
COS 594D: A THEORIST’S TOOLKIT

March 2, 2003

Abstract

These are edited lecture notes from a graduate course at the Computer Science department
of Princeton University in Fall 2002. The course was my attempt to teach first year graduate
students students many mathematical tools useful in theoretical computer science. Of course,
the goal was too ambitious for a course with 12 three hour lectures. I had to relegate some
topics to homework; these include online algorithms, Yao’s lemma as a way to lowerbound
randomized complexity, Madhu Sudan’s list decoding algorithm (useful recently in complexity
theory and pseudorandomness), and pseudorandom properties of expander graphs. If I had
time for another lecture I would have covered basic information theory.

To put the choice of topics in context, I should mention that our theory grads take a two
semester course sequence on Advanced Algorithm Design and Complexity Theory during their
first year, and I did not wish to duplicate topics covered in them. Inevitably, the choice of topics
—especially the final two chapters— also reflected my own current research interests.

The scribe notes were written by students, and I have attempted to edit them. For this
techreport I decided to reshuffle material for coherence, and so the scribe names given with
each chapter does not completely reflect who wrote that chapter. So I will list all the scribes
here and thank them for their help: Tony Wirth, Satyen Kale, Miroslav Dudik, Paul Chang, Elad
Hazan, Elena Nabieva, Nir Ailon, Renato F. Werneck, Loukas Georgiadis, Manoj M.P., and Edith
Elkind. I hope the course was as much fun for them as it was for me.

Sanjeev Arora
March 2003

Contents

1 Probabilistic Arguments 2

2 LP Duality and its Uses 8

3 The Dimension Method 16

4 The Lore and Lure of Expanders 25

5 Eigenvalues and Expanders 29

6 Markov Chains and Random Walks 36

7 High Dimensional Geometry 43

8 Discrete Fourier Transform and its Uses 57

9 Relaxations for NP-hard Optimization Problems 66

10 Semidefinite Programming 74

1

Chapter 1

Probabilistic Arguments

scribe:Tony Wirth

1.1 Introduction

Think of the topics in this course as a toolbox to rely upon during your research career. Today’s
lecture shows the application of simple probabilistic arguments to prove seemingly difficult re-
sults. Alon and Spencer’s text goes into considerably more detail on this topic, as will Sudakov’s
course in the Math dept.

A random variable is a mapping from a probability space to R. To give an example, the
probability space could be that of all possible outcomes of n tosses of a fair coin, and Xi is the
random variable that is 1 if the ith toss is a head, and is 0 otherwise.

Let X1, X2, X3, . . . , Xn be a sequence of random variables. The first observation we make is
that of the Linearity of Expectation, viz.

E[
∑
i
Xi] =

∑
i

E[Xi]

It is important to realize that linearity holds regardless of the whether or not the random
variables are independent.

Can we say something about E[X1X2]? In general, nothing much but if X1, X2 are indepen-
dent events (formally, this means that for all a,b Pr[X1 = a,X2 = b] = Pr[X1 = a]Pr[X2 = b])
then E[X1X2] = E[X1]E[X2].

The first of a number of inequalities presented today, Markov’s inequality says that any
non-negative random variable X satisfies

Pr (X ≥ kE[X]) ≤ 1
k
.

Note that this is just another way to write the trivial observation that E[X] ≥ k · Pr[X ≥ k].
Sometimes we refer to the application of Markov’s inequality as an averaging argument.
Can we give any meaningful upperbound on Pr[X < c · E[X]] where c < 1, in other words

the probability that X is a lot less than its expectation? In general we cannot. However, if we
know an upperbound on X then we can. For example, if X ∈ [0,1] and E[X] = µ then for any
c < 1 we have (simple exercise)

Pr[X ≤ cµ] ≤ 1− µ
1− cµ .

Sometimes this is also called an averaging argument.

2

3

Example 1 Suppose you took a lot of exams, each scored from 1 to 100. If your average score
was 90 then in at least half the exams you scored at least 80.

1.2 Independent sets in random graphs

We illustrate the power of the averaging argument by studying the size of the largest indepen-
dent set in random graphs. Recall that an independent set is a collection of nodes between
every pair of which there is no edge—an anti-clique, if you like. It is NP-hard to determine the
size of the largest independent set in a graph in general.

Let G(n, 1
2) stand for the distribution on graphs with n vertices in which the probability

that each edge is included in the graph is 1/2. In fact, G(n, 1
2) is the uniform distribution on

graphs with n nodes (verify this!). Thus one of the reasons for studying random graphs is to
study the performance of some algorithms “on the average graph.”

What is the size of the largest independent set in a random graph?

Theorem 1

The probability that a graph drawn from G(n, 1
2) has an independent set of size greater than

2�logn� is tiny.

Proof: For all subsets S of {1,2, . . . , n}, let XS be an indicator random variable for S being an
independent set. Now, let r.v. Yk be the number of independent sets of size k; that is,

Yk =
∑

S:|S|=k
XS.

Linearity of expectation tells us that

E[Yk] =
∑

S:|S|=k
E[XS].

The XS r.v.s are indicators and there are
(|S|

2

)
potential edges between |S| vertices, hence

E[XS] = Pr[XS = 1] = 1

2(
|S|
2)
,

Applying both the approximations

(
n
k

)
≈
(
ne
k

)k
and

(
n
2

)
≈ n

2

2
, (1.1)

we can show that

E[Yk] =
(
n
k

)
1

2(
|S|
2)

=
[
ne
k

]k
1

2k2/2

=
[
ne
k2k/2

]k
(1.2)

=
[

e
2 logn

]2 logn

,

4

substituting 2 logn for k. Hence the mean value of Yk tends to zero very rapidly.
In particular, Markov’s inequality tells us that Pr[Yk ≥ 1] ≤ E[Yk] and hence that the prob-

ability of an independent set of size 2�logn� is tiny. �

Since the distribution G(n,1/2) picks each edge with probability 1/2, it also leaves out each
edge with probability 1/2. Thus we can simultaneously bound the maximum size of a clique
by 2�logn�.

Now we also show a lowerbound on the size of the largest independent set/clique. Note that
substituting k = 2�logn� − √logn in the above calculation for E[Yk] shows that the expected
number of independent sets of size 2�logn� − √logn is very large. However, we have to rule
out the possibility that this number is large with probability ≈ 0.

For this we need a more powerful inequality, Chebyshev’s inequality, which says

Pr[|X − µ| ≥ kσ] ≤ 1
k2
,

where µ and σ 2 are the mean and variance of X. Recall that σ 2 = E[(X − µ)2] = E[X2] − µ2.
Actually, Chebyshev’s inequality is just a special case of Markov’s inequality: by definition,

E
[
|X − µ|2

]
= σ 2,

and so,

Pr
[
|X − µ|2 ≥ k2σ 2

]
≤ 1
k2
.

Theorem 2

If G is drawn from G(n, 1
2) there is almost surely an independent set of size 2�logn�−√logn.

Proof: If k = 2 logn − √logn, then by substituting into formula (1.2) we find that E[Yk] is
approximately (

ne
2 logn n

2
√

logn/2

)k
≥
(

2
√

logn/2

2 logn

)logn

.

This quantity tends to infinity, so the mean is much greater than one. However, the variance
could be so large that the value of the mean tells us nothing.

The calculation of the variance is however quite messy. Let N stand for
(
n
k

)
and p stand

for 2−(
k
2). The expected value of Yk is Np. We show that E[Y 2

k] is N2p2 + ε, where ε� N2p2,
so that Var[Yk] = ε is smaller than N2p2. Then concentration about the mean follows from
Chebyshev’s inequality. Observe that

E[Y 2
k] = E[(

∑
S:|S|=k

Xs)2] =
∑

S,T :|S|=|T |=k
E[XSXT],

by linearity of expectation.
Note that if |S ∩ T | ≤ 1 thenXS andXT are independent events and E[XSXT] = E[XS]E[XT] =

p2. Now we calculate the fraction of S, T that satisfy |S ∩ T | = i > 1. There are
(
n
k

)
ways to

choose S and then
(
k
i

)(
n−k
k−i

)
ways to choose T . Then the probability that both are indepen-

dent sets is 2−2(k2)2(
i
2) = p22(

i
2). Since XSXT = 1 iff both S and T are independent sets and 0

otherwise, we have

E[Y 2
k] =

(
n
k

)
p2

(n− k

k

)
+
(
k
1

)(
n− k− 1
k− 1

)
+
∑
i≥2

(
k
i

)(
n− k
k− i

)
2(

i
2)

 .

5

This can be shown to be N2p2 + ε for some ε� N2p2. �

In fact, in 1976 Bollobás and Erdős showed that for every n there is a number k(n) (pre-
sumably around 2 logn) such that the distribution of the size of the maximum independent
set is very tightly concentrated on k(n) and k(n)+ 1.

Algorithms: Somebody asked if we can find a clique or independent set of size 2�logn� in
polynomial time on such graphs. We describe a simple greedy polynomial time algorithm that
finds a clique of size �logn� in a random graph with high probability. The greedy process is
simply this: select a vertex v1 at random, and then look at its set of neighbours, V1. Next, Select
a vertex v2 in V1 and restrict attention to neighbours of v1 and v2; call this set V2. We continue
this process until we reach a Vk that is empty. Thus {v1, v2, . . . , vk} is a maximal clique.

Using the fact that in a random graph, all degrees are concentrated in [n2 −O(
√
n logn), n2 +

O(
√
n logn)] (see Chernoff bounds below), we can show that k ≥ logn−O(1) with high prob-

ability.

Open Problem 1 Is it possible to find a clique of size (1 + ε) logn in polynomial time? (The
best algorithm we know of does exhaustive listing of sets of size (1 + ε) logn, which takes
about n(1+ε) logn time.

1.3 Graph colouring: local versus global

Imagine that one day you pick up a political map of some world and decide to colour in the
countries. To keep the boundaries clear you decide to fill in adjacent countries with different
colours. It turns out that no matter what map anyone gives you (a map is just a so-called planar
graph), four colours will always suffice.

We can extend this notion of colouring to graphs: we assign each vertex a colour so that
no two vertices with an edge between them share a colour. More formally, a k-colouring of a
graph G = (V , E) is a family of k independent sets whose union is V . Note that we can ask that
these sets form a partition of V , but we don’t have to.

Following convention, let α(G) stand for the size of the largest independent set in G and
let χ(G) stand for the minimum k for which G admits a k-colouring. The formal definition of
colouring tells us that

χ(G) ≥ n
α(G)

.

Can we provide an upper bound for the chromatic number, χ(G), using α(G), for instance
2n/α(G)? Such a bound is impossible: there exist graphs in which there is a large independent
set, but the remainder of the graph is a clique. However, if the vertex degrees are bounded,
then so is the chromatic number.

Theorem 3

If the maximum degree of a graph is d then χ(G) ≤ d+ 1.

Proof: Proof by induction: The base case is trivially true. For the inductive step, assume all
graphs with n nodes satisfy the theorem. Given a graph G with n + 1 nodes, identify one
vertex v . The induced subgraph G − {v} can be coloured with d+ 1 colours, by the induction
assumption. The node v has links to at most d other nodes, due to the maximum degree
constraint, and hence is adjacent to at most d colours. Hence the d + 1th colour is available
for v and so G can be d+ 1-coloured. �

Perhaps being able to colour small subgraphs with few colours might help us to colour
larger graphs? Such conjectures can waste a lot of brain-cycles. But a simple probabilistic
argument —doable on the back of an envelope— can help us dispose of such conjectures, as

6

in the following 1962 result by Erdős. It shows that the chromatic number is truly a global
property and cannot be deduced from looking locally.

Theorem 4

For all k there exists a positive ε such that for all sufficiently large n there is a graph G on n
vertices with χ(G) > k, but every subgraph of G with at most εn vertices is 3-colourable.

Proof: Let G be a graph selected from G(n,p) where p = c/n. We show not only that there
exists such a G that satisfies the theorem statement, but that selected in this way G satisfies it
almost surely.

First, we show that with high probability α(G) < n/k, which implies χ(G) > k. We can

approximate
(
n
an

)
with 2H(a)n, where H(a) is the entropy function

a log

(
1
a

)
+ (1− a) log

(
1

1− a

)
.

Using the fact that when p is small, 1−p ≈ e−p, we find that the expected number of indepen-
dent sets of size n/k is(

n
n/k

)
(1− p)(n/k2) ≈ 2nH(1/k)e−pn

2/2k2 = exp

[
nH

(
1
k

)
(ln 2)− cn

k2

]
.

If c is at least 2k2H(1/k) ln 2, this expectation drops to zero rapidly.
Second, we show that in every induced subgraph on at most εn nodes, the average degree

is less than 3. Note that if there exists a subgraph on εn vertices that is not 3-colourable, then
there is a minimal such subgraph. In the minimal such subgraph, every vertex must have degree
at least 3 (Proof: Suppose a vertex has degree 2 yet omitting it gives a 3-colorable subgraph.
Then putting the vertex back in, we can extend the 3-coloring to that vertex by giving it a color
that has not been assigned to its 2 neighbors.) So we have a subgraph on s ≤ εn vertices with
at least 3s/2 edges. The probability of such a subgraph existing is at most

∑
s≤εn

(
n
s

)((
s
2

)
3s/2

)(
c
n

)3s/2

,

recalling that p = c/n. If s is O(1), the terms tend to zero rapidly and the sum is negligible.
Otherwise, we can use the approximations presented in line (1.1) to arrive at the quantity

∑
s≤εn

ne
s

(
se
3

)3/2(
c
n

)3/2

s ≤ [e5/23−3/2c3/2√s/n]s .

If ε is less than e−533c−3, the summation terms are strictly less than 1, since s ≤ εn. On the
other hand we have eliminated the cases where s is O(1) so the remainder of the terms form a
geometric series and so their sum is bounded by a constant times the first term, which is tiny.

�

1.4 Bounding distribution tails

When we toss a coin many times, the expected number of heads is half the number of tosses.
How tightly is this distribution concentrated? Should we be very surprised if after 1000 tosses
we have 625 heads? We can provide bounds on how likely a sum of Poisson trials is to deviate
from its mean. (A sequence of {0,1} random variables is Poisson, as against Bernoulli, if the
expected values can vary between trials.) The Chernoff bound presented here was probably
known before Chernoff published it in 1952.

7

Theorem 5

Let X1, X2, . . . , Xn be independent Poisson trials and let pi = E[Xi], where 0 < pi < 1. Then the
sum X =∑ni=1Xi, which has mean µ =∑ni=1 pi, satisfies

Pr[X ≥ (1+ δ)µ] ≤
[

eδ

(1+ δ)(1+δ)
]µ
.

Proof: Surprisingly, this inequality also is proved using the Markov inequality.
We introduce a positive dummy variable t and observe that

E[exp(tX)] = E[exp(t
∑
i
Xi)] = E[

∏
i

exp(tXi)] =
∏
i

E[exp(tXi)], (1.3)

where the last equality holds because the Xi r.v.s are independent. Now,

E[exp(tXi)] = (1− pi)+ piet,

therefore,∏
i

E[exp(tXi)] =
∏
i
[1+ pi(et − 1)] ≤

∏
i

exp(pi(et − 1))

= exp(
∑
i
pi(et − 1)) = exp(µ(et − 1)),

(1.4)

as 1+ x ≤ ex . Finally, apply Markov’s inequality to the random variable exp(tX), viz.

Pr[X ≥ (1+ δ)µ] = Pr[exp(tX) ≥ exp(t(1+ δ)µ)] ≤ E[exp(tX)]
exp(t(1+ δ)µ) =

exp((et − 1)µ)
exp(t(1+ δ)µ) ,

using lines (1.3) and (1.4) and the fact that t is positive. Since t is a dummy variable, we can
choose any positive value we like for it. The right hand size is minimized if t = ln(1+δ)—just
differentiate—and this leads to the theorem statement. �

A similar technique yields this result for the lower tail of the distribution

Pr[X ≤ (1− δ)µ] ≤
[

e−δ

(1− δ)(1−δ)
]µ

By the way, if all n coin tosses are fair (Heads has probability 1/2) then the the probability
of seeing N heads where |N −n/2| > a√n is at most e−a2/2. The chance of seeing at least 625
heads in 1000 tosses of an unbiased coin is less than 5.3× 10−7.

§1 Prove that the greedy algorithm finds a clique of size logn −O(1) with high probability
in a random graph.

Chapter 2

LP Duality and its Uses

scribe: Satyen Kale

We introduce linear programs and the famous Duality Theorem. Our goal is to showcase
linear programs as mathematical tools; their use in algorithms is of course well-known. Our
main example is a result by Linial and Nisan on Approximate Inclusion-Exclusion. Another
example in the same spirit is the LP bound on density of error-correcting codes; see a book on
coding theory such as Van Lint or MacWilliams-Sloane.

2.1 Linear Programming and Farkas’ Lemma

A Linear Program involves optimizing a linear cost function with respect to linear inequality
constraints. They are useful for algorithm design as well as a tool in mathematical proofs. The
typical program looks as follows.

Given: vectors c,a1,a2, . . .am ∈ Rn, and real numbers b1, b2, . . . bm.
Objective: find X ∈ Rn to minimize c · X, subject to:

a1 · X ≥ b1

a2 · X ≥ b2
...

am · X ≥ bm
X ≥ 0

(2.1)

The notation X > Y simply means that X is componentwise larger than Y. Now we represent
the system in (2.1) more compactly using matrix notation. Let

A =

aT1
aT2
...

aTm

 and b =

b1

b2
...
bm

Then the Linear Program (LP for short) can be rewritten as:

min cTX :
AX ≥ b

X ≥ 0
(2.2)

8

9

This form is general enough to represent any possible linear program. For instance, if the
linear program involves a linear equality a · X = b then we can replace it by two inequalities

a · X ≥ b and − a · X ≥ −b.

If the variable Xi is unconstrained, then we can replace each occurence by X+i − X−i where
X+i , X

−
i are two new non-negative variables.

The set of conditions in an LP may not be satisfiable, however. Farkas’ Lemma tells us when
this happens.

Lemma 6

Farkas’ Lemma. The set of linear inequalities (2.1) is infeasible if and only if using positive linear
combinations of the inequalities it is possible to derive −1 ≥ 0, i.e. there exist λ1, λ2, . . . λm ≥ 0
such that

m∑
i=1

λiai < 0 and
m∑
i=1

λibi > 0.

2.2 The Duality Theorem

With every LP we can associate another LP called its dual. The original LP is called the primal. If
the primal has n variables andm constraints, then the dual hasm variables and n constraints.

Primal Dual
min cTX :
AX ≥ b

X ≥ 0

max YTb :
YTA ≤ cT

Y ≥ 0

(2.3)

(Aside: if the primal contains an equality constraint instead of inequality then the corre-
sponding dual variable is unconstrained.)

It is an easy exercise that the dual of the dual is just the primal.

Theorem 7

The Duality Theorem. If both the Primal and the Dual of an LP are feasible, then the two
optima coincide.

Proof: The proof involves two parts:

1. Primal optimum ≥ Dual optimum.
This is the easy part. Suppose X∗,Y∗ are the respective optima. This implies that

AX∗ ≥ b.

Now, since Y∗ ≥ 0, the product Y∗AX∗ is a non-negative linear combination of the rows
of AX∗, so the inequality

Y∗TAX∗ ≥ Y∗Tb

holds. Again, since X∗ ≥ 0 and cT ≥ Y∗TA, the inequality

cTX∗ ≥ (Y∗TA)X∗ ≥ Y∗Tb

holds, which completes the proof of this part.

10

2. Dual optimum ≥ Primal optimuml.
Let k be the optimum value of the primal. Since the primal is a minimization problem,
the following set of linear inequalities is infeasible for any ε > 0:

−cTX ≥ −(k− ε)
AX ≥ b

(2.4)

Here, ε is a small positive quantity. Therefore, by Farkas’ Lemma, there existλ0, λ1, . . . λm ≥
0 such that

−λ0c+
m∑
i=1

λiai < 0 (2.5)

−λ0(k− ε)+
m∑
i=1

λibi > 0. (2.6)

Note that λ0 > 0 omitting the first inequality in (2.4) leaves a feasible system by assump-
tion about the primal. Thus, consider the vector

Λ = (λ1

λ0
, . . .

λm
λ0
)T .

The inequality (2.5) implies that ΛTA ≤ cT . So Λ is a feasible solution to the Dual. The
inequality (2.6) implies that ΛTb > (k−ε), and since the Dual is a maximization problem,
this implies that the Dual optimal is bigger than k − ε. Letting ε go to zero, we get that
the Dual optimal ≥ k = Primal optimal. Thus, this part is proved, too. Hence the Duality
Theorem is proved.

�

Sanjeev’s thoughts on this business: (1) Usually textbooks bundle the case of infeasible sys-
tems into the statement of the Duality theorem. He feels that this muddies the issue. Usually
all applications of LPs fall into two cases: (a) We either know (for trivial reasons) that the sys-
tem is feasible, and are only interested in the value of the optimum or (b) We do not know if
the system is feasible and that is precisely what we want to determine. Then it is best to just
use Farkas’ Lemma. (2) The proof of the Duality theorem is interesting. The first part shows
that for any dual feasible solution Y the various Yi’s can be used to obtain a weighted sum of
primal inequalities, and thus obtain a lowerbound on the primal. The second part shows that
this method of taking weighted sums of inequalities is sufficient to obtain the best possible
lowerbound on the primal: there is no need to do anything fancier (e.g., taking products of
inequalities or some such thing).

2.3 Example: Max Flow Min Cut theorem in graphs

The input is a directed graph G(V, E) with one source s and one sink t. Each edge e has a
capacity ce. The flow on any edge must be less than its capacity, and at any node apart from s
and t, flow must be conserved: total incoming flow must equal total outgoing flow. We wish to
maximize the flow we can send from s to t. The maximum flow problem can be formulated as
a Linear Program as follows:

11

Let P denote the set of all (directed) paths from s to t. Then the max flow problem becomes:

max
∑
P∈P

fP : (2.7)

∀P ∈ P : fP ≥ 0 (2.8)

∀e ∈ E :
∑
P :e∈P

fP ≤ ce (2.9)

Going over to the dual, we get:

min
∑
e∈E
ceye : (2.10)

∀e ∈ E : ye ≥ 0 (2.11)

∀P ∈ P :
∑
e∈P
ye ≥ 1 (2.12)

Notice that the dual in fact represents the Fractional min s − t cut problem: think of each
edge e being picked up to a fraction ye. The constraints say that a total weight of 1 must be
picked on each path. Thus the usual min cut problem simply involves 0 − 1 solutions to the
ye’s in the dual.

Exercise 1 Prove that the optimum solution does have ye ∈ {0,1}.
Thus, the max- st-flow = (capacity of) min-cut.

2.4 Approximate Inclusion-Exclusion

warning: the proof of approximate inclusion-exclusion given here is incomplete to-

wards the end. Specifically, I found after giving the lecture that the main theorem

of the Linial-Nisan paper is incorrect as stated. I plan to correct this but haven’t

gotten around to. The reader can still get the basic idea from the description be-

low.

Now we see an interesting application of linear programming and the duality theorem. The
Inclusion-Exclusion formula for the cardinality of the union of n finite sets A1, A2, . . . , An is
given by

|A1 ∪A2 ∪ . . .∪An| =
∑
i
|Ai| −

∑
i<j

∣∣∣Ai ∩Aj∣∣∣− · · · + (−1)n+1 |A1 ∩A2 ∩ . . .∩An| (2.13)

The question is, suppose we know only the first k terms of the formula, how good an ap-
proximation can we get? The simple idea of truncating the formula to the first k terms doesn’t
work: for instance, consider the case when all Ai are identical.

The answer (due to Linial and Nisan, 1988) is that for k ≥ Ω(√n), we can get a good approx-
imation, correct upto a multiplicative factor 1 − O(exp(−2k

n)), while for k ≤ O(√n), no good
approximation is possible.

Our approach is to look at a related question. LetA= (A1, A2, . . . , An) andB = (B1, B2, . . . , Bn)
be two collections of sets. Assume that for any set S ⊂ [n] with |S| ≤ k we have

∣∣⋂
i∈S Ai

∣∣ =∣∣⋂
i∈S Bi

∣∣ . We want to estimate how far apart |⋃Ai| and |⋃Bi| can be.
Without loss of generality, we may assume that the Ai and the Bi are events in a probability

space, and we will consider a slightly more general question, viz. we would like to estimate

E(k,n) = sup(Pr[
n⋃
i=1

Ai]− Pr[
n⋃
i=1

Bi]), (2.14)

12

where (A1, A2, . . . , An) and (B1, B2, . . . , Bn) satisfy the condition

Pr[
⋂
i∈S
Ai] = Pr[

⋂
i∈S
Bi] (2.15)

for every S ⊂ [n] such that |S| ≤ k.
Now, we define a j-atom to be an intersection of exactly j of the Ai’s and the complements

of the remaining (n − j). Note that any other event consisting of intersections of events Ai
or their complements can be expressed in terms of these atoms, and that all the atoms are
disjoint events. We call a collection of n events symmetric if all the j-atoms occur with the
same probability.

Lemma 8

The optimum value of Ek,n is attained for someA and B that are symmetric.

Proof: For any A we construct a symmetric collection A′ whose each term in the Inclusion-
Exclusion formula is the same. The Lemma then follows.

Obtain A′ by setting the probability of each j-atom of A′ to be the average of the proba-
bilities of the j-atom of A. There is only one n-atom, so Pr[A′1A

′
2 · · ·A′n] = Pr[A1A2 · · ·An].

Now consider Pr[A′1A
′
2 · · ·A′n−1]. It may be expressed as

Pr[A′1A
′
2 · · ·A′n−1An

′]+ Pr[A′1A
′
2 · · ·A′n−1A

′
n].

Doing a similar rewriting for all conjunctions of (n − 1) events, and adding, we see that the
(n− 1)th term of the inclusion-exclusion for A′ is the same as for A. Proceeding this way, a
simple induction shows the equivalence of all terms. �

Now let

aj = sum of all j-atoms of A1, A2, . . . , An; (2.16)

bj = sum of all j-atoms of B1, B2, . . . , Bn; (2.17)

rj = sum of all j-intersections of A1, A2, . . . , An; (2.18)

qj = sum of all j-intersections of B1, B2, . . . , Bn. (2.19)

Lemma 9

The following relation connects the rj and the aj :

rj =
n∑
i=j

(
i
j

)
ai.

Proof: Consider a generic term, say Pr[A1∩A2∩ . . . Aj] contributing to rj . Expand this out as
the summation of atoms:

Pr[A1 ∩A2 ∩ . . . Aj] =
∑

Pr[A1 ∩A2 ∩ . . . Aj ∩ s],

where s in the summation runs over all the atoms of Aj+1, . . . , An.
In this summation, each i-atom is counted exactly

(
i
j

)
times: once for each j-subset of the

i uncomplemented events. The lemma follows. �

Now, we will construct an LP that solves (2.14).

Lemma 10

13

The solution to (2.14) is given by solving the following LP:

max
n∑
i=1

xi : (2.20)

∀j ≤ k :
n∑
i=j

(
i
j

)
xi = 0 (2.21)

∀S ⊆ [n] :
∑
i∈S
xi ≤ 1 (2.22)

−
∑
i∈S
xi ≤ 1 (2.23)

Proof: First, we check that xi = ai − bi is feasible: for (2.21),

n∑
i=j

(
i
j

)
xi = rj − qj = 0 ∀i ≤ k,

and (2.22, 2.23) follow easily from noting that the aj and bj are probabilities of disjoint events,
and so for any S ⊆ [n] the sum

∑
i∈S xi represents a difference in probabilities and is therefore

bounded in absolute value by 1.
For the reverse direction, let x1, x2, . . . , xn be a feasible solution to the LP. Now define the

aj and bj by

aj =
{
xi if xi > 0

0 otherwise
(2.24)

bj =
{−xi if xi < 0

0 otherwise
(2.25)

It is easy to check that this defines proper probabilities using (2.22, 2.23), and that the sequences
of events they define satisfy (2.15) because of (2.21). �

Now we look at the dual of the LP. It involves finding µS, λS ≥ 0 and yi’s such that

min
∑
S⊆[n]

(λS + µS) : (2.26)

∀1 ≤ i ≤ n :
∑
S�i
(λS − µS)+

∑
j≤min(i,k)

(
i
j

)
yj ≥ 1 (2.27)

Clearly, the optimum solution will, for each subset S, never need to make both λS and µS
positive. For example, if λS = a > 0 and µS = b > a then making λS = 0 and µS = b − a still
satisfies all constraints while lowering the objective.

For any given y1, y2, . . . , yn, what is the best choice of λS, µS? For each i let ci = 1 −∑
j≤min(i,k)

(
i
j

)
yj . Let I = {i : ci > 0} and J =

{
j : cj < 0

}
. Let c+ = max {ci : i ∈ I} and c− =

min
{
−cj : j ∈ J

}
. (If I or J is empty the corresponding max or min is defined to be 0.) Then

there is a dual solution of cost c+ + c−, namely, λI = c+, µJ = c− and the variables associated
with all other subsets are zero. Furthermore, every feasible solution must have some set with
λS ≥ c+ and some other set with µS ≥ c−, and thus have cost at least c+ + c−. Finally, we claim
that at the optimum, the yi’s are such that J = ∅, and hence c− = 0. Suppose not, and c− > 0.
Then divide all yi by 1+ c−; a simple calculation shows that the new c− is 0 whereas the new
c+ is c++c−

1+c− . Thus the objective function has gone down, which contradicts optimality.
We have thus proved:

14

Lemma 11

The dual solution is the following optimization problem.

min
y1,...,yn

max

1≤i≤n

1−

∑
j≤min(i,k)

(
i
j

)
yj

 : (2.28)

1−

∑
j≤min(i,k)

(
i
j

)
yj

 ≥ 0 ∀i. (2.29)

Lemma 12

The optimum value of the program in Lemma 11 is given by

inf
q

(
max
m∈[n]

(1− q(m))
)

(2.30)

where the infimum ranges over all polynomials q of degree atmost k with constant term 0 such
that q(m) ≤ 1 for all m ∈ {1, . . . , n}.

Proof: Recall that
(
x
i

)
= x(x−1)(x−2)···(x−i+1)

i! , which is a degree i polynomial whose constant
term is 0. (That is, at x = 0 its value is 0.) It is also a polynomial that is 0 at x = 1,2 . . . , (i−1).
We note that any polynomial of degree at most k and constant term 0 can be written as a

linear combination of
(
x
i

)
, for 1 ≤ i ≤ k. (The proof is by induction. If the polynomial is

cxi + q(x) where q(x) is a polynomial of degree at most i − 1, then it may be expressed as

ci!
(
x
i

)
+r(x)where r(x) has degree at most i−1.) Finally, note that if we define the polynomial

q(x) =∑kj=1

(
x
j

)
yj , then (2.28) becomes simply

inf
q

(
max

m∈{1,...,n}
(1− q(m))

)

as required. The proof follows. �

To prove an upperbound on the primal, we construct a suitable feasible solution to the dual
(2.28). We use the Chebyshev polynomials. Here are some of their properties:

1. Recall that for each integerm ≥ 0, cos(mθ) is a polynomial in cos(θ) of degreem. Thus
cos(m cos−1(x)) is a degree m polynomial in x, called the m’th Chebyshev polynomial
Tm(x). It is also given by

Tm(x) = (x +
√
x2 − 1)m + (x −√x2 − 1)m

2
. (2.31)

2. For x ∈ [−1,1], we have −1 ≤ Tm(x) ≤ 1.

Consider the following polynomial of degree k,

qk,n(x) = 1− Tk(
2x−(n+1)
n−1)

Tk(−(n+1)
n−1)

(2.32)

Note that q(0) = 0 (i.e. its constant term is 0) and when x ∈ [1, n], Tk(2x−(n+1)
n−1) ∈ [−1,1] so∣∣qk,n(x)− 1

∣∣ ≤ 1/D where D =
∣∣∣Tk(−(n+1)

n−1)
∣∣∣.

Then p(x) = Dqk,n(x)/(1 + D) satisfies D−1
1+D ≤ p(m) ≤ 1 for all m ∈ [1, n]. Thus it is a

dual feasible solution and we conclude that E(k,n) ≤ 1− D−1
1+D = 2

1+D . Thus the maximum ratio

15

for Pr[∪iAi] and Pr[∪iBi] is 1
1−E(k,n) ≤ D+1

D−1 . It only remains to estimate this quantity. Since

D =
∣∣∣Tk(−n+1

n−1)
∣∣∣ = (λk+λ−k)/2 where λ =

√
n+1√
n−1 ≈ 1+ 2√

n for large n, we can upperbound this
by

D + 1
D − 1

≤ 1+O(k2/n).

2.5 A note on algorithms

We have emphasized the use the duality theorem as a tool for proving theorems. Of course,
the primary use of LPs is to solve optimization problems. Several algorithms exist to solve LPs
in polynomial time. We want to mention Khachiyan’s ellipsoid algorithm in particular because
it can solve even exponential size LPs provided they have a polynomial time separation oracle.
(There is an additional technical condition that we need to know a containing ball for the
polytope in question, and the ball should not be too much bigger than the polytope. Usually
this condition is satisfied.)

A separation oracle for an LP decides whether a given input (x1, x2, . . . , xn) is feasible or
not, and if it isn’t, outputs out one constraint that it violates.

For example, consider the dual of max-flow (viz. fractional min-cut) that was discussed in
the previous lecture:

min
∑
e∈E
ceye : (2.33)

∀e ∈ E : ye ≥ 0 (2.34)

∀P ∈ P :
∑
e∈P
ye ≥ 1 (2.35)

This can be solved in many ways, but the simplest (if we do not care about efficiency too
much) is to use the Ellipsoid method, since we can design a polytime separation oracle for
this problem using the shortest path algorithm. Suppose the oracle is given as input a vector
(ye)e∈E . To decide if it is feasible, the oracle computes the shortest path from s to t with edge
weights = ye, and checks if the length of this shortest path is atleast 1. (Of course, before
anything else one should check if all the ye > 0.) Clearly, (ye)e∈E is feasible iff the shortest
path has length at least 1, and if it is infeasible then the shortest path constitutes an unsatisfied
constraint.

Chapter 3

The Dimension Method

scribe:Miroslav Dudík

The “Dimension Method” is Sanjeev’s name for elementary linear algebra arguments. This
is all the algebra one needs 80% of the time; only occasionally (one example is number theoretic
cryptography) does one need anything more powerful than elementary linear algebra.

3.1 Basics: Fields and Vector Spaces

We recall some basic linear algebra. A field is a set closed under addition, subtraction, multipli-
cation and division by nonzero elements. By addition and multiplication, we mean commutative
and associative operations which obey distributive laws. The additive identity is called zero,
the multiplicative identity is called unity. Examples of fields are reals R, rationals Q, and in-
tegers modulo a prime p denoted by Z/p. We will be mostly concerned with finite fields. The
cardinality of a finite field must be a power of prime and all finite fields with the same num-
ber of elements are isomorphic. Thus for each power pk there is essentially one field F with
|F| = pk. We shall denote this field by GF(pk).

A vector space V over a field F is an additive group closed under (left) multiplication by
elements of F. We require that this multiplication be distributive with respect to addition in
both V and F, and associative with respect to multiplication in F.

Vectors v1, . . . ,vk are said to be linearly independent if
∑k
i=1αivi = 0 implies that α1 =

α2 = · · · = αk = 0. A maximal set of vectors {vi}i∈I whose every finite subset is linearly
independent is called a basis of V ; all such sets have the same cardinality, called the dimension
of V (denoted dimV). If V has a finite dimension k and {vi}ki=1 is a basis then every vector
v ∈ V can be uniquely represented as

v =
k∑
i=1

αivi,

where αi ∈ F. Thus all finite-dimensional vector spaces are isomorphic to F
k. If F is finite then

|V | = |F|k. An example of a vector space over a finite field is the field GF(pk) when viewed as
a vector space over GF(p).

Let Am×n =
{
aij

}
be a matrix over a field F. Rank of A, denoted by rank A, is the maximum

number of linearly independent rows in A. It is equal to the maximum number of linearly
independent columns. Hence rank A = rank AT .

16

17

Let M =
{
mij

}
be an n by n matrix. The determinant of M is defined as follows:

det M =
∑
σ∈Sn

(−1)π(σ)
n∏
i=1

miσ(i),

where Sn is the group of permutations over [n], and π(σ) is the parity of the permutation σ .
The matrix Mn×n has rank n if and only if det M �= 0. We will use this fact to prove the following
result, which is our first example of the Dimension Method.

Theorem 13

Let Mn×n be a random matrix over GF(2). Then Pr[det M �= 0] ≥ 1/4.

Proof: Denote the columns of M by Mi, where i = 1,2, . . . , n. It suffices to bound the probability
that these columns are linearly independent:

Pr[M1, . . . ,Mn linearly independent]

=
n∏
i=1

Pr[M1, . . . ,Mi linearly independent | M1, . . . ,Mi−1 linearly independent]

=
n∏
i=1

(1− Pr[Mi ∈ span(M1, . . . ,Mi−1) | M1, . . . ,Mi−1 linearly independent].

Now, if M1, . . . ,Mi−1 are independent then their span is of dimension i−1 and hence it contains
2i−1 vectors. The column Mi is picked uniformly at random from the space of 2n vectors,
independently of M1, . . . ,Mi−1. Thus the probability that it will lie in their span is 2i−1/2n.

=
n∏
i=1

(1− 2i−1−n) ≥
n∏
i=1

exp{−2i−1−n · 2 ln 2}

≥ exp{−2 ln 2
∞∑
i=1

2i−1−n} = exp{−2 ln 2} = 1/4.

�

3.2 Systems of Linear Equations

The system ofm linear equations in n unknowns over a field F can be represented by a matrix
Am×n and a vector bm×1 as

Ax = b, (∗)

where xn×1 is the vector of unknowns.

Proposition 14

1. The system (∗) is feasible if and only if b ∈ span(A1, . . . ,An), which occurs if and only
if rank(A|b) = rank A. (Here A|b is the matrix whose last column is b and the other
columns are from A.)

2. Suppose F is finite. If rank A = k then the system (∗) has either 0 solutions (if infeasible)
or F

n−k solutions (if feasible). In particular, if n = k then the solution is unique if it exists.

3. If b = 0 then a nontrivial solution exists if and only if rank A ≤ n − 1. In particular, if
n >m then nontrivial solutions always exist.

18

Example 2 Suppose M is a random matrix over GF(2) and b is a random n × 1 vector. What
is the probability that the system Mx =
b has a unique solution? By Theorem 13 it is at least
1/4.

Theorem 15

A nonzero polynomial of degree d has at most d distinct roots.

Proof: Suppose p(x) =∑di=0 cixi has d+ 1 distinct roots α1, . . . , αd+1 in some field F. Then

d∑
i=0

αij · ci = p(αj) = 0,

for j = 1, . . . , d+ 1. This means that the system Ay = 0 with

A =

1 α1 α2
1 . . . αd1

1 α2 α2
2 . . . αd2

. .
1 αd+1 α2

d+1 . . . αdd+1

has a solution y = c. The matrix A is a Vandermonde matrix, hence

det A =
∏
i>j
(αi −αj),

which is nonzero for distinct αi. Hence rank A = d+ 1. The system Ay = 0 has therefore only
a trivial solution — a contradiction to c �= 0. �

Theorem 16

For any set of pairs (a1, b1), . . . , (ad+1, bd+1) there exists a unique polynomial g(x) of degree
at most d such that g(ai) = bi for all i = 1,2, . . . , d+ 1.

Proof: The requirements are satisfied by Lagrange Interpolating Polynomial:

d+1∑
i=1

bi ·
∏
j �=i(x − aj)∏
j �=i(ai − aj)

.

If two polynomials g1(x), g2(x) satisfy the requirements then their difference p(x) = g1(x)−
g2(x) is of degree at most d, and is zero for x = a1, . . . , ad+1. Thus, from the previous theorem,
polynomial p(x) must be zero and polynomials g1(x), g2(x) identical. �

3.3 Dispersal of Information Using Polynomials

Polynomials are often useful in situations where information needs to be dispersed in an error-
tolerant way, so that it can be reconstructed even if it is partially corrupted or destroyed.

Suppose we want to encode a message into a finite number of packets to be transmitted
through a faulty network. This network can drop up to 1/2 of packets, but it does not cor-
rupt the contents of the remaining packets. To achieve a successful transmission, we can use
polynomial interpolation:

Encoding. Without loss of generality assume the message is a d + 1-tuple c0, c1, . . . , cd ∈ F,
where |F| > 2d. Take 2d + 1 distinct points α1, . . . , α2d+1 ∈ F and determine values of the
polynomial p(x) =∑di=0 cixi at αi. Send packets (α1, p(α1)),…,(α2d+1, p(α2d+1)).

19

Decoding. Packets describe the polynomial p with sufficient redundancy. Even when d pack-
ets are dropped, the polynomial p and hence the original message is uniquely determined by
the remaining d+ 1 pairs.

Now suppose that the network can corrupt up to 1/4th of the packets. We will use a strategy
developed by Berlekamp and Welch in 1985. In order to transmit a message described by
a polynomial p(x) of degree d, we will send 20d pairs (αi, p(αi)). Let the received pairs
be (α′i, β

′
i) (for missing packets, we can set α′i = β′i = 0). A pair (α′i, β

′
i) will be considered

corrupted if p(α′i) �= β′i. Then there exists a nonzero polynomial e(x) of degree at most 5d,
which is zero at all corrupted values α′i — this is called an error locator polynomial.

Lemma 17

There exist nonzero polynomials e(x) and c(x) such that

deg e ≤ 5d
deg c ≤ 6d

and c(α′i) = β′ie(α′i) for i = 1,2, . . . ,20d.

Proof: Taking the error locator polynomial e(x) and c(x) = p(x)e(x) we obtain

c(α′i) = p(α′i)e(α′i) =
{
β′ie(α

′
i) if pair (α′i, β

′
i) is not corrupted

p(α′i) · 0 = 0 = β′i · 0 if pair (α′i, β
′
i) is corrupted.

�

Corollary 18

Polynomials e(x) and c(x) that satisfy conditions of previous lemma can be found in time
polynomial in d.

Proof: Equations c(α′i) = β′ie(α′i), where coefficients of c and e are unknown, form a system
of 20d linear equations in 11d + 2 unknowns. The lemma guarantees its feasibility. We can
solve for coefficients by Gaussian elimination. �

Theorem 19 (Berlekamp-Welch)

If c(x), e(x) satisfy the conditions of the lemma then e(x)|c(x) and p(x) = c(x)/e(x).
Proof: Consider the polynomial c(x)−p(x)e(x). It has degree at most 6d, but it has at least
15d roots because it is zero on all noncorrupted α′i’s. Therefore, c(x) − p(x)e(x) ≡ 0 and
c(x) ≡ p(x)e(x). �

Remark 1 This strategy will work whenever a fixed δ-fraction of packets is corrupted, where
δ < 1/2. Somebody asked if a scheme is known that recovers the polynomial even if more than
1/2 the packets are corrupted. The answer is Yes, using Sudan’s list decoding algorithm. See
the homework.

3.4 Hashing: An introduction

Most schemes for Hashing also rely on a simple dimension argument.
Suppose we want to store n numbers from the set 1,2, . . . , q with a fast look-up. We will

use an array of size p and each element insert into a bucket indexed by the hash function. Each
bucket contains a chained list of elements with the same value of hash function. During a

20

look-up, it suffices to examine contents of a single bucket. If we can guarantee that the number
of elements stored in a bucket (the bucket size) is small, the operation will be fast.

We will assume that q and p are prime, p ≈ 2n and choose a hash function h at random.
We pick a,b ∈ GF(q) at random and define h as x → (ax+b mod q) mod p. The probability
of collisions, i.e. events when h(x) = h(y) for x �= y , should be low. We might for example
require that the family of hash functions be 2-universal:

(∀x �= y)Pr
h
[h(x) = h(y)] ≤ 2

p
.

It is often possible to prove a stronger statement:

(∀x �= y)(∀u,v)Pr
h
[h(x) = u,h(y) = v] = 1

p2
.

Families satisfying this condition are called pairwise independent.

Example 3 Consider a hash function h : x �→ ax + b mod p, where a,b are picked randomly
from GF(p). For fixed x,y,u,v ∈ GF(p), where x �= y , the system

ax + b = u
ay + b = v

has a single solution a,b ∈ GF(p). Hence the probability that h(x) = u,h(y) = v is 1/p2.

Example 4 Element Distinctiveness Problem. We want to determine if there are two identical
numbers in a given sequence. We can hash all elements and then examine each bucket sep-
arately. We could do it by sorting elements in every bucket, but for simplicity assume that
we examine every pair in a given bucket. If the number of buckets is O(n) and the expected
number of pairs in a bucket is O(1) then the expected runtime will be O(n).

Suppose we use a hash function h : X →U, |U| = p ≈ 2n, picked at random from a pairwise
independent family. Fix a bucket u and consider random variables

Xx =
{

1 if h(x) = u,
0 otherwise,

where x is an element of the sequence. By pairwise independence, choosing arbitrary y ∈ X
such that y �= x, we obtain

Pr[h(x) = u] =
∑
v∈U

Pr[h(x) = u,h(y) = v] = 1/p.

The size of bucket u is S =∑x Xx . Calculate the expectation of S2:

E[S2] =
∑
x,y

E[XxXy] =
∑
x

E[X2
x]+

∑
x �=y

E[XxXy]

=
∑
x

Pr[h(x) = u]+
∑
x �=y

Pr[h(x) = u,h(y) = u]

= n/p +n(n− 1)/p2 ≈ 1/2+ 1/4 = O(1).
Since the number of pairs in a bucket is O(S2), we obtain by linearity of expectation that the
expected runtime is

O(
∑
u

E[S2
u]) = O(n).

(Aside: The element distinctness problem is impossible to solve (even using randomness)
in linear time in the comparison model, where the algorithm is only allowed to compare two
numbers at every step.

21

3.5 Pairwise and k-wise Independent Sampling

Consider a randomized algorithm that usesn random bits and gives a Yes/No answer. Suppose
we know that one of the answer happens with probability at least 2/3 but we do not know which.
We can determine that answer with high probability by running the algorithm m times with
independent random bits and taking the majority answer; by the Chernoff bounds the error in
this estimation will by exp(−m). Can we do this estimation using fewer thanmn random bits?
Intuitively speaking, the algorithm converts n random bits into a single random bit (Yes/No)
so it has thrown away a lot of randomness. Can we perhaps “reuse” some of it? Later in the
course we will see some powerful techniques to do so; here we use more elementary ideas.
Here we see a technique that uses 2n random bits and its error probability is 1/m. (We need
m < 2n.) The idea is to use random strings that are pairwise independent and use Chebyshev’s
inequality.

A sequence of random variables z1, z2, z3, . . . is pairwise independent if every pair is inde-
pendent.

We can construct a sequence of m pairwise independent strings {zi} , zi ∈ GF(q), q ≈ 2n

using 2 logq random bits. Let {xi} , xi ∈ GF(q) be any fixed sequence. Pick a,b ∈ GF(q) at
random and set zi = axi+b. Running the algorithm on z1, . . . , zm will guarantee that answers
are pairwise independent.

Analogously, we can construct k-wise independent sequences by picking a0, . . . , ak−1 at
random and applying the map x �→ ∑k−1

j=0 ajxj to an arbitrary sequence {xi} , xi ∈ GF(q).
Chebyshev inequality generalizes to higher moments:

Pr
{∣∣X − E[X]

∣∣ > γ (E
[|X − E[X]|k])1/k

}
< γ−k.

This uses k logq random bits but the error in the estimation goes down as 1/mk.

Example 5 Secret Sharing (A. Shamir, How to share a secret, Comm. ACM 1979). We want to
design a scheme for sharing a secret a0 among m people so that k+ 1 people can recover the
secret, but k or fewer people cannot.

If a0, . . . , ak are picked randomly and person i receives the pair (αi, p(αi)) where p(x) =∑
aixi then any set of k people will receive a random k-tuple of strings, whereas k+ 1 people

will be able to recover the polynomial p(x) by interpolation.

3.6 Madhu Sudan’s List Decoding Algorithm

Sudan’s algorithm gives a way to recover a polynomial from its values, even when most (an
overwhelming majority) of the values are corrupted. See Question 4 on HW 2 for a self-guided
tour of this algorithm.

Strictly speaking, this algorithm doesn’t use “just” the dimension method: it also uses
Berlekamp (or Kaltofen’s) algorithm for factoring polynomials over finite fields.

3.7 The Razborov-Smolensky Circuit Lower Bound

Scribe: Paul Chang
We describe the Razborov-Smolensky method for circuit lowerbounds as another example

of the dimension method.
We are very far from separating NP from P; the turing machine model seems too complex to

reason about. It is natural to try to prove an exponential lower bound for a restricted model of

22

computation. The Razborov-Smolensky lower bound applies to one such model. The theorem
presented in this section was originally proved by Razborov using his Method of Approximations
(he won the Nevanlinna prize in 1990 for this work). Smolensky later extended this work and
clarified this method for the circuit class considered here.

Definition 1 A circuit C is a directed acyclic graph with n input nodes, labeled x1 to xn, and
one output node. All other nodes are labeled with a boolean operation. When we label the input
nodes with n bits and let the other nodes compute in the obvious manner (computing the boolean
operation on their incoming edges and placing the 1-bit result on the outgoing edges) we get a
boolean value on the output node, denoted C(x). The size of a circuit is the number of nodes.
Note that the circuit nodes may have unbounded degree.

Definition 2 A family of circuits is a collection of circuits {Cn}n≥1, such that the nth circuit has
n input nodes. We say that a circuit family computes a function f : {0,1}∗ → {0,1} if for all x,
C|x|(x) = f(x).
Remark 2 A circuit family can compute undecidable languages - we may hardwire into a circuit
any of 2n functions on n inputs, and may use different circuits for each input length. (For
example, there exists a circuit family which computes

{
1<M,w>|M halts on w

}
).

We are interested only in a subclass of circuits, the MOD3 circuits.

Definition 3 A MOD3 circuit of depth d onn inputs is one whose depth is bounded by a constant
d. Each boolean gate performs any of the four operation AND (∧), OR (∨), NOT (¬), and sum
modulo three (MOD3). TheMOD3 gate outputs zero if the sum of its inputs is zero modulo three,
and one otherwise.

The inclusion of the MOD3 gates gives the circuit some power. Nevertheless we show that
it cannot compute the MOD2 function, namely, parity of n bits.

Theorem 20

The Razborov/Smolensky Circuit Lower Bound. Computing MOD2 with MOD3 circuits of

depth d requires a circuit of size exp(Ω(n
1

2d)).

In the rest of the section we prove this theorem. The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth h MOD3 circuit on
n inputs and size S, there is a polynomial of degree (2l)h which agrees with the circuit
on 1− S/2l fraction of the inputs. If our circuit C has depth d then we set 2l = n1/2d to
obtain a degree

√
n polynomial that agrees with C on 1− S/2n1/2d/2 fraction of inputs.

Step 2 We show that no polynomial of degree
√
n agrees with MOD2 on more than 49/50

fraction of inputs.

Together, the two steps imply that S > 2n
1/2d/2/50 for any depth d circuit computingMOD2,

thus proving the theorem. Now we give details.
Step 1. Consider a node i in the circuit at a depth h . (The input is assumed to have depth 0.)
If fi(xi, · · · , xn) is the function computed at this node, we desire a polynomial f̃i(xi, · · · , xn)
over GF(3) with degree (2l)h, such that on any input in {0,1}n ⊆ GF(3), polynomial f̃i pro-
duces an output in {0,1}. (In other words, even though f̃i is a polynomial over GF(3), for 0/1
inputs it takes values in {0,1} ⊆ GF(3).) Furthermore, we desire

Prx∈{0,1}n[fi(x) �= f̃i(x)] ≤
(

circuit size
2l

)
(3.1)

23

We construct the approximating polynomial by induction. The case h = 0 is trivial. Suppose
we have replaced the output of all nodes up to height h with polynomials of appropriately
bounded degree and error. We wish to approximate the output of a node g of height h+1 with
immediate inputs f1, · · · , fk.

1. If g is a NOT gate, we may write g = ¬fi. Then, g̃ = 1− f̃i is an approximating polynomial
with the same degree and error as that of fi.

2. If g is a MOD3 gate, we use the approximation g̃ = (∑i f̃i)2. The degree increases by at
most a factor of 2, and there is no increase in the error rate.

3. If g is an AND or an OR gate, the required approximation is slightly harder to produce.
Suppose g = ∧i∈Ifi. The naive approach approximates an AND node g with a polynomial
Πi∈I f̃i. If g = ∨i∈Ifi we use De Morgan’s law and similarly obtain the naive approximator
1−∏i∈I(1− f̃i). Unfortunately, both of these increase the degree of the polynomial by a
factor of |I|, which could be much larger than the allowed 2l.
Let us give the correct solution for OR, leaving the case of AND to yet another application
of De Morgan’s laws.

If g is an OR gate, then g = 1 if and only if at least one of the fi = 1. We observe that if
any of the fi = 1, the sum (over GF(3)) of a random subset of {fi} is one with probability
at least 1/2.

Pick l subsets S1, · · · , Sl of {1, · · · , k} randomly. We compute the l polynomials
∑
j∈Si(f̃j)

2,
each of which has degree at most twice that of the largest input polynomial. We then com-
pute the OR of these l terms using the naive approach. The result is a polynomial with
degree at most 2l times that of the largest input polynomial. For any x, the probability
over the choice of subsets that this polynomial differs from OR(f̃1, · · · , f̃k) is at most
1
2l . So, by the expectation argument, there exists a choice for the l subsets such that the

probability over the choice of x that this polynomial differs from OR(f̃1, · · · , f̃k) is at
most 1

2l .

(There was a question in class about how the errors at different gates affect each other. An
approximator may introduce some error, but another approximator higher up may introduce
another error which cancels this one. The answer is that we are ignoring this issue, and using
just the union bound to upperbound the probablity that any of the approximator polynomials
anywhere in the circuit miscompute.)

This completes the inductive construction of the proper polynomial.
Step 2. Suppose that a polynomial f agrees with the MOD2 function for all inputs in a set

G′ ⊆ 0,1n. If the degree of f is bounded by
√
n, then we show |G′| <

(
49
50

)
2n.

Consider the change of variables yi = 1+ xi (mod 3). (Thus 0 → 1 and 1 → −1.) Then, G′
becomes some subset of {−1,1}n, and f becomes some other polynomial, sayg(y1, y2, . . . , yn),
which still has degree

√
n. Moreover,

MOD2(x1, x2, . . . , xn) =
{

1 ⇒ Πni=1yi = −1

0 ⇒ Πni=1yi = 1
(3.2)

Thus g(y1, y2, . . . , yn), a degree
√
n polynomial, agrees with Πni=1yi on G. This is decidedly

odd, and we show that any such G must be small. Specifically, let FG be the set of all functions

S : G → {0,1,−1}. Clearly, |FG| = 3|G|, and we will show |FG| ≤ 3(
49
50)2n , whence Step 2 follows.

Lemma 21

For every S ∈ FG, there exists a polynomial gS which is a sum of monomials aI
∏
i∈I yi where

|I| ≤ n
2 +
√
n such that gS(x) = S(x) for all x ∈ G.

24

Proof: Let Ŝ : GF(3)n → GF(3) be any function which agrees with S on G. Then Ŝ can be
written as a polynomial in the variables yi. However, we are only interested in its values on
(y1, y2, . . . , yn) ∈ {−1,1}n, when y2

i = 1 and so every monomial aΠi∈Iy
ri
i wlog has ri ≤ 1.

Thus wlog, Ŝ is a polynomial of degree at most n. Now consider any of its monomial terms
Πi∈Iyi of degree |I| > n/2. We can rewrite it as

Πi∈Iyi = Πni=1yiΠi∈Īyi, (3.3)

which takes the same values as g(y1, y2, . . . , yn)Πi∈Īyi over {−1,1}n. Thus wlog every mono-
mial in Ŝ has degree at most n2 +

√
n. �

To conclude, we bound the number of polynomials whose every monomial with a degree at
most n2 +

√
n. Clearly this number is #polynomials ≤ 3#monomials, and

#monomials ≤
∣∣∣∣{N ⊆ {1 · · ·n}| |N| ≤ n2 +

√
n
∣∣∣∣ (3.4)

≤
∑

i≤
n
2
+√n

(
n
i

)
(3.5)

Using knowledge of the tails of a binomial distribution,

≤ 49
50

2n (3.6)

Chapter 4

The Lore and Lure of Expanders

scribe:Paul Chang

Now we move to the study of Expander graphs. Their numerous applications to a areas
such as error correcting codes, routing networks, sorting networks, derandomization, and PCP
reductions make them indispensable in any theorist’s toolkit.

Definition 4 An (α,β) expander family is a sequence of d-regular bipartite graphs on 2n
nodes, (the family has one graph for each n ≥ 1) such that for all αβ < 1, each set S of nodes
on the left where |S| ≤ αn has at least β |S| neighbors.

Remark 3 If d is a constant independent of n an alternative definition —equivalent, as we
will show later using the Alon-Cheeger inequality— is that there is a gap between the largest
eigenvalue (namely d) and the second largest eigenvalue of the adjacency matrix.

As shown in an earlier problem set, for every α and β there exists a d such that almost all
d-regular bipartite graphs on n nodes are (α,β) expanders. Today we show one example of
such graphs for telephone switching networks.

4.1 Example: Lockdown routing/circuit switching.

This example is partially motivated by the study of massively parallel computers and partly
by telephone networks. We model a communications network as a graph with N inputs and
N outputs. We wish to route calls from the input users to the output users through routers
represented by internal nodes. Each call occupies the routers it uses, so separate calls must
take vertex disjoint paths. In particular, we would like to be able to route any permutation
matching inputs to outputs with decentralized control. In this section we construct a network
in which all permutations can be routed. In the next lecture, we will decentralize the control.

Remark 4 Any network which can route all of the permutations has size Ω(NlogN), since

N ! ≤ #states ≤ d#nodes (4.1)

Definition 5 A Delta network on N inputs is defined recursively: it consists of the first level,
which contains the N input nodes, and two subnetworks that are Delta networks on N

2 inputs,
and are called the up and down networks respectively. Each input node has edges to inputs in
both up and down networks. Outputs whose address has the MSB (most significant bit) 1 lie in
the up subnetwork and the remaining outputs are in the down subnetwork. Clearly, any call to

25

26

Layer 1 Layer 2 Layer 3

x

x

x

x

x

x

x

x

x

x

n-2

1

2

3

5

n-4

4

n-3

n-1

n

Figure 4.1: An example delta network. Each layer contains a dotted set of edges up and a solid
set of edges down. In the multibutterfly, each of these sets forms an expander graph.

a destination whose MSB is 1 must go from the input node to some node in the up subnetwork.
Reasoning similarly for all the levels, we see that the delta network is a layered network in which
the up/down decision at level i depends on the ith bit of the destination node. We may route to
any of the input nodes of the smaller networks.

An example of the Delta network is the butterfly, where each input node (b0b1 . . . blogN) has
exactly two outgoing edges, one each to the up and down subnetwork. The edges go to nodes
whose label in the that subnetwork is (b1b2, . . . , blogN).

Butterfly networks cannot route all permutations with vertex disjoint paths. For instance,
they function poorly on the transpose permutation. Instead, we present the multibutterfly
network of Upfal ’88. In the butterfly network, each of N nodes in the input layer is connected
to one of the N

2 top nodes of the next layer. In the multibutterfly, the degree of that node is

d and the subgraph of edges from each of N nodes to the N
2 top nodes of the next layer is an

(α,β) expander for αβ < 1
2 .

We assume that the number of inputs (also, number of outputs) is 2αN and each is connected
to 1/2α successive inputs (resp., outputs) of the multibutterfly. (Alternatively, we may still use
N for the number of inputs and outputs and then connect them using multibutterflies with
N/2α inputs.)

We claim that any permutation on these 2αN inputs/outputs can be routed using vertex
disjoint paths. We do this layer by layer. At most αN/2 calls need to be routed to the top (or
bottom) subnetwork. Let S be the set of nodes at which these calls originate. We can route
these calls in a vertex disjoint manner if there exists a matching between this subset S of input

27

nodes and any subset S′ of nodes in the top network. To see that this can be done, we apply
Hall’s theorem, noting that the expander property guarantees that S has at least |S| neighbors.

Theorem 22

Hall’s Theorem. If G = (V1, V2, E) is a bipartite graph, there exists a perfect matching involving
V1 if and only if for all subsets S ⊆ V1, |Γ(S)| ≥ |S|.
Proof: Apply the max-flow min-cut theorem. �

Repeating for all levels we obtain our vertex disjoint paths.

4.2 Circuit switching networks - wrap up

scribe: Elad Hazan
Last time we saw a network which enables the routing of the input set {1, ..., N} into any

permutation on the inputs using vertex disjoint paths. We only showed the existence of these
paths. Now we describe a distributed algorithm that finds these paths in O(log2N) time.

Recall that in the network there were logN "layers", each one consisting of N nodes, that
together with either the consecutive or previous layer constitute a β-expander (see definition
previous lecture, or below) for some β > d

2 (where d is the degree of each node regarding edges
between two consecutive layers). Also, recall that the network was “lightly loaded,” and only
one out of every 1/2α successive inputs/outputs are involved in a call.

Suppose the number of calls is 2αN . At the first layer, αN wish to enter the “up” subnetwork
and αN wish to enter the “down” subnetwork. Wlog let us concentrate on the αN calls that
wish to go up, and describe how to set up in O(logN) time a perfect matching between those
nodes and some set of αN nodes in the up subnetwork. Repeating this matching algorithm at
each subsequent level gives a total running time of O(log2N) (note that the matching in the
up and down networks do not interfere with each other and can go on in parallel).

Here is the matching algorithm. Let G = (L,R, E) be a bipartite d-regular graph that is an
(α,β) expander, and let S ⊆ L be a set of at most αN nodes that wish to match to nodes in R.
Let S1 = S. The algorithm proceeds in phases; the following is phase i.

1. Every node in Si sends a "proposal" to every neighbor in R.

2. Every node on R that gets a single proposal accepts.

3. Every node on L that recieves an acceptance, matches to any one of the nodes in R that
accepted it, and then drops out. All remaining nodes constitute Si+1.

4. Repeat till all vertices of L are matched.

The next claim shows that |Si| decreases by a constant factor after every phase, and so in
O(logN) phases it falls below 1, that is, it becomes 0.
Claim: |Si+1|

|Si| ≤ 2(1− β/d).
In phase i, let nj be the number of vertices from R that get exactly i proposals. Since G is

a d-regular graph, we have:

|Si| · d ≥ n1 + 2n2 + 3n3 + ... =
∞∑
k=1

k ·nk ≥ n1 + 2
∞∑
k=2

nk

Since G is an (α,β)-expander:

|Γ(S)| = n1 +n2 + ... =
∞∑
k=1

nk ≥ β|S|

28

Combining both:

n1 = 2[
∞∑
k=1

nk]− [n1 + 2
∞∑
k=2

nk] ≥ (2β− d)|S|.

This is the number of nodes in R that send acceptances. Any node in Si can receive at most d
acceptances, so the number that drop out is at least n1/d. Thus |Si+1| ≤ |Si| − n1/d and the
claim follows.

Remark 5 This simple algorithm only scratches the surface of what is possible. One can im-
prove the algorithm to run in O(logN) time, and furthermore, route calls in a nonblocking
fashion. This means that callers can make calls and hang up any number of times and in any
(adversarially determined) order, but still every unused input can call any unused output and
the call is placed within O(logN) steps using local control. The main idea in proving the non-
blocking is to treat busy nodes in the circuit —those currently used by other paths— as faulty,
and to show that the remaining graph/circuit still has high expansion. See the paper by Arora,
Leighton, Maggs and an improvement by Pippenger that requires expansion much less than
d/2.

Chapter 5

Eigenvalues and Expanders

scribe: Elad Hazan

5.1 Spectral properties of graphs and expanders

5.1.1 Basic facts from linear algebra

We begin by stating several definitions and results from linear algebra:
Let M ∈ �n×n be a square symmetric matrix of n rows and columns.

Definition 6 An eigenvalue of M is a scalar λ ∈ � such that exists a vector x ∈ �n for which
M · x = λ · x. The vector x is called the eigenvector corresponding to the eigenvalue λ. (The
multiset of eigenvalues is called the spectrum.)

Facts about eigenvalues and eigenvectors of symmetric matrices over �:

1. M has n real eigenvalues denoted λ1 ≤ ... ≤ λn. The eigenvectors associated with these
eigenvalues form an orthogonal basis for the vector space �n (for any two such vectors
the inner product is zero and all vectors are linear independent).

2. The smallest eigenvalue satisfies:

λ1 = min
x∈Rn,x≠0

xTMx
xTx

Denote the eigenvector corresponding to λi as xi. Denote the vector space of all vectors
in Rn that are orthogonal to x1 as: W(x1) := �n \ span{x1}. Then the second smallest
eigenvalues satisfies:

λ2 = min
x∈W(x1)

xTMx
xTx

If we denote W(x1, ..., xk−1) := �n \ span{x1, ..., xk−1}, then the k’th smallest eigenvalue
is:

λk = min
x∈W(x1,...,xk−1)

xTMx
xTx

This characterization of the spectrum is called the Courant Fisher Theorem.

29

30

3. Denote by Spec(M) the spectrum of matrix M , that is the multi-set of its eigenvalues.
Then for a block diagonal matrix M , that is, a matrix of the form:

M =
[
A 0
0 B

]

The following holds: Spec(M) = Spec(A)∪ Spec(B)
4. Eigenvalues of a matrix can be computed in polynomial time. (Eigenvalues are the roots

of the characteristic polynomial of a matrix).

5. The Interlacing theorem:
A matrix B is denoted a principal minor of matrix M if it can be obtained from M by
deleting k < n columns and k rows.
Let A ∈ �(n−1)×(n−1) be a principal minor of the matrix M . Let:

Spec(A) = {µ1 ≤ ... ≤ µn−1}
Then:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ ... ≤ µn−1 ≤ λn

5.1.2 Matrices of Graphs

The most common matrix associated with graphs in literature is the adjacency matrix. For a
graph G = (V , E), the adjacency matrix A = AG is defined as:

Ai,j =

1 (i, j) ∈ E

0 otherwise

Another common matrix is the Laplacian of a graph, denoted LG = L, and defined as:

Li,j =

1 i = j

0 i ≠ j and (i, j) ∉ E

− 1√
didj

i ≠ j and (i, j) ∈ E

(where di is the degree of the node vi ∈ V)
Notice that if the graph G is d-regular, then its matrices satisfy AG = d(I − LG). Denote by
{λi} the eigenvalues of A and by {µi} the eigenvalues of L. Then the previous relation implies:
λi = d(1− µi).
Fact: for any graph, the laplacian is a positive semi-definite matrix, that is, for any vector
y ∈ Rn:

∀y ∈ Rn . yTLy ≥ 0

(or equivalently, all eigenvalues are nonnegative).

Example - The cycle

Consider a cycle on n nodes. The laplacian is:

1 0 · · · 0
0 1 · · · −1

2
...

. . .
...

0 −1
2 · · · 1

31

This matrix has 1’s on the diagonal, and 0’s or −1
2 elsewhere, depending on whether the indices

correspond to an edge. Since a cycle is 2-regular, in each row and column there are exactly two
entries with −1

2 .

Claim 1 The all ones vector
1 is an eigenvector of the laplacian of the n-node cycle, correspond-
ing to eigenvalue 0.

Proof: Observe that since every row has exactly two −1
2 then:

L ·
1 = 0 = 0 ·
1
� In fact, we can characterize all eigenvalues of the cycle:

Claim 2 The eigenvalues of the laplacian of the n-node cycle are:

{1− cos
2πk
n

, k = 0,1, ..., n− 1}

Proof: Observe that if the vertices are named consecutively, then each vertex i is connected
to i − 1, i + 1 mod n. Therefore, a value λ is an eigenvalue with an eigenvector
x if and only
if for every index of
x:

xi − 1
2
(xi−1 + xi+1) = λ · xi

(where sums are modulo n)
It remain to show the eigenvectors. For eigenvalue λk = 1−cos 2πk

n we associate the eigenvector

xk with coordinates:

xki = cos
2πik
n

And indeed (recall the identity cosx + cosy = 2 cos x+y2 cos x−y2):

xki −
1
2
(xki−1 + xki+1) = cos

2πik
n
− 1

2

(
cos

2π(i+ 1)k
n

+ cos
2π(i− 1)k

n

)

= cos
2πik
n
− 1

2

(
2 cos

2πik
n

cos
2πk
n

)

= cos
2πik
n

(
1− cos

2πk
n

)
= xki · λk

�

5.1.3 Expansion and spectral properties

In this section we state the connection between expansion of a graph (defined below) and the
eigenvalues of its characteristic matrices.

Definition 7 Let G = (V , E) be a graph. For any subset of vertices S ⊆ V define its volume to
be:

Vol(S) :=
∑
i∈S
di

For a subset of vertices S ⊆ V denote by E(S, S) the set of edges crossing the cut defined by S.
Using the above definition we can define edge expansion of a graph:

32

Definition 8 The Cheeger constant of G is:

hG :=min
S⊆V

|E(S, S)|
min{Vol(S), Vol(S)} = min

S⊆V,Vol(S)≤|E|
|E(S, S)|
Vol(S)

.

(N.B. This number is closely related to the conductance of the graph.)

The vertex expansion is defined as:

Definition 9 A graph G = (V , E) is a c-expander if for every subset of vertices of cardinality
less then half of the vertices, the number of vertices in the set of neighbors is at least c times the
original set. Formally:

∀S ⊆ V, |S| < 1
2
|V | . |Γ(S)| ≥ c · |S|

Denote by cG the maximal constant c for which the graph G is a c-expander.

Observe that for a d-regular graph G (or if d denotes the average degree in any graph):

hG ≤ cG ≤ d · hG
We now arrive at the main theorem of the lesson, describing the connection between eigenvalues
of the Laplacian and the edge expansion:

Theorem 23 (Cheeger-Alon)

If λ is the second smallest eigenvalue of the Laplacian of the graph G, then:

h2
G

2
≤ λ ≤ 2hG

Proof:[first part] We first prove that λ ≤ 2hG.
We begin with a small claim regarding the smallest eigenvalue:

Claim 3 G has an eigenvalue 0, corresponding to the eigenvector
w with coordinates:

wi =
√
di

Proof: By straightforward calculation. Denote by
b the vector:

b := L ·w

The i’th coordinate of
b is:

bi = wi −
∑
j∈Γ(i)

wj√
didj

=
√
di −

∑
j∈Γ(i)

1√
di
= 0

Hence
b is the zero vector, and thus 0 is an eigenvalue corresponding to the above eigenvector.
�

Using the previous claim, we can write an explicit expression for the second smallest eigenvalue:

λ = min
x:Σi
√
dixi=0

xTLx
xTx

(5.1.1)

33

Using the identity: zTMx =∑i,j ziMi,jxj :

= min
x:Σi
√
dixi=0

1∑
i x2
i

∑
i

x2

i −
∑
j∈Γ(i)

xixj√
didj

 (5.1.2)

Now substitute yi := xi√
di

:

= min
Σidiyi=0

(∑
i diy2

i −
∑
j∈Γ(i) yiyj

)
∑
i diy2

i
(5.1.3)

= min
Σidiyi=0

∑
(i,j)∈E

(
yi −yj

)2

∑
i diy2

i
(5.1.4)

(Aside: This characterization of the second eigenvalue is worth keeping in mind.)
Now let S ⊆ V so that Vol(S) ≤ |E| (note that Vol(V) = 2 |E|). Fix
a to be with coordinates:

ai =

1
Vol(S) i ∈ S

− 1
Vol(S) i ∉ S

Notice that
a is legal as:

∑
i
diai =

∑
i∈S

di
Vol(S)

−
∑
i∉S

di
Vol(S)

= Vol(S)
Vol(S)

− Vol(S)
Vol(S)

= 0

Now, according to the last expression obtained for λ we get:

λ ≤
∑
(i,j)∈E

(
ai − aj

)2

∑
i dia2

i

=
(

1
Vol(S) + 1

Vol(S)

)2 · E(S, S)∑
i∈S

di
Vol(S)2 +

∑
i∉S

di
Vol(S)2

=
(

1
Vol(S)

+ 1

Vol(S)

)
· E(S, S)

≤ 2
Vol(S)

· E(S, S)

And since this holds for any S ⊆ V , it specifically holds for the set that minimizes the quantity
in Cheeger’s constant, and we get:

λ ≤ 2hG

�

Before we proceed to the more difficult part of the theorem, we recall the Cauchy-Schwartz
inequality: if a1, ..., an ∈ R ; b1, ..., bn ∈ R, then:

n∑
i=1

aibi ≤ (
∑
i
a2
i)

1
2 · (

∑
i
b2
i)

1
2 (5.1.5)

34

Proof:[second part] Let
y be the vector so that:

λ =
∑
(i,j)∈E

(
yi −yj

)2

∑
i diy2

i

Define two vectors
u,
v with coordinates:

ui =

−yi yi < 0

0 otherwise

vi =

yi yi > 0

0 otherwise

Observe that:
(yi −yj)2 ≥ (ui −uj)2 + (vi − vj)2

And hence:

λ ≥
∑
(i,j)∈E[(ui −uj)2 + (vi − vj)2]∑

i di(u2
i + v2

i)

Since a+b
c+d ≥min{ac , bd} it suffices to show that:

∑
(i,j)∈E(ui −uj)2∑

i diu2
i

≥ h
2
G

2

Now comes the mysterious part (at least to Sanjeev): multiply and divide by the same quantity.∑
(i,j)∈E(ui −uj)2∑

i diu2
i

=
∑
(i,j)∈E(ui −uj)2∑

i diu2
i

×
∑
(i,j)∈E(ui +uj)2∑
(i,j)∈E(ui +uj)2

≥ [
∑
(i,j)∈E(ui −uj)2][

∑
(i,j)∈E(ui +uj)2]∑

i diu2
i · 2

∑
(i,j)∈E(u2

i +u2
j)

Where the last inequality comes from (a + b)2 ≤ 2(a2 + b2). Now using Cauchy-Schwartz in
the numerator:

≥ [
∑
(i,j)∈E(ui −uj)(ui +uj)]2

2(
∑
i diu2

i)2

= [
∑
(i,j)∈E(u2

i −u2
j)]

2

2(
∑
i diu2

i)2

Now denote by Sk = {v1, ..., vk} ⊆ V the set of the first k vertices. Denote by Ck the size of the
cut induced by Sk:

Ck := |E(Sk, Sk)|
Now, since u2

i −u2
j = u2

i −u2
i+1 +u2

i+1 −u2
i+1...+u2

j−1 −u2
i , we can write:

∑
(i,j)∈E

(u2
i −u2

j) =
∑
k
(u2
k −u2

k+1) · Ck

35

And thus, returning to the chain of inequalities we get:

∑
(i,j)∈E(ui −uj)2∑

i diu2
i

≥ [
∑
(i,j)∈E(u2

i −u2
j)]

2

2(
∑
i diu2

i)2

= [
∑
k(u2

k −u2
k+1) · Ck]2

2(
∑
i diu2

i)2

According to the definition of hG we know that Ck ≥ hG · (
∑
i≤k di) (as hG is the minimum of

a set of expressions containing these). Hence:

≥ [
∑
k(u2

k −u2
k+1) · hG · (

∑
i≤k di)]2

2(
∑
i diu2

i)2

= h2
G ·
[
∑
k(u2

k −u2
k+1) · (

∑
i≤k di)]2

2(
∑
i diu2

i)2

= h2
G ·

(
∑
k dku2

k)
2

2(
∑
i diu2

i)2

= h2
G

2

And this concludes the second part of the theorem. �

Remark 6 Note that we proved the stronger result that actually one of the cuts Ck satisfies
E(Sk,Sk)

minVol(Sk),Vol(Sk)
≤ √2λ. Namely, the algorithm to find a sparse cut is to take the eigenvector

(y1, y2, . . . , yn) corresponding to λ, and check all the n cuts of the type Sk = {i : xi ≤ xk}.

Chapter 6

Markov Chains and Random Walks

scribe:Elena Nabieva

6.1 Basics

A Markov chain is a discrete-time stochastic process on n states defined in terms of a transition
probability matrix (M) with rows i and columns j.

M =
(
Pij

)
A transition probability Pij corresponds to the probability that the state at time step t + 1 will
be j, given that the state at time t is i. Therefore, each row in the matrix M is a distribution
and ∀i, j ∈ S.Pij ≥ 0 and

∑
j Pij = 1.

We stress that the evolution of a Markov chain is memoryless: the transition probability Pij
depends only on the state i and not on the time t or the sequence of transititions taken before
this time.

One way to think about Markov chains is of a certain amount fluid sitting at each node
(corresponding to the initial distribution). At every step, the fluid sitting at node i distributes
to its neighbors, such that Pij fraction goes to j.

Let the initial distribution be given by the row vector x ∈ Rn, xi ≥ 0 and
∑
i xi = 1. After

one step, the new distribution is xM. After t steps, the distribution is xMt .

Definition 10 A distribution π for the Markov chain M is a stationary distribution if πM = π .

Definition 11 A Markov chain M is erdodic if there exists a unique stationary distribution π
and for every (initial) distribution x the limit limt→∞ xMt = π .

Theorem 24

The following are necessary and sufficient conditions for ergodicity:

1. connectivity: ∀i, j.Mt(i, j) > 0 for some t.

2. aperiodicity: ∀i.gcd{t : Mt(i, j) > 0} = 1.

Remark 7 Clearly, these conditions are necessary. If the Markov chain is disconnected it cannot
have a unique stationary distribution. Similarly, a bipartite graph does not have a unique
distribution (if the initial distribution places all probability on one side of the bipartite graph,
then the distribution at time t oscillates between the two sides depending on whether t is odd

36

37

or even). Note that in a bipartite graph gcd{t : Mt(i, j) > 0} ≥ 2. The sufficiency of these
conditions is proved using eigenvalue techniques (for inspiration see the analysis of mixing
time later on).

Both conditions are easily satisfied in practice. In particular, any Markov chain can be made
aperiodic by adding self-loops assigned probability 1/2.

Definition 12 An erdodic Markov chain is reversible if the stationary distribution π satisfies
for all i, j, πiPij = πjPji.

6.2 Mixing Times

Informally, the mixing time of a Markov chain is the time it takes to reach “nearly uniform”
distribution from any arbitrary starting distribution.

Definition 13 The mixing time of an ergodic Markov chain M is t if for every starting distribu-
tion x, the distribution xMt satisfies

∣∣xMt −π∣∣1 ≤ 1/4. (Here |·|1 denotes the 1 norm and the
constant “1/4” is arbitrary.)

The next exercise clarifies why we are interested in 1 norm.

Exercise 2 For any distribution π on {1,2, . . . , N}, and S ⊆ {1,2, . . . , N} let π(S) = ∑
i∈S πi.

Show that for any two distributions π,π ′,∣∣π −π ′∣∣1 = 2 max
S⊆{1,...,N}

∣∣π(S)−π ′(S)∣∣ . (6.2.1)

Here is another way to restate the property in (6.2.1). Suppose A is some deterministic
algorithm (we place no bounds on its complexity) that, given any number i ∈ {1,2, . . . , N},
outputs Yes or No. If |π −π ′|1 ≤ ε then the probability that A outputs Yes on a random input
drawn according to π cannot be too different from the probability it outputs Yes on an input
drawn according to π ′. For this reason, 1 distance is also called statistical difference.

We are interested in analysing the mixing time so that we can draw a sample from the
stationary distribution.

Example 6 (Mixing time of a cycle) Consider an n-cycle, i.e., a Markov chain withn states where,
at each state, Pr(lef t) = Pr(right) = Pr(stay) = 1/3.

Suppose the initial distribution concentrates all probability at state 0. Then t steps corre-
spond to about 2t/3 random coin tosses and the index of the final state is

(#(Heads) − #(Tails)) (mod n).

Clearly, it takes Ω(n2) steps for the walk to reach the other half of the circle with any
reasonable probability, and the mixing time is Ω(n2). We will later see that this lowerbound is
fairly tight.

6.2.1 A Motivation: Approximate Counting and Sampling

Markov chains allow one to sample from non-trivial sets. As a motivating example consider
the following problem. Given a1 . . . an, b ∈ Z+, compute the number of vectors (xi, . . . , xn)
s.t.

∑
aixi ≤ b. In other words, count the number of feasible solutions to the 0-1 knapsack

problem.
Remark: this problem is in #P (the complexity class corresponding to counting the number

of solutions to an NP problem). In fact, we have.

38

Theorem 25 (Valiant, 1970s)

If there exist a polynomial-time algorithm for solving the knapsack counting problem, then

P = NP (in fact, P = P#P).

Valiant’s Theorem does not rule out finding good approximations to this problem.

Definition 14 A Fully Polynomial Randomized Approximation Scheme (FPRAS) is a random-
ized algorithm, which for any ε finds an answer in time polynomial in (nε log 1

δ) that is correct
within a multiplicative factor (1+ε) with probability (1-δ).

Theorem 26 (Jerrum, Valiant, Vazirani, 1984)

If we can sample almost uniformly, in polynomial time, from A = {(x1, . . . , xn) :
∑
aixi ≤ b},

then we can design an FPRAS for the knapsack counting problem.

Remark 8 By “sampling almost uniformly” we mean having a sampling algorithm whose out-
put distribution has 1 distance exp(−n2) (say) from the uniform distribution. For ease of
exposition, we think of this as a uniform sample.

Proof: Suppose we have a sampling algorithm for knapsack. We know that either Prx∈A(x1 =
1) or Prx∈A(x1 = 0) is at least 1/2. After generating a few samples we can determine say that
the former holds, and say Prx∈A(x1 = 1) ∈ [p1(1+ γ)−1, p1(1+ γ)].

Let A1 =
{
(x2, . . . , xn) :

∑n
i=2 xiai ≤ b − a1

}
.

Then

p1(1+ γ) ≥ |A1|
|A| ≥ p1(1+ γ)−1.

Note that A1 is also the set of solutions to some knapsack problem, so we can use our
algorithm on it and determine say that Prx∈A1(x2 = 0) ∈ [p2(1 + γ)−1, p2(1 + γ)]. Thus if
A2 =

{
(x3, . . . , xn) :

∑n
i=3 xiai ≤ b − a1

}
we have shown that

p2(1+ γ) ≥ |A2|
|A1| ≥ p2(1+ γ)−1.

Proceeding this way we can estimate |Ai| / |Ai+1| for each i and thus have an approximation to

n−1∏
i=0

|Ai+1|
|Ai| =

|An|
|A0|

(where A0 = A) that is correct to within a factor (1 + γ)n ≈ (1 + nγ). Since |An| is easily
computable, we have a good approximation to the size of A0 = A.

Therefore, by choosing ε appropriately and using the Chernoff bound, we can achieve the
desired bound on the error in polynomial time. (Remark: This is not exactly accurate; there is
a little bit more work involved and the details are not trivial.)

This proves one direction. The other direction is similar. If we have an approximate counter,
then we can output a random sample in A bit by bit. We can estimate p1 and output x1 = 1
with probability p1, and proceed inductively. Details are left as an exercise.

�

Thus to count approximately, it suffices to sample from the uniform distribution. We define
a Markov chainM on A whose stationary distribution is uniform. Then we show that its mixing
time is poly(n).

The Markov chain is as follows. If the current node is (x1, . . . , xn) (note a1x1+a2x2+ . . . =
anxn ≤ b) then

1. with probability 1/2 remain at the same node

39

2. else pick i ∈ {1, . . . , n}.
Let y = (x1, . . . , xi−1,1− xi,xi+1, . . . , xn). If y ∈ A, go there. Else stay put.

Note that M is

1. aperiodic because of self-loops

2. connected because every sequence can be turned into the zero vector in a finite number
of transformations, i.e., every node is connected to
0.

Therefore,M is ergodic, i.e., has a unique stationary distribution. Since the uniform distribution
is stationary, it follows that the stationary distribution of M is uniform.

Now the question is: how fast does M converge to the uniform distribution? If M mixes
fast, we can get an efficient approximation algorithm for the knapsack counting: we get the
solution by running M for the mixing time and sampling from the resulting distribution after
the mixing time has elapsed.

Theorem 27

(Morris-Sinclair, 1999): The mixing time for M is O(n8).

Fact (see our remark later in our analysis of mixing time): running the M for a bit longer
than the mixing time results in a distribution that is extremely close to uniform.

Thus, we get the following sampling algorithm:

1. Start with the zero vector as the initial distribution of M .

2. Run M for O(n9) time.

3. output the node at which the algorithm stops.

This results in a uniform sampling from A.
Thus Markov chains are useful for sampling from a distribution. Often, we are unable to

prove any useful bounds on the mixing time (this is the case for many Markov chains used
in simulated annealing and the Metropolis algorithm of statistical physics) but nevertheless in
practice the chains are found to mix rapidly. Thus they are useful even though we do not have
a proof that they work.

6.3 Bounding the mixing time

For simplicity we restrict attention to regular graphs.
Let M be a Markov chain on a d-regular undirected graph with an adjacency matrix A. As-

sume that M is ergodic and that d includes any self-loops.
Then, clearly M = 1

dA.

SinceM is ergodic, and since 1
n

1 is a stationary distribution, then 1

n

1 is the unique stationary

distribution for M .
The question is how fast does M convege to 1

n

1? Note that if x is a distribution, x can be

written as

x =
1 1
n
+

n∑
i=2

αiei

where ei are the eigenvectors of M which form an orthogonal basis and 1 is the first eigen-
vector with eigenvalue 1. (Clearly, x can be written as a combination of the eigenvectors; the

40

observation here is that the coefficient in front of the first eigenvector
1 is
1 ·x/
∣∣∣
1∣∣∣2

2
which is

1
n
∑
i xi = 1

n .)

Mtx = Mt−1(Mx)

= Mt−1(
1
n

1+

n∑
i=2

αiλiei)

= Mt−2(M(
1
n

1+

n∑
i=2

αiλiei))

. . .

= 1
n

1+

n∑
i=2

αiλtiei

Also

‖
n∑
i=2

αiλtiei‖2 ≤ λtmax

where λmax is the second largest eigenvalue of M . (Note that we are using the fact that the
total 2 norm of any distribution is

∑
i x2
i ≤

∑
i xi = 1.)

Thus we have proved
∣∣∣Mtx− 1

n1
∣∣∣

2
≤ λtmax . Mixing times were defined using 1 distance,

but Cauchy Schwartz inequality relates the 2 and 1 distances:
∣∣p∣∣1 ≤

√
n
∣∣p∣∣2. So we have

proved:

Theorem 28

The mixing time is at most O(logn
λmax

).

Note also that if we let the Markov chain run for O(k logn/λmax) steps then the distance to
uniform distribution drops to exp(−k). This is why we were not very fussy about the constant
1/4 in the definition of the mixing time earlier.

Finally, we recall from the last lecture: for S ⊂ V , Vol(S) = ∑i∈S di, where di is the degree
of node i, the Cheeger Constant is

hG = min
S⊂V,vol(S)≤ Vol(V)2

∣∣∣E(S, S∣∣∣
Vol(S)

If µ is the smallest nonzero eigenvalue of the Laplacian L of M , then

2hG ≥ µ ≥ h
2
G

2

The Laplacian for our graph is
L = I −M

Therefore,

spec(L) = {0 = µ1 ≤ µ2 ≤ . . . ≤ µn}
and

spec(M) = {1 = 1− µ1 ≥ 1− µ2 ≥ . . . ≥ 1− µn}
Note that λmax = (1− µ2)t .

41

Therefore,

‖
n∑
i=2

αiλtiei‖2 ≤ (1− h
2
G

2
)t
√
n

.
and we obtain the Jerrum-Sinclair inequality:

‖Mtx− 1
n

1‖2 ≤ (1− h2

G
2)

t√n.
Examples:

1. For n-cycle: λmax = (1− c
n2)t , mixing time ≈ O(n2 logn) (c is some constant).

2. For a hypercube on 2n nodes (with self-loops added), λmax = (1− cn) (this was a homework
problem), so mixing time ≈ O(n logn) (c is some constant).

Observe that the mixing time is much smaller than the number of nodes, i.e., the random walk
does not visit all nodes.

Finally, we note that random walks also give a randomized way to check s − t connectivity
(for undirected graphs) in logarithmic space, a surprising result since the usual method of
checking s − t connectivity, namely, breadth-first-search, seems to inherently require linear
space.

The main idea is that a random walk on a connected graph on n nodes mixes in O(n4) time
(the Cheeger constant must be at least 1/n2) and so a logarithmic space algorithm can just do
a random walk for O(n2 logn) steps (note that space O(logn) is required is just to store the
current node and a counter for the number of steps) starting from s, and if it never sees t, it can
output reject. This answer will be correct with high probability. This application of random
walks by Alleliunas, Karp, Karmarkar, Lipton and Lovasz 1979 was probably one of the first in
theoretical computer science and it has been the subject of much further work recently.

6.4 Analysis of Mixing Time for General Markov Chains

Thanks to Satyen Kale for providing this additional note
In the class we only analysed random walks on d-regular graphs and showed that they

converge exponentially fast with rate given by the second largest eigenvalue of the transition
matrix. Here, we prove the same fact for general ergodic Markov chains. We need a lemma first.

Lemma 29

Let M be the transition matrix of an ergodic Markov chain with stationary distribution π and
eigenvalues λ1(= 1) ≥ λ2 ≥ . . . ≥ λn, corresponding to eigenvectors v1(= π),v2, . . . vn. Then
for any k ≥ 2,

vk
1 = 0.

Proof: We have vkM = λkvk. Mulitplying by
1 and noting that M
1 =
1, we get

vk
1 = λkvk
1.
Since the Markov chain is ergodic, λk �= 1, so vk
1 = 0 as required. �

We are now ready to prove the main result concerning the exponentially fast convergence
of a general ergodic Markov chain:

Theorem 30

In the setup of the lemma above, let λ =max {|λ2|, |λn|}. Then for any initial distribution x,
we have

||xMt −π||2 ≤ λt||x||2.

42

Proof: Write x in terms of v1, v2, . . . , vn as

x = α1π +
n∑
i=2

αivi.

Multiplying the above equation by
1, we get α1 = 1 (since x
1 = π
1 = 1). Therefore xMt =
π +∑ni=2αiλ

t
ivi, and hence

||xMt −π||2 ≤ ||
n∑
i=2

αiλtivi||2 (6.4.1)

≤ λt
√
α2

2 + · · · +α2
n (6.4.2)

≤ λt||x||2, (6.4.3)

as needed. �

6.5 Example of use of expanders: Recycling Random Bits

Scribe: Nir Ailon
Now we describe one more application of expander graphs: recycling random bits.
Assume we have a randomized polynomial time algorithm deciding on a language L, that

given an input x answers as follows:

{
Pr(Answer "yes") ≥ 1

2 if x ∈ L
Pr(Answer "yes") = 0 if x ∉ L

(6.5.1)

(Note: the class of such languages is called co-RP). We would like to get an amplification of
the success probability by repeating the algorithm k times. This would replace the probability
1
2 with probability 1 − 1

2k . Assuming that the algorithm requires r random bits for input x, a
naive approach would require rk random bits. A result by [AKS],[CW],[IZ] (87-89) says that we
can get this using only O(r + k) bits. This seems surprising at first, but from an information
theoretic point of view there is a simple intuition: we pay r bits and get 1 "yes"/"no" bit back,
so we can pocket the change. The idea is as follows:

Take, say, a degree 5 expander on 2r nodes (note: there are explicit such constructions that
allow computation of Γ(v) in poly(r) time for any node v). Recall that one of the equivalent
definitions of an expander graph is that there is an eigenvalue gap in the adjacency matrix of
the graph. Start with a random node (requires r random bits) and perform a random walk of
length k, each time taking the bits corresponding to the visited node as the fresh r random
bits. In each step, we need O(1) random bits, and there are a total of k steps, resulting in a
total of O(r + k) random bits.

To prove that this works, assume x ∈ L and denote by C the set of random strings of length
r that would cause the algorithm to answer the correct answer, "yes". So |C|

2r ≥ 1
2 . You will

show in the Homework 4 that a random walk of length k avoids C with probability at most
O(e−O(k)).

Chapter 7

High Dimensional Geometry

scribe:Nir Ailon, Renato F. Werneck

Now we move on to a study of high-dimensional geometry. By this we mean the study
of algorithms for n points in �d, where d is large (say logn or even n). This has become
increasingly important recently, both theoretically and practically.

7.1 High Dimensional Geometry: Introduction

Some useful generalizations of geometric objects to higher dimensional geometry:

• The n-cube in Rn: {(x1...xn) : 0 ≤ xi ≤ 1}. To visualize this in �4, think of yourself as
looking at one of the faces, say x1 = 1. This is a cube in �3 and if you were able to look
in the fourth dimension you would see a parallel cube at x1 = 0. The visualization in �n
is similar.

The volume of the n-cube is 1.

• The unit n-ball in Rn: Bn := {(x1...xn) :
∑
x2
i ≤ 1}. Again, to visualize the ball in �4,

imagine you have sliced through it with a hyperplane, say x1 = 1/2. This slice is a ball in
�3 of radius

√
1− 1/22 = √32. Every parallel slice also gives a ball.

The volume of Bn is πn/2
(n/2)! (assume n even if the previous expression bothers you), which

is 1
nΘ(n) .

7.1.1 An approximate way to think about Bn
A good approximation to picking a random point on the surface of Bn is by choosing random
xi ∈ {−1,1} independently for i = 1..n and normalizing to get 1√

n(x1, ..., xn). To get a point

inside the ball, it is necessary to pick the distance from 0̄ randomly. Note that the distance is
not distributed uniformly: the density at radius r is proportional to rn−1.

Remark: An exact way to pick a random point on the surface of Bn is to choose xi from the
normal distribution for i = 1..n, and to normalize: 1

l (x1, ..., xn), where l = (∑i x2
i)

1/2.

7.1.2 Funny facts

1. Scribe’s contribution: The volume of the unit n-ball tends to 0 as the dimension tends to
∞.

43

44

2. For any c > 1, a (1 − 1
c) - fraction of the volume of the n-ball lies in a strip of width

O(
√
c logn
n). A strip of width a is Bn intersected with {(x1, ..., xn)|x1 ∈ [−a2 , a2]}.

3. If you pick 2 vectors on the surface of Bn independently, then with probability > 1− 1
n ,

| cos(Θx,y)| = O(
√

logn
n

),

where Θx,y is the angle between x and y . In other words, the 2 vectors are almost
orthogonal w.h.p. To prove this, we use the following lemma:

Lemma 31

Suppose a is a unit vector in Rn. Let x = (x1, ..., xn) ∈ Rn be chosen from the surface of
Bn by choosing each coordinate at random from {1,−1} and normalizing by factor 1√

n .
Denote by X the random variable a · x =∑aixi. Then:

Pr(|X| > t) < e−nt2

Proof: We have:
µ = E(X) = E(

∑
aixi) = 0

σ 2 = E[(
∑
aixi)2] = E[

∑
aiajxixj] =

∑
aiajE[xixj] =

∑ a2
i
n
= 1
n
.

Using the Chernoff bound, we see that,

Pr(|X| > t) < e−(tσ)2 = e−nt2

�

Corollary 32

If two unit vectors x,y are chosen at random from Rn, then

Pr

|cos(θx,y)| >

√
− log ε
n

 < ε

Now, to get fact (3), put ε = 1
n .

7.2 Random Walks in Convex Bodies

We can apply our earlier study of random walks to geometric random walks, and derive bounds
on the mixing time using geometric ideas.

Definition of a convex body: A set K ⊂ Rn is convex if ∀x,y ∈ K,λ ∈ [0,1],

λx + (1− λ)y ∈ K.

In other words, for any two points in K, the line segment connecting them is in the set.
examples: Balls, cubes, polytopes (=set of feasible solutions to an LP), ellipsoides etc.
Convex bodies are very important in theory of algorithms. Many optimization problems

can be formulated as optimizing convex functions in convex domains. A special case is linear
programming.

45

Today’s Goal: To generate a random point in a convex body. This can be used to approximate
the volume of the body and to solve convex programs (we saw how to do the latter in Vempala’s
talk at the theory lunch last week). We emphasize that the description below is missing many
details, though they are easy to figure out.

First we need to specify how the convex body is represented:

• 0 ∈ K.

• K is contained in a cube of side R with center at 0.

• A unit cube is contained in K.

• R ≤ n2.

• there exists a "separation oracle" that given any point x ∈ Rn returns "yes" if x ∈ K and
if x �∈ K then returns a separating hyperplane {y|aTy = b} s.t. x and K are on opposite
sides (i.e. aTx < b,aTz > b ∀z ∈ K). Note 1: a (closed) convex body can actually
be characterized by the property that it can be separated from any external point with a
separating hyperplane. Note 2: In the linear program case, giving a separating hyperplane
is equivalent to specifying a violated inequality.

The idea is to approximate the convex body K with a fine grid of scale δ < 1
n2 . The volume

of K is approximately proportional to the number of grid points. There is some error because
we are approximating the convex body using a union of small cubes, and the error term is like

(number of grid cubes that touch the surface of K)× (volume of small cube),

which is� volume of K since the minimum crosssection of K (at least 1) is much larger than
the dimensions of the grid cube.

Consider the graph GK whose vertices are grid notes contained in K, and there is an edge
between every pair of grid neighbors. To a first approximation, the graph is regular: almost
every node has degree 2n. The exceptions are grid points that lie close to the surface of K,
since not their 2n neighbors may lie inside K. But as noted, such grid points form a negligible
fraction. Thus generating a random point ofGK is a close approximation to generating a random
point of K.

However, we only know one node in GK , namely, the origin 0. Thus one could try the
following idea. Start a random walk from 0. At any step, if you’re on a grid point x, stay at x
with probability 1/2, else randomly pick a neighbor y of x. If y ∈ K, move to y , else stay at x.
If this walk is ergodic, then the stationary distribution will be close to uniform on GK , as noted.
The hope is that this random walk is rapidly mixing, so running it for poly(n) time does yield
a fairly unbiased sample from the stationary distribution.

Unfortunately, the walk may not be ergodic since GK may not be connected (see figure 7.1).

To solve this problem, we smoothen K, namely, we replace K with a ρ-neighborhood of K
defined as

K′ =
⋃
x∈k
Bn(x, ρ),

where Bn(x,ρ) is a closed ball centered at x with radius ρ, and ρ ≈ 1
n (see figure 7.2). It can

be checked that this negligibly increases the volume while ensuring the following two facts:

• K′ is convex, and a separation oracle for K′ can be easily built from the separation oracle
for K, and,

• Any 2 grid points in K are connected via a path of grid points in K′.

46

Figure 7.1: The bottom-left most grid point in the triangle is isolated.

Figure 7.2: The dashed convex body is obtained by smoothening the solid triangle.

Now let GK′ be the graph on grid nodes contained in K′. It is connected, and almost all its
nodes are in K (since the volume increase in going from K to K′ was minimal).

We go back to estimating the mixing time. Recall that the "mixing time" is the time t s.t.
starting from any distribution x0, after t steps the distribution xt satisfies

‖xt −π‖2 ≤ 1
4
.

Using the Jerrum-Sinclair inequality from the previous lecture, we have

‖xt −π‖2 ≤ (1− φ
2

2
)t
√
N,

where φ is the Cheeger number attached to the graph and N is the size of the graph (number
of grid points in K′). So we reduce to the problem of estimating the Cheeger constant.

[Aside: In case you ever go through the literature, you will see that many papers use the
“conductance" of the graph instead of the “Cheeger" number. The conductance of a graph G is

min
S⊂V
|E(S, S̄)|Vol(V)
Vol(S)Vol(S̄)

.

Easy exercise: the conductance is within factor 2 of the Cheeger number.]
To estimate the Cheeger number of the grid graph, we use a result by Lovasz and Simonovits.

Let U be a subset of nodes of GK′ . Consider the union of the corresponding set of grid cubes;
this is a measurable subset (actually it is even better behaved; it is a finite union of convex
subsets) of K. Call this set S. Let ∂S be the boundary of S. Then it is not hard to see that:

Voln−1(∂S) ≤ E(S, S̄) ≤ 2nVoln−1(∂S),

where E(S, S̄) is the number of grid edges crossing between S and S̄. The [LS] result is:

47

Theorem 33

If K is a convex body containing a unit cube, then for any measurable S ⊂ K,

Voln−1(∂S) ≥ 2
D

min{Voln(S),Voln(S̄)},

where D is the diameter of K.

Recall that the diameter of our body is poly(n) since we started with a body whose diameter
was n2 and then we placed a grid of size 1/n2 or so. Combining all the above information, we
get that

φ ≥ 1
poly(n)

.

Therefore, the mixing time is O(1
φ2 logN) = O(poly(n)).

7.3 Dimension Reduction

Now we describe a central result of high-dimensional geometry (at least when distances are
measured in the 2 norm). Problem: Given n points z1, z2, ..., zn in �n, we would like to find
n points u1, u2, ..., un in �m where m is of low dimension (compared to n) and the metric
restricted to the points is almost preserved, namely:

‖zi − zj‖2 ≤ ‖ui −uj‖2 ≤ (1+ ε)‖zj − zj‖2 ∀i, j. (7.3.1)

The following main result is by Johnson & Lindenstrauss :

Theorem 34

In order to ensure (7.3.1), m = O(logn
ε2) suffices.

Note: In class, we used the notation of k vectors z1...zk in�n, but we can always embed the
k vectors in a k-dimensional space, so here I assume that n = k and use only n.
Proof:

Choose m vectors x1, ..., xm ∈ �n at random by choosing each coordinate randomly from

{
√

1+ε
m ,−

√
1+ε
m }. Then consider the mapping from �n to �m given by

z −→ (z · x1, z · x2, . . . , z · xm).
In other words ui = (zi · x1, zi · x2, ..., zi · xm) for i = 1, . . . , k. We want to show that with
positive probability, u1, ..., uk has the desired properties. This would mean that there exists
at least one choice of u1, ..., uk satisfying inequality 7.3.1. To show this, first we write the
expression ‖ui −uj‖ explicitly:

‖ui −uj‖2 =
m∑
k=1

 n∑
l=1

(zil − zjl)xkl

2

.

Denote by z the vector zi − zj , and by u the vector ui −uj . So we get:

‖u‖2 = ‖ui −uj‖2 =
m∑
k=1

 n∑
l=1

zlxkl

2

.

LetXk be the random variable (
∑n
l=1 zlx

k
l)

2. Its expectation is µ = 1+ε
m ‖z‖2 (can be seen similarly

to the proof of lemma 31). Therefore, the expectation of ‖u‖2 is (1+ ε)‖z‖2. If we show that
‖u‖2 is concentrated enough around its mean, then it would prove the theorem. More formally,
we state the following Chernoff bound lemma:

48

Lemma 35

There exist constants c1 > 0 and c2 > 0 such that:

1. Pr[‖u‖2 > (1+ β)µ] < e−c1β2m

2. Pr[‖u‖2 < (1− β)µ] < e−c2β2m

Therefore there is a constant c such that the probability of a "bad" case is bounded by:

Pr[(‖u‖2 > (1+ β)µ)∨ (‖u‖2 < (1− β)µ)] < e−cβ2m

Now, we have
(
n
2

)
random variables of the type ‖ui −uj‖2. Choose β = ε

2 . Using the union

bound, we get that the probability that any of these random variables is not within (1± ε
2) of

their expected value is bounded by (
n
2

)
e−c

ε2
4 m.

So if we choose m > 8(logn+log c)
ε2 , we get that with positive probability, all the variables are

close to their expectation within factor (1± ε
2). This means that for all i,j:

(1− ε
2
)(1+ ε)‖zi − zj‖2 ≤ ‖ui −uj‖2 ≤ (1+ ε

2
)(1+ ε)‖zi − zj‖2

Therefore,
‖zi − zj‖2 ≤ ‖ui −uj‖2 ≤ (1+ ε)2‖zi − zj‖2,

and taking square root:

‖zi − zj‖ ≤ ‖ui −uj‖ ≤ (1+ ε)‖zi − zj‖,
as required.

It remains to prove lemma 7.3. We prove the first part. Let α2 = 1+ε
m , so µ = α2m‖z‖2 and

we get the following equation:

P := Pr[‖u‖2 > (1+ β)µ] = Pr[‖u‖2 > (1+ β)α2m‖z‖2]

= Pr[‖u‖2 − (1+ β)α2m‖z‖2 > 0]

= Pr[t(‖u‖2 − (1+ β)α2m‖z‖2) > 0] ∀t > 0

= Pr[exp (t(‖u‖2 − (1+ β)α2m‖z‖2)) > 1]

≤ E[exp (t(‖u‖2 − (1+ β)α2m‖z‖2))] (Markov)

(7.3.2)

We calculate the last expectation:

P ≤ E[exp(t(‖u‖2))] exp(−t(1+ β)α2m‖z‖2) (constant goes out)

= E[exp(t(
m∑
k=1

(
n∑
l=1

zlxkl)
2))] exp(−t(1+ β)α2m‖z‖2)

= E[exp(t(
∑
k
(
∑
l
z2
l (x

j
l)

2))+ t(
∑
k
(
∑
l≠h
zlzhxkl x

k
h)))] exp(−t(1+ β)α2m‖z‖2)

= E[exp(tα2m‖z‖2 + t(
∑
k
(
∑
l≠h
zlzhxkl x

k
h)))] exp(−t(1+ β)α2m‖z‖2)

(7.3.3)

The last step used the fact that (xkl)
2 = α2 and

∑
z2
l = ‖z‖2. So continuing, we get:

P ≤ E[exp (t(
∑
k
(
∑
l≠h
zlzhxkl x

k
h)))] exp (−tβα2m‖z‖2) (7.3.4)

49

The set of variables {xkl xkh}l≠h are pairwise independent. Therefore the above expectation can
be rewritten as a product of expectations:

P ≤

∏
k

∏
l≠h
E[exp(tzlzhxkl x

k
h)]

 exp(−tβα2m‖z‖2) (7.3.5)

we notice that

E[exp(tzlzhxkl x
k
h)] =

1
2

exp(tzlzhα2)+ 1
2

exp(−tzlzhα2) < exp(t2z2
l z

2
hα

4)

(the last inequality is easily obtained by Taylor expanding the exponent function). Plugging
that in (7.3.5), we get:

P <

∏
k

∏
l≠h

exp (t2z2
l z

2
hα

4)

 exp (−tβα2m‖z‖2)

=

∏
l≠h

exp (t2z2
l z

2
hα

4)

m exp (−tβα2m‖z‖2)

= exp (mt2
∑
l≠h
z2
l z

2
hα

4 − tβα2m‖z‖2)

(7.3.6)

Using simple analysis of quadratic function we see that the last expression obtains its minimum
when

t = β‖z‖2

2α2
∑
l≠h z2

l z
2
h
.

Substituting for t, we get:

P < exp (−β2m
‖z‖4

4
∑
l≠h z2

l z
2
h
) (7.3.7)

Finally, the expression

δ(z) =
(

‖z‖4

4
∑
l≠h z2

l z
2
h

)

is bounded below by a constant c1. To prove this, first note that δ(z) = δ(γz) for any γ ≠ 0.
So it is enough to consider the case ‖z‖ = 1. Then, using Lagrange multipliers technique, for
example, we get that δ(z) obtains its minimum when zl = 1√

n for each l = 1..n. Plugging this in
the expression for δ(z) we see that it is bounded above by a constant c1 that does not depend
on n. This completes the proof. �

7.4 VC Dimension

scribe: Renato F. Werneck
We continue our study of high dimensional geometry with the concept of VC-dimension,

named after its inventors Vapnik and Chervonenkis. This useful tool allows us to reason about
situations in which the trivial probabilistic method (i.e., the union bound) cannot be applied.
Typical situations are those in which we have to deal with uncountably many objects, as in the
following example.

50

Example 7 Suppose we pick set of m points randomly from the unit square in �2. Let C be
any triangle inside the unit square of area 1/4. The expected number of samplepoints that lie
inside it is m/4, and Chernoff bounds show that the probability that the this number is not in
m/4[1± ε] is exp(−ε2m).

Now suppose we have a collection of 2
√
m triangles of area 1/4. The union bound shows

that whp the sample is such that all triangles in our collection have m/4[1± ε] samplepoints.
But what if we want the preceding statement to hold for all (uncountably many!) triangles of

area 1/4 in the unit square? The union bound fails badly! Nevertheless the following statement
is true.

Theorem 36

Let ε > 0 andm be sufficiently large. Let S be a random sample ofm points in the unit sphere.
Then the probability is at least 1−o(1) that every triangle of area 1/4 has betweenm/4[1± ε]
samplepoints.

How can we prove such a result? The intuition is that even though the set of such triangles
is uncountable, the number of “vastly different” triangles is not too large. Thus there is a small
set of typical representatives, and we only need to argue about those.

7.4.1 Definition

VC-dimension is used to formalize the above intuition. First, some preliminary definitions:

Definition 15 A Range Space is a pair (X,R), where X is a set and R is a family of subsets of X
(R ⊆ 2X).1

Definition 16 For anyA ⊆ X, we define the PR(A), the projection ofR onA, to be {r∩A : r ∈ R}.
Definition 17 We say that A is shattered if PR(A) = 2A, i.e., if the projection of R on A includes
all possible subsets of A.

With these definitions, we can finally define the VC-dimension of a range space:

Definition 18 The VC-dimension of a range space (X,R) is the cardinality of the largest set A
that it shatters: VC-dim = sup{|A| : A is shattered}. It may be infinite.

Example 1. Consider the case where X = R2 (the plane) and R is the set of all axis-aligned
squares. The sets A we consider in this case are points on the plane. Let’s consider different
values of |A|:

• |A| = 1: With a single point on the plane, there are only two subsets A, the empty set
and A itself. Since there for every point there are axis-aligned squares that contain it and
others that don’t, A is shattered.

• |A| = 2: If we have two points, it is easy to find axis-aligned squares that cover both of
them, none of them, and each of them separately.

• |A| = 3: It is possible to come up with a set of three points such that are shattered; the
vertices of an equilateral triangle, for example: there are axis-aligned squares that contain
none of the points, each point individually, each possible pair of points, and all 3 points.

• |A| = 4: In that case, it is impossible to come up with four points on the plane that are
shattered by the set of axis-parallel squares. There will always be some pair of points that
cannot be covered by a square.

Therefore, the VC-dimension of this range space if 3.
12X denotes the power set of X

51

Example 2. Let X = Fn (where F is a finite field) and R be the set of all linear subspaces
of dimension d. (Note that these cannot possibly shatter a set of d + 1 linearly independent
vectors.)

First assume d ≤ n/2. We claim that any set A = {v1, v2, . . . , vd} of d linearly independent
vectors is shattered byX. Take any subset I of the vectors. We can build a basis of ad-dimension
subspace as follows: first, take the |I| vectors of this set (which are all linearly independent);
then, complete the basis with d−|I| linearly independent vectors zj inFn that do not belong to
the (d-dimensional) subspace determined by v1, v2, . . . , vd. This basis determines the subspace

span{{vi}i∈I , zd+1, zd+2, . . . , zd+d−|I|},
which is d-dimensional, as desired.

But note that this construction works as long as there are d− |I| linearly independent vec-
tors “available” to complete the basis. This happens when d ≤ n/2. If d > n/2, we can pick at
most n − d vectors outside the set. Therefore, the VC-dimension of the range space analized
is min{d,n− d}.

We now study some properties of range spaces related to VC-dimension. The next theorem
gives a bound; it is tight (exercise: prove this using the ideas in the previous example).

Theorem 37

If (X,R) has VC-dimension d andA ⊆ x hasn elements then |PR(A)| ≤ g(d,n)where g(d,n) =∑
i≤d

(
n
i

)
.

To prove this theorem, all we need is the following result:

Lemma 38

If (X,R) has VC-dimension d and |X| = n then |R| ≤ g(d,n).
This lemma clearly implies the theorem above: just apply the lemma with A instead of X,

and look at the range space (A, PR(A)). We now proceed to the proof of the lemma.

Proof: We prove Lemma 38 by induction on d+n. Let S = (X,R), and consider some element
x ∈ X. By definition, we have that

S − x = (X − {x},
R1︷ ︸︸ ︷

{r − {x} : r ∈ R})
and

S \ x = (X − {x},
R2︷ ︸︸ ︷

{x ∈ R : x �∈ r but r ∪ {x} ∈ R})
Note that every element of R that does not contain x is contained in R1; and every element of
R that does contain x is in R2 (with x removed). Therefore,

|R| = |R1| + |R2|.
A well-known property of binomial coefficients states that(

n
i

)
=
(
n− i
i

)
+
(
n− i
i− 1

)
,

which implies that
g(d,n) = g(d,n− 1)+ g(d− 1, n− 1),

52

according to our definition of g(d,n).
In the subproblems defined above, |X − {x}| = n − 1. We claim that there exists an x

such that S \x has VC-dimension at most d− 1. That being the case, the inductive hypothesis
immediately applies:

|R| = |R1| + |R2| ≤ g(d,n− 1)+ g(d− 1, n− 1) = g(d,n).
So once we prove the claim, we will be done. Let A ⊆ S be shattered in S with |A| = d.

We want to prove that in S \ x no set B ⊆ X − {x} can be shattered if |B| = d. But this is
straighforward: if B is shattered in S \ x, then B ∪ {x} is shattered in S. This completes the
proof of Lemma 38. (Incidentally, the bound given by the lemma is tight.) �

The following result is due to Haussler and Welzl (1987), and also appears in Vapnik and
Chervonenkis’s paper.

Theorem 39

Let (X,R) be a range space with VC-dimension d, and let A ⊆ X have size n. Suppose S is a
random sample of size m drawn (with replacement) from A, and let m be such that

m ≥max
{

4
ε

log
2
δ
,
8d
ε

log
8d
ε

}
.

Then, with probability at least 1−δ, S is such that for all r ∈ R such that |r ∩A| ≥ εn, we have
|r ∩ S| ≠∅.

Proof: Define r to be “heavy” if |r ∩ A| ≥ εn. We will now analyze a single experiment from
two different points of view.

1. From the first point of view, we pick two random samples N and T , each of size exactlym
(note that they both have the same characteristics as the set S mentioned in the statement
of the theorem).

Consider the following events:

• E1: there exists a heavy r such that r ∩N = ∅ (this is a “bad event”; we must prove
that it happens with probability at most δ);

• E2: there exists a heavy r such that r ∩N = ∅, but |r ∩ T | ≥ εm/2.

We claim that, if E1 happens with high probability, then so does E2. Specifically, we
prove that Pr(E2|E1) ≥ 1/2. Suppose E1 has happened and that some specific r is the
culprit. Now, pick T . Consider the probability that this r satisfies |r ∩ T | ≥ εm

2 (this is
a lower bound for Pr(E2|E1)). We know that |r ∩ T | is a binomial random variable; its
expectation is εm and its variance is ε(1 − ε)m (and therefore strictly smaller than εm.
Using Chebyschev’s inequality, we get:

Pr
(
|r ∩ T | < εm

2

)
≤ εm
(εm/2)2

= 4
εm

(7.4.1)

Because the statement of the theorem assumes that m > 8/ε, we conclude that indeed
Pr(E2|E1) ≥ 1/2.

2. Now consider the same experiment from a different point of view: we pick a single sample
of size 2m, which is then partitioned randomly between N and T . Consider the following
event:

Er : r ∩N = ∅, but |r ∩ T | ≥ εm/2.

53

It is clear that
E2 =

⋃
r :heavy

Er .

Given N ∪ T , the number of distinct events Er is no greater than the number of different
sets in the projection PN∪T (R). From Lemma 38, the fact that the VC-dimension of X is d
implies that PN∪T ≤ g(d,2m). (Note: This is the crucial step that uses the VC dimension.)

Given a choice of N ∪T , we now estimate the probability of Er happening when we select
N and T :

P ′ = Pr
(
r ∩N = ∅| |r ∩ (N ∪ T)| > εm

2

)
.

Let p = |r ∩ (N ∪ T)|. Then, the conditional probability above is

P ′ = (2m− p)(2m− p − 1) · · · (m− p + 1)
2m(2m− 1) · · · (m+ 1)

= m(m− 1) · · · (m− p + 1)
2m(2m− 1) . . . (2m− p + 1)

≤ 2−p ≤ 2−
εm
2

There are no more than g(d,2m) distinct events Er . Applying the union bound, we see
that the probability that at least one of the occurs for a fixed N ∪ T is at most g(d,2m) ·
2−εm/2. But this holds for any choice of N ∪ T , so

Pr(E2) ≥ g(d,2m) · 2−εm/2. (7.4.2)

Together, Facts 7.4.1 and 7.4.2 imply that

Pr(E1) ≤ 2g(d,2m) · 2−εm/2.

It remains to be proven that the RHS of the above expression is a lower bound on δ. The hard
case is d ≥ 2. The definition of g(d,2m) ensures that g(d,2m) ≤ (2m)d, so it’s enough to
prove that

2 · (2m)d2−εm/2 < δ. (7.4.3)

Rearranging this expression and taking the (base-two) logarithm of both sides,

εm
2
≥ d log(2m)+ log

2
δ
=⇒ εm

4
+ εm

4
≥ d log(2m)+ log

2
δ

The constraints on m defined in the statement of the theorem take care of the second “half”
of this inequality:

m ≥ 4
ε

log
2
δ
=⇒ εm

4
≥ 2
δ
.

It remains to be proven that
εm
4
≥ d log(2m).

This follows from a simple calculation (omitted).
�

54

7.4.2 VC dimension of intersections of range spaces

Let (X,R) be a range space of VC dimension d. Consider the range space (X,R∩h) where
R∩h consists of h-wise intersections of sets in R. We claim that the VC-dimension is at most
2dh log(dh).

For, suppose A is some subset of R that is shattered in (X,R∩h), and let k = |A|. Then∣∣PR∩h(A)∣∣ = 2k, but we know that it is at most
(
m
h

)
where m = |PR(A)| ≤ g(k,d). Hence

2k ≤
(
g(k,d)
h

)
≤ k(d+1)h,

whence it follows that k ≤ 2dh log(dh).
Exercise: Generalize to range spaces in which the subsets are boolean combinations of the

sets of R.

7.4.3 Applications to Learning Theory

VC-dimension has a close connection to Valiant’s PAC (Probably Approximately Correct) model,
introduced in 1984. Specifically, VC-dimension gives conditions under which one can learn a
concept in principle (using possibly a very tedious nonpolynomial time computation). Valiant’s
notion requires learning algorithms be polynomial. Nevertheless, in many cases one can ob-
tain a polynomial-time algorithm using VC-dimension arguments, as in the following simple
example.

Suppose we are trying to learn an unknown rectangle C contained in [0; 1]× [0; 1]. Let µ be
an unknown measure on [0; 1] × [0; 1] — one can think of if as concetrated on grid points of
a fine grid. Somebody picks in samples according to µ and labels them + or − depending on
whether C contains them or not. Our task is to guess what C is.

Our algorithm is the obvious one: find some rectangle C′ that separates + from − (note:
one exists, namely, C) and output that as your guess. Intuitively this makes sense, but how
well does it approximate the actual rectangle C we are looking for?

Let’s look at the symmetric difference between C and C′, defined as follows.

C∆C′ = (C \ C′)∪ (C′ \ C).
(Observation: the range space defined by the difference of rectangles has constant VC-dimension,
as shown by Section 7.4.2.) This is the set of all points that are wrongly classified (points that
belong to C and not to C′ or vice-versa). Suppose that the probability of error is high, i.e., that
Prµ[C∆C′] is large. With high probability the sample is such that for every C1, C2 such that
µ(C1∆C2) is large, C1∆C2 contains a sample point. Therefore, with high probability (over the
choice of the sample), C′ is such that µ(C′∆C) is small.

7.4.4 Geometric Algorithms

VC dimension arguments are invaluable for designing (randomized) geometric algorithms. We
now consider a problem that has attracted great interest recently: nearest neighbor searching
in Rd, where d is large. Given n points in Rd, our goal is to build a data structure using which
one can, given any y ∈ Rd, return the closest neighbor in the set. (A number of norms can be
used to define “closeness”: 1, 2, and ∞ are among those commonly used.)

A typical application is as follows. Assume you have a class of objects (images, for example,
each of which is a vector of pixel values). Each object can be modeled as a point in Rd. This
would allow you to make similarity queries: given a new point (image), find the existing point
that is closest (the image in the database that is similar to the new one, for example).Of course,

55

this assumes that the modeling of objects as vectors is such that similar objects map to nearby
points, which happens to be true in many applications.

As a warmup, let’s consider the 2-dimensional case. This is a well-solved problem. First,
we build the Voronoi diagram of the original points: this diagram partitions the space into
separate regions, one for each point in the original set. The region associated with point p
represents the set of points that are closer to q than to any other point in the space (the way
ties are handled depends on the application). This diagram can be built in O(n logn) time.

The original nearest neighbor searching problem then reduces to point-location in the Voronoi
diagram. One way to do that is to divide the space into vertical slabs separated by vertical lines
— one passing through each vertex of the Voronoi diagram. There are at most O(n) slabs and
each is divided into up to O(n) subregions (from the Voronoi diagram). These slabs can be
maintained in a straightforward way in a structure of size O(n2) (more sophisticated strucu-
tures can reduce this significantly). Queries can be thought of as two binary searches (one to
find the correct slab and another within the slab), and require O(logn) time.

Higher dimensions: Meiser’s Algorithm The notion of Voronoi diagrams can be generalized
in a straighforward way to arbitrary dimensions. For every two points p and q, the points that
are equidistant from both define a set Hpq given by:

Hpq = {x : d(x,p) = d(x, q)}.

Considering a d-dimensional space with the 2 norm, we get that

d(x,p) = d(x, q)
d∑
i=1

(xi − pi)2 =
d∑
i=1

(xi − qi)2

2
d∑
i=1

xi(pi − qi) = d(q2
i − p2

i).

Since pi, qi, and d are constants, Hpq must be a hyperplane.

The number of hyperplanes is m =
(
n
2

)
, quadratic in the number of points. However, the

number of cells in the Voronoi diagram could be nO(d). How can we store this diagram so as to
quickly answer nearest neighbor queries? Here we describe Meiser’s algorithm (1986), which
does so in O(f(d) logn) time, where f(d) is some exponential function of d.

First, take a random sample S cointaining O(d2 log2 d) points. Then, construct a data struc-
ture for doing point location within S. Triangulate each cell of the arrangement of S. (In a
plane, triangulation means dividing the cell into triangles; in higher dimensions one gets sim-
plices. Recall that a simplex in �d is an intersection of d + 1 halfspaces.) For each cell C in
this triangulated arrangement, recursively construct a data structure for point location with
respect to the hyperplanes that intersect C .

claim: With high probability, S is such that for every cell C , the number of hyperplanes that
intersect C is at most m/2.

Assuming the claim is true, it is easy to see that Q(m), the query time for a structure of
size m, is

Q(m) ≤ f(d2 log2 d)+Q(m/2) ≈ f(d2 log2 d) logm,

where f is the time required to perform point location within S. Moreover, the total space
P(m) necessary to process instances with m hyperplanes is

P(m) ≤ g(d2 logd) · S(m/2) ≈ [g(d2 log2 d)]logm,

56

where g determines the size of the structure for point location within the sample. We don’t
compute f ,g because that is not the point of this simplified description. (Using some care, the
running time is dO(d) logn and storage is nO(d).) We now proceed to prove the claim:

Proof: Consider the range space (X,R), where X is the set of allm hyperplanes of the Voronoi
diagram and R contains for each simplex D a subset RD ⊆ X containing all hyperplanes that
intersect the interior of D. From Section 7.4.2 we know that the VC-dimension of this range
space isO(d2 logd). Then with high probability the sample must be such that for every simplex
D that is intersected by at least m/2 hyperplanes is intersected by at least one hyperplane in
the sample. This means that D cannot be a cell in the arrangement of the sample. �

Because the RHS grows faster than the LHS, we only have to worry about the smaller possible
value of m, which is m0 = (8d/ε) log(8d/ε) according to the statement of the theorem:

εm0

4
≥ d log(2m0)

ε
4

(
8d
ε

log
8d
ε

)
≥ d log

(
2 · 8d

ε
log

8d
ε

)

2d log
(

8d
ε

)
≥ d log

(
16d
ε

log
8d
ε

)

log
(

8d
ε

)2

≥ log
(

16d
ε

log
8d
ε

)
(

8d
ε

)2

≥ 16d
ε

log
8d
ε

8d
ε
≥ 2 log

8d
ε

4d
ε
≥ log

8d
ε
.

The last inequality is obviously true, so we are done.

Chapter 8

Discrete Fourier Transform and its
Uses

scribe:Loukas Georgiadis

8.1 Introduction

Sanjeev admits that he used to find fourier transforms intimidating as a student. His fear
vanished once he realized that it is a rewording of the following trivial idea.
If u1, u2, . . . , un is an orthonormal basis of �n then every vector v can be expressed as

∑
i αiui

where αi =< v,ui > and
∑
i α2

i = |v|22.
Whenever the word “fourier transform” is used one is usually thinking about vectors as func-

tions. In the above example, one can think of a vector in�n as a function from {0,1, . . . , n− 1}
to �. Furthermore, the basis {ui} is defined in some nice way. Then the αi’s are called fourier
coefficients and the simple fact mentioned about their 2 norm is called Parseval’s Identity.

The classic fourier transform, using the basis functions cos(2πnx) and sin(2πnx), is anal-
ogous except we are talking about differentiable (or at least continuous) functions from [−1,1]
to �, and the definition of “inner product” uses integrals instead of sums (the vectors are in
an infinite dimensional space).

Example 8 (Fast fourier transform) The FFT studied in undergrad algorithms uses the following

orthonormal set uj =
(
1 ωjN . . . ω(N−1)j

N

)T
for j = 0,1, . . . , N − 1. Here ωN = e−2πi/N is

the Nth root of 1.
Consider a function f : [1, N] �→ R, i.e. a vector in RN . The Discrete Fourier Transform

(DFT) of f , denoted by f̂ , is defined as

f̂k =
N∑
x=1

f(x) ω(k−1)(x−1)
N , k ∈ [1, N] (8.1.1)

The inverse transform reconstructs the initial vector f by

f(x) = 1
N

N∑
k=1

f̂k ω
−(k−1)(x−1)
N . (8.1.2)

57

58

In other words f is written as a linear combination of the basis vectorsuj =
(
1 ωjN . . . ω(N−1)j

N

)T
,

for j in [1, N]. Another way to express this is by the matrix-vector product f̂ = Mf , where

M =

1 1 1 . . . 1

1 ω1·1
N ω1·2

N . . . ω1·(N−1)
N

1 ω2·1
N ω2·2

N . . . ω2·(N−1)
N

. . .
1 ω(N−1)·1

N ω(N−1)·2
N . . . ω(N−1)·(N−1)

N

 (8.1.3)

is the DFT matrix.
Fast Fourier Transform (FFT): We can exploit the special structure ofM and divide the prob-

lem of computing the matrix-vector product Mf into two subproblems of size N/2. This gives
an O(N logN) algorithm for computing the Fourier Transform. Using a simple property of
the Discrete Fourier Transform and by applying the FFT algorithm to compute the DFT we can
multiply n-bit numbers in O(n logn) operations.

8.2 Discrete Fourier Transform

In general we can use any orthonormal basis u1, u2, . . . , uN . Then we can write

f =
N∑
i=1

f̂iui, (8.2.1)

and the coefficients f̂i are due to orthonormality equal to the inner product of f and of the
corresponding basis vector, that is f̂i =< f ,ui >.

Definition 19 The length of f is the L2-norm

‖f‖2 =
√∑

i
f 2(i). (8.2.2)

Parseval’s Identity: The transform preserves the length of f , i.e.

‖f‖2
2 =

∑
i
f̂ 2
i . (8.2.3)

8.2.1 Functions on the boolean hypercube

Now we consider real-valued functions whose domain is the boolean hypercube, i.e., f : {−1,1}n �→
R. The inner product of two functions f and g is defined to be

< f ,g >= 1
2n

∑
x∈{−1,1}n

f (x)g(x). (8.2.4)

Now we describe a particular orthonormal basis. For all the subsets S of {1, . . . , n}we define
the functions

χS(x) =
∏
i∈S
xi. (8.2.5)

59

where x =
(
x1 . . . xn

)T
is a vector in {−1,1}n. The χS ’s form an orthonormal basis. More-

over, they are the eigenvectors of the adjacency matrix of the hypercube.

Example 9 Note that

χ∅(x) = 1

and

χ{i}(x) = xi.
Therefore,

< χ{i}, χ∅ >= 1
2n

∑
x∈{−1,1}n

xi = 0.

Remark 9 Let xi = 1 for all i in I ⊆ {1, . . . , n}. Then χS(x) = 1 iff |I ∩ S| is even.

Remark 10 Now we show our basis is an orthonormal basis. Consider two subsets S and S′ of
{1, . . . , n}. Then,

< χS, χS′ > = 1
2n

∑
x∈{−1,1}n

χS(x)χS′(x) = 1
2n

∑
x∈{−1,1}n

∏
i∈S
xi

∏
j∈S′

xj

= 1
2n

∑
x∈{−1,1}n

∏
i∈S�S′

xi =< χS�S′ , χ∅ >= 0 unless S = S′.

Here S� S′ = (S − S′)∪ (S′ − S) is the symmetric difference of S and S′.

Since the χS ’s form a basis every f can be written as

f =
∑

S⊆{1,...,n}
f̂SχS, (8.2.6)

where the coefficients are

f̂S =< f ,χS >= 1
2n

(∑
x:χS(x)=1

f(x)−
∑

x:χS(x)=−1

f(x)
)
. (8.2.7)

Remark 11 The basis functions are just the eigenvectors of the adjacency matrix of the boolean
hypercube, which you calculated in an earlier homework. This observation —and its extension
to Cayley graphs of groups— forms the basis of analysis of random walks on Cayley graphs
using fourier transforms.

8.3 Applications of the Fourier Transform

In this section we describe two applications of the version of the Discrete Fourier Transform
that we presented in section 8.2.1. The Fourier Transform is useful for understanding the prop-
erties of functions. The applications that we discuss here are: (i) PCP’s and (ii) constructing
small-bias probability spaces with a low number of random bits.

60

8.3.1 DFT and PCP’s

We consider assignments of a boolean formula. These can be encoded in a way that enables
them to be probabilistically checked by examining only a constant number of bits. If the en-
coded assignment satisfies the formula then the verifier accepts with probability 1. If no satis-
fying assignment exists then the verifier rejects with high probability.

Definition 20 The function f : GF(2)n �→ GF(2) is linear if there exist a1, . . . , an such that
f(x) =∑ni=1 aixi for all x ∈ GF(2)n.

Definition 21 The function g : GF(2)n �→ GF(2) is δ-close if there exists a linear function f
such that Prx∈GF(2)n[f (x) = g(x)] ≥ 1− δ.

We think of g as an adversarily constructed function. The adversary attempts to deceive
the verifier to accept g.

The functions that we considered are defined in GF(2) but we can change the domain to be
an appropriate group for the DFT of section 8.2.1.

GF(2) {−1,1} ⊆ R
0+ 0 = 0 1 · 1 = 1
0+ 1 = 1 1 · (−1) = −1
1+ 1 = 0 (−1) · (−1) = 1

Therefore if we use the mapping 0 �→ 1 and 1 �→ −1 we have that
∑
i∈S xi ≡

∏
i∈S xi. This

implies that the linear functions become the Fourier Functions χS . The verifier uses the follow-
ing test in order to determine if g is linear.

Linear Test

Pick x,y ∈R GF(2)n
Accept iff g(x)+ g(y) = g(x+ y)

It is clear that a linear function is indeed accepted with probability one. So we only need to
consider what happens if g is accepted with probability 1− δ.

Theorem 40

If g is accepted with probability 1− δ then g is δ-close.

Proof: We change our view from GF(2) to {−1,1}. Notice now that

′′x+ y′′ =
(
x1y1 x2y2 . . . xnyn

)
and that if ρ is the fraction of the points in {−1,1}n where g and χS agree then by definition

ĝS =< g,χS >= ρ − (1− ρ) = 2ρ − 1.

Now we need to show that if the test accepts g with probability 1 − δ it implies that there
exists a subset S such that ĝS ≥ 1 − 2δ. The test accepts when for the given choice of x

61

and y we have over GF(2) that g(x) + g(y) = g(x + y). So the equivalent test in {−1,1} is
g(x) · g(y) · g(x+ y) = 1 because both sides must have the same sign.

Therefore if the test accepts with probability 1− δ then

µ = Ex,y[g(x) · g(y) · g(x+ y)] = (1− δ)− δ = 1− 2δ. (8.3.1)

We replace g in (8.3.1) with its Fourier Transform and get

µ = Ex,y

[(∑
S1⊆{1,...,n}

ĝS1χS1(x)
)
·
(∑
S2⊆{1,...,n}

ĝS2χS2(y)
)
·
(∑
S3⊆{1,...,n}

ĝS3χS3(x+ y)
)]

= Ex,y

[∑
S1,S2,S3⊆{1,...,n}

ĝS1 ĝS2 ĝS3 χS1(x) χS2(y) χS3(x+ y)
]

=
∑

S1,S2,S3⊆{1,...,n}
ĝS1 ĝS2 ĝS3Ex,y

[
χS1(x) χS2(y) χS3(x+ y)

]

=
∑

S1,S2,S3⊆{1,...,n}
ĝS1 ĝS2 ĝS3Ex,y

[
χS1(x) χS3(x) χS2(y) χS3(y)

]
.

However

Ex

[
χS1(x)χS3(x)

]
=< χS1 , χS3 >

which is non-zero only if S1 = S3. Similarly for fixed x we conclude that it must be S2 = S3.
Therefore a non-zero expectation implies S1 = S2 = S3 and we have

µ =
∑

S⊆{1,...,n}
ĝ3
S ≤max

S
|ĝS|

∑
S⊆{1,...,n}

ĝ2
S =max

S
|ĝS|.

because Parseval’s identity gives
∑
S ĝ2

S = 1. We conclude that maxS |ĝS| ≥ 1− 2δ.
�

8.3.2 Long Code

Definition 22 The function f : GF(2)n �→ GF(2) is a coordinate function if there is an i ∈
{1, . . . , n} such that f(x) = xi.

Obviously a coordinate function is also linear.

Definition 23 The Long Code for [1 . . .W] encodesw ∈ [1, . . . ,W] by the function Lw(x) = xw .

Remark 12 A logW bit message is being encoded by a function fromGF(2)W toGF(2), i.e. with
2W bits. So the Long Code is extremely redundant but is very useful in the context of PCP’s.

Now the verifier is given a function and has to check if it is “close” to a long code. We give
Hastad’s test.

Long Code Test

Pick x,y ∈R GF(2)W
Pick a “noise” vector z such that Pr[zi = 1] = ε
Accept iff g(x)+ g(y) = g(x+ y+ z)

62

Suppose that g(x) = xW for all x. Then g(x) + g(y) = xW + yW , while g(x + y + z) =
(x+ y+ z)W = xW +yW + xW . So the probability of acceptance in this case is 1− ε.

Theorem 41 (Hȧstad)

If the Long Word Test accepts with probability 1/2+ δ then∑
S
f̂ 3
S (1− 2ε)|S| ≥ 2δ.

The proof is similar to that of the Theorem 40 and is left as an exercise. The interpretation
of Theorem 41 is that if f passes the test with must depend on a “few” coordinates. This is
not the same as being close to a coordinate function but it suffices for the PCP application.

Remark 13 Hastad’s analysis belongs to a field called influence of boolean variables, that has
been used recently in demonstration of sharp thresholds for many random graph properties
(Friedgut and others) and in learning theory.

8.3.3 Reducing the random bits in small-bias probability spaces

We consider n random variables x1, . . . , xn, where each xi is in {0,1} and their joint probability
distribution is D. Let U be the uniform distribution. The distance of D from the uniform
distribution is

‖D −U‖ =
∑

ω∈{0,1}n
|U(ω)−D(ω)|.

Definition 24 The bias of a subset S ⊆ {1, . . . , n} for a distribution D is

biasD(S) =
∣∣∣PrD

[∑
i∈S
xi = 1

]
− PrD

[∑
i∈S
xi = 0

]∣∣∣. (8.3.2)

Here we are concerned with the construction of (small) ε-bias probability spaces that are
k-wise independent, where k is a function of ε. Such spaces have several applications. For
example they can be used to reduce the amount of randomness that is necessary in several
randomized algorithms and for derandomizations.

Definition 25 The variables x1, . . . , xn are ε-biased if for all subsets S ⊆ {1, . . . , n}, biasD(S) ≤
ε. They are k-wise ε-biased if for all subsets S ⊆ {1, . . . , n} such that |S| ≤ k, biasD(S) ≤ ε.
Definition 26 The variables x1, . . . , xn are k-wise δ-dependent if for all subsets S ⊆ {1, . . . , n}
such that |S| ≤ k, ‖U(S)−D(S)‖ ≤ δ. (D(S) and U(S) are the distributions D and U restricted
to S.)

Remark 14 If δ = 0 this is just the notion of k-wise independence studied briefly in an earlier
lecture.

The following two conditions are equivalent:

1. All xi are independent and Pr[xi = 0] = Pr[xi = 1].

2. For every subset S ⊆ {1, . . . , n} we have Pr[
∑
i∈S xi = 0] = Pr[

∑
i∈S xi = 1], that is the

parity of the subset is equally likely to be 0 or 1.

63

Here we try to reduce the size of the sample space by relaxing the second condition, that is
we consider biased spaces.

We will use the following theorem.

Theorem 42 (Diaconis and Shahshahani ’88)

‖D −U‖ ≤ 2n
(∑
S⊆{1,...,n}

D̂2
S

)1/2 =
(∑
S⊆{1,...,n}

biasD(S)2
)1/2

. (8.3.3)

Proof: We write the Fourier expansion of D as D =∑S D̂SχS . Then,

D = U +
∑
S≠∅

D̂SχS. (8.3.4)

Now observe that

‖
∑
S≠∅

D̂SχS‖2
2 = 2n

〈 ∑
S≠∅

D̂SχS,
∑
S≠∅

D̂SχS
〉
= 2n

∑
S≠∅

D̂2
S ≤ 2n

∑
S
D̂2
S . (8.3.5)

Also by the Cauchy-Schwartz inequality

‖D −U‖ = ‖D −U‖1 ≤ 2n/2‖D −U‖2. (8.3.6)

Thus

‖D −U‖ ≤ 2n
(∑
S⊆{1,...,n}

D̂2
S

)1/2 =
(∑
S⊆{1,...,n}

biasD(S)2
)1/2

. (8.3.7)

The second equality holds from equation (8.2.7). �

If we restrict our attention to subsets of size at most k then Theorem 8.3.3 implies:

Corollary 43

If D is ε-biased then it is also k-wise δ-independent for δ = 2k/2ε.

The main theorem that we want to show is

Theorem 44 (J. Naor and M. Naor)

We can construct a probability space of ε-biased {0,1} random variables x1, . . . , xn using
O(logn+ log 1

ε) random bits.

Proof: The construction consists of three stages:

Stage 1: Construct a family F ⊆ {0,1}n such that for r ∈R F and for all subsets S ⊆
{1, . . . , n},

Pr[χ′S(r) = 1] ≥ β,
where

χ′S(x) =
∑
i∈S
xi (mod 2).

and β is some constant. We discuss this stage in section 8.3.3.

64

Stage 2: Sample = O(log (1/ε)) vectors r1, . . . , r from F such that for all subsets S

Prr1,...,r
[
∀i ∈ {1, . . . , }, χ′S(ri) = 0

]
≤ ε.

Note that if we just sample uniformly from F with log (1/ε) samples then we need logn ·
log (1/ε) random bits. We can do better by using a random walk on an expander. This will
reduce the number of necessary random bits to O(logn+ log (1/ε)).

Stage 3: Let a be a vector in {0,1} chosen uniformly at random. The assignment to the
random variables x1, . . . , xn is

(
x1 x2 . . . xn

)T = ∑
i=1

airi

With probability at least 1− ε not all ri’s are such that for all S, χ′S(ri) = 0. But if there exists
a vector rj in the sample with χ′S(rj) = 1 then we can argue that PrD[χ′S(x1, . . . , xn) = 1] =
PrD[χ′S(x1, . . . , xn) = 0]. Consequently biasD(S) ≤ ε. �

Construction of the family F
We construct logn familiesF1, . . . ,Flogn. For a vector v ∈ {0,1}n let |v| be the number of ones
in v. For a vector r chosen uniformly at random from Fi and for each vector v in {0,1}n with
k ≤ |v| ≤ 2k− 1 we require that

Prr[< r,v >= 1] ≥ β.

Assume that we have random variables that are uniform on {1, . . . , n} and c-wise indepen-
dent (using only O(c logn) random bits - see Lecture 4). We define three random vectors u, v
and r such that

1. The ui’s are c-wise independent and Pr[ui = 0] = Pr[ui = 1] = 1/2.

2. The wi’s are pairwise independent and Pr[wi = 1] = 2/k.

3. The elements of r are

ri =
{

1 if ui = 1 and wi = 1
0 otherwise

We claim that Pr[< r,v >= 1] ≥ 1/4 for all v with k ≤ |v| ≤ 2k − 1. In order to prove this
we define the vector v′ with coordinates:

v′i =
{

1 if vi = 1 and wi = 1
0 otherwise

By the above definition we have < v′,u >=< r,v >. We wish to show that

Pr[1 ≤ |v′| ≤ c] ≤ 1
2
. (8.3.8)

Because the ui’s are c-wise independent (8.3.8) sufficies to guarantee that Pr[< v′,u >= 1] ≥
1/4. We view |v′| as a binomial random variable h with probability p = 2/k for each non-zero

65

entry. Therefore, E[h] = pl and Var[h] = p(1 − p)l, where l ∈ [k,2k − 1] is the number of
potential non-zero entries. By Chebyshev’s inequality at the endpoints of [k,2k− 1] we have

Pr[|h− pk| ≥ 2] ≤ pk(1− p)
4

≤ 1
2

and

Pr[|h− 2pk| ≥ 3] ≤ 2pk(1− p)
9

≤ 4
9
.

Thus, for c = 2kp + 3 = 7 we get success probability at least 1/2.

So if |v| is approximately known we can get high probability of success with O(logn) bits.
Since we don’t know |v| we chose a ∈R {0,1}logn and construct

r =
logn∑
i=1

airi, where ri ∈R Fi.

Each family Fi corresponds to the case that |v| ∈ [2i−1,2i − 1]. Now for any v we can show
that Pr[< v, r >= 1] ≥ 1

8 (so β = 1/8).

Chapter 9

Relaxations for NP-hard Optimization
Problems

scribe:Manoj M P

9.1 Introduction

In this lecture (and the next one) we will look at methods of finding approximate solutions to NP-
hard optimization problems. We concentrate on algorithms derived as follows: the problem is
formulated as an Integer Linear Programming (or integer semi-definite programming, in the next
lecture) problem; then it is relaxed to an ordinary Linear Programming problem (or semi-definite
programming problem, respectively) and solved. This solution may be fractional and thus not
correspond to a solution to the original problem. After somehow modifying it (“rounding”) we
obtain a solution. We then show that the solution thus obtained is a approximately optimum.

The first main example is the Leighton-Rao approximation for “Sparsest Cut” in a graph.
Then we switch gears to look at “Lift and Project” methods for designing LP relaxations. These
yield a hierarchy of relaxations, with potentially a trade-off between running time and approx-
imation ratio. Understanding this trade-off remains an important open probem.

9.2 Vertex Cover

We start off by introducing the LP relaxation methodology using a simple example. Vertex
Cover problem involves a graph G = (V , E), and the aim is to find the smallest S ⊂ V such that
∀{i, j} ∈ E, i ∈ S or j ∈ S.

An Integer Linear Programming (ILP) formulation for this problem is as follows:

xi ∈ {0,1} for each i ∈ V
xi + xj ≥ 1 for each {i, j} ∈ E

Minimize
∑
i∈V
xi

The LP relaxation replaces the integrality constraints with

0 ≤ xi ≤ 1 for each i ∈ V

66

67

If opt is the solution to the ILP (i.e., the exact solution to the vertex cover problem), and optf
the solution to the LP relaxation (f indicates that this solution involves fractional values for xi),
then clearly opt ≥ optf . Now we show that opt ≤ 2× optf . Consider the following rounding
algorithm which converts a feasible solution to the LP to a feasible solution to the ILP, and
increases the objective function by at most a factor of 2: if xi < 1

2 , set x′i = 0, else set x′i = 1,
where {xi} is the solution to the LP, and {x′i} a solution to the ILP.

We observe that the factor of 2 above is fairly tight. This is illustrated by the problem on a
clique κn, where opt = n− 1 and optf = n/2 (by taking xi = 1

2 for all i).
What we have shown is that the the integrality gap, opt/optf ≤ 2, and that this is tight.
Note that if the integrality gap of the relaxation isα then solving the LP gives anα-approximation

to the optimum value (in this case, the size of the smallest vertex cover). Usually we want more
from our algorithms, namely, an actual solution (in this case, a vertex cover). However, known
techniques for upperbounding the integrality gap tend to be algorithmic in nature and yield
the solution as well (though conceivably this may not always hold).

To sum up, the smaller the integrality gap (i.e., the tighter the relaxation), the better.

9.3 Sparsest Cut

Our next example is Graph Expansion, or Sparsest-Cut problem. Given a graph G = (V , E)
define

βG =min
S⊂V

E(S, S̄)
min{|S|, |S̄|} = min

S⊂V :|S|≤ |V |2

E(S, S̄)
|S|

where E(S, S̄) is the number of edges between S and S̄. 1 The Expansion problem is to find a
cut S which realizes βG.

LP formulation

Leighton and Rao (1988) showed how to approximate βG within a factor of O(logn) using an
LP relaxation method. The ILP formulation is in terms of the cut-metric induced by a cut.

Definition 27 The cut-metric on V , induced by a cut (S, S̄), is defined as follows: ∆S(i, j) = 0
if i, j ∈ S or i, j ∈ S̄, and ∆S(i, j) = 1 otherwise.

Note that this metric satisfies the triangle inequality (for three points i, j, k, all three pairwise
distances are 0, or two of them are 1 and the other 0; in either case the triangle inequality is
satisfied).

ILP formulation and Relaxation: It will be convenient to work with

β̃G = min
S⊂V :|S|≤ |V |2

E(S, S̄)
|S||S̄|

Since n2 ≤ |S̄| ≤ n, we have n2 β̃G ≤ βG ≤ nβ̃G, and the factor “2” here will end up being absorbed
in the “O(logn).”

1Compare this with the “Edge Expansion” problem we encountered in an earlier lecture: the Cheegar constant
was defined as

hG =min
S⊂V

E(S, S̄)
min{Vol(S),Vol(S̄)}

where Vol(S) =∑v∈S deg(v). Note that for a d-regular graph, we have Vol(S) = d|S| and hence hG = βG/d.

68

Below, the variables xij for i, j ∈ V are intended to represent the distances ∆(i, j) induced
by the cut-metric. Then we have

∑
i<j xij = |S||S̄|. Consider the following ILP which fixes |S||S̄|

to a value t: ∑
i<j
xij = 1 (scaling by 1/t)

xij = xji
xij + xjk ≥ xik

xij ∈ {0,1/t} (integrality constraint)

Minimize
∑
{i,j}∈E

xij

Note that this exactly solves the sparsest cut problem if we could take t corresponding to the
optimum cut. This is because, (a) the cut-metric induced by the optimum cut gives a solution
to the above ILP with value equal to β̃G, and (b) a solution to the above ILP gives a cut S defined
by an equivalence class of points with pair-wise “distance” (values of xij) equal to 0, so that
E(S,S̄)
t ≤∑{i,j}∈E xij .
In going to the LP relaxation we substitute the integrality constraint by 0 ≤ xij ≤ 1. This in

fact is a relaxation for all possible values of t, and therefore lets us solve a single LP without
knowing the correct value of t.

Rounding the LP

Once we formulate the LP as above it can be solved to obtain {xij} which define a metric on
the nodes of the graph. But to get a valid cut from this, this needs to be “rounded off” to a
cut-metric- i.e., an integral solution of the form xij ∈ {0, α} has to be obtained (which, as we
noted above, can be converted to a cut of cost no more than the cost it gives for the LP). The
rounding proceeds in two steps. First the graph is embedded into the 1-norm metric-space
RO(log2 n). This entails some distortion in the metric, and can increase the cost. But then, we
can go from this metric to a cut-metric with out any increase in the cost. Below we elaborate
the two steps.

LP solution → RO(log2 n) metric: The n vertices of the graph are embedded into the real space
using Bourgain’s Lemma.

Lemma 45 (Bourgain’s Lemma, following LLR’94)

There is a constant c such that ∀n, for every metric ∆(·, ·) on n points, ∃ points zi ∈ RO(log2 n)

such that for all i, j ∈ [n],
∆(i, j) ≤ ||zi − zj||1 ≤ c logn∆(i, j) (9.3.1)

Further such zi can be found using a randomized polynomial time algorithm.

RO(log2 n) metric→ cut-metric: We show that 1-distances can be expressed as a positive com-
bination of cut metrics.

Lemma 46

For any n points z1, . . . , zn ∈ Rm, there exist cuts S1, . . . , SN ⊂ [n] and α1, . . . , αN ≥ 0 where
N =m(n− 1) such that for all i, j ∈ [n],

||zi − zj||1 =
∑
k
αk∆Sk(i, j) (9.3.2)

69

Proof: We consider each of them co-ordinates separately, and for each co-ordinate give n−1
cuts Sk and correspondingαk. Consider the first co-ordinate for which we produce cuts {Sk}n−1

k=1

as follows: let ζ(1)i ∈ R be the first co-ordinate of zi. w.l.o.g assume that the n points are sorted

by their first co-ordinate: ζ(1)1 ≤ ζ(1)2 ≤ . . . ≤ ζ(1)n . Let Sk = {z1, . . . , zk} and αk = ζ(1)k+1 − ζ(1)k .

Then
∑n−1
k=1 αk∆Sk(i, j) = |ζ(1)i − ζ(1)j |.

Similarly defining Sk,αk for each co-ordinate we get,

m(n−1)∑
k=1

αk∆Sk(i, j) =
m∑
=1

|ζ()i − ζ()j | = ||zi − zj||1

�

The cut-metric we choose is given by S∗ = argminSk
E(Sk,S̄k)
|Sk||S̄k| .

Now we shall argue that S∗ provides an O(logn) approximate solution to the sparsest cut
problem. Let optf be the solution of the LP relaxation.

Theorem 47

optf ≤ β̃G ≤ c lognoptf .

Proof: As outlined above, the proof proceeds by constructing a cut from the metric obtained
as the LP solution, by first embedding it in RO(log2 n) and then expressing it as a positive com-

bination of cut-metrics. Let xij denote the LP solution. Then optf =
∑
{i,j}∈E xij∑
i<j xij

.

Applying the two inequalities in Equation (9.3.1) to the metric ∆(i, j) = xij ,
c logn

∑
{i,j}∈E xij∑

i<j xij
≥
∑
{i,j}∈E ||zi − zj||1∑
i<j ||zi − zj||1

Now by Equation (9.3.2),∑
{i,j}∈E ||zi − zj||1∑
i<j ||zi − zj||1

=
∑
{i,j}∈E

∑
k αk∆Sk(i, j)∑

i<j
∑
k αk∆Sk(i, j)

=
∑
k αk

∑
{i,j}∈E ∆Sk(i, j)∑

k αk
∑
i<j ∆Sk(i, j)

=
∑
k αkE(Sk, S̄k)∑
k αk|Sk||S̄k|

≥min
k

E(Sk, S̄k)
|Sk||S̄k|

= E(S
∗, S̄∗)

|S∗||S̄∗|

where we used the simple observation that for ai, bi ≥ 0,
∑
k ak∑
k bk
≥mink

ak
bk .

Thus, c lognoptf ≥ E(S∗,S̄∗)
|S∗||S̄∗| ≥ β̃G. On the other hand, we have already seen that the LP is a

relaxation of an ILP which solves β̃G exactly, and therefore optf ≤ β̃G. �

Corollary 48

n
2 optf ≤ βG ≤ c lognn2 optf .

The O(logn) integrality gap is tight, as it occurs when the graph is a constant degree (say
3-regular) expander. (An exercise; needs a bit of work.)

70

9.4 Lift and Project Methods

In both examples we saw thus far, the integrality gap proved was tight. Can we design tighter
relaxations for these problems? Researchers have looked at this question in great detail. Next,
we consider an more abstract view of the process of writing better relaxation.

The feasible region for the ILP problem is a polytope, namely, the convex hull of the integer
solutions 2. We will call this the integer polytope. The set of feasible solutions of the relaxation
is also a polytope, which contains the integer polytope. We call this the relaxed polytope; in the
above examples it was of polynomial size but note that it would suffice (thanks to the Ellipsoid
algorithm) to just have an implicit description of it using a polynomial-time separation oracle.
On the other hand, if P ≠ NP the integer polytope has no such description. The name of the
game here is to design a relaxed polytope that as close to the integer polytope as possible. Lift-
and-project methods give, starting from any relaxation of our choice, a hierarchy of relaxations
where the final relaxation gives the integer polytope. Of course, solving this final relaxation
takes exponential time. In-between relaxations may take somewhere between polynomial and
exponential time to solve, and it is an open question in most cases to determine their integrality
gap.

Basic idea

The main idea in the Lift and Project methods is to try to simulate non-linear programming
using linear programming. Recall that nonlinear constraints are very powerful: to restrict a
variable x to be in {0,1} we simply add the quadratic constraint x(1− x) = 0. Of course, this
means nonlinear programming is NP-hard in general. In lift-and-project methods we introduce
auxiliary variables for the nonlinear terms.

Example 10 Here is a quadratic program for the vertex cover problem.
0 ≤ xi ≤ 1 for each i ∈ V
(1− xi)(1− xj) = 0 for each {i, j} ∈ E
To simulate this using an LP, we introduce extra variables yij ≥ 0, with the intention that

yij represents the product xixj . This is the lift step, in which we lift the problem to a higher
dimensional space. To get a solution for the original problem from a solution for the new
problem, we simply project it onto the variables xi. Note that this a relaxation of the original
integer linear program, in the sense that any solution of that program will still be retained as a
solution after the lift and project steps. Since we have no way of ensuring yij = xixj in every
solution of the lifted problem, we still may end up with a relaxed polytope. But note that this
relaxation can be no worse than the original LP relaxation (in which we simply dropped the
integrality constraints), because 1− xi − xj +yij = 0, yij ≥ 0 ⇒ xi + xj ≥ 1, and any point in
the new relaxation is present in the original one.

(If we insisted that the matrix (yij) formed a positive semi-definite matrix, it would still be
a (tighter) relaxation, and we get a Semi-definite Programming problem. We shall see this in the
next lecture.)

9.5 Sherali-Adams Lift and Project Method

Now we describe the method formally. Suppose we are given a polytope P ⊂ Rn (via a separation
oracle) and we are trying to get a representation for P0 ⊂ P defined as the convex hull of
P ∩ {0,1}n. We proceed as follows:

2By integer solutions, we refer to solutions with co-ordinates 0 or 1. We assume that the integrality constraints
in the ILP correspond to restricting the solution to such points.

71

The first step is homogenization. We change the polytope P into a cone K in Rn+1. (A cone
is a set of points that is closed under scaling: if x is in the set, so is c · x for all c ≥ 0.) If a
point (α1, . . . , αn) ∈ P then (1, α1, . . . , αn) ∈ K. In terms of the linear constraints defining P
this amounts to multiplying the constant term in the constraints by a new variable x0 and thus
making it homogeneous: i.e.,

∑n
i=1 aixi ≥ b is replaced by

∑n
i=1 aixi ≥ bx0. Let K0 ⊂ K be the

cone generated by the points K ∩ {0,1}n+1 (x0 = 0 gives the origin; otherwise x0 = 1 and we
have the points which define the polytope P0).

For r = 1,2, . . . , n we shall define SAr (K) to be a cone in RVn+1(r), where Vn+1(r) =∑r
i=0

(
n+1
i

)
. Each co-ordinate corresponds to a variable ys for s ⊂ [n + 1], |s| ≤ r . The in-

tention is that the variable ys stands for the homogenuous term (
∏
i∈s xi) × xr−|s|0 . Let y(r)

denote the vector of all the Vn+1(r) variables.

Definition 28 Cone SAr (K) is defined as follows:

• SA1(K) = K, with y{i} = xi and yφ = x0.

• SAr (K)The constraints defining SAr (K) are obtained from the constraints defining SAr−1(K):
for each constraint ay(r−1) ≥ 0, for each i ∈ [n], form the following two constraints:

(1− xi)∗ ay(r−1) ≥ 0

xi ∗ ay(r−1) ≥ 0

where the operator “∗” distributes over the sum ay(r−1) = ∑s⊂[n]:|s|≤r asys and xi ∗ys is
a shorthand for ys∪{i}.

Suppose (1, x1, . . . , xn) ∈ K ∩ {0,1}n+1. Then we note that the cone SAr (K) contains the
points defined by ys =

∏
i∈s xi. This is true for r = 1 and is maintained inductively by the

constraints we form for each r . Note that if i ∈ s then xi ∗ ys = ys , but we also have x2
i = xi

for xi ∈ {0,1}.
To get a relaxation of K we need to come back to n+ 1 dimensions. Next we do this:

Definition 29 Sr (K) is the cone obtained by projecting the cone SAr (K) to n + 1 dimensions
as follows: a point u ∈ SAr (K) will be projected to u|s:|s|≤1; the variable uφ is mapped to x0 and
for each i ∈ [n] u{i} to xi.

Example 11 This example illustrates the above procedure for Vertex Cover, and shows how
it can be thought of as a “simulation” of non-linear programming. The constraints for S1(K)
come from the linear programming constraints:

∀j ∈ V,0 ≤ y{j} ≤ yφ
∀{i, j} ∈ E,y{i} +y{j} −yφ ≥ 0

Among the various constraints for SA2(K) formed from the above constraints for SA1(K), we
have (1 − xi) ∗ (yφ − y{j}) ≥ 0 and (1 − xi) ∗ (y{i} + y{j} − yφ) ≥ 0 The first one expands
to yφ − y{i} − y{j} + y{i,j} ≥ 0 and the second one becomes to y{j} − y{i,j} − yφ − y{i} ≥ 0,
together enforcing yφ − y{i} − y{j} + y{i,j} = 0. This is “simulating” the quadratic constraint
1 − xi − xj + xixj = 0 or the more familiar (1 − xi)(1 − xj) = 0 for each {i, j} ∈ E. It can be
shown that the defining constraints for the cone S2(K) are the odd-cyle constraints: “for an
odd cycle C ,

∑
xi∈C ≥ (|C| + 1)/2.” An exact characterization of S((K)r) for r > 2 is open.

Intuitively, as we increase r we get tighter relaxations ofK0, as we are adding more and more
“valid” constraints. Let us prove this formally. First, we note the following characterization of
SAr (K).

72

Lemma 49

u ∈ SAr (K) iff ∀i ∈ [n] we have vi,wi ∈ SAr−1(K), where ∀s ⊂ [n], |s| ≤ r − 1, vi = us∪{i}
and wi = us − us∪{i}.

Proof: To establish the lemma, we make our notation used in defining SAr (K) from SAr−1(K)
explicit. Suppose SAr−1(K) has a constraint ay(r−1) ≥ 0. Recall that from this, for each i ∈ [n]
we form two constraints for SAr (K), say a′y(r) ≥ 0 and a′′y(r) ≥ 0, where a′y(r) ≡ xi ∗ ay(r−1)

is given by

a′s =
{

0 if i �∈ s
as + as\{i} if i ∈ s (9.5.1)

and a′′y(r) ≡ (1− xi)∗ ay(r−1) by

a′′s =
{

as if i �∈ s
−as\{i} if i ∈ s (9.5.2)

Then we see that

a′u =
∑
s�i

(
as + as\{i}

)
us

=
∑
s�i

asv
i
s +

∑
s ��i

asv
i
s = avi

where we used the fact that for s � i, us = vis = vis\{i}. Similarly, noting that for s � i, wis = 0

and for s �� i, wis = us − us\{i}, we have

a′′u =
∑
s�i
−as\{i}us +

∑
s ��i

asus

=
∑
s ��i

(−asus∪{i} + asus
) = awi

Therefore, u satisfies the constraints of SAr (K) iff for each i ∈ [n] vi and wi satisfy the
constraints of SAr−1(K). �

Now we are ready to show that Sr (K), 1 ≤ r ≤ n form a hierarchy of relaxations of K0.

Theorem 50

K0 ⊂ Sr (K) ⊂ Sr−1(K) ⊂ K for every r .

Proof: We have already seen that each integer solution x in K0 gives rise to a corresponding
point in SAr (K): we just take y()s =∏i∈s xi. Projecting to a point in Sr (K), we just get x back.
Thus K0 ⊂ Sr (K) for each r .

So it is left to only show that Sr (K) ⊂ Sr−1(K), because S1(K) = K.
Suppose x ∈ Sr (K) is obtained as u|s:|s|≤1, u ∈ SAr (K). Let vi,wi ∈ SAr−1(K) be two vectors

(for some i ∈ [n]) as given by Lemma 49. Since SAr−1(K) is a convex cone, vi+wi ∈ SAr−1(K).
Note that for each s ⊂ [n], |s| ≤ r − 1, wis + vis = us . In particular this holds for s, |s| ≤ 1. So
x = (vi +wi)|s:|s|≤1 ∈ Sr−1(K). �

Theorem 51

Sn(K) = K0

73

Proof: Recall from the proof of Theorem 50 that if x ∈ Sr (K), then there are two points
vi,wi ∈ SAr−1(K) such that x = vi|s:|s|≤1 +wi|s:|s|≤1. It follows from the definition of vi and
wi that viφ = vi{i} and wi{i} = 0. So vi|s:|s|≤1 ∈ Sr−1(K)|y{i}=yφ and wi|s:|s|≤1 ∈ Sr−1(K)|y{i}=0.

Hence, Sr (K) ⊂ Sr−1(K)|y{i}=yφ + Sr−1(K)|y{i}=0. Further, this holds for all i ∈ [n]. Thus,

Sr (K) ⊂
⋂
i∈[n]

(
Sr−1(K)|y{i}=yφ + Sr−1(K)|y{i}=0

)

Repeating this for r − 1 and so on, we get

Sr (K) ⊂
⋂

{i1,...,ir }⊂[n]

 ∑
T∈{0,yφ}r

K|(y{i1},...,y{ir })=T

For r = n this becomes simply

Sn(K) ⊂
∑

T∈{0,yφ}n
K|(y{1},...,y{n})=T = K0

Along with K0 ⊂ Sn(K) this gives us that Sn(K) = K0. �

Finally we note that for small r we can solve an optimization problem over Sr (K) relatively
efficiently.

Theorem 52

If there is a polynomial (in n) time separation oracle for K, then there is an nO(r) algorithm for
optimizing a linear function over Sr (K).

Proof: Note that using Lemma 49, a separation oracle for Sr (K) can be formed by calling
the separation oracle for Sr−1(K) 2n times (for vi and wi, i ∈ [n]), and therefore, calling the
separation oracle for K nO(r) times. Given access to the separation oracle, the optimization
can be carried out using the ellipsoid method in polynomial time. �

Thus, on the one hand a higher value of r gives a tighter relaxation (a smaller integrality gap)
and possibly a better approximation (with r = n giving the exact solution), but on the other
hand the time taken is exponential in r . So to use this method, it is crucial to understand this
trade-off. It has been shown by Arora, Bollobas and Lovasz that in applying a related method
by Lovasz and Schriver to the Vertex cover problem, even for r = Ω(√logn) the integrality gap
is as bad as 2− o(1). Sanjeev conjectures that for somewhat higher r the integrality gap may
go down significantly. But this problem is open.

Chapter 10

Semidefinite Programming

scribe:Edith Elkind

10.1 Introduction

Semidefinite programming (SDP) is an extension of linear programming that can be applied to
integer optimization problems even when linear programming itself is of little help.

In this method, in addition to linear constraints, the matrix formed by variables is required
to be positive semidefinite. As the feasible solution space becomes smaller, the solution to
the semidefinite program might be closer to the solution to the original integer problem, as
compared to the corresponding LP solution.

Since SDP is a special case of convex programming, a semidefinite program can be solved to
an arbitrary precision in polynomial time using the ellipsoid method or a version of Karmarkar’s
algorithm.

10.2 Basic definitions

Definition 30 A symmetric matrixM ∈ R
n×n is positive semidefinite (note: this is often written

as A � 0) if any of the following conditions holds:

(i) M can be represented as AAT for some A ∈ R
n×n;

(ii) M has no negative eigenvalues;

(iii) xTMx ≥ 0 for any x ∈ R
n;

(iv) ∃v1, . . . ,vn ∈ R
n such that Mij = 〈vi,vj〉.

Theorem 53

Conditions (i)–(iv) are equivalent.

Proof: An easy exercise. �

Lemma 54

The set {M ∈ R
n×n | M is a symmetric positive semidefinite matrix } is a convex cone.

74

75

Proof: From (ii), it follows that ifM is positive semidefinite, then so is λM for any λ > 0. From
(iii), it follows that ifM1,M2 are positive semidefinite, then so isM1+M2. Obviously, symmetry
is preserved, too. �

Definition 31 A semidefinite program is formulated as follows:

minC · Y
A1 · Y ≥ b1,
. . .

Am · Y ≥ bm,
Y � 0

where Y is an n · n-matrix of variables, C,A1, . . . , Am ∈ R
n·n, b1, . . . , bm ∈ R and X · Y is

interpreted as
∑n
i,j=1XijYij .

Such a convex program can be solved to an arbitrary precision (modulo some technical
requirements we do not go into) using the Ellipsoid method. As mentioned earlier this method
can solve a linear program to an arbitrary degree of precision in polynomial time even if the
number of constraints is non-polynomial (or infinite), so long as there is a polynomial-time
separation oracle for the set of constraints. In case of the above convex program, we can
replace the “Y � 0” by the infinite family of linear constraints xTYx ≥ 0 for every x ∈ �n.
Furthermore, given any Y that is not psd, there is a simple algorithm (derived from the Cholesky
decomposition) that gives an x ∈ �n such that xTYx < 0; this is the separation oracle.

10.3 An SDP for Graph Expansion

Last time, we wrote a linear program for Graph Expansion. Given a graph G = (V , E), for every
i, j ∈ V , we introduce a variable xij and consider the following LP:

min

∑
{i,j}∈E xij∑
i<j xij

xij + xjk ≤ xik for all i, j, k (triangle inequality)

xij ≥ 0

xij = xji
In an effort to tighten the relaxation, we require the following constraint in addition:

∃ v1, v2, . . . , vn ∈ �n such that xij = (vi − vj) · (vi − vj).
We show that this constraint is not an unfair one, by shoing that the optimum integer solution
(and, more generally, any cut metric) satisfies it: simply pick an arbitrary vector u and set vi = u
if vi ∈ S and vi = −u if vi ∈ S̄, so the optimum integer solution is still feasible.

How can we optimize under this constraint using SDP? Consider the matrix M where Mii =
1 and Mij = 1 − xij

2 if i �= j. The constraint amounts to saying this matrix to be psd (see
Theorem 30 part (iv)).

We leave it as an exercise to show that this SDP provides a lower bound that is at least as
good as the eigenvalue bound for d-regular graphs and no worse than Leighton–Rao bound for
the general case. Thus this approach combines the best of both worlds.

It is conjectured that the linearity gap for this program is O(1) (it is known to be O(logn)).
This would follow from another conjecture (by Goemans and Linial), namely, that any metric
d(i, j) that can be represented as ‖vi − vj‖2 for some {vi}ni=1, can be embedded into l1 with
O(1) distortion.

76

10.4 0.878-Approximation for Max Cut

Let us present the celebrated 0.878 approximation algorithm for Max Cut by Goemans and
Williamson (1993). Here the goal is to partition the vertices of a graph G = (V , E) into two sets
S and S̄ so as to maximize E(S, S̄).

The setup is almost identical to the previous case; the only difference is that now we seek
to maximize

∑
{i,j}∈E xij =

∑
{i,j}∈E 1/4‖vi − vj‖2, where ‖vi‖ = 1, i = 1, . . . , n. (The factor 1/4

is needed for renormalization: if vi = −vj , then ‖vi − vj‖2 = 4.)
Denote by OPTf the optimal fractional solution; the corresponding vectors are v1, . . . ,vn.

Note that for any pair of vectors we can draw a 2-dimensional plane through them, so

‖vi − vj‖2 = 〈vi − vj,vi − vj〉 = 2− 2 cosθij, (10.4.1)

where θij is the angle between these two vectors in the plane.
This suggests the following algorithm: pick a random hyperplane H passing through the

origin. It divides the endpoints of {vi}ni=1 into two sets; assign the vertices of the graph to S or
S̄ accordingly.

For any {i, j} ∈ E, the probability that {i, j} crosses the cut is θij/π , so the expected value
of E(S, S̄)/OPTf is

4
∑
{i,j}∈E θij

π × 2
∑
{i,j}∈E(1− cosθij)

≥min
θij

1− cosθij
× 2
π
= 0.878 (10.4.2)

Hence, this algorithm gives a 0.878-approximation.

10.5 Spectral Partitioning of Random Graphs

This part is based on a FOCS 2001 paper by Frank McSherry, which considers the task of finding
a solution to an NP-hard graph problem when the input graph is drawn from a distribution over
acceptable graphs.

For example, suppose that a graph on n vertices is constructed as follows: include each
edge with probability p; then pick k vertices out of n (uniformly over all sets of size k), and
complete the clique on these vertices.

Given a graph constructed according to this procedure, can we find the planted clique with
high probability (over the coin tosses of the generating algorithm as well as our own random
choices)?

More generally, consider the following setup: for a graph on n vertices, there is a mapping
ψ : [n] �→ [k] that partitions the vertices into k classes, and a matrix Pk×k, 0 ≤ Pij ≤ 1. To
generate a random instance Ĝ on a vertex set V , |V | = n, include an edge between vi and vj
with probability Pψ(i)ψ(j). We would like to construct an algorithm that given Ĝ can reconstruct
ψ with high probability. (Usually, after that it is possible to (approximately) reconstruct P).

Note that for the clique problem described above, k = 2, P00 = 1, P01 = P10 = P11 = p and
the planted clique can be described as ψ−1(0).

Denote the adjacency matrix of Ĝ by M̂ . Note that M = EM̂ gives us the corresponding
edge probabilities. Hence, for any two vertices that are in the same class with respect to ψ, the
corresponding columns are identical, so the rank ofM is at most k. Obviously, if we knewM , we
could find ψ by grouping the columns; since M̂ is obtained from M by randomized rounding,
let us try to use clustering.

Let E be the error matrix, E = M̂ −M . Suppose that P projects the space spanned by the
columns of M̂ onto k dimensions. If both ‖P(E)‖ and ‖P(M)−M‖ are small, then by triangle
inequality, P(M̂) ≈ M . Now, our goal is to find a suitable P .

Since M is a low-rank symmetric matrix, we can use singular value decomposition (SVD).
It is known that an m × n-matrix A of rank r can be represented as UΣVT , where U is an

m× r orthogonal matrix, Σ = diag(σ1, . . . , σr), and V is an n× r orthogonal matrix.
This decomposition is unique up to a permutation of σi’s (and respective permutations of

rows and columns of U and V), so we can assume σ1 ≥ . . . ≥ σr ; for a symmetric A, σi’s are
the eigenvalues.

By truncating U to k columns, Σ to k values, and VT to k rows, we obtain a matrix Ak, which
is known to be the best rank k approximation of A in the spectral norm. The columns of this
matrix are projections of the corresponding columns of A onto the first k eigenvectors of A.
In what follows, we denote the projection X �→ Xk by PXk .

Instead of applying SVD directly, we will use a minor modification of this approach. Namely,
consider the following algorithm Partition(τ):

• Randomly divide [n] into two parts; let us say that this division splits the columns of Ĝ
as [Â | B̂].

• Compute P1 = PBk , P2 = PAk .
• Let H = [P1(Â)|P2(B̂)].

• While there are unclustered nodes, choose one of them (say, u) and put all unclustered
vs such that |Ĥu − Ĥv | < τ into u’s cluster; repaet.

• Return the resulting partition.

Here τ is a parameter (intercluster distance). Intuitively, since our partition is random, any class
is likely to be split evenly between A and B, so the projection computed for A should work for
B and vice versa. By splitting the matrix into two parts we avoid some tricky interdependency
issues.

Suppose that for all u we have

|P1(Au)−Au| ≤ γ1 and |P1(Au − Âu)| ≤ γ2

|P2(Bu)− Bu| ≤ γ1 and |P2(Bu − B̂u)| ≤ γ2

and |Gu − Gv | ≥ 4(γ1 + γ2) whenever ψ(u) �= ψ(v). Then our algorithm finds ψ correctly
if τ = 2(γ1 + γ2). To see that, suppose that u and v ended up in the same cluster. As
|Gu− Ĥu| ≤ γ1+γ2, |Gv − Ĥv | ≤ γ1+γ2, and |Ĥu− Ĥv | < 2(γ1+γ2), it must be that Gu = Gv .
Conversely, if Gu = Gv , Ĥu and Ĥv cannot be too far apart.

To make use of this algorithm, we need a bound on γ1 and γ2.

Theorem 55

With probability at least 1− δ,

|PÂ(Bu)− Bu| ≤ 8σ
√
nk/su

|PÂ(Bu − B̂u)| ≤
√

2k log(n/δ),

where σ is the largest deviation of an entry in Â and su is the size of the part containing u, i.e.,
su = |{v | ψ(v) = ψ(u)}|.
For the proof, the reader is referred to the paper.

77

princeton university F’02 cos 597D: a theorist’s toolkit

Homework 1

Out: September 16 Due: September 23

You can collaborate with your classmates, but be sure to list your collaborators with your answer.
If you get help from a published source (book, paper etc.), cite that. Also, limit your answers to
one page or less —you just need to give enough detail to convince me. If you suspect a problem
is open, just say so and give reasons for your suspicion.

§1 For every integer k ≥ 1 show that any graph with more than kk nodes has either a clique
or an independent set of size at least k. (Moral: A graph cannot be completely disordered:
there is always some local order in it.) Can you prove the same statement for graphs with
fewer than kk nodes?

§2 A bipartite graph G = (V1, V2, E) with |V1| = |V2| is said to be an (α,β) expander if every
subset S ⊆ V1 of size at most α |V1| has at least β |S| neighbors in V2. Show that for every
α,β > 0 satisfying αβ < 1 there is an integer d such that a d-regular expander exists for
every large enough |V1|.

§3 A graph is said to be nontransitive if there is no triple of vertices i, j, k such that all of{
i, j

}
,
{
j, k

}
, {k, i} are edges. Show that in a nontransitive d-regular graph, there is an

independent set of size at least n logd/8d. (Hint: Suppose we try to pick an independent
set S randomly from all independent sets in the graph. For any vertex v , suppose you
have picked the portion of S except for v and the neighbors of v . How would you pick
the rest of S?)

78

79

princeton university F’02 cos 597D: a theorist’s toolkit

Homework 2

Out: October 7 Due: October 21

You can collaborate with your classmates, but be sure to list your collaborators with your answer.
If you get help from a published source (book, paper etc.), cite that. Also, limit your answers to
one page or less —you just need to give enough detail to convince me. If you suspect a problem
is open, just say so and give reasons for your suspicion.

§1 Let A be a class of deterministic algorithms for a problem and I be the set of possible
inputs. Both sets are finite. Let cost(A,x) denote the cost of running algorithm A on
input x. The distributional complexity of the problem is

max
D

min
A∈A

Ex∈D[cost(A,x)],

where D is a probability distribution on I. The randomized complexity is

min
P

max
x∈I

EA∈P[cost(A,x)],

where P is a probability distribution on A. Prove Yao’s lemma, which says that the two
complexities are equal.

Does this result hold if the class of algorithms and inputs is infinite?

§2 (The rent-or-buy problem) Your job requires you to take long trips by car. You can either
buy a car ($ 5000) or rent one whenever you need it ($ 200 each time).

If i is the number of trips you end up making, clearly, it makes sense to buy if i > 25. (Let
us ignore emotional factors, as well as the fact that a used car is still worth something
after a few years.) Furthermore the optimum expenditure as a function of i is C(i) =
min {5000,200i}.
However, you do not know i ahead of time: in fact, you don’t learn about each trip until
the day before, at which time you have to rent or buy. (Such problems are studied in a
field called online algorithms.)

(a) Show that if you make the decision to buy or rent at each step using a deterministic
algorithm then there is a strategy whose cost is at most 2C(i) for any i. Show that no
deterministic algorithm can do much better for some i. (Alas, life is suboptimal??)

(b) Does your answer change if you can use a randomized strategy, and try to minimize
your expected cost? (Hint: Lowerbounds can be proved using Yao’s Lemma.)

§3 Prove the Schwartz-Zippel Lemma: If g(x1, x2, . . . , xm) is any nonzero polynomial of total
degree d and S ⊆ F is any subset of field elements, then the fraction of (a1, a2, . . . , am) ∈
Sm for which g(a1, a2, . . . , am) = 0 is at most d/ |S|.

§4 (Sudan’s list decoding) Let (a1, b1), (a2, b2), . . . , (an, bn) ∈ F2 where F = GF(q) and q n.
We say that a polynomial p(x) describes k of these pairs if p(ai) = bi for k values of i.

(a) Show that there exists a bivariate polynomial Q(z,x) of degree at most �√n� + 1 in
z and x such that Q(bi, ai) = 0 for each i = 1, . . . , n. Show also that there is an
efficient (poly(n) time) algorithm to construct such a Q.

(b) Show that if R(z,x) is a bivariate polynomial and g(x) a univariate polynomial then
z − g(x) divides R(z,x) iff R(g(x),x) is the 0 polynomial.

(c) Supposep(x) is a degreed polynomial that describes k of the points. Show that ifd is
an integer and k > (d+ 1)(�√n�+ 1) then z−p(x) divides the bivariate polynomial
Q(z,x) described in part (a). (Aside: Note that this places an upperbound on the
number of such polynomials. Can you improve this upperbound by other methods?)

(There is a randomized polynomial time algorithm due to Berlekamp that factors a bivari-
ate polynomial. Using this we can efficiently recover all the polynomials p of the type
described in (c). This completes the description of Sudan’s algorithm for list decoding.)

80

princeton university F’02 cos 597D: a theorist’s toolkit

Homework 3

Out: October 21 Due: November 4

You can collaborate with your classmates, but be sure to list your collaborators with your answer.
If you get help from a published source (book, paper etc.), cite that. Also, limit your answers to
one page or less —you just need to give enough detail to convince me. If you suspect a problem
is open, just say so and give reasons for your suspicion.

§1 Show that rankA for an n×nmatrix A is the least k such that A can be expressed as the
sum of k rank 1 matrices. (This characterization of rank is often useful.)

§2 Compute all eigenvalues and eigenvectors of the Laplacian of the boolean hypercube on
n = 2k nodes.

§3 Suppose λ1(= d) ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix of a
connected d-regular graph G. Then show that α(G) ≤ − n(λnd−λn .

§4 Let G be an n-vertex connected graph. Let λ2 be the second largest eigenvalue of its
adjacency matrix and x be the corresponding eigenvector. Then show that the subgraph
induced on S = {i : xi ≥ 0} is connected.

81

82

princeton university F’02 cos 597D: a theorist’s toolkit

Homework 4

Out: November 11 Due: November 25

You can collaborate with your classmates, but be sure to list your collaborators with your answer.
If you get help from a published source (book, paper etc.), cite that. Also, limit your answers to
one page or less —you just need to give enough detail to convince me. If you suspect a problem
is open, just say so and give reasons for your suspicion.

§1 Estimate the mixing time of the random walk on the lollipop graph, which consists of a
complete graph on n nodes and a path of length n attached to one of those nodes.

§2 Give an efficient algorithm for the following task, which is used for dimension reduction
in many clustering algorithms. We are given n vectors x1, x2, . . . xn ∈ �n and a number
k, and we desire the k dimensional subspace S of �n which minimizes the sum of the
squared lengths of the projections ofx1, x2, . . . , xn to S. You may assume that eigenvalues
and eigenvectors can be efficiently computed.

§3 In this question you will prove that random walks on constant degree expanders mix very
rapidly: for any subset of vertices C that is fairly large, the probability that a random walk
of length l avoids C is exp(−l). Let G = (V , E) be an unweighted undirected graph and A
be its adjacency matrix.

(a) Show that the number of walks of length l is gTAlg where g is the all-1 vector.

(b) Suppose now that G is d-regular and has n vertices. Suppose that each of the eigen-
values of A except the largest (which is d) has magnitude at most λ. Let C be a subset
of cn vertices and let A′ be the adjacency matrix of the induced graph on V \C . Show
that every eigenvalue of A′ is at most (1− c)d+ cλ in magnitude.

(c) Conclude that if λ < 0.9d (i.e., G is an expander) and c = 1/2 then the probability
that a random walk of length l in G (starting at a randomly chosen vertex) avoids C
is at most exp(−l).

