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PREFACE

In this book the author treats four fundamental and apparently simple prob-
lems. They are: the number of primes below a given limit, the approximate
number of primes, the recognition of prime numbers and the factorization of large
numbers. A chapter on the details of the distribution of the primes is included as
well as a short description of a recent application of prime numbers, the so-called
RSA public-key cryptosystem. The author is also giving explicit algorithms and
computer programs. Whilst not claiming completeness, the author has tried to give
all important results known, including the latest discoveries. The use of comput-
ers has in this area promoted a development which has enormously enlarged the
wealth of results known and that has made many older works and tables obsolete.

As is often the case in number theory, the problems posed are easy to under-
stand but the solutions are theoretically advanced. Since this text is aimed at the
mathematically inclined layman, as well as at the more advanced student, not all of
the proofs of the results given in this book are shown. Bibliographical references
in these cases serve those readers who wish to probe deeper. References to recent
original works are also given for those who wish to pursue some topic further.

Since number theory is seldom taught in basic mathematics courses, the author
has appended six sections containing all the algebra and number theory required
for the main body of the book. There are also two sections on multiple precision
computations and, finally, one section on Stieltjes integrals. This organization
of the subject-matter has been chosen in order not to disrupt the reader’s line of
thought by long digressions into other areas. It is also the author’s hope that the
text, organized in this way, becomes more readable for specialists in the field. Any
reader who gets stuck in the main text should first consult the appropriate appendix,
and then try to continue.

The six chapters of the main text are quite independent of each other, and
need not be read in order.

For those readers who have a computer (or even a programmable calculator)
available, computer programs have been provided for many of the methods de-
scribed. In order to achieve a wide understanding, these programs are written in
the high-level programming language PASCAL. With this choice the author hopes
that most readers will be able to translate the programs into the language of the
computer they use with reasonable effort.



PREFACE

At the end of the book a large amount of results are collected in the form
of tables, originating partly from the author’s own work in this field. All tables
have been verified and up-dated as far as possible. Also in connection with the
tables, bibliographical references are given to recent or to more extensive work in
the corresponding area.

The text is an up-dated version of an earlier book by the same author: “En
bok om primtal,” existing in Swedish only.

The author is very much indebted to Richard Brent, Arne Fransén, Gunnar
Hellstrom, Hans Karlgren, D. H. Lehmer, Thorkil Naur, Andrzej Schinzel, Bob
Vaughan and many others for their reading of the manuscript and for suggest-
ing many improvements. Thanks are also due to Beatrice Frock for revising the
English, and to the late Ken Clements for reading and correcting one of the last
versions of the manuscript.

The author wishes you a pleasant reading!

Stockholm, February 1985

PREFACE TO THE SECOND EDITION

During the last ten years the science of computational number theory has seen
great advances. Several important new methods have been introduced to recognize
prime numbers and to factor composite integers. These advances have stimulated
the author to add subsections on the applications of the elliptic curve method and on
the number field sieve to the main text as well as two new appendices covering the
basics of these new subjects.—Also, very many minor updatings and corrections
of the text have been made.

The author wishes to express his thanks to the many readers who have written
during the years and proposed improvements of the text. Special thanks are going
to Richard Brent, Frangois Morain, Peter Montgomery and in particular to Harvey
Dubner and Wilfrid Keller, who all helped during various stages of the preparation
of the new manuscript.

Stockholm, June 1994
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Symbeol

f(x) = g(x)
fx) ~ gx)

la, b]
C

c c c
=, ~~, <<

a
a=bmodn
a# bmodn

b, d
a+’%+gj
alb

atb
Plin
@n)
D, (x)
14
GCD(a, b)
My
Lx]
[a, b]
a
(%)
A(n)
LCM [a, b]
LHS

NOTATIONS

Meaning

f(x) is approximately equal to g(x)
£ (x) is asymptotically equal to g(x), meaning that
lim f(x)/g(x) = 1, usually as x — o0
closed interval: all x ina<x <b
the complex numbers
conjectured relation
conjugate number: ifa = p + gD, thend = p — gD
a is congruent to b modulus n

a is not congruent to b modulus n

b
c+ -
e

continued fraction = a +

a divides b
a does not divide b

highest power of p dividing n, i.e. p%|n, but p*tln

Euler’s totient function = [] p{" Ypi=1) i n=T[]p{
the nth cyclotomic polynomial, having degree ¢(n)

Euler’s constant = 0.57721566 49015328 . ...

greatest common divisor of a and b

group of primitive residue classes modN

7] =3, |-7]=-—4

the interval a <x <b

integer part of x :

Jacobi’s symbol, defined if GCD(a, N) =1

Carmichael’s function = LCM[A(p{));, if n =[] p;"

least common multiple of a and b

left hand side

Legendre’s symbol, defined if p is an odd prime

XV



NOTATIONS

Symbol Meaning
lix the logarithmic integral of x
Inx log, x (e =2.7182818284590452...)
log x logarithm to an unspecified base
un) Mbibius’ function
a>>b a is much larger than b
a<<b a is much smaller than b
# “number sign”: number of elements in a set
w(N) the number of different prime factors of N
Q(N) the total number of prime factors of N

QUf(x) “big omega”: greater than C f (x) for some constant C >0
and an infinitude of x, usually as x — 0o

O(f(x)) “big ordo”: less than C f (x) for some constant C > 0,
usually as x — oo

o(f(x)) “little ordo”: less than € f (x), where € — 0,
usually as x — oo

p a prime number

P(N) the largest prime factor of N

Py(N) the kth largest prime factor of N

m(x) number of primes <x

Il product symbol: []'_,a; =ay-az-a3---a,

Q the rational numbers

R the real numbers

R(2) real part x of complex number z = x + iy

RHS right hand side

» summation symbol: ! _ a4, =a; +a;+a3 + - +a,

L(s) zeta-function of Riemann, {(s) = > oo n™*

x (A) group character

VA the rational integers

10(5)100 the numbers 10, 15, 20, ..., 100

Xvi



CHAPTER 1

THE NUMBER OF PRIMES BELOW A GIVEN LIMIT

What Is a Prime Number?

Consider the positive integers 1, 2, 3,4, ... Among them there are composite
numbers and primes. A composite number is a product of several factors # 1,
such as 15 =3 -5; 0r 16 = 2 - 8. A prime p is characterized by the fact that its
only possible factorization apart from the order of the factors is p = 1 - p. Every
composite number can be written as a product of primes, suchas 16 = 2-2-2-2.—
Now, what can we say about the integer 1?7 Is it a prime or a composite? Since 1
has the only possible factorization 1 - 1 we could agree that it is a prime. We might
also consider the product 1 - p as a product of two primes; somewhat awkward
for a prime number p.—The dilemma is solved if we adopt the convention of
classifying the number 1 as neither prime nor composite. We shall call the number
1 a unit. The positive integers may thus be divided into:

1. The unit 1.
2. The prime numbers 2, 3, 5,7, 11, 13,17, 19,23, . ..
3. The composite numbers 4, 6, 8,9, 10, 12, 14, 15, 16, ...

Frequently, it is of interest to study not only the positive integers, but all
integers:
eo.—4,-3,-2,-1,0,1,2,3,4, ...

The numbers n and —n are called associated numbers. The number 0, which is
divisible by any integer without remainder (the quotient always being 0), is of a
special kind. The integers are thus categorized as:

1. The number O.

2. The units —1 and 1.

3. The primes ...—7,-5,-3,-2,2,3,5,7,...

4. The composite numbers ...—9, —8, —6,—4,4,6,8,9, ...

Generally, when only the factorization of numbers is of interest, associated
numbers may be considered as equivalent, therefore in this case the two differ-
ent classifications of the integers given above can be considered equivalent (if we
neglect the number 0).—We shall often find that the numbers 0 and 1 have spe-
cial properties in the theory of numbers which will necessitate some additional
explanation, just as in the above case.
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The Fundamental Theorem of Arithmetic

When we were taught at school how to find the least common denominator, LCM,
of several fractions, we were actually using the fundamental theorem of arithmetic.
It is a theorem which well illustrates the fundamental role of the prime numbers.
The theorem states that every positive integer n can be written as a product of
primes, and in one way only:

s
n=pips... pr=[]p" (1.1)
i=1

In order that this decomposition be unique, we have to consider, as identical,
decompositions that differ only in the order of the prime factors, and we must also
refrain from using associated factors.—Having done much arithmetic, we have
become so used to this theorem that we regard it as self-evident, and not necessary
to prove. This is, however, not at all the case, and the reader will find a proof on
p. 261 in Appendix 2. In Appendix 3 an example is given which shows why the
proof is a logical necessity. And on p. 295 an arithmetic system is constructed
which resembles the ordinary integers in many ways, but in which the fundamental
theorem of arithmetic does not hold.—As a matter of fact, the logical necessity for
a proof of the fundamental theorem was recognized by Euclid, who gave the proof
of the almost equivalent Theorem A2.1 on p. 261.

Which Numbers Are Primes? The Sieve of Eratosthenes

All the primes in a given interval can be found by a sieve method invented by
Eratosthenes. This method deletes all the composite numbers in the interval,
leaving the primes. How can we find all the composites in an interval? To check
if a number n is a multiple of p, divide n by p and see whether the division leaves
no remainder. This so-called trial division method for finding primes is much
too laborious for the construction of prime tables when applied to each number
individually, but it turns out that only one division by each prime p suffices for the
whole interval. To see why this is so, suppose that the first number in the interval
ism,andthatm — 1 = p - q +r, with 0 < r < p. Then, obviously, the numbers

m—1—r+p, m—1—r+2p, m—1—r+43p, ...

are precisely those multiples of p which are > m. Thus all multiples of p can
be identified by one single division by p and the number of divisions performed
for each number examined will be reduced accordingly. This saves much labor,
particularly if the interval is long.

Which values of p need to be tested as factors of any given number n? It
obviously suffices to test all values of p <./n, since a composite number n cannot
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have two factors, both > /n, because the product of these factors would then
exceed n. Thus, if all composite numbers in an interval m <x <n are to be sieved,
it will suffice to cross out the multiples of all primes < ./n (with the possible
exception of some primes in the beginning of the interval, a case which may occur
if m < ./n). Using these principles, we shall show how to construct a table of
primes between 100 and 200. Commence by enumerating all integers from 100 to
200: 100, 101, ..., 199, 200. The multiples to be crossed out are the multiples of
all primes Sm, i.e., of the primes p =2, 3, 5,7, 11 and 13. First, strike out
the multiples of 2, all even numbers, leaving the odd numbers:

101, 103, 105, ..., 195, 197, 199.

Next delete all multiples of 3. Since 99 = 3 - 33 + 0, the smallest multiple of 3 in
the interval is 99 + 3 = 102. By counting 3 steps at a time, starting from 102, we
find all multiples of 3 in the interval: 102, 105, 108, 111,... When we are working
with paper and pencil, we might strike out the multiples of 5 in the same round,
since these are easy to recognize in our decimal number system. After this step
the following numbers remain:

101, 103, 107, 109, 113, 119, 121, 127, 131, 133,
137, 139, 143, 149, 151, 157, 161, 163, 167, 169,
173, 179, 181, 187, 191, 193, 197 and 199.

Next, we must locate the multiples of 7, 11 and 13. These are 119, 133, 161 (the
remaining multiples of 7), 121, 143, 187 (the remaining multiples of 11) and 169
(the remaining multiple of 13). The 21 numbers now remaining,

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197 and 199,

are the primes between 100 and 200. This example demonstrates the fact that it
requires approximately the same amount of work to construct a prime table as it
would take to devise a table for the smallest factor of each number for a given
interval. After having made some simple modifications increasing the efficiency
of the sieve of Eratosthenes described above, D. N. Lehmer at the beginning of
this century compiled and in 1909 published the largest factor table [1] and the
largest prime table [2] ever published as books. These cover the integers up to
10,017,000. It is unlikely that more extensive factor tables or prime tables will
ever be published as books since, with a computer, the factorization of a small
number is much faster than looking it up in a table. Before the era of computers a
considerable amount of work was invested in the construction of prime and factor
tables. Most famous of these is probably Kulik’s manuscript, containing a table of
the smallest factor of each number up to 108, The manuscript, of which parts have
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been lost, was never published. Before computers became readily available, a lot
of effort was spent on big prime table projects. For example, in 195657 the author
of this book compiled a prime table for the interval 10,000,000-70,000,000. The
computations were performed on the vacuum-tube computer BESK, which had an
addition time of 56 micro-seconds. To sieve an interval containing 48,000 integers
took 3 minutes of computing time. The output from the BESK was a teletype
paper tape which had to be re-read and printed by special equipment, consisting
of a paper tape reader and an electric typewriter.

Finally, in 1959, C. L. Baker and F. J. Gruenberger published a micro-card
edition of a table containing the first six million primes [3]. This table comprises
all the primes below 104,395,289. In addition, there exist printed tables for the
primes in certain intervals, such as the 1000:th million [999 - 10°, 10°], see [4],
and the intervals [10", 10" + 150,000] forn = 8,9, ..., 15, see [5].

General Remarks Concerning Computer Programs

For all numerical work on primes it is essential to have prime tables accessible in
your computer. This may be achieved by the computer generating the primes by
means of the sieve of Eratosthenes, and then either immediately performing the
computations or statistics required on the primes, or compressing the prime table
generated in a way suitable for storing in the computer and then performing the
necessary computation or statistics.

We shall provide a number of algorithms in this book (i.e., schemes for
calculating desired quantities). These will be presented in one or more of the
following forms:

Verbal descriptions.
Mathematical formulas.
Flow-chart diagrams.

Computer programs in PASCAL.

D=

The choice of the high-level programming language PASCAL has been made
because this language is simple, reasonably well-known, and close to the math-
ematical formulas which are to be transformed into computer programs. There
are, however, some minor differences between the various versions of PASCAL in
use, in particular concerning the input and output routines; hopefully this will not
cause any great obstacle. The version of PASCAL used in this book is Standard
PASCAL. It is the author’s hope that readers trained in computer programming
will be able to transform the PASCAL programs presented in this book into the
language of their choice without undue difficulty.

All the programs in this book have been collected in a package, which can
be obtained by anonymous ftp from the site ftp.nada.kth.se in the directory
Num. The package is named riesel-comp.tar.
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A Sieve Program

For a sieve to operate on the interval [m, n], we require all the primes up to
Ds, the largest prime < |4/n], where |x]| denotes the integer part of x. We
assume that these have already been computed and stored in a one-dimensional
array, Prime[1:s], with Prime[1] :=2, Prime[2]:=3, Prime[3]:=5,...,
Prime[s] := the sth prime. Now, in order to simplify the computer program, we
shall work only with the odd integers. Without loss of generality, let both m and n
be odd (if this is not the case to begin with, we may change m and n during the input
part of the program, if we really want the program to work also for even values
of m and/or n). Next we give each of the (n — m + 2)/2 odd integers between m
and n, inclusive, a corresponding storage location in the fast access memory of the
computer. This may be a computer word, a byte, or even a bit, depending on the
level on which you are able to handle data in your computer. We shall call the array
formed by these storage locations Table [1: (n-m+2) /2], where (n — m + 2)/2
is the number of elements in the array (its dimension). Suppose that these storage
locations are filled with ZEROs to begin with. Each time we find a multiple of
some prime < /m, we shall put the number 1 into the corresponding storage

location. Here is a PASCAL program to do this for an interval [m, n] below 1000:

PROGRAM Eratosthenes
{Prints a prime table between odd m and n < 1000}
(Input,Output);
LABEL 1;
CONST imax=11; jmax=500;
VAR Prime : ARRAY[1..imax] OF INTEGER;
Table : ARRAY[1..jmax] OF INTEGER;
m,n,p,p2,q,i,j,start,stop : INTEGER;

BEGIN
Prime([1]:=2; Prime[2]:=3; Prime[3]:=5; Primel[4]:=7;
Prime([5]:=11; Prime[6]:=13; Prime([7]:=17; Prime[8]:=19;
Prime[9] :=23; Prime[10]:=29; Prime[11]:=31;
write(’Input m and n: ’); read(m,n);
stop:=(n-m+2) DIV 2;
FOR i:=2 TO stop DO
BEGIN p:=Prime[i]; p2:=p+*p;
IF p2 < m THEN
BEGIN q:=2%p; start:=(m DIV q)*q+p;
{start is the odd multiple of p
which is closest to m}
IF start < m THEN start:=start+q
END
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ELSE start:=p2;
IF p2 > n THEN GOTO 1 ELSE
BEGIN j:=(start-m) DIV 2 + 1;
WHILE j <= stop DO
BEGIN {Here the odd multiples of p are
marked:} Table[j):=1; j:=j+p
END
END
END;

1: {When arriving at this point, the elements of Table
corresponding to the primes have the value 0, the
others have the value 1}

FOR i:=1 TO stop DO
IF Table[i]l=0 THEN write(m+2*i-2:4)
{Here the prime table generated is printed out}

END.

The table of small primes required by this program is built up by the state-
ments at the beginning: Prime [1] :=2;...Prime[11] :=31; When dealing with
a larger interval it is practical also to produce the table of small primes required
by a sieving program rather than defining them arithmetically. The only neces-
sary augmentation of the program in that case involves starting at the beginning
of the generated table, searching for the next entry = 0, and replacing this ZERO
with the corresponding integer, which is the next prime.—Since it is convenient
to have computations of general interest, such as sieving with the primes, readily
available as computer procedures, we also give below a modified version of the
above sieve program, writen in the form of a PASCAL procedure primes, which
generates the odd primes in the interval [3, n], n odd. Since it is the first time we
show a PASCAL procedure we provide a complete program Primegenerator
containing this procedure to enable the reader to understand the context in which
a PASCAL procedure should be written. The following program reads an odd
integer m < 1000, and generates and prints all odd primes below m:

PROGRAM Primegenerator

{Generates and prints the primes up to m < 1000, m odd}
(Input,Output);

CONST n=500;

TYPE vector=ARRAY[0..n] OF INTEGER;

VAR Table : vector; i,j,m : INTEGER;

PROCEDURE primes(n : INTEGER; VAR Prime : vector);
LABEL 1;
VAR i,j,k,p,p2,stop : INTEGER;
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BEGIN
stop:=(n-1) DIV 2; j:=1;
1: FOR k:=j TO stop DO
IF Prime[k]=0 THEN {The next prime for sieving
has been obtained}
BEGIN p:=2%k+1; j:=k+1; p2:=p*p;
IF p2 <= n THEN BEGIN
i:=(p2-1) DIV 2; WHILE i <= stop DO
BEGIN Prime([i]:=1; i:=i+p END;
GOTO 1 END END;
{When arriving here all elements of the array Prime
corresponding to the primes below m have the value
0, the others have the value 1}
END {primes};

BEGIN
write(’Input m: ’); read(m); primes(m,Table);
j:=(m-1) DIV 2;
FOR i:=1 TO j DO IF Table[i]=0 THEN write(2*i+1:4);
END.

With computer programs of the type shown above, it is possible to investigate
properties of the series of primes, depending on all the individual primes as high
as 3 - 10!, see for instance [6] or [6'].

Exercise 1.1. Primes in intervals. Write a program for your computer, that performs the
following: Read two (odd) integers m and n > m. Generate an array containing the odd
primes below /n. Sieve out all composites between m and n by the sieve of Eratosthenes,
utilizing the array of primes below \/n. Print the primes between m and n and their numbers,
equalling wr(n) — w(m — 1), where the function 7 (x) is defined on p. 10 below. Suitable
test values are: (m, n) = (99, 201), (12113, 12553) (check the computer’s answer against
the last column of Table 1 on p. 377), (9553, 9585) (an interval entirely without primes).
More test values can be picked from Tables 2 and 3.

Compact Prime Tables

If the prime table generated by the computer needs to be kept for later use or
perhaps for output, the information can be given in a rather compact form. The
simplest method is to store the sequence of ZEROs and ONEs representing the
status (composite or prime) of all the odd numbers. Please note that this time we
denote the primes by ONEs! A table of primes below 107 in this representation
will appear as A

01110 11011 01001 10010 11010 01001 10010 11001 01001 00010 1101

7
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Here the first five entries in the table, viz. 0, 1, 1, 1, 0, correspond to the integers
1, 3 (=prime), 5 (=prime), 7 (=prime) and 9. The final four entries show that 101,
103 and 107 are primes, while 105 is a composite number.

Since most computers are binary, it is convenient to store this sequence of
ZEROs and ONEs (bits) in computer words, where the number of bits per word
depends upon the computer’s word-size. Thus, in a 36-bit computer we could store
a table of the primes among 36 consecutive odd numbers in one computer word.
(It might actually be much easier to use only 35 of the 36 bits available, at least
when programming in a high-level language.)

This method of storing primes is rather simple. We can, by eliminating also
the multiples of 3 and 5 in our example, compress the prime tables even more, but
at the cost of working with a more complicated pattern. We are then left with all
numbers of the forms

30k+1,30k+7,30k+11, 30k + 13, 30k 4 17, 30k 4 19, 30k +23, and 30k +29

i.e., with only 8 numbers out of 30. Thus, we need to store only one bit for 8
odd numbers out of 15, or just about half of them. By removing also multiples
of 7, 11 and 13, we can further reduce the storage required by a factor of 2 .
% . % = 0.72. If we do so, however, the pattern of the remaining integers is
quite complicated and repeats periodically after as many as 5760 steps, leading to
some tricky computer programming as well as to a timeconsuming table look-up
function.—Thus, optimal efficiency requires balancing how large the prime table
to be stored against how much computational work required each time a table
look-up is requested. A reasonable compromise is to exclude only multiples of 3
saving 1/3 of the storage otherwise needed, i.e., to store one bit of information for
each of the numbers 6k + 1 only. The sequence of primes between 5 and 107 in
this representation will be

11111 11011 01111 01011 01110 11010 01111

which is the sequence previously shown with each third bit removed, the removal
starting with the second bit, corresponding to the number 3. The leading zero,
corresponding to the number 1, has also been removed. The final 5 bits in the
string shown represent the character (prime or composite) of the numbers 95, 97,
101, 103 and 107.

In a 36-bit computer, the primes in an interval from 105k to 105(k+-1) can thus
be stored in 35 of the 36 bits of a computer word. This string of bits may be reversed
and printed out as an integer <233, A prime table up to 105 x 100 = 10500 looks
rather strange when printed out in this way (see next page). The reader should
compare this with the prime table up to 12553 provided at the end of this book.
The table printed there contains slightly more information than the print-out on
next page, as the print-out here comprises all the primes up to 10499 only. On a
3.5 inch magneto-optical disk, having a storage capacity of 128 Mbytes, there is
enough room to store the primes up to about 3,000,000,000 in this way.

8
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Compact prime table up to 10500 (to be read horizontally)

32596917119
19153906256
12929300524
01946775235
25803963148
27325713986
30104951352
10336150736
02496475956
18014274691
06518293316
27610139283
02460821844
00746875411
21544575008
00294462083
04297614176
09084889235
06782734684
10336339456

19221276355
11044217692
09758853778
27961930040
26662686226
26053724260
26603773969
06524317784
09263457856
30375432704
01562192512
21483511888
00154165328
02489932592
27592828609
21785479944
10219687506
27959757100
18550637056
06816596588

32294916984
10628959443
21477751664
10687629457
21859162944
09204998354
32489161484
08657858241
27997067788
09021230674
10744524916
27182047424
02423076900
01755325507
00369648472
18472241811
11113138744
26452510928
17558145328
09070971010

27056746064
23930632312
18735703058
28253630548
17449165506
06548095832
18886509697
13223332700
17534371331
17224718372
10695737491
17255969348
10092832833
28234041380
01896680659
32321401632
26578275025
15137323024
18936318161
04330713676

Hexadecimal Compact Prime Tables

13260585324
27274595010
06820532604
10613958227
06723734372
00563096657
30344308812
17248824849
12956543856
01007756482
00048255592
26401637587
25850294296
26190874626
27988934752
01688470608
08600449332
02040873601
10776021528
18395700226

A related method, proposed by Weintraub, is to store the primes by using one
hexadecimal symbol to denote the pattern of primes in each interval of the form
[10k, 10k + 9], k = 1,2, 3, ... Thus the primes between 20 and 29 are stored as
0101 = 5, since 21 is composite (0), 23 is prime (1), 27 is composite (0) and 29 is
prime (1). The primes between 10 and 99 are in this way stored as FSAESADS2.
(The hexadecimal symbols have the values A=10, B=11, C=12, D=13, E=14 and
F=15.) The storage capacity required is 4 bits out of each 10 numbers.

Difference Between Consecutive Primes

The method demonstrated above is not the only means of storing the primes in
compact form. An alternative is to store (p;+) — p;)/2. The table on p. 80
shows how large these values can become. This is convenient if we wish to run
sequentially through the list of primes (e.g. for trial division by all small primes).
The number of bits needed for each prime stored in this manner is 6, 8, or 9, for
n up to 105, 10%, and 10'2, respectively. Taking the number of primes up to these
limits into account, this leads to storage requirements of 59 kbytes, 51 Mbytes,
and 42 Gbytes, respectively.
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The Number of Primes Below x

The number of primes <x, 7 (x), is an important number-theoretic function. Thus
7 (2) = 1 because we count 2 as the first prime, 7(10) = 4 and 7(+~/1000) = 11,
since there are 11 primes < 31.6. To calculate arithmetically the exact number
of primes below a given limit is an extremely complicated and labour-consuming
task, as we shall see, and the early computations of 7 (x) were carried out simply
by counting the number of primes in existing prime tables. But since those early
prime tables were not free from errors, the results of the computations of 7 (x) by
this method were somewhat unreliable.

As mentioned above, the existing formulas for 7 (x) are quite complicated.
The simplest (but unfortunately also the most labour-consuming) was found by
Legendre, and reads

1+m() =n(/m)+Lxl— Y [—X—J + Y [—x—J -

pevi CPid g e LPiPi

-y [ al J+ 1.2)
DiDj Pk

Pi<Pi<p<VE

where |z] denotes the integer part of z. Legendre’s formula is almost self-evident.
It uses the idea that

1 + the number of primes = the number of all integers —
— the number of composites in the interval [1, x].

The term |x/p] enumerates the integers divisible by p in this interval, since
lx/p] = n if and only if np <x < (n + 1) p. Since all composite numbers in the
interval [1, x] have some prime factor <./x, there are obviously EPES mlx/pil
multiples of primes <,/x in this interval. However, we must not count the multiples
1 - p; as composites; that is why the term 7 (,/x) has been added. This reasoning
accounts for the first three terms in the right-hand-side of the formula. Where do
the rest come from? Some of the composites in [1, x] are divisible by two of the
primes < /x, p; as well as p;. These composites will be counted rwice when
computing the sum ) _|x/p; |; since any integer of the form ap; p; will count as a
multiple of p; as well as a multiple of p;. That is why the total has to be corrected
by again adding the number of integers having this particular form, which is carried
out by the next term in the formula, ) |x/pipj]. As a result of this new term,
all those integers in [1, x] that happen to be divisible by three different primes, all
<./x, now will not be subtracted at all. This omission has to be corrected, which
explains the next term in (1.2), and so forth.

In order to understand the formula better, let us, as an example, compute
7(100) and 7 (200) and check with the number of primes between 100 and 200,
(200) — 7 (100) = 21 which we have found on p. 3 by the sieve of Eratosthenes.

10
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Legendre’s formula gives

s 2] |22 [2]-| 2] 2]
NIRRT
_[2-1(3)97J'[2-1(5)97J_[3-H5)97J+[2-;?(:)s-7j'1=

=44+100-50-33-20—-144+164+104+74+6+4+442-
—-3-2-1-04+0-1=25.

W

When x = 200, the primes 11 and 13 also come into play. This gives 66 different
terms in all, of which, however, quite a few are equal to O:

7(200) = 7(14) +200 — 1 — 100 — 66 — 40 — 28 — 18 — 15 + 33+
+204+14+9+7+1349+6+5+5+3+3+2+2+
+1-6-4-3-2-2—-1-1-1-1-1-1-1=46,

finally yielding
(200) — 7 (100) = 46 — 25 = 21.

Note that this computation agrees with the value found earlier for the number of
primes between 100 and 200.

As is obvious from these examples, Legendre’s formula as it stands is im-
practicable for the computation of 7 (x) for large values of x. The large number of
terms makes the computation difficult to organize. By various tricks, however, it
is possible to collect some of the terms into partial sums and thus arrive at a more
feasible calculus. The first efforts in this direction were already made by Legen-
dre himself, who managed to compute (1, 000, 000). The value he found was
not completely correct which tells us something about the difficulties involved in
these kinds of computations. Thus Legendre [7] found 77 (10°) to be 78,526 instead
of 78,498. The erroneous prime tables that existed at his time displayed 78,492
primes.

The next important progress in the counting of primes was made by Meissel
who, with an efficient modification of Legendre’s formula, computed 7 (x) for,
among other values, x = 107, 10® and 10°. However, Meissel’s computations are
not free from errors. For instance, in 1885 Meissel published the value 50,847,478
for 7 (10%) and this is probably the most often quoted faulty value in the literature
on primes. This error passed unnoticed for a long time and was revealed by
D. H. Lehmer only in 1958, the correct value of 7 (10%) being 50,847,534.

11
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Further progress was not made until the era of computers. Even with aid of
a computer, Meissel’s formula leads to time-consuming computations which have
necessitated further reduction of the labour involved. Efforts to achieve this have
been made primarily by D. H. Lehmer [8], by David Mapes [9] and, more recently,
by J. C. Lagarias, V. Miller and A. M. Odlyzko [10], [11]. We shall now describe
their work.

Meissel’s Formula

Meissel’s formula and its generalizations are based on a detailed analysis of those
integers Py (x, a) in the interval [1, x] which can be written as products of precisely
k (not necessarily distinct) prime factors > p,, the ath prime. If k is successively
given the values 1, 2, 3, . . ., these expressions will account for all integersin [1, x]
which have no factor < p,. The | x| integers in the interval [1, x] are thus

1. The integer 1.

2. The a first primes, py =2, p» =3, ..., Pa.

3. Yici<al¥/Pi) = X 1<icj<alX/Pipj) + - - - — a composites having at least
one prime factor < p,.

4. Py(x,a) = m(x) — a primes p, where p, < p<x.

5. Pr(x,a)integersn = p;p; <x,witha +1<i<j.

6. Py(x,a) integersn = p;p;py <x, witha + 1 <i < j <k, and so on.

Since this accounts for all the integers in [1, x] we find

X X X
Zl R LB ]
1;‘, Di ,5;5‘, PiDPj 15,~§ksa PiPj Pk

+7(x) —a+ P(x,a) + P3y(x,a) +--- = |x]. (1.3)
How many of the terms P,(x, a), P3(x, a), ... have to be written down? This
depends on the value of a chosen. If a is chosen so large that p,4+1 > 4/x, then
P2(x, a) will equal 0, since p;p; > /x/x = x forall i, j > a + 1. In this
case the original formula of Legendre, (1.2), reappears. If a is chosen such that
x'3 < pay1 <x12, Py(x, @) will contain some terms, but P3(x, a) will be an empty
sum, since p; p; p; will then be > x!/3x!x1/3 = x. Generally, P,(x,a) = 0 and
P._1(x, a) # 0, if a is chosen such that x/" < p,,, <x!/¢=D_ From this we find
it natural to choose a as m(x!/") for some suitable value of r, since with such a
choice pay1 will just exceed x!/”, and the formula will break off at a certain point
with the smallest value of a possible.

Evaluation of P (x, a)

P>(x, a) is defined above as the number of integers in the interval [1, x] which are
products of two primes p; and p;, witha + 1 < i < j. Considering one prime

12
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factor at a time, we have

P,(x, a) = the number of integers p,41p; < x witha+1 < j
+ the number of integers p,42p; < x witha +2 < j

+ ..

I
3
A~
& |«

t
—
|
Q
+
S
e

)—(a+1)+---

Pa+2

=Z{n(i)-(i—1)], for p, < pi <%

1

Now, suppose we choose a < 7 (4/x), the value of which we shall call b for the
sake of brevity; then the above sum may be written

Py(x,a) = i {n (g-) -G - 1)] =

i=a+1 :

(b—-a)b+a-1) b x
=— 5 + > = (—'-). (1.4)

i=a+1 i

Here the sum of i — 1 has been calculated with the well-known summation formula
for an arithmetic series. If we now choose a = 7 (x!/?) = ¢, in order to make
P3(x, a) and the higher sums = 0, we obtain Meissel’s formula

n(x):LxJ—i[iJJF 3 [LJ—-».+

i LPid <5< LPiPj
b+c-2)b—c+1 x
+ ( it ) _ dYon (—) (1.5)
2 c<i<b pi

Lehmer’s Formula

In the deduction of Meissel’s formula we had to analyse the sum P,(x, a). If we
carry the general formula (1.3) one step further, we arrive at Lehmer’s formula.
To achieve this we need to analyse the term P3(x, a) which may be described as

P3(x, a) = the number of products p,1pjpx <x witha+1<j<k
+ the number of products p,4+2pjpr <x witha +2<j <k

+...

=P2( ad 1a>+P2( ad 7a>+"'=ZP2(iva)~
Pa+1 Pa+2 i Pi

13
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Introducing the notation b; = m(./x/p;), formula (1.4) gives

c b;
Py(x,a) =Y P, (%,a) =y Z{n (L)—(j—l)]. (1.6)

i>a i=a+1 j=i PiPj
Here we have assumed that @ <c = (x!/3), in order that P;(x, a) at all contains

terms > 0. Now, finally putting a = m(x/*) leads to the formula D. H. Lehmer
has used in [8]:

n(x):LxJ—Z[;)x—_J + Z l. xJ __.__+(b+a~2)2(b—a+1)_

i=1 LFi 1si<j<a LPiPj
X c b; x .
-2 (=)= w(=)-G-nl. 1.7
a<i<b pi i=a+1 j=i PiDPj
Computations

The most labour-consuming part of the computations done by Meissel and Lehmer
is still the “Legendre-sum”

¢(x,a)=LxJ—ZB—iJ+Z[x J—Zt z J+ (1.8)

Di pj PiPj Pk

which counts the positive integers < x, not divisible by any one of the first a
primes pj, p2, ..., Pa. Even if the summations have to be extended only over all
primes < x!/3 in Meissel’s formula and only over all primes < x!/4 in Lehmer’s
formula, as compared with x!/2 in Legendre’s formula, the labour for large values
of x 1s tedious without using further tricks, which we shall now describe.

Since ¢ (x, a) is defined as the number of integers < x, not divisible by any
of the primes py, ps, ..., Pa, the following recursive formula holds

¢(x,a)=¢(x,a—1)—¢(pi,a—1). (1.9)

a

This formula expresses the fact that the integers not divisible by any of the primes
P1» P2, -.., Da are precisely those integers which are not divisible by any of
P1, P2, --.» Pa—1, With the exception of those which are not divisible by p,.

Using formula (1.9) repeatedly, we can break down any ¢ (x, a) to the com-
putation of ¢ (x, 1) which is the number of odd integers < x. However, because
the recursion has to be used many times, the evaluation is cumbersome. It is far
better to find a way to compute ¢ (x, k) for some reasonably large value of k, and
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then break down the desired value ¢ (x, a) just to ¢(x, k) and no further. This
can be achieved in the following way: The pattern of multiples of the primes
Pi, P2, ---, Dx repeats itself with a period of length of my = pyps - - pr. With
Legendre’s formula we now easily find for x = m,:

¢<mk,k)=tmk1—2[%J+Z[""‘ J-...=

PiDj

=mk—-ZTp-i£+Z i —_—.ee =

PiDj

k
—m (1 - l) (1 - l) (1 - i) =TIt =1 = pm (1.10)
Pi p2 Pk i=1

It is because all the quotients in the first line are integers that we are allowed to
remove all integer-part operators and perform the simplification. As aconsequence
of (1.10) and of the periodicity we find the formula

¢l -mp+t,k)=s5 -9Mmy) + ¢, k), (1.11)

where ¢ can be chosen between 0 and m;. Further, if ¢+ > m,; /2, we can use the
periodicity and the symmetry of the multiples about the point O to find

¢t k) = plmi) —p(me —t — 1, k). (1.12)

Thus, a quick way to have access to ¢ (x, k) for any x is to create a table of ¢ (x, k)
up to my /2. This is readily accomplished by first running a sieve program up to
my/2 for the primes p;, p2, ..., pPx, by means of which all multiples of these
primes are marked. Following this a second program is run, which accumulates
the number of integers not marked by the sieve program as multiples of any of the
primes in question. For k = 4 we have m; = 2-3-5.7, m; /2 = 105, and the
table constructed becomes

Critical table of ¢ (x, 4)

11195137 9|53 1371 17 &9 21
11 2 {23 641 10|59 14| 73 18 97 22
1331297 |43 11 )61 15]79 19| 101 23
17 4 { 31 8 |47 12 | 67 16 | 83 20 | 103 24

The table is organized as a so-called critical table, which means that infor-
mation is stored only when the function changes its value. Thus, for instance, we
find from the table that ¢ (x, 4) = 12 for all x, where 47 <x <53.

15
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A computer program for evaluating ¢ (x, a) can now be written, based on the
following principles:

1. Place the first a primes, 2, 35, ..., p,,inan array, Prime [1:a], just as we
did to prepare for the Eratosthenes sieve program.

2. Modify the sieve program previously given, in order to sieve only with the
primes < p,.

3. Sieve the interval from 1 to m,/2 = p,p3... pa. As before, store only the
odd integers of this interval.

4. Count the zeros below x for all x in the interval [1, m /2] in order to find
¢ (x, a) = the number of integers <x, untouched by the sieve. At this stage
you have generated a table of ¢(x,a) forallx inl1 <x <m,/2.

5. Apply the formulas (1.11) and (1.12).

A computer program performing steps 1-5 could resemble

PROGRAM phixa {Computes phi(x,a) for a=5}

(Input,Output) ;

LABEL 1;

CONST a=5; ma=2310; {ma=p[1]*...*p[al}
ma2=1155; {ma2=ma\2} stop=578;

{Since phi(x,a) never alters its value at even X,
full information about phi(x,a) is retained if
phi(x,a) is stored at odd values of x only. The
number of elements required in tabphia is stop}

phima=480; {phima=phi(ma,a)=prod(p[il-1) for i=1,...,a}
VAR Prime : ARRAY[1..a] OF INTEGER;

tabphia : ARRAY[O..stop] OF INTEGER;

i,j,s,x : INTEGER;

FUNCTION phia(x : INTEGER) : INTEGER;
{For x<0, phi(x,a) is defined as -phi(-x,a). That is
why abs(x) and sign(x)=abs(x) DIV x appear!}
VAR r,z : INTEGER;
BEGIN
r:=abs(x) MOD ma; z:=(abs(x) DIV ma)*phima;
IF r < ma2
THEN z:=z+tabphia[(r+1) DIV 2]
ELSE z:=z+phima-tabphia[(ma-r) DIV 2];
phia:=abs(x) DIV x * z
END phia;

BEGIN
Prime[2]:=3; Prime[3]:=5; Prime[4]:=7; Prime[5]:=11;
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FOR i:=2 TO a DO
BEGIN j:=(Prime[i]+1) DIV 2;
WHILE j <= stop DO
BEGIN tabphialjl:=1; j:=j+Prime[i] END
{Here the sieving is performed}
END;
s:=0; FOR i:=1 TO stop DO
BEGIN IF tabphia[i]=0 THEN s:=s+1; tabphiali]:=s END;
{Here the sum of ZEROs is accumulated, and the table
phixa, needed in the integer procedure phia(x), is
ready for use}

1: write(’Input x: ’); read(x);

IF x <> 0 THEN
BEGIN
writeln(’phi(’,x:5,’,’,a:1,’)=",phia(x):5); GOTO 1
END

END.

For the sake of brevity we have presented a program only for the computation
of ¢(x, a) for a = 5. It is evident which changes have to be made in order for the
program to work for a different value of a. In a program for computing the number
of primes, however, the function ¢ (x, a) will be required not only for a = 5, but
for all values of a up to some limit. In such a case the computer program must
incorporate all the corresponding PASCAL functions as well as the auxiliary tables
needed.

If, for a large value of a, the resulting computation of ¢ (x, a) exceeds the
storage capacity of the computer, then formula (1.9) may be used. It leads to
program statements such as

phi6:=phi5(x)-phi5(x/13); phi7:=phi6(x)-phi6(x/17);

preferably written within functions so that they can be called in succession. All
these functions phia(x) may then be combined to form the two-variable function
phi(x,a). Moreover, for large values of a, the basic formula (1.3) can be run
backwards:

¢(x,a) =14+xa(x)—a+ Py(x,a)+ P3y(x,a), forp, <x < p3+l, (1.13)

if we truncate (1.3) after the term Ps(x, a), just as we did previously in Lehmer’s
formula.

Exercise 1.2. A computer program for ¢ (x, a). Write a FUNCTION phi(x,a), covering
a < 10, following the idea mentioned above. Incorporate this FUNCTION in a computer
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program which reads x and a and prints ¢ (x, a). Since ¢ (x, 10) = the number of integers
<x, not divisible by any prime <29,
¢(x,10) = 7(x) — 9+ P2(x, 10) + P3(x,10) +-- -,

where, according to (1.4),

el X
Py(x, 10) = Z {n (—) -G - 1)]‘

p;i=31 !

For x < 313 the terms after P,(x, 10) have the value zero. Use this fact to check your
FUNCTION by computing

97
$(10%,10) = (10 = 9+ Y {w(10*/p) — (i = D},
pi=31
where the 15 values needed for 7 (10*/ p;) may be taken from Table 1, which is organized
in a way to give easy access to m(x).

A Computation Using Meissel’s Formula

In order to demonstrate the complexity and the computational labour involved we
shall compute 7 (10, 000) with Meissel’s formula and 7 (100, 000) with Lehmer’s
formula.

x = 10, 000 leads to the following values of the summation limits in Meissel’s
formula (1.5): b = JT(IOOOO% =125 c= 71’(10000%) = m(21) = 8, which
gives

31-18 &\ (10000
7 (10000) = ¢ (10000, 8) + —Zn( )
2 i=9 Di
We “decompose” ¢ (10000, 8) in the following way (if, as above, we choose k = 4).
Observe the frequent use of (1.12) during the calculations.

¢ (10000, 8) = ¢(10000,7) — ¢ (1—1.09..&, 7) = ¢ (10000, 7) — ¢ (526, 7).
¢ (10000, 7) = ¢ (10000, 6) — ¢ (%, 6) = ¢ (10000, 6) — ¢ (588, 6).

¢ (10000, 6) = ¢ (10000, 5) — ¢ (111'03—99 5) = ¢ (10000, 5) — ¢ (769, 5).
10000

n
= $(48-210 — 80,4) — p(4- 210 + 69, 4) =
=48 -48 — $(79,4) —4 - 48 — (69, 4) =
=44.48 — 19 — 16 = 2077.

¢ (10000, 5) = ¢(10000, 4) — ¢ ( 4) = ¢ (10000, 4) — ¢(909, 4) =
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526

¢(526,7) = $(526,6) — ¢ (7, 6) = ¢(526,6) — ¢(30,6) =

= ¢(526,5) — ¢ (%,5) -5=

= ¢(526,4) — ¢ (%,4) —¢(40,5) -5 =
=¢2-210+4106,4) —¢p(47,4) -8 -5 =

=248+ ¢(106,4) — 12 — 13 =95.

¢(588,6) = ¢(588,5) — ¢ (%8?8, 5) =

= ¢(588,4) — ¢ (%,4) —¢45,5) =
=¢3-210—-42,4) — ¢(53,4) — 10 =
=3-48—-¢41,4)-13-10=111.

769
1’
=4-48 — ¢(70,4) — 16 = 160.

$(769,5) = ¢ (769, 4) — ¢ ( 4) =¢(4-210—71,4) — ¢(69,4) =

From all this we obtain

¢ (10000, 8) = 2077 — 95 — 111 — 160 = 1711.

The sum in Meissel’s formula is

i”(logéo)=n(%l)+n(%)+...+n (1—?7”&)=

i=9
= 7(434) + 1 (344) + 1 (322) + - - - + 7(103) =
=84+ 68+ 66 + - -- + 27 = 761.

The final result is

m(10000) = 1711 4+ 9 - 31 — 761 = 1229.
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A Computation Using Lehmer’s Formula

x = 100, 000 leads to the following values of the summation limits in Lehmer’s
formula (1.7):
1
a=m(100000%3) =x(17) =17

b = 7(100000%) = 7(316) = 65
¢ = m(1000003) = 7(46) =

and
100000
bi=m for8 <i < 14,
pi
which gives
100000 100000
bg =7r( 1 )_n(72)=20, bg =7r( 3 ):n(65)=
100000 100000
b10=7r< % )=7r(58)=16, b11=7r( T )=7r(56)=

b1y = b3 =byy =15.

Thus the formula for 7 (10%) reads

7 (10°) = 6 (10%,7) 70 59 625 (105)
S5 ()00}

i=8 j=i

The first term of the formula is computed as
s 5 10° S
¢(10°,7) = ¢(10°,6) — ¢ —17,6 = ¢(10°, 6) — ¢ (5882, 6).

105

3 ,5) = ¢(10°,5) — ¢ (7692, 5).

$(10°,6) = ¢(10°,5) — ¢ (

S5
$(10%,5) = ¢(10°,4) — ¢ (lIOT 4) = ¢(476 - 210 + 40, 4) — ¢(9090, 4)
= 476 - 48 + ¢ (40, 4) — ¢(43 - 210 + 60, 4) = 20779.
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¢(5882,6) = ¢(5882,5) — ¢ (5?22 5)

5882

= ¢(5882,4) — ¢ (—

T ,4) —$(452,5) =

=28-48 4 (2, 4) — $(534,4) — p(452, 4)+¢( 2 4) -
=1128.

7692
$(7692,5) = ¢(7692,4) — ¢ (% 4) = 1598.
All this gives the required value of

#(10°,7) = 18053.

The first sum in the expression for 7(10°) equals

65 5
Zn (B) = 71(5263) + w(4347) + 7(3448) + - - - + 7 (321) + 7 (319) =
i=8 i

= 698 + 593 + 481 4 - - - 4+ 66 4+ 66 = 9940.

The double sum can be split into 7 simple sums:

{ (19,,) (’_”] {(23p,)_(j_1)]+"’+
L (4“))_(,-4)] 3 () o) =
71(-191(')—519)+N(E1(.)52—3)+...+n(%>_169_

—125—--- =27=m(277) + ®(228) + - - - + 71 (49) — 569 = 586.

Finally, the result is

7 (100000) = 18053 4 35 - 59 — 9940 — 586 = 9592.

By using (1.7), Lehmer calculated 7 (x) in 1958 with aid of a computer for,
among other values, x = a - 10° with a = 20, 25, 33, 37, 40, 90, 100, 999, 1000
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and 10000. It was this computation that revealed that Meissel’s value of 7 (10%)
was 56 units too low.—In Table 3 at the end of this book, the reader will find the
values of 7 (x), x being of the form s - 10", with s a digit. If the reader would like
to attempt some computer programming on 7 (x), these values will be suitable as
test values for program debugging and verification.

A Computer Program Using Lehmer’s Formula

Having generated in the computer a prime table up to some limit G, we can easily
program a function smallpi (x) which gives the values of 7 (x) up to this limit.
If we also program the function phi (x,a), giving ¢(x, a) for all a up to A, we
can utilize these functions in a program computing 7 (x) with Lehmer’s formula.
How large are the values of x that such a program is capable of handling? Let us
examine which values are needed in Lehmer’s formula:

1. b = (/%) which is accessible if x < G2.

2. ¢(x, a) with a = x'/* which will work if x < p2+1. Thus, if we limit a to 8,
then x must be < p§ = 23* = 279841.

3. Numerous values of w (x/p;) and w(x/ p; p;). The “worst” of these values is
w(x/ps+1). These values will be available as long as x/ ps4+1 < G, which will
occur if x < p /i), where pgy is the first prime outside the range of the prime
table stored in the computer.——Thus if G is 2000, say, then this part of the
program will operate as long as x <2003%3 = 25248.8. — Here it is actually
possible to “cheat” a little. Instead of storing an extensive prime table, you
might program the computer to ask for a few values of m(x/p;) above the
limit G, and then introduce them to the computer after having looked them
up in a larger prime table than the one stored in the computer. If you use {3],
you will be able to reach as high as ps g00.000 = 104, 302, 307 and the limit
imposed on x will be 104, 302, 333%3 = 49,097, 422, 907.98.—Another
way to raise the limit on x would be to let the PASCAL function Lehmer
call itself recursively. However in this case you must be very careful not to
exceed the available memory space by overfilling it with stacked information
that the computer will automatically store in order to be able to keep track of
all the recursive calls involved in the computation.

Now, finally, a PASCAL function for the computation of 7 (x) with Lehmer’s
formula looks like this:

FUNCTION Lehmer(x : INTEGER) : INTEGER;

{Computes pi(x) with Lehmer’s formula. Makes use of the
function phi(x,a) and of an array of integers, Prime,
containing a "small" prime table}

VAR b,c,a,bi,z,w,sum,i,j : INTEGER;

BEGIN
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z:=trunc(sqrt(x+0.5)); b:=smallpi(z);
c:=smallpi(trunc(exp(1ln(x)/3)+0.5)); { pi(cube root(x) }
a:=smallpi(trunc(sqrt(z)+0.5)); { pi(fourth root(x) }
sum:=phi(x,a)+(b+a-2)*(b-a+1) DIV 2;
FOR i:=a+1 TO b DO
BEGIN w:=x DIV Prime[il]; sum:=sum-pi(w);
IF i<=c THEN
BEGIN
bi:=smallpi(trunc(sqrt(w)+0.5));
FOR j:=i TO bi DO sum:=sum-pi(w DIV Prime[j])+j-1
END
END;
Lehmer :=sum
END {Lehmer};

Some details in the program look rather complicated. For instance, what
role does the constant 0.5 play? Well, this is a safety precaution to ensure that
the square roots and the cube root are not too low! Otherwise, it might happen
that the built-in standard functions sqrt, exp and log round downwards, which
could result in too low values. If this occurs precisely when the integer part of the
root is about to change, it may result in a value which is one unit too low. (Thus
if +/1, 000, 000 emerges as 999.999, the result would be 999 instead of 1000 if
the little upward rounding were not added!) Of course it is far better to write
your own integer function isqrt (x) for the integer part of the square root of an
integer, solving this problem once for all of your programs. However, we cannot
overload every little program with the detail necessary to get everything to work
properly—the reader must find these small things out for himself, which actually
is part of the fun in computer programming!

Exercise 1.3. Computing (x). Incorporate your FUNCTION phi(x,a) from exercise 1.2
above and the FUNCTION Lehmer into a computer program which reads x and prints 7 (x).
Check your program by comparing its results with some entries from Table 3.

Mapes’ Method

The methods of Meissel and Lehmer to calculate 7 (x) are both based on Legen-
dre’s formula (1.2). As a matter of fact, they are just clever re-arrangements and
groupings of the terms of the Legendre sum in order to facilitate its computation.
A still more efficient way to compute this sum was found in 1963 [9] by David
C. Mapes. The method is rather complicated, and requires the introduction of
some notations, but try to keep in mind that it involves merely re-arranging and
grouping the terms in Legendre’s sum!
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Deduction of Formulas

Since Legendre’s sum

vea=w- X[ 55 X ] 0w

where p; < p; < pr < pa, and p, is the ath prime, contains precisely 2¢ terms,
it is possible to describe each of these 27 terms as specific cases of the expression

X
Ti(x,a) = (—1)ﬂ°+ﬂ'+m+ﬂ"" [mJ . (1.15
P1 Py ---Pa

Here the numbers B; are the digits (0 or 1) if k is expressed as a binary number
k=21, + 2B, p 4 -+ 2181 + 280

This expression for Ty (x, @) looks difficult, but is just the result of a clever formal
trick, based on the following simple idea: Associate the nth prime p, with the
power 2", Thus, 2 is associated with 2° = 1, 3 associated with 2!, 5 with 22,
7 with 23, 11 with 24, etc. Furthermore, let the product of several primes (all
different) be associated with the sum of different powers of 2, corresponding to the
individual primes. Thus, 3 -2 is associated with 21420 11.7-3with24+23 42!
and so on. Finally append a sign to match the sign of the different terms of (1.14),
and the result is immediate! Now you can see how clever this description of the
terms of (1.14) is, because the denominators of the terms run through all products of
different prime factors, where all factors are < p,, when the “indicator” k extends
through all sums of different powers of 2, i.e. through all integers < 2.

As an example, if a = 3, the 8 terms from (1.14)

i AR A R P Pl o v

are written in this notation as Ty(x, 3) = |x], and

Ti(x,3) = — [%J , Ta(x,3) = — t%J h(x,3) = [plxsz :

3
UR
o3
—

and

T7(x,3)=—l x J
p1p2p3

24



DEDUCTION OF FORMULAS

Thus, Legendre’s sum ¢ (x, a) may be written

2°=1

¢(x,a) = ) Ti(x,a). (1.16)
k=0

Let M be an integer < 2 and 2'|[M, i.e. let 2' be the highest power of 2 which
divides M. Then, with y (M, x, a) defined as

M+42i-1
y(M,x,a) = ZTk(x,a), (1.17)
k=M

we have
¢(x,a) =Tox,a) +y(2° x,a) + vy, x,a) +-- - +y @\, x,a). (1.18)
Furthermore, defining T; (—x, a) as —Ti(x, a), we have
sign Ty (x, @) = (=1)Atbmt—+hr if oi g (1.19)

since the last i binary digits of k are then 0, and for the same reason

IE(X,0)|=t s ”"-'J’ i 2ik. (1.20)
Piy1Piyy --- Pa

By substituting T (x, a) for x, and i for a in the definition of T} (x, a), we obtain

T {Ti(x,a),i} =

e , Ty (x,
= sign{Tx (x, a)}(_l)ﬂo+ﬂ,+..-+ﬂ,»_. x [ﬂ_’ljl;&ll_l/_] , 1.21)
plopzl ..‘pil—l

where the §;’s are the binary digits of
k=218 +2728 4. +2'8 +2°8;,

and 0 < k' < 2/. When 2|k, we can substitute the expressions (1.19) and (1.20)
defining T} (x, a) for Ty (x, a) in (1.21), thus arriving at

Te{Tx(x, a), ibrig = Trqw (x, a). (1.22)

This relation can be seen as a consequence of the “logarithmic law” which we
expect the “indicator vector” with components B to obey—when we multiply
the denominators of two T-functions (or, when we compose the two T-functions,
which turns out to be effectively the same thing) the corresponding indicator vectors
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are added. But only when the binary numbers, representing the indicator vectors,
have their ONE:s in different positions, can they be added in a manner that conforms
with the definition (1.15), because only in such a case will there occur no overflow
in the additions, which would disturb the process and destroy the logarithmic law.
Hence the restriction that k' <2’ and at the same time 2/ |k—because only then the
ONEs in the binary representation of k' are all in lower positions than those of k.

Substituting Ty (x, a) for x, and at the same time i for a in Legendre’s sum
(1.14) gives

M+2 -1

21
HTu(x.a),i} =) Te{Tu(x, @) = Y Tilx,a) =y(M.x,a). (1.23)
k=M

k'=0
Now, the sum ¢ (x, a) in (1.18) with this notation can be rewritten in the following
way:

¢(x,a) = To(x, a) + ¢{Ti(x, a), 0} + ¢{Ta(x,a), 1} + - - - +
+ ¢{Toam1 (x, @), a — 1}. (1.24)

By once again replacing x with Ty (x, a) and, at the same time, a with i in (1.24),
we get

N Tm(x,a), i}oim = To{Tu(x,a), i} + ¢ (Ti{Tm(x, a), i}, 0) +
+ ¢ (TATu(x,a),i}, 1) + -+ + ¢ (Ta-1{Ty(x, a),i},i — 1) =
=Tu(x,a) + ¢ (Tu+1(x, a),0) + ¢ (Ty42(x,a), 1) + - - - +
+ & Tz (x,a), 1) + - + ¢ (Tys2-1(x,a),i — 1), (1.25)

if 21| M, by using (1.22). (Note that ¢ (Ta41(x, a), 0) = Ty 41(x, a), according to
(1.16).)

Starting with ¢(x,a) = ¢(To(x, a), a), we can now from (1.25) calculate
¢ (x, a) by recursive application.—As in the application of Lehmer’s method it is
favourable to have tables of ¢ (x, a) for small values of a, and to use (1.11) and
(1.12) to evaluate ¢ (x, a). It is also helpful to have an extensive table of primes
available, the larger the better.

A Worked Example

As an example, let us re-compute the previously found value of ¢ (10000, 8) =
1711 with Mapes’ method:

#(10000, 8) = ¢(To(10000, 8), 8) =
= Tp (10000, 8) + ¢ (T7(10000, 8), 0) + ¢(T>(10000, 8), 1)+
+ ¢ (T4(10000, 8), 2) + ¢ (T3(10000, 8), 3) + ¢ (T16(10000, 8), 4)+
+ ¢ (T52(10000, 8), 5) + ¢ (T64(10000, 8), 6) + ¢ (T125(10000, 8),7) =
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= 10000 + T; (10000, 8) — ¢ (3333, 1) — ¢ (2000, 2) - $ (1428, 3)—
— ¢(909, 4) + ¢(T52(10000, 8), 5) + ¢ (T64(10000. 8), 6)+
+ ¢ (T125(10000, 8), 7) = 10000 — 5000 —~ 1667~
3 (2- 16998 + 1) 3 (8 -31340 B 3) _ (482.1%40 + 16) N
+ ¢ (T32(10000, 8), 5) + ¢ (T54(10000, 8), 6) + ¢ (T128(10000, 8), 7) =
=2077 + ¢ (T32(10000, 8), 5) + ¢ (Te4(10000, 8), 6) + ¢ (T128(10000, 8), 7).

¢ (T32(10000, 8), 5) = T32(10000, 8) + T33(10000, 8) + ¢ (T34(10000, 8), 1)+
+ ¢ (T36(10000, 8), 2) + ¢ (T40(10000, 8), 3) + ¢ (743(10000, 8), 4) =
= —769 + 384 + ¢(256, 1) + ¢ (153, 2) + ¢(109, 3) + (69, 4) =

2.150 8-120
= —769 + 384 + 128 + (T + 1) + (——50-— —2) + 16 = —160.

@ (T64(10000, 8), 6) = Te4(10000, 8) + T5s5(10000, 8) + ¢ (Ts6(10000, 8), 1)+
+ ¢ (Tsg(10000, 8), 2) + ¢(T72(10000, 8), 3) + ¢ (T50(10000, 8), 4)+
+ ¢ (To6(10000, 8), 5) =
= —588 + 294 + ¢ (196, 1) + ¢ (117, 2)+
+ (84, 3) + ¢(53,4) + ¢ (T46(10000, 8), 5) =

.114 .
=—588+294+98+(2 611 +1)+(§§3—0—1>+13+

+ ¢(To6 (10000, 8), 5) = —121 + ¢ (Ty6(10000, 8), 5).

@ (T125(10000, 8), 7) = Ti28(10000, 8) + T129(10000, 8)+
+ ¢ (T130(10000, 8), 1) + ¢ (T132(10000, 8), 2) + ¢ (Ti36(10000, 8), 3)+
+ ¢ (T144(10000, 8), 4) + ¢ (T160(10000, 8), 5) + ¢(T192(10000, 8), 6) =
= —526 4263 + ¢ (175, 1) + $(105,2) + ¢ (75, 3) + (47, H)+
+ ¢(Ti60(10000, 8), 5) + ¢ (T192(10000, 8), 6) =

30
+ ¢(T160(10000, 8), 5) + ¢ (T152(10000, 8), 6) =
= —108 + ¢ (T160(10000, 8), 5) + ¢ (T192(10000, 8), 6).

2102 8.
=—526+263+88+(——6—+1)+(£ +4) + 124
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& (To6(10000, 8), 5) = Tos(10000, 8) + To7(10000, 8)+
+ ¢ (Tos (10000, 8), 1) + ¢ (T100(10000, 8), 2) + ¢ (T104(10000, 8), 3)+
+ ¢(T112(10000, 8), 4) =
=45-22—¢(15,1) -~ ¢(9,2) — ¢(6,3) — 9 (4,4 =
=45-22-8-3-1-1=10.
#(T160(10000, 8), 5) = T160(10000, 8) + T161(10000, 8)+
+ ¢(T162(10000, 8), 1) + ¢ (Ti64(10000, 8), 2) + ¢(T163(10000, 8), 3)+
+ ¢(T176(10000, 8), 4) =
=40-20—¢(13,1) —9(8,2) —¢(5,3) —¢(3,4) =
=40—-20~-7-3-1—-1=8.
@ (T192(10000, 8), 6) = Ti52(10000, 8) + T193(10000, 8)+
+ ¢ (T194(10000, 8), 1) + ¢ (T196(10000, 8), 2) + ¢(T200(10000, 8), 3)+
+ ¢ (T208(10000, 8), 4) + ¢ (T224(10000, 8), 5) =
=30—15-¢10,1) —¢(6,2) —¢p4,3) — ¢ (2, D+
+ ¢(T224(10000, 8), 5) =
=30—-15—-5—-2—-1-—1+ ¢(T224(10000, 8),5) =
= 6 + ¢ (T224(10000, 8}, 5).

¢ (T224(10000, 8), 5) = T24(10000, 8) + T225(10000, 8)+
+ ¢ (T226(10000, 8), 1) + ¢ (T2 (10000, 8), 2) + ¢ (T232(10000, 8), 3)+
+ ¢ (T240(10000, 8), 4) =
=-2414¢0,1)+¢(0,2) +¢(0,3)+¢(0,4) = -1
Summing up all this we obtain
# (10000, 8) = 2077 — 160 — 121 + 10— 108 +8 + 6 — 1 = 1711.

Before giving a formal description of Mapes’ algorithm, we should like to
take advantage of having worked through this tiresome calculation to indicate the
structure of the whole scheme we have been using to decompose ¢ (10000, 8) into
simpler terms, together with the binary representations of the subscripts of the
different M’s occurring during the computations. In the following large formula
we have organized the various terms in such an order as to make it easier to write
a computer program for the entire calculation:
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104

_,2)_4,

5

104 10*
10,8 =10"-— - —,1) -

&( ) 5 ¢(3 )¢(
10* 104 10*

- —_— — 1
13 + 213 + ¢(343 ) +
m4+.1m N ¢1m1 N
17 217 317’

N 104 104 s 104 .
1317 2.13-17 31317’

104 104 10*

- _ — 1 .
19 2.19 + ¢(349 ) +
10* 10* 104

— - 1) —

'*mw 2.13-19 ¢(mm9)
10* 104 10?

— — —1) -

'*nw 2.17-19 ¢(Mﬂ9)
104 4 10* v 10* .

13.17-19 ' 2.13-17.19 313.17.19°

The corresponding values of M are:

20,

25 420,

26 4 20,

26 425 420,

27 420,

27 425 420,

27 426 420,

27 426425 42,

)

2!, ...

25421 ...
20421, ...

20425 421, .,
27421, ...
27425421, ...
274260 421 .
27426425421 ..,

104

104
7,7

)= (ir4)

104

11-13-19°
104

11.17-19°

o
o
+o(

‘)
‘)
).

10
11-13-17-19°

24

25 24

26+24

26 425 24

27 424

27 425 424
27+26+24

27 +26 425424

The primes from pg = 13 and onwards in the denominators are chosen according
to the following scheme, where the ZEROs and ONE:s are the leading binary digits
of the corresponding M-values. The last five binary digits of M are used to indicate
which of the five primes <11 is involved in each term in a row:
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19 17 13 M
1 1.3241,2,4,8, 16
1 0 2.32+41,2,4,8, 16
1 1 3.3241,2,4,8, 16
1 0 0 4.32+1,2,4,8,16
1 0 1 5.3241,2,4,8, 16
1 1 0 6-32+4+1,2,4,8,16
1 1 1 7-324+1,2,4,8,16

Mapes’ Algorithm

Comparing this computation with the one previously shown for ¢ (10000, 8), it
appears more complicated, but for large values of x it is actually much faster. As
a matter of fact, for large values of x Mapes’ algorithm requires a computing time
roughly proportional to x®7, while Lehmer’s formula (1.5) is somewhat slower.
It is, however, a problem to keep track of all the different uses of formula (1.12)
which have to be made. To show how this can be done, we reproduce below the
algorithm given in Mapes’ paper [9].

,7)7 =0; M:=0; i:=a:=n(/x); Tylx,a):=0;

12
y := y+the latest com-
puted value of Ty (x, a)
13
Calculate Ty (x, a). Can NO M =M+41,;
¢ (Ty(x, a), i) be calcu- >[ Set i such that
lated by (1.11) or (1.13)? 21 |M
YES
y := y-+the computed
value of ¢ (Ty(x, a), i);

|

M:=M+2; Set
i such that i||M

NOYES ln(x) =y+a-—1;

It is based on the idea of calculating Legendre’s sum by Meissel’s or Lehmer’s
formulas, whenever possible, and to use auxiliary tables, like the one we have used
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above, whenever this is possible. Suppose you possess tables for all small values
of a and that you use the tabulated values also to find ¢ (x, @) by (1.9) for some
larger values of a, as described on p. 17. A reasonable maximal value of a could
then be a = 10, say.

Above is a flow-chart and below is a verbal description of the algorithm for
computing 7 (x). In the flow-chart, y denotes the sum of the terms of the Legendre
sum calculated so far. The flow chart is constructed according to the following
rules:

1. For the computation of 7 (x), use the formula

a(x) =¢(x,a)+a—1, witha =mn(/%). (1.26)

2. Use tables of ¢(z,a) forallauptoe.g. 6,and all zupto p1pz... ps/2 to
compute this function for all a up to 10, say. Use also a table of primes, the
larger the better.

3. If p, < z < p3,,, compute $(z, a) as

3
¢(z,a) = Z Pi(z,a) =1+7m(2) —a+ P(z,a) + P3(z,a), (1.27)

s=0

where P»(z, a) is the Meissel sum (1.4) and P;(z, a) is the Lehmer sum (1.6).
(Ifz < pg, thenp(z,a) = 1))

4. Now compute ¢(z, a) by aid of the tables and by (1.27), whenever possible,
and by re-application of (1.25) if a is larger than the limit chosen for the
tables (10 in our suggestion) and if 7 (z) is too large to be found in the table
of primes used.

In order to demonstrate how Mapes’ method works, let us examine the calculation
of 7(10%). The largest prime below /x = 103 is p1gg = 997. Thus, we start by
writing

m(10%) = ¢ (10°, 168) + 167.

Suppose we have a table of the primes < 2000 stored in the computer and also a
table of m(x) up to x = 2000. Suppose, also, that we have a PASCAL function
giving ¢ (x, a) for all a up to 10 and, whenever possible, that ¢ (x, a) is computed
backwards from Lehmer’s formula (1.7) by aid of a function philehmer(x,a)
for a > 10. Then the flow-chart above results in the addition of the following
entities, a fact which has been recorded by putting a so-called tracer on a computer
program representing the flow-chart:
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SR
_ﬁ+¢(2 37’ 0)+"'+¢(31x_37’10)
—ZT+¢(2 a1’ 0)+ +¢(37T41’“)
_E+¢(2 43’ °)+"'+¢(41)-C43’12)
299 +¢(2 499 0)+"'+¢(Z'9—1:T9§’94)‘

Here the computation changes pattern, due to the fact that for p; > 500 the value
of 108/ p; is less than 2000, and thus 7 (10%/ p;) can be found directly in the small
prime table stored. In this way the values of ¢ (x/p;) can be computed directly as
they stand:

~(555-%%) = (555%) =~ (555 1¢7).

Programming Mapes’ Algorithm

Having prepared a PASCAL function phi(x,a) and a small table of 7 (x), it is
now easy to program Mapes’ algorithm, following the above flow-chart. The only
tricky part remaining is how to handle the administrative portion of the program
containing the very large numbers M. Since the M’s are numbers which in binary
representation contain only very few ONE’s, a good solution to this problem is
to construct a PASCAL procedure addsparse for the addition of “sparse binary
integers.” A sparse binary integer M may be stored in an array of integers a,
containing information about those powers of 2 which occur in M. For instance,
M = 224, chosen from the computation above, which has the binary representa-
tion 224 = 32 + 64 + 128 = 25 4+ 26 4+ 27 could be stored as a[0]=3, a[1]=5,
al[2]=6, al[3]=7, where a[0] contains the number of ONE’s in M.—As a sug-
gestion the procedure could be written as follows:

PROCEDURE addsparse(u,v : vector; VAR w : vector);

{Adds two sparse binary integer arrays u and v
and places the result in w}

LABEL 1;

VAR 1i,j,k,iu,iv,iw,sw,z : INTEGER;
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BEGIN iu:=u[0]; iv:=v[0]; iw:=iu+iv; w[0]:=iw;
i:=1; j:=1; k:=1; WHILE (i <= iu) AND (j <= iv) DO
BEGIN {Here the arrays u and v are merged into w}
IF ufil<v[j]
THEN BEGIN w([k]:=uli]; i:=i+1 END
ELSE BEGIN w[k]:=v[j]; j:=j+1 END;
k:=k+1
END;
IF i=iu+1 THEN FOR i:=j TO iv DO w(lk+i-jl:=v[i];
IF j=iv+1 THEN FOR j:=i TO iu DO w(lk+j-il:=ulj];
{Here w is reduced to "standard form" with all
additions of individual ONE’s carried out}
1: j:=w[0]; FOR i:=2 TO j DO

BEGIN
IF wli-1]=w[i] THEN
BEGIN w[i-1]:=-1; w[i]:=w[i]l+1 END
END;
k:=0; FOR i:=1 TO j DO IF w[i] >= O THEN
BEGIN k:=k+1; wl[k]:=w[i] END;
w[0]:=k; sw:=0; FOR i:=2 TO k DO
IF wli-1]) > w[i] THEN
BEGIN sw:=1; z:=wl[i]; w(li]:=wli-1]; w[i-1]:=z END;
IF sw=1 THEN GOTO 1
{Here w has been reduced to standard form}
END {addsparse};

Recent Developments

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko have in [10] developed a new
variant of the Meissel-Lehmer method, in which fewer terms of the form ¢ (y, b)
are needed in the decomposition of ¢(x, a) according to (1.9). This leads to
an algorithm, asymptotically faster than Mapes’, for computing 7 (x), which its
discoverers have used to compute 7 (x) for some large values of x.

In [11], Lagarias and Odlyzko describe an entirely new analytic method for

computing 7 (x), based upon the following formula, which is more general than
(2.17):

00 1 ] 2+iT
> —c(p™ = lim — f F(s)In¢(s)ds (1.28)
— p,,.<xm T-o00 271

- 2-iT
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in which
: 24iT
c(w) = lim — fF(s)u"s ds. (1.29)
T—o0 271
2-iT

The formula is valid whenever the function F (s) is sufficiently well-behaved.
(For some background the reader is referred to pp. 44-47.) The use of this formula
for efficient computation of 7 (x) requires that a suitable function F(s) is chosen
in order that the integral in (1.28) is possible to calculate fast and accurately. (The
function F chosen by Lagarias and Odlyzko actually is a function of x as well
as of several parameters, but this is not exhibited in (1.28) and (1.29).) After
this step the calculation of Z°i2 (x'/7)/j, and of the improper integral on the

right-hand-side of (1.28) to within less than :b have to be carried out. The sum,
which is actually a finite sum since w(x'/) = 0 as soon as xYJ becomes < 2,
presents no difficulty apart from a prime count up to x 1 (which could be replaced
by a recursive computation with the same formula for the argument x 2)

Results

Mapes used his algorithm to compute 7 (x) for every million up to 1000 millions.
These computations were further extended in 1972 by Jan Bohman [12], who
managed to compute 7 (x) for some isolated values of x as high as 4- 1012. He also
attempted to compute 7 (10'3), but, as it has later been shown, the value he found
was slightly in error. In 1983 Victor Miller computed 7 (x) for selected values up
to 4 - 10'6, Recently Marc Deleglise and Joel Rivat have carried this work further
up to 10'3, this being at present the highest value of x for which 7 (x) is known.
Computing this single value took 10 days of running time on a computer called
HP-PPA. We give here a short table of m(x):

n 7 (10") n 7 (10")

3 168 | 11 4118054813
4 1229 | 12 37607912018
5 9592 | 13 346 065 536 839
6 78498 | 14 3204941750802
7 664579 | 15 29844 570422 669
8 5761455 | 16 279238 341033925
9 50847534 | 17 2623557 157654233
10 | 455052511 | 18 | 24739954287 740860

A more complete table is provided at the end of the book.
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Computational Complexity

The study of the computational complexity of various problems is a quite recent
branch of computer science. Its main goal is to estimate the amount of work that
has to be invested to solve a certain problem, the size of which is often determined
by the number of input bits. The number of bit-operations needed can be used as
a measure of the complexity of the problem. In practice, however, it is somewhat
tedious to go down to this fundamental unit of work, mainly since computers mostly
perform operations on word sized strings of bits. Now, since different kinds of
computers may have different word sizes and may run at different speeds, even the
number of operations on word sized strings is not always ideal for describing the
computational complexity of a problem. That is why in this book we shall generally
restrict ourselves to give only the order of magnitude by which the running time
for a certain problem depends on the parameters of that problem.

Also, there is always some solution to a problem which uses the minimal
number of operations. (This best solution is, however, rarely known.) But this
minimal solution may need an excessively large storage for intermediate results,
and for this reason may thus be infeasible in practice. To solve a particular problem
could often be done in several ways, and in some of these part of the computing
time may be traded for storage, or vice versa. In order to indicate what kind of
demands a certain algorithm makes on a computer, we have to give the computing
time as well as the storage demand, both as functions of those parameters which
determine the size of the problem. Those problems for which the storage demand
is modest, we shall only give the amount of work needed to solve the problem.
The little table in the next section is an example of how this kind of information
could be organized.

Comparison Between the Methods Discussed

Method Time Storage
Legendre O(x) 0(x})
Meissel O(x/(Inx)%) O@(x¥/Inx)
Lehmer O(x/(Inx)%) 0(x3/Inx)
Mapes 0(x%") 0%
Lagarias-Miller-Odlyzko 0(x3+) O(x3*)
Lagarias-Odlyzko O(x¥+) 0(x%)
Lagarias—Odlyzko O Joe ) O(x i *€)

The six methods to compute (x) discussed in this book, those of Legendre,
Meissel, Lehmer, Mapes, Lagarias—Miller-Odlyzko and Lagarias—Odlyzko, differ
in various respects. In order to cut down the computational labour, more and more
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complicated formulas are constructed. However, most of these new formulas also
demand that x (x) is known higher and higher up, at least for some key values of
x. Thus, Bohman’s computation of 7 (4 - 1012), e.g. made use of various values of
7(x) as high as x = 4 - 10%. In the table above the growth of the computing time
with x and of the storage space required is given for each of the methods discussed
in the text. Here the number € occurring in some of the exponents tends to zero
through positive values, as x — oo.
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CHAPTER 2

THE PRIMES VIEWED AT LARGE

Introduction

Not very much is known about the distribution of the primes. On one hand, their
distribution in short intervals seems extremely irregular. This is the reason why
it appears impossible to find a simple formula describing the distribution of the
primes in any detail. On the other hand, the distribution of the primes, viewed at
large, can be very well approximated by simple formulas.

As a mathematical theory, the distribution of prime numbers is quite inho-
mogeneous. Although Euclid has proved that there are infinitely many primes,
and Legendre and Gauss, as early as about 1800, conjectured some of the basic
theorems, the theory is still a mixture of unsolved problems, more or less reason-
able conjectures and a few proved theorems. The proved theorems mostly cover
only simple cases, as compared with existing conjectures, and their proofs are
often extremely complicated. Many of the proofs are not elementary, relying upon
theorems in the theory of functions. This is the reason why in this and the next
chapter we sometimes have to refrain from proving even some of the fundamental
theorems.—We shall also discuss some of the existing conjectures, together with
theoretical or numerical evidence which appears to support or to contradict the
conjecture in question.

No Polynomial Can Produce Only Primes

In the search for formulas yielding all primes (and no other numbers) some
remarkable polynomials have been found, whose values contain a surprisingly
large proportion of primes. One of these is P(x) = x2 — x + 17 which is
prime for x = 0,1,2,3,..., 16 but obviously is composite for x = 17, since
P(17) = 172 — 17+ 17 must be divisible by 17. Still more remarkable is the poly-
nomial x2 — x + 41, found by Euler, yielding primes forx =0, 1,2, ..., 40 but
being composite for x = 41, since 41412 — 41 + 41.—We here take the oppor-
tunity to indicate a connection between these remarkable polynomials and those
quadratic fields Q(+/D) in which the theorem of unique factorization into prime
factors is valid. The two polynomials mentioned above as examples of polyno-
mials rich in primes have precisely the discriminants D = —67 and D = —163,
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mentioned in Theorem A4.4 on p. 295.—Another polynomial, being even richer in
primes than x? — x + 41 is Edgar Karst’s 2x% — 199, yielding 150 primes (and the
number 1) forx =0, 1,2, ..., 198. Other such polynomials are x? + x + 27941,
discovered by Beeger in 1938, and some more recently found x2 + x + A for the
following four values of A: 72491, 247757, 85403497, and 1328742 79528931,
the last value of A representing the most prime-dense quadratic polynomial so far
constructed.—See [1'].

The proof that no (non-constant) polynomial can yield only primes is quite
simple. The assertion follows from the fact that any polynomial is unbounded when
the variables tend to infinity. (It may happen that the values of a polynomial are
bounded when the variables tend to infinity in certain directions, but not in all direc-
tions.) Suppose, there were a polynomial in n variables, P(x, y, z, .. .), yielding
only primes for integer values of the variables. First, write P = Q,(x, y,z,...)+
terms of lower degree + a, where Q,, is a homogenous polynomial of degree n,
representing all terms of the highest degree n of P, and a is the constant term,
which we to begin with shall assume is #0 and # 1. If n > 0, then Q, tends to
infinity when the variables do so in at least one direction (£, 1, ¢, .. .) in n-space
because if Q, is considered as a polynomial of one of its variables only, it has
this property. Next, because Q, is continuous, @, tends to infinity not only in
the direction mentioned, but also in some narrow cone, with (¢, 1, ¢, .. .) as axis,
and the same is true for P(x, y, z,...), being dominated by its highest degree
terms, Q,, as all the variables tend to infinity in the direction considered. Fi-
nally, if all the variables are chosen as integer multiples of the constant term a,
clearly a| P(x, y, z, ...). Since any cone will, only if we proceed far enough from
the origin, contain points belonging to any point lattice (al, am, an, ...), where
1, m, n, ...allare integers, the above construction leads to integer values of the vari-
ables (x, y, z, ...) for which a|P(x, y, z,...) with P(x, y, z, .. .) large, i.e. with
the quotient |P(x, y, z, ...)/a| > 1, showing that the value of P(x, y,z,...) is
composite for the particular set of variables arrived at in this way. (It is only at this
very last point of the proof that we have to make use of the assumption that a #0
or #=+1.)

If, on the contrary, we assume that a = 0 or %1, then we start by moving
the origin to a point (b, ¢, d, ...) with integer coordinates, for which the value of
P(b,c,d,...) = s is large. That such a point exists is clear from the proof given
above. This transformationx'=x~b,y'=y—c,z'=z—d, . .. gives anew polyno-
mial P’'(x', ¥, 2/, ...) with its constant term P'(0,0,0,...) = P(b,c,d,...) =y,
now a large integer and thus # 0 or £1. Since x,y,z,...and x',y', 7, ... take
integer values at the same time, the sets of values of P and of P’ for integer values
of the variables are also the same. Applying our proof for the case when a #0 or
+1 on P’ we arrive at the conclusion that neither in one of these cases can P take
only prime values. This concludes the proof that no (non-constant) polynomial
can give only primes for integer values of the variables.
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Formulas Yielding All Primes

There exist certain formulas which yield all the primes and no other numbers.
However, these are misleading, in that they either presuppose, in some latent way,
the knowledge of each individual prime, or rely on the bogus definition of a prime as
anon-composite number.—As an example of a formula of the first kind consider the
following algorithm: Taking the number x = 0.2030507011013017019023029...
as a starting point, extract a suitable total of adjacent digits and the primes will
emerge! This is quite obviously cheating, since all the individual primes must be
known in advance before the number x can be exploited.

A formula of the second kind mentioned is the polynomial given below, whose
positive values consist of all the primes, when the variables range over all non-
negative integers. The polynomial also yields negative values (as a matter of fact
it does so for most values of the variables), but these are not necessarily (negative)
primes.

(k+2) {1—[wz+h+j—qP —[(gk+2g+k+1)(h+j)+h—z]~
—[16k + 1’k +2)(n+ 12 +1— 2P —[2n+p+q +2z—el*—
~[Ee+2@+ 1D +1-0 = [@ - 1)y* +1 - x2-
~[6r*y* @ = 1)+ 1 —u?P —[n+1+v—yP?-
—[@=D2+1-m*P—[ai+k+1~1-i]*-

—[{@+u?@? - a))> =1} (n + 4dy)? + 1 — (x + cw)?] -
—[p+l(a=n—1)+bRan+2a —n®>—-2n-2) —mP-
—[g+yla—p—1)+sQap+2a—p*—2p—2)—xP*—

— [z + pl(a — p) +t(2ap — p* — 1) — pm]?}.

For the deduction of these types of formula, see [1].—The reader might wonder
how this expression, being the product of two factors, (k +2) and the complicated
factor within the large curly brackets, can produce any primes at all. Well, this is
merely an apparent paradox, since the only positive value assumed by the second
factor happens to be the value 1. Looking closer at the second factor the reader
will notice that it has the form

4
s2
(expression;)

i=1

1
1-—

A factor of this form can obviously take only the values 1, 0, and negative values,
and thus, once again we have been deceived, the whole thing being the following
statement in disguise:
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k 42 is prime if and only if the following diophantine system of 14 equations
in 26 variables has a positive integral solution:
wz+h+j—q=0
gk+2g+k+1)h+j)+h—-2=0
16k + 13k +2)(n+1)?*+1— f2=0
2n+p+q+z—e=0
Se+Da+1)2+1-02=0
@-1)y’+1-x2=0
16r2y*@® —-1)+1-u>=0
n+l+v—-y=0
@-D+1-m?>=0
ai+k+1-1-i=0
{@+u?W?—a)? =1} (n +4dy)? +1— (x +cu)> =0
p+lla—n—1)+bRan+2a—-n*—-2n—-2)—m=0
g+y@a@a—p—-1)+sQRap+2a—p>*-2p—-2)—x=0
7+ pl(a—p) +tQap — p> - 1) — pm = 0.

It is the author’s hope that the reader has not been greatly disappointed by this
revelation of the true nature of this prime-producing polynomial. Remember that
no polynomial can produce only primes, so that there must be some trick involved
in arriving at a polynomial producing all positive primes (and a large number of
negative composite integers).

The Distribution of Primes Viewed at Large. Euclid’s Theorem

We now give Euclid’s extremely elegant proof of the infinitude of primes. (This
proof, as a matter of fact, is frequently given as an example of indirect proof.)
Suppose there exist only a finite number of primes, p1, ps, ..., p.. Now, consider
the integer N = p;p» - - - p, + 1. None of the existing primes divides N, since the
division N/p; will always give the remainder 1. Thus either N is a (new) prime
number, or N contains a (new) prime factor, which is different from all the ones
given. Therefore we conclude that there must be an infinitude of primes.

Example. The following construction starts with the prime 2 and yields at least
one new prime in each step:

Ny =2+ 1 =3 (prime)
N3 =2-341=7 (prime)
Ny =2-3-7+41 =43 (prime)
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Ns=2-3-7-43+41=1807 = 13- 139 (yielding two primes)
Ne=2-3-7-43.139+ 1 = 251035 = 5 - 50207 (yielding two primes)
N7 =2-3-7-43-139-50207 + 1 = 12603664039 =

= 231607 - 340999 (yielding three primes)

Ng =2-3-7-43.139-50207 - 340999 + 1 = 4298368 33293963 =
=23.79-23653 47734339 (yielding three primes)

No=2-3-7-43.139-50207 - 340999 - 23652 47734339 + 1 =
= 1016587861619 0575459068761119 =
=17 - 127770091783 - 4 68022256 41471129 (yielding three primes)

The Formulas of Gauss and Legendre for 7 (x)

The Prime Number Theorem

Let us start as Legendre and Gauss did and try to estimate the number of primes <x
by counting the number s of primes in suitable intervals. We choose the intervals
[0.95 - 10", 1.05 - 10"] for n = 3(1)7 and the intervals [10", 10" 4+ 150000] for
n = 8(1)15. In each of these intervals of length d we calculate the proportion
(s/d) x 10, 000 of prime numbers. The result is shown in the table on the next
page, where the values given in the last two columns have been rounded. By
studying the figures, we observe that the density of primes in an interval, centered
around x, slowly decreases as x grows. Which law does this function obey?
Comparing the values found for x = 10” and x = 10?*, we find that the density
of primes is approximately halved when x is squared. Mathematically, this is
described by the function 1/Inx, since 1/In(x?) = 0.5/Inx. Let us compare
the density of primes with 1/Inx (natural logarithms!), the values of which we
have given in the last column of the table above. We see that both columns agree
well except for the smaller values of x. This disagreement is obviously caused
by local irregularities in the distribution of primes, which more heavily influence
the number of primes in short than in long intervals. This striking agreement
between the density of primes in an interval centred around x and the function
1/In x was discovered independently by Legendre and by Gauss, who formulated
the following approximations to 7 (x):

()~ —> | B=108366 (Legendre) @.1)
Inx - B
rd
w(x) =~ bl (Gauss) 2.2)
Inx

2
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The number s of primes in different intervals [x — d/2, x + d/2]
X d s 10000s 10000

d Inx

10° 10? 15 1500 1448

10* 10° 107 1070 1086

10° 104 867 867 869

108 10° 7227 723 724

107 108 62031 620 620

10® 4 75000 150000 8154 544 543

10° 4 75000 150000 7242 483 483

10" 4 75000 150000 6511 434 434

10" + 75000 150000 5974 398 395

10'2 4 75000 150000 5433 362 362

10" + 75000 150000 5065 338 334

10" + 75000 150000 4643 310 310

105 4 75000 150000 4251 283 290

Nowadays, the latter approximation is usually replaced by the so-called logarithmic
integral, defined by
X

dx

Inx’
0

lix =

where this improper integral has to be interpreted as

1—¢ x
. . dx dx
lix = lim — —_—
€—>+0 Inx Inx

0 14€

2.3)

The approximation by Gauss (2.2) and the logarithmic integral differ only by a
constant, 1i2 = 1.045.—The approximations by Gauss and Legendre are in fact
related, since

dx X dx _
Inx  Inx (Inx)?
X x dx
= — + =
Inx (Inx)2 (Inx)3
X x dx

“hxo1 Wmoftex—1) ) (2.34)
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The last two terms of (2.3A) are of smaller order of magnitude than the leading
term x/(Inx — 1) as x — 00, and hence we have
. lix . lix
lim =lim ———— =
x—»ox/Inx x-oox/(Inx —1)

We may thus expect that the approximations given by Legendre and by Gauss
should be about equally good, unless there is some particular reason in favour of
one or the other.

The first mathematician to prove something in the direction of these formulas
was Chebyshev, who around 1850 proved that

Alix <m(x) < B lix 2.4)

for some suitably chosen values of the constants A and B. This establishes the
fact that 7 (x) has the same order of magnitude as li x (and thus also as x/In x) as
x —> 00. (In honour of this mathematician, rr (x) 2li x is often called Chebyshev’s
approximation.)

In 1896, Hadamard and de la Vallée-Poussin independently of each other
proved The Prime Number Theorem:

w(x)~lix, as x — o0. 2.5

(This formula reads: m(x) is asymptotically equal to lix.) The Prime Number
Theorem can be reformulated as

. m(x)
lim

x—»oo lix

=1. (2.6)

The Prime Number Theorem provides information about the error introduced by
Gauss’ approximation. It tells us that the relative error of the approximation,
(lix —m(x))/m(x), tends to O as x tends to infinity. The absolute error, li x —m (x),
however, may be large, something which will be discussed later.

Unfortunately, the scope of this book does not allow for a proof of the Prime
Number Theorem. We must refer the reader to [2], which gives an elementary
(but very tedious) proof, or to [3], which provides a proof based on the theory of
functions.

Exercise 2.1. Computing lix. Write a FUNCTION 1i(x) for li x, utilizing the continued
fraction expansion

Compute the continued fraction backwards, starting with the term 10//z. Test values can be
found in Table 3 (compute li x as w(x) + (lix — 7 (x)).
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The Chebyshev Function 8 (x)

A variation of the prime number theorem which is sometimes useful depends on
the Chebyshev function 8(x) = ) p<x In p. Using the prime number theorem, this
function can be estimated in the following way:

0(x) = f Inxdn(x) =[r(x)Inxl5_o — /-x wdx =
2-0 2 X
=) Inx+ 0 (%) :
and thus
o(x) =) Inp~n(x)Inx~x, (2.64)

psx

which is equivalent to the prime number theorem. In order to see how good this
approximation for 6(x) is, we give, for some selected values of x, the value of
0(x):

X 10? 10° 10* 10°
6(x) 8373 956.25 9895.99 99685.4

See also p. 57 for some sharp estimates of 8(x).

The Riemann Zeta-function

The approximations to (x) by Gauss and by Legendre were found by empiric
methods. Riemann was the first who with great success systematically deduced re-
lations between the primes and already known mathematical functions. Riemann’s
starting point was a relation discovered already by Euler,

£(s) = ; nl - I;[ : _lp_s , @7

where the infinite product is taken over all primes. The function £ (s) is called the
Riemann zeta-function and (2.7) is a highly informative formula from which many
properties of the primes can be deduced. It is very important because it relates each
individual prime p to the simple sum ) _ n~°. Thus the properties of the primes are
via (2.7) transformed into properties of the sum and this without the necessity of
specifying each individual prime!—(2.7) can be deduced in the following manner:
Write each factor of the infinite product as a (convergent) geometric series

1
— =1+p—s+p—2s+p—3s+.”
1—p—*
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Multiply all these series together to obtain the result

> @3 iy

where the summation must cover all combinations of non-negative integer expo-
nents ¢; and all primes p;. Now the fundamental theorem of arithmetic tells us that
the products so obtained are precisely all the positive integers, raised to the power
—s, because each integer has a unique representation in the form 2132 ... p&~.
But this is exactly what appears in )_n~".

Riemann’s basic idea was to put the so-called theory of analytic functions
(differentiable functions of one complex variable) to work. This is effected by
extending the variable s, which in (2.7) is restricted to s > 1, to a complex variable
s = o +it. In order for Y ., n™* to converge, o must be > 1. However, with
so-called analytic continuation, Riemann was able to extend the function to all
real and complex values of s except s = 1, which is a singularity, and for which
|£(s)] = o0. The extension of the definition of {(s) to all s with o > 0 is achieved
by considering

(1-=2-27(s) =¢8(s) —2-27°5(s) =
=142 437447 45467+ —

—2.27F  ~ 24 - 2.6F—...=
) -1
(~D"
=1-2" 375~ 4~ 575 —... = .
+ + ; =
This series converges for all s with o > 0. Thus ¢ (s) may be written as
{(s) = : i Sl wheno > 0, if s # 1 (2.8)
=13 2 , , if s . .

For o < 0 the so-called functional equation
t(1 —s) = 2157~ cos Z’Z—S T'(s)¢(s) 2.9)

can be used to obtain the values of ¢ (s). Here I'(s) is the gamma function, defined

foro >0 as
e o]

I'(s) = f x*“le* dx. (2.10)
0

Exercise 2.2. Computing {(s). ¢(s) may be computed by aid of the Euler-Maclaurin sum
formula:

N-1
1 1 s
= -5 Nl-.v _N-s _N—s—]_
¢(s) "Z;n NN
_ s(s+l)(s+2)N_s_3+ ss+1D---(s+4) s
720 30240
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This is a so-called semiconvergent asymptotic series. The truncation error made in breaking
off the summation is always less than the immediately following term. Write a FUNCTION
zeta(s) performing the summation of the series. In single precision arithmetic (about 8
decimal digits), a suitable value of N is 10. Break off the series immediately before the last
term written out above. Check your values against the known exact values of ¢ (2) = 72/ 6,
£(@) ==*/90, L(6) = =®/ 945, £(8) = 78/ 9450 and ¢ (10) = 1%/ 93555.

The connection between the Riemann zeta-function and the primes is evident
from the infinite product in (2.7). To write 7 (x) with the aid of ¢ (s) will require
theorems and techniques from the theory of functions that we have to omit. A
detailed deduction can be found in [4]. We can only hint at some of the highlights
of the theory. The first is that Riemann found the function

1 1 1 1 1 1 & 1 1
fx)=m(x)+ Efr(xZ) + Eﬂ(ﬂ) + Zvr(x‘*) +-.-= Z;Jt(x") (2.11)

n=1

to be of more fundamental importance than i (x) itself for the study of the desired
relation between 7 (x) and ¢ (). This sumis only formally infinite, since 7 (x 1/ny —
0, as soon as x!/" decreases below 2, which will happen as soon as 7 >Inx/In2.
f(x) has jump discontinuities with jumps 1/r when x passes a prime power p’.
(When x passes a prime p, this is regarded as the prime power p'.) Let us now (as
is usual in working with trigonometric series) modify the definition (2.11) to read

I fpr—=e)+ f(p"+¢€)
m .

2.12
—+0 2 ( )

fp) = .

This means that all jumps have been split into two equal halves. The graph of the
function f(x), modified in this way, is shown on p. 48. Each time x is a prime
power p’, f(x) increases by the amount 1/r, but f(x) is constant between the
jumps.

The simplest relation between the Riemann zeta-function and f(x) is

In £ (s)

N

- / Fox—dx, (2.13)
1

which can be deduced as follows:

me)=m[Ja-p™"==) " ma-p~)=
p p
I R0 D SRS DY SN ST AT
14 14 p
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Using Stieltjes’ integrals (see Appendix 11 for this important tool!) and performing
integration by parts, we obtain

oo oo

s / r@)x~ " dx = [—x " ®)]] + f xdr(x)=) p~, (2.15)
1 1 P
since for s > 1 the integrated term vanishes both at x = co and x = 1. In an
analogous manner, we find that

o0 oo

sf]r(xi)x""'ldx = fx“ dn(x%) = Zp"”. (2.16)

1 1 4
Next, inserting the definition of f (x) from (2.11) in the integral of (2.13), and using
(2.15) and (2.16) as well as taking (2.14) into account, the integral is reduced to
In ¢ (s)/s.—Formula (2.13) can, in fact, be transformed in several different ways.
One form, in which the so-called Mellin transform has been used, is the following:

oo
1 1 .
24iT Z —mx7), if x # p”
S =/
lim — f—ln{(s)ds: 2.17)
T—o0 277 s ®© 1 , 1
2-iT —n(x7) = —, ifx = p™.
j;jn(xl) o ifx=p

Inthis equation f (x) has been expressed with the aid of known functions. However,
the integral is very difficult to determine with high accuracy; thus (2.17) is of no
immediate value in the computation of f(x) and m(x). An efficient formula for
numerical computations has been devised by Lagarias and Odlyzko, and used to
calculate 77 (x) for large values of x; see p. 33!

The Zeros of the Zeta-function

There is also a reasonably simple connection between f(x) and the zeros of the
Riemann zeta-function:
oo

. . dt
fx)=lix — Xp:h(xﬂ) + fm —In2. (2.18)

This formula was published by Riemann in 1859 and proved by von Mangoldt in
1895. Here p denotes all the complex zeros of the Riemann zeta-function, and
li(x?) = li(e?'"*) is the logarithmic integral of a complex variable, defined by

u+iv
) Zz
li(e" 7y = f%dz, v #£0. 2.19)

—00+iv
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Il " + N 1 4 + "
T + y + + 1 t + +—-

—— +
5 10 15

”(xl/n)

n

Figure 2.1. The step-function f(x) = Z
n=1

A complication is that }_ li(x®) is only a conditionally convergent infinite series;
thus the value of its sum is dependent on the order of summation of its terms. The
summation has to be carried out in increasing order of magnitude of the complex
zeros. It was in connection with these investigations that Riemann formulated his
famous conjecture, for which no proof has been found so far. Riemann conjectured
that the complex zeros of the zeta-function all have their real part o = 1/2 and are
all simple zeros. By means of extremely laborious but delicate computations, it has
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been proved by Brent, van de Lune, te Riele and Winter that the first 1,500,000,001
zeros on each side of the o-axis all lie exactly on the line o = 1/2 and are simple
zeros, see [5] and [6]. This covers the segment |¢| < 545, 439, 823.215 of the
line 0 = 1/2, since the number of zeros below ¢ is =~ ulnu — u — 1/8, with
u = t/2m. A detailed error analysis of the computations executed in the computer
program used proves the correctness of the computer’s results.—Also, much larger
intervals of substantial length have been searched for the zeros, see [6'], where a
large interval about the 10?°th zero is studied.—If the Riemann hypothesis is true,
then the order of magnitude of the terms li(x”) in (2.18) will be O(/x), and the
function f(x) will be approximated by its leading term, li x, with an error of the
order of magnitude O(4/x Inx), as can be proved by a detailed analysis. Thus,
assuming the truth of the Riemann hypothesis, we have the conjectured error term

fx) <lix + 0(/xInx). (2.20)

Conversion From f(x) Back to (x)

If lix is a good approximation to f(x), what can be said about 7 (x)? In the
definition (2.11), f(x) is a rather complicated function of 7 (x). Fortunately,
however, there exists an inversion formula by which 7 (x) can be expressed in
terms of f(x):

T(x) = Z #f(xl/”). (2.21)
n=1

The function u (n), which appears here, is called the Mbius function and is defined
by the rules

1, ifn=1
u(n) = {0, if n contains some multiple prime factor (2.22)
(=D, ifnisthe product of k distinct primes.

The most important property of the Mdbius function is

> ) = {(1) ifn=1 2.23)

e ifn>1.

(Note that also the improper divisors d = 1 and d = n of n have to be included
in this formula!) To prove (2.23), suppose that n = [];_, p{*, with all p; being
different primes. Then d|n, and u(d) = (—1)* if d is a product of precisely k
different members of the set of s primes p;. This case will occur for (;) different
divisors d of n. All divisors d of n containing one or several of the primes p; twice
or more have u(d) = 0, according to the definition of p(d). Thus

ZMd):Z(—l)"(z) =(1-1°=0, if s>1.
k=0

din
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The relation (2.23) has as one of its consequences that

>, w(n) 1
=— 2.24
Z; e (2.24)

since

S pum) X1 S u@ > dima 1(d)
L R ke X Ty

=ZE""’“() 1.1~ =1,

That (2.21) is equivalent to (2.11) is now proved in the following way:

o (1) 1 = (n)
P f(xn)=2(”n"

1 n=1 m=1 n=1 m=1
ekt (e
=ZZ um (x'"y = z ( Z (d)) = 7 (x),
u=1 mlu u=1 dlu

according to (2.23).

The Riemann Prime Number Formula

If f(x) in (2.21) is approximated by lix, we obtain Riemann’s famous prime
number formula:

Rx) =Y ”i") lixh) =

1

1. 1 1.
=lix——2—1i(x5)—%li(x%)——gli(x§)+gli(x3)—--- (2.25)

The leading term in (2.25) is the approximation of Gauss, li x, and the maximum
error of (2.25) is of the same order of magnitude as it is for the approximation li x.
For the numerical computation of li x and R(x), it is convenient to use their power
series expansions in the variable Inx. The deduction for li x runs

dx . e 2 =l gy
fm= (putting ' = x) /7dt=/z=:0 =

1nt+z

l n
—Inlnx +Z ("x) +Cy
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If the limits of integration are chosen to be 0 and x, it can be shown that the constant
of integration assumes the value y = Euler’s constant = 0.5772. . ., which gives

00 1 n
1ix=y+lnlnx+z(nx)

(2.26)

n'n ’

The function R(x) can be transformed into the so-called Gram series:

=) Y Ry T =

m

_ o~ 1" S pm) >
_1+;<m!mzn"’+‘)_ Z:lm'mg‘(m—{—l). 2.27)

The deduction above is dependent on the following two limits:

3 PO im S E® i Lo (2.28)
1 n sl 4 ns s=>1 L(s)
and
> u(m)Inn L X umnn L= d 1\
Y Hone —zz':Z—ns —mZWu—s(-—;)—
L _imu(n) _d _ g(_s)___
=lim — = Do = lim ;“() im iy =1 229

The value of the last limit follows from the fact that £ (s) in the vicinity of s = 1
has the leading term 1/(s — 1), and that thus its derivative ¢’(s) has the leading
term —1/(s — 1)2.
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In order to provide the reader with some idea of the accuracy in the approxi-

THE PRIMES VIEWED AT LARGE

mations li x and R(x), we give some values in a small table:

Accuracy of the approximations li x and R(x)

X m(x) lix —m(x) R(x) — m(x)
10? 25 5 1
103 168 10 0
10 1,229 17 -2
10° 9,592 38 -5
108 78, 498 130 29
107 664, 579 339 88
108 5,761, 455 754 97
10° 50, 847,534 1,701 =79
100 455,052, 511 3,104 -1, 828
10" 4,118,054, 813 11,588 -2,318
10" 37,607,912, 018 38,263 —1,476
101 346, 065, 536, 839 108, 971 —5,773
10 3,204,941, 750, 802 314, 890 —19,200
103 29, 844, 570, 422, 669 1,052, 619 73,218
10'6 279, 238, 341, 033, 925 3,214,632 327,052
10" 2,623, 557, 157, 654, 233 7,956, 589 —598, 255
10'® | 24,739,954, 287, 740, 860 | 21,949,555 | —3,501, 366

A denser table can be found at the end of the book. We conclude that for
large values of x, li x and in particular R(x) are close to 7 (x). The more detailed
table shows that R(x) — (x) has a great number of sign changes, which often
characterizes a good approximation.

The Sign of lix — 7 (x)

From the table above we might get the impression that li x is always > 7 (x). This
is, as a matter of fact, an old famous conjecture in the theory of primes. Judging
only from the values given in the table, we might even try to estimate the order
of magnitude of lix — 7 (x) and find it to be about \/x/ In x. However, for large
values of x, this is completely wrong! On the contrary, Littlewood has proved that
the function li x — 7 (x) changes sign infinitely often. Since those days people have
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tried to expose a specific example of li x < 7 (x). Moreover, Littlewood’s bounds
for lix — r(x) show that this difference for some large values of x can become
much larger than lix — R(x), showing that R(x) for such values of x is close to
li x rather than close to 7 (x). Thus the good approximation of R(x) to m(x) is
also to a large extent deceptive. If our table could be continued far enough, there
would be arguments x for which lix — w(x) = 0, while R(x) — m(x), for such
values of x, would be fairly large!-—The best result so far obtained in the attempts
to expose an x, leading to a negative value of lix — 7 (x), is by Herman te Riele,
who in 1986 showed that between 6.62 - 1037 and 6.69 - 10%7° there are at least
108 consecutive integers, for which lix < m(x). See [7'].

The study of the difference lix — r(x) shows that in some cases reasoning
based on numerical evidence can lead to wrong conclusions, even if the evidence
seems overwhelming!

The Influence of the Complex Zeros of ¢ (s) on 7 (x)

As can be seen from the above table, not even R(x) can reproduce the primes
completely. The reason for this is that the contribution to f(x) from the terms
—li(x#) in (2.18) has not been taken into account in writing down the expression
R(x). (The other two terms have very little influence on 7 (x), particularly for
large values of x.) Since lix describes well the distribution of primes viewed at
large, we may say that the complex zeros of the Riemann zeta-function induce
the local variations in the distribution of the primes. It turns out that each pair
Pr = % + iy of complex zeros of ¢ (s) gives rise to a correction Ci(x) to f(x),
of magnitude

—2./x cos (o Inx — arg por)

Ci(x) = 2R(ix™*) =~ Il Inx
k

(2.30)

Each of the corrections C;(x) to f(x) is an oscillating function whose amplitude,
which is 24/x/(Jpx| In x), increases very slowly with the value of x. The curves
y = Cr(x), fork =1,2,...,5, corresponding to the first five pairs of complex
zeros of ¢ (s), have been sketched in the diagrams on the next page.

Finally, all these corrections to f(x) produce, in turn, corrections to w(x)
which are constructed following the same pattern as that exhibited in formula (2.25)
for R(x), but with Ci(x) substituted for li x. Adding up the first ten corrections
of the type shown in the graphs on the next page, we arrive at the approximation
Rio(x) of m(x), depicted on p. 55. Comparing R)o(x) with 7 (x), in the same
figure, we see that R;o(x) reproduces i (x) quite faithfully.—The influence of the
first 29 pairs of zeros, covering the segment |¢[ < 100 of the line ¢ = 1/2, has
been studied in detail in [7] by the author of this book.
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The Remainder Term in the Prime Number Theorem

We have mentioned that assuming the Riemann hypothesis to be true, the Prime
Number Theorem with remainder term states that

n(x) =lix +h(x), with h(x) = O(V/xInx), (2.31)

where “ =" indicates that the result is only conjectured, not proved. Until the
Riemann hypothesis is proved, however, only weaker estimates of the remainder
term h(x) are known to be valid. If e.g. it could be proved that the upper limit of
the real part o of the zeros of the zeta-function is 8, for some 8 between % and 1,
then it would follow that

m(x) =lix + 0(x%). (2.32)

Some actually proved estimates of the remainder term are given in the following
expressions:

7(x) = lix + O (™M) 2.33)
mx)=lix+0 (xe_o‘oog('"")3/5/“"'"")1/5) . (2.34)

For proofs, see [8] or [9].—In these estimates of the error term, the numerical
values of the constants latent in the O-notations are not given. These constants
are theoretically computable, but the computations are so complicated that nobody
has undertaken them. In spite of this lack of precision, the formulas are very useful
in theoretical investigations, but mainly useless when it comes to computing the
number of primes less than, say, 10'%, In such a situation it is not sufficient to
know just only the order of magnitude of w(x) — lix, when x — o0, but the
numerical values of all the constants in the remainder term must also be known.
This remark leads us over to

Effective Inequalities for 7 (x), p,, and 6 (x)

In 1962 some elegant inequalities for 7 (x) have been discovered by J. Barkley
Rosser and Lowell Schoenfeld [10]-[12]. We quote (without proving) the follow-

ing:

X 1 X - 3
m(l+2lnx) < T < in_,x—(1+2lnx) (2.35)

(2.36)
x>67 x>e! =4.48169
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lix—livx < wx) < lix. (2.37)
1nM<x<10® 2<x<10®

The domain of validity is indicated below the inequality sign for each of the
inequalities. We also give some estimates of the nth prime, p,, the first one given
found by Rosser and the second by Robin [13]:

n (ln(n Inn) — %) < pp < n (ln(n Inn) — %) (2.38)

n>2 n>20

n(In(n Inn) — 1.0072629) < p, < n(In(nInn) — 0.9385). (2.39)
n>2 n>7022

In [11] the following inequalities are proved for the Chebyshev function 6(x) =
> p<x Inp

0.998684x < 6(x) < 1.001102x, (2.40)
1319007 <x 0<x

and for smaller values of x

f8(x) > 0.985x if x > 11927, f(x) > 0.990x if x > 32057

f(x) > 0.995x if x > 89387, 0(x) > 0.998x if x > 487381.
(2.41)
These inequalities are useful when it comes to analysing strategies for the opti-
mization of various algorithms in factorization and primality testing.

The Number of Primes in Arithmetic Progressions

Suppose that a and b are positive integers, and consider all integers forming an
arithmetic progression an + b, n =0, 1, 2, 3,... How many of these numbers <x
are primes? Denote this total by 7, 5(x). In order for an + b to contain any primes
at all, it is apparent that the greatest common divisor (a, b) of a and b must be
= 1 (except in the obvious case when b is a prime and a is chosen a multiple of
b, in which instance an + b will contain just one prime, b). If this condition is
fulfilled, a certain proportion of all primes, 1/¢(a), where ¢ (a) is Euler’s function
(see Appendix 2, p. 269), belong to the arithmetic series as x — oo. Utilizing the
Prime Number Theorem this gives the following theorem of Dirichlet, the proof
of which was not completed until de la Vallée-Poussin gave his proof of the Prime
Number Theorem:

: 1
fim Tet® _ 1 (2.42)

x—oo  lix p(a)
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Analogous to the remainders of the Prime Number Theorem presented in (2.33)—
(2.34), it has been proved that

_ lix —JInx/15
Tap(¥) = o5 + 0 (xe ) (2.43)

etc. Proofs are furnished in [8]. Dirichlet’s theorem states that the primes are ap-
proximately equi-distributed among those arithmetic series of the form an + b, for
afixed value of a, which contain several primes. Thus in the limit half of the primes
are found in each of the two series4n—1 and4n+1,orin6n—1and 6n+1, and 25%
of the primes are found in each of the four series 10n £ 1, 10n & 3, etc. Dirichlet’s
theorem also tells us that every arithmetic series an +b with (a, b) = 1 contains in-
finitely many primes. To give just one example: There are infinitely many primes
ending in 33333, such as 733333, 1133333, 2633333, 2833333, 3233333,
3433333, 3733333, 4933333, 5633333, 6233333,...,1000133333 .., be-
cause the series 100000n + 33333 contains, in the long run, 1/40000 of all
primes.

A readable account in which many of the topics of this chapter are discussed
in greater detail is [14], which also contains a large bibliography.
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CHAPTER 3

SUBTLETIES IN THE DISTRIBUTION OF PRIMES

The Distribution of Primes in Short Intervals

There are only very few proved results concerning the distribution of primes in
short intervals. The prime number theorem tells us that the average density of
primes around x is approximately 1/Inx. This means that if we consider an
interval of length Ax about x and choose any integer ¢ in this interval, then the
probability of ¢ being a prime will approach 1/Inx as x — oo, if Ax is small
compared to x. This implies that the primes tend to thin out as x grows larger;
an implication that becomes obvious when considering that the condition for a
randomly picked integer x to be composite is that it has some prime factor <\/x,
and that there are more prime factors <./x to choose from when x is larger.

What law governs the thinning out of primes as we go higher up in the number
series? On the average p,y1 — p, grows slowly with n. However in contrast,
certainly as far as current prime tables extend, we repeatedly discover consecutive
primes for which p,; — p, = 2, the so called “twin primes.” The reader should
at this point examine Table 2 at the end of this book.

Twins and Some Other Constellations of Primes

Twin primes, i.e. pairs of primes of the form x and x + 2, occur very high up in the
number series, see [1']. The largest known pair to date is the following incredibly
large pair, found in 1993 by Harvey Dubner:

1692 923232 .10%020 + 1.

Detailed statistics on the occurrence of primes have been gathered up to at least
7 - 1013, These statistics indicate that the twins tend to thin out compared with
the primes as we move higher up in the number series. This is as natural as the
thinning out of the primes themselves is because, if p is a prime, it becomes less
and less likely that p + 2 is also a prime, the larger p is. In this context it is of
interest to mention one of the few facts that have been proved about constellations
of primes: Brun’s theorem stating that the sum of 1/p taken over all twin primes
converges:

11 11 11 11
B=(L41 L — = — 4 — )4~ 1.9022.
(3+5)+(5+7)+(“+13)+<17+19)+
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The constant B is termed Brun’s constant; see [1] for its computation. Brun’s
theorem tells us that there are not very many twin primes compared with the total
number of primes, since ) _ 1/p taken over only the twin primes converges, while
3" 1/p extended over all primes diverges.

A careful study of prime tables has also shown that constellations of primes
other than twins, known from the beginning of the number series, are repeated
over and over again. A detailed study has been made of the occurrence of two
different kinds of prime triples, (p, p + 2, p + 6) and (p, p + 4, p + 6), and of
prime quadruples (p, p+2, p+6, p+8). These constellations are exemplified by
(41,43,47), (37,41,43), and (11,13,17,19) respectively.—Nothing has so far been
proved about the occurrence of such constellations, but Hardy and Littlewood
[2] have made a famous conjecture about their numbers. Before getting into a
general discussion on constellations, we give below some special instances of this
conjecture.

The number of some prime constellations Py, with their smallest member <x,
as x tends to infinity, are given by the following formulas, in which the products
are taken over the primes indicated:

X

e -2 [ d d
Pup.p+2) <2 22 ),/‘(lni)z = 1.320323632f X 3.1
2

pos (P— 12 J (nxy?

Pi(p,p+2,p+6)~ P(p,p+4,p+6)~<

X

.9 pz(p—3)] dx / dx
~ = = 2.858248596 | ——— 3.2
2 ,!1 (- 1? J Gnxy {nxy’ 32

. J J

1
P,(p,p+2,p+6,p+8)'55P,(p,p+4,p+6,p+10)£

X X
c 27T+ P(p—94) dx " dx
> I1 T /(lnx)“ —4.151180864/—(lnx)4 (3.3)
2 2

p=5

We have here introduced the symbol ~ instead of writing just ~ to indicate that
the corresponding relation is only conjectured, not proved.

In the following little table we give a count of the number of prime con-
stellations, as found by some of the statistics [3] mentioned above, and compare
these values with the corresponding numbers calculated by means of the Hardy—
Littlewood formulas:
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Number of prime constellations < 10?

Constellation Count | Approx.
(p.p+2) 440312 | 440368
(p,p+2,p+6) 55600 55490
(p.p+4,p+6) 55556 55490
P.Pp+2,p+6,p+8) 4768 4734

Admissible Constellations of Primes

Any constellation of integers of the following form, which is not ruled out by
divisibility considerations as a candidate for consisting of only prime numbers, is
called an admissible constellation:

t+ay, t+az,...,t+a.

Thus ¢t + 1, ¢ + 3, t + 5 is inadmissible. It is eliminated because three consecutive
odd (or even) integers always contain precisely one multiple of 3. This particular
constellation is ruled inadmissible despite the fact that it contains the sequence
of primes 3, 5, 7, because at the moment we are interested only in constellations
capable of containing several instances with all its members prime.

To verify if a given constellation is admissible is easy in principle, but may
be a quite laborious task if / is large. The method of verification consists of
trying to sieve with the multiples of the primes 2, 3, 5, ... in such a way that the
integers of the constellation are avoided. If this succeeds for all primes </ then the
constellation is admissible, otherwise it is not. The process is similar to sieving
with the sieve of Eratosthenes, but with all possible starting points for the first
multiple of the small primes.

As an example let us see if the constellation
t+1,t+7,04+11, ¢ 4+13, ¢ +17, ¢ +19, £ +23, t +29
is admissible. Since all its members have the same parity, we need not consider
the factor 2 as long as we choose ¢ even. Represent the constellation by the
corresponding integers in the interval [1, 29]. Now, there are 3 different ways to
sieve with the prime 3:

1,4,7,10,13,16, 19, 22, 25, 28, 2,5,8,11, 14,17, 20, 23, 26, 29,

and 3,6,9,12,15,18,21,24,27.
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The last of these 3 sievings does not land upon any number in the constellation. If
we thus choose ¢t = 0 mod 3, everything is satisfactory so far. For the multiples of
5 we also find only one position which does not collide with any member of the
constellation:

5,10, 15, 20, 25.

The multiples of 7 can be placed on top of the numbers in the constellation in 7
different ways:

1,8,15,22,29, 2,9,16,23, 3,10,17,24, 4,611,18,25,

5,12,19,26, 6,13,20,27, 7,14,21,28.

All these possibilities have at least one number in common with the constellation
which, as a result of this fact, is inadmissible. This fact may also be expressed
algebraically by saying that the integers of the constellation represent all seven
residue classes mod 7:

7=0,1=1,23=2,17=3,11=4, 19=5, 13 =6 mod 7.

Actually, this last way of describing the members of the constellation mod 7
gives a clue to a somewhat simpler procedure to decide whether a constellation is
admissible or not. All that is needed is to first fix the value of ¢, then to compute
t + a; mod p for all g;’s of the constellation and finally to check if the values
found leave at least one residue class mod p free or not. If there is at least one
free residue class for every prime p, then the constellation is admissible, otherwise
not. Obviously this checking is necessary only for the primes p <!, where [ (as
previously) denotes the number of members of the constellation. The reason is
that if p > [, then there exists at least one free residue class mod p (because /
elements cannot occupy p different classes, if / < p.) So in re-doing the example
given above, we successively find (after having fixed the value of ¢t = 0):

Occupied residue classes mod2 : 1
mod3 : 1, 2
modS : 1,2, 3, 4
mod7 : 0,1,2,3,4,5,6

and we have, as before, arrived at the result that this particular constellation is
inadmissible, since all seven residue classes mod 7 are occupied.
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The Hardy-Littlewood Constants

What is the origin of the complicated looking constants in the Hardy-Littlewood
formulas (3.1)—(3.3)? Obviously, each residue class (mod p) which is not repre-
sented by the integers in the constellation gives exactly one possibility for sieving
with multiples of p. Enumerating the number of possibilities available for each
prime gives the numerical values of these constants. Take as example formula
(3.3), concerning the constellation ¢, r + 2,¢ + 6, ¢ + 8. The multiples of 2 can
only be placed in positions 1, 3, 5, 7 and the multiples of 3 can only be inserted
in 1, 4, 7 without ruling the constellation out as inadmissible. This reduces the
number of useful #’s to just one residue class mod 6, but when this residue class
is chosen, it augments the possibility that ¢, + 2, ¢ + 6 and ¢ + 8 are all primes
by a factor (% X %)4 = 81 when compared with the situation of all four integers
being chosen at random. This gives rise to the numerical factor é -81 = % in
(3.3). Furthermore, for any prime p >5 we have p — 4 choices to prevent any of
t,t+2,t+4and + 8 from being multiples of p, as compared with p — 1 choices
for each of these integers, if they were to be chosen independently. This gives rise
to the following factor:

4 ™" _ Pe-9
(1‘;) (“;) D G

This explains the form of the infinite product in (3.3).

As a final example, let us study the constellation representing the pattern of
primes between 11 and 67:

t+11, ¢4+ 13, ¢+ 17,...,t +59, t + 61, t +67. 3.5)

We shall prove it admissible and find the Hardy-Littlewood formula for its num-
bers. Since all its members are primes for ¢+ = 0, the first primes 2, 3, 5 and 7
obviously do not interfere with this constellation. It has 15 members, so that for
large primes p we have at least p — 15 residue classes remaining in which to place
the multiples of p without hitting any number in the constellation. How about the
primes from 11 onwards? Well, a check reveals that (still with ¢ = 0) the residue
class = 5mod 11 is not used, neither is the residue class = 12 mod 13. For p = 17
there are 4 free residue classes, for p = 19 there are 6, for p = 23 there are 9,
and finally, for all p > 29 there are p — 15 residue classes available from which
to select the multiples of p.

In order to compute the constant in the formula for the number of constella-
tions of this kind, we need to use the information just obtained about the number
of residue classes available for each prime. Thus, the exact form of the formula in
this case is found to be

P(t+11,1+13,t+17,...,t +61,1+67) ~
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¢ 214 314 514 714 1114 1314 4,1714 6~19]4 9.2314

115 215 315 g5 108 1285 1615 "T1815 T 9215
14
p (P—15)f
X =
,,];[9 (p—D5 J (Inx)b

X
dx X
= 187823.7‘/‘0“%)15 187823.7 . LA (3.6)
2
Readers interested in how to compute accurately the numerical values of the infinite
products occurring in the constants of these conjectures, are referred to Exercises
3.1 and 3.2 below and to [4]. Despite the fact that the primes are not all individually
known, these constants can be computed fo any desired accuracy! This astonishing
result is due to the fact that (2.7) can be transformed (in a rather complicated way)
so as to express any of these constants as a convergent series of known functions.

Exercise 3.1. The prime zeta-function. The function P(s) = }_ p~*, summed over
all primes, is called the prime zeta-function. It is indispensable for the evaluation of
expressions containing all primes such as the twin prime constant, occurring in (3.1), or
the infinite product in (3.6). Values of P(s) may be computed from values of the Riemann
zeta-function ¢ (s) in the following way: taking ]ogarithms of both sides of (2.7) gives

lnC(S)——Zln(l— -f)—zzp _Z Z ZP(ks)'

Inversion of this formu]a gives
P(s) = Z 2O 11 ¢ k).

Here (k) is Mobius function and the values of the zeta function are to be computed as in
exercise 2.2 on p. 45. For large values of ks the following shortcut may be convenient:

Int(ks) =In(1 4278 4378 4% 4 .. )=

1
— 2-h + 3-Iu + _2_ . 4-k: + S-k.r + 7-k.\- +
Write a FUNCTION P(s) calling the FUNCTION zeta(s) from exercise 2.2 and giving the
value of P(s) for s >2. Incorporate P(s) in a test program and check your programming
of P(s) by re-computing In ¢ (s) from P(s) by the formula above and comparing the result
with the result of a direct computation of In ¢ (s).

Exercise 3.2. The twin prime constant. The twin prime constant C in (3.1) can be
evaluated by the following computation: Write

= {( 5)-(-3)]
7= In 2In{ 1~ =
; (p_l)z p>3 " pPJ)

_ (2 1 4 +2+12+12+)__
T4 \Up 2 p 3 p3 p 2 p2 3 p -
P23 =2 P = ]



SUBTLETIES IN THE DISTRIBUTION OF PRIMES

Now Zﬂ p~* = P(s) — 27, where P(s) is the prime zeta-function studied in exercise 3.1
above. Use your FUNCTION P(s) in a computer program which evaluates In(C/2) after
the formula given above. Compare the result with the value calculated from C as given in
@3.1n

A generalization of (3.1)~(3.3) is a very famous conjecture called

The Prime k-Tuples Conjecture

Any admissible constellation occurs infinitely often with all its members primes,
and the asymptotic number of its occurrences <x is Q(x/(Inx)*), where k is the
number of integers in the constellation.

This has not been proved, not even in its simplest case, for twins! By sieve
methods it has been proved, however, that the number of admissible constellations
has upper bounds of the form Cx /(In x)?>.—There is, on the other hand, a heuristic
line of reasoning which makes the conjecture plausible. It is instructive to examine
this line of reasoning, and find out what is lacking for a complete proof.

To do so, we start with

Theorem 3.1. Theorem of Mertens.

1 - .5615
n(l__)wf——zo , asx —> 0o. 3.7

25p<x p Inx Inx

Here, y is Euler’s constant. For a proof, see [5].

Replacing x by x%3615, we find that

1 1
n (1 - —) ~ ——, for large x. 3.8)
2<p<x05615 p Inx

However, 1/Inx is the expectation that a large integer x, chosen at random, is
prime. On the other hand, the number x is prime if and only if it is not divisible
by any of the primes <./x. Thus, we might expect

]—I (1 — l) tobe ~ —1— for large x, 3.9)
2<px0s 4 Inx
which clearly is discrepant from Mertens’ theorem. This discrepancy must arise
from the fact that there are subtleties in the distribution of the primes up to /x,
which influence the primes near x and which are not accounted for by the simple
statistical model utilized, in which divisibility by different primes is considered to
be independent. Or, to put it another way, the sieve of Eratosthenes is special in
the sense that it sieves out numbers more efficiently than does a “random” sieve.
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Thus, when sieving with all primes p <./x and utilizing the sicve of Eratosthenes,
the Prime Number Theorem ensures that in the vicinity of x the fraction 1/ In x of
numbers remain untouched by the sieve, while a random sieve using exactly the
same primes leaves, according to (3.7), the larger fraction 1.123/ In x of numbers
unaffected by the sieve. Note that a special property of the sieve of Eratosthenes is
the existence of one and only one number, zero, which is struck by all the sieving
primes.—The simple model of independent divisibility by the primes <./x can,
as a matter of fact, be used first when we consider blocks of consecutive integers
as huge as the product of all the primes <./x. The length of such a block is of the
order of magnitude ev*, which is very much larger than x. We shall make use of
the difference in efficiency between the sieve of Eratosthenes and a random sieve
later, when discussing superdense constellations.

Theoretical Evidence in Favour of the Prime k-Tuples Conjecture

We now return to the heuristic line of thought as promised in the prime k-tuples
conjecture. We confine the deduction to the case of twin primes. Let the notation
E(x,x + 2 € P) denote “the expectation that x and x + 2 both belong to the set
of primes P.” Then, a similar reasoning to that used previously leads to

E(x,x+2e€ P)~ (3.10)

3<p<f

unless the above needed transformation from /x to x%%% (or possibly some
other correction) must be made in order that the asymptotic number of twin primes
emerges correctly. No-one has so far proved anything in this direction. If we
change /x to x%%15 we easily obtain

c 2 -!
E(x,x+2e€ P)X E(x € P) r[ O—«J(1~l> ~
3<p<x05615 P pP

2 D05
(Inx)? 351:5110.5615 ( p p

1\7? 1.320323632
(1nx)2n( )( _;) T nx2 G0

In passing from the first to the second line we have multiplied by a factor

1 I O 1y‘1
Inx 2< p<x05615 p '
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in order that the infinite product in the final line be convergent.

In summary; since the infinite product in (3.10) diverges as x — oo, the upper
limit x%%6!5 imposed on p is crucial for the asymptotic formula to be correct! We
complete this theoretical discussion by remarking that the expression x/(In x)*
tends to infinity with x, for any k, which implies that if the prime k-tuples conjecture
is true all kinds of admissible constellations will occur infinitely often with all
elements primes. By this remark we actually weaken the conjecture enormously,
but it still implies that, although the primes thin out as x — 00, they tend to form
clusters, so that all these constellations are formed over and over again.

Numerical Evidence in Favour of the Prime k-Tuples Conjecture

We have already presented the very impressive comparison between the statistics
on the occurrence of four simple constellations and the predictions calculated on
the basis of the prime k-tuples conjecture. A similar check has been made for the
primes in the intervals [10%, 10* + 150, 000] for k < 15, and the agreement between
conjecture and reality was strikingly good also in these cases.

In our theoretical discussion of the twin prime conjecture above, we found
that a change from /x to x%¢13 had to be made in order for the formulas to
develop as they should. Such a subtle change may be regarded as having only
second-order effects on the distribution of the primes. Thus, if some second-order
effects of the empirical model used could be numerically tested, and were found to
agree with reality, then this would support other conclusions drawn from the same
model, such as the primes k-tuple conjecture. Precisely such a test of second-order
effects has been carried out by Richard Brent [6] who, in 1974, published statistics
on the occurrence of small gaps between consecutive primes. The distribution
of gaps of various sizes can also be predicted from the same model that has led
to the twin primes conjecture. Also in these statistics, a very striking agreement
between prediction and reality was observed for the whole interval investigated,
which ranged from 106 to 10°. To give the reader some idea of Brent’s results, we
give on the next page the number of prime gaps of length 2r, as actually counted
in a prime table, and as predicted by the model used.

The Prime Number Theorem states that the primes become less dense the
higher we reach in the number series. This has led Hardy and Littlewood to
formulate another hypothesis, namely

The Second Hardy-Littlewood Conjecture

In this conjecture it is supposed that nowhere can the primes be denser than in the
beginning of the number series, or more precisely: In no interval [x + 1, x + y]
of length y are there more primes than in the interval [1, y].—Or

n(x+y)—m(x) €£n(y) forallx,y. (3.12)
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Counted and predicted number of prime gaps of length 2r in [10°, 10°]

r Counted Predicted r Counted Predicted
1 3416337 3417060.1 21 953980 954 689.0
2 3416536 3417060.1 22 389432 389057.1
3 6076242 6077407.1 23 334 565 335337.0
4 2689540 2688 560.2 24 577051 577 898.6
5 3477688 3477436.8 25 327960 327323.5
6 4460952 4460654.7 26 245727 245799.1
7 2460332 2461360.3 27 410614 410578.1
8 1843216 1842845.7 28 211409 211469.0
9 3346123 3347229.6 29 1818%4 182 398.0

10 1821641 1823424.2 30 371743 372007.3

11 1567507 1567220.8 31 115542 115837.8

12 2364792 2362746.8 32 118927 118681.6

13 1118410 1118419.0 33 216739 216467.5

14 1218009 1218441.9 34 88383 88116.0

15 2176077 2176130.5 35 124 542 125688.7

16 683 346 682871.2 36 126 650 126786.7

17 718974 718118.6 37 62514 62578.8

18 1170757 1169307.2 38 55107 553254

19 548416 547 688.6 39 105300 105390.3
20 648 356 648 539.8 40 53513 53578.4

At first sight, this conjecture seems very plausible, but in 1974 Douglas Hens-
ley and Ian Richards [7] proved that certain admissible constellations exist which
are denser than the series of primes in the beginning of the number series. This
result implies that the two conjectures of Hardy and Littlewood are incompati-
ble! Such superdense constellations can be constructed according to the following
ideas:

As demonstrated on p. 67, a random sieve leaves untouched about 12% more
numbers than does the annihilating sieve of Eratosthenes. The primes below u
remain after sieving with the primes up to \/u using the algorithm of Eratosthenes.
In the construction of an admissible constellation of primes, a random sieve, which
is rather more preserving than the sieve of Eratosthenes, might be used, at least
in part. Thus, a cleverly constructed admissible constellation of length x could
in fact have more members in it than the 7 (x) numbers unaffected by the sieve of
Eratosthenes.
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The Midpoint Sieve

The question is where to look for an admissible constellation with the desired
properties? Could the number 1 together with the primes up to x be a suitable
candidate? Definitely not, since the presence of small primes spoils it, just as in the
case of the constellations r +2, ft +3 and ¢ + 3, t + 5, t + 7 which are inadmissible.
On the other hand, if we omit the small primes then the resulting constellation
might be admissible, such as the constellation (3.5) above, but would obviously
contain fewer members than 7 (x). At this point the idea of a midpoint sieve enters
the discussion. Because the primes, on average, thin out as x grows, the primes
below x /2 are more than % of those below x. Thus, starting with the positive and
negative primes between —x /2 and x /2 (together with the numbers *1), there is a
possibility that these (apart from two small “holes” near the origin) will constitute
an admissible constellation of the desired size. Let us now consider this possibility!
Take, for example, the interval [—73, 73], which contains 27 (73) = 42 positive
and negative primes. By excluding the primes in [-23, 23] (18 in total) and
adding the two numbers £1, we are left with 26 numbers. These obviously form
an admissible constellation, since all multiples of the primes > 29 can be placed
in the positions of numbers already eliminated. However, and this is a crucial
point, 26 compares very unfavourably with the desired goal w(146) + 1 = 35.
Can the situation be altered if we choose a very large interval? Unfortunately, no!
Let us try to find out why not. Consider now the interval [—x/2, x/2] containing
27 (x /2) positive and negative primes. Exclude the primes in the interval [~ U, U].
How large should U be? Well, we expect the final number of members of the
constellation to be about 7 (x), so that U ought to be about the same size. Thus,
the number of primes about the origin which are excluded is about 27 (7 (x)),
leaving approximately

2 (%) — 2 (X)) + 2 (.13)

numbers in the constellation. This expression has now to be evaluated and com-
pared with m(x). Later on we shall have to evaluate a slightly more general
expression, viz. (3.14), and thus, since 7 (x) ~ x/Inx, we may evaluate (3.13) by
observing that it corresponds to the special case N = 1 in the formula immediately
following (3.15). Sadly the calculation always results in the value of (3.13) being
less than 7 (x), at least for all sufficiently large values of x, and thus it might seem
that the midpoint idea was not such a good one after all.

Modification of the Midpoint Sieve

Could the failure of the midpoint idea stem from the fact that the sieve of Er-
atosthenes annihilates too many of the numbers in the interval [—x/2, x/2] as
compared to a random sieve? If this is the case, then perhaps the number U
should be slightly decreased and chosen smaller than 7 (x). Moreover, in order
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not to allow multiples of primes between U and 7 (x) to spoil the proposed con-
stellation, they are placed (if possible) on numbers (composite or small primes) in
[—x/2, x /2] that have already been employed! This is exactly what Hensley and
Richards managed to do, and we now proceed to describe their reasoning in some
detail.

Construction of Superdense Admissible Constellations

Consider once again the interval [—x/2, x/2], and place the multiples of all the
small primes <U = x/(N Inx) for some constant N > 2/In2 in their normal
positions, i.e., employ the sieve of Eratosthenes using these primes. Next, try to
place the multiples of the primes >x /(N Inx) on top of the composite numbers
already gone or on top of the already annihilated small primes. This is the only
tricky step in the entire procedure! If it succeeds, we are left with the positive and
negative primes between x /(N Inx) and x/2 and the two numbers +1 and —1, in

total with
2 (%)-2;: (N;‘nx)+2 (3.14)

numbers in the constellation. If this number exceeds s (x), which it will do for
all sufficently large values of x, then a superdense constellation will result. Here
is the calculation which proves that the expression (3.14) will finally take values
> m(x): as we have already mentioned, it is sufficient to use the Prime Number
Theorem with remainder term for the proof. First, from (2.29) it follows that

. X X X X
m(x) =1lilx) +o (W) =1 + Inx) +o0 ((lnx)2) (3.15)

Using this, after some calculations we find that

2 (3) ~ 27 (4 )—n(x)=<ln2_ﬁ)x+o( x ) Kx

2 Ninx (Inx)? 2]~ Unx)?’

with a positive constant K, as long as N is chosen > 2/In2 == 2.89. Since the
expression arrived at tends to infinity with x, there exist, amazingly enough, for
all sufficiently large x, superdense admissible constellations of length x, with a
number of elements that exceeds 7 (x). The number of elements in the constella-
tion can even be made to exceed m(x) by any fixed amount, say M. This can be
achieved merely by selecting x large enough, and then there will exist an admis-
sible constellation of length x with a number of elements that exceeds 7 (x) by M
or more,

By quite complicated and extensive computer runs John Selfridge first showed
that any superdense admissible constellation must exceed 500 in length, and Warren
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Stenberg subsequently showed that there exists such a constellation of length
<20000. Finally, in 1979, Thomas Vehka [8] succeeded in exhibiting a superdense
admissible constellation of length 11763 that consists of 1412 numbers, while
w(11763) is only 1409. If we believe in the prime k-tuples conjecture, which,
as we have seen, seems well founded, it would follow that a superdense cluster
of primes would exist. It is certainly a challenge to try to exhibit such an entity!
Since this cluster (if it exists) probably is very large, the first step to find one is that
taken by Vehka, to construct a superdense admissible constellation, i.e. a pattern
that these primes could make up. Then, as a second step, different instances of
this constellation would have to be verified for primality of all its members, until
finally a superdense cluster of primes could be identified.

We have hitherto by-passed the problem of placing the primes between
x/(N Inx) and x on the already eliminated numbers. The possibility to do this
depends on a theorem of Westzynthius, Erdds and Rankin which states that, by
sieving only with the small primes <Inx it is actually possible to find here and
there in an interval of length x, provided x is sufficiently large, as many as N Inx
integers which have been sieved out by only these primes. N can here be arbitrarily
large, provided x > xo(N). These sequences look much like the following one,
taken from a small factor table:

The smallest factor p of 33 consecutive integers n

n p n p n p
60044 2 60055 5 60066 2
45 3 56 2 67 7
46 2 57 3 68 2
47 13 58 2 69 3
48 2 59 19 70 2
49 i1 60 2 71 11
50 2 61 17 71 2
51 3 62 2 73 13
52 2 63 3 74 2
53 7 64 2 75 3
54 2 65 5 76 2

In order to make use of the theorem just mentioned, Richards and Hensley
modified it to apply not only to sequences of consecutive integers, but also to
integers forming an arithmetic series with the difference a prime number, just
like the multiples of p in our interval [—x/2, x/2]. In this way they managed
to prove that their proposed construction of superdense admissible constellations
will succeed.
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Some Dense Clusters of Primes

Hensley’s and Richards’ work has some connection with an investigation by the
author [9], made in 1969-70, in order to find a dense cluster of large primes.
The idea was to seek repetitions of the patterns of primes in the beginning of the
number series. It was during the course of this work that it was discovered that
the constellation mentioned earlier, consisting of the primes between 11 and 67,
is admissible. A search for primes having this pattern was, however, not quite
successful. The “closest hit” at that time was the cluster

429983158710 + 11, 13, 17, 19, 23, 37, 41, 43, 47, 53, 59,

with all its members primes. (Only the primes 29, 31, 61 and 67 of the constellation
are not repeated in this cluster.)—In 1982 this search was taken up by Sten Séfholm
and Demetre Betsis, who found the prime cluster

218172838 54511250 + 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61.

The average prime density this high up is only one prime out of about 38 integers,
which makes this cluster, with 14 primes out of 51 numbers, rather remarkable.

How high up can we expect to find the cluster searched for, repeating the 15
primes between 11 and 67? Well, using the prime k-tuples conjecture we have
above found the expected numbers of this cluster below x to be approximately
187823.7x/(In x) 3. This expression takes the value 1 for x23.3 - 10'°, which is
the order of magnitude where the first repetition of this cluster is to be expected.
It is thus quite a bit higher than the author’s search in 1969-70 had attained, and
this explains why no repetition of this cluster of primes was found.

The Distribution of Primes Between the Two Series 4n + 1 and 4n + 3

The Prime Number Theorem for arithmetic series (2.40) tells us that the number
74,1(x) of primes below x of the form 4n + 1 is about the same as the number
74.3(x) of primes below x of the form 4n + 3, in the sense that

" 74,1(x)
im =
x—00 774 3(x)

Not too much is known about the finer details in the distribution of primes between
these two series, but prime number counts can give the general impression that
primes of the form 4n + 3 are more abundant than primes of the form 4n + 1, so
that the difference in numbers between these two categories of primes,

74,3(x) — 74,1(x)
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is > O for most values of x. It is, however, known from the work of Littlewood
[10] that there are infinitely many integers x with this difference negative, indeed
the difference may for well chosen values of x be as large as

ﬁlnlnlnx)

Ta,1(x) — ma3(x) = Q4 (
Inx

where the Q. -notation means that the absolute value of the left-hand side for some

values of x is at least as large as some positive constant times the function in the

big parentheses.

In 1978, Carter Bays and Richard Hudson [11] have made a numerical in-
vestigation up to the limit 2 - 10'°. We shall now describe the results, which they
achieved.

Graph of the Function 74 3(x) — 4,1 (x)

In order to provide a rough idea of how regular the distribution of the odd primes
may be between the two series 4n 4+ 3 and 4n + 1, we produce below a computer
drawn graph of the function A(x) = m43(x) — m4,1(x), and since the values of x
and of the function will finally be large, a logarithmic scale on both axes in the
diagram was used. This is a little bit awkward, since the value of the function
may occasionally be zero or negative and therefore impossible to represent in
a logarithmic diagram, so to avoid this difficulty, we actually drew, instead of
log,¢ A(x), the slightly more complicated function

sign(A(x)) logyo(1A ()| + 1). (3.16)

On the A-axis we mark, of course, the straight-forward values of A and not the
values of (3.16).

On the next page we have shown, in two different diagrams, the curve for x
up to 10* and for x between 10* and 10°. We observe that the x-axis is first crossed
at x = 26, 861. The graphs show the “general behaviour” of the function, which
is approximately linear in the log-log-scale with local oscillations superimposed
like a band around “line of growth.”

The Negative Regions

The study of the function A(x) has revealed six regions of x below 2 - 10!, in
which A(x) is <0. The first two of these regions are visible in the above graph
of A(x). The first region consists of only one point, the value x = 26, 861 with
Alx) = —1.

74



THE NEGATIVE REGIONS

10
-5
: AT
R \
L 7N J\!\/V
. \ |
// \V/ .
IT‘TYI’I} T T rY'lYlT T T lll!!lr T T rfTﬁ—rT
{ 10 100 1000 10000

Figure 3.1. 4 3(x) — 4,1 (x) for x < 10%,
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Figure 3.2, m43(x) — 4 (x) for 10* < x < 10°.
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In the second region of negative values of A(x), starting at x = 616, 841,
A(x) makes several short dips into the negative. The deepest of these lies between
623,437 and 623,803 where A(x) runs as low as —8 for x = 623, 681. From
x = 633,799, the last value in the region with A(x) <0, A(x) rapidly increases
again to the value 40 for x = 641, 639 and then continues on the same high level
that it had reached before it entered into this negative region. The third region with
negative values of A(x) is much higher up, about x = 12, 366, 589, for which the
lowest value of A(x) in this region, —24, occurs. We reproduce below the graph
of A(x) in this region as well as, for comparison, on the following page, the graph
of a curve depicting the results of coin tossing:

fx)= Zep, p prime.

psx

For the coin-tossing curve €, = +1 or —1 with equal probability. Observing the
general resemblance between the coin-tossing curve and the curve for A(x), we
have yet another confirmation of the reasonability of using probabilistic models in
studying the distribution of primes, at least locally. The coin-tossing curve does
not, however, explain why 74 3(x) — 74,1 (x) resumes positive values after the visits
into the negative. Quite the contrary—on average in half the cases the coin-tossing
curve continues in the negative after an axis-crossing region. See [12].

1
12.4 12.5 12.6 12.7-10°

Figure 3.3. m43(x) — m4,1(x) for 12.0 - 106 < x < 12.7- 105
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Figure 3.4. Coin-tossing curve.

The third negative region is somewhat different from the first two. In this
region there is an area in which A(x) stays negative for a long while. This is the
interval [12 361933, 12377279] in which A(x) < O continuously. This means that
there are over 15,000 consecutive integers here for which A(x) is negative!

This property of remaining negative for a period will be even more pronounced
in the following negative regions.

The Negative Blocks

In the three regions described so far, the “band” around the “main curve” descends
only now and then below the x-axis, while the general tendency is still positive, and
only occasionally are there short intervals when A < 0. In each of the subsequent
three negative regions, however, the curve plunges into and stays in the negative
very long, resulting in long blocks of negative values of A(x). We give some key
values for these three long negative blocks:

Region Negative block min A(x) | max A(x)
4 951, 850, 000951, 880, 000 —48 —-12
5 6.34 - 10°-6.37 - 10° —-1374 -19
6 18.54 - 10°-18.95 - 10° —-2719 —-54
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The negative blocks are actually larger than shown in the table but their extent is
at present not precisely known. This is because the computer program with which
Bays and Hudson detected them only provided output at regular intervals, and so
the exact beginning and end of these blocks was lost.—The existence of these very
long negative blocks came as a big surprise. In the largest block there are more
than 410 million (consecutive) integers with A(x) < 0. This is more than 2% of
the numbers in the range investigated (up to 2 - 10'0),

Bays and Hudson have, in addition, made a corresponding study of the dis-
tribution of the primes between the two series 6n + 1, with a similar result. Their
report on this is published in [13].

Large Gaps Between Consecutive Primes

Another local property of the series of primes that has been studied is the difference
A, = p,+1 — pn between consecutive primes. The following assertion is easy to
prove: A, can be made as large as we wish.

Proof. Let N =2-3-5... p,. Then the consecutive integers
NA+2, N+3, N+4, ..., N+ py1—2, N+ ppp1 —1 3.17)

are all composite. This is easy to understand, if we make a sieve of Eratosthenes
for the given interval. Since N is divisible by all primes < p,,, the multiples of these
primes will strike upon integers forming exactly the same pattern as the multiples
of these primes form in the interval [2, p,,; — 1]. But every one of these integers
is certainly divisible by some prime < p,, which will therefore also be the case
for the corresponding integer of (3.17). Thus, every one of the integers (3.17) is
composite. Since p,+1 can be made as large as we like, the assertion follows. Let
us attempt to estimate how high up in the number series we have to advance in
order to find a gap of width A;. The mean value Ay of A,k =0,1,2,...,n—1,

is, if py is defined as O,
_ 1 n-—l pn
Av=-Y A=
n & n

According to (2.39),

Pn o n(rlnn) — 1.0073 = Inn +Inlnn — 1.0073 > Inn,
n

ifn > _e"”m = 15.5. Since the largest value of the gap A, certainly is > its mean
value Ay,
max A; > P > Inn, forn > 16. (3.18)
k<n-—1 n

From this it follows that a difference py4) — pi of size > A, certainly will occur

for some
x < G = e, (3.19)

78



THE CRAMER CONJECTURE

This value is, unfortunately, a grotesque over-estimate of the smallest value of x
possible, but this is what is easily proved. When A, takes a larger value for some
k than it has for all smaller values of k, this is called a maximal gap. The maximal
gaps have been found up to 7.263 - 10'? by Daniel Shanks [14], by L. J. Lander
and T. R. Parkin [15], by Richard Brent [16], [17], and by Jeff Young and Aaron
Potler [18], and are given in the table on the next page.

The (over-)estimate (3.19) proves that a gap of length 100 must occur before
e!® = 1043, while the table shows that such a gap occurs already for 10>57, a
significantly smaller value of G. From the values of the table Shanks has conjec-
tured that the first gap of width A, will appear at approximately G = eY3¢, which
may also be expressed as

1;:1<a();( vVAr~InG, asG — oo. (3.20)

The Cramér Conjecture

A related conjecture has been made much earlier by Harald Cramér [19], who
conjectured that

— A .
A g G-2D

Since Cramér’s argument actually is quite simple and is a nice example of statistical
reasoning applied to the distribution of primes, we shall present it. The starting
point is the Prime Number Theorem 7 (x) ~ x/Inx which is utilized to create
sequences of integers which in some respect resemble the sequence of primes.
Cramér constructs a model in which black and white balls are drawn with the
chance of drawing a white ball in the nth trial being 1/1Inn for n > 2 and being
arbitrarily chosen forn = 1 and n = 2. If the nth white ball is produced in the P,th
trial, then the sequence Py, P;, ... will form an increasing sequence of integers.
The class C of all possible sequences {P,} is considered. Obviously the sequence
S of ordinary primes {p,} belongs to this class.

Next, Cramér considers the order of magnitude of P,,; — P, by aid of the
following construction. Let ¢ > 0 be a given constant and let E,, denote the event
that black balls are obtained in all the trials m + v for 1 <v <c¢(Inm)?. Then the
following two events have the same probability

1. The inequality

Py — P, > c(In P,)? (3.22)

is satisfied for an infinity of values of n.
2. An infinite number of the events E,, are realized.
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Maximal gaps between consecutive primes < 7.263 - 10!

max Ay Pis1 h‘pﬁ max A; Pis1 ln—’\/:::l

1 3 1.10 282 436273291 1.19

2 5 1.14 288 12942 68779 1.24

4 11 1.20 292 1453168433 1.23

6 29 1.37 320 23009 42869 1.21

8 97 1.62 336 38426 11109 1.20
14 127 1.29 354 4302407713 1.18
18 541 1.48 382 10726905041 1.18
20 907 1.52 384 20678048681 1.21
22 1151 1.50 394 22367085353 1.20
34 1361 1.24 456 250560 82543 1.12
36 9587 1.53 464 426526 18807 1.14
44 15727 1.46 468 1279763 35139 1.18
52 19661 1.37 474 182226896713 1.19
72 31469 1.22 486 24 11606 24629 1.19
86 156007 1.29 490 297501076289 1.19
9 360749 1.31 500 303371455741 1.18
112 370373 1.21 514 3045995 09051 1.17
114 492227 1.23 516 41 66086 96337 1.18
118 1349651 1.30 532 46 16905 10543 1.16
132 1357333 1.23 534 6144874 54057 1.17
148 2010881 1.19 540 73 88329 28467 1.18
154 46 52507 1.24 582 13462943 11331 1.16
180 17051887 1.24 588 140 86954 94197 1.15
210 20831533 1.16 602 196 81885 57063 1.15
220 | 47326913 1.19 652 26149417 11251 1.12
222 | 122164969 1.25 674 71771626 12387 1.14
234 | 189695893 1.25 716 138290485 60417 1.13
248 | 191913031 1.21 766 1958 1334193189 1.11
250 | 387096383 1.25 778 4284 2283926129 1.13
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If €,, denotes the probability of the event E,,, then

c(inm)? 1
m = l—— ).
€ ]_[ ( In(m + v))

c(lnm)? 1
Thus —Ine, = — In{l-———)~
s —iney == 3 n o)

v=1

c(lnm)?

cQnm? 1 1 dx
~ (ln(m T HO ((lnm)2)) Nf non 7 T 0D~

v=1 1
~clnm+ 0(Q),

and thus we can find two positive constants A and B such that for all sufficiently

large values of m
A B
— <€y < —. (3.23)
me€ me¢
Thus if ¢ > 1 the series ) _o.._, €, is convergent, and consequently, due to a lemma
by Cantelli (see [12], pp. 188—189), the probability of the realization of an infinite

number of events E,, is equal to zero.

If, on the other hand, ¢ <1, consider the events E,,, E,, . .., where m; = 2

20"
and

Mmry1 =my + l_c(lnm,)zj +1.

Then for some constant K and all sufficiently large r
m, < Kr(Inr)?

(since the function Kx(Inx)?2, having the derivative K (Inx)? 4 2K Inx grows
faster than the function m, having a difference < c(Inx)? + 1). Thus, according
to (3.23), in this case the series ) _ €, is divergent, because ¢ < 1. Since the events
E,,, are mutually independent, we conclude, again using a lemma by Cantelli, that
with a probability = 1 an infinite number of these events will be realized.

To sum up: The probability of an infinite number of solutions of (3.22) is
equal to zero if ¢ > 1 and equal to one if ¢ < 1. Combining these two results,
Cramér obtains the following

Theorem 3.2. With a probability = 1

oo Prn = P
nooo  (In P,)? )

This suggests (3.21).
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Cramér’s conjecture is another example of the danger of relying on heuristic
arguments which seem very persuasive and are supported by numerical evidence.
H. Maier has recently shown that the number of primes in intervals about x of
length (In x)¢, where c is any positive constant, varies much more than the Cramér
model predicts.

In order to compare the gaps predicted by Shanks’ conjecture (3.20) with
reality, the quotient between the left-hand-side and the right-hand-side of (3.20)
has also been given in the table above. The quotient may well tend to 1 as x — oo,
and its largest value in the table is 1.62. Thus, if no dramatic changes occur higher
up, we may conjecture that always

1.62 max VA > Dk (3.24)
The inequality (3.22) would imply that a gap A, occurs before
G = "2V, (3.25)

If this holds, a prime free interval of length 1 million ought to be found below
€520 < 10", an enormous number, but nevertheless smaller than many known
large primes.
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CHAPTER 4

THE RECOGNITION OF PRIMES

Introduction

One very important concern in number theory is to establish whether a given
number N is prime or composite. At first sight it might seem that in order to decide
the question an attempt must be made to factorize N and if it fails, then N is a
prime. Fortunately there exist primality tests which do not rely upon factorization.
This is very lucky indeed, since all factorization methods developed so far are
rather laborious. Such an approach would admit only numbers of moderate size
to be examined and the situation for deciding on primality would be rather bad. It
is interesting to note that methods to determine primality, other than attempting to
factorize, do not give any indication of the factors of N in the case where N turns
out to be composite.—Since the prime 2 possesses certain particular properties,
we shall, in this and the next chapter, assume for most of the time that N is an odd
integer.

Tests of Primality and of Compositeness

Every logically stringent primality test has the following form: If a certain con-
dition on N is fulfilled then N is a prime, otherwise N is composite. Very many
primality tests are of this form. However, they are often either rather complicated,
or applicable only to numbers N of a certain special form, suchas N = 5- 2 —1or
N = 9.10% + 1. Conversely, there exist numerous tests which are mathematically
simple and computationally fast, but which on certain, very rare occasions, fail.
These failures always result in a composite number being indicated as a prime,
and never vice versa. We shall call such tests compositeness tests, while those that
never fail on deciding primality will be termed primality tests. We have thus in-
troduced the following terminology: A successful compositeness test on N proves
that N is composite and a successful primality test proves that N is prime. If a
primality test is performed on N and the condition for primality is not fulfilled,
then this constitutes a proof that N is composite. However, if a compositeness
test is performed on N and the condition for compositeness is not fulfilled, then
primality of N is not necessarily proved.
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FACTORIZATION METHODS AS TESTS OF COMPOSITENESS
Factorization Methods as Tests of Compositeness

In the next two chapters we shall discuss the most important factorization methods
in current use. Of course, a successful factorization of N resolves the question
of compositeness/primality for N and it follows that each of the factorization
methods presented in Chapters 5 and 6 can be used as a compositeness test for
N. However, as has already been mentioned, factorization is quite expensive and
is therefore used only as a compositeness test for factors that are easy to find, for
instance very small factors. In the short table on p. 142 we see that 76% of all odd
integers have a prime factor < 100 and thus, by simply performing trial divisions by
all odd primes below 100, we have a good chance of proving N to be composite!—
Normally, however, factorization methods play a role as compositeness tests only,
as mentioned above, when used as a fast preliminary means of settling the question
for the majority of N, before some more elaborate test needs to be applied for the
remainder.

Fermat’s Theorem as Compositeness Test

The foundation-stone of many efficient primality tests and of almost all com-
positeness tests is Fermat’s Theorem A2.8 (see p. 268): If p is a prime and
GCD(a, p) = 1, then

a?~ ! = 1 mod p. 4.1

The logical converse of Fermat’s Theorem immediately yields

Theorem 4.1. Fermat’s Theorem used as compositeness test. If GCD(a, N) =
1 and

aV 1'% 1modN, 4.2)

then N is composite.

Fermat’s Theorem as Primality Test

Could Fermat’s Theorem also be used as a primality test? Unfortunately not!
Despite the fact that the overwhelming majority of composite integers N can be
shown to be composite by applying Theorem 4.1, there do exist certain combina-
tions of a and composite N for which a¥~! = 1 mod N, and these values of N
are thus not revealed as composite by this criterion. One of the simplest examples
is N = 341 = 11 - 31, which gives 2>*° = 1 mod 341. In this case, however,
a change of base from 2 to 3 helps: 3**% = 56 mod 341, which proves N to be
composite.
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Pseudoprimes and Probable Primes

A composite number which, like N = 341 above, behaves like a prime in Fermat’s
Theorem, is called a pseudoprime (meaning false prime). To render the definition
of pseudoprime a little more precise, we give

Definition 4.1. An odd composite number N, for which
aV¥ '=1mod N 4.3)

is called a (Fermat) pseudoprime, or PSP, for base a.

Remark. The term pseudoprime has been used in older literature for any N satisfying
(4.3), primes as well as composites, thus including both primes and false primes! In more
modern texts the term “probable prime” (PRP) is often used for prime number candidates
until their primality (or compositeness) has been established.

Now, if all the pseudoprimes for some particular base were known, then a
Fermat test performed for this base in combination with a list of pseudoprimes
would actually constitute a fast primality test. As a matter of fact this works
very well for numbers of limited size! The technique has been made use of by
D. H. Lehmer, see [1] and [2], who prepared a list of all Fermat pseudoprimes
below 2 - 108 for base 2 with no factor <317. Lehmer’s list of pseudoprimes starts
at 107 which was the limit of the existing prime tables at the time. In order to test
a number N between 107 and 2 - 10® for primality with aid of Lehmer’s list this
scheme was followed:

1. Perform trial divisions by the 65 primes < 313. If a divisor is found N is
composite.

2. Compute 2¥~1 mod N. If the residue is # 1, then N is composite.

3. For the residue 1, check with Lehmer’s list of pseudoprimes. If N is in the
list, it is composite and its factors are given in the list. If not in the list, N is

a prime.

About 15 years ago this technique of settling the question of primality for
numbers of limited size has been pushed further by Carl Pomerance, John Selfridge
and Samuel Wagstaff and is reported in [3]. It appeared that below 25 - 10° there
are 21853 pseudoprimes for base 2, of which 4709 remain if base 3 is also tested.
Of these, base 5 leaves 2552 and, finally, base 7 eliminates all but 1770. Thus if a
list is available of these 1770 numbers below 25 - 10%, the pseudoprimes for all four
bases 2, 3, 5 and 7, we can decide upon the primality of any number up to this limit
by performing at most four Fermat tests.—We will show below that Fermat tests
are computationally fast. One Fermat test can, as a matter of fact, be carried out
in at most 2log, N steps, each step consisting of the multiplication and reduction
mod N of two integers mod N. In the next subsection we shall demonstrate in detail
how this can be implemented.

If this technique is to be carried much further, we have to study what is
called strong pseudoprimes rather than using the ordinary Fermat pseudoprimes,
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A COMPUTER PROGRAM FOR FERMAT’S TEST

because the strong pseudoprimes are much less common. See the subsection below
on strong pseudoprimes.

A Computer Program for Fermat’s Test

The problem is: How can we compute a mod N without too much labor? The
algorithm which we shall describe relies upon the binary representation of the
exponent d:

d=po+B1-2+p 22+ +B; -2, 4.4

where the binary digits §; are 0 or 1. The number of digits, s + 1 = |log, d] + 1,
since for d = 2* we have the binary representationd = 1-2¥ and so B = 1 in

this case, while all the other digits are 0. Now we have

ad = aZ:ﬂﬂizi = ]—[aﬂ,-Zi = l—[ a2j. (45)
i

Bi=1

To clarify this with an example: In order to compute a3, first write 13 as 1 +4 +8,
then compute a2, a*, a® by successively squaring, starting from a, since a®"' =
(a*)? and, finally, compute a'®> = a' . a* - a®. This procedure is very efficient,
especially in a binary computer, where d is already stored in binary form. However,
we shall not make use of this shortcut here, since our intention is to express all
computer programs in the high-level language PASCAL. In this case (or when d is
stored in decimal form, as in a programmable calculator), we must find the binary
digits of d before we can choose which factors a?' to multiply together in (4.5).
There are several good algorithms for computing the binary digits of an integer
and in this particular situation it would be nice to start the multiplications of the
expressions a? with the lower powers of 2 first, so that we must use an algorithm
which gives the least significant digit By first. This is easy if you include, in your
PASCAL program, the code

IF odd(d) THEN beta0:=1 ELSE beta0:=0; d:=(d-betal) DIV 2;

These statements compute By and remove it from d, so that B can then be found by a
similar operation. This fragment of code can, however, be simplified considerably,
due to the fact that the expression (d-beta0) DIV 2 will assume the valued DIV
2 regardless of whether By is = 0 or = 1. (Since if By = 1, then d is odd and thus
(d — Bo)/2 is the integer part of d/2, precisely what the integer divisiond DIV 2
in PASCAL furnishes in this case.) But, since the value of S is of no consequence,
the variable betao is not needed at all in the program and the section of code can
be reduced to

IF odd(d) THEN statement; d:=d DIV 2;
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Here statement stands in place of the computation that is to be carried out only
in case d is odd. In order to compute a? mod N, we may now construct a loop in
the program in which a squarmg and reduction mod N of a? is performed, and
also a multiplication by a?’ followed by a reduction mod N of the product 14
so far accumulated, in case B; = 1. If 8; = O then this part of the computation is
omitted. The program loop becomes

WHILE d > 0 DO
BEGIN IF odd(d) THEN prod:=prod*a2j MOD N;
d:=d DIV 2; a2j:=sqr(a2j) MOD N
END;

Now the loop has only to be “initialized” by suitable values: a2j:=a; and
prod:=1; Incorporating this in a complete program, we arrive at the following
code for computing a? mod N:

PROGRAM Fermat

{Computes a~d mod N}
(Input,Output) ;

VAR a,d,N,a2j,prod : INTEGER;

BEGIN
write(’Input a, d and N: ’); read(a,d,N);
prod:=1; a2j:=a;
WHILE d4>0 DO

BEGIN IF odd(d) THEN prod:=prod*a2j MOD N;

d:=d DIV 2; a2j:=sqr(a2j) MOD N

END;
{When arriving here, a"d mod N has been computed}
write(’a~d mod N=’,prod:5)
END.

This short program will operate only if N? is less than the largest integer that
can be stored in a computer word. If N is larger, multiple precision arithmetic
must be used for the computations.—As in several similar situations throughout
this book the reader is asked to consider the code above only as a model of how the
computation should be organized rather than as a general program which covers
all situations.—An investigation on how often a Fermat test will fail to reveal a
composite number can be found in [4].
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The Labor Involved in a Fermat Test

From the computer program just shown, it is obvious that the number of multipli-
cations and reductions mod N when computing a® mod N lies between |log, d|
and 2{log, d], depending on the number of binary ONEs of d. Since about half
of the binary digits of a number chosen at random have the value 1, the average
value will be 1.5]log, d | operations of the described kind for evaluating a? mod N.
Performing a Fermat test (withd = N — 1) therefore takes at most 2 log, N and on
average 1.5 log, N multiplications and reductions mod N. Thus it is an algorithm
of polynomial order (for this concept, see p. 242 in Appendix 1).

Carmichael Numbers

For a composite number N it is usually fairly easy to find, by trial and error,
an a, such that gV-! # 1 mod N. Hence, in most cases a small number of
Fermat compositeness tests will reveal N as being composite. However; there exist
composite numbers N such that a¥~' = 1 mod N for all a satisfying (a, N) =
1. These exceptional numbers are called Carmichael numbers, see [5]-[7], of
which the smallest is 561 = 3 - 11 - 17. A Carmichael number never reveals its
compositeness under a Fermat test, unless a happens to be a divisor of N, a situation
which can be avoided by first testing whether GCD(a, N) is > 1.—Although
the Carmichael numbers are rather scarce (see the section below on Counts of
Pseudoprimes and Carmichael Numbers), there do exist enough of them to create
frustration when a number of Fermat tests all yield the result a¥~! = 1 mod N.
(There are 2163 Carmichael numbers below 25 - 10° and 105212 of them up to
10'>.—The reader might find it strange that there are more Carmichael numbers
up to 25 - 10° than the 1770 composites, mentioned on p. 86, which “survived”
pseudoprime tests for the bases a = 2, 3, 5 and 7, since a Carmichael number
should pass a pseudoprime test to any base. However, it should be borne in mind
that a pseudoprime test with base a, where GCD(a, N) > 1, will certainly reveal
N to be composite. Thus, the discrepancy between these two figures is due to
the fact that there are 2163 — 1770 = 393 Carmichael numbers below 2.5 - 10°
which possess one or more factors among 2, 3, 5 and 7.)—As a matter of fact,
infinitely many formulas for the structure of possible Carmichael numbers can be
constructed, such as

N = (6t + 1)(12¢t + 1)(18¢ + 1). (4.6)

Here all three factors 67 + 1, 12¢ + 1 and 18¢ + 1 must be primes for the same value
of ¢. To verify that this formula actually gives Carmichael numbers, we compute
A(N) = LCM[6¢, 121, 18¢] = 36¢, and thus N — 1 = 36¢(36t2 + 11t + 1) =
s - A(N), s integer, and moreover from Carmichael’s Theorem A2.11 on p. 274
we find that aV=! = (a*™)* = 1 mod N for all a such that GCD(a, N) = 1.
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Examples of Carmichael numbers of the particular structure given in (4.6) are
7-13-19=1729, 37-73-109 =294409, 211-421-631 = 56052361, ...

9091 - 18181 - 27271 = 4507445537641, . ..

The general structure of Carmichael numbers is covered by the following rule: N
is a Carmichael number if and only if p — 1|N — 1 for every prime factor p of N and
N is composite and squarefree.—Therefore, due to the existence of Carmichael
numbers, it is essential to improve the Fermat test in order that the result “character
undetermined” occurs less often. One such improvement is described in the next
subsection.

Euler Pseudoprimes

According to Euler’s criterion for quadratic residues, Theorem A3.3 on p. 278, we
have
a¥=D2 = +1 mod N for GCD(a, N) = 1, 4.7

if N is an odd prime. Hence, (4.7) can be used as a test of compositeness on N as
well as Fermat’s theorem eq. (4.1):

Theorem 4.2. Euler’s criterion used as compositeness test. If N is odd,
GCD(a, N) =1, and
aWV=Y2 £ +1 mod N, (4.8)

then N is composite. If a¥~1/2 = +1 mod N, then this value should be compared
with the value of Jacobi’s symbol (a/N) (see p. 281), and if

aN=D72 (i> mod N, 4.9)
N
then N is composite.—If, however,

aWV-D72 — (%) mod N, 4.10)

then the test is not conclusive.

As in Fermat’s compositeness test there are “false primes.” So there are odd
composites which for certain bases a satisfy (4.10), and so we have use for a new

Definition 4.2. An odd composite number N such that

a¥N=D72 = (%) mod N, with GCD(a, N) =1,
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is called an Euler pseudoprime for base a. Many Carmichael numbers are revealed
as composites by Euler’s criterion, so that it distinguishes primes from composites
more efficiently than does Fermat’s theorem. The above remark applies also to
many composite numbers which are not Carmichael numbers, but which are still
not shown to be composite by Fermat’s theorem for a specific base a. We find for
instance that

2! = 1 mod 341, 5% = 67 mod 561, 113%* =1 mod 1729.

Since 67 £ 1 mod 561, there is no need to compute Jacobi’s symbol in this case.
In the remaining two cases we obtain

2\ g (Y
3a1) =" ™ \1729) T 7"

so that all these integers will be revealed as composite by Euler’s criterion. Of
these three numbers, 561 and 1729 are Carmichael numbers, while 341, having
2340 = 1 mod 341, is not.

Strong Pseudoprimes and a Primality Test

The idea of using Euler’s criterion instead of Fermat’s theorem to distinguish
between primes and composites can be carried a little further. In doing so we
arrive at the concept strong pseudoprime, defined in

Definition 4.3. An odd composite number N with N —1 =d -2*, d odd, is called
a strong pseudoprime for the base a if either

.I'
a? = 1 mod Nor a??

=—1modN, forsomer =0, 1, 2,..., s—1. (4.104)

Neither Euler pseudoprimes nor strong pseudoprimes admit the possibility of
analogues to Carmichael numbers. Therefore, using Euler’s criterion or a strong
primality test with enough bases will finally reveal any composite number or,
alternatively, prove the primality of any prime N. Some recent work by Gerhard
Jaeschke, reported in [8], shows that there exist only 101 numbers below 10'2 which
are strong pseudoprimes for all the bases 2, 3 and 5 simultaneously. Of these, only
9 will pass a strong primality test to base 7, and, finally, none of these is a strong
pseudoprime to base 11. As a matter of fact, the smallest strong pseudoprime to
all the bases 2, 3, 5, 7, and 11 simultaneously is the number 215 23028 98747, and
thus 5 strong primality tests to these bases will prove a number below this limit
prime (if it is). If we instead use the seven bases 2, 3, 5, 7, 11, 13, and 17, every
number below 3415500717 28321 can be identified as prime or composite by this
technique.—In practice we of course do not perform all seven tests first, and then
decide on the character of the number. In most of the cases the test for base 2
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already reveals the number as composed, and we are finished. If not, we pass on
to the next test and so on.

This fact can be utilized to identify any number below 3.4 - 10'* as being
either composite or prime by means of the following very simple scheme:

1. Check whether N satisfies (4.10A) for base 2. If not, then N is composite.

2. Check whether N satisfies (4.10A) for base 3. If not, then N is composite.

3. If N < 1373653, then N is prime. If N > 1373653, check whether N
satisfies (4.10A) for base 5. If not, then N is composite.

4. If N < 3 = 25326001, N is prime. If N > 3, check whether N satisfies
(4.10A) for base 7. If not, then N is composite.

5. If N <y, = 3215031751, N isprime. If N > 14, check whether N satisfies
(4.10A) for base 11. If not, then N is composite.

6. If N < s = 2152302898747, N is prime. If N > s, check whether N
satisfies (4.10A) for base 13. If not, then N is composite.

7. f N < s = 34747496 60383, N is prime. If Y4 < N < 3415500717-
28321, check whether N satisfies (4.10A) for base 17. If not, then N is
composite.

In [8] Jaeschke also discusses the possibility of using bases other than the
first primes for the strong primality tests. With suitable choices of the bases, the
number of tests can be cut down. Thus he finds that four bases, viz. 2, 13, 23, and
16 62803 will suffice to decide upon the primality of any number up to 10'2.

Remark 1. A strong primality test is more stringent than an Euler pseudoprime test. In
[3], p. 1009 the following is proved: every strong pseudoprime for base a is also an Euler
pseudoprime for base a.

Remark 2. Assuming the truth of the so-called Extended Riemann Hypothesis it has
been proved by Gary Miller [9] that consecutive, strong pseudoprime tests can constitute a
primality test working in polynomial time. The Extended Riemann Hypothesis is needed
to prove the existence of a “small” non-residue of order ¢ mod p for every prime p.—
This hypothesis is a generalization of the ordinary Riemann hypothesis (see p. 48) to other
functions than ¢ (s), such as the Dirichlet L-functions mentioned on p. 258. In the Extended
Riemann Hypothesis it is assumed that all of the L-functions have all their non-trivial zeros
exactly on the line s = 1/2.

Remark 3. Using a number of strong primality tests with randomly chosen bases a is
called the Rabin-Miller probabilistic compositeness test. It reveals the compositeness of
most composites, but can never prove a number to be prime. It is possible to construct
composite numbers, which are strong pseudoprimes to any given, finite set of bases a.

Since the various types of pseudoprimes behave like disguised primes in the
tests performed, it is practical to introduce a term for all those integers which
satisfy a certain (false) primality test. This is formalized in the following way:

Definition 4.4. An odd number (prime or composite), which is not revealed as
composite by
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1. a Fermat test with base a is a probable prime for base a
2. Euler’s criterion with base a is an Euler probable prime for base a
3. astrong pseudoprime test with base a is a strong probable prime for base a.

A Computer Program for Strong Pseudoprime Tests

Using the program for a? mod N above and the scheme just given, we can devise
the following PASCAL-program for testing the primality of any odd number below
3.4.10

PROGRAM StrongPseudoprimeTest (Input,Output);
{Identifies any odd N below 34%10°13 as prime or composite}
LABEL 1,2,3;
VAR a,d,d1,N,s,sw,a2j,prod,i,j : INTEGER;
base,limit : ARRAY[1..7] OF INTEGER;

FUNCTION abmodn{a,b,N : INTEGER) : INTEGER;

{Computes a*b mod N. Here the reader must program his own
function in double precision, depending on the word size
of his computer. If assembly language is accessible from
the high-level language the reader is using, an assembly
code is preferable. The function shown here is only a
model that works as long as N"2 < the largest integer
which can be stored}

BEGIN
abmodn:=a*b MOD N
END;

BEGIN
base[1]:=2; base[2]:=3; base[3]:=5; basel[4]:=7;
base[5] :=11; base[6]:=13; base[7]:=17;
limit[1]:=2047; 1imit[2]:=1373653; 1limit[3]:=25326001;
limit [4]) :=3215031751; limit[5] :=2152302898747;
limit [6] :=3474749660383; 1limit[7] :=3415500717128321;

1: write(’Input N: ’); read(N); IF N>=1limit[7] THEN
BEGIN writeln(’N is too large. Try again!’); GOTO 1 END;
d:=N-1; s:=0;
WHILE NOT odd(d) DO BEGIN d:=d DIV 2; s:=s+1 END;
di:=d; { Here d is the "odd part" of N-1 }

FOR i:=1 TO 7 DO
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BEGIN sw:=0; {sw switch for composite(=0) or prp(=1) }
a:=base[i]; prod:=1; a2j:=a; d:=d1; WHILE d>0 DO
BEGIN IF odd(d) THEN prod:=abmodn(prod,a2j,N);
{Here the last binary digit of d was used}
d:=d DIV 2; a2j:=abmodn(a2j,a2j,N)
END;
{When arriving here, prod=a"d mod N has been computed}
IF (prod=1) OR (prod=N-1) THEN GOTO 2 ELSE
FOR j:=1 TO s-1 DO
BEGIN prod:=abmodn(prod,prod,N);
IF prod=1 THEN GOTO 3;
IF prod=N-1 THEN GOTO 2;
END; GOTO 3;
2: IF N<1limit[i] THEN BEGIN sw:=1; GOTOD 3 END;
END;
3: IF sw=0 THEN writeln(’N is composite’)
ELSE writeln(’N is prime’)
END.

The remark we made about the program Fermat above applies equally well to
this coding: The reader should regard it only as a structural model of the particular
version of the program which would operate in his computer.

Exercise 4.1. Strong pseudoprime test. Write the FUNCTION abmodn(a,b,N) hinted at
in the program above and incorporate it in a complete program for your computer. In order
to save computing time, precede the pseudoprime test by trial divisions by the small primes
< G, thereby discarding many composites before the more time-consuming pseudoprime
test is applied. Make computer experiments with various values of G in order to find
its optimal value. Use the integers between 10® and 108 + 100 as test numbers in these
experiments.

Counts of Pseudoprimes and Carmichael Numbers

The density of pseudoprimes determines how often probable primes are composite.
It is thus of interest to count the number of pseudoprimes of various types <x and
to find asymptotic formulas for their numbers as x— o0o. Let P>(x) be the number
of pseudoprimes <x for base 2 and C(x) the number of Carmichael numbers <x.
Not too much has been proved about the behavior of these counting functions,
but some fairly precise conjectures have been made (see [10]). The following
inequalities have been proved so far:

)5/!4

e(lnx < Py(x) Sxe-—%lnxlngx/lnzx @.11)
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In3 x

2
(1n3x+1n4x+'“;nj;‘ +0 () )
, as x — 00

(4.12)
Here In; x stands for InIn x and so on. Comparing these expressions with 7 (x) ~
x/Inx, we can confirm our earlier assertion that the pseudoprimes for base 2 and
the Carmichael numbers are scarce. To give just a few examples: for x = 10%,
Py(x)/m(x) <1.43-1072 and C(x)/m(x) <7.2- 1075 and for x = 10°° these
quotients are < 7.2 - 10~7 and < 5.7 - 106, respectively. Thus the fraction of
probable primes <x which actually are composite turns out to be very tiny indeed
for large values of x.

The following two conjectures are stated, also in [10]:

(In3x +Ingx + o(x))

Pz(x)<xe '"ﬂ as x —> o0
1 1 ln4x—l)
C(x) = xe '“2"( M3 x e X+ T +O(in4x) , as x — oo.
nx

However, statistics on these numbers show that for 10! < x < 106,

1
Cx) ~ xe h:‘z'; 861n3x

which indicates that some modification of the above conjecture might be needed.
All Carmichael numbers up to 10'¢ have been listed recently by R. G. E. Pinch
(see [7] and [7']), who found C(10') = 105212 and C(10'6) = 246683.

In another piece of recent work Alford, Granville and Pomerance [11] have
proved that C(x) > x%/7 for all sufficiently large numbers x. It is also hinted in
this paper at the possibility that the exponent might be raised from 2/7 to 1 — ¢,
for every € > 0. The possibility that C(x) ultimately may grow quite large can
be seen as a consequence of the fact that a large Carmichael number often is
the product of many prime factors. This increases the number of combinations
of prime factors which result in a Carmichael number. To support this line of
reasoning, we mention that the smallest Carmichael number with 6 prime factors
is 5-19-23-29-37-137 = 321197185, while in the interval [10'%, 10'6], the
Carmichael numbers with 6 or more prime factors dominate (these count to 104744
out of the 141471 Carmichael numbers in this interval).

Rigorous Primality Proofs

For large primes N it is not easy actually to prove their primality. The reason
for this is that any rigorous proof must exclude the possibility of N being only
a pseudoprime. The more compositeness tests we perform on N the greater the
likelihood that N is prime, but this in itself is no mathematical proof. Several
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computer algebra systems which offer fast primality testing algorithms as standard,
sadly ignore this fact. R. G. E. Pinch in [12] expresses criticism on the algebra
systems Mathematica, Maple V, and Axiom for letting some known Carmichael
numbers or known Fermat pseudoprimes to base 2 pass as primes.

Only fairly recently have general primality tests been devised which do not
exhibit the flaw of admitting pseudoprimes. These new tests are, however, very
complicated in theory (and even to program) but have (almost) polynomial run-
time, which means that they are computationally fast. Eventually a method will
probably be discovered to replace these complicated primality tests by some com-
bination of simpler tests in such a way that the combination of tests chosen can
never admit a particular composite number N as a pseudoprime in all the tests.

In the following subsections we shall demonstrate how the possibility of N
being a pseudoprime may be excluded by demanding supplementary conditions
in the pseudoprime test. The “old” rigorous primality proofs for N all depend in
some degree upon the factorization of N — 1, or N + 1, or N2+ N + 1 or the
like. Unfortunately, this dependence upon factorization makes these techniques
inefficient in the general case, since there is always the risk of chancing upon a
number N such that none of these factorizations can be achieved. On the other hand,
in cases when these techniques work—and they do in many practical examples—
they work very well indeed, so in spite of any impending, more general, approach to
the problem of proving primality, the author finds it well worthwhile dwelling on the
subject.—Moreover, besides the theoretical interest of these proofs, they constitute
the fastest known primality proofs for large classes of interesting numbers, such
asN=15-2"—1, N =7-2" 4+ 1 and so on. We commence our account with

Lehmer’s Converse of Fermat’s Theorem

One way of actually proving the primality of N is to employ a theorem by Edouard
Lucas, for which a general proof has been given by D. H. Lehmer:

Theorem 4.3. Suppose N — 1 = ]'[;.’=l qf 7, with all g;’s distinct primes. If an
integer a can be found, such that

a®-V/4 £ 1mod N forallj =1,2,...,n (4.13)

and such that
a¥""'=1modN, 4.14)

then N is a prime.

We may regard the conditions (4.13) as extending Fermat’s condition (4.14),
and securing that N is really a prime and not merely a pseudoprime.—Before
giving a formal proof of Lehmer’s theorem, we shall discuss the idea behind it.
(The reader who is unfamiliar with the concepts in the following paragraph may
now wish to consult Appendix 1 and Appendix 2 before continuing.)
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One difference between a prime and a composite number N is that the number
@(N) of primitive residue classes mod N is N — 1 if N is a prime, andis <N — 1
if N is composite. The same is thus true of the order of the group My of primitive
residue classes mod N since this order is ¢(N). Furthermore, if N is prime, the
group My is always a cyclic group and thus contains a generator of order N — 1.
If N is composite, on the other hand, the order of any group element is, at most,
@(N) < N — 1. If the reader carefully considers the conditions (4.13) and (4.14)
he should realize that they establish a as an element of order N — 1 of the group
My of primitive residue classes mod N, precisely what is needed to ensure the
primality of N. (Such an element a of My is in number theory termed a primitive
root of N.)

Formal Proof of Theorem 4.3

Consider all exponents e such that a® = 1 mod N. These exponents constitute a
module M consisting of only integers. See Appendix 1, p. 239. According to
(4.14), N — 1 is an element of this module M. The module is thus generated by
some integer d < N — 1, which divides N — 1. But every divisord of N — 1,
with the exception of N — 1 itself, divides at least one of the numbers (N — 1)/g;,
j=12,...,n. Now, if d were < N — 1, then at least one of the numbers
(N — 1)/q; would belong to the module M, and thus for this particular value of
j» the corresponding aY~1/4 would be = 1 mod N, contrary to the assumptions
(4.13). Thus the combination of (4.13) and (4.14) implies that the generator d
of the module M is = N — 1. Euler’s theorem A2.9 on p. 269, however, grants
that always a*) = 1 mod N, if GCD(a, N) = 1 and that ¢(N) < N — 1 for all
composite numbers N. But these facts imply that also ¢ (N) belongs to the module
M, which is impossible if ¢(N) < N — 1, because the generator d is the least
positive element of the module. This proves that N is in this case a prime.

Remark. We had to introduce the condition GCD(a, N) = 1 in order to be able to use
Euler’s theorem. This requirement, however, need not be explicitly stated in the wording
of Theorem 4.3, since if GCD(a, N) > 1, then it can be proved that a¥~! % 1 mod N. Thus
the condition GCD(a, N) = 1 which is implied by (4.14), may be omitted in the wording
of the theorem.

Example. N = 3% — 2%? = 1413038609116 22737524 61387579. Factorizing
N — 1 we find
N—-1=2-3.7-59-1151-58171-123930193 - 687216767.

The two larger factors were found by applying Shanks’ factoring method SQUFOF
(see p. 186) to the number 8 51669065 67146031, which remained after all the
small factors had been removed from N — 1. Those two factors were found after
the program computed only 573 partial denominators of the continued fraction
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expansion of /N — 1.—It turns out that @ = 7 is a primitive root of N, and so N
is a prime. The computations which verify this are shown below:

TN=1)/2 = 1
7N=D/3 = 14039 52407176 60958441 81052225
TN=D/7 = 1129225508857 85053499 63835029
TN-D/39 = 280249189705 71158036 52416186
FN=D/1151 = 270658963050 54768415 59851274
FN=D/S8171 = 10951 68902411 53649984 82043016

7N -1/123930193 = 1403631931644 46024491 67220257
7(N=1)/687216767 — 10974 48314837 68234524 28433200 modN.

Ad Hoc Search for a Primitive Root

The problem of searching for a primitive root is that there is no efficient deter-
ministic method known to produce a primitive root nor even to find a quadratic
non-residue. In using Lehmer’s theorem 4.3 we frequently need to make numerous
trials before an a is found which fulfills all the conditions in (4.13). The general
situation may be described as follows: We are seeking a primitive root a of the
prime N. There exist (N — 1) such a’s, but by (A2.21)

AP _1
oW -1 =9 ([Ta)=w I)U(l q,-)'

Thus, the more small prime factors N — 1 has, the smaller is the proportion of a’s
which are primitive roots of N and the longer we have to search to find one by
trial and error. However, since ¢(N — 1) > CN/ Inln N, almost certainly a good
a can be found after, say, (10/C)Inln N trials—not too many.—When applying
Theorem 4.3 we also have to factor N — 1, sometimes a formidable task when N
is large. (We shall subsequently explain how this difficulty can, at least partially,
be overcome.) Let us now go back to the example given above. The search for a
primitive root of N proceeds as follows: When a®™=Y/4 =1 mod N, a is called
a power residue of order g; with respect to N. About one a out of g; is such a
g;th-power residue of N and is therefore not a primitive root. Thus the factor 2 of
N — 1 eliminates half of all a’s as possible primitive roots of N. In order to avoid
computing in vain all the a™~"/2 mod N having the value 1, we calculate instead
the value of the Jacobi symbol (a/N) (see Appendix 3), and discard those values
of a for which (a/N) = 1. This shortcut enables us to escape the most common
failure of the trial and error approach and thus speeds up the process considerably.
The shortcut is demonstrated in the computation below.

a=2 gives 2V "2=_1, 20D =1 modN,
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so a = 2 is a cubic residue of N, ending this trial!
a=3 yields 3V D2=_1 3W-DB=1modN,

and thus a = 3 is also a cubic residue, so we have a new failure in our search for a
primitive root of N. We continue in this way until the smallest absolute primitive
root a = —35 is found or, if we prefer to look only for positive a’s, until a = 7
is found. In order to reduce the amount of unnecessary work we have, for each
new value of a, started by evaluating the value of a'N=1/4 with the smallest value
of g; first, since this is most likely to violate (4.13). This will obviously lead
to a smaller average computing time than first evaluating all the other a¥N —1/4i°s
(which would probably not violate (4.13) in any case!) and then not until at the end
of the entire computation perhaps discovering that the attempted value of a was in
fact unsuitable.—If N is not too large, then a primitive root of N is usually found
quite fast in the manner described above. However, if the values of a are chosen
at random, the test may cycle forever without proving N prime by an unlikely,
but theoretically possible sequence of bad luck. It is this behavior that classes the
algorithm as non-deterministic.

The Use of Several Bases

As we have just seen, a great deal of computing may have to be done before a
primitive root a is discovered. Fortunately, John Selfridge has in [13] succeeded
in relaxing condition (4.13) of Theorem 4.3 in such a way that a primitive root a
need not be determined in order to prove the primality of N. The relaxed version
of the theorem reads:

Theorem 4.4. Suppose N — 1 = [_[;.’=] qf’ , with the g;’s all distinct primes. If for

every g; there exists an a; such that

a" """ £ 1 mod N while a¥~' =1 mod N, 4.15)

then N is a prime.

Proof. Let e; be the order of a; in the group My of primitive residue classes

i

mod N. Since ¢;|N — 1 while ¢;{(N — 1)/g;, we have qj’? le;. But for each j,
ej|p(N) (regardless of whether N is prime or composite) and thus also qf" lp(N),
which implies that ]"[qu = N — 1 divides ¢(N). However, if N — 1|¢(N), then
@(N) cannot be < N — 1, and consequently N is prime.

Example. We consider the above example once again, N = 3% — 2% The
primality of N can now be established by means of the following congruences.
We have also indicated below the two “failures” in the trial and error method for
determining a primitive root of N: 2W=1/3 = | mod N and 3¥-D/3 = ] mod N:
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2(N=1)/2 = -1
2(N-1)/3 = 3(N=-1)/3 = 1
5(N=-D/3 = 14039 52407176 60958441 81052225
5(N-D/7 = 78266109729 95267547 70837537
5(N=D/59 = 1063629203818 09458018 79749999
S(N=D/1151 = 321643070546 3480598022736901
SIN=D/38171 = 1345033889565 61733879 77763600

5(N=D/123930193 — 3732 50753518 56196918 18435804
5(N-1/687216767 = 9167 6755311006092700 57486746
5Nl = 1modN.

(Note that the value of 5V=1/3 mod N happens to be identical to 7V =1/3 mod N,
found on p. 97 above! This is not at all the marvellous coincidence that it seems,
since the congruence x> = 1 mod N has (at most) two solutions % 1 mod N if N is
prime, and every number a¥=1/3 is obviously a solution! Thus, if neither 5(V=1/3
nor 7V=1/3 is = 1 mod N, then the chances of these two values coinciding will
in fact be one in two.)

The use of several bases may save much computing, especially in those cases
where the least primitive root of N is rather large.

Fermat Numbers and Pepin’s Theorem

Lehmer’s theorem is particularly simple to apply whenever N — 1 has only a small
number of distinct prime factors. The simplest case of all is when N — 1 is a
power of 2, in which case N = 2* + 1. However, these numbers are known to be
composite unless the exponent s is a power of 2 (cf. Appendix 6). The numbers

F,=2¥ +1 (4.16)

are called Fermat numbers, and they can be primes. Next, we investigate what is
required by Lehmer’s theorem in order that the number F), is a prime. We must
find an a such that

{a(p"‘”ﬂ: azzz-' # 1modF, and @.17)
ab=l =42 =1 mod F,.
If we put a® ' = x, then this gives

x2=1modF, and x # 1 modF,. (4.18)

Now, if F, is prime, then x is an element of a ring with no zero divisors (see
p- 253). Hence, the congruence x2—1=(x+ 1)(x — 1) = 0 mod F, will have
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two, and only two, solutions due to Theorem A1.5 on p. 253, x = 1 mod F,, and
= —1 mod F,. Since the solution x = 1 mod F, violates the first condition of
(4.17), the only remaining possibility is x = —1 mod F,,. Thus, we seek an integer
a satisfying
x=a%"Y2=_1modF, (4.19)

when F,, is a prime. Here the theory of quadratic residues (Appendix 3) comes to
our aid. Euler’s criterion on p. 278 tells us that in this case a has to be a quadratic
non-residue of F,. But it is known that the integer 3 happens to be a quadratic
non-residue of all primes of the form 12n + 5, see Table 22. Is F, of this form?
Let us check: 22' = 4, 22 — 16 = 4 mod 12,...,sothat F, =4+ 1= 5mod 12.
Therefore, if F,, is a prime then a = 3 certainly will be a quadratic non-residue of
F, and we arrive at

Theorem 4.5. Pépin’s Theorem. A necessary and sufficient condition for the
Fermat number F, = 27 4+ 1,n > 1, to be prime is that

37" = _1 mod F,. (4.20)

Example. We demonstrate the primality of the largest known Fermat prime,
Fy = 2'® + 1 = 65537. The proof runs as follows:

33 =6561, 316=54449, 332=61869, 3% = 19139,
3128 = 15028, 3%56 =282, 3%12 = 13987,
31024 = 8224 = 8192 +32 =213 + 25,

32048 = 226 + 219 + 210 = _210 _ 23 + 210 = —8,
34096 = 26, 38192 = 212, 316384 = 224 = _28.

332768 = 216 = _] mod Fy.

This concludes the proof.

With the aid of computers, Pépin’s Theorem has been used in practice to
test the primality of some higher Fermat numbers. Pépin’s test is particularly
attractive to use on a binary computer (almost all computers are binary), since the
most complicated part of the programming, the multiple precision division by F;,,
needed in each loop to reduce the number ¢, = 3% mod F,, is extremely simple to
perform due to the very simple binary representation of F,.—FEven before the era
of computers all the Fermat numbers up to F3 had been investigated for primality.
F3 has 78 digits, so the proof of its compositeness, using only a desk-calculator
was quite an achievement! Today the first Fermat number of unknown character
is Fy4, containing the incredible number of 5050446 digits! The largest Fermat
number so far exposed to Pépin’s test is F32, having 1262612 digits. This number
was proved to be composite by Crandall et al. in 1993. See Table 4 at the end of
this book for more details on Fermat numbers.
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Cofactors of Fermat Numbers

If a Fermat Number F,, has been subjected to Pépin’s test and found composite, the
search for its factors can begin. When one or more factors have been found, the
remaining cofactor should be subjected to a compositeness test before the search
for more factors gets started. There is a clever way, due to Suyama [14], to perform
such a test economically, providing the residue 37~! mod F, is available:

Theorem 4.5A. Suppose F = pip; ... p, is the “factored part” of F,, and that
F, = F - C, where C is the cofactor to be tested. Compute

A=3""1modF,, BEBF']modF,,, and R=A—-BmodC.

Then, if R = 0, the cofactor C is a probable prime to the base 3, otherwise C is
composite.

Proof. A — B = 3F-1(3F(€=D _ 1) mod F, and thus also mod C, since C|F,. If
R = 0 mod C, then 3F€=D = 1 mod C, which constitutes a Fermat test for the
number C with the base 3%,

As the factored part of F usually is much smaller than F,, the labour to
compute B is also smaller than the labour to compute A. To avoid recomputing
A each time a new factor found of F,, necessitates a test of the corresponding new
cofactor, just compute A as the square of the last residue 3»~1/2 mod F,,, arrived
at in Pépin’s theorem, and save this value for future use. As Lenstra has pointed
out, Suyama’s test works also for the cofactor of the first factor found in F,.

Generalized Fermat Numbers

We shall call the numbers F,(a,b) = a? + b*" generalized Fermat numbers.
They share many properties with the ordinary Fermat numbers, such as the lack of
algebraic factors, being pairwise relatively prime, and so on. In the hope of finding
some large primes, Anders Bjorn and the author of this book in [15], for n < 999,
searched the numbers F,(a, b) for all a, b < 12 with GCD(a, b) = 1 for small
factors. (No large prime was found.) In this context the following generalization
of Pépin’s theorem is of interest: Applying Theorem 4.4 to the generalized Fermat
numbers G, = 6° + 1 and H, = 10* + 1 one gets

Theorem 4.5B. Necessary and sufficient conditions for the numbers G, = 6% +1
and H, = 10" + 1, n > 1, to be prime are that

5G=D3 21 and 5©C~Y2 = —1modG,
for the numbers G,, and that

3H=D/5 21 apd 3HD/2 = _1 mod H,
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for the numbers H,.

The proof follows the same lines as for Pépin’s theorem above, making use
of the facts that G, = 7 mod 10 and H, = 5 mod 12 for n > 1, and thus 5
would be a quadratic non-residue of G, and 3 a non-residue of H,, in case one of
these numbers would be prime. A similar test is easy to construct for any number
a)? +1.

Suyama’s observation on how to facilitate the compositeness test for a cofactor
of a partially factored Fermat number 22 + 1 can also be extended to the more
general case and works in analogy with the case discussed above. So for the
generalized Fermat Numbers G, and H,, if R = 56~ — 5F-1 or R = 3H:—1 _
3F=1 respectively, the condition R = 0 mod C is a Fermat test for the cofactor C.

Also the numbers a + 1 with a odd are slightly easier to examine for
primality than are the general F,(a, b). Since a*" is a square, it is = 1 mod 8, and
so N = (a%" +1)/2 is odd, and lacking algebraic factors, N might be prime. How
about N — 1? In this particular case

* 1 a-1 -
N—1=2 > =“2 @+ D@ +D@+1... @ " +1) =
_ ot a?—1 a’+1 a*+1 &' +1
- 8 2 2 2

which greatly increases the possibility of finding enough prime factors of N — 1
to be able to apply Lehmer’s test or some similar test, such as Theorem 4.6 below
to decide upon the primality of N.

A Relaxed Converse of Fermat’s Theorem

We have already encountered the major difficulty in using Lehmer’s converse of
Fermat’s theorem as an algorithm for general primality proofs. We come to a halt
when unable to factor N — 1 completely! There are several ways of escaping this
situation. It turns out that it is possible to relax the conditions in Lehmer’s theorem
so that a partial factorization only of N — 1 suffices for the primality proof. As
a matter of fact, we need not assume that N — 1 is completely split into prime
factors, since it is possible to prove a theorem, analogous to Lehmer’s theorem,
where N —1 = R-F, R < F, and only F is split into prime factors. In this way the
frequently very laborious task of factorizing a large cofactor R = (N — 1)/F is
avoided.—In this notation, which we shall frequently use, F stands for the factored
part of N — 1 and R for the remaining part.

Theorem 4.6. Suppose N—1=R-F =R ]'[;.’zl qf 7, with all ;s distinct primes,
with GCD(R, F) = 1 and R < F. If an integer a can be found, such that

GCD (a®¥=P/% —1,N) =1 forall j=1,2,...,n (4.21)
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and satisfying
aV’'=1modN, 4.22)

then N is a prime.

Proof. Consider any possible prime factor p of N. Presuming (4.21) we also have
GCD (a™=V/% —1,p) =1 forallj (4.23)

and (4.22) implies that

a¥!=1mod p. (4.24)

Further, suppose that the element a of the group M), has order d. Thend|N — 1,
while d}(N — 1)/g; for any j, i.e.

. . —1 :
dIR[]qf. while diRq) I;qu .
v v¥£)

But this is possible only if qu |d for every j, which implies that F|d. Now, since
dip — 1, it follows that also F|p — 1. But then the smallest value which p could
possibly take wouldbe p = F 41 >+/N, since the completely factored part, F, is
assumed to be larger than +/N. However if N were composite then this would be
a contradiction if applied to the smallest prime factor p of N, which in this case
would be <+/N. Thus, the only remaining possibility is that N is prime.—There
is a related theorem, which is aimed at factorization, but which has been much
used also for primality proofs. This is the Lehmer—Pocklington Theorem 4.13 on
p. 122.

Proth’s Theorem

As an immediate consequence of Theorems 4.5 and 4.6 we obtain the following
analogue of Pepin’s theorem concerning the Fermat numbers:

Theorem 4.7. Proth’s Theorem. Suppose N has the form N = h - 2" +1, with
2" > h and h an odd integer. If there exists an integer a such that

a® VY2 = _1 modN, 4.25)

then N is a prime.

It should be emphasized that the theorems mentioned so far are very efficient
when a computer is put to work. As examples of large primes which have been
identified in this way, we give

1802'7 — 1)2 +1, 5-2B15 41, 29.27%7 4 1.

For more detailed information, the reader is referred to Table 5 at the end of this
book.
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Tests of Compositeness for Numbers of the Form N = h - 2" + k

Using Euler’s criterion for (a/p) (see Appendix 3, p. 278), it is easy to construct
a necessary but not always sufficient condition for N = h - 2" &+ k to be prime,
i.e. acompositeness test for N, provided that h and k are odd and k is not too large.
Choose an integer a such that (a/N) = —1. Then a®¥="/2 = —1 mod N if N is
prime, which gives

a?? =D = 1 mod N, if N=h-2"+k

and .
a"? kAN = 1 modN, if N=h-2" —k.

The computation is carried out by first calculating a” mod N and then, by means of
. . . P =1 .

n — 1 successive squarings and reductions mod N, obtaining a"*"~ mod N. Finally,

we must verify whether

a"? g% V2 = 1 modN, if N=h-2"+k (4.26)

or
a"? " = —a®*tD/ 2 mod N, if N=h-2"—k. (4.27)

If the left-hand-side agrees with the right-hand-side, then N is an Euler probable
prime for base a, otherwise N is composite.

An Alternative Approach

Another way out of the problem to factor N — 1 would be to look for a theorem,
analogous to Lehmer’s, but based on another probable prime test rather than Fer-
mat’s theorem. In order to explain this we must examine the reason why Fermat’s
theorem is applicable in proofs of primality. This is related to the divisibility
properties of the numbers in the sequence

Th=a-1Th=d*-1,...,T,=a*—1,... (4.28)

If the prime p divides a term T of this sequence, it will also divide all terms Ty
fork = 2,3,4,...,since Ty; = a** — 1 is divisible by Ty = a* — 1. This fact is
the principal element of the proof of Theorems 4.3 and 4.4. The sequence (4.28)
can now be described in a recursive form, a form which will help us to search for
similar sequences having different divisibility properties in the case where N — 1
is too difficult to factor. Using the definition of 7, we find immediately that

To1 =T, +1a—-1=aT, + (a—-1). (4.29)

This shows that a first-order linear recurrence relation holds for the terms 7,,.—
Now, there exist certain slightly different sequences, termed Lucas sequences,
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which exhibit divisibility properties different from those of the sequence 7, and
which can, in certain cases, be used to construct probable prime tests analogous to
Fermat’s test but with N + 1 substituted for N — 1. Thus, we have at our disposal
an alternative means of proving the primality of N if we are able to factor N + 1
(at least in part) rather than N — 1. In addition, there exist algorithms devised for
cases where one of N2+ 1, N2+ N +1 or N2 — N 4 1 has been partially factored.
This can be useful if both N — 1 and N + 1 are too difficult to factor (see [13]).
All of these partial factorizations can be used in one single combined primality
test and factor bounds can also be worked into this test. See Ferrier’s example
on p. 122. These types of primality tests often admit a cascade of possibilities in
their application: N — 1 = 2.3 . H), say, where H, is probably prime. Maybe
we cannot factor H, — 1, but H, 4+ 1 factors etc. However, we shall mention
only one of these more complicated techniques, namely Theorem 4.18 on p. 129,
since general primality tests are now available, which actually avoid factorization
altogether. Nevertheless, it might still be of interest to mention an instance when
all five of N &1, N2+ 1 and N* & N + 1 were found too hard to factor. Such a
case is the following one, reported in [16]. For the integer N = (103 4 17)/9 the
following (insufficient) partial factorizations are easily obtained:

N—-1=2*.1531-H,, N+1=2.3-H,,

N?24+1=2-5-2069 2157989 - Hs,
N*+N+1=7-14869-H;, N?*—N+1=3.271- Hs.

All of these five composite integers H; happen to lack factors below the search limit
5, 988, 337, 680 and as a result the methods described here all failed to prove N
prime, a rather unusual situation.——However, by finally applying a version of the
more general method of Adleman, Pomerance and Rumely mentioned on p. 131,
N was easily proved to be prime by Lenstra and Cohen.

Certificates of Primality

In the course of proving a number N prime using the above mentioned methods,
the proof depends upon which of the numbers N 4+ 1 or N — 1 or some other
number has been factored, and to what extent. This procedure is often repeated
recursively, until the numbers involved are small enough to be considered trivial
with today’s computing standards. In order to be able to reproduce the proof of
primality without having to repeat this search for suitable numbers to factor, and to
repeat their factoring, one could give a list of all the stepping stones used to arrive
at the proof. Such a list, with some explanations, is called a primality certificate
for the number N, see [17].

Also some of the modern methods of primality proving for general integers,
such as the elliptic curve method, need a lot of computer search before a proof may
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be found, but after the proof is found, it is comparatively easy to reproduce it once
the key information constituting the proof is available. The computer programs
for these types of calculations thus normally output this key information in the
form of a primality certificate.

Primality Tests of Lucasian Type

As we have discussed above, Lehmer’s converse of Fermat’s theorem is not appli-
cable unless we succeed in factoring N — 1 at least until the “completely factored
part” exceeds the remaining cofactor. By using results from the arithmetic theory
of quadratic fields (see Appendix 4), it is possible to find a converse of the ana-
logue of Fermat’s theorem in these number fields. It turns out that in certain cases
the factorization of N + 1 comes into play in exactly the same way as does the
factorization of N — 1 in the ordinary field of rationals. Thus we have a choice
between N — 1 and N + 1 and can choose which of these two numbers is the
easiest to factor. We shall give a fairly detailed account of this technique, which
has in fact led to many useful primality tests, mainly due to Lucas.

Lucas Sequences

Suppose a and b = @ are two numbers satisfying a quadratic equation with integer
coefficients, the so-called characteristic equation

MV —Pr+Q=0. (4.30)
Now, for n > 0 define the numbers U, and V, by

U __a”—b"
n — a—b’

V, =a" +b". 4.31)

We can then demonstrate that these numbers are rational integers in the following
way: Firstly, we have Uy = 0, U; =1, Vo =2and V; = a 4+ b = P. Next,
because we have assumed P and Q to be integers, all the numbers U,, and V,,
must be integers since the “initial values” Uy, U; and V;, V| in the recurrence
relations (4.34) and (4.35) below are integers. The numbers U, and V,, constitute
what are termed Lucas sequences. It can easily be shown that these satisfy certain
interesting formulas:

am+n — bm+n

Upnyn=——"—7-—=
+ a—b
_ (am — bm)(aﬂ + b") anbn(am—n — bm—") _
o a—>b a—>b a
=UyV, —a"b"U,_, (4.32)
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and, similarly,

Vinin = a™tt + bt =

— (am +bM)(an +bll) —_ anbn(am—n +bm—n) pa—

= VnVp —a"b"Vy_,. (4.33)

For the special case n = 1 we obtain the second-order recurrence relations
Uny1 = (@ +b)U, —abUy_y = PU, — QUp1 (4.34)
Vin41 = @a+bV, — abVm_1 = PVy — QVipy, (435)

already utilized above when proving that U,, and V,, are integers. The deduction
of all these formulas requires the use of elementary algebra including the well-
known relations between the roots and the coefficients of a quadratic equation,
ie.a+b=Pandab= Q.

The Fibonacci Numbers

Taking Up = 0, U; = 1 yields the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, ... satisfying U+ = U, + U,,—1. This recurrence relation
corresponds to the characteristic equation A2 = A+1, withrootsa, b = (1£V5)/2.
The numbers U,, are given by

1 [(1+v35\" [1-v5\
) e
and the V,,;’s are . .

v, = <1+2‘/§) + (1_2‘/3) . (4.37)

The V,,’s have the values 2, 1,3, 4,7, 11, 18,29,47, 76, 123, . .. The simplest way
of calculating the numerical values of all the V,,’s is to start with Vp =2, V; = 1
and then apply the recursion V11 =V, + V1.

Large Subscripts

Let us give another example demonstrating how (4.32) and (4.33) can be used
to compute U, and V, easily for an isolated, large subscript n. We now choose
n = 100. In order to calculate Ujgp and Vigo, we let m = n in (4.32) and (4.33)
and arrive at the special case

Uy = U, V, (4.38)

Voy = V2 = 2(ab)" = V} —2Q". (4.39)
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If the subscript is odd = 2n + 1, we instead put m = n + 1 and obtain
U2n+l = Un+1 Vn - Qn (440)
Vant1 = n+IVn - PQn- (4.41)

Alternatively, we could have substituted n for m and n + 1 for n in (4.32) and
would then have arrived at

Usnit = UpVoy1 — Q"0 = Up Vs + Q" (4.42)

where the value of U_ is calculated as (@~ —b~")/(a —b) = —1/(ab) = —1/Q.

The computation of Ujgp and Vg can now be performed as follows (letting
P =1 and Q = —1 for the Fibonacci numbers):

Uioo = UsoVso, Vioo = V520 -2,

Usp = U5 Vas, Vso = V225 +2.

Since all subscripts involved were even hitherto Uypp and Voo have been generated
in a straight-forward manner. Now consider the next step:

Ups=UnViz—1, Vs =Vi3Vp— 1L

From this point on a difficulty presents itself. We are forced to keep track of
Jfour new quantities Uy, U3, V)3 and V)3 and their descendants as we continue to
decompose. Does this mean a doubling of the number of U’s and Vs to keep in
mind each time we arrive at an odd subscript? Fortunately not! No further doubling
occurs when we apply (4.38)—(4.41) again. Please observe how the calculation
proceeds:

Up=UsVe» Vo=Vi—2, Us=UVs—1, Vz=WVV—Ll

Here we still have only four new quantities Ug, Vs, U7 and V; to keep track of!
The process continues in this manner:

Uy=UsVs+1, Vi=ViVz+1, Us=UsVs, Ve =Vi+2,
Us = U, Vs, Vi=V} -2, Us=UVi+1, Va=WV+1

until, finally,
U, = Uy Vi, Vo= V42

U0 and Vi have thus been decomposed in a chain of calculations which can be
run backwards, starting with U; = V; = 1:

U, =U V=1, Vo=V2+2=3,
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Us =UpV; +1=2, Vi=WVV,+1=4,

Uy = UV, =3, Vi=V2-2=1,

Us = Us3V; =8, Vo=V2+2=18,

Uy =UsVs +1 =13, Vs =V4V3+1=29,

Uy, = Ug Vs = 144, Vip=V2 —2=322,

Uiy = U;Ve — 1 =233, Vi3 = V3V — 1 =521,

Uss = U3V — 1 = 75025, Vas = Vi3Vip — 1 = 167761,

Uso = UspsVos = 12586269025, Vs = V5 +2 = 28143753123
and, finally,
Usoo = UspVso = 354224848179261915075,

Vioo = V& — 2 = 79207 08398483 72253127.

The calculation looks rather unwieldy at first sight! Suppose we want to compute
U, mod N or V,, mod N for a very large subscript n, say about 10'%. How many
steps will the scheme include? Well, at each stage the subscripts are roughly
halved, so that approximately log, 10'® = 332 steps will be required before the
subscripts have been reduced to 1. In each step four values Uy, Vi, Usy; and
V,4+1 mod N must be calculated, except possibly in some of the initial steps in the
deduction, a case which occurs when n is divisible by a power of 2. Moreover,
of course, if only V, is required, then the entire chain of calculations makes no
use whatsoever of the U’s, so in such a situation the labour demanded is halved.
However, in general this is an algorithm of polynomial growth as are some of the
algorithms encountered earlier such as Euclid’s algorithm (Appendix 1, p. 240)
or the algorithm for computing a? mod N using the binary representation of d
given on p. 93 above.—Hence, the times taken in a computer for the calculation
of a* mod N and for U; mod N will be of the same order of magnitude for large
values of s and N. The computation of U; in actual fact is slower, but only by some
relatively small numerical factor.

Finally, we remark that if the subscript n possesses many factors 2, say n =
h - 2%, h odd, then the chain of calculations takes a particularly simple form:

Un = Uh.zx = Vh,zx-l Uh,zx-l =
: (4.43)
= Vh‘2"’ Vh-2"‘2 ‘/Il~2"_3 e Vh Uh
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and -
Vo = Via = V2, —20"2

: (4.44)
Vop = V20",

If @ is chosen as 1 or —1 then the last set of formulas (4.44) turns out to be
particularly simple. As an example, Ugg = VigV24 V12V V3Us and Vg = V32 + 2,
Vip = V¢ =2 Vo = VL —2, Vg = V} — 2. Starting from U = 2 and
V3 = 4, we obtain successively Vg = 42 +2 = 18, Vj, = 182 — 2 = 322,
Vas = 3222 — 2 = 103682, Vg = 1036822 — 2 = 107 49957122, giving

Ugg =2-4-18-322-103682 - 10749957122.

An Alternative Deduction

There is an alternative approach which also leads to the algorithm sketched above
for the fast computation of U, and V, in O (log n) steps. This makes use of 2 by 2
matrices in order to condense the two scalar recursion formulas (4.34) and (4.35)
into one matrix equation:

U, V, P —-Q Up Va
A, = [ Imtl Vmtl) . 4.45
" ( o ) =GO o v @49
Applying (4.45) m times, we arrive at the formula
Um+l Vm+l _ P —Q " U] Vl

Thus, we can compute A,, by the usual “square and multiply” algorithm for ob-
taining mth powers in O (logm) steps, but note that here the algorithm is applied
to 2 by 2 matrices rather than the usual scalars.

Exercise 4.2. Fibonacci numbers. Use (4.45)—(4.46) and the binary representation of m
to deduce a set of formulas for the computation of U,, and V,,. Write a computer PROGRAM
Fibonacci which reads P, Q, m and N, and gives U,, mod N and V,, mod N. Use the

same technique of utilizing the binary representation of m as in the PROGRAM Fermat on
p. 88!

With the notation introduced in (4.45) and (4.46) our previous calculation of
Ui00 and Vo runs as follows:

Ao = (o o) = (1121, @
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Now, successively
Go =G

G0 =GoGD=CD
G =GD=(9

Go =5 =G 5

24 2

o) = Cias 59) = (igaen 2507)
(19" = (1 9 s 35659 = (oas 2300

)50 _ (121393 75025)2 _ (203 65011074 125 86269025)

75025 46368 12586269025 7778742049

1
0
1

(1

1

(1 )‘00 _ (203 65011074 125 86269025)2 _
10 12586269025 7778742049/ —

— (5731478440138 17084101 354224848179261915075) _ (011 012)
3542248481792 61915075 2189229958345 55169026/  \a21 axn/’

say. Thus,

Ui Vier) _ (all ‘112) (1 1)

Uioo Vioo T \ay an/\0 2/’
yielding Uy = az1, Vieo = d21 + 2ay; and thus finally giving the values for U;go
and Vo previously found on p. 110.

Divisibility Properties of the Numbers U,

A necessary and sufficient condition for the roots of the characteristic equation
(4.30) A2 — PA + Q = 0to be irrational is that the discriminant P2 —4Q is not a
square number. If we assume that this equation has irrational roots a and b, then
these are conjugate integers in the number field Q(v/D) if P2 —4Q = ¢?D holds
and D is a square-free (rational) integer. According to Fermat’s theorem for the
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quadratic field Q(+/D) (see Appendix 4, p. 293) we then have, if p is an odd prime
such that p} D,

D
a’? =amod p, if (—-) =41 (4.48)
p

or
D

a’? =amod p, if (—) = —1. (4.49)
p

If GCD(a, p) = 1in Q(+' D), i.e. if GCD(Q, p) = 1, then (4.48) implies
~1 . D
a’""=1lmodp, if [—)=1 4.50)
p

If (D/p) = —1 then always
a?*! = a@ mod p. 4.51)

Thus, since (a — )2 =D, if GCD(Qc, p) = 1, we find

pel_gp!t 11 D
Up-1 = 2 i = — =0mod p if (—) = +1 (4.52)
a—a a—a )4

and
p+1 _ =p+! - _ = D
Upr= —— 2 =279 _Oomodp if (—) =—1. (453
a—a a—da p

The congruences (4.52) and (4.53) are fundamental for the factorization of
the Lucas numbers U,. If p is an odd prime not dividing Qc, then obviously either
U,y or Uy, will contain the prime p as a factor. Note that the condition p{ Qc
is necessary. To see why this is so, we can study the case when

1
Un=———[ 24+ V15" — 2—\/—15"].
WAL )~ ( )
The characteristic equation is A> — 44 + 19 = 0 and the corresponding recursion
formula becomes U, = 4U,_; — 19U,,_,. The integers U, successively assume

the values 0, 1, 4, —3, —88, —295, ... Reducing U, mod 19 gives U, = 4U,_;
mod 19 because of the recursion formula, and hence U, =0, 1,4, 16,7,9, 17, 11,
6,5,1,4,16,7, ...mod19, a sequence which is periodic apart from its first element
Up = 0. Thus, in this particular case neither U;g nor Uy contains the factor 19.
The reason for this “failure” is that we cannot cancel the factor 2 + /—15 in both
sides of the congruence, although Fermat’s theorem in Q(+/—15) guarantees that

Q2+ V=15 =2+ +/~15 mod 19,
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since the integer —15 is a quadratic residue mod 19. This is so because 19 =
(2 + ~/~13)(2 — /—15) and, therefore, according to the cancellation rule for
congruences, we do not arrive at (2 + +/—15)'* = 1 mod 19, but only at the

weaker result
Q2+ V=15 = 1 mod (2 — v/—15).

The reader who is unaccustomed to computations in quadratic fields might, at this
stage, wish to see a verification of the fact that the congruence (2 4+ +/—15)1® = 1
mod 19 is actually false. One way of demonstrating this is as follows:

Q+v/=15%=—11+4/=15=8 + 4/=15=4(2 + ~/—15) mod 19.

Putting 2 4+ +/—15 = a, this is a®> = 4a mod 19. Thus we successively find
a* = 16a% = 2%a, a® = 21%4® = 2%, a® = 2'%q and, finally,

a'® =2%a =2"% =50 = 10+ 5v/—15 % 1 mod 19.

Please note that this is not a typical example of arithmetic in a quadratic field. The
extraordinarily simple relation a*> =4a mod 19 makes the calculations much easier
than ought to be expected.

It is also easy to verify that
524+ +—-15) is =1mod2—+—15.
This is demonstrated in the following way:

52+ V=15 —1 9+5/=15 _ (9+5/=15Q+/=15) _

2—J/=15  2-/—-15 19
—57 +194/-—15
= —+19— = — 3+ +/—15 = an integer in Q(v/—15).

Now, let us return to our main line of thought. What can be said about the
divisibility of the U;’s by prime powers? Using the more general congruences
(A4.18) and (A4.19) rather than Fermat's theorem in Q(+/D),

- D .

a?"”'P=D = | mod p" if (—) =1and GCD(q, p) = 1in Q(v/D) (4.54)
p

and D
aP"—l(P‘*‘l) = (a‘a')P"—| mod p” if (—) = ——1, (455)
p

we obtain the following analogues to (4.52) and (4.53):

D
Up-i(p—1y = O mod p", if (;) = 1 and GCD(a, p) = 1in Q(v/D) (4.56)
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and D
Up""(p-H) = 0 mod pn if (—;) = —1. (457)

These two congruences together with the conditions imposed on a, p and D may
be condensed into the following formula:

Up-t(p—ypy = 0 mod p", if GCDQQcD, p) = 1. (4.58)

Primality Proofs by Aid of Lucas Sequences

The divisibility properties of the numbers U,, discussed above, suffice to prove a
theorem analogous to Lehmer’s converse of Fermat’s theorem.

Theorem 4.8. Suppose N +1 = []}_, qf 7, with all g;’s distinct primes. If a Lucas
sequence U, satisfying GCD(2QcD, N) = 1 can be found such that

GCD(Uw+1y/q; N)y =1 forall j=1,2,...,n (4.59)

and
Un+1=0mod N, (4.60)

then NV is a prime.

Proof. Consider any prime factor p of N. The conditions in the Theorem imply
that
GCDWUw+1ysq» ) =1 for j=1,2,...,n (4.61)

and that
Uy4+1 =0 mod p. (4.62)

In exactly the same way as in Theorem 4.6 we arrive at the conclusion that
d=N+1, (4.63)

if we define d as the smallest positive subscript with U; = 0 mod N. We shall now
prove how this induces primality of N. The proof is based on the idea to calculate
d for a composite number N and show that d < N + 1 always holds for composite
numbers, just as the fact ¢(N) < N — 1 for composite numbers is used in the proof

of Theorem 4.3.
To achieve this, suppose N = [] p{* and GCD(2QcD, N) = 1. Then, by

(4.58), we have
Up:.”'"‘[p,-—(D/p,-)] = 0 mod p;". 4.64)

Using the fact that all the subscripts satisfying precisely one of the congruences

U, = 0 mod p;*
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constitute (the non-negative part of) a module, we now find that the subscripts
satisfying all the congruences simultaneously also form (the non-negative part of)
a module with a generator which is the least common multiple of the generators
of all the individual modules. Thus, it is clear that

Up=0mod N (4.65)

m = LCM [an pr! (p,- - (,,2))] ) (4.66)

Now, since all the p;’s are odd (we have assumed GCD(2QcD, N) = 1!), all
pi — (D/p;) are even and therefore

with

>
IA

Di — (D/pi)p;!.-—l] < 21__[ 1 - ;1-— (l—’r—) o;

=2 xLCM
=2 cou[ =

<2N —|14+ —) =T, say.
U2 Pi

The simplest case of a composite N is a prime power, N = p‘l’", oy > 2. In this
instance we calculate the exact value of m and obtain

1
m=1v(1i—)=p;"ip7*-’¢1v+1.
P

If N contains at least two distinct prime factors, we have

1 1 1 1 1
T=N 1+—)(1+—)-—- —(1+—)5
( pi r2) 2 ,1:!2 pi

1 1\ 1
< — — o — == .N N l
_N(1+3)(1+5) 2 0.8N < N+

This proves thatd # N + 1 for a composite number N, and hence the value obtained
previously, d = N + 1, implies primality of N.

A very simple case is N = M, = 2" — 1. In this case N + 1, being a power
of 2, has only one prime factor and the conditions of theorem 4.8 simplify to the
following:

If a Lucas sequence U, can be found such that
UN+1 =0mod N while U(N—H)/Z $ 0 mod N, (467)
then N = 2" — 1 is prime.
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Also in the case when N + 1 is not a power of 2 the value of Uy, mod N is,
as previously shown, relatively easy to compute, leading to fairly simple primality
tests. Among these, the tests for the numbers M,,, which are called Mersenne
numbers, are outstanding in their simplicity. This makes these numbers very
attractive to investigate, especially on binary computers due to the simple binary
representation of N. Thanks to this fact, the Mersenne numbers are the largest
numbers which have been systematically exposed to primality tests and the largest
known primes are also found among these numbers. In the following, we shall
describe this interesting pursuit of large primes in more detail.

Lucas Tests for Mersenne Numbers

First, we combine the two conditions (4.67) for the primality of M, into one
single condition. Since Uy+1 = Uw41)/2Vin+1)/2, the integer Vn,1)2 must be
the one that introduces the factor N, finally leading to Uy, = 0 mod N. Thus,
the replacement of the two conditions by: Vy.1)2 = 0 mod N is necessary and
sufficient for the primality of M,,. Next, we change notation in order to write down
the chain of computations leading to V(y4.1y/2 = Von-1 in a more convenient form.
Put Vo: = v, so that V,» = V2, — 20%"" transforms into v, = w2, - 2077,
Starting the computation with vy = V; = P, we see that the test Vivenpe =0
mod N is equivalent to the following: Putvg = P. Letv, = v2_, —20%" mod N.
Then v,_; = 0 is necessary and sufficient for M, = 2" — 1 to be a prime.

So far, we have not yet approached the problem of how to find a Lucas
sequence which is appropriate to the Mersenne numbers. The simplest way of
doing this is to construct a sequence fulfilling the requirement (D/N) = —1. This
condition is not explicitly mentioned in Theorem 4.8, but if N is a prime and if
Un+1 = 0modN, then (4.53) demands that (D/N) = —1. The other requirement,
i.e. GCD(2QcD, N) = 1, causes no problem, since before a large number N is
put to a Lucas test, N has normally been searched for small factors in any event
and, moreover, since Q and D are of moderate size this will guarantee that N
has no divisors in common with 2QcD. There are always many different Lucas
sequences which are suitable (about half of all D-values have (D/N) = —1). The
following is one possible sequence: the choicea = 1 ++/3.b =7 = 1 — /3,
which gives

P=a+a=2 Q=ada=-2, P’—40=12, D=3, c=2.

Now, D = 3 happens to be a quadratic non-residue of all primes of the form
12n £+ 5 (Table 32). Furthermore, for the powers of 2 mod 12 we find

21'=2,22=4,23=8,2=4,2°=8, 26=4, ...

Here only the odd values of the exponents are interesting, since if M, = 2" — 1
is to be prime at all then n must be odd (except in the trivial case 22 — 1 = 3).
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Hence, forn>3, M,, = 2" — 1 = 7 mod 12 and the number 3 is thus a quadratic
non-residue of M,,.—Combining these results we arrive at the following primality
test for the Mersenne numbers:

If nis odd, then M,, = 2" — 1 is prime if and only if v,—; = 0 mod M,,, where

ve=02_,-2-2" withvyy =02 +4=38.

Example. n = 7. M; =27 — 1 = 127, and we successively find
v, =64 — 8 =56, v; =3136—32=23104 =56, vs =3136—-512 =84,
vs = 7056 — 27 =63, wg = 3969 — 2% = 3969 — 2° = 0 mod 127.

Can the Lucas test for Mersenne numbers be simplified? Well, the powers
of 2 in the recursion formula for v; would certainly vanish if we could choose
Q = 1or Q = —1. However, this would severely limit the possibilities of
finding a suitable Lucas sequence. Q = 1 together with (D/p) = —1 causes
already U(p+1)2 = 0 mod p, creating the problem that Theorem 4.8 cannot be
used without some modification. Nevertheless, there exist somewhat more general
Lucas sequences than those we have so far studied which are appropriate to our
problem. The principle is to insert new elements between the terms of the original
Lucas sequence. This will double the value of all the subscripts in the old sequence
and, in this way, the troublesome Up+1y,2 = 0 mod p will be transformed into
the desired U, ,, = 0 mod p.—Next, in order to achieve this, suppose we have a
Lucas sequence U, such that

Un+1y/qp #0mod N and U1y =0mod N, (4.68)

with a and b satisfying A2 — PA + Q = 0. Now we shall try to make this Lucas
sequence U, denser by doubling the number of its elements to obtain the new
sequence U,. Because the original U,’s are given by the formula

n__n 2n __ —2n
y, =42 -4 _ye —va (4.69)

a—a a—a

the sequence U, defined by
Var —/a

U = (4.70)
" (Va-VayJa+Va
obviously satisfies the desired subscript-doubling relation
U5, = U,. 4.71)
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It turns out, however, that this new sequence U, is slightly more general than those
we have encountered so far, and that the divisibility properties of its elements
cannot immediately be inferred from what we have already proved for quadratic
fields. We have to omit the details of this deduction, but mention only that the
main conclusion is still valid, namely that N is prime if

U(’N+1)/Qj = U(N+1)/(2q,-) $OmodN for all _[ = 1,2,...,n (472)

and
Uyii = Uwsyz =0mod N. 4.73)

Thus we finally arrive at the Lucas test for Mersenne numbers: Choose a = 2++/3,
b = 2 — /3, which gives
V3+1 V3-1 D
P=4’ =17 ‘/E=—v »\/E:—-—,D'——B’ (_)=_1
¢ 7 72 M,

P=Ja+vb=+v6, Q=+ avb=1,
resulting in the Lucas sequence

,_(B3+1) | (vV3-1)"

This sequence obeys V,, = V,% — 2 and starts with V] = /6 and V, =4. If we
change the notation (as done previously) by letting V31 = v, then we have

Theorem 4.9. Lucas’ test for Mersenne numbers. If n is odd, then M, = 2" — 1
is a prime if and only if v,_, = 0 mod M,,, where

v =02, -2 with v=4. (4.75)

Further on we shall prove a result (Theorem 4.17) which is a generalization
of Theorem 4.9.

Example. For N = 2!° — 1 = 524287 the computation runs as follows:
v =4, v = 14, v, = 194, v3 = 37634, w4 = 218767
vs = 510066, vs = 386344, v; =323156, vg = 218526, vy = 504140
vio = 103469, vy = 417706, vi; = 307417, vi3 = 382989, vy, = 275842
v1s = 85226, v = —210,
and, finally,
v7 =22 -2=0mod 2" — 1.
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This proves the primality of Mjs.

Using Theorem 4.9 and another very similar primality test, Lucas in 1876
proved M7 (39 digits!) to be prime. This was the record for the largest prime
discovered before the advent of computers. (In fact, larger numbers have been
investigated without the use of a computer. The author believes that the largest
prime found without a computer is A. Ferrier’s (248 + 1)/17, but this result was
published in 1952 when there were already several larger primes known which
had been found by aid of computer.) All Mersenne numbers with exponents up to
139268 and some higher ones have been tested to date, among which the following
33 exponents p have been found to lead to Mersenne primes M:

2, 3,5, 17,13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,
44497, 86243, 110503, 132049, 216091, 756839 and 859433.

Mgsoqzs (258716 digits!) is the largest prime known at present. It was found
with the aid of a CRAY-XMP computer at the Lawrence Livermore Laboratory in
California in 1994 by Paul Gage and David Slowinski.

A Relaxation of Theorem 4.8

As the reader may remember, we have given two converses to Fermat’s theorem,
namely Lehmer’s Theorem 4.3 and a version with relaxed conditions on the fac-
torization of N — 1, Theorem 4.6. The relaxed version is very helpful indeed when
N — 1 has many small prime factors and a large cofactor < V/N. In such a case we
can avoid the labour of factorizing this large cofactor. The situation is identical
when Lucas sequences are used rather than Fermat’s theorem. The condition of
Theorem 4.8 that N + 1 is completely factored may be relaxed so that a cofactor
<4/ N can be left unfactored. This is stated in

Theorem 4.10. Suppose that N +1 = R - F = R[];_, qf", with all g;’s
distinct primes, R < F and GCD(R, F) = 1. If a Lucas sequence U, with
GCDQQcD, N) = 1 exists, satisfying

GCD(Un+1y/q;» N) =1 forall j=1,2,...,n (4.76)

and such that
Un+1 =0mod N, @.7

then N is a prime.

Proof. As in the proof of Theorem 4.8, we must consider a possible prime factor
p of N. In exactly the same way as in Theorems 4.6 and 4.8 we arrive at the
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conclusion that F|d. By (4.52) and (4.53), either d|p — 1 or d|p + 1. Thus
F|p £ 1. Hence, the smallest possible value p can assume is one of F £ 1. If the
sign is positive, then p = F 4+ 1>+/N, and so N is certainly prime. If, however,
the sign is negative, then the magnitude of p could be just below +/N, so we need
to provide some other reason why this case also leads to a contradiction. Let us
then consider N = RF —1=R(p+1)— 1= Rp+ R —1 = 0mod p. This
congruence requires R to be = 1 mod p. Butsince 0 < R < F = p + 1, the only
solution to R = 1 mod p is R = 1, for which N = p, and thus, again, N is prime.

In the same way as we used Theorem 4.6 earlier to find elegant and efficient
primality tests for numbers of the form A - 2" + 1, we can now apply Theorem
4.10 to devise a simplified version of the primality tests for numbers of the form
h - 2" — 1. Using the notation, introduced on p. 117, one can obtain

Theorem 4.11. (O. Korner, Ulm, Germany.) If 4 is odd and 2" > 4h, then
N = h-2"—1is prime if there exists a Lucas sequence V,, with GCD(QcD, N) =1
such that

V(N+])/4 = 0 mod N. (4.78)

Proof. Suppose that N were composite and consider its smallest prime factor
p< VN If we, as in the proof of Theorem 4.8, define d as the smallest subscript
with Uy = Omod N, then all subscripts v with U, = Omod N are again multiples of
d. Thus, since Uninpz = U(N+1)/4V(N+1)/4 = 0modN,d|(N+1)/2,i.e.dlh-2""‘.
On the other hand Uy11y/4 # 0 mod N. This is, because if U, and V, were
both = 0 mod N, then so were (a — b)U, + V, or a” and b’ would both be
= 0 mod N, which would imply that the prime factor p of N would also divide
(a — b)? = c*D, contrary to the assumption GCD(QcD, N) = 1. Applying this
reasoning to v = (N + 1)/4, we find that d{(N + 1)/4, or d}h - 2"~%. Thus
2"11d. Now, if we putm = p — (D/p), since U,, = 0 mod p according to (4.48),
it follows that d|m and thus that 2"~!{m. This leads to p = (D/p) mod 2",

and in particular p > 2"~! — 1. The case p = 2"~! — 1 can be excluded, since
inthiscase N=h-2"—-1=2h(p+1)—1=2h—1mod p. This would
imply 21 — 1 = p, since 2h — 1 < 2"! — 1 = p, which leads to an even value

of h (or to p = 1), contrary to the assumptions in the theorem. Thus, finally,
p? > (2"1)2 =2".2""2 5 h.2" = N 4 1, which contradicts the assumption of
p being the smallest prime factor of N. Thus N is prime.

Pocklington’s Theorem

Theorem 4.12. Pocklington’s Theorem. Let N — 1 = Rg", where g is prime
and g} R. If there exists an integer a, satisfying

GCD (a®™~"4 —1,N) =1 andsuchthat a"'=1modN, (4.79)

then each prime factor p of N has the form p = ¢"m + 1.
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Proof. Exactly as in the proof of Theorem 4.6 on p. 103, each (possible) prime
factor p of N must satisfy ¢"|p — 1, which means that p = g"m + 1 for some
positive integer m.

Remark. Pocklington’s theorem can in some cases help to find a factor, but its main
application is in primality proofs, as illustrated in the example below, where it is used to
establish that any prime factor of N must be > /N, thereby implying the primality of N.
The theorem is only a slight generalization of the reasoning used to prove the primality of
a number by proving the existence of a primitive root g mod p.

Lehmer-Pocklington’s Theorem

If the factorization of N — 1 is, instead, givenas N — 1 = R-F = R[] q'-g’, asin
Theorem 4.6, then the modular conditions arising from the different prime powers
qu can be combined to yield

Theorem 4.13. Lehmer-Pocklington’s Theorem. Suppose N —1=R-F =
RTT, qu, with the g;’s distinct primes and GCD(R, F) = 1. If there is an
integer a, satisfying

GCD (a4 —1,N) =1 forall j=1,2,...,n, (4.80)

and such that
a¥" 1'=1modN,

then each prime factor p of N has the form p = Fm + 1.—Note that it is not
necessary to have R < F here.

Example. The primality of N = (2'*® + 1)/17, the largest prime found using a
desk calculator, was established by A. Ferrier in 1951 by means of the following
arguments:

Firstly, it was verified that 3V~! = 1 mod N.

Secondly, N — 1 = 242”2 — 1)(27? + 1)/17 contains a large prime factor,
namely Q = 487824887233. Applying Pocklington’s theorem with ¢" = Q,
Ferrier showed that 317V=1/Q _ 1 is prime to N, which implies that 3% ~1/Q — 1
is also prime to N. Thus, every prime factor of N must be of the form Om + 1.

Next, 17N being of the form a'*® + b8, every prime factor of N (excepting
possible factors 17) are of the form 296k + 1, due to Legendre’s Theorem on p. 165.
Combining the two forms, Ferrier found that every prime factor of N is of the form

p = p(y) = 1443961 66620968y + 1 = gy + 1.

Now, fory = 1,2, 3,..., 11, p is not prime, having a small divisor. Hence, every
possible prime factor p of N exceeds p(12) — 1 = 17327539 99451616.
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Further, applying a type of argument which often is useful in connection with
Fermat’s factorization method, Ferrier wrote

N=A2—BZ=(A—B)(A+B)=p-E
P

Here N
2A=(A—B)+(A+B)=p+— <13.10%
p

since /N > p > 1732753999451616. Now, on the other hand, since both factors
p and N/p are of the form gy + 1, we have

N+1=@y+D@z+D+1=¢’yz+@y+D+(gz+1) =
=q%yz 4+ 2A = 2A mod ¢°. (4.81)

But N +1 = 1885978087126 35496631 61494450 mod g2 so that 2A > 1.8 - 1028,
Since this inequality contradicts the previous one, A does not exist and therefore
N is prime.

Pocklington-Type Theorems for Lucas Sequences

If N + 1 is easier to factor than N — 1, then the following analogues of theorems
(4.12) and (4.13), utilizing Lucas sequences {U,} instead of powers a”, may be of
use in the search for factors of N:

Theorem 4.14. Lehmer’s analogue to Pocklington’s Theorem. Let N + 1
= R-q", where g isprime and ¢} R. If {U, } is a Lucas sequence with (D/N) = —1
and such that

GCD(U(N+1)/q, N) =1 with UN—H = 0 mod N, (482)

then each prime factor p of N has the form p = ¢"m =+ 1.

Proof. In Pocklington’s (original) theorem 4.12 the result follows from the fact
that a prime p can divide N only if g"|p — 1. For a Lucas sequence, g” will instead
have to be a factor of p — (D/p) (compare (4.66)), i.e. g"|p *+ 1, yielding the
present theorem first proved by D. H. Lehmer.

If the factorization of N + 1 is instead givenas N +1=R-F =R ]—[qﬁj R

then again combining the modular conditions for the different prime powers q]pj
surprisingly enough yields

Theorem 4.15. Let N +1 = R- F = R[[\_, ¢”, with ¢; distinct primes and
GCD(R, F) = 1. If {U,} is a Lucas sequence with (D/N) = —1, for which

GCD(Un+1y/q» N) =1 forall j=1,2,...,n (4.83)
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and such that
Unyy1 =0mod N,

then each prime factor of N has the form p = Fm £ 1.

The surprise is that only two residue classes instead of 2" are possible for the
module F = ]_]qf" , being a product of n modules, each admitting two residue
classes for p.

Proof. The proof of this Theorem is similar to the proof of theorem 4.10 on p. 120,
that F must divide p £ 1 if p is to be a prime factor of N. So p must be = +1
mod F—This theorem was discovered by the author of this book in 1967 and
rediscovered by Michael Morrison and published in 1974.

Primality Tests for Integers of the Form N = h - 2" — 1, when 3}h

In order to satisfy (4.76) we need as usual to require that (D/N) = —1. Further-
more, as in the case of Mersenne numbers, the computation will be particularly
simple if we can choose O = +1. Now, if 3{h, then it is possible to cover all
interesting cases (3/N) by the same choice of a and b as on p. 119, i.e. by once
again considering the Lucas sequence (4.74). Vint1ya = Viyiny2 = Vpona is
most easily calculated by adopting the initial value

\/§+1 o ‘\/§—1 2h h h
(X2 Y2} = - 4.84
vo ( 7 ) + 7 Q2+ +@2—3) (4.84)

and then performing the usual recursion v; = v2_, —2. The condition for primality
of N, (4.78), will then again take the form v,_» = 0 mod N. We thus arrive at the
following

Theorem 4.16. Lucas’ primality test. Suppose that & is an odd integer, that
2" > h and that neither N = h - 2" — 1 nor h is divisible by 3. Then N is prime if
andonly if v,—, = OmodN, where v; = vf__l —2andvy = C+V3) " +@2 — N

Note that the initial value vg can easily be computed using (4.39) and (4.41).
This is because we can consider vg itself to be an element of a suitably chosen
Lucas sequence!

Example. N = 5.2 — 1 = 81919. First we have to compute vo = (2 + V3) +
2 - +/3)%. The Lucas sequence with V,, = (2 + V32 — J/3)™ satisfies
Vint1 = 4V — Vi with Vo = 2 and V; = 4. Thus V, = 4.4-2 = 14,
Vi=4-14—4=52,V4=4-52—14 = 194 and Vs = 4-194 — 52 = 724. (This
initial value vy is identical for the Lucas test on all numbers of the form 5 - 2" — 1
not divisible by 3.) Next, compute

v = v} — 2 = 32660, v, = 8299,  v3 =61439, v =5118,
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vs = 61761, wve=26722, v;=159278, wvgz= 47696,
vo = 17784, wvo = 63314, v;; = 38248, v = 0 mod 81919,

which proves 81919 to be prime.—By applying Theorem 4.16 and using the com-
puter BESK, the author of this book has in 1954 identified many at the time
unknown primes, for instance

5.248 1, 7.2, 11.2%6_-1, 17.2B0_1.

More detailed information can be found in Table 6 at the end of the book.

Primality Tests for N = h - 2" — 1, when 3|h

‘What now remains in order to complete the picture is to construct Lucas sequences
which are applicable in the case when N = h-2" — 1 and 3 divides 4. This problem
is actually more difficult than when 3} 4. The difference between the two situations
lies in the choice of a suitable initial value vy for the recursion v, = v2_| — 2.
In the case treated above, where 3}h, vy is dependent on h only and not on n (as
long as 3}N), whereas in the case when 3|h, vy is dependent on n as well as on
h. Moreover, still worse, also D depends on h and n, making the search for a
suitable Lucas sequence theoretically complicated and computationally tedious.
The reason for this is the following. Suppose that N = 3A - 2" — 1 and that 34
has an odd prime factor p. Then (p/N) is always = 1, since

(__13_) = (_IY_)(_I)%(P—D%(N—I) — (____1_)(_1)%(11—1)%(1‘/—1)
N p p

by the theorem of quadratic reciprocity, see p. 279. Now, working through the two
cases p = 4k — 1 and p = 4k + 1, we find

(%) = (=D(=DH-DEATTD = 4

and

Py _ _1)2kGA2-1) _
(N) +D(=D +1

in these two cases, respectively. Finally, if n > 2 then

(%) = (—DN-DWVHD/E _ (BATIN-D2 - g

so that it is impossible to find a value of D that is a quadratic non-residue of
all values of A simultaneously. Therefore, according to the value of A selected,
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we need to work with different values of D, leading to varying mathematical
formulas for vy, depending on the chosen value of A. Furthermore, the requirement
(D/N) = —1 cannot be satisfied for all (interesting) values of N by simply
choosing a fixed value of D, when D is large. This fact leads to different values
of D (and therefore of vp), even if we fix the value of A. A rather surprising
situation! The reader is invited to examine the table on p. 128 to see just how
confusing the situation does appear. Look e.g. at the choice A = 5. For the
numbers N = 15 - 2" — 1 we first have a “main case”, D = 21, covering n = 1
mod 3. If n = 0 mod 3, then it turns out that 7|N and so we can dispose of this
case. How about the remaining case, n = 2 mod 3? We will need several different
values of D for this, and even so, it will not be completely covered. As can be
seen from the table, D = 11 coversn = 0, 2, 3, 7 and 9 mod 10, D = 13 covers
n=2,3,4,5,7 and 10mod 12 while D = 17 coversn = 0, 1, 5 and 6 mod 8. But
these congruences together do not exhaust all cases, as can be quite easily seen by
rewriting them mod 120. The cases n = 44, 116 mod 120 are still missing! This
is indicated by the text “not covered” in the table. Finding, by trial and error, a
suitable value of D covering the remaining cases is an almost hopeless task.

Fortunately, the search for useful values of D can be carried out in a systematic
way, by using a quite general theorem discovered by the author of this book in
1969, see [19]. We present here a slightly modified version of this result, given by
O. Komer:

Theorem 4.17. Suppose that & is an odd integer and that 2" > 4h. Then N =
h - 2" — 1 is prime if and only if v,_ = 0 mod N, where v, = vf_l — 2 with
vo = a" +a~", and GCD(N, (a —a™')?) = 1. In this expression a is a unit of

Q(+/D) of the form

(k + 1/ D)? D kKX—I2D (r
a=————— where _— =—1 and _ 1 — =-—-1.
r N r N

Proof. Theintegers V; = a’+a™, according to (4.31), constitute a Lucas sequence
since a is a unit of Q(v/D) and this implies that the characteristic equation of the
sequence, A2 — (@ + @)A + aa = 0, has integer coefficients P = a + a and
Q = aa = =%1. In order to demonstrate that the conditions in the Theorem are
necessary, suppose first that N is prime. Then

N+1)/4 —(N+1)/4
vn_z=V(N+1)/4=a( /4 4 = N+D/4

— a—(N+1)/4 (1 +a(N+l)/2)

= g~ (N+D/4 (1 + (k + 1@)”+‘r“”+"/2) =
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D
(by Fermat’s theorem in Q(VD), since (N) =-1)

2 2
= g~ WN+D/4 (1 + k-I'D (%)) =0 mod N.
r

Here we have been using the condition on (r/N) assumed in the Theorem. For the
sufficiency of the conditions we canrefer to Theorem4.11 since v, = Viyi1y4 =
0 mod N implies the primality of N.

The Lucas tests proved earlier are special cases of Theorem 4.17. If h and n
are such that 3tk and 3/ N, then the unit

2 i
a=2+ﬁ=% of K(V3)

can be used in the Theorem since

DY _(3Y__{ g ¥=ED(rY_=2 (2\__,;
N)S\v)=7 ™ r \W)T2'\W)7
in this instance.—By a further restriction to h = 1, we find
vw=a"+a"=Q+V3) +2+V3)7" =4,

which reverts us to Theorem 4.9.

At this point, a natural question is how best to apply Theorem 4.17 in practice.
One method is to investigate which combinations of D, & and n satisfy all the
requirements and note these down for future use. This has been done in the Table
on the next page, where useful Lucas sequences have been compiled for all A <29.
Since Legendre’s symbol occurs in the conditions of Theorem 4.17, the possible
values of n for a given value of D belong to certain arithmetic series; frequently the
case in problems which can be solved by aid of Legendre’s symbol.—As pointed
out earlier, this technique of extracting valid combinations of h, n and D is quite
complicated and is thus principally used if only a few numbers need to be checked
for primality.

In a situation where all values of h and n in a certain domain are to be
tested, there exists a better approach. This is to systematically allow a computer to
check through all values of D and list those combinations of & and n which fit the
conditions of Theorem 4.17. In order to obtain the smallest possible value of vy,
it is practical to organize this search with increasing values of V;. The author has
carried this out for all n and all odd 4 in the domain 2 <n <1000 and 1 <h <105.
To limit the amount of labour demanded as much as possible, al N = A - 2" — 1
having some factor < 10000 were first sieved out. After this preliminary reduction
a suitable V; was sought for each of the remaining numbers. The largest V,

127



THE RECOGNITION OF PRIMES

necessary in this investigation was V; = 57, required for N = 63 - 23 — 1. For
this V; the value of D was found to be 3245 and

. ( 57 + ¢3245)63+ (57 - J3245)63
0 = —_— _— .

2 2
Lucas tests for numbers of the form N =h - 2" — 1

h D Vo n modd d

1 3|16-12-2=4 1
3121 | 7-4-2=110 0,2 3
3| 39 | 13.98 —2 = 124852 0,1,2,4,7,10,11 12
5 6-112-2="724 0 2
7 6-412 — 2 = 10084 1 2
9 5.34* -2 =5778 0,1 4
9 [ 17 | 2872983 — 3.287298 3,4,6,7 8
11 6-571%2 — 2 = 1956244 0 2
13 621312 — 2 = 27246964 1 2
15 | 21 | 2525% —3.2525 = 16098445550 1 3
15 | 11 | 22-1197677521% —2 0,2,3,7,9 n>2) 10
15 | 13 | 13.16835050% —2 2,3,4,5,7,10 12
15 | 17 | 17-10730180955650% — 2 0,1,5,6 8
15 | — | notcovered by the above 44,116 120

17 3| 6-296812 -2 0
19 3] 6-1107712-2 1 2
21 5 | 5-.10946° — 2 = 599074578 2,3 4
21 13 | 13-21851881930% —2 0,1,2,3,5,8 12
23 31 6-1542841%2 -2 0 2
25 6-5757961%> — 2 1 2
27 5778% — 3-5778 = 192900153618 | 1,2 4
27 | 21 | 1330670° — 3 - 1330670 1,2 3
29 3 | 6-80198051% —2 0 2

Finally, for each of the numbers under investigation, the starting value vy of
the recursion was computed and the number tested. The results are given in Table
6 at the end of the book, which has been brought up-to-date by including also later
results, found by others.
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As an example of the power of this method, we mention the large prime
391581 - 2216193 _ 1, found in 1989 by Brown, Knoll, Parady, Smith and Zaran-
tonello. It was for a time the largest prime known, and is the only very large prime
known, which is not a Mersenne prime.—The ideas in this section have recently
been carried further by Wieb Bosma in [20].

Lucas sequences as an alternative to Fermat’s theorem can be used to construct
compositeness tests for numbers of the form N = h - 2" & k, provided k is not
too large. We shall not give details here, but mention only that this has been
accomplished by K. Inkeri and J. Sirkesalo in [22] and [23].

Another type of generalization, covering numbers of the forms 4 - b" — 1, for
b =3, 5, and 7, has been undertaken by H. C. Williams, see [21].

The Combined N — 1 and N + 1 Test

From Theorems 4.6 and 4.10 we infer that the primality of N c¢an easily be proved
if one of N — 1 or N + 1 can be factored up to its square root. What if this is
not possible? Then we have to use the following combined primality test, relying
upon the simultaneous partial factorizations of N — 1 and N + 1. The test has also
been relaxed by using the “several bases” idea from Theorem 4.4. Search limits
for the factors of N — 1 and N + 1 have also been included.

Theorem 4.18. The combined N — 1 and N + 1 test. Assume that

1. N —-1= F|R;, with R, odd > 1 and GCD(F, R) = 1.
2. N+1 = F,R,, with R; odd > 1 and GCD(F,, R;) = 1. Here F; and F;, are
completely factored.

3. For each prime g; dividing F) there exists an integer a; such that a‘.N =1
mod N and GCD(@@¥ "% — 1, Ny = 1.
4. There exists an integer a such that a¥~! = 1 mod N and such that also

GCD(@W-V/”R 1, N) =1.

5. For each prime ¢; dividing F> there exists a Lucas sequence {U,} with
(D/N) = —1 such that N|Uy,; and GCD(Uy 4+1y/q,, N) = 1.

6. There exists a Lucas sequence {U,} with (D/N) = —1 such that N{Uy4,
and GCD(U(N+1)/R2, N) =1

Suppose that the prime factors of R, and R; are respectively > B; and > B,. Define
rand s by Ry = (F2/2)s +r,0<r < F,/2, and let m be the smallest non-negative
integer for which m Fy F,/2 + r Fy + 1|N (or the smallest positive integer in case
r happens to be 0). Moreover, let

G =max(B\F1+ 1, B, — 1\, mFFK/2+rFi+1), m>1.

Then
if G(B1B,F1F;/2+1) > N, N is prime.
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A proof of this theorem is rather straight-forward, following the lines of proof
given in Theorems 4.4, 4.6, 4.8, 4.10, 4.12—4.15. We omit the proof and refer the
reader to p. 635 of [13].—This theorem is one of the more important forerunners
to the modern primality tests.

Lucas Pseudoprimes

One essential step in proving the primality of a number N by aid of Theorem 4.10
is to prove that Uy41 = 0 mod N for the Lucas sequence chosen. Unfortunately,
this condition is not always sufficient for the primality of N, i.e. there do exist
certain composite numbers N which satisfy this congruence. They are termed
Lucas pseudoprimes and are covered by

Definition 4.5. An odd composite number N with N}{Q, (D/N) = —1 and
Uy+1 = 0mod N is a Lucas pseudoprime with parameters D, P and Q, where the
Lucas sequence {U,} is as usual defined by (4.30)—(4.31) and D is the square-free
part of P2 — 4Q.

Any odd N satisfying all the conditions in this definition is called a Lucas
probable prime.—The significance of the concept “Lucas probable prime” lies in
the fact that it could well be possible that some combination of Lucas probable
prime tests and strong probable prime tests is sufficient to actually prove primality.
This conjecture has, however, not yet been proved. A discussion of this topic
can be found in [3] and a related conjecture is discussed in [24]. The proof would
constitute a demonstration that there exists no number which is a pseudoprime with
respect to all these tests simultaneously. Such a combination of (a limited number
of) Fermat-type primality tests would require only polynomial running time on
a computer, since each of the tests involved has this property. In anticipation of
such a proof we must at present content ourselves with some results achieved quite
recently, which we shall now very briefly describe.

Modern Primality Proofs

The primality tests so far described in this book have one big disadvantage: They
are not practically applicable to all numbers. Even if there are a lot of different
tests, there are specific numbers which elude all the tests, e.g., if the number has
none of the particular mathematical forms demanded by the tests, and neither of
N £+ 1 or N2 £ N + 1, or whatever you might have, admits an “easy” partial
factorization. Number theorists, following two lines of approach, have tried to
find a remedy for this situation. The one line is to prove that some combination
of simple tests, e.g., a certain number of strong pseudoprime tests, would suffice
to distinguish primes from composites, but this has not succeeded so far, although
this approach does not seem entirely unpromising.

The other line of approach is to make use of more complicated groups. The
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order of some element of the group chosen must depend on if the number N is
prime or composite, and in this way it can be used to decide whether N is prime
or not. We are going to briefly describe two such modern primality tests, namely
the APRCL primality proving algorithm and the Elliptic Curve Primality Proving
algorithm.

In 1979 Leonard Adleman, Carl Pomerance and Robert Rumely, [27], [28]
devised an algorithm for primality testing which is of nearly polynomial time
growth. The algorithm in itself is quite complicated, both in theory, since the
so-called cyclotomic fields are used, and in practice, as many different cases have
to be covered in computer program implementations. We shall not enter into all
the details here because the importance of this breakthrough lies not so much
in the specific algorithm designed, but rather in the fact that it has now been
proved that a fast primality testing algorithm for the number N does exist which
is completely independent of any factorization of some number dependent on N.
Although the original algorithm discovered is complicated, it has been programmed
for computers and works very well. Its running time can be described as “nearly”
polynomial, as the labour involved is

O(In N)<IIninN (4.85)

where c is a positive constant. Since the factor InInIn N in the exponent increases
extremely slowly, it is almost as good as a constant exponent, provided N is of
limited size, say has less than a million digits. (For N = 10190000 1510 N js
only 2.68, and thus the growth of the exponent as N increases is very moderate
indeed.)—In 1981 a simplified version of this algorithm based on results by H.
Cohen and H. W. Lenstra, Jr., [29]-[31], has been published by John Dixon [32].
The resulting algorithm is called the APRCL test after the initials of its inventors. It
has been implemented for use on computers and can in practice be used on numbers
of up to about 1000 digits. We shall in the next subsection describe Dixon’s
proof.—It will hopefully not be too long now before a computationally simple and
reasonably fast algorithm is constructed, taking care of general primality proofs.

The Jacobi Sum Primality Test

In this and the next two subsections we shall describe a simplified version of
the generalized pseudoprime test to which we have referred above. We shall
closely follow the proof given by Dixon in [32], pp. 347-350. The basic idea
of this algorithm is to find and make use of a generalization of Fermat’s theorem
to certain well chosen cyclotomic number fields.—Readers not familiar with the
theory of group characters might now wish to read pp. 258-260 in Appendix 1
before proceeding.

To prepare for Theorem 4.19 below and its proof we begin by discussing some
elementary properties of so-called Gaussian sums.
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Let N be the number whose primality ultimately has to be proved and let p
and g be primes not dividing N such that p|g — 1. Furthermore, let £, and {,
be primitive pth and gth roots of unity. Let g be a generator of the cyclic group
M, consisting of all primitive residue classes mod g and let C be the cyclic group
generated by ¢,,. Since p is a divisor of g — 1 there exists a homomorphism which
maps M, onto C. Utilizing the technique demonstrated in the example on p. 260,

we associate the function-value ¢, with the element g’ of M, thereby defining a
certain group character x4, or x for short, on M,. Finally, define the Gaussian
sums 7(x) and (x ') by

(0 =Y _x@g and t(x™H =) {x@)¢, (4.86)

respectively, where the summations are extended over all the ¢ — 1 primitive residue
classes modq. Since ¢ = 1, the exponent of ¢, in (4.86) runs mod g, and ¢4
takes the same value, regardless of the representative chosen of the residue class
a mod q.

Three Lemmas

We shall now proceed by proving three lemmas.
Lemma 1. )T (x~Y =gx(=1). 4.87)

Proof. Let the variables a and b range over all elements of the group M,. Then
(TN =) x@if Z x®Yy s = ZZx(a)x(b Hegtt =
a

(since ab ranges over M, at the same time as a does)

=Y x@b)x et = Z Zx(a)t”("“) = Z x(@) Z;b(““)
a b

(4.88)
Using the fact that {{ = 1 we can evaluate the sum Y, £2@+D = ¢o+1 4 g2eh 4

-+ ;'(q_l)(a“) (;q(a+1) 1)/(¢g* —1) — 1. Aslong as a # —1 mod g this
expression takes the value —1. If a = —1 mod g, on the other hand, each term of
the sum is =1 and the sum is =¢g — 1. Plugging this into (4.88), the double sum
reduces to

X(Dlg—D+ D x@D =gx(=1) =) x(a.

a#—1 a

By Theorem A 1.6 the above sum reduces to zero, unless  is the principal character
of Mg, which is obviously not the case. This proves Lemma 1.

Lemma 2. If N is prime, then

tOOV ! = x(N) mod N (4.89)
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in the ring R, generated by {,, = >"'/P9.

Proof. In the ring R,, of cyclotomic integers, many arithmetic properties of
ordinary integers still hold. Thus, if «; are cyclotomic integers and N is prime,
then

(@r+a+-+a)V =a) +af +--- 4+ modN. (4.90)

This congruence is easily proved by starting from (a; + a2)Y which is congruent
to ) + a3 mod N according to the binomial theorem (remember that all binomial
coefficients (2’ ), 1<k <N — 1, are divisible by N, if N is prime). Having proved
(4.90) for two integers, the full expression (4.90) is deduced by adding one variable
at a time. Repeating the step taken in (4.90) m — 1 times we arrive at

(@+a+ - +a)" = + )"+ 4+ modN. (4.91)

Thus . o
OOV = Z(X(a)g';) mod N. 4.92)

a

Now x(a)™™" = x(a) since, by Fermat’s Theorem, p|N”~! — 1 and x(a) is a
pthroot of unity. Moreover, there exists an element b of M, suchthat bN -l =1
mod g since g} N?~!. Thus

Do x@MTENT =3 x @btV =3 x(ab)gd =

=x® ) x@gf = xBT(X) = x(N)'~Pr(x),
again because x (N) is a pth root of unity. We have now arrived at the congruence
tGON™ = x(N)T(x) mod N, (4.93)

and should only have to cancel one factor 7 () in order to arrive at Lemma 2. This
cancellation, however, might not lead to a valid result in the ring R,q and has to
be avoided by instead performing another operation: multiplication by t(x™}).
Since GCD(g x (—1), N) = GCD(%gq, N) = 1, there exists an integer a such that
gax(—1) =1 mod N. Now multiply (4.93) by at(x~!) and utilize (4.87):
at(OV (™ = ax(NTOT(X ") = agx (N)x(=1) = x (N)mod N.

Making use of (4.87) once more, this time in the left-most part of the expression
above, we finally find (4.89).

Lemma 3. If for some prime r # p we have

¢, =¢j modr, then ¢ =¢. (4.94)
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Proof. Let ®,(z) be the cyclotomic polynomial (z# —1)/(z—1) = 2P 4P 24
-+ =+ 1. The assumption in the lemma is equivalent to ¢,/ = 1 mod r, and we

have o
®,(,7)) =d,(1) = pmodr. (4.95)

Since r # p, CD,,(;‘,';-j )#0 and so ;‘,';_'i is not a primitive pth root of unity. Hence
¢p | =1, implying ¢} = ¢;, which proves Lemma 3.
By this proof we are finished with the preparatory work for Lenstra’s Theorem.

Lenstra’s Theorem

The idea behind the modern, uniform algorithms for primality testing is to obtain
information from generalized pseudoprime tests on N, working in cyclotomic
rings. The information obtained is used to construct a sieve which restricts the
possible prime divisors of N so severely that in the end N is proved to be prime.

The primality test utilizes two finite sets of primes not dividing N, one set
P and one set Q, consisting of primes g, all having g — 1 as products of distinct
primes from P (i.e. all ¢ — 1’s are squarefree). Put z = ]—[pep pandw = ]_[qu q.
This construction guarantees that g — 1|z for each g € Q, and so the order of each
element in M,, must divide z, because of Lagrange’s Theorem. Thusa®* = 1 modw
for each integer a with GCD(a, w) = 1.

Theorem 4.19. Lenstra’s Primality Test. Suppose that N is an odd integer
satisfying the following conditions:

1. For all primes p and ¢ with ¢ € Q and plg — 1 we have a group character
Xpg = X, not the principal character, and 7(x)""™ ~! = x(N) mod N.

2. For each prime p € P and each prime r|N, p%|r?=! — 1, where p® is the
largest power of p dividing N?~! — 1.

Then each prime factor r of N is = N’ mod w for some 0<i<z —~ 1.

Proof. In the quotient (r?~! — 1)/(N?~! — 1), condition 2 above guarantees that
we can cancel a common factor p®, simplifying the fraction to b,(r)/a, = [,(r)
mod p, say, since p{a,. Now, Lemma 2 shows that for each pair of primes p and
q € Q with plg — 1,

rP-iog

xr) =1(x) mod r.

Raising this to the power a, we find
x ()P =1 ()T D =7 () OV =D =y (NP mod N.  (4.96)

Here condition 1 in the assumptions of the Theorem has been used. Reducing
(4.96) mod r we conclude that

X(r)% = x () modr,
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and so x (r)? = x (N)?® by Lemma 3. Since both sides of this equation are pth
roots of unity and p{a, we conclude that

X (r) = x (N)orapmodp — o (N)lp(Imodp (4.97)

This holds for each prime factor r of N and all p€ P and g € Q with p|g — 1.

Finally, by the Chinese Remainder Theorem we can find a congruence class
I[(r) mod z such that [(r) = —I,(r) mod p for each p € P (remember that z =
I_[PE p P). Then, since x (N) is a pth root of unity, from (4.97) we find that

X(rN'O) = x () x (NY O™ = y (r)x (N)oOmedr — 1, (4.98)

This equation tells us that the group element r N belongs to the kernel of the
mapping from M, to the subgroup C, mentioned above. Moreover, (4.98) holds
for each prime p € P. Thus we can apply Theorem A2.10 on p. 273 and conclude
that r N'®) is the neutral element of M,, i.e. rN'® = 1 mod q. Furthermore, this
congruence holds for each prime g € Q and hence it holds mod[] g;, yielding
rN'®> = 1 mod w. Finally, since I(r) is a residue class mod z, z — I(r) can be
chosen between 0 and z — 1, and hence r = N*'®™ = N’ mod w for some i
between 0 and z — 1, which proves the theorem.

The only thing which remains in order to prove the primality of N is to choose
the set Q so large that w > +/N, checking that GCD(N, zw) = 1 and that the least
positive residue of N’ mod w for 1 <i <z — 1 is never a proper divisor of N, all this
implying that a possible prime factor r of N would be > +/N and thus N prime.

Exercise 4.1. Theorem 4.19 gives sufficient conditions for N to be prime. Show that the
conditions are also necessary, i.e. that they are satisfied if N is prime (for any choice of the
sets P and Q compatible with the conditions stated in the theorem).

The Sets P and Q

Itis in [20] shown that the set P = {2, 3, 5,7, 11, 13, 17} and a set Q consisting of
32 primes q covers the primality testing of all numbers N <6.5191-10'%, In order
to be able to check the assumptions of Theorem 4.19, a prime ¢ must be found, for
which the character yx,,, is not the principal character. Occasionally it happens that
Xpq(N) # 1 fails for some g in the set Q. In such a case another squarefree g with
plg — 1 has to be found. Usually this represents no problem, since asymptotically
the fraction 1 —1/p of all primes ¢ = 1 mod p also satisfy x,,(N) # 1. However,
since there is at present no proof that a small g with the required properties exists,
this little detail places Lenstra’s test among the probabilistic tests.—An alternative
approach which manages to avoid this problem is given in [30].
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Running Time for the APRCL Test

The version of the test given above is theoretically simple but not practical to
implement on computers. Although the asymptotic growth of the running time
is the same for a whole class of uniform primality testing algorithms, in practice,
their efficiency depends much on the constant hidden in the O-notation, i.e., on
the number of individual tests which have to be made in order to check all the as-
sumptions of Theorem 4.19.—1In [30], [31] Cohen and Lenstra have given another
version of the test which is more computer practical.

The running time of the deterministic versions of the algorithm, the expression
(4.85), can be confirmed heuristically in the following way. Suppose P consists
of the ¢ first primes. From these primes 2' numbers of the form 1 + [ p; can
be built up. By the Prime Number Theorem the average size of the logarithms of
these numbers should be %t Int¢, and about 2!/ (%t In t) of these numbers should be
prime. Thus we might expect the size of In w to be

2! 1
: -=tInt =2
itlnt 2

Putting w = +/N and solving for ¢ gives t = Inln+/N/In2. Now, the number
of residues N¥ mod w, which have to be computed is z, and the Prime Number
Theorem yields

In( In N)
In

Inz~tInt ~ Inlnln N.

Thus we expect z to grow asymptotically as

(l ln N)lnlnlnN/ln2
2

which is (4.85) with an exponent at most 3 for N having less than 1300 digits.

Elliptic Curve Primality Proving, ECPP

In 1986 A. O. L. Atkin designed and first implemented the basic algorithm for
use of elliptic curves in finding primality proofs. See the paper [33] by Atkin and
Morain, which also contains a very extensive reference list. The idea involved is
to make use of some key properties of the group of points mod N on an elliptic
curve. The reader, unacquainted with the arithmetic theory of points on elliptic
curves might now wish to consult Appendix 7, treating this subject. We shall here
give only a short description of the main ideas involved in the ECPP algorithm,
mainly following [34].
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The Goldwasser-Kilian Test

Before we are going to explain this, first some words on primality proofs. A
primality proof for a number N might fail. It certainly fails if N is composite, but
then we will get to know that N is composite. But some of the algorithms used
are probabilistic in nature, in which case they may also fail in the way that they
never will find a proof even if N is prime. But a primality proof must never give
the wrong answer. Now, for computations based on a group of points on an elliptic
curve, E(A, B) mod N, which we are going to call Ey (A, B) for short, there is one
operation on the points which cannot be carried out computationally. It is when a
non-invertible element mod N is encountered. If N is prime, only the residue class
= 0 mod N is non-invertible, and so an attempt to invert 0 occurs when we try
to compute m - P, where m has such a value that m P equals the neutral element,
which is written (0, 1, 0) in homogeneous coordinates. But if N is not a prime,
then there are more non-invertible elements mod N than just 0, namely all d with
1 < GCD(d, N) < N. Thus, if N is not a prime, and we are doing computations
on points of Ey (A, B), we might hit upon a non-invertible element d < N. Butin
such a case we have found a factor d of N, and we know that N is composite.

Before we give a number N as input to a primality proving algorithm, we
should be pretty sure that N is really prime. Thus in all theoretical reasonings
and in all the proofs we presume that the number N, with which we are dealing,
is prime. As a consequence we may further presume that all the computations
necessary on points of elliptic curves are also possible to carry out. This is no
restriction, because if this is not the case, we have found a factor of N.

Suppose N is a prime. Just as we in the proofs of the various primality tests
given above would arrive at a contradiction in the case N is composite, this same
idea is involved in the Goldwasser—Kilian Test [35]. The difference is only that
this later test depends on the order of the elements of the group Ex (A, b), i.c., the
group of points mod N on an elliptic curve, as elaborated in Appendix 7.

Theorem 4.20. The Goldwasser-Kilian test. Suppose that N > 1 and that
GCD(N, 6) = 1. Consider a group of points on an elliptic curve Ey = E(A, B)
mod N. If there is a point P on Ey withm-P = (0, 1, 0), but (m/q)- P # (0, 1, 0),
where ¢ > (/N + 1)? is a prime factor of m, then N is prime. As usual, all
computations are supposed to be possible.

Proof. Suppose p < N is a prime divisor of N. The order of P in the group
Ey divides m, but does not divide m/q. Reducing the group Exy mod p, we
find that the order of P in this reduced group E,(A, B) also divides m but not
m/q, since the computation of (m/q) - P was possible without hitting upon a
non-invertible element mod N. Thus g, being prime, must divide the order of P in
the reduced group E,. But this order is, according to Hasse’s Theorem A7.4, less
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than (v/p + 1), and thus, if p < v/N were a prime divisor of N, we would have
g <Wp+1?<(¥N+1y,

contrary to the hypothesis on g in the theorem.

To apply this test on N is not entirely easy. We first have to find a suitable
elliptic curve E(A, B) with a point P on it. Then we compute as m the order of
the group Ey (A, B), and hope that m has some prime factor g > (+/N + 1)2. If
this is not the case, we have to try another elliptic curve, until one is found that
is suitable. How do we compute the order m? We shall not explain this here; it
is done by what is called Schoof’s algorithm [36], and can be performed in time
O(In® N)). Once m and ¢ have been found, try a random point P and check if the
conditions demanded in the test are fulfilled. If not, try another point P, until you
succeed.

Now, because N is supposed large, g > +/N is also fairly large. Thus it would
be impractical at this stage to really prove q a prime. Rather make sure g passes a
number of strong primality tests, and proceed as if g were also prime. This means
we can try to prove g prime by applying the Goldwasser—Kilian test once more,
this time on g. Now we will hit upon another probable prime g, > (/g + 1)2.
By applying the test recursively, we finally arrive at a number g;, which can be
proved prime by other means, such as trial division up to \/;1_5, or by performing
strong pseudoprime tests for all prime bases up to 17, as described on p. 92. This
will cover all primes g; up to 3.4 - 10, Since

<(~/N+1)2~Q

‘I<ﬂ ’
-2 2 2

the number of steps in this recursion is at most = log, N — 48, in order to come
down to g, < 3.4-10™,

The series of suitable elliptic curves, and suitable P’s, m’s, and g’s, which
are used in this process can be saved as a certificate of the primality of N. With
this certificate at hand, it now requires much less computing to prove N prime,
since all the random trials to find objects, satisfying the conditions of the successive
Goldwasser—Kilian tests, are gone and replaced by fixed entities, known in advance.

Atkin’s Test

The Goldwasser-Kilian test was introduced to prove that it is theoretically possible
to find a primality testing procedure working in polynomial time. Its most time
consuming and unpredictable part is Schoof’s algorithm, being O (In® N). The
expected running time of the whole algorithm is O (In'? N). which is polynomial
time. The procedure described is, however, not a practical one to implement and
run.
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Starting again with the Goldwasser—Kilian test, and replacing Schoof’s al-
gorithm by another way to compute the order of the group Ex(A, B), O. Atkin
has succeeded in finding a better algorithm, which has been implemented by him
and F. Morain for use on computers. Besides what has just been mentioned, these
authors have made several other major improvements, and the interested reader is
referred to their paper [33], or to [34], which gives a short account on their work.

With Atkin~Morain’s implementation it is at present possible, in a couple of
weeks on a workstation, to prove the primality of numbers with more than 1000
digits.
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CHAPTER 5

CLASSICAL METHODS OF FACTORIZATION

Introduction

The art of factoring large integers was not very advanced before the days of the
modern computer. Even if there existed some rather advanced algorithms for
factorization, invented by some of the most outstanding mathematicians of all
times, the amount of computational labor involved discouraged most people from
applying those methods to sizable problems. So the field essentially belonged
to a few enthusiasts, who however achieved quite impressive results, taking into
account the modest means for calculations which they possessed. Famous among
these results is F. N. Cole’s factorization in 1903 of 267 — 1 = 193707721 -
7618 38257287.

In this chapter a survey of these “classical” methods of factorization will be
given. They are still important, since many of the basic ideas are used also in
connection with the more recent methods.

When Do We Attempt Factorization?

In Chapter 4 we saw that the identification of prime numbers is generally quite
a fast operation. Since factorization methods so far invented are not that fast,
we should attempt factorization only of numbers which we know in advance to
be composite. Otherwise, we will certainly, sooner or later, hit upon the “worst
possible case” for the method we are using, and perhaps finally end up with a
very laborious proof of the primality of the number being investigated. There are,
however, occasional exceptions to this rule, but it is always advisable to first verify
that the numbers involved are composite.

Trial Division

Trial division consists of making trial divisions of the number N by the small
primes. Either you store a table of primes up to some limit in your computer, after
which you may have a fast running program at the expense of using a good deal
of storage space, or alternatively you generate the small primes, which leads to a
program running a little slower, but demanding less storage capacity. In the latter
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case, it is actually advantageous not to use only the primes as trial divisors, as it
is quite time-consuming to run a sieve program in order to generate the primes.
Instead, it is better to use the integers 2 and 3 and then all positive integers of
the form 6k % 1 as trial divisors. This covers all the primes and includes making
divisions by some composite numbers, namely 25, 35, 49, ..., but the loop in the
program will run very fast, so that we can afford some waste in performing these
unnecessary divisions! (At the expense of some extra programming, however, the
number of unnecessary divisions can be reduced and the efficiency of the computer
program increased.) If you search for small divisors up to the search limit G, then
you will carry out roughly G/3 trial divisions with the procedure indicated rather
than the 7 (G) = G/ In G divisions required if dividing by the primes only. With
G = 105, the proportion of “useful” divisions will be only 3/ In 10° & 22%, which
looks a little discouraging! Whether this pays off or not depends on your ability to
write a computer program for division by the primes only, which is less than about
1/0.22 = 4.6 times slower per single loop to execute! Remember, even if you store
a prime table up to G = 10%, you probably will have to write it in compact form as
shown in Chapter 1, in which case a time-consuming table look-up function might
be involved. The methods mentioned on p. 7, however, are generally fast on most
computers if programmed in assembly code, and need little storage space. Thus
(pi+1 — pi)/2 can be stored in one 6-bit byte for the primes below 1.35 million
and in one 8-bit byte for the primes below 3 - 10'!. Moreover, in judging the speed
by which a computer program runs, there are actually two figures to consider. One
is the maximal running time for the worst possible case; for example, if we find
no factor < G in the case just discussed. The other important figure is the mean
running time which determines the total running cost if the program is run on lots
of numbers. Since small prime factors are quite common, it seldom occurs that
no factor < 10°, say, is found, so that the program will probably in most cases
terminate long before the search limit G is reached.

Proportion o of odd numbers having no factor < G

G o G o G o

102 0.2406 105 0.0975 108 0.0610
10 0.1619 105 0.0813 10°  0.0542
10* 0.1218 10"  0.0697 10'°  0.0488

To demonstrate the consequences of this fact, we show above in a small table,
the proportion of odd numbers which “survive” trial divisions by all primes below
10” for n up to 10. This proportion, if the search limit 10" is again called G, will

be c
1 2e™Y 0.4877
]’[(1—_)% ¢ = , G.1)
>3 p InG log;, G
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according to Mertens’ Theorem (see p. 66). Hence if there is no special reason to
act otherwise, trial division by 2, 3 and all integers 6k % 1 is sufficiently efficient
to be preferred, because of its simplicity, to other ways of implementing the trial
division method.

A Computer Implementation of Trial Division

Although quite simple, we think it worth while discussing in some detail how to
implement trial division. One question is: how can we generate all integers of the
form 6k + 1?7 The answer is by starting at 5 and then alternately adding 2 and 4:
542=7,74+44=11, 11 +2 =13, 13+4 =17, ... These alternate additions
of 2 and 4 can be carried out as follows: Define a variable d, let d:=2 initially
and then perform d:=6-d in the loop! This will cause d to take the values 2 and
4 alternately, which is exactly what needs to be added to proceed from one trial
divisor to the next. Another way to achieve the divisions by 6k 3:1 is to perform rwo
divisions in the same loop, one by p and another by p + 2, and then augment p by
6 within the loop. With this approach the administrative operations involved will
be less burdensome and the program faster. We have chosen the second alternative
in the procedure divide below.—In order to terminate the computation correctly,
you must verify whether the trial divisor p has reached the search limit G or +/N,
whichever is the smaller. If p > +/N, then p is also >N/ D, so this latter test can
be performed without calculating any square-root. However, the calculation of a
square-root at the beginning of the computation and each time a factor has been
removed will not influence the computing time very much, since most of the time is
expended in performing trial divisions without finding any factors. Moreover, it is
essential to reduce N immediately by any factor discovered because this will speed
the termination, since in each case the limit will be lowered to min(G, v/N/p).
Also, do not forget to test repeatedly, as divisors of N, all the prime factors found,
continuing until they are no longer divisors of what remains of N. Otherwise,
multiple prime factors of N will be overlooked!

Now, finally, below is a PASCAL procedure divide which stores the factors <
G of N inthe integer array Factor, and the number of factors found in Factor [0].
If N is not completely factored by the procedure, then the last cofactor (of unknown
character; it may be prime or composite) is returned in m for further processing
by other factorization procedures. Further, in order to make the logical structure
of the computation easily recognizable, a subprogram reduce is introduced. This
subprogram is used in the search for factors 2 and 3 and in the pursuit of multiple
prime factors. In addition to this, it is used for dividing N by any prime found
by the main procedure.—The procedure divide is shown here in the context of a
small test program by which an integer N can be input and factored.

PROGRAM TrialDivision {Factors an integer N}
(Input,Output);
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LABEL 1;

CONST k=22;

TYPE vector=ARRAY[O..k] OF INTEGER;
VAR Factor : vector; N,G,i,m : INTEGER;

PROCEDURE divide(N,G : INTEGER; VAR Factor : vector;

VAR m : INTEGER);
{Places all prime factors <G in the integer array Factor.
The number of factors found is placed in Factor[0]. The
remaining cofactor is returned in m, unless the divisionmns
show this cofactor to be prime, in which case it is
included among the factors in the array Factor and the
value of m returned is 1}

VAR p,plimit : INTEGER;

PROCEDURE reduce(r : INTEGER);
{Divides m by r, if possible}
BEGIN IF r>1 THEN WHILE m MOD r = O DO
BEGIN m:=m DIV r; Factor[0]:=Factor[0]+1;
Factor [Factor{[0]]:=r
END;
plimit:=isqrt(m);
IF plimit>G THEN plimit:
END {reduce};

]
@«

BEGIN m:=N; Factor[0]:=0;
reduce(2); reduce(3); p:=5;
WHILE p<=plimit DO
BEGIN IF m MOD p = O THEN reduce(p);
IF m MOD(p+2)=0 THEN reduce(p+2);
p:=p+6
END;
IF p>isqrt(m) THEN reduce(m)
END {divide};

BEGIN
1: write(’Input an integer N>0 for factorization: ’);
read(N) ;
IF N>0O THEN
BEGIN
write(’Input the search limit G: ’); read(G);
divide(N,G,Factor,m);
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FOR i:=1 TO Factor[0] DO write(Factor[i]:8);
writeln; IF m=1 THEN writeln(’Factorization complete’)

ELSE
writeln(’Factorization incomplete. Cofactor=’,m:8);
GOTO 1
END
END.

Note that in order to compute the correct search limit G or |/N/p;|, we
have assumed the availability of a function isqrt for calculating the integral part
of the square-root of an integer. This function is not shown here. However, for
test purposes, provided that N is chosen less than the smallest integer that cannot
be stored as a REAL variable without rounding off, the construction

isqrt:=trunc(sqrt(m)+0.5);

will do. If N is larger, but still a single-precision integer, then it is advisable to
verify that the above construction has not returned a value z one unit too low,
which could occasionally happen. This verification and correction is achieved by
writing

IF sqr(z+1)<=m THEN z:=z+1;

Exercise 5.1. Trial division. Explore the practical upper limiit of N for the PROGRAM
TrialDivision above when used on your computer. (It is for primes N that the longest
running times occur.) Plot the maximal running time vs. the size of N in a logarithmic
diagram. Decide on a value of G in order to obtain reasonable running times even in the
case when N happens to be a product of two nearly equal prime factors.

Euclid’s Algorithm as an Aid to Factorization

Euclid’s algorithm can be (and has been!) used to search for factors. The method
is as follows: In order to search for prime factors of N between g and G, multiply
together all primes between the two limits. Then, apply Euclid’s algorithm (which
is fast) on the product formed and N. Any prime factor of N within the given search
limits will then show up. In the days before the invention of computers, it was
advantageous to use pre-computed values of

97

Py = I—[ p= 23055 67963945 51842475 31021473 31756070
2
199

Py = H p = 338308 05092969 17481189 79876079 64806707 71162183
101
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293

P, = I—[p = 2620256 64754470 33438281 30718839 84477441
211
397

P = ]—[ p= 4 97665233 93936228 75013859 80827529 80119549
307

499
Py = l—[ p = 122745 35402370 14997887 61565110 91819579 03188941
401

599

Ps = n p= 2530563 06993037 84009224 45621969 81381959
503
691

Ps = H p = 87903 18928189 78804933 06530627 46911120 09314693
601

797

P; = np = 1 68664678 15653776 12724390 71676293 19108817
701
887

P = n p= 836234357346 06723958 85255200 21529016 29917681
809

997
Py = 1—[ p= 50 01399907 16305530 69693302 73892941 39003181
907

to find all prime factors of N below 1000.

With the aid of a desk-calculator Euclid’s algorithm was performed on N and
all the P;’s, one at a time. As long as N did not exceed the register capacity of
the calculator used this was quite simple to carry out; only the initial division in
Euclid’s algorithm (the long number divided by N) required some care, but was
not too difficult to perform in a step-wise fashion.

Even nowadays this method is occasionally applied on a computer, particu-
larly when N is too large to be easily divided by a small prime using the computer’s
built-in arithmetic. Instead of carrying out the search for factors by performing
numerous slow divisions with each of the small primes using a multiple-precision
arithmetic package, it is faster to divide only one huge number P; by N using the
package, and then employ Euclid’s algorithm on the remainder and N, i.e., on two
numbers of magnitude N.

Another application of Euclid’s algorithm is when only small divisors are
sought, as in the continued fraction method, described on pp. 193-202 below.
In order to save computing time, rather than store the small primes of the factor
base and dividing by each of these, we store products of such primes, where each
product is smaller than a single or a double word, depending on the kind of machine
arithmetic available to us. Then N is divided by each of these products and,
finally, Euclid’s algorithm performed on the remainder found by the division and
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the corresponding product of small primes, an operation which can be efficiently
programmed in assembly language.

Fermat’s Factoring Method

With the exception of trial division Fermat’s factoring method is the oldest sys-
tematic method of factoring integers. Although, in general, the method is not very
efficient, it is of theoretical as well as of some practical interest. We therefore find
it instructive to discuss the method in some detail and to study the ideas behind it.

Fermat’s idea was to try to write an odd composite number N = a - b as a
difference between two square numbers. If we succeed in writing N as x2 — y? =
(x — y)(x + y), we immediately deduce a factorization of N. How can such
a representation of N be found? Well, obviously x must be > \/ﬁ, so let us
start by computing m = |+/N| + 1, which is the smallest possible value of x
(unless, of course, N happens to be a square number x2, in which case we have
the representation N = x — 0%). Now, we have to consider z = m? — N and
check whether this number is a square. If it is, then we have found N = x% — y2,
and are finished. Otherwise, we try the next possible x, i.e. m + 1, and compute
(m+1)*>~ N =m?+2m+ 1~ N =z +2m + 1, test whether this is a square,
and so on. The procedure to follow is most easily understood by looking at an

Example. N = 13199. VN = 114.88. .., so that N is not a square. Thus we
proceed:
m =115, z=115%- 13199 = 26,

which is not a square. After this start, the calculation runs as follows:

m 2m +1 z m 2m +1 z
115 231 26 124 249 2177
116 233 257 125 251 2426
117 235 490 126 253 2677
118 237 725 127 255 2930
119 239 962 128 257 3185
120 241 1201 129 259 3442
121 243 1442 130 261 3701
122 245 1685 131 263 3962
123 247 1930 132 265 Ji 4225

The numbers z in the third column are calculated by adding the numbers 2m +-1
and the numbers z in the preceding line: 257 = 231 4 26, 490 = 233 + 257, and
so on.—In the last line we have arrived at a square, z = 4225 = 652, and from
this we immediately find the following factorization of N: N = 1322 — 652 =
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(132 — 65)(132 + 65) = 67 - 197.

We are now going to answer the following question: Using Fermat’s algo-
rithm, how much work is required before N is factored? If N = ab, witha <b, isa
product of only two primes (the hard case), then the factorization will be achieved
when m reaches x = (a + b)/2. Since the starting value of m is &~ +/N, and
b = N/a, this will take

N2
~ L (a 4 ﬁ) _ NN =a? (5.2)
2 a 2a

lines in the table above. From this expression it can be seen directly that if N is
the product of two almost equal factors, then the amount of work needed to find
a factorization is small, because in this case the factor a is just below J/N. As
an example we mention the 19-digit number N = (10?2 + 1)/(89 - 101), which
happens to have two almost equal prime factors. (It takes only 1803 cycles with
Fermat’s method to arrive at the factorization. The reader may confirm this!)—
Suppose that a = k+/N, 0 <k < 1 in (5.2). Then the number of cycles necessary
to obtain the factorization is

(1 —k)?
o VN.
This has the order of magnitude O(\/ﬁ ), and the reader might be inclined to
believe that the labour involved in using Fermat’s method is also of that order of
magnitude. Note, however, that the constant latent in the O-notation may be very
large! For instance if k = 0.001, then (1 — k)?/(2k) = 499, and thus it is really
only when the two factors are very close to /N that Fermat’s method is of practical
use. Let us consider just one more case, a sort of “ordinary case”, where the two
factors area ~ N3 and b =~ N3. In this situation the number of cycles necessary

will be
(VN - ¥Ny _ (YNP(/N-1)
2YN 2YN

an order of magnitude considerably higher than O(N %), and therefore totally
impractical!

This analysis of Fermat’s method is very discouraging indeed, but in spite of
this, the method has been used with some success. This is due to the simplicity
of the algorithm, which can be modified by using suitable shortcuts. One of these
shortcuts is the following. As the reader may have observed, the end-figures of
squares cannot form any number, but only certain two-digit numbers namely the
following 22 combinations:

Wi

1
~ -N3,
2

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41,
44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.
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LEGENDRE’S CONGRUENCE

These may be written as 00, el, e4, 25, 06, €9, where e is an even digit and o0 an
odd digit. Using this fact greatly simplifies the search for squares in the column
for z above. Only when a number with a possible square ending occurs need we
check whether a square has appeared. This simple trick can also be used in a binary
computer, since the square of any numberis = 0, 1, 4, or 9 mod 16, conditions that
can be very easily tested in a binary computer. Looking closer, it turns out that the
values of x must also belong to certain arithmetic series in order for the end-figures
to be possible square-endings. Calculating square-endings for other moduli, such
as 25, 27 etc., a sieve on x can be constructed, thereby leading, if we wish, to
a reduction by a large numerical factor in the number of x-values to be tried.
However, this gain in speed will be at the expense of increased complexity in the
programming.—In [1’] a use of the modules m = 11, 63, 64, and 65 is proposed,
by precomputing and storing a (small) file of ZEROs and ONEs for each residue
class modm, the ONEs corresponding to the square residues. By computing N
mod m and checking if this is a non-square mod m, most non-squares are quickly
excluded. The proportion of numbers “surviving” this sieve, i.e. the proportion of
possible squares is only 6/715. In such a case |v/N ] is extracted, and its square
compared with N.

Many attempts have been made to remedy the main difficulty of Fermat’s
method, which is that the number of steps required in the “worst possible case”
is unreasonably large. One way, if N = pgq, with p < g, would be to multiply N
by a factor f, such that N - f admits a composition into two very close factors.
If we choose f ~ q/p, then N - f will have two factors p - f = ¢ and ¢, which
are close. However, how can we find f when we do not know the size of ¢/p?
We could either successively try all factors f = 1,2, 3,...upto N'/3, say, which
means that we run one or more steps at a time in the algorithm above, applied to
the number N - f, for each value of f, or we could multiply N by a suitably chosen
large factor f containing many factors of different sizes and, in this way, apply
Fermat’s method to a number N - f which certainly does have two close factors.
Suitable choices of f could be factorial numbers 1-2-3 - - - k of appropriate size or,
better still, so-called highly composite numbers. Finally, a combination of these
two ideas might be used, i.e. to test successively, as candidates for the factor f,
all multiples of a set of factors, each having many divisors. An analysis of how
this can be done in a most efficient manner has been carried out by R. Sherman
Lehman and is reported in [1]. The report contains also a computer program. The
order of Lehman’s factoring method is O(N!/3), if N has no factors below N1/3
so if combined with trial division up to N'/3, Lehman’s method is O (N'/3) in all
cases.

Legendre’s Congruence

The methods described in Chapter 4 for recognizing primes use some characteristic
which distinguishes composites from primes. Can such characteristics be also used
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to factor numbers? To some extent, yes! One of the simplest examples of this is
Legendre’s factoring method which we shall describe in some detail a little later.
The method utilizes the following distinction between primes and composites: For
every N, prime or composite, the congruence

x’=y*mod N (5.3)

has the solutions x = Zy mod N, which we shall call the trivial solutions. For
a composite N, however, the congruence also has other solutions, which can be
used to factor N. To understand this, let us start with the congruence

u’ = y*mod p, p an odd prime.

If we consider y as a fixed integer # 0 mod p, then there are precisely two
solutions ¥ = £y mod p to this congruence. This is because Theorem A1.5 on
p- 253 indicates that there are at most two solutions of a quadratic congruence in a
ring without zero divisors and, since we can observe two solutions here, these must
be the only ones. We have only to check that # and —u belong to different residue
classes mod p, but ¥ = —u mod p would lead to 2u = 0 mod p, which would
imply u = 0 mod p, if GCD(p,2) = 1. Thus if u # 0 mod p then everything
will be right. That is why we have to exclude the case y?> = 0 mod p, leading to
u = 0, and, because of GCD(p, 2) = 1, also the case p = 2.

Now, since u? = y? mod p has two solutions ¥ = £y mod p, so has v? = y?
mod g, namely v = +y mod g, if ¢ is an odd prime # p. Thus the congruence
x2 = y? mod pq has four solutions, which we may find by combining in four ways
the two solutions mod p and the two solutions mod q:

u=ymodp .. _
{vEymodq giving x = y mod pgq,
u=—ymodp iving x = —y mod
v=—ymodg giving x = -y pPe
u =y modp iving x = z mod sa
v=—ymodg BIVINg ¥ =2 pq, 53y,
d =—ymodp iving x = —z mod
an v=ymodgqg gving x ==z P

Thus, we see that if N = pgq, the congruence x> = y? mod N has one more pair
of solutions x = =z mod N than the trivial pair x = &y mod N. This fact can now
be used to find the factorization of N = pq. First, we need to find a non-trivial
solution to x2 = y% mod N. Since x2 — y2 = (x + y)(x — y) = 0 mod pgq, and
x + y or x — y is not divisible by both p and g (remember, the combinations where

150



EULER’S FACTORING METHOD

one of x + y or x — y is divisible by both p and ¢ lead to the trivial solutions!),
then one of x + y and x — y must be divisible by p and the other by g. The factor
p (or g) can be extracted by using Euclid’s algorithm on x + y and N.

If N has more than two prime factors, the method still works in a similar way
since the above reasoning can be applied to one of the prime factors p and the
corresponding cofactor g = N/ p, which in this case will be composite.

To summarize the use of Legendre’s congruence for factorization: Find a
non-trivial solution to the congruence x> = y2 mod N. Compute a factor of N as
the GCD(x — y, N) by means of Euclid’s algorithm.

Several very important factorization methods, old as well as modern, make
use of Legendre’s congruence. They differ only in the way in which a solution to
x? = y? mod N is found. As examples, we can mention the method of Fermat
already discussed (a solution to x2 — y> = 0 mod N is obtained if we have a
representation of k- N as x2 — y?), Shanks’ method SQUFOF, Morrison—Brillhart’s
continued fraction method and the number field sieve. Although these methods
use very different factorization algorithms, fundamentally they are all based on
Legendre’s idea. Also Euler’s method, discussed in the next sub-section, will be
shown to rely upon Legendre’s idea.

Euler’s Factoring Method

This method is special because it is applicable only to integers which can be written
in the form N = a? 4+ Db? in two different ways (for the same value of D). It
depends on a famous identity given by Lagrange:

(xu + Dyv)? + D(yu — xv)?

(xu — Dyv)? 4+ D(yu + xv)?. 5.4

x? + DY>)u? + Dv?) = {

This identity shows that a product of two integers, both of the form a2+ Db?, is itself
an integer of the same form, and that this product has two different representations
as r2 + Ds?. Euler proved the converse: If N has two different representations as
r?+ Ds?, N = a*+ Db? and N = ¢ + Dd?, with GCD(bd, N) = 1, then N can
be written as a product of two numbers of this same form. The factors of N can
be found in the following manner. Start by

a’d* = —~Db*d® = b*c* mod N. (5.5)
Thus we have a case for Legendre’s congruence and the factors of N are found as

GCD(N,ad — bc) and GCD(N,ad + bc). (5.6)

The algorithm for finding two different representations of N as r2 + Ds? is
completely analogous to the algorithm used in Fermat’s method. However, since
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not all integers have even one representation as r> + Ds? (a necessary condition
for this is that — D is a quadratic residue of all prime factors of N appearing with
an odd exponent, but often even this is not always sufficient), the search for a
second representation is normally undertaken only for integers already possessing
one known representation in the form r? + Ds?. If D > 0 this will take, at most,
l~/N/D] steps, as in this case Ds? must be < N and thus there are, at most,
{+/N/D] possible values for s. We demonstrate the algorithm on an

Example. N = 34889 = 1432+410-382. The search for a second representation of
N as r2+10s? starts as follows: Putz = r2 = N—10s2 withsy = |/N/10] = 59,
andzo =N — 10s§ = 34889 — 34810 = 79. The computation runs as below:

s 102s — 1) 2z s 102s — 1) z

59 1170 79 45 890 14639
58 1150 1249 44 870 15529
57 1130 2399 43 850 16399
56 1110 3529 42 830 17249
55 1090 4639 41 810 18079
54 1070 5729 40 790 18889
53 1050 6799 39 770 19679
52 1030 7849 38 750 1432
51 1010 8879 37 730 21199
50 990 9889 36 710 21929
49 970 10879 35 690 22639
48 950 11849 34 670 23329
47 930 12799 33 650 23999
46 910 13729 32 630 157%

Thus, N is also = 1572 + 10 - 322, and (5.6) gives the two factors
GCD(N, ad — bc) = GCD(34889, —1390) = 139

and
GCD(N, ad + bc) = GCD(34889, 10542) = 251. 5.7

Gauss’ Factoring Method
Though quite complicated, Gauss’ factoring method [2] is very important because

it is the basis of many sieving methods for factorization. Such methods have been
in use for over 150 years of computing by hand and by desk calculator and have
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yielded many factorizations. Gauss’ method is a sort of exclusion method which,
by finding more and more quadratic residues mod N, excludes more and more
primes from being possible factors of N, and so finally reduces the number of
possible factors so markedly that it is possible to undertake trial division by those
remaining. The reader who is not familiar with the theory of quadratic residues
might now wish to study Appendix 3 before proceeding further with this chapter.

The idea behind Gauss’ method of factorization is the following: Since an
integer a is a quadratic residue of about half of the primes, as described in Appendix
3 and in Table 22 at the end of this book, the fact that a is a quadratic residue mod N
will, according to Dirichlet’s theorem (2.40), exclude about half of all primes as
divisors of N. This is because a = x2 mod N implies a = x? mod p for any divisor
p of N. Thus, by statistical laws, k independent quadratic residues mod N will
leave about the fraction 27 of all primes as possible divisors of N. In this way 20
known quadratic residues will reduce the number of trial divisions necessary by a
factor of about 22° = 1, 000, 000.

How can we find lots of quadratic residues? Principally this is very easy.
We simply have to square many integers and then reduce the squares (mod N).
However, since it is a complicated matter to find out which primes are excluded as
divisors of N based on the existence of a large quadratic residue (compare Table
22), it would be useful to have a number of small quadratic residues such as the
ones ready for examination in Table 22. This is achieved by the following trick:
If a = x> mod N, then x> — a = kN for some integer k. Letting x be close to
VAN | will give comparatively small values of a; and, since the product of two
quadratic residues is again a quadratic residue, it is of interest to use only those
quadratic residues which can be completely factorized by using only small prime
factors. These quadratic residues can then easily be combined by multiplication
and exclusion of square factors to yield new quadratic residues. To show how this
is done, let us consider an

Example. N = 12007 001. If we confine our search for small quadratic residues
to representations of kN = x? — a for which |a| < 50000 and having no prime
factor of a larger than 100, then we have the following expressions
N = 3459 +42320=x2 +2%.5.23?
N = 3461% +28480= x2+26.5-89
N = 3463% + 14632 =x2+23.31.59
N = 3464 + 7705 = x2+5-23.67
N = 34652 + 776 =x2+2%.97
2N = 4898% +23598 =x2+2.3%.19.23
2N = 4900 + 4002 =x2+2-3.23.29
3N = 6003 — 15006 =x%2 —2-3-41-61
5N = 7745% +49980=x2+22.3.5.7%.17
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8N = 97992 +35607=x2+43-11-13-.83
10N =10957% + 14161 = x2 + 7% . 177

11N =11491%2 +33930=x2+2-3%2.5-13-29
11N =11492% 4+ 10947 = x> +3-41-89

14N =12964% +32718=x2+2-3-7-19-41
14N =12965% + 6789 = x2+3-.31-73

17N = 14287 + 648 =x?+2%.3*

19N =15105% — 28006 = x2 —2-11-19- 67
21N =15879% + 4380 =x2+2%.3.5.73

Now we can systematically combine the quadratic residues found to obtain new
ones:

10N =x2+7%. 177 gives a=—1,
N=x2+2%.5.232 gives a =35,
N=x2+4+20.5.8 gives a =389,

17N =x%+23.3% gives a =2,
N=x*+2.97 gives a =97,

14N =x*+3-31-73 and 21N =x2 +2%.3.5.73 give a =31,
N =x?+2%.31.59 gives a =59,
3N =x2-2-3-41-61 and 11N =x2+3-41.89 give a =61.

In summary, we have so far established that the following integers are quadratic
residues of N: a = —1, 2, 5, 31, 59, 61, 89 and 97. (Primarily we have found
a = —5,—89,—2,..., but since —1 is a quadratic residue, we also find the
corresponding positive numbers to be residues.)

Now follows the complicated part of Gauss’ method, namely to use this
information in a systematic manner to find a factor of N. Since —1 is a quadratic
residue of N, only primes of the form p = 4k +1 can divide N. In addition, because
2 is aresidue, every p that divides N must be of the form p = 8k £ 1. Combining
these two conditions, we find that only p = 8k + 1 is possible as a divisor of N.
Using also the quadratic residue 5, which restricts possible divisors to one of the
four forms p = 20k £ 1, 9, we conclude that p is of the form p = 40k + 1 or
40k + 9 (since p must be 8k + 1). Now it is no longer practical to proceed by
deducing the arithmetic forms of the possible divisors of N, because the number
of feasible residue classes for the larger moduli used will be too big. Instead we
determine, by computing the value of Legendre’s symbol (a/p), which of the
primes of the two forms p = 40k + 1 and p = 40k + 9 below v/N | = 3465 have,
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as quadratic residues, all of the previously obtained a’s. As soon as one of the
values of a is found to be a quadratic non-residue of one of the primes in question,
then this prime is eliminated as a possible divisor of N and need no longer be
considered. This procedure excludes about half of the remaining primes for each
new value of a used. (Note that the values of a must be independent, i.e. if r and s
have already been used as quadratic residues, then the quadratic residue rs will not
rule out any further primes!) The computation in our example proceeds as below.
The following primes below 3465 of the form p = 40k + 1 or p = 40k 4 9 have
(B1/p) =+1:

p =41, 281, 521, 769, 1249, 1289, 1321, 1361, 1409, 1489, 1601, 1609,

1721, 2081, 2281, 2521, 2609, 2729, 3001, 3089, 3169, 3209, 3449.
Among these, (59/p) = 1 for

p =41, 281, 521, 1361, 1609, 2081, 2729, 3001, 3089 and 3449.
Of these (61/p) = 1 for

p =41, 1361, 2729, 3001 and 3089.
Finally, the quadratic residue 89 leaves as only possible divisor
p = 3001.

We also verify that Legendre’s symbol (97/3001) = 1. Therefore, if N is not a
prime, it must be divisible by 3001, and, indeed, N = 3001 - 4001.

The procedure described above is too tedious in practice to carry through in
a case of, say, 100 known quadratic residues, and has therefore been replaced by
another device in the Morrison-Brillhart method, which likewise starts by deter-
mining lots of small quadratic residues of N and breaking these up into prime
factors. We shall describe this method in detail in the next chapter.

Legendre’s Factoring Method

Legendre’s factoring method is very similar to that of Gauss discussed above. It
differs only in the procedure for finding small quadratic residues of N. For this
purpose Legendre introduced the continued fraction expansion of +/N and used the
relations (A8.31) and (A8.34) on p. 341-342. (In fact, the proof of (A8.31) given
in Appendix 5 is due to Legendre.) After a sufficient number of small quadratic
residues have been found, a sieve is constructed, just as in Gauss’ method, in
which each residue annihilates about half of the primes as possible divisors of N.—
Because continued fractions are used for finding quadratic residues, this and certain
related methods are sometimes called continued fraction methods for factorization.
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The Number of Prime Factors of Large Numbers

Before we proceed with our description of the factoring methods, we require in-
formation about what we can expect when we attempt to factorize a large unknown
number. This information has to be drawn from the theoretical parts of number
theory. We begin by introducing the function w(n), the number of different prime
factors of n. This function has the so-called average order InIn n, meaning that

Zw(n) =xInlnx + Byx + o(x), (5.8)

n<x

where the constant B; has the value

1 1
Bi=y+ Z (ln (1 - —) + —) =0.2614972128... 5.9
3 p/ P
Proof.
x x
Y om=) Y1 =Z{~J =Y =+ 0@x)). (5.10)
n<x n<x pin p=x p p=x p
Now, Epsx 1/ p can be evaluated by taking logarithms of both sides in Mertens’

formula on p. 66, yielding

1 1 1
]n(l——-—):— - — — —...=—y —Inlnx +0o(1). (5.11)

Since the sums Z?:z P2, Z;iz p=3, ..., all converge, this can be written as
1
Y — =Inlnx + By +o(1), (5.12)
p=x P
where

Bl=y+2(ln(l—%)+%). (5.13)

p=2
After these preliminaries we shall give the following useful theorem, which gen-
eralizes the Prime Number Theorem, eq. (2.5) on p. 43:

Theorem 5.1. The number m (x) of integers <x which have exactly k > 2 prime
factors, all different, is

6 x (Inlnx)*!

iy D = n;(x), say, (5.14)

e (x) ~
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when x — 00. We do not prove this theorem, but refer the reader to [2].

It follows from the Theorem that integers having many prime factors (so-
called smooth numbers) are rare. A computation shows that in the vicinity of
N = 10'%, numbers having 15 prime factors or more are quite rare indeed, only
0.15% fall in this category.—The factor 6/72 stems from the requirement that all k
prime factors are supposed to be different. This particular factor creeps in, because
the number of square-free integers below x is ~ 6x /72, as x — oo. See [3].

Remark. The approximations 7; (x) to m,(x), implied by (5.14), are not uniform for all k
and all x. Uniformity occurs only for small k¥ = o(InIn x) and for k in the neighbourhood
of the value Inlnx, k = (1 + o(1)) InIn x.

Another useful theorem, whose proof can also be found in [3], is

Theorem 5.2. The “normal” number of different prime factors of N is about
Inln N.

This is due to the fact that the function 7 (N), for a fixed value of N, has
its maximal value for £ = Inln N. The theorem is based upon the fact that the
average order of w(n) is InIn N.—We must here define the significance of the
word “normal” in the theorem. It means that the number of prime factors of
almost all integers about N is between

(1—¢e)lnlnN and (14+¢€)IninN,

for every € > 0. And almost all integers means a fraction of all integers as close
to 1 as we wish.—Of course, this set of integers will depend on € and on how close
to 1 we decide to approach.

How Does a Typical Factorization Look?

From Theorem 5.2, we can draw conclusions about “typical” factorizations of
integers. The reader must be warned here that the reasoning is not at all rigorous,
but rather is a heuristic argument.—Since an integer of size N has about Inln N
prime factors, suppose these are arranged in increasing order of magnitude:

N = P;(N)P;_1(N)... P,(N)P(N) with P;(N) < P;_; <--- < P(N).

How large ought P(N) typically to be? How large ought N/P(N) typically be?
As N/P(N) has only s — 1 prime factors, we have

N
—1=Inl =In(InN — =
s n nP N n(ln In P(N))

=lnlnN+]n(1— '"P(N)) =s+ln(1— ]"P(N)).

InN InN
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This leads to the estimation

ALY L) Lo P 1
—_—— |- r -_— = -
InN InN e’

typically giving
1
In P(N) =~ (1 - —) InN =0.632InN. (5.15)
e

In the analysis of factorization algorithms (5.15) is frequently re-written in the still
less stringent form
P(N) ~ N%632, (5.16)

Since In N is proportional to the number of digits of N, the following result
seems plausible:

“Typically” the largest prime factor P(N) of an integer N has a length in
digits being about 63% of the length of N, i.e. log P(N) = 0.63 log N. The second
largest prime factor is expected to have a length of 63% of the remainder of N,
i.e. log P,(N) =~ 0.23log N, and so on.

Remark. We have to be very careful when applying this result. As a matter of fact, there are
hardly any integers to which it applies to the full extent. But it shows the general tendency.
Please take a good look at factor tables of large numbers, and remarkably you will find many
instances where the factorizations do indeed look a little as this rule of thumb predicts, e.g.

2% 41 = 641 - 6700417 - 18446 74406 94145 84321.

The principal value of the rule is, of course, not to predict the general appearance of
factor tables, but rather to aid in finding good strategies for factoring large integers. Since in
many factoring methods the size of the second largest prime factor determines the amount
of computing work needed before the integer is completely factored, it is of some help to
know that we typically have to expect this factor to be about N%2 —It is also of value to
know that integers consisting of many prime factors are rather scarce, contrary to what is
frequently believed.

It is because of the consequences of this rule that, in analyzing Fermat’s factoring
method on p. 148, we dared to introduce the term “ordinary case” for a number N with its
largest factor of about the size N ¥, which is close to N*53,

The Erdos-Kac Theorem

A beautiful theorem, from which further information on the distribution of prime
factors of large numbers can be drawn, is

Theorem 5.3. The Erdés-Kac Theorem. Denote by N(x, a, b) the number of
integers in the interval [3, x] for which the inequalities
< w(n) —Inlnn <

5.17
v Inlnn ( )
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hold, where w(n) is the number of different prime factors of n. Then, as x — oo,

b
N(x,a,b) = (x + o(x)) le_ f e~ 124y, (5.18)

JT
a

A stringent proof is quite complicated and we have to refer the reader to [4]. A
heuristic argument for (5.18) can be found in Kac’s own little book [5]. The ErdGs-
Kac Theorem reflects the fact that the function w (n), the number of different prime
divisors of n, may be written as a sum of statistically independent functions p,(n),
defined by

1, if pjin

pp(n) = [0, it i, (5.19)

This suggests that the distribution of values of w(n) may be given by the normal
law in statistics, which is indeed the case.—Another way of describing this is to
say that Q(N) — 1 can be approximated by a normally distributed random variable
with mean Inln N and standard deviation +/ Inln N, when N is large. See [6],
p. 345-346, where a proof is given that the variable Q(N) — 1.03465 . .. has the
statistical properties just mentioned.

Remark. In theorems 5.1-5.3 it does not really matter if the 7otal number Q (N) of prime
factors of N is considered rather than the number w(N) of different prime factors. That the
distinction between Q(N) and w (N) makes no importance in these theorems follows from
the fact that the number of integers m <x for which Q(n) — w(n) > (Inlnx)"/? is o(x), as
proved in [3].

A brief account of a more detailed theory, leading to more precise results will
be given on pp. 161-163.

The Distribution of Prime Factors of Various Sizes

Finally, we shall prove some theorems on the distribution of various sizes of prime
factors of large numbers. We commence by

Theorem 5.4. The prime factors p of numbers chosen at random in a short
interval about a sufficiently large number N are such that the variable Inln p is
approximately equally distributed. More precisely: the number of prime factors
p of integers in the interval [N — x, N + x] such that

a<Inlnp <b

is proportional to b — a if b — a as well as x are sufficiently large as N — oo.

Proof. Since the presence of multiple prime factors complicates the proof, we
shall first assume that every prime factor p of a number M is counted only once,
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regardless of its multiplicity in M. Subsequently, we shall indicate how to modify
the proof if, instead, the multiplicity of p is counted.

Now in the interval [N — x, N + x] containing 2x + 1 integers, there are
between
2x 42
p

multiples of p, dependent on where these multiples happen to occur. This is
2x/p+ O(1). Thus, the number of events of a prime p between u and v occurring
as a factor of one of the numbers in [N — x, N + x] becomes

2
~1 and Z 41
p

fav,x)= > (%’f + 0(1)). (5.20)

ugp=v
Using (5.8), we immediately find
fu,v,x) ~2x(Ininv — Inln u), (5.21)

if x is supposed to be sufficiently large, compared with # and v. Substituting
Inlnu = a and Inlnv = b, we have @ < Inlnp < b and f(u, v, x) becomes
~ 2x(b — a), thus proving the theorem.

We have promised the reader to indicate how this proof could be adapted to
the case where each prime factor is counted by its multiplicity. In this situation the
number of prime factors p of numbers in [N —x, N +x]is nolonger2x/p+ O(1),

but rather

InN

Ca . S ) (5.22)
p p p np

Since 2x 3", p™ < 2x 3 ,n* is convergent for s > 1 while }_, 2x/p is
divergent—as can be seen by taking x >> v in the asymptotic formulafor f (u, v, x)
just found—the new terms in the series (5.22) cannot replace 2x In In v as the dom-
inating term of the result. The term O(In N/ In p), however, gives rise to an error
term of the order of magnitude of

O(n N) d"(t') = OEI"EN) dr(t) = l—gO(v—u) (5.23)

u—0 u—-0

Here u < & < v and we have used the mean value theorem for Stieltjes integrals
(Theorem A11.3 on p. 372). The expression (5.23) surpasses the previous error
term by a factor of In N/ In § in magnitude. Therefore in this case x must be just a
little larger than previously in order for this new error term to be small compared
with the dominant term.
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Dickman’s Version of Theorem 5.4

A related result, due to Dickman, see [7], is the following:

Theorem 5.5. Dickman’s Theorem. The probability of a number N chosen at
random having a prime factor between N® and N*(*+9 is approximately = &,
independent of the magnitude of a, if § is small.

To see that Dickman’s theorem is equivalent to Theorem 5.4 above, consider
the number of prime factors of a number N chosen at random in the interval
[N®, N*0+97 which, according to Theorem 5.4 is

Inln N*U+9 _1nln N® =In(1 + 8) = 3,

i.e. independent of a. Thus, the length of the interval [N®, N®*(+9] is such that
the average number of prime factors of numbers about N, falling in this interval,
will be precisely 8, showing that Theorem 5.4 is only a different formulation of
Dickman’s result.

For future reference we also give the following slight variation of the earlier
mentioned Theorem 5.2:

Theorem 5.6. The “typical” number of prime factors < x in sufficiently large
numbers N is about Inlnx.

Proof. Just as theorem 5.2 follows from the fact that the average order of w(n) for
the interval [3, N]is InIn N, the present Theorem is equivalent to the fact that the
average order of w(n) in [3, x]is Inlnx.

Exercise 5.2. Statistics on prime factors. Collect some statistics on the size of the prime
factors p of large numbers N by counting the number of cases for which Inln p falls in
various intervals of length 0.2, e.g. 0.2k <Inlnp <02k + 1),k =1,2,3,...,10. In
producing these statistics, utilize the computer program for factorization by trial division,
mentioned on pp. 143-144, to factor 1000 consecutive integers of the size about 10°, 10’
and 10%. Compare your results with those predicted by Theorem 5.4.

A More Detailed Theory

The theory sketched above for the distribution of the prime factors of large numbers
is very simple and yields sufficiently accurate results to be useful in estimating
running times of various factorization algorithms. There exists, however, a more
detailed and slightly more precise theory by Knuth and Trabb-Pardo, given in
[6], by which the average size of the logarithm of the largest, second largest,
third largest etc. prime factors of N have been calculated rigourously instead of
intuitively, yielding the mean value of In P(N)/In N and In P,(N)/In N as 0.624
and 0.210 for the largest and second largest prime factor, respectively, as compared
to our values 0.632 and 0.233. This more accurate theory is, however, much more

161



CLASSICAL METHODS OF FACTORIZATION

elaborate and complicated, and we can only briefly touch upon it here and must
refer the reader to [6] for a more detailed account.

The Size of the kth Largest Prime Factor of N

The problem of determining the distribution of the kth largest prime factor of
large numbers N is, as is often the case with mathematical problems, very much
a question of posing the “correct” problem, i.e. of formulating a problem which
admits a reasonably simple solution. In this case, the correct question to ask is:
What is the proportion p; () of numbers whose kth largest prime factor P, (N) is
smaller than N1/* ?

It turns out that the functions p; () can be expressed in terms of the so-called
polylogarithm functions L; (), defined recursively by

0, for a <0
Lo(@) = {1, for >0
0, for o<k
o
— t
Li(e) = l Lot~ 1) -‘Zt—, for o>k (5.24)
k
It is easy to see that the first two of the functions L, («) are
0, for <1
L) = {lna, for a>1 (5.25)
and o
In(t — 1 dt
La(a) = / ¥ for «>2. (5.26)
2
Now, the functions p; () can be expressed by means of the relations
1—p(@) =Li(a) — Lo() + L3(@) — La(@) + Ls(a) —---
1—p(a) = Ly(a) — 2L3(a) + 3L4(a) — 4Ls(a) + - - -
1—p3() = L3(c) —3L4(a) + 6Ls5(a) — - -
5.27)

X [k
1= piler) = Z( . ) Ly (@0).

n=0

The function p, (@) is of particular interest in factorization. This is because
of the existence of a whole class of factorization algorithms which yield the prime
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factors of a number N in approximate order of magnitude. If factors discovered
are always removed, and the co-factors tested for primality, then such algorithms
will terminate as soon as the second largest factor has been found. Thus, the
distribution of the size of the second largest prime factor of large numbers N is
essential when the average running time of these algorithms is to be estimated.—
We conclude this sub-section by providing a small table of the functions p;(«)
and p; () as well as a graph of the distribution functions F;(x), F>(x) and F3(x)
for the largest, the second largest and the third largest prime factors, respectively.
Both the table and the graph are reproduced from [6].

Distribution of largest and second largest prime factors
o (@) p2(a)
1.5 0.59453 48919 1.00000 00000
2.0 0.30685 28194 1.00000 00000
2.5 0.1303195618 0.95338 97063
3.0 0.04860 83883 0.8527793230
3.5 0.01622 95932 0.73348 11652
4.0 0.00491 09256 0.62368 10600
4.5 0.0013701177 0.5336525720
5.0 0.00035 47247 0.4632221870
6.0 0.00001 96497 0.3652177517
7.0 0.00000 08746 0.30178 60103
8.0 0.00000 00323 0.2574357108
9.0 0.00000 00010 0.22459 21627
1.0 x = — : T : :
x 08 eyt0
u.‘ /,r ‘
z 06 / / .
3 /Falx) Fqlx)
< 04 / .
g -
* 02 S , _
;S e g
/ // e
0¥ —

0 010 020 030 040 050 060 070 080 090 1.00

Distribution of the three largest prime factors of a random integer.
For example, the probability that the largest factor P(N) < N%* is 20%.
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Smooth Integers

Integers with all their prime factors small are called smooth integers. If all prime
factors of an integer are < some limit z, this integer is called z-smooth. The occur-
rence of smooth integers is of utmost importance for several modern factorization
methods, such as the quadratic sieve and the number field sieve. The optimiza-
tion strategy for these methods demands some estimate of the number ¥ (x, z) of
z-smooth integers up to x, since the running time of an implementation of the
method depends on the supply of smooth integers.

How many z-smooth integers below x are there? We are looking for integers
which are products of primes p;, all less than z, with[] p; < x,i.e.,with} Inp; <
Inx. Since Zpsz Inp = z, see (2.6A), and the number of primes < z, 7 (z) ~

z/ Inz, the average value In p of In p for p < z is

— 1
lnp%——n—EZlnp%lnz.
< pP=z

Thus we expect the average number of terms in Z Inp; < lInx to be about u =
Inx/Inz. Thus a z-smooth number < x contains about u prime factors, and these
can be picked out from 7 (z) primes in about

(ﬂ(z)) ~ (r(2))"

u u!

different ways, since m(z) is large. Using the value of u above and Stirling’s
formula for In u!, we find

Iny(x,z) ®ulnn(z) —ulnu + smallerterms ~ Inx —ulnu. (5.28)

If this is rewritten as ¥ = xu™", we see that (5.28) implies that the proportion
as z-smooth numbers below x is u™, with ¥ = Inx/Inz. This approximation is
often sufficiently accurate to estimate the running times of computer programs,
which depend on the supply of smooth integers.—Because of the crude estimates
made, this formula is, however, not quite as accurate as it could be. A more careful
analysis [8] shows that, for z < 3/)?,

1 Ininu\?2
Inyx,z)>nx—ul{lhu+|{1+— }(Inlnu—-1)+C ,
Inu Inu

(5.29)
for some absolute constant C. Our crude estimate coincides with the two leading
terms of this result.—Because of the inequality sign we have a supply of smooth
numbers, which is at least this large.—For future reference, we shall give an
important particular case, namely

avinxininx
Y

z=¢ leadingto ¥ (x, z) = xz~ /@) +o) (5.30)
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If we introduce the function

L(x,u,v) = evln"x(lnlnx)"‘“ - xv(lnlnx/lnx)"", (5.31)

then z in (5.30) is = L(x, %, a), and (5.30) can be transformed to

Xz 1 1
—— > L(x, -, —), as - 00, 5.32
¥(x,2) o 3at o) * (5-32)
aresult, which is quite frequently used in running time analyses of those factoriza-
tion and prime proving methods, which depend on the use of smooth numbers.—
See e.g. [8].

Searching for Factors of Certain Forms

It is sometimes known that the factors of a composite number are of a certain
mathematical form. The number may, e.g. have the form N = 6a® — b* with
(a, b) = 1, and hence we know that 6 is a quadratic residue of N, implying that all
prime factors of N (if N can be factorized) take either of the forms p = 24k £+ 1
or p = 24k 5. (See Table 22.) Several of the methods for factor search can
quite easily be modified to take advantage of such a situation. In the method of
trial division for instance, described on p. 142, it is quite simple to generate trial
divisors of a given linear form and no others. Just set the initial values p1:=-5;
p2:=1; d1:=14; and d2:=2; and in the division loop write

d1:=24-d1; d2:=24-d2; pl:=pl+dl; p2:=p2+d2;

subsequently checking whether N is divisible, first by p1 and then by p2.

Exercise 5.3. An alternative to the above construction is to write four division statements
in the program loop. Try this (compare with the computer program TrialDivision on
p. 143).

Later we shall briefly hint at how several of the more important factorization
methods can be modified to use shortcuts when the factor has the form p = 2kn+1
and where n is a given integer, and k = 1, 2, ... To indicate the importance of this
case, we give

Legendre’s Theorem for the Factors of N = a" + b"

It has long been known that, under certain conditions, the prime factors of N =
a®? £ bP (p being an odd prime), all have the form 2kp + 1. This result has been
generalized by Legendre, who proved

Theorem 5.7. Legendre’s Theorem. All prime factors p of the number N =
a" £ b", with GCD(a, b) = 1, have the form p = kn + 1, apart from those which
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divide the algebraic factors of the form a” £ b™, m <n, of N (see Appendix 6).
Moreover, disregarding the prime p = 2 and the case a®" — b?", the prime factors
of N take the form p = 2kn + 1.

Proof. Suppose a” & b" = 0 mod p, where p is prime and GCD(a, b) = 1. First
we deduce that GCD(a, p) = GCD(b, p) = 1, because if a = 0 mod p, then
the congruence would give » = 0 mod p, and thus, contrary to the assumption,
GCD(a, b) would be divisible by p. Since p is a prime, a, b as well as a/b are
in the field Z, of primitive residue classes mod p. Thus, the congruence may be
divided by b" to give

(%)n = x" = ¥l mod p,

with x a number in the field Z,. Suppose also that x belongs to the exponent d
mod p. We know from Fermat’s theorem thatd|p—1, sowe canputd = (p—1)/k.
But x” = %1 mod p then implies that n = [ - d =I(p — 1)/k, in the case
N =a" —b" and that n = (2] — 1)d/2 = (2 — 1)(p — 1)/(2k) in the case
N =a" + b". Here l is a positive integer. (In the latter case, d must obviously be
an even number.) Hence, we immediately have

d
xd:—:(g-) = 1 mod p, ie. a®—b'=0modp

and

NI

d d
x2 = (—) =-—-1lmodp, ie. a2+b2=0modp
respectively. If I > 1, i.e. if d <n, or d/2 <n, then the algebraic factor a? — b“ of
a" — b" or a?’? + b%/? of a" + b" contains p as prime factor, a case that has been
excluded from the theorem. Thus, / must be = 1 and n mustbe = (p — 1)/k or

= (p — 1)/(2k), in the respective cases, and thus we finally arrive at the result

p=kn+1 inthecase N =a" —-b"
p=2kn+1 inthecase N =a" +b".

If nis odd in the expression kn+ 1, then k must be even in order for kn -1 to be odd.
Therefore, excepting the prime p = 2 and the case a®” —b*" = (a" —b")(a" +b"),
the prime factors of a” £ b" have the form 2kn + 1.—The requirement of excluding
those factors which are already factors of the algebraic factors of N does not reduce
the practical applicability of the theorem. The algebraic factors can be considered
in advance, and all the prime factors of those, which are called algebraic prime
factors of N, are divided out before what remains of N is searched for factors of
the specific form 2kn + 1. These last factors are called primitive prime factors of
the number N.

Please note that the algebraic factors as such may not be the only divisors of
N which are not of the form 2kn + 1. It could happen that a prime factor of an
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algebraic factor Q of N divides N with greater multiplicity than it divides Q. We
provide here a few simple examples of this phenomenon:

N () N/Q
23 +1 2+1 3£6k+1
10° —1 10—1 3.37

This possibility renders it extremely important to check for multiple factors of any
p found to divide N. Neglecting this could lead to mistakes concerning the form
of the possible prime factors of the remaining cofactor.

When N is large, the amount of work required in searching for a factor is
considerably reduced by applying Legendre’s theorem. A farnous illustration of
this is Euler’s factorization of the Fermat number Fs = 22 +1 = 232 4+ 1 =
641 - 6700417. The Fermat numbers F, = 2% + 1 lack algebraic factors, a fact
that was already recognized by Fermat himself, who invented them in the hope
of constructing only primes. At the beginning of the series Fermat was fortunate,
as Fy, Fi, F>, F3 and Fj are all primes. For Fs the theorem of Legendre states
that all factors are of the form 64k -+ 1. Dividing Fs by these primes, which are
193, 257, 449, 577, 641, ..., the factorization of Fs is very soon discovered. It
is easy to verify that the cofactor 6700417 is also a prime! Merely extend the
computation by dividing the cofactor by

641, 769, 1153, 1217, 1409, 1601 and 2113

in turn, i.e. by all primes of the form 64k + 1 below +/6700417 = 2588.52.
Since none of these divisions results in a zero remainder, the cofactor must be a
prime! (Actually it is possible to prove, by using the theory of quadratic residues,
that every prime factor of Fs has the form 128k + 1, a fact which eliminates the
divisions by 193, 449, 577, 1217, 1601 and 2113. Also the factor 257 = F; can
be eliminated, since no two Fermat numbers F, and F,, have a common divisor,
so the first trial is by 641.)

As another example on the use of Legendre’s theorem, we shall factor
N = 3105 _ 105

The algebraic factorization of a'% — p10

18:

, according to formula (A6.29) on p. 308,

105 _ p105 _ @ — b¥)(a@? - b)) (@' - b»)
(@’ = b")(@5 — b5 (@ — b%)
xan irreducible cofactor.

a (a—b)x

Instead of making quite complicated algebraic deductions from this formula, test
all the factors of

3 — 2, 33 _ 23, 35 _ 25’ 37 _ 27’ 3]5 _ 215, 32] _ 221” 335 _ 235
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for multiplicity in N. The remaining cofactor must possess factors all having the
form p = 210k + 1. Here follows the computation:
N =125 23673753 78787534 01295235 32574262 84187176 25274211,
33 _22=19, N/I9=N, =
= 6 59140723 88357238 63226065 01714434 88641430 32909169,

3° —2° =211, N\/211 =N, =
= 3123889 68665200 18309128 27022343 29330054 17217579,

37 -27=2059=29-71, N/(29-71) = N3 =
= 1517 18780313 35608697 97390491 66745667 82621281,

35 215 = (33 - 2%)(3° — 2%) - 3571, N3/3571 = Ny =
= 42486356 85056177 17669389 66442661 90642011,

321 _ 221 = (33 - 23)(37 — 27) . 267331,
pl267331 = p =42k +1, 267331 = 43 - 6217,
N4/(43 - 6217) = N5 = 158 92790903 62201606 50799819 11062281,

33 2% = (3 -2%@37 - 27) - 1151 60837611,
p|1151 60837611 = p = 70k + 1, 1151 60837611 = 6091 - 18906721,
Ns/(6091 - 18906721) = N = 13800516 94075552 57322971.

At this point we have eliminated all algebraic factors of N. Testing each of the
primes found for multiplicity, we observe that there are no multiple factors in this
case. Therefore, all the prime factors of the cofactor Ng¢ must be of the form
210k + 1. Using this result, we obtain by trial division

N = 11971 - 722611 - 159536 60849491,

thereby completing the prime factorization of N.

Remark. Another method of finding all algebraic factors of N = a" — b" is to apply
Euclid’s algorithm in order to compute GCD(a™ — b™, a” — b") for all m|n. When a factor
has been found and removed, the GCD computation is repeated with the same value of m
until no more factors emerge. This procedure will ensure that all multiple factors of N
are discovered. Only after this has been accomplished for a certain value of m does the
computation proceed with the next m. For the value of N considered above, this computation
successively yields:

GCD(3% -23,N) =19, N/19 = N, GCD(19, N)) = 1.
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GCD(3% — 25, \y) = 211, N1/211 = N,, GCD(211, N2) = 1.
GCD@3" — 27, Np) = 2059, N3/2059 = N, GCD(2059, N3) = 1.
GCD(3% — 25, N3) = 3571, N3/3571 = N, GCD(3571, Ny) = 1.

GCD(3*' — 22!, Ny) = 267331, N4/267331 = N5, GCD(267331, Ns) = 1.

GCD(3% — 235, N5) = 115160837611, Ns/115160837611 = Ng,
GCD(1151 60837611, Ng) = 1.

where the factors found, viz. 19, 211, 2059, 3571, 267331, 115160837611 and Ng must
be decomposed into prime factors or verified for primality in a manner similar to that
demonstrated above.

Adaptation to Search for Factors of the Form p = 2kn + 1

Some factorization methods discussed in this book can easily be adapted to run
faster on computers if the factor searched for is of the form p = 2kn + 1,

= 1,2,3,... However, other methods do not take any advantage of the par-
ticular form of the divisors of N. This is of importance in the choice between the
different factorization methods, as we shall see when discussing strategies for the
factorization of large numbers.

Adaptation of Trial Division

There is a fairly obvious adaptation of the trial division to the case p = 2kn + 1.
Just as in ordinary trial division, it is usually not worthwhile to first sieve out the
primes p = 2kn + 1 and then divide only by these, but rather to divide N by all
integers 2kn + 1, except possibly those divisible by 3. Thus, if 3|n then divide N
by all integers of the form 2kn -+ 1. On the other hand if 3}n then, since 3}6n + 1,
either 2n 4 1 or 4n 4+ 1 must be divisible by 3. Check which and denote the
other of these two integers by p1. Denoting 6n by n6, the computer will generate
the divisors which are of the form 2kn + 1 and not divisible by 3 if we write the
program code
p:=1; d:=pl-1;

prior to the division loop, and in the loop let
p:=p+d; d:=n6-d;
Taking an example, suppose we are searching for factors of the Mersenne numbers

M, = 27 — 1 with p around 100,000. With the described shortcut we can then
easily reach the search limit 235 for p. The number of trial divisions will be
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2% /(3p) ~ 2%/3 . 10° &~ 115000, taking a few seconds of computing time on a
fast computer if the division is programmed as a reduction mod p of a power of 2,
as in Fermat’s compositeness test on p. 87.

Exercise 5.4. Factor search of ¢" + b". Carry out the adaptation hinted at above of the
computer program for trial division from Exercise 5.1 on p. 145. Decide on a reasonable
value for the search limit G, depending on n. Check your program by applying it to some
of the integers given in Tables 7-10. Use the program to search for factors of 11" 44", for
as high values of n as your program can handle.

Adaptation of Fermat’s Factoring Method

One of the advantages of Fermat’s method is that it can very easily be adapted
to cases where different conditions are imposed on the possible prime factors of
N. Like trial division, Fermat’s method runs n times faster than usual if the form
p = 2kn + 1 is introduced directly into the calculations. However, due to the
simplicity of the method, it is actually possible to do much better than that. As a
matter of fact, Fermat’s method can be speeded up by a factor of 2n? if all factors
of N have the form 2kn + 1. This is based on the following observation: Let
N =p-qg = 2kn+1)Q2In+1). Then N + 1 = 4kin* + p + g, and thus
(p+¢q)/2 = (N + 1)/2 mod 2n%. Now, since

p+4\ _(pP—4q)
N=pq=( ) )—( > )=x2—y2,

this implies that the feasible values of x = (p + ¢)/2 belong to precisely one
residue class mod 2n2, which reduces the amount of work required by a factor 2n2.

In the example quoted earlier in the text on p. 148, the 19-digit number
N = (1022 4+1)/(89-101) was mentioned. As we know from Legendre’s theorem,
all prime factors of N are of the form p = 44k + 1. Introducing a = 44k + 1 and
b =44l + 1 in N = x? — y? we have, by the above reasoning, that

N+1
x= ——;* mod 2 - 222 = 507 mod 968.

Thus we find that it suffices to let m assume only values of the form 968t 4- 507 in
the factorization scheme. The computation proceeds as follows:

10241
~ 89.101

VN =1054737312.149..., |vN +1)%? — N = 1792898060,
VN + 1] = 968 - 1089604 + 641.

= 111247079 76415 61909,
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Hence, the first possible value which x can take, if x has to be of the form 9687 +507,
is 968 - 1089605 + 507, and the calculation runs

t x = 9681 + 507 | m = 1936(x + 484) z=x*—N
10 89605 10547 38147 204 1973989616 | 176 1095431700
06 1054739115 204 19758 63664 | 3803069421316
= 19501462

Here the third column, (x + 968)> — x2 = 1936(x + 484), contains the
differences between consecutive values of z. The values of m are incremented by
1936 - 968 = 1874048.—This time the factorization is found in only 2 steps, or
roughly 1/968 of the number required when no advantage was taken of the special
form of the factors. This method of taking advantage of the form 2kn + 1 of the
factors of N is due to D. H. Lehmer, and is described in [9].

Adaptation of Euclid’s Algorithm as an Aid to Factorization

The adaptation of Euclid’s algorithm is also quite obvious. Instead of using the
products P of all primes in the search intervals between g; and G, simply ac-
cumulate the products of the primes of the given form(-s) between g, and G, and
proceed as described previously.—Similarly as before, it is only in a rather specific
situation that this method proves to be favourable.

Bibliography
1. R. Sherman Lehman, “Factoring Large Integers,” Math. Comp. 28 (1974) pp. 637-646.

1". Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,
New York, 1993.

2. C. F Gauss, Disquisitiones Arithmeticae, Yale University Press, New Haven, 1966,
Art. 329-332.

2. L. G. Sathe, “On a Problem of Hardy on the Distribution of Integers Having a Given

Numbers of Prime Factors, I”, Journ. Indian Math. Soc. 17 (1953) pp. 62-82.

3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition,
Oxford, 1979, pp. 354-359, 368-370.

4. Wladyslaw Narkiewicz, Number Theory, World Scientific, Singapore, 1983, pp. 251~
259.

5. Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus
Math. Monogr. no.12, John Wiley and Sons, 1959, pp. 74-79.

171



8.

CLASSICAL METHODS OF FACTORIZATION

. Donald E. Knuth and Luis Trabb-Pardo, “Analysis of a Simple Factorization Algorithm,”

Theoretical Computer Sc. 3 (1976) pp. 321-348.

. Karl Dickman, “On the Frequency of Numbers Containing Prime Factors of a Certain

Relative Magnitude,” Ark. Mat. Astr. Fys. 22A #10 (1930) pp. 1-14.

. E.R. Canfield, Paul ErdSs and Carl Pomerance, “On a Problem of Oppenheim concern-

ing “Factorisatio Numerorum,” Journ. Number Th. 17 (1983) pp. 1-28.

J. P. Buhler, H. W. Lenstra, and C. Pomerance, “Factoring Integers with the Number
Field Sieve,” in A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the
Number Field Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, New York,
1993, pp. 50-94.

. John Brillhart and John L. Selfridge, “Some Factorizations of 2" + 1 and related results,”

Math. Comp. 21 (1967) pp. 87-96.

172



CHAPTER 6

MODERN FACTORIZATION METHODS

Introduction

The art of decomposing large integers into prime factors has advanced consider-
ably during the last 25 years. It is the advent of high-speed computers that has
rekindled interest in this field. This development has followed several lines. In
one of these, already existing theoretical methods and known algorithms have been
carefully analyzed and perfected. As an example of this work we mention Michael
Morrison’s and John Brillhart’s analysis of an old factorization method, the con-
tinued fraction algorithm, going back to ideas introduced already by Legendre and
developed further by Maurice Kraitchik, D. H. Lehmer and R. E. Powers.

The progress achieved in this area is due also to another line of development,
namely the introduction of new ideas. We shall discuss two of these in connection
with the continued fraction method, namely the factor base by Morrison and Brill-
hart and the quadratic sieve by Carl Pomerance. Also, several powerful ideas of
J. M. Pollard have resulted in entirely new methods of factorization, namely the
rho method and the number field sieve, NFS. The clever use of all of these devel-
opments has resulted in the most efficient practically applicable general methods
so far implemented for factoring large numbers. The practical upper limit for these
methods with today’s computers is the factorization of integers with “special form”
of around 150 digits, and of “general integers” having about 120 digits.

We shall also describe some other of the new methods, Daniel Shanks’ square
forms factorization SQUFOF and H. W. Lenstra’s elliptic curve method, ECM.

Due to the present lively interest in this field, it is not possible at the moment
to provide a complete overview of all partial results found, nor to give a good
classification of all the methods used. Nevertheless, despite the risk of this text be-
coming obsolete quite soon, the author has attempted to classify the main methods
in at least some sort of logical scheme. This will aid in finding a computational
strategy for splitting large numbers into prime factors.

Choice of Method

The choice between the various methods available is not always easy. Firstly,
there are certain special factorization methods (or adaptations of general methods),
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which are advantageous if the number to be factored has a particular mathematical
form. If it has not, or if no such method is available on your computer, then one of
the general factorization methods must be tried. These are of two kinds, namely
those which find the factors of N in approximate order of magnitude, and those for
which the computing time does not depend on the size of the factors. It is obvious
that much computing time may be used up achieving little, if a method of the latter
kind is applied to a large number having a small prime factor, which could easily
have been detected by one of the former methods.—The more intricate details of
how to choose between different methods will be discussed after we have described
the most important factorization methods.

Pollard’s (p — 1)-Method

J. M. Pollard’s (p — 1)-method, published in [1], formalized several rules, which
had been known for some time. The principle here is to use information concerning
the order of some element a of the group My of primitive residue classes mod N to
deduce properties of the factors of N. (See Appendix 1 for details of the structure
of My!) In this method the idea employed is that if p — 1|Q then pla? — 1, if
GCD(a, p) = 1. The assertion follows immediately from Fermat’s Theorem A2.8
on p. 268. Since a?~! = 1 mod p, also a2 = 1 mod p, and thus p can be found
by applying Euclid’s algorithm to a¢ — 1 mod N and N.

Well, how can this observation be of any value in factoring N? Would it not
work equally well to divide N by all primes up to p, as to check if the greatest
common divisor of a2 — 1 and N is > 1 for all Q up to p — 1? Yes, it would
certainly be much faster to perform the trial divisions, but the point is that if we can
use only a few probable values of Q, then we may gain advantage by carrying out
the other computation. It is here that Pollard’s idea comes into play: suppose that
p — 1, for one of the factors p of N, happens to have a factorization containing only
small prime factors; then if we compute GCD(a€ — 1, N) on these comparatively
rare occasions, i.e., for those integers Q which have many prime factors, we might
be able to determine p — 1 (or a multiple thereof) rather soon, and thus find a
relatively large factor p of N with a limited amount of work.

Now, the original problem has been replaced by the problem of generating
(multiples of) all integers containing only small divisors. This is actually quite
easy. You could use the numbers Q; = k!, which contain all primes <k, but then
high powers of the small primes would be over-represented. It is better to utilize
Qi = p1p2 ... pr with some additional factors of the small primes appended, in
order not to miss such p — 1 which are divisible by 4, 8, 9 or other such small
prime powers. This can be achieved by multiplying Q by an extra factor p each
time a power of p is passed, when multiplying by the primes p;. This results in
Q being the least common multiplier of all numbers up to the limit chosen.

To arrive at a practical algorithm, proceed as follows: First, generate a list
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of all primes and prime-powers up to some search limit B, say 100,000. For
each prime square, prime cube, etc., write the corresponding prime instead of the
prime power in question. Divide this list into blocks of suitable length for the fast
memory of your computer, for instance let a block contain 1000 entries.

Next, choose a value of a, e.g. a = 13, and compute

biyy = b” mod N, (6.1)

where p; is the ith integer in your list of prime-powers. Start the sequence (6.1)
with b; = a and check GCD(b; — 1, N) periodically, to see whether a factor p
of N has emerged, e.g. at regular intervals of 100 cycles.—Since a factor p of N,
once it has been collected in b; — 1, prevails in all the following (by — 1)’s, there
is no need to accumulate the product of these numbers mod N, as was suggested
in the first edition of this book.

How soon will Pollard’s (p — 1)-algorithm determine a factor of N? Suppose
as usual that
N=[]re andthat p;—1=]]q. (6.2)
i J

Let the largest prime-power in the factorization of p; — 1 be g#. Then the factor
pi will be obtained as soon as the computation has passed the value ¢# in the list
of prime-powers used. This means that the factor p; of N, for which the value of
g” is the smallest for all the factors p of N, appears first, and occasionally very
large prime factors may be rapidly detected by this method. As examples of this
we refer to [2], in which the factors

p = 1214505 06296081 of 10% + 1
and
q = 267 00917351 08484737 of 3'%¢ 41

are reported to have been found by the (p — 1)-algorithm. The factorizations of
p—1landg —1 are
p—1=2%.5.13.19%. 15773 - 20509
g—1=2".32.72.17%.19-569 - 631 - 23993.

Since all prime factors of p — 1 and ¢ — 1 are small, this explains the success of
Pollard’s (p — 1)-method in these cases.—In some of the more advanced computer
algebra systems Pollard’s (p — 1)-method is routinely used as one of the algorithms
in packages performing integer factorization.

Remark. Even if p; — | has only small prime factors it might still happen that p; is not
found because it contains an extremely large power, exceeding the search limit, of a small
prime.—Also, N might have several prime factors p;, all detectable by this method, and

175



MODERN FACTORIZATION METHODS

it may so happen that two or more of these factors are extracted between two consecutive
computations of GCD(Q,, N). In such a case these factors will appear multiplied together.
They can be separated, in most situations, if the last values of Qo and by have been
saved. Then one can recompute from this point on, only with more frequent use of Euclid’s
algorithm. Only in the rare case when N has such special structure that several factors are
found at the same value of i, is the computation a failure.

Phase 2 of the (p — 1)-Method

If no factor is found up to the search limit B), there is a quite efficient continuation
to the (p — 1)-method. Suppose, as in (6.2) that

m m—1

Bij ij

Pi_1=| Iqij"-:Qx l |q£l'
j=l1 j=l1

where only the largest prime factor Q in p; — 1 exceeds B;. Instead of just raising
the search limit from B, to B,, say, we continue as follows: Denote the result at
the end of phase 1 by b. This is a raised to the product of all prime powers below
B, reduced mod N. Let {g;} be a list of all primes (in order) between B; and B,
starting with the largest prime just below B,. Then, recursively, find the value of

b+ as  b% . p%+1=% mod N, (6.3)

and check if GCD(b%+' — 1, N) > 1. Since the differences of consecutive primes
are all even and remain small, it pays off to precompute a table of b2, b4, b5, . ..,
b™Max(gi+1-4) mod N, and use these values in the recursion. One cycle in this
recursion runs a lot faster in the computer than one cycle in (6.1), so in the same
amount of time the computer can check a much larger interval for p than it can
during phase 1.—As arule of thumb, a quite efficient balance between phase 1 and
phase 2 is achieved, when approximately half the computing time is spent in each
phase. This means, depending on the implementation, that B, should be about 10
to 20 times larger than B;. (The validity of this approach has also something to
do with the likelihood of success during phase 2, so the mentioned rule of thumb
could occasionally be misleading.)—Also the prime powers between B, and B,
could be included in the search. In this case, as opposed to in phase 1, the prime
power p“ itself, rather than just p, has to be inserted in the proper place in the list
of primes. This is to keep all differences between consecutive numbers in the list
small.—It also pays off, during phase 2, to accumulate the product of consecutive
values of »% — 1 mod N, and then compute the GCD of this product and N at
regular intervals. This effectively reduces the cost for computing the GCD to one
multiplikation mod N per cycle.
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The (p + 1)-Method.

A variant of this method, which uses Lucas sequences instead of powers and
achieves a rapid factorization.df some factor p of N has a decomposition of p + 1
in only small prime factors, has been implemented by Williams and is described
in [2]). A problem associated with this method is to find, in an efficient manner, a
quadratic non-residue such that all the conditions for a working Lucas-sequence
will be met. The far from obvious solution is due to Brent and Kahan, for which
we must refer the reader to Williams’ paper. Using this algorithm the factor

p = 22597 40655 03889 of 10'% + 1
was found. Here

p+1=2-5-11-79-401 - 7867 - 8243.

Pollard’s rho Method

This method is also called Pollard’s second factoring method. It is based on a
“statistical” idea [3] and has been refined by Richard Brent [4]. The ideas involved
for finding the factor p of the number N are described below:

1. Construct a sequence of integers {x;} which is periodically recurrent mod p.
2. Search for the period, i.e., find i and j such that x; = x; mod p.
3. Identify the factor p of N.

The first requirement, that of finding a periodic sequence mod m, where m is an
arbitrary integer, is quite easy to fulfil. Consider any recursively defined sequence
of the following type (s is assumed to be a constant, i.e. independent of i, and F
is a polynomial):

x; = F(xi-1,%Xi—2,...,X%i_s) modm 6.4)

with given initial values for x, x3, ..., x;. Then x;41, X542, . .. can be computed
successively by the formula given. However, since all the x;’s are given modm,
there are only m different values that each x; can take and thus there are, at
most, m* distinct sequences x;_;, X;_2, ..., Xi_s of 5 consecutive numbers x;.
Thus, after at most m* + 1 steps in the recursion, two identical sequences of s
consecutive numbers must have occurred. Let us call these x;_;, x;_2, ..., Xj_s
and x;_1, xj_3, ..., xj—s. Now, since the definition of the next x; uses only the
preceding s values xx_1, Xx_2, . . . , X—s, itis clear that, if these sequences of values
are identical for two different values of k, then the values x; and x;, computed
from these in a similar manner will also be the same. Thus, we have two new
sequences of s identical values, viz. x;, X;_1, ..., Xiy1—s and X;, Xj_1, ..., Xj41—s
which lead to identical x;; and x;, and so on. But this means that the sequence
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{x;} is periodically repeated, except possibly for a part at the beginning called the
aperiodic part.

As a sequel to this somewhat abstract reasoning, let us look at a simple
example, the Fibonacci sequence mod 11. This sequence is defined by

Xi=xi1+xicaomod1l, withx; =x=1.
We successively obtain the following elements of the sequence
1,1,2,3,5,8,2,10,1,0, 1,1, 2, 3,... mod 11.

After 10 elements the sequence is repeated. Since this particular sequence is
repeated from the very beginning, it has no aperiodic part.

‘We now proceed to the second step of the algorithm, the search for the period.
To determine it in the most general case would require finding where a sequence
of consecutive elements is repeated if the period is long. This is quite a formidable
task and is ruled out by the large amount of labour involved. In the simplest case,
however, where x; is defined by means of x;_; only and by no other x;’s, the
sequence is periodically repeated as soon as any single element x; is the same as
a previous one. Therefore, this case requires only a comparison of each new x;
with the previous x;’s to find the period. If the period is very long (several million
elements), however, it is not feasible to save all the elements and to compare them
pairwise. Instead, the following technique can be used:

Suppose the periodic sequence {x;}mod m has an aperiodic part of length a
and a period of length /. The period will then ultimately be revealed by the test:
Is x2; = x; mod m? This is called Floyd’s cycle-finding algorithm.

Proof. First, if x;; = x; mod m then the sequence is obviously periodic from
xo; onwards, possibly even earlier. Conversely, for any periodic sequence with
period-length [, x; = x; modm for j =i + kI, k = 1,2,3,...andalli >a
(i.e., for all elements following the aperiodic part with subscripts differing by a
multiple of 1), there will eventually be an i with x2; = x; mod m. The first such
value of i isi = (I + 1)|a/1]. If a >, then this search will reveal the period only
after several complete periods have passed, but nevertheless the periodicity of the
sequence will finally be detected.

Now, how can x; be compared with x; without saving all x;’s? Simply by
recomputing the x;’s in parallel with the x,;’s. Suppose that x;;; = f(x;). Then
this period-finding algorithm may be described by the following computer program
code:

x:=x1; y:=f(x1);
WHILE x<>y DO
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BEGIN
x:=f£(x); y:=£(y); y:=£(y)
END;
{When arriving here x=y and the period is through!}

Finally, consider the third and last requirement of Pollard’s rho method. If
we have a sequence {x;} that is periodic mod p, by which means can we find p,
the unknown factor of N? In the same manner as we did in the (p — 1)-method,
simply by using Euclid’s algorithm for finding the greatest common divisor d of
x2; —x; mod N and N. Normally d will turn out to be 1, but as soon as x; = x;
mod p, d will be divisible by p.

Following these preliminaries, we are now in a position to discuss what an
efficient factor searching algorithm based on these ideas ought to be like. Firstly,
the sequence {x;} should be very easy to calculate (especially because it must be
calculated twice!). Secondly, the period length (or rather the number of steps in
Floyd’s cycle-finding algorithm) should be small. Thirdly, the use of Euclid’s
algorithm should be organized in an efficient manner, so as not to use up too much
computing time in merely calculating the GCD(N, x;; —x; mod N) = 1.

Pollard found that in a sequence {x;} of random integers mod p an element
is usually recurring after only about C+/p steps. This is easy to understand if you
consider the solution of the so-called birthday problem: How many persons need
to be selected at random, in order that the probability of at least two of them having
the same birthday, exceeds %?

Selution. The probability that g persons all have different birthdays is

(1 25) () (- 585) - (- 55)

This expression is < 0.5 when g > 23.

Generalization. How large must g be, in order that at least two randomly chosen
integers out of ¢ will be congruent mod p with probability > %?

Obviously this will be the case if

(-D0-2)0-2) (-5

The left-hand-side is

q-1
~[(1-L1 ~ e—1G-D/2p
2p

179



MODERN FACTORIZATION METHODS

This expression is = 0.5, if

~1
1(12——3 —1In2, ieif g~2pin2+05=~ 1.18Vp.
p

At this point we can describe Pollard’s factor-searching algorithm. Instead of
random integers {x;}, we must recursively compute what is called a sequence
of pseudo-random integers. The simplest choice would be to select x;;) = ax;
mod p for a fixed value of a. It turns out, however, that this choice does not produce
numbers that are sufficiently random to give a short period of only C+/p steps for
{x;}. The next simplest choice is to take a quadratic expression, say

Xiy1 = x? +a mod p. (6.5)

It is an empirical observation that (6.5) possesses the required properties (at least
if a is neither 0 nor —2) but this has not been proved so far.

How shall we effect the search for p with Euclid’s algorithm on xp; — x;
mod N and N in each cycle? The trick is to accumulate the product

Qi =[] (x2j — x) mod N, (6.6)

j=1

and apply Euclid’s algorithm only occasionally, e.g. when i is a multiple of 100.
In this way, the burden of using Euclid’s algorithm is, in practice, reduced to one
multiplication and one reduction mod N per cycle.

A Computer Program for Pollard’s rhe Method

The following is an outline of a computer program for what we have so far discussed

PROGRAM Pollard

(Input,Output);

LABEL 1,2;

VAR a,x1,x,y,Q,i,p,N : INTEGER;

FUNCTION Euclid(a,b : INTEGER) : INTEGER;

{Computes GCD(a,b) with Euclid’s algorithm}

VAR m,n,r : INTEGER;

BEGIN m:=a; n:=b;
WHILE n <> 0 DO BEGIN r:=m MOD n; m:=n; n:=r END;
Euclid:=m

END {Euclid};
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BEGIN
1: write(’Input a <> 0, 2 and x1: ’); read(a);
IF a=0 THEN GOTO 2;
read(x1); x:=x1; y:=x1; Q:=1;
write(’Input N for factorization: ’); read(N);
FOR i:=1 TO 10000 DO
BEGIN
x:=(x*x-a) MOD N; y:=(y*y-a) MOD N; y:=(y*y-a) MOD N;
Q:=Q*(y-x) MOD N;
IF i MOD 20 = O THEN
BEGIN p:=Euclid(Q,N);
IF p>1 THEN WHILE N MOD p = O DO
BEGIN
writeln(’p=2,p:8,” found for i=’,i:4);
N:=N DIV p;
{Here a factor of N is found and divided out}
IF N=1 THEN GOTO 1

END
END
END;
writeln(’No factor found in 10,000 cycles’);
GOTO 1;

2: END.

Note that the algorithm can fail! If N has several factors, it could happen that
more than one of these is extracted between two consecutive computations using
Euclid’s algorithm, precisely as in the (p — 1)-method. Exactly as in that case we
have to save the latest values of Q ook, X100¢ and x200x and rerun the computation
from this point on with a more frequent use of Euclid’s algorithm. If also this fails
the whole algorithm has to be rerun with a different value of a.

Note also that the above PASCAL program is only a model of what a computer
code implementing Pollard’s method could be! It certainly works, but only for
small values of N, that is values for which N2 is less than the largest integer that
can be stored in a computer word. In order to transform this model to a program of
real life, you must use at least double precision arithmetic or, better still, a package
for multiple precision arithmetic so that the multiplications do not cause arithmetic
overflow. Moreover it is advantageous not to perform the computations of the GCD
using Euclid’s algorithm at equidistant points, but rather using a smaller interval
at the beginning, and then successively letting this interval grow to 100 or more.
This is in order not to obtain several small factors of N multiplied together at some
stage.
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Since the labour involved in obtaining a factor p is proportional to \/;, it
is essential to use Pollard’s algorithm only on numbers which are known to be
composite.

Example. Factor 91643 with x;4; = x? — 1, xo = 3.

x =8, x; = 63, y1 =63 —-8=55, GCD(55,N) =1,
x3=3968, x4 =74070, y;=x4—x;=74007, GCD(74007,N) =1,
x5 = 65061, xg=35193, y;=ux6—x3=231225, GCD(31225,N) =1,
x7 = 83746, x5 =45368, ys=x3—x4=062941, GCD(62941, N) = 113.

Factorization of N: N = 113 - 811.

Using this method, the author has found many factorizations, such as

112 — 6% = 5-7345513129 - 24380310477967
353 4+ 253 = 5.107 - 24574686173 - 1474296171913
6%° — 5% = 8212573801 - 4463812400371
112 448 =3.5.47. 12172517977 - 104342735227
1125 — 425 = 7.22861 - 2602070851 - 260198475451.

Exercise 6.1. Pollard’s rho method. Write the necessary double precision arithmetic in
order to be able to implement the PROGRAM Pollard above on your computer. Explore
the possibilities of the method on some single precision integers N. Compare the running
times with those of the trial division program on p. 143.

An Algebraic Description of Pollard’s rho Method

There is a fairly simple algebraic argument to show why a factor p of N is likely
to be found after about O (+/p) cycles in Pollard’s rho method. The argument runs
as follows:

2 2 2 2
Yi=X2 —xi =Xy +a—(xi_;+a)=x3_; —xi_; =
= (x2i—1 + Xi=1)(X2i-1 — Xi-1) =

= (x2i—1 + xi=1) (22 + Xi—2) (X2i-2 — Xi—2) = 6.7

= (x2i—1 + Xic1)(x2i—2 + x;-2) .. . (x; + x0)(x; — Xo).
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BRENT’S MODIFICATION OF POLLARD’S RHO METHOD

Thus, the factor y;, which is included in the product Q; for the computation of
GCD(Q;, N), contains at least i + 1 algebraic factors. How many different prime
factors < p does a typical factor, x; — x;, contain? From Theorem 5.6 on p. 161 we
expect the number of prime factors < G of a number N to be about InIn G, if Nis
sufficiently large. Now, what can be said about the size of x; — x;? The numbers
xi grow extremely fast—their number of digits is doubled from one k to the next
because a squaring is performed in the recursion formula x;4, = x,f + a. Hence
xx will be of the order of magnitude xgk, and thus will exceed the critical limit for
being “sufficiently large” in the application of Theorem 5.6 very rapidly. So we
find the expected number of prime factors < G of y;, which is a product of i + 1
very large numbers, to be = (i + 1) Inln G. Running Pollard’s rho algorithm for
n cycles, we accumulate in Q, the primes of all the factors yi, y2, ..., y» Which
together can be expected to include

InlnG Z(i +1)~ 0.5’ InInG

i=l1

prime factors < G. How far must we proceed in order to ensure that all primes
below some factor p of N have been accumulated in Q,,? (This limit will secure
success in the search for factors, regardless of the particular value of p.) Below
p there are 7(p) = p/In p primes, and therefore n ought to be so large that, by
choosing some suitable factor C, C - 0.512 Inln p attains the magnitude of 7 (p)
(the factor C allowing for some of the primes appearing in several of the factors of
Q. as well as taking into account possible bad luck in the pseudo-random process
we use for generating the small primes):

1

2
C-05:2minp~-L_, ie n= const x P . (6.8)
Inp Inp Inlnp

Thus the order of magnitude of the number of cycles necessary to discover a factor
p with Pollard’s method actually emerges slightly better than C «/; Now, since
experience seems to indicate that Pollard’s method is C v/p, and not slightly better,
we therefore conclude that the factor C we introduced, is in fact not a constant,
but changes very slowly with p.

This algebraic model of Pollard’s method is somewhat crude, but nevertheless
we shall use it later on when we study some modifications of the method, and also

in discussing the very important question: How fast can a factorization algorithm
be?

Brent’s Modification of Pollard’s rho Method

The rho method of Pollard has been made about 25% faster by a modification
due to Brent [4]. Pollard searched for the period of the sequence x; mod p by
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considering x; — x; mod p (Floyd’s cycle-finding algorithm). Instead, Brent halts
x; when i = 2" is a power of 2 and subsequently considers x; — x» mod p for
3.2%1 < j<2**1 The values computed in Brent’s modification are:

X1, X2, X2 — X1,
X3, X4, X4 — X2,
X5, X6, X7, X7 — X4,
X8, Xg — X4,
X9, X10, X11> X12, X13, X13 — X8,
X14, X14 — X3,
X155 X5 — Xg, 6.9
X165 X16 — X8,
X175 X185 - - - » X25, X25 — X16,
X265 X26 — X16,
X27, X27 — X16»
X28, X28 — X16»
etc.

In this way a period of length I is discovered after fewer arithmetic operations than
demanded by the original algorithm of Pollard. The saving in Brent’s modification
stems from not needing to compute the lower x;’s twice as in Floyd’s algorithm.

Alternatively, we could explain the economization by applying the algebraic
model introduced above. Analogously to (6.7) we have

Xj — xi = (xj—1 +xi-1)(Xj—2 + xi_2) . .. (xj—i + x0)(xj_i — X0). (6.10)

The number of algebraic factors of x; — x; is i + 1, precisely as in the analysis
of Pollard’s original algorithm for x»; — x;. Since the numbers involved are very
large, we know that the number of prime factors < p is proportional to the number
of algebraic factors in Q;. If in the course of Pollard’s and Brent’s algorithm we
compare the number of algebraic factors arrived at versus the number of “heavy”
operations performed, viz. multiplication of two numbers of size N, followed by a
reduction mod N, we obtain the values given in the table on the next page. In Brent’s
version the efficiency is dependent upon the value of i at which p is discovered.
The worst possible case is when i = 3 - 2¥~1 4 1, immediately following a long
run of computing new x;’s only and not testing for factors. The best case is when
i = 2¥+1 when many new factors have been accumulated in Q; with comparatively
little effort. Analyzing the situation, we arrive at the figures indicated as (worst)
and (best) respectively, in the table shown above. Considering the cost/efficiency
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function, measured by the number of operations required in order to accumulate
a certain number of factors in Q;, we find that this function can be calculated as
# operations/+/# factors, giving the values

4+/2 = 5.66 for Pollard’s method
and a number between

4 [27 3

—. ] — =4. — = 3.

3,/ > 90 and 2‘/3 3.67

for Brent’s modified algorithm. This explains why Brent’s modification runs ap-
proximately 25% faster (note that 75% of 5.66 is 4.24, and the mean value between
4.90 and 3.67 is 4.29).

Pollard Brent

# op:s | # factors # op:s # factors
4 2 3 2
8 5 6 5
12 9 10 10
16 14 12 15
20 20 18 24
24 27 20 33
28 35 22 42
32 44 24 51
36 54 34 68
40 65 36 85

~%i (worst) ~ %

4i ~ 12 i (besty ~ 12

The Pollard-Brent Method for p = 2kn + 1
The adaptation of this method is not as apparent as the ones we have described

in chapter 5. If, however, we search for factors of the form p = 2kn + 1, then
Legendre’s Theorem 5.7 states that a” + b" has all its divisors of the form 2kn + 1,
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apart from those originating from algebraic factors. Therefore, if we use the
recursion formula

Xit1 =x] +a mod N (6.10)

instead of, as in the original method, x;,; = x,-2 + a mod N, then
Xi = Xj = X_y — X}y,

will, according to Legendre’s theorem, accumulate mainly prime factors of the
form 2kn + 1 rather than just any primes. (The other primes also sneak into the
algebraic factors, but at a lower rate than they do in the original recursion formula.)
This tends to reduce the number of cycles needed to discover a certain prime factor
p of N by a factor of about +/n — 1 as compared to the original formula. This
gain should be weighed against the extra labour demanded to compute x” mod N
instead of x2 mod N, but since the amount of work required to calculate x"” mod N
with the power algorithm grows only logarithmically with n, the modification is
often worthwhile, especially when n is large. By using the recursion formula
xiy1 = x/°% + 1 mod N with x; = 3, Brent and Pollard in 1980 managed to
discover the factor

12389263 61552897 of the Fermat number Fg.

The computation took a couple of hours on a large computer [5].

Shanks’ Factoring Method SQUFOF

Another of the modern factorization methods which we shall describe is Shanks’
method “square forms factorization,” or SQUFOF for short. Gauss [6] was the first
to apply systematically the theory of binary quadratic forms (expressions of the
form Ax? + Bxy + Cy?) to find factorizations of integers. This approach has been
quite successful over the years and many variations on this theme can be found
in the literature. A modern account of the theory can be found in [7].—Most of
the methods are very complicated, especially when they are to be administered on
a computer, and not ideal for use with computers. However, around 1975 Daniel
Shanks managed to construct a feasible algorithm. See [8]-[11]. Its explanation
relies heavily on the theory of binary quadratic forms, which is outside the scope of
this book. A detailed description of why SQUFOF works as it does, in the light of
the properties of quadratic forms, is likewise given in [7].—It is, however, possible
to describe SQUFOF entirely in terms of the continued fraction expansion of +/N,
and without referring to the underlying theory of quadratic forms. We are in the
sequel going to make this approach. The reader who is unfamiliar with continued
fractions is now advised to consult Appendix 8 for more details before reading
further.
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Shanks’ method SQUFOF makes use of the regular continued fraction ex-
pansion of /N in the following way: The formula

A’ =(-1)"Q, mod N,

proved as formula (A8.34) on p. 342, is applied to solve Legendre’s congruence
x2 = y? mod N. All that is necessary is to expand +/N until a square number
Q. = R? is found for an even value of n. Then Legendre’s congruence has the
solution x = A,_;, y = R and, if this is not one of the trivial solutions, the factors
p and g of N can be obtained by Euclid’s algorithm applied to N and A,—; £ R.
The idea of looking for a square in the continued fraction expansion of VN is
actually an old one, but not much used before the advent of computers because of
the many steps that are normally required to produce such a square.

Now, SQUFOF differs in certain details from the short description just given.
The most important distinction is that the numerators A; of the convergents A;/B;
to the continued fraction for /N are not computed directly. This is because
the continued fraction expansion itself (omitting the convergents mod N from the
computation) can be effected, as demonstrated in Appendix 8, with all quantities
involved <2+/N, whereas A,, mod N would require more than twice as many digits
if the usual recursive formula A; = b;A;_1 + As_; were used. The computation
of A,_, mod N is replaced by another, less time-consuming strategy for finding
the factor of N as soon as some (—1)"Q, = R? has been obtained. This other
computation has been included in the algorithm given below.

Shanks also managed to distinguish between those square (—1)" Q,’s which
lead to the useful non-trivial solutions to Legendre’s congruence and others which
do not. The (—1)"Q,.’s which may give rise to trivial solutions are stored in a list
and can thereby be avoided before computing what would turn out to be only a
trivial factorization of N.

Actually Shanks’ algorithm is quite simple. We start by giving an example
and then provide a more formalized description.

Example. Find the factors of N = 1000009.

Compute the regular continued fraction expansion of /N until, after an even
number of steps, a square denominator is found, the square root of which has never
previously occurred as a denominator during the computation. This will guarantee

a non-trivial solution to Legendre’s congruence Aﬁ_, =(-1)"Q, = R mod N.

Starting by v/N = /1000009 = 1000 + (~/N — 1000), we successively find

1 N + 1000 N — 998

_ YN+ _opp g YN 9% (1)
VN — 1000 9 9

9 _9VN+99%) JN+98 _, VN-78 @
VN —998 4005 445 445
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M5 _ JN+T82 YN -964 -
VN - 782 873 873
873 N +964 N — 980
_ YN+ 244 YN 980 @)
VN — 964 81 81

Here the square 81 occurs. Itis ruled out, however, since the denominator /81 = 9
has already appeared in step (1). Continuing the expansion, we find

81 N + 980 N —976
_YN+980 _, VN -976 )
VN —980 489 489
375 VN +997
= . (18)
VN —997 16

Now the square 16 obtained can be used, and computing A;7 mod N, we find
A7 = 494881, and therefore 4948812 = ;5 = 42 mod 1000009.

Thus, GCD(494777, N) = 293 and GCD(494885, N) = 3413 are factors of N.
However, in order to avoid the computation of A7 modN, Shanks calculates instead
what is called the square root of the corresponding quadratic form under the law
of composition. This is done simply by altering a sign in the numerator and taking
the square root of the denominator, yielding (+v/N —997)/4 from (+/N +997)/16.
Next, we expand this new number until the coefficients in the numerators of two
consecutive steps are equal:

4 _JN+997_1+JN—503 M
VN —997 1500 1500
1500 N + 503 N — 991
_YN+503_, YN-991 @
VN =503 498 498

1410 /N +673 _4+ﬁ—879

— (10)
VN —673 388 388
388 N + 879 N — 879
_YN+89 _, YN8 an
N — 879 586 586
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At this stage, in steps (10) and (11) the coefficients —879 in the numerators are
the same, and therefore the last denominator 586 or 586/2 = 293 is a factor of N.
Thus N =293 - 3413.

Experience seems to indicate that the number of cycles required for the method
is O(+/N), comparable with the number of cycles for the Pollard-Brent method in
the case when N is composed of only two factors of about equal size (the difficult
case within factorization). Each cycle runs faster, however, since it deals only with
numbers of size approximately +/N, while Pollard’s methods work with numbers
of magnitude about N2.

Using the formulas for the continued fraction expansion of +/N from Ap-
pendix 8, we can describe this algorithm in the following way:

Let Pp=0, Qo=1, ©0,=N-P}

N+ P
qi = [%J » Pi=qQi— P, Qin1= Qi1+ (Pi— Piy1)g;.
6.11)

If any Q; is < 2V/2+/N, it s stored in a list. This list will contain all numbers
which are useless for the factorization of N (as well as some others). Continue
until some Q»; = R2. Then compare with the list:

1. If R (or R/2, if R is even) is included in the list, then continue the expansion.
2. Otherwise, a useful square has been found. In the expansion of «/ﬁ, the
expression now arrived at is

VN + Py VN + Py
qzi=[ O J=[ 3 J (6.12)

Next, continue by expanding the number (+/N — P5;)/R. This is achieved
by simply taking

P

B=-Pi Qy=rk ¢;=""T0 6.1
and using the same formulas for the recursion as above. Continue the expan-
sion of this new number until some P;;, = P;. This will occur after about
half the number of cycles required to find the square Q5; = R2. (In fact, by
utilizing composition of quadratic forms, this second part of the computa-
tion could be performed in a logarithmic number of steps and could thus be
programmed to take very little time compared with the first part of the com-
putation, that of finding a square (—1)" Q,, . However, we shall not elaborate
on this here.) Then, finally Q; (or Q;/2 if Q; is even) is a factor of N.
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A Computer Program for SQUFOF

A PASCAL program for Shanks’ algorithm SQUFOF is given below:

PROGRAM SQUFOF

(Input,Output) ;

{Factorizes N < 10720 by Shanks’ Square Forms Factorization
method. Computer arithmetic allowing integers up to 2735
is used. Warning: Make sure N is composite, otherwise the
list could extend outside the specified index bounds! Be
sure N is not a square!}

LABEL 1,2,3,4,5,6;

TYPE vector=ARRAY[O..30] OF INTEGER;

VAR List : vector;
c,c2,sq,d,a,b,z,z1,2z2,sq92s9gN,Q,Q0,Q1,Q2,P1,P2,
i,j,k,ks,u,r,w,s1,s2 : INTEGER;

PROCEDURE isqrtd(a,b : INTEGER; VAR sq,d : INTEGER);
{Computes n=10"10*a+b, sq:=trunc(sqrt(n)), d:=n-sq~2}
LABEL 1,2;
VAR c,c2,n,r,r1,r2,s,sl1,s2,z,sw : INTEGER;
rn,rsq,w,rsl,rs2 : REAL;
BEGIN
c:=100000; c2:=10000000000; sw:=0;
rn:=1E10*a+b; rsq:=sqrt(rn); r:=trunc(rsq);
{r is a first approximation to sqrt(n)}
1: rl:=r DIV c; r2:=r MOD c; {r=10"5*ri1+r2}
z:=2*%r1*r2; sl:=a-ril*ril- z DIV c;
s2:=b-r2*r2-(z MOD c)*c;
{Here d=n-r~2 has been computed as 10~10%*s1+s2}
IF sw=1 THEN GOTOD 2 {d was <0 previously!};
Z:=2%r; rsl:=sl; rs2:=s2; w:=rs1*1E10+rs2;
s:=trunc(w/z);
{Here the correction s=(n-r~2)/(2r) has been computed}
IF s <> 0 THEN BEGIN r:=r+s; GOTO 1 END;
2: d:=sl*c2+s2;
IF d<O THEN BEGIN r:=r-1; sw:=1; GOTO 1 END;
sq:=r;
END {isqrtd};

BEGIN c:=100000; c2:=10000000000;
1: write(’Input N = 10"10*a+b as two integers a, b: ’);
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read(a); IF a<0 THEN GOTO 6; read(b);
isqrtd(a,b,sq,d); IF d=0 THEN
BEGIN writeln(’N is the square of’,sq:11); GOTO 1 END;
z:=2%sq; IF d>=sq THEN z:=2z+1 {trunc(2+sqrt(N))};
sq2sqN:=trunc(sqrt(z)) {sqrt(2*sqrt(N))};
List[0]:=1; QO0:=1; Pl:=sq; Q1l:=d;
{Here all initial values are set for the continued
fraction expansion}
FOR i:=1 TO 10000000 DO
BEGIN {Continued fraction expansion starts}
IF i MOD 50000=0 THEN writeln(i:8,’ cycles passed’);
Q:=(sq+P1) DIV Q1; P2:=Q*Q1-P1; Q2:=Q0+Q*(P1-P2);
u:=Q1; IF NOT odd(u) THEN u:=u DIV 2;
QO0:=Q1; Q1:=Q2; P1:=P2;
IF (u < sq2sgN) AND (u > 1) THEN
BEGIN List[List[0]]:=u; List[0]:=List[0]+1 END;
{Here a small denominator is put in the list}
IF odd(i) THEN
BEGIN
IF Q1 MOD 4 > 1 THEN GOTO 3 {No square, goto next i};
r:=trunc(sqrt(Ql)); IF Qi=r*r THEN {A square!}
BEGIN ks:=List[0]-1; FOR k:=1 TO ks DO
IF r=List[k] THEN GOTO 3 {Square of no use, next i};
IF r > 1 THEN GOTO 4 ELSE
BEGIN
write(’The period has been searched (i=’,i:7);
writeln(’) without finding any useful form’);
GOTO 1
END
END
END;
3: END;
4: writeln(’Number of steps to find a square was’,i:8);
writeln(’Number of elements in the list is’,List[0]-1:3);

{Here the computation of the square root of the
square quadratic form found is started}

z:=sq-(sq-P1) MOD r; zl:=z DIV c; z2:=z MOD c;
{z=21*10"5+22 for the computation of (n-z~2)/r}
w:=2%z1%z2; sl:=a-zl*zl-w DIV c; s2:=b-z2*z2-(w MOD c)*c;
5: IF s2<0 THEN

BEGIN s2:=s2+c2; sl:=s1-1; GOTO 5 END;

QO0:=r; Pl:=z; z:=sl*c+s2 DIV c;
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Q1:=(z DIV r)*c+((z MOD r)*c+s2 MOD c)DIV r;
FOR j:=1 TO 5000000 DO
BEGIN {Here the expansion of the second form starts}
Q:=(sq+P1) DIV Q1; P2:=Q*Q1-P1;
Q2:=Q0+Q* (P1-P2); QO:=Q1;
u:=P1; P1:=P2; Q1:=Q2; IF u=P2 THEN
BEGIN
IF NOT odd(Q0) THEN QO0:=Q0 DIV 2;
writeln(’Factor=’,Q0:11); GOTO 1
END;
END;
6: END.

Please note that this program will operate only on a computer with a word
length of at least 36 bits (or having an equivalent integer arithmetic). If your
computer has a word length of s bits, then it will be convenient to use the largest
power of 100 below 2°~2 as the constant c2, and the square root of this number
as c in the program. The tricky part of the programming is at the very beginning
and also at the start of the second part of the computation, where the square
root of the quadratic form is taken. In these two places occasionally double
precision arithmetic must be used. In the computer’s hardware language there
are normally certain operations which would be of use to us, such as division of
a two word integer by a one word integer, giving a full quotient and remainder.
Unfortunately, however, these devices are not easily accessible from high level
languages such as PASCAL, so we have to circumvent the problem of arithmetic
overflow during this part of the computation.—Rather than using a preprogrammed
package for this, it is shown above how it can be done in a reasonably simple
manner. Nevertheless, a better solution for a calculation, involving more extensive
double precision computations would undoubtedly have been to use a double
precision integer arithmetic package such as the one described in Appendix 7.

Exercise 6.2. SQUFOF. Modify the PROGRAM SQUFOF above as to operate on your com-
puter. This effort may be your easiest way of achieving a reasonably fast computer program
for factorization of nearly double precision integers.—During the running-in phase of the
program you might want to temporarily change the periodic printouts at each 50000th cy-
cle to more frequent and more informative messages. Try your program on some of the
numbers in the factor tables at the end of the book. Be careful to feed the program with
composite numbers only, otherwise the ARRAY List may run out of bounds!

As has already been mentioned, the number of cycles in SQUFOF seems to
be < C¥/N. In some cases, however, the number of cycles is considerably smaller
than this bound, so the computing time varies considerably for numbers N of
approximately the same size. Thus, it is actually worth applying SQUFOF simul-
taneously to e.g. the numbers N and 2N or to N and 3N, because the probability of
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finding a square Q»; early increases considerably when two expansions are avail-
able. The average benefit is not very great, but the trick helps to avoid the very long
computer runs that may occur when the running time for N is large.—Besides,
this strategy can prevent us from getting stranded on values of N for which the
continued fraction expansion of +/N has so short a period that no useful square
(—1)" Q. occurs at all!

Comparison Between Pollard’s rho Methed and SQUFOF

Pollard’s rho method requires approximately C +/p cycles to find a factor p of N,
while SQUFOF needs about C, IN cycles. Now, since the smallest factor p of N
is < \/ﬁ, the number of cycles in the tho method will in general be smaller than
in SQUFOF unless N is the product of two primes of about equal size.—On the
other hand, the rho method uses in each cycle 8 heavy operations (multiplications
or divisions) performed on numbers of the size of about N2, while SQUFOF
demands 9 arithmetic operations + %squam root extraction per cycle (or even
fewer if the rejection of non-squares is effected by seeking quadratic non-residues
of some small primes and the square-root extracted only when this fails), which
in total equals about 15 simple arithmetic operations per cycle. However, these
are performed on numbers of size <2+/N. (As shown above, in SQUFOF only the
computation of the numbers P; = |v/N], @) =N — P? and Q) =(N — P%)/R
involve arithmetic operations on numbers > 2+/N.) Since the labour of multiplying
or dividing large numbers normally increases with the square of the length of the
numbers involved, this means that one cycle of SQUFOF is roughly about 10
times as fast as one cycle in the rho method. This factor can sometimes be much
larger. For instance, if SQUFOF, due to the small size of N, can be programmed
to use directly the computer’s hardware arithmetic, while Pollard’s rho method
is restricted to using a pre-programmed multiple precision arithmetic package—
quite a common situation—then the speed factor can easily exceed 100 or more
per cycle.

Morrison and Brillhart’s Continued Fraction Method CFRAC

Morrison and Brillhart’s method is one of the most efficient general factorization
methods which has been put to extensive use on computers. It was the first method
of subexponential running time, which means that if the running time to factor
N is written as N®, then a (slowly) decreases as N increases. During the 1970’s
it was the principal method used to factor large integers, having no particular
mathematical form to favor some other method. One of the ideas behind the
algorithm [12] is to find a non-trivial solution to the congruence x? = y? mod N
and then compute a factor p of N by means of Euclid’s algorithm applied to
(x + y, N). The technique of finding solutions to x2 = y? mod N is inspired both
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by Legendre’s factorization method, from which the idea of finding small quadratic
residues from the continued fraction expansion of +/N is taken, and by an idea
of Maurice Kraitchik in which known residues are combined to form new ones,
in our case squares. Historically the situation is much the same for this method
as for Pollard’s (p — 1)-method—the underlying ideas have been known for quite
a long time and have occasionally been applied to specific cases, in particular
by D. H. Lehmer, R. E. Powers [13] and Kraitchik [14]. The current version of
the method is, however, due to Morrison and Brillhart, who have systematically
explored the potentials of these ideas and have constructed a good algorithm. We
shall now give a brief description of this algorithm.

First, part of the regular continued fraction expansion of +/N is computed,
just as in Legendre’s or Shanks’ methods. The notations and formulas usually
employed are listed in the second half of Appendix 8. Let us just mention here the
two most important formulas, one of which is (A8.31) on p. 341:

Al —NBl_ | =(=1)"Qn, (6.14)
immediately giving (A8.34):
Al =(-1)"Q, mod N. (6.15)

The calculation of the expansion is not quite as fast as in SQUFOF, since Shanks
uses only the quantities P, and Q,,, while CFRAC requires in addition A,_; modN,
the numerator of the (n — 1)th convergent A,_;/B,— of the continued fraction
for v/N. However, while Shanks’ algorithm involves waiting until a perfect square
shows up among the (—1)" Q,,, Morrison and Brillhart try to form combinations
which yield a square by multiplying together some of the quadratic residues gen-
erated, and thereby may find a square with far fewer cycles than SQUFOF.

The Factor Base

The great improvement introduced in CFRAC consists of the way of producing a
combination of the quadratic residues found which is a square. Just as in Gauss’
factorization method, an upper bound p,, is set on the small prime factors used and
the Q;’s are searched for prime factors < p,,. The prime factorizations of those
Q;’s which are completely factored in this way are retained, while the other @;’s
are rejected as soon as p,, is reached without Q; having been completely factored.
In order to render the method slightly more efficient and not discard any easily
factored Q;’s, those factorizations are also kept for which the cofactor of Q; after
reaching the search limit p,, is larger than the search limit, but < p%,, in which
case the cofactor must be a prime. The m primes p), p2, p3, . .., Pm form that is
called the factor base. The occasionally occurring larger prime factors of the Q;’s
are called “large primes.” The number of all primes (below p2) occurring in these
factorizations is denoted by S.
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The limitation of CFRAC lies in the huge number of trials that must be
carried out before a sufficient number of completely factored Q;’s can be collected.
However, on a supercomputer possessing array processors one Q; could be divided
by 64 primes (or whatever the number of possible operations running in parallel
might be) in the same operation, thus gaining a considerable speed factor over an
ordinary computer.

For all the odd primes p; in the above factorizations, the value of Legendre’s
symbol (N/p;) = 1 (or, possibly, (N/p;) = 0 which occurs when p;|N, a case
which, however, should be tested for and excluded at the start) because if p;|Q,,
then A2_, — NB2_, = 0 mod p;, and therefore N = (An—1/Ba—1)* is a square
mod p;. Thus the primes in the factor base have about half the density of all
primes. (Please note that p; in this reasoning does not denote the ith prime!)
Hence the value of S, the number of all primes found during these factorizations,
is & 7 (p,)/2+ the number of those primes between p,, and p2, which happen to
show up as factors.

The factorizations discovered are stored in the form of binary vectors I" with
S + 1 components (Yo, Y1, Y2, - - - » Ym> - - - » ¥s), €ach element having the value 0
or 1. If the standard factorization of

S
(—1"Qn = (=D [] ",
i=1

then
¥, = a; mod 2. (6.16)

This means that it is really information about the square-free part [| p,."" of 0,
which is saved by storing the exponents y; rather than the complete factorizations!

The next step in the algorithm is to search for square combinations of the now
completely factorized Q;’s. A square combination

S Z Yiv
(=1D"Qu, (=1 Qny ... (=1 Qp, = (D" [ [ P/~
i=1

is produced if all the exponents y and ) y;, are even. In order to find such a
combination of the Q;’s, first generate S + 1 complete prime factorizations and
then perform Gaussian elimination mod 2 on the (S + 1) x(S + 1)-matrix whose
rows are the vectors I",. Even if this matrix could, in theory be non-singular, it is
usual for a number of sets of linearly dependent rows to be discovered during the
Gaussian elimination. Experience shows, that if S is large then a set of linearly
dependent rows often is discovered already when the number of rows is only about
80-90% of S. If the matrix happens to be non-singular, then more Q;’s have to
be found and factored.—Remember that a linear combination of binary vectors
mod 2 is just a sum mod 2 of some of the vectors! Each of these sums leads to
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a factorization (trivial or non-trivial) of N. Experience has shown that about 5
or 6 such linear dependencies are generally enough to find a factorization, but
nevertheless there have been examples reported of numbers defying factorization
after as many as 25 square combinations have been found!

Before delving more deeply into the theoretical details of this method, let us
consider

An Example of a Factorization with CFRAC

Let us take N = 12007001 (the same example as for Gauss’ method). We choose
the factor base 2, 5, 23, 31 (comprising the small quadratic residues of N, found
by computing the value of Legendre’s symbol (N/p) for all p < p,, = 31, with
the upper bound used on the primes being u,, = 97). The continued fraction
expansion of VN and the subsequent factorization of the Q,’s found results in the
following values of the vectors I

n (-1)'Q, -1 2 5 23 31 97 59 71
1 -22.97 1. 1 0 0 0 1
3 =597 1 01 0 0 1

2%.5 011 0 0 O
10 52-59 0 0 0 0 0 0 1
12 2*.71 0 000 0 0 o0 1
18 24.5% 0 000 0 0 0 O

Here we arrive at a square, 2* - 52. We need to test whether A%, # 207 mod N,
which would lead to a non-trivial solution of Legendre’s congruence! However,
A7 = 20mod N, so that this square fails to factor N, just as it does with SQUFOF!
Therefore we continue the expansion:

n (-1)'Q, -1 2 523 31 97 59 71 61
21 -2*-61 1 0 0 0 0 0 0 0 1
24 2°.5.59 0 1 1.0 0 0 1 0 O
26 22.5-71. 0 1 1.0 0 0 0 1 O
27 ~-5-31 1 010 1 0 O O O
28 an 0100 0 0 0 0O

At this point we have 10 vectors I" (discarding the useless row for n = 18) and
9 primes in the set, so that there is some chance of a square combination being
found. Please note that it is not essential to have a square matrix at this stage!

196



AN EXAMPLE OF A FACTORIZATION WITH CFRAC

The Gaussian elimination is performed by systematically adding two rows
mod 2 at a time, thereby creating zeros in the lower triangular part of the matrix.
This is achieved by adding together mod 2 rows having their left-most ONEs in
the same column. In order to keep track of the additions carried out we extend the
vectors to the right by means of rows of a unit matrix, and operate also on these
mod 2 when adding the first parts of the rows I"'.—For the sake of brevity in this
pencil-and-paper example, we can, for the moment, discard the columns below the
primes 23, 31 and 61, since at least two rows with y; = 1 must occur before the
prime p; can enter into a square combination! This also eliminates the rows for
which n = 21 and n = 27. Thus we start with the matrix

n -1 2 597 5 7
1 1.0 1 0 O 10000O0OO0OO0
31011 0 O 01 000O0OO0OO
6 0 110 0 O 00100O0O0O
0 0 0 0 0 1 O 000100O00O0
12 0 0 0 0 0 1 00001O0O00O0
24 0 1 10 1 O 00000100
26 01 1 0 0 1 0000O0O0OT1O0
282 0 1 0 0 0 O 0000O0O0OO0C1

The first step in the Gaussian elimination is to replace row 2 by row 1 + row 2
mod 2:

Newrow2: 011000}(11000000

Next, replace row 3 by new row 2 + row 3:
Newrow3: 000000}j11100000.

Only zeros result! A square combination has been found! The corresponding row
of the unit matrix tells us that it is the sum of the first, second and third rows which
produced this result. We therefore form

AZA2A2 = (—0))(—03) Q6 =2°- 5% - 97> mod N,

having the solutions AgAzAs = +23 . 5. 97. However, as AgA2As = 3465 -
31186 - 2228067 = 3880 mod N and 23 - 5 - 97 is also = 3880 mod N this square
combination fails to factor N and we must resume the elimination. Since the linear
combination in which row 3 is involved is useless, we discard it together with the
corresponding 3rd column of the unit matrix and continue the elimination process.
We have now arrived at
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n -1 2 5 97 59 71

I 1.1 01 0 O 1 0000O0TO

3 011 0 0 O 11 0000O00O0
10 0 000 1 O 00100O0OTD O
12 0 0 0 0 0 1 000100O0TO0
24 0 1 1 0 1 O 000O0T1O0TO0
20 0 11 0 0 1 0 00O0OT1O
286 0 1 0 0O O O 0 00O0OTO? 1

We successively obtain:

Newrow5: 000010]1100100
Newrow6: 000001|1100010

Newrow7: 001000]1100001

Now, new row 5 is identical to row 3, so that the sum of these mod 2 produces
ZEeros:
000000]1110100.

The unit matrix part tells us which rows are involved in the square combination
now detected. Hence, we compute

ApA2A9Ay; = £/ 0103010024 mod N,

and find AgAzA9A3 = 3465 - 31186 - 668093 - 7209052 = 1144600 mod N
and /0103010024 = 2 -5%-59.97 = 1144600. Once again, the square

combination found does not factor N. However, adding together the remaining
two identical rows, namely row 4 and the new row 6 yields

000000|1101010,
corresponding to
AJAZAY AL = 010301202 = 2052712977 mod N.
This time we find 1101920 = £1101920 mod N. Again no factorization has been
achieved! Therefore we continue the elimination! Now, using pencil and paper
once more we remove the two useless new combinations (new rows 5 and 6) and

are left with
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n -1 2 5 97 59 71

1 1.1 01 0 O 1 000

3 01 1 0 O0 O 1100
10 0 00 0 1 O 0010
22 0 1. 0 0 0 O 0 001

Now, since the prime 59 occurs once only, row 3 cannot enter a zero sum. Thus,
discarding row 3 and replacing row 4 by row 2 + row 4 leads to

n—-12597
1 1101
30110
28 010

which has no zero combinations (because the determinant of its leading 3 x 3-
matrix has the value 1 mod 2, and hence is non-singular).

In this unhappy situation we must return, expand more of /N and factor more
Q;’s and start the elimination process all over again from the beginning (provided
some new small primes can be included below the factor limit as a result of having
factored further Q;’s). We find that the following Q;’s possess only small prime

factors:

n (-D'Q, —-12 52331 97 59 71 61
30 25.5% 0110 0 O0O0O0UDO
32 31-61 0 000 1 OO0 O 1
33 —23.5.61 1 1 1.0 0 0 0 0 1
34 31.97 0000 11 0 0O
36 2.59 0 000 O O 1 00O
38 52.71 0 000 O O O 1 O
39 -—23.31 1 100 1 0 0 0 O
41 -31-71 1 000 1 0 0 1 0
45 —-5%.61 1000 0 0 0 0 1

By preliminary verification we observe that the easily obtained squares

AL AL, = (£2%.5.61)?,

AZA%, = (24597,

AZAL = (£2%-5-59)%,

A3 AL = (£2%-5-71) mod N

all fail to factor N. Still working with pencil and paper, we discard the useless
rows for n = 30, 36, 38 and 45. (In a computer program, these rows would in
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fact be included in the process of elimination, leading to the discovery of trivial
factorizations as soon as the corresponding square combinations were found.) This
time, the elimination proceeds from

n (-D)"'Q, -1 2 5 23 31 97 59 71 61

-23.97 1 1.0 0 0 1 0 0 O

3 -5.97 1 010 01 0 0 O

10 5%-59 0 00 0 0 0 1 0 O
12 2¢.71 0 000 0 0 0 1 0
24 22.5.59 0 1 1.0 0 0 1 0 O
26 22.5.71 0 1 1 0 0 0 0 1 O
28 an 0100 0 0 0 0 O
32  31.61 0 00 01 0 0 0 1
33 -2*.5.61 1 1 1 0 0 O 0 O 1
34  31-97 0 00 0 1 1 0 0 O
39 -23.31 1 1.0 0 1 0 0 0 O
41 -=31-71 1 00 0 1 0 0 1 0

Performing the Gaussian elimination mod 2, we find the following square
combination:

AZA3 A% AL AL, = 98153107 = (27 - 31 - 71 - 97)? = (£1247455)2,

which, finally, leads to a non-trivial solution of Legendre’s congruence and thus
Euclid’s algorithm yields GCD(12007001, 9815310 — 1247455) = 3001 whereby
N is finally factorized.

Further Details of CFRAC

Even if unrealistically small, the above example does illustrate fairly well the
various situations that can arise in the application of Morrison and Brillhart’s
version of the continued fraction factorization method. We wish only to add certain
details which were not expressly stated in the example. One of these concerns the
computation of the square root of Q;, Q;, ... @;, mod N. Since there is no known
efficient algorithm for computing square roots modulo a composite number N
without first factorizing N, the square root must be computed first, followed by the
reduction mod N. If the Q;’s were stored in their factored form the computation
would be simple, since the number «; of factors of the prime p; could then be
counted and the product [] p:.""’ %2 mod N formed successively with all primes p;
participating in the square combination under consideration. However, since the
binary vectors contain no information on the multiple prime factors of the Q;’s
we would have to, at least partially, refactor the Q;’s a second time which would
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require much computer time, and so it would be convenient if some other method
could be devised to effect this computation. (Of course, the straightforward way
would be to first multiply together all the factors (; and then extract the square
root, but since the product would be a very large number, this approch is highly
unpractical!) An elegant algorithm to solve this problem is presented on p. 190
in Morrison and Brillhart’s paper [12]. The idea is to successively accumulate
the product of the Q;’s but, before involving a factor @, to check by means of
Euclid’s algorithm whether Q; has some factor X in common with the product
so far accumulated. Suppose that we have arrived at the product Q and are about
to include the factor Q,. Then if GCD(Q, Q;) = X, instead of forming QO
calculate (@/X) x (Q;/X), thereby reducing the size of Q Q. The factor X is
accumulated in what will eventually be the square root mod N we are seeking. Let
us demonstrate this technique on the above case, where we had to compute the
square root of

0101202303404 mod N =
=776 - 1136 - 2048 - 3007 - 2201 mod 12007001.

Denoting the accumulated product by Q and the accumulated square root mod N
by fﬁ, we have

0=1 +R=1.
776 1136
GCD(776, 1136) = 8, Q= — =13774, VR =8.
1
GCD(13774, 2048) = 2, Q_$ ﬁ;s—mszzss VR=8.2=16.

7052288 3007

GCD(7052288, 3007) = 97, = = 2253824,
( ) 0=—""o7 53
VR =16-97 = 1552.
2253824 2201
GCD(2253824,2201) = 2201, Q= ""——"".2_ _ 1024

VR = 1552 - 2201 = 3415952.

In this way only the square root of the final product Q = 1024 needs to be computed
and this square root is accumulated in v/R:

V1024 = 32 and VR = 3415952 - 32 mod N = 1247455 mod 12007001.

Another technical detail, which we wish to remark on here, involves the
Gaussian elimination. Since subsequent columns of the matrix contain the less

201



MODERN FACTORIZATION METHODS

common prime divisors of the Q,’s and thus fewer ONEs, the entire process of
elimination runs faster if, contrary to customary practice, the elimination of ONEs
is started at the right-most column and is run from right to left.

A third detail we include here concerns how to proceed in case the period
of the continued fraction expansion of +/N is too short to supply enough easily
factorized quadratic residues. This problem can be countered just as in the other
versions of the continued fraction method: Expand +/kN instead of +/N, for some
suitably chosen integer k.—In this situation, of course, the reductions are still
performed mod N, and not mod kN.

For the following reason the value of k chosen will influence the primes which
go into the factor base: (5.42) with kN instead of N gives

Al —kNB2_| = (-1)"Q,. 6.17)

Assuming that p|Q,, then kN = (A,_;/B,_1)? mod p, and kN is a quadratic
residue of p. Thus the factor base will consist of those (small) primes p for which
(kN/p) = +1. Also the prime factors of k and the prime 2 occur in the factor
base and thus have to be included. Manipulating with ¥ we can, to some extent,
gain control over the primes in the factor base.

Exercise 6.3. Controlling the factor base. Utilizing the FUNCTION Jacobi on p. 283,
write a computer program helping you, for any given number N, to find the most efficient
(square-free) multiplier ¥ < 1000, such that a maximal number of primes < 100 will belong
to the factor base.

The Early Abort Strategy

If a Q, does not have any small prime factors it is not likely to factor at all before the
search limit B; of the factor base has been reached. Thus it may be advantageous
to give up the trial division on Q, after a while, and instead produce a new Q,
and work on that one. If, however, there are small factors, the remaining cofactor
of 0, might still be unlikely to factor within the factor base, if no more factors
appear for a while. Taking this into consideration, a rather complicated strategy
for giving up the Q,’s unlikely to factor has been developed by Pomerance [15].
This strategy indeed speeds up the Morrison—Brillhart algorithm considerably and
is thus of advantage to include in the computer program. Before concluding the
description of CFRAC, we should like to give a few rules of thumb for the abortion
of @,’s and also mention some results achieved by the method.

In [16] Pomerance and Wagstaff describe experiments with the Early Abort
Strategy. As aresult of these experiments they give the following recommendations
for the case when two abort points are chosen: divide Q, by the first 15 primes in
the factor base. If the unfactored portion of Q,, is > +/N /500, give up this Q, and
find Q,41. If not, perform trial division by 80 more primes from the factor base.
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If the unfactored portion now is > +/N/2 - 107, then give up. If not, continue
the divisions up to B;. This recommendation applies for numbers N in the range
from 10" to 10%*. The factor base used by these tuning experiments contained
959 primes.

Results Achieved with CFRAC

We shall mention here only a few of the factorizations discovered with CFRAC.
Famous is the factorization of the Fermat number

Fy = 2" 4+ 1 = 596495891 27497217 - 570468 92006851 29054721,

found in 1970 by Morrison and Brillhart after having computed 1,330,000 Q,'s
in the expansion in /257 F7. Of these, 2059 were completely factored into small
primes. These factorizations were combined to provide the following non-trivial
solution of Legendre’s congruence:

2335036 48380835 85217723 21436182 27956476> =
= 2518647 8145728041297312 27193485 202122232 mod F7,

from which the factorization was deduced. The Gaussian elimination used 1504K
bytes of computer storage and the whole computation took less than 2 hours of
computing time on a fast computer.

In the years 1980-82 Thorkil Naur [17], [18] ran CFRAC on what he de-
scribes as a “reasonably fast computer which can be used almost exclusively for
factorization.” The computing times are reported to range from “less than an hour
for 35 digit numbers to about 24 hours for 45 digit numbers and about a week
for 50 digit numbers.” The most difficult number reported by Naur was a 56 digit
number N{, which, after 35 x 24 hours, was factorized as

5603023 94853703 82805887 x 889340324 57788067 00898245 74922371.

(The numbers Naur had chosen to factor were, apart from lots of Fibonacci numbers
and numbers of the form a” + 1, defined recursively by A. A. Mullin [19] as p; =2
and

Ni=p1-p2...pic1+1, where p; = the largest prime factor of N;.

Before the next Mullin number p; can be determined, the largest prime factor of
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N; must be found. The numbers N; grow quite rapidly:
N»=3, N3=7, Ny=43, Ns;=1807=13-139
Ng¢ =251035 =5 - 50207
N7 =12603664039 = 23 - 1607 - 340999
Ng =42978368 33293963 = 23 - 79 - 23653 47734339

Ny =10165 87861619 05754590 68761119 =
=17 - 127770091783 - 46802225641471129

Nio =89 - 839491 - 556266121 - 8363 12735653 - 13688452 06580129
Ny =1307 - Nj,,

where Nj, is the 56 digit number referred to above. These numbers are, inciden-
tally, precisely the numbers we employed on p. 4041 in order to construct an
infinite set of primes.)

Running Time Analysis of CFRAC

The Morrison—Brillhart version of CFRAC has been subject to detailed heuristic
theoretical running time analysis [15]. The optimal choice of the search limit
B,, if the Early Abort Strategy is used, is governed by the supply of smooth
integers, which is given by (5.29). The optimal value of B; turns out to be By =
NN/l N)'Y Jeading to an estimation of the running time, which increases as

C . N/ISRRATIN (6.18)

presumed that the dependencies can be found by a process that runs faster than
Gaussian elimination.—Experience with computer programs for CFRAC seems
to confirm this increase with N.—How the exponent in (6.18) varies with N can
be seen in a table on p. 218.

The Quadratic Sieve, QS

In the Morrison-Brillhart method most of the computing time is spent on factoring
the quadratic residues. What is particularly disadvantageous is that most residues
do not factor completely within the factor base (even if the technique described
allowing for one large factor is used). As we have already pointed out, the 2059
factored residues, mentioned above in the factorization of F7, were found after
as many as 1,330,000 trials. Another disadvantage is that if N is large the trial
divisions have to be carried out on multiple precision numbers.
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If a procedure could be devised such that those trial divisions which would end
in failure were never performed, and if those residues could be directly pointed out,
which factor completely within the factor base, clearly a great gain in computational
labour would result. Such a procedure has been found by Carl Pomerance [15],
[20]. 1t is called the quadratic sieve and can be described as follows.

With [Jﬁ | = m, small quadratic residues can be generated as

O(x)=x+m)P*—N, x=0,+1,42, ... 6.19)

These numbers form an arithmetic series of the second order. Each of the residues
may be identified by its argument x. Now it so happens that for each prime p in
the factor base, the prime power p®|Q(x) at points x, which are evenly spaced
with difference p” because

O(x + kp*) = (x + kp® + m)* — N = Q(x) mod p* (6.20)

fork =0, 1, &2, ... Thus, if only one single value of x can be located, for which
P"1Q(x), then other instances of this event can be found by a sieving procedure on
x, similar to the sieve of Eratosthenes for locating multiples of p® in an interval.

Smallest Solutions to Q(x) =0 mod p

The values of x for which p®|Q(x) are falling into two series, corresponding to
the two solutions of the quadratic congruence

(x + m)®> — N = 0 mod p°. 6.21)

If p is an odd prime not dividing N and if one solution x,_, to (6.21) formod p*~?!,
where « > 1, is known, then a whole series of solutions can be found by putting
Xa = Xg—1 +zp®~}, yielding

a1 + 20 4+ m)? — N = (xa_1 + m)?> — N + 229" ' (xa—y + m).

1

Dividing by p*~" we get

(xu—l + m)2 - N
pu-l

+2(Xa—g +m)z = 0 mod p. (6.22)

This is a linear congruence for z, whose solution exists and solves (6.21) fora > 1.
(The solution exists because GCD(p, N) = 1 implies (xo—; + m, p) = 1.) The
problem of solving (6.21) is thus reduced to solving

(x + m)> — N =0 mod p, 6.23)
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which has solutions when (N/p) = 1 (or when p|N, a case which has, however,
been ruled out in advance by trying N for all small factors). For p = 4n + 3 (6.23)
has the two solutions

x = ~m £ NP4 qmod p. (6.24)

For a prime p of the form 4n + 1 the two solutions of (6.23) are more complicated
to find (see remark on p. 285), but can still be found in nearly polynomial time.

Remark. If the search limit, and thus also p, is small (less than about 20000, if there are
about 1000 primes in the factor base), (6.21) could also be solved by trial and error. Or,
better still, since solutions are sought for all primes in the factor base, one could perform
some trial divisions with these primes and note for which values of x there is a “hit” with
the prime p.

The divisibility rules for Q (x) by powers of 2 are a little bit more complicated
than for odd prime powers, and we do not discuss this here.

In order to save still more computing time, the multiple precision divisions
occurring in the quadratic sieve in the search for small factors can be replaced
by single precision subtractions in the following manner. For each argument x in
the sieving interval, start by loading the corresponding entry with an approximate
value of log |Q(x)|. When a location x is identified for which p*|Q(x), subtract
log p from what is in the corresponding entry. (Remember that if p*|Q(x), it
has already earlier during the sieving process been established that p*~1|Q(x).)
Choose some bound B and sieve for all p¥ < B, where p; < B is in the factor base.
Those quadratic residues which after the sieving have their corresponding entry
~ 0 can now be computed and factored by trial division—they are guaranteed to
factor.

Special Factors

Those residues for which the entries lie between log p,, and 2 log p,, factor com-
pletely within the factor base except for one possible additional special prime factor
g. (It may happen that such a residue is instead divisible by a power > B of a prime
in the factor base.) Just as is the case in the Morrison—Brillhart method, the spe-
cial factors greatly increase the efficiency of the process, when several completely
factored residues containing the same special factor ¢ can be obtained. This is
achieved by sieving for small factors on a subsequence of residues, corresponding
to values of Q(x) all divisible by ¢. James Davis and Diane Holdridge report [21]
that this technique may, for large numbers N, reduce the sieving time needed to
produce a nearly square matrix to about one-sixth of the time needed without this
device.

Results Achieved with QS

In [21] the factorization of some at the time difficult numbers is reported. They
vary in size from 51 to 63 digits. The factor bases used contained between 6485

206
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and 6568 primes, and the number of initial residues sieved ranged from 1.5 - 10
to 5.5 - 10°. The number of residues with special factors q ranged from 10° to
1.7 - 10'°, The running time ranged from one hour for N = 2% — 1 to 7.82 hours
for 2! + 1 on a CRAY-1 computer.—Through this effort the old question about
the structure of the original Mersenne numbers M, = 2" — 1 for n prime <257
has been completely answered. The most difficult of these factorizations turned
out to be Mas3, Myg3, May; and Mas;.—Also the 71-digit number (107! — 1)/9
was factored in 9.5 hours by aid of SANDIA’s CRAY XMP computer. The result
is reported on p. 410 in this book.—See also [22].

The Multiple Polynomial Quadratic Sieve, MPQS

The quadratic sieve just described generates a set of quadratic residues mod N,
factorable within the factor base from a single polynomial Q(x) = (x + |/x])* —
N. Since smooth numbers are not too common, we have to do a lot of sieving
before the necessary number of easily factorable squares is found. This leads to
much sieving for large values of x, which is costly, in part because the values of
Q(x) will soon exceed the size of single precision numbers, and in part because
larger numbers are less likely to be smooth. This problem is coped with by the
following idea of Peter Montgomery, see [22]. In 12 — N, replace ¢ with at + b,
where a and b are integers satisfying b> = n mod a, and |b| < a/2. The resulting
polynomial
(at +b)? — N = a(at’ +2bt) + b* - N

will then have all its values divisible by a. If a is also a square, we have to find
the smooth values of
2

1
~(ar + b)? — N) =at® + 2bt + (6.25)

Since there are many choices for a and b, each polynomial used can be run for
values of ¢ between much smaller limits than with the simple quadratic sieve
using only one polynomial, and we can still find the necessary number of smooth
quadratic residues mod N.

A more detailed account of MPQS with recommendations for the size of the
factor base for numbers of various orders of magnitude etc. can also be found in
[22].

Results Achieved with MPQS
In Silverman’s paper [22] some impressive factorizations are reported. Thus the
74-digit number

27 41

e = 1827 ; _
ST T = 23631827046 79824541 06037301 38717057 - P38,
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and the 81-digit number
22 11 factoredas 42425591 57961874 28893811 - P57.

For 50-digit numbers and larger, MPQS runs about 10 times faster than CFRAC,
and it is one of the most used methods for factoring “hard” numbers, i.e. numbers
with a large penultimate factor. It has lately (1993) been used by A. K. Lenstra
and M. Manasse to factor such large numbers as

102 41 _
101 - 569 - 7669 - 38 06238494 88714809

= 771692 65188335 08778689 50850494-
- 936 11382287 51395032 94316258 11490669 - P50

and
G +1D3B+1) _
37+ 1)(34 + 1) - 36913801 - 177140839
= 24 67707882 28400142 66652779 03676806 29183726 97435241 - P67,

both of 116 decimal digits.

In April 1994 a version of MPQS, called the double large prime variation of
MPQS, was used by Arjen Lenstra and Derek Atkins to factor the so-called RSA-
129, a number that had been given in 1977 by the inventors of the RSA encryption
scheme as a challenge to computer scientists. This number is the product of two
primes of the same order of magnitude and thus hard to factor. The sieving was
carried out in 8 months by about 600 volunteers, consuming an estimated 5000
mips years, equivalent to executing approximately 1.6-10'7 computer instructions.
The reduced matrix containing the linear combinations found had 188614 rows
and 188160 columns.

Running Time Analysis of QS and MPQS

A heuristic running time analysis of the quadratic sieve algorithm using Gaussian
elimination indicates an asymptotic running time of

CNVITERRN N (6.26)

asymptotically faster than (6.18) and with a cross-over point with (6.18), which
is highly machine-dependent but may be as large as ~ 10%°. With an idea by
Wiedemann [23] for the elimination and searching for dependencies between the
relations found, the (heuristic) running time comes down to

CN“/ lnlnN/lnN‘ (6.27)
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Even though QS and MPQS show the same exponent for the running times,
MPQS runs a lot faster than the original QS, because the basic operation of the sieve
is so much faster in MPQS. It is this effect that has made possible the factorization
of the large numbers, reported in the preceeding section.—Again the variation of
the exponent in (6.27) with N is shown on p. 218.—See also [24].

The Schnorr-Lenstra Method

The ideas published by Shanks on class groups in [8] have been taken up and
developed further by Schnorr and Lenstra [25]. The resulting factorization algo-
rithm, which is quite complicated, has been subject to computer implementation
and testing. It seems to be faster than the Morrison-Brillhart method, having an
asymptotic mean running time of only

0 (N,/lnlnN/an) .

However, even if the mean running time is smaller than (6.27), the running times for
numbers of approximately the same size vary enormously, and thus the running
time for any particular number is quite unpredictable. This disadvantage can
partly be remedied the same way as in Shanks’ method SQUFOF, where one or
more multipliers may be utilized. Applying the algorithm on several numbers kN
simultaneously will greatly enhance the possibility of hitting upon a factorization
rapidly and will thus help avoiding the very long running times that otherwise may
occasionally occur. The interested reader may find a short account of the Schnorr—
Lenstra method in [11], pp. 474-475.—This method has been superseded by the
Elliptic Curve Method, which is simpler to implement and runs faster.

Two Categories of Factorization Methods

Most of the factorization methods presented here can be placed into one of two main
categories. The first category consists of those methods in which a prime factor
of the number to be factored is constructed from some arithmetic properties of
this number. Examples are Gauss’ factoring method, Morrison-Brillhart’s method
CFRAC and Shanks’ SQUFOF, and the number field sieve NFS.

The second category contains such methods as Pollard’s (p — 1)-method,
Williams’ (p + 1)-method and the elliptic curve method, ECM. Characteristic for
these methods is that the order of an element of some group plays a key role.
Suppose we have a group G of integers or of rational numbers. If we reduce all its
elements mod p, we get another group, which we denote by G,. The order m of the
group G, can, in simple cases, be expected to be of the same order of magnitude
as p. Under favourable circumstances there may, however, be many elements of
G, with a much lower order than m. If such an element can be found, this element
can be used to reveal p. Or the order of the group could be a number, composed of
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only small prime factors, a so-called smooth number, in which case there exists a
shortcut to find p.—The problem in factorization is, however, that we do not know
p in advance. Instead of working in the group G,, we will have to work in the
original group G with its elements reduced mod N instead of mod p. To find some
element x of low order, or to find an element, whose order is a smooth number, one
has to compute powers of x under the group operation, until the identity element
mod p is revealed. When this happens, the factor p is usually found by taking the
GCD of N and some key quantity, resulting from the computations.

Lenstra’s Elliptic Curve Method, ECM

This method of factoring, announced by H. W. Lenstra in 1985 [26], makes use of
a group that is different from the one used by the (p — 1)- or (p + 1)-methods;
but the strategy in the computations remains very similar. (For the reader, who is
not familiar with the basic properties of elliptic curves, these have been described
in Appendix 7.)

Let E(A, B) be the group of rational points on the elliptic curve

By* =x>+ Ax®> +x, with B(A%?—-4) #0, (6.27)

where we have followed the suggestion of Peter Montgomery in [27] for the choice
of representation of an elliptic curve. After choosing rational values of A and B,
and a rational starting point P, = (x,, y;), compute the x-coordinates of suitable
multiples of P; recursively, using the group operation:

Py =pi- PimodN, (6.28)

where p; is the ith prime, with the smaller primes p added to the sequence of
primes every time some power p® of p is passed. Use the technique described in
Appendix 7, based on the formulas (A7.11) and (A7.16). Now and then, check if
1 < GCD(x;41, N) < N, in which case a factor of N is found. Proceed in this
way up to some search limit Bj, and then go on with phase 2, much in the same
way as is done in the (p — 1)-method previously described.

Phase 2 of ECM

Also ECM is capable of being continued if the above search does not find any factor.
The idea of the continuation is the same as the one used for the continuation of the
(p — 1)-method. It even pays off a lot better than does phase 2 in p — 1, since the
amount of computing needed in one cycle of the continuation is, relatively seen
less important in phase 2 of ECM than in phase 2 of p — 1. Phase 2 in ECM
consists of checking, for each prime g; between B; and a much larger limit B,, if
this one more prime will suffice to reveal the factor p. Suppose the end result of

210



PHASE 2 OF ECM

phase 1 is a point Q = (x,,, y) mod N, where we have not computed y,, (in order
to save computing time). We would like to compute ¢; Q mod N = (z;, w;) and
check if GCD(z;, N) > 1. How could this be done? We know that

By,i = x,i + Axi + X,

but we cannot find y,, mod N, since we cannot take square roots mod N without
knowing the factorization of N. Instead, define B’ = x} + Ax2 + x,,. Check that
GCD(B’, N) = 1. (If not, we have probably found a factor of N.) Now, use the
curve

By’ =x3+ Ax? +x
instead of the original curve during phase 2. The point (x, y) on the new curve
corresponds to the point (x, y - y») on the original curve, and thus the new curve
resembles the old curve, which has been compressed by a factor |y, | in the direction
of the y-axis. All prime multiples of @ mod N needed can be systematically
computed using the composition rules, given in Appendix 7. To explain how, let
us try to figure out how many compositions of the type jOQ+ jQor jO+(j+1)Q
will be needed to compute the prime multiples g Q.

Suppose we wish to perform this search up to some limit B,, considerably
larger than B;. Let us investigate, how many “units of work,” each consisting of
the computation of the x-coordinate of the composition of one of the two types just
mentioned, will be needed. For each prime p in the interval [ B2/2, B>] we need
one unit of work if the multiples jQ = %(q —1Qand (j+1)0 = %(q +1Q
have already been made available. These j’s are all in the interval [B,/4, B, /2],
and to this set of j’s we have to add all primes in this same interval. (Some of
these may coincide with values of j already in the set.)

To compute the corresponding multiples of O, we need more “stepping
stones”, this time in the interval [ B,/8, B,/4], and so on. It looks like we should
need about 2 - |log, g units of work to find g Q, as in Exercise A7.1 on p. 325 in
Appendix 7. But there is one important difference. Since we want g Q not only
for one isolated value of g, but for all prime values of g between B; and B,, the
stepping stones needed will soon coincide, and considerably less work than might
be expected is actually needed.

To make the reasoning less abstract, let us fix B; and B to, say 20000 and
800000, respectively. (Incidentally, this is an optimal choice of parameters if we
are searching for factors p of N up to p ~ 10%.) In the interval [400000, 800000]
there are 30091 primes, and in {200000, 400000] there are 15876 primes. Thus,
in [200000, 400000] we shall need at most 2 - 30091 + 15876 = 76058 multiples
J Q. In the next step down, we are working in the interval [100000, 200000], in
which more than half of all values of j will be needed. So in order to simplify the
analysis, let us compute j Q for all values up to 200000.

Summing up, we find by this very crude analysis that we need at most

By/4 + 3 (n(B2) — 7(B2/2)) + n(B2/2) — n(B2/4)
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units of work, which amounts to =~ 300000 for B, = 800000. To search the interval
up to B; during phase 1 in ECM consumes about 27 (B)) log, B; = 3B; = 60000
units of work, with our choice of search limits. (If a more careful analysis is
made, the result is that phase 2 can be made to run much faster than our figures
seem to indicate. Also, there are some other refinements which can be introduced
to further speed up phase 2 of ECM. As a matter of fact, Montgomery reports
in [27] a value of K as high as 170, where K is the ratio between the running
times for phase 1 and phase 2 per unit of interval. To achieve this remarkable
result, an advanced technique for fast evaluation of monic polynomials of degree
2k _ 1 is used, among other things, and we have to refer the interested reader to
Montgomery’s paper.—Our crude analysis only produces the value K = 8.)

The success of the factor search depends on whether the order of E(A, B)
mod p is highly composite or not. Since the order of an element of a group divides
the order of the group, this implies that in such a case the order of P; in the group
is also highly composite, and thus the factor p will be revealed as soon as all prime
powers, being factors of the order of P;, have been reached in the computation.
One problem is that one cannot tell in advance which values of A and B will lead
to highly composite orders of E(A, B). This sad fact is countered by doing the
computations on a bunch of elliptic curves in parallel by running 100 cycles at a
time for each of 20 or 100 or some other number of different elliptic curves.

The Choice of A, B, and P,

In [27] Montgomery gives the following simple rules for selecting suitable param-
eters of the elliptic curves. Select

X1 =2

m=3,4,5,...

k= (x} —m*)/(x(m* = 1)) (6.29)
A=k+1/k

B=A+2.

Each value of m picks a new curve for the parallel computation, which uses several
curves in the same round. This particular selection of parameters forces the order
k of E(A, B) to have a factor 12, thus increasing the possibility that k be highly
composite.—See also [28].

Running Times of ECM

The basis of the running time analysis for ECM is (A7.11) and (A7.16) from
Appendix 7. If N is large, the heavy burden in evaluating these formulas consists
of doing the multiplications and squarings mod N. To evaluate (A7.11) costs 5 such
operations, and to evaluate (A7.16) costs 6 operations, if the latter versions are
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used, all additions and subtractions uncounted. To evaluate p - x,, using the binary
method thus costs 11 multiplications mod N per binary digit of p, or roughly
11 - log, p = 161n p such operations. To cover the entire interval up to By will
then cost Y_ 161n p = 16B, operations, which means that the cost during phase
1 is about 16 multiplications mod N per interval of unit length.—A detailed and
most interesting analysis of ECM has recently been given by Robert Silverman
and Samuel Wagstaff in [29]. Much experience has shown that the factors are
found roughly in increasing order of magnitude (there are exceptions!). The order
of magnitude of the running time for ECM is about Cp'/® for factors p of N with
between 5 and 40 digits. On the size of factors, possible to find with ECM, the
authors of [29], who are very experienced with this method, say (in 1991): “ECM
will find 10- to 15-digit factors quite quickly, 20- to 25-digit factors with an effort
of perhaps ten hours, and 30- to 35-digit factors with considerable difficulty. Over
the last several years the combined efforts of many researchers have resulted in
hundreds of thousands of trials with ECM, and we have found exactly two 38-
digit, one 37-digit, and one 36-digit factor.”—In [29] also some recommendations
are given for the size of the search limits and other useful strategies to optimize
the factor search with ECM. First, because of the great speed per cycle of phase
2, as compared with phase 1, B, should be put to about 408, if one cycle of
phase 2 is running 100 times faster than one cycle of phase 1. (This explains the
choice of B; and B, made above in the description of phase 2 of ECM.) In [29]
the recommended choice of B, = 0.4K B is the result of two effects. First, the
above mentioned ratio K between the speeds with which the computer searches
an interval of given size during the two phases influences how high one should run
Bs to achieve maximal probability of success, having a fixed amount of computing
time at disposal. Second the probable size of the prime factors of the order of the
point P in the group G, strongly influences the choice of search limits. Phase 2
will be a success, if all prime factors, except the largest one of the order, are < B,
and the largest one is between B, and B;.

Also these limits depend heavily on the size of the factor, that we expect to
find. Thus, B; should be 400 for p ~ 10'°, B, should be 18000 for p &~ 10%,
and B; should be 400000 for p ~ 10°C. Since we do not know what size of p
to expect, and since phase 1 runs much slower than phase 2, it pays to alternate
between phase 1 and phase 2. First, put B; = 400 and B, = 16000, say. If this
run is not successful, then it is likely that the factor has more than 10 digits. Then
raise the limits, say to B; = 3000 and B, = 120000, to catch a factor with up to
about 15 digits, and so on. Also, the optimal number of curves used, varies with
p. The authors of [29] recommend using 5 curves for p =~ 10'5, and make the
remark: “... if one wants to perform ECM with just one curve, then one should
use the P — 1 algorithm instead, since it is significantly faster”” The computer
program Mathematica, which has ECM implemented, uses 2 curves for N < 10%,
4 curves for 102 < N < 10%°, and 8 curves for N > 10°°.
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Recent Results Achieved with ECM

Since the quotation by Silverman and Wagstaff given above was written in 1991,
even larger factors have been found by ECM. In the beginning of 1994 the two
largest factors so far reported had 39 digits (by Silverman in a cofactor of 34! — 1)
and 42 digits (by D. Rusin in a cofactor of 102! — 1),

The Number Field Sieve, NFS

The number field sieve by J. M. Pollard [30]-[32], or NFS for short, is the most
efficient method invented so far to factor numbers of the special form N = r¢ + s,
with r and s small integers and e possibly large. Examples of numbers successfully
factored with NFS are the Fermat number Fy = 2°'2 41 and the Mersenne number
Msy; =28 — 1.

The basic principle of NFS is the same as for CFRAC, QS and MPQS, namely
to find two congruent squares mod N. The difference between QS and MPQS on
the one hand, and NFS on the other hand, is that the squares are formed not only
from combining small rational integers mod N, but also by combining “small”
integers mod N in some cleverly chosen algebraic number field, the choice of
which depends upon the number N to be factored.

The reader who is not acquainted with higher algebraic number fields, might
now wish to consult Appendix 5, which covers the elements of this topic.

We shall start by giving a very small example showing the details of the
method. Let us try to factor N = 113 + 2. (This is obviously a case of r¢ + s
with r = 11.) This number N has been chosen so that the number field Q(3/=2),
discussed in some detail in Appendix 5, is suited for an attack on N. This is due to
the fact that 113 = —2 mod N, which means that there is a natural homomorphism
from the algebraic integers a + bz + cz? with z = /=2 to the residue classes
mod N. The correspondence in question is

a+bz+czPr>a+11b+11%cmod N, (6.30)

which is a homomorphism ¢, because with this correspondence we have (trivially)
¢ £ v) = ¢p(u) £ ¢(v) for any u and v, and

¢ ((a+bz+cz®)d+ez+ f2%) = (@+11b+ 11%c)(d + 11e + 11% f) mod N.

That this relation always holds is due to the fact that both sides can be reduced
in a similar manner using formula (AS5.8). This is so because z> = —2 on the
left-hand side, and 11> = —2 mod N on the right-hand side. As we shall see, such
a homomorphism is a central feature of Pollard’s NFS.
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Factoring both in Z and in Z(z)

Suppose that, just as in the quadratic sieve, we try to factor a + br, for various
values of a and b, into prime factors all belonging to some predetermined set of
rational primes, our first factor base, FB1. At the same time we may also try to
factor the corresponding integers a + bz in Z(z) into prime factors belonging to
some factor base FB2. Suppose further that we manage to successfully multiply a
cleverly chosen subset of these factorizations as to produce a square as well out of
the numbers a + br as out of the numbers a + bz. In such a case we would have

[J@+b)=g* and []@ +bir) =y (6.31)

Applying the homomorphism ¢ then would give

!

1

¢ =¢ (I—[(a; + b.-z)) = ﬂ(a.- +b;r) = y> mod N. (6.32)

Since ¢ (¢%) = {¢(q)}* = x?, we find a solution to Legendre’s congruence x? = y?
mod N. The goal of NFS is to build up simultaneous squares [[(a; + b;z) and
[1(a: + b;ir) and then to proceed just as in QS or MPQS.—The *large prime”
approach, using factorizations within the factor base, except for one larger prime,
also helps to find enough square combinations.

A Numerical Example

After these explanations we are ready to undertake the computations in our example
N = 113 + 2. Following the scheme given at the end of Appendix 5, we try to
factor @ + br into only small rational primes (and possibly a factor —1) and
a + bz into “small” primes in Z(z) (and possibly a factor —1 and a power of the
unit U = [1, 1, 0]). Among the factorizations obtained for —50 < a < 50 and
0 < b < 50 we have picked out the following combinations, that are composed of
small primes only:

ab -12357 -1U ABCDEF
-7,1 0 2000 0 0011001
—4,1 0 0001 0 01101 O00O0
-1,1 010160 0 0010O0CO0O
-1,3 0 5000 0 0001100
1, -2 1 0101 0 000O0OTTO
2,3 0 0011 0O 01 00O0O!1
54 0 0002 1 3010000
7,3 0 30160 1 1000020
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In this table U = [1,1,0], A = [0,1,0], B = [-1,1,0], C = [1,0,1], D =
[1,1,—1], E =[1,=2,0], and F = [3, 0, —1].

Looking for square combinations, i.e., for sums of rows, yielding even numbers
only, we find that row 3 + row 7 + row 8 results in

]'](a,— +bir)=(—14r)5+4r)T+3r)=2-5-7*.2>.5 = 140%,

and that
[T@ +bi2) = (1 + 2 + 47 +32) =

=[-1,1,0]- (-1)-U*-[-1,1,0]- (=1) - U - [1, -2,0* =
= (U2-[-1,1,0]- 1, =2,0])* = 1,5, 3]

Now, ¢([1,5,3]) = 14+5-11+3-11%2 = 419, and thus 419? = 140? mod N and
we try GCD(419 — 140, N), which is 31, and so we have found the factorization
N =31.43.

The General Number Field Sieve, GNFS

The account given on NFS so far has presupposed that N is, as stated, of the simple
form N = r¢ 4+ 5. But it is possible to generalize NFS to apply to any number N.
The first thing to do is to find an algebraic number field defined by an irreducible
polynomial of some degree n, which can be used for this particular number N.
Since large coefficients in the defining equation lead to heavy computations, all
the coefficients should be chosen smaller than some limit m, say. The number of
algebraic equations of degree n with all their coefficients < m is m"*1, which has
to be of the same order of magnitude as N in order that there be a reasonable chance
that one of these equations could be used for the given number N. It turns out that
the computational work in executing GNFS will be minimized if n is chosen about
(31n N/Inln N)'73, and then to take m ~ N'/*. Suitable polynomials f(x) are
not too difficult to find. First write N as an integer in the positional representation
system with base m:

n
N =Za,-m", with 0<ag <m-—1.
o

Now the polynomial f(x) = Y_ a;m’ has the property f(m) = N = Omod N, and
will do if only f(x) is irreducible over Z. If not, just change some of its “digits”
a; (they need not all fulfill 0 < a; < m — 1) until an irreducible f(x) appears.
Because most polynomials are irreducible, this will happen after a few trials.

216



RUNNING TIMES OF NFS AND GNFS

After having found a useful polynomial, the resulting algebraic field has to
be studied. This is generally a very complicated and cumbersome task. We have
to find its discriminant (which usually is of the same order of magnitude as N),
and also to find an integral basis for the representation of the primes of the field.
A description of the problems, which have to be coped with, can be found in [31].

Running Times of NFS and GNFS

The running times for the special NFS and GNFS are determined from the optimal
choice of the degree and the coefficient size of the polynomial chosen to define a
suitable number field to work in. The choice of these parameters in turn depend
upon the supply of smooth numbers, which is given by equations (5.29)—(5.30),
or (5.32) in the relevant particular cases. Because of the tedious derivation of the
results in this area, we do not give the deductions here, but merely state the main
results:

The running time for the (special) number field sieve is asymptotic to

1 32\ " »n
C-L N,§,(3) = C - NCYITUWN/INTE a5 N — 0.

The running time for the general number field sieve is asymptotic to

1 64 173 2/3 2/3
C-L N,g,(?) = C . NG/ WN/ N a5 N — o0.

(L is the function L(x, u, v), introduced on p. 165.)

To be able to compare the performance of the various methods described, we
give, in the following little table, the asymptotic running times, as N — oo, for
the main methods, expressed as C - N*, where « is given as v(InInN/In N yi-u,
to use the very same parameters as are defining the function L. Numerical values
of ¢ are also given for some values of N.

This should be compared with the efficiency of those methods, whose running
time depends mainly on the size of the factor p found. Thus, the running time for
trial division is O(p), for Pollard’s rho O (p'/?) and for ECM O(p'/®).—These
kinds of estimations are essential to have available when it comes to finding an opti-
mal strategy for factoring large numbers with nothing known about the size of their
factors.—For numbers hard to factor, two methods from these different categories
may be compared simply by choosing p = VN in the O(p®)-estimations just
given.—A more recent experience with an implementation of GNFS is reported
in [34].
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