subring @ C D which is a Z-lattice
in D, and a fractional ideal of O is a Z-lattice I C D such that IO C I. For
the same reasons as in the local case (non degeneracy of T' on D), orders have a
non-zero discriminant in Z (this is even a well-defined number here) and each order
is included in a maximal order. We fix such a maximal order O. We assume from
now on that D is a division algebra.

Orders and fractional ideals can be studied by the local-global method. If A C D
is a Z-lattice, and if p is a prime, write A, for the lattice Z,A C D, = D ®q Q,.

LEMMA 2.4. (localization lemma) The map A — (A,) is a bijection between Z-
lattices in D and the set of collections of local lattices (L,) for all primes p such that
L, = O, for all but finitely many p. Furthermore, A is an order (resp. a mazimal
order, resp. a fractional ideal of O) iff A, has this property for each p (resp. A, is
a fractional ideal of O, for each p).

Proof — The first statement would hold for any finite dimensional vector space
over Q replacing D with a given Z-lattice O. It follows from the fact that the functor
A— A®zZ = (A,) is exact on finitely generated abelian groups and preserves the
indices of sublattices : 7 is flat over Z and X = X Rz 7 for any finite abelian group
X. For the second statement, note that a lattice O C D is an order iff the lattice
0.0 is included in O. By the first statement this holds iff it holds at each prime
p, but clearly (0.0), = 0,.0, for each prime p. Thus O is an order iff each O, is,
and O is maximal iff each O, is. The statement about ideals is similar. O

It follows from this and the previous local computation (plus a simple archimedean
one) that

COROLLARY 2.5. The mazximal orders of D are the orders with discriminant d?
where d is the (squarefree) product of the finite primes at which D is ramified. We
often call this number d the discriminant of D.

It follows from the classification theorem that for each squarefree positive d there
is a unique quaternion algebra with discriminant d. It is definite iff d has an odd
number of prime divisors.

We denote by Cl(O) the set of equivalence classes® of fractional ideals of O for
the relation I ~ J < [ = xJ for some z € D*. We denote by D; the subgroup of

4As any order O is necessarily stable by  — z*, we obtain a natural bijection between left
and right fractional ideals of O, and between the "left" and "right" ideal class sets.
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[1, D, whose elements (z,) are such that z;, € O, for all but finitely many primes p.
The definition of Dy is independent of O and the diagonal inclusion D* — [, D)
falls inside D7

THEOREM 2.6. The class set C1(O) is finite and there is a canonical bijection

cl o) = p\n; /] os-

Its cardinal h does not depend on the choice of O. Moreover, there are at most h
D*-conjugacy classes of maximal orders in D.

Proof — By Prop. 2.2, the fractional ideals of O, are the z,0, where x;, € D,’, the
element z, being unique up to multiplication by O, on the right. By this and the
localization lemma, the map I +— (z,) € D} where I, = 2,0, for each p, induces
a bijection between Cl(O) and the double cosets of the statement. If O is another
maximal order of D, then we may find (z,) € D} such that O, = z,'0,z, for all p,
by Prop. 2.2, thus the multiplication by (z,) on the right on the double coset space
induces a bijection
Cl(O) ~ CI(O").

The last assertion follows as any two maximal orders are locally conjugate at each
prime p.

Let us check the finiteness statement now. Let I be a fractional ideal of O. Up
to equivalence we may assume that I C O. Choose x € I such that the integer
|N ()| is non-zero and minimal. Equip D, with the sup norm |.| with respect to a
Z-basis of its lattice O, view N as a function D, — R, and pick § > 0 such that
IN(2)| < 1for |z] < §in Dy. By the almost euclidean algorithm applied to 6, D
and the lattice O, there is an integer M > 0 such that for each v € D, there is a
z € O and 1 <k < M such that [N(kv — z)| < 1. Apply this to v = 27 'y where
y € I. We get |[N(kx~ty — 2)| < 1, thus |N(ky — z2)| < |N(z)| and ky € 2O by
minimality of z. It follows that

MaOcCMICzO

thus I is equivalent to the fractional ideal 7' M!I which sits inside M!O and O :
there are only finitely many such ideals. O

LEMMA 2.7. (Almost euclidean algorithm) Fixn > 1 an integer, as well as § > 0.
There exists an integer M such that for all v € R™ there is a integer 1 < k < M
and a z € Z" such that |kv — z|sup < 6.

Proof — This follows form the pigeon-hole principle : choose r € N and write
v = (v;), the fractional parts vectors ((kv;)), for k =0,...,r™ all belong to [0, 1[",
thus at least two of them are in the same box of size 1/r. To conclude pick r > 1/§
and M > r™. O

In the following statement, we endow D; with its natural product topology. It is

a locally compact topological space. We set for short 0% = Hp O, it is a compact
open subgroup and a neighborhood of 1 in D?.



PROPOSITION 2.8. If D is definite then :
(a) D* is a discrete subgroup of D7,

(b) For any x € D; then xD*z~1 N O is a finite group. In particular, O* is
a finite group,

Proof — To check that D> is discrete it is enough to show that D* NO* is finite as
O* is an open neighborhood of 1 in D;. But D*NO* = O is the set of element of
norm 1 in O (—1 is not a possible norm as N is positive). As N is definite there are
only finitely many such elements. Part (b) follows from (a) as the given intersection
is at the same time discrete and compact. O

REFERENCES: The arithmetic of quaternion algebras have been mostly dis-
covered by Deuring, and then studied by Eichler. See the book of Vigneras on
quaternion algebras for a modern treatment as well as many results.

2.9. Some examples. Using the strong approximation theorem, one can actu-
ally show that h = 1 if D is indefinite. The situation is very different for definite D,
what we assume now. Perhaps surprisingly compared to the case of number fields,
there is however a simple close formula for h = h(d) in terms of the discriminant d
of D. For instance if d is prime then h is the genus of Xy(d) plus 1. In particular, in
this prime case we have h(d) =1 iff d = 2,3,5,7,13, and h(d) = 2 iff d = 11,17, 19.

EXAMPLE A: (Hurwitz quaternions and Lagrange theorem) Let D = (71(@71)

be the quaternion algebra of discriminant 2. It is well-known that in this case
O =Zi+Zj+7Zk+Z(1+i+j+k)/2

is a maximal order, and the approach below shows that it has class number 1 ("Hur-
witz quaternions"). It follows that this is the unique maximal order of D up to
conjugacy. The finite group O* has order® 24, it contains as a normal subgroup the
usual quaternion group of order 8, as well as the elements % A standard
application of Cl1(Q) = 1 is that any odd prime p is the sum of 4 squares of integers
in exactly 8(p + 1) ways (Lagrange, Jacobi). Indeed, considering congruences mod-
ulo the two-sided ideal (1 4 )O, whose quotient is Fy = Fo7] where 7 = H4Hk
(73 = —1), one easily sees® that it is equivalent to show that for any odd prime p,
the equation p = N(x) has 24(p + 1) solutions z € O. But for z € O, p = N(x)
if and only if zO is an ideal of index p® in O. As O, ~ My(Z,) for p > 2, O, has
exactly p + 1 distinct ideals of index p?, so O has exactly p + 1 ideal of index p? by
the localization lemma. All of them are principal as C1(O) = 1. We conclude the
proof as xO = 'O iff x = uz’ for u € O*, and |O*| = 24.

In general, C1(O) is closely related to the set of equivalence classes of 4-variables
integral quadratic forms in the same genus as (O, N).

5The natural map O — O = GL2(Z3) induces thus an isomorphism O* = SLa(F3).
6Remark that for x € O3, x=1mod (1 +1) iff © € Zo + iZs + jZs + kZs.
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EXAMPLE B: Let D = (%) be the quaternion algebra with discrimimant 11.

A discriminant computation shows that a maximal order O is given by Z[z] +iZ|2]
where z = 2. If Q(u, v, w,t) = N(u+ vz + wi + tiz) then

Q(u,v,w,t) = u* + uv + 3v* + w* + tw + 3>,

(the discriminant of the associated bilinear form, namely (z,y) — T(zy*), is 11%.)
We see that O* = (i) has order 4. Note that this form represents 2 in exactly 4 =
|O*| ways.” It follows that only one of the 3 ideals of O of index 4 is principal, namely
(14 ¢)O. In particular, |C1(O)| > 1. Consider the index 4 ideal I =20 + (z —1)O.
One easily checks that [ is the subset of a + bz + ¢t + dzi € O with b —c and a — d
even. In particular 144 ¢ I and [ is not principal. One can actually show that

Cl(0) = {[0], 1]}

As a Z-module, [ = Ze + Zf + Zg + Zh where e = z — i, f = 2 +1, g =1+ zi
and h = 1 — zi. A computation shows that the quadratic form Q'(u,v,w,t) =
TN (ue +vf +wg +th) is

Q' (u,v,w,t) = 2(u? + v* + w? + %) + 2uv + ut + vw — 2wt,

which is another positive definite integral 4-variables quadratic form of discriminant

112, non equivalent® to Q. Although we shall not use this, one could check that the

forms {Q,Q’} are the only two such forms up to Z-equivalence ! Note that there

are 12 elements x € [ such that N(x) = 4, namely +e,+f, +g, £h, +2i £+ 2. Using

these elements one easily sees that the subgroup of © € D* such that ul = I is the
1421

group generated by § = ~5*, which has order 6 and satisfies e = f.

Lagrange-Jacobi’s theorem admits the following variant in this setting. If p # 11
is a prime, and if .J; ... J,,1 are the p+ 1 ideals of O of index p? containing p, then
some of the J; (say A) will belong to the class of [O] and some others (say B) to
the class [I]. We have A+ B = p+1 and a bit of quaternion arithmetic (see below)
shows that 4A (resp.” 6B) is also the number Q,, (resp. Q,,) of ways to represent p
by the integral form @ (resp. @’). In particular,

@, 9
4 6
but as we shall see below, to compute the individual @, and @, is more complicated

involves modular forms !
itk
Exercise: (i) Let D = (%) and 7 = lJ; 2. Show that 7 = 1 and that

Z[7]) + jZ[r] is an order of D. If O’ is a maximal order containing that latter order,
show that @' is not conjugate to the O chosen in the example above.

(ii) Let D be a definite quaternion algebra, O a maximal order, and I C O a
right ideal of index'® M?2. Show that ¢;(z) := N(z)/M is an integral quadratic form
on I, which is in the same genus as (O, N(—)) (in particular, positive definite of

"Indeed, a® + ab+ 30> = (a + b/2)? + 1162 /4.

8Check that Q' does not represent 1.

9The explanation of the 6 here is that the subgroup of u € D* such that ul = I has order 6.

101t may be convenient to observe the following facts. If I is a fractional ideal of O, the index
[O : I] € Q% is actually the square of a rational that we sometimes denote by N(I) "the Norm of
I". Indeed, this can be checked locally, in which case it is a previous exercise. For x € D* we see
that N(zI) = N(z)N(I), so N(zO) = N(z) is consistant with previous use.
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discriminant disc(Q)), and whose equivalence class only depends on the ideal class
of I.

(iii) (continuation) Let p be a prime. Show that an ideal J C O of index p? is
in the same class as I iff there exists x € I such that pJ = x711. In this case, show
that x is unique up to multiplication by an element of the finite subgroup Gy C D*
of elements u such that ul = I, and that g; represents p. If D is split at p, deduce

the formula
p41= Z nl(p)

[1eC1(0) Gil
where n;(p) is the number of ways to represent p by ¢;.

(iv) (continuation) Fix I as above. Show that the number of principal ideals

J C I of index p? is Té(f ‘)

3. Modular forms on definite quaternion algebras

3.1. Definition. Let D be the definite quaternion algebra over Q with discrim-
inant d and fix O a maximal order of D. Recall that O =[], O;.

We shall typically denote by K a compact open subgroup of O* of the form
[T, Ke. If (¢,d) = 1, then' K, = GLy(Z;), so for any integer N prime to D it makes

sense to define K;(N) C O* as the compact open subgroup of elements (x,) such
that for any ¢|N we have

x %k
a:gz(o 1) mod NZ,.

If k > 2 is an integer, we denote by W}, the algebraic representation Symm”*~2(C?)
of D& = GLy(C). Each such W, can be viewed by restriction as a representation of
D>,

DEFINITION 3.2. The space of modular forms of level K and weight k > 2 for D
is the complex vector space Sy(K) of functions Dy — Wy, such that f(yzy) = vf(z)
for ally € D*, x € D}, andy € K. For (N,d) =1 we set SP(N) = Sp(K1(N)).

As for modular forms there is an obvious definition for Si(N,e) such that
Si(N) = @:Sk(N, ) where e runs over all the Dirichlet characters (Z/NZ)* — C*,
but we shall not really need this.

By the finiteness of the class number of O and prop 2.8, there is a finite number
s = s(K) of elements x; € Dy such that Dy = [[;_; D*x;K, and the groups

I;:= D*Na;Kz; ' are finite. We even have s < h|O*/K|. We immediately get :

THEOREM 3.3. The evaluation map f +— (f(x;)) induces an isomorphism

Hhis identification is well defined up to inner automorphisms of GLy(Z,), so the indetermi-
nacy is harmless and we shall never mention this problem again and even write Ky = GLy(Z;) for
such an /.
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In particular, Sk(K) is finite dimensional of "explicit dimension”.

Exercise: If K = K;(N) with N > 5, show that I'; = {1} foreach 1 <i < s(K).
In particular, for such a K we have dim Si(N) = (k — 1)s(K).

We now deal with Hecke operators. The group Djf acts by right translations on
the vector-space Sy of all the functions Dy — W, such that f(yx) = vf(x) for all
(7,x) € D*x D¥. By definition, the K-invariants are S = Sj.(K) and the subspace
of smooth vectors of this space is thus exactly | J,- Si(K). It follows that each Si(K)
inherits of an action of the Hecke-algebra of (D5, K), i.e. of the restricted tensor
product of the Hecke-algebra of the (D, K;) for each ¢. Recall that if g, € D/, the
double coset K,g,K, is compact open hence admits a finite decomposition

KoKy = U%,@Ke,

and the Hecke operator T'(gs) : Sw(K) — Sw(K) is (well-)defined by the mean
formula

T(90)(f) (@) = 3 f(z9.).

Here we view g; as an adéle whose component is 1 at each prime different from ¢, and
is g; at £. Of course, two such T'(g,) for two different ¢ commute. When ¢ splits D
and O = Ky ~ GLy(Z,), the Hecke algebra of (D/, K;) is generated by the double
cosets of (1,¢) and (¢, (), the first class giving rise to the so-called T, operator. In
this case we have already encountered the explicit formula

ClLo(Zy) ( DY >GL2(ZZ) _ ( g ; )GLQ(ZZ) uﬁ( LY ) CLs(Zy).

1=0

Again, T, and T, obviously commute whenever they are defined and ¢ # ¢'. As for
modular forms, the most interesting modular forms will be the common eigenforms
for all the Hecke operators.

DEFINITION 3.4. A quaternionic eigenform for D of level N and weight k > 2
is a common eigenvector f # 0 € SP(N) for all the T, operators with (¢, Nd) = 1.

LEMMA 3.5. If f is such a modular form, say such that Ty(f) = asf for each ¢,
the subfield Q({ay, ¢}) C C is a number field called the coefficient field of f.

Indeed, remark that there exists a number field ' C C such that D ®qg F' =
M,(F), and Wy px is naturally defined over such an F, an F-structure being Sym*~2(F?).
An F-structure of Si(K) is given by the sub-F-vector space of functions with value
in Sym*2(F?). That it is indeed an F-structure follows at once from the theo-
rem above, as each Sym*~2(F?)I is an F-structure of W} (justify!). The formula
above show that Hecke operators preserves this F-structure, and the lemma follows.

(As we may choose two linearly disjoint (quadratic) F' in the argument above, we
even also see that the characteristic polynomial of the Hecke operators have rational
coefficients.)
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3.6. A non-trivial example. S(1) is simply the space of functions Cl1(O) —
C. If (¢,disc(O)) = 1is a prime, and f such a function, then T;(f)([I]) = Zf:o f([L])
where I; C I runs over the ¢4 1 fractional ideals of index ¢2. In particular, the 1-dim
subspace of constant functions Ce is stable under each T}, with eigenvalue ¢ + 1.

Assume now that D = (*16 11) is the quaternion algebra of discriminant 11, so

that CI(O) has 2 elements as we already said. Applying the definition we see that
the action of T; on the 1-dimensional quotient Ss(1,1)/Ce is the multiplication by
the element )\, which is the number of principal ideals inside O of index ¢? minus
the number of principal ideals inside a non-trivial class I of index ¢2. Quaternion
arithmetic, i.e. the exercices related to Example B above, also expresses this number
as

Qe _ Qi

4 4

where @), and @)} are the number of ways to represent ¢ by @) and @’ respectively.
This is a certainly very interesting collection of integers (A¢)ez11 but that is not quite
the end of the story (by the way, had we defined T, for each n prime to 11, we would
have obtained the same formula for \,, and obtained the rather non-trivial fact that
Anm = AnAm Whenever (n,m) =11).

Ao =

Consider, for the two quadratic forms F' = Q and @', the associated 6-series

OF = ZqF(n) = Zann

n>0 n>0

(so F, is the number of ways F' represents the integer n). As @, Q' are 4-variables
integral quadratic forms which are positive definite and with discriminant 112, it
can be shown that the two theta series above are modular forms of weight 2 for the
subgroup I'g(11) (see for instance the book of A. Ogg on modular forms). We have
O =1+4¢+4¢>+--- and O = 1+12¢* +12¢* +--- so QQ;@Q' =q—2¢°+---
But the space of modular forms of weight 2 and level T'y(11) is well-known to have
dimension 2 : it is generated by an Eisenstein series not vanishing at oo, namely
E5(q) — 11E5(¢"™), and by the cusp form ¢ [], (1 — ¢")*(1 — ¢'"'")* =", <, ang™
Thus the only possibility is that - -

@Q( ) @Q’ _qH 1—q 11n>

n>1

so Ay = ay for each ¢ # 11. This is a particular instance of the Jacquet-Langlands
correspondence. Remembering that those /+1—a, are also the number of points mod
¢ # 11 of the elliptic curve y* +y = 23 — 2% over Q, we see that the collection of )\,
is indeed really interesting from an arthmetic point of view. From a computational
way, it even looks easier to compute A, by counting first |E(F,)|.

A very similar story holds for instance for the quaternion algebra of discriminant
17% and for the elliptic curve y* + zy +y = 2* — 22 — x of discriminant ... 17.

3.7. The Jacquet-Langlands correspondence. Recall the space Sp(N) =
®.Sk(N, ¢) of cuspidal modular forms of weight k& and level N. The following theo-
rem is a special case of the Jacquet-Langlands correspondence.
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THEOREM 3.8. (Jacquet-Langlands) Assume (N,d) = 1. If k > 2 there is a
C-linear embedding
SP(N) — Si(Nd)
commuting with all the T, for (¢, Nd) = 1. If k = 2, the same statement holds if we
replace SP(N) by its quotient by the 1-dimensional subspace of constant functions.

d—new

In both cases, the image of this embedding is exactly the subspace Sp(Nd)
of d-new forms as defined by Atkin-Lehner.

This correspondence, and its natural generality, is best understood in terms of
automorphic representations, and results from the comparison of the Arthur-Selberg
trace formula for the algebraic groups GLs and D*. Of course we don’t have time to
explore this point of view here and we refer to the book of Jacquet and Langlands.
We have not defined what a d-new form is. Let us simply say that it has the following
properties, which characterize it :

— (NEW1) if f € Si(Nd)* ™", then fjyy = f for all v € To(d) NT1(N),

— (NEW2) an eigenform f € Sg(Nd) is in Si(Nd)? " iff there is no eigenform
g € Sp(Nd') for d'|d and d’' # d with the same eigenvalues of T, as f for each ¢ prime
to Nd,

— (NEW3) Sp(Nd)mew C S(Nd) is a direct summand as C[{Ty, (¢, Nd) = 1}]-

module.

Example : Assume d prime. As there is no modular form of weight 2 and level
1, it follows that

Cl(O) = dim S2(1) = 1 + dim Sy(d, 1) = 1 + genus(X,(d)),

as mentionned earlier.

From the existence of Galois representations attached to modular forms we de-
duce the following important fact.

COROLLARY 3.9. Let f € SP(N) is an eigenform, E its coefficient field and \
a finite place of E above the prime p. There exists a unique continuous semisimple
p-adic representation
P Gal(Q/Q) — GLy(E))
which is unramified outside Ndp, and such that trace(py(Froby)) = ap for each
prime £ prime to Ndp.

If £ =2 and f is a constant function, we have seen that T,(f) = (¢ + 1)f for
each (¢, Np) = 1. In particular £ = Q and we may define p;, as Q, & Q,(—1).



