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Abstract. Traditional definitions of encryption security guarantee se-
crecy for any plaintext that can be computed by an outside adver-
sary. In some settings, such as anonymous credential or disk encryp-
tion systems, this is not enough, because these applications encrypt
messages that depend on the secret key. A natural question to ask is
do standard definitions capture these scenarios? One area of interest is
n-circular security where the ciphertexts E(pk,, sk2), E(pksy, sks), ...,
E(pk,,_1, skn), E(pk,,, sk1) must be indistinguishable from encryptions
of zero. Acar et al. (Eurocrypt 2010) provided a CPA-secure public key
cryptosystem that is not 2-circular secure due to a distinguishing attack.

In this work, we consider a natural relaxation of this definition. In-
formally, a cryptosystem is n-weak circular secure if an adversary given
the cycle E(pky, sk2), E(pks, sk3), ..., E(pk, _1, skn), E(pk,, sk1) has no
significant advantage in the regular security game, (e.g., CPA or CCA)
where ciphertexts of chosen messages must be distinguished from cipher-
texts of zero. Since this definition is sufficient for some practical appli-
cations and the Acar et al. counterexample no longer applies, the hope
is that it would be easier to realize, or perhaps even implied by stan-
dard definitions. We show that this is unfortunately not the case: even
this weaker notion is not implied by standard definitions. Specifically, we
show:

— For symmetric encryption, under the minimal assumption that one-
way functions exist, n-weak circular (CPA) security is not implied
by CCA security, for any n. In fact, it is not even implied by authen-
ticated encryption security, where ciphertext integrity is guaranteed.
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— For public-key encryption, under a number-theoretic assumption, 2-
weak circular security is not implied by CCA security.

In both of these results, which also apply to the stronger circular secu-
rity definition, we actually show for the first time an attack in which the
adversary can recover the secret key of an otherwise-secure encryption
scheme after an encrypted key cycle is published. These negative results
are an important step in answering deep questions about which attacks
are prevented by commonly-used definitions and systems of encryption.
They say to practitioners: if key cycles may arise in your system, then
even if you use CCA-secure encryption, your system may break catas-
trophically; that is, a passive adversary might be able to recover your
secret keys.

Keywords: Encryption, Definitions, Circular Security,
Counterexamples.

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. Most defi-
nitions of encryption security [2219/35] follow the seminal notion of Goldwasser
and Micali which guarantees indistinguishability of encryptions for messages cho-
sen by the adversary [22]. However, Goldwasser and Micali wisely warned to be
careful when using a system proven secure within this framework on messages
that the adversary cannot derive himself.

Over the past several years, there has been significant interest
in designing schemes secure against key-dependent message attacks,
e.g., [IHITIBTBI2729T3ITAG2], where the system must remain secure even
when the adversary is allowed to obtain encryptions of messages that depend on
the secret keys themselves. In this work, we are particularly interested in circular
security [I5]. A public-key cryptosystem is n-circular secure if the ciphertexts
E(pk, ska), E(pky, sk3), ..., E(pk,_1, skn), E(pk,, sk1), as well as ciphertexts
of chosen messages, cannot be distinguished from encryptions of zero, for
independent key pairs. Either by design or accident, these key cycles naturally
arise in many applications, including storage systems such as BitLocker [13],
anonymous credentials [I5], the study of “axiomatic security” [31l3] and more.
See [13] for a discussion of the applications.

Until recently, few positive or negative results regarding circular security were
known outside of the random oracle model. On one hand, no n-circular secure
cryptosystems were known for n > 1. On the other hand, no counterexamples
existed for n > 1 to separate the definitions of circular and CPA security; that
is, as far as anyone knew the CPA-security definition already captured circular
security for any cycle larger than a self-loop.

Recently, this gap has been closing in two ways. On the positive side, several
circular-secure schemes have been proposed [I3514]. The focus of the current
work is on negative results — namely, investigating whether standard notions of
encryption are “safe” for circular applications.
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In 2008, Boneh, Halevi, Hamburg and Ostrovsky proved, by counterexample,
that one-way security does not imply circular security [I3]. Recently, Acar, Be-
leniky, Bellare and Cash [2] proved that, under an assumption in bilinear groups,
CPA-security does not imply circular security.

Our Results. We narrow this gap even further by studying the extent to which
standard definitions (e.g., CPA, CCA) imply a weak form of circular security.
Our results are primarily negative.

1. Relaxing the Clircular Security Notion. Perhaps the current formulation of
circular security is “too strong”; that is, perhaps there is a relaxed notion of this
definition which simultaneously satisfies many practical applications and yet is
also already captured by standard security notions. This is an area worth inves-
tigating. We begin by proposing a natural relaxation called weak circular secu-
rity where the adversary is handed an encrypted cycle E(pk,, ska), E(pks, sks),
., E(pk,,_q, skn), E(pk,,, sk1) along with the public keys and then proceeds to
play the CPA or CCA security game as normal (where these ciphertexts are also
off-limits for the decryption oracle). We stress here that the encrypted cycle is
always generated as described, and is never changed to encryptions of zero. This
definition is intriguing, and perhaps of independent interest, for two reasons.

First, the Acar et al. [2] counterexample does not apply to it. That construc-
tion uses the bilinear map to test whether a sequence of ciphertexts contain a
cycle or zeros. Here the adversary knows he’s getting an encrypted cycle, but
then must extract some knowledge from this that helps him distinguish two
messages of his choosing.

Second, this definition appears sufficient for some practical settings. Using
a weak circular secure encryption scheme, Alice and Bob could exchange keys
with each other over an insecure channel knowing that: (1) Eve can detect that
they did so, but (2) Eve cannot learn anything about their other messages.
Similarly, an adversary scanning over a user’s BitLocker storage may detect
that her drive contains an encrypted cycle, but cannot read anything on her
drive. In an anonymous credential system of Camenisch and Lysyanskaya [15],
a user has multiple keys. To participate in the system, the user must encrypt
them in a cycle, provide this cycle to the other users, and prove that she has
done this correctly. Then, if she shares one key, she automatically shares all her
keys. In their application, detection of a cycle is actually desirable, provided that
subsequent encryptions remain secure.

2. Symmetric-Key Counterexamples. In the symmetric setting, we show that
standard notions do not imply n-circular security for any positive n. Specifically,
given any n > 1, we show how to construct a secure authenticated encryption
scheme (which is necessarily CCA-secure; see Section[J) that is not n-weak circu-
lar secure, under the minimal assumption that secure authenticated encryption
schemes exist, which are equivalent to one-way functions.

The main technical ingredient in our counterexample is a lemma showing that
it is provably hard for an adversary to compute an encrypted key cycle itself,
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assuming that the symmetric scheme under attack is a secure authenticated
encryption scheme (or CCA secure). We stress that this lemma does not hold if
the encryption scheme is only CPA secure.

Our lemma gives us leverage in constructing a counterexample because it
means the adversary is given strictly more power in the weak circular security
game than in the standard security game. Specifically, the adversary is given an
encrypted key cycle in the weak circular security game that it could not have
computed itself, and we design a scheme to help such an adversary without
affecting regular security.

3. Public-Key Counterexamples. We show that neither CPA nor CCA-security
imply (even) weak circular security for cycles of size 2. That is, we show secure
systems that are totally compromised when the independently-generated cipher-
texts E(pk 4, skp) and E(pk g, ska) are released. This is a difficult task, because
the system must remain secure if either one, but only one, of these ciphertexts
are released. Moreover, this counterexample requires new ideas. We cannot use
the common trick in self-loop counterexamples that test if the message is the
secret key corresponding to the public key, since there is no way for the encryp-
tion algorithm with public key pk 4 to distinguish, say, skp from any other valid
message. Specifically, we show that:

If there exists an algebraic setting where the Symmetric External Diffie-
Hellmar[l (SXDH) assumption holds, then there exists a CPA-secure cryptosys-
tem which is not 2-weak circular secure. The proposed scheme is particularly
interesting in that it breaks catastrophically in the presence of a 2-cycle — re-
vealing the secret keys of both users.

Moreover, if simulation-sound non-interactive zero- knowledge (NIZK) proof
systems exist for NP and there exists an algebraic setting where the Symmetric
External Diffie-Hellman (SXDH) assumption holds, then there exists a CCA-
secure cryptosystem which is not 2-weak circular secure. This is also the first
separation of CCA security and (regular) circular security.

These results deepen our understanding of how to define “secure” encryption
and which practical attacks are captured by the standard definitions. They also
provide additional justification for the ongoing effort, e.g. [I3II4J5], to develop
cryptosystems which are provably circular secure.

1.1 Related Work

In 2001, Camenisch and Lysyanskaya [15] introduced the notion of circular secu-
rity and used it in their anonymous credential system to discourage users from
delegating their secret keys. They also showed how to construct a circular-secure
cryptosystem from any CPA-secure cryptosystem in the random oracle model.

! The SXDH assumption states that there is a bilinear setting e : G1 X G2 — Gr where
the DDH assumption holds in both G; and G». It has been extensively studied and
used e.g., [21I38I32IT2IRIGI24I9I25], perhaps most notably as a setting of the Groth-
Sahai NIZK proof system [25].
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Independently, Abadi and Rogaway [I] and Black, Rogaway, Shrimpton [I1] in-
troduced the more general notion of key-dependent message (KDM) security,
where the encrypted messages might depend on an arbitrary function of the se-
cret keys. Black et al. showed how to realize this notion in the random oracle
model.

Halevi and Krawczyk [27] extended the work of Black et al. to look at KDM
security for deterministic secret-key functions such as pseudorandom functions
(PRFs), tweakable blockciphers, and more. They give both positive and nega-
tive results, including some KDM-secure constructions in the standard model
for PRFs. In the symmetric setting, Hofheinz and Unruh [29] showed how to
construct circular-secure cryptosystems in the standard model under relaxed
notions of security. Backes, Pfitzmann and Scedrov [7] presented stronger no-
tions of KDM security (some in the random oracle model) and discussed the
relationships among these notions.

In the public-key setting, Boneh, Halevi, Hamburg and Ostrovsky [I3] pre-
sented the first cryptosystem which is simultaneously CPA-secure and n-circular-
secure (for any n) in the standard model, based on either the DDH or Decision
Linear assumptions. As mentioned earlier, Boneh et al. [13] also proved, by coun-
terexample, that one-way security does not imply circular security. One-way en-
cryption is a very weak notion, which informally states that given (pk, E(pk, m)),
the adversary should not be able to recover m. Given any one-way encryption
system, they constructed a one-way encryption system that is not m-circular
secure (for any n). Their system generates two key pairs from the original
and sets PK = pk, and SK = (ski,skz). A message (m1,mz) is encrypted
as (mq, E(pky,mz2)). In the event of a 2-cycle, the values Enc(pk,,skp) =
(skp,1, E(pk 4 1,8kB,2)) and Enc(pkp,ska) = (ska1, E(pkpg1,skaz2)) provide
the critical secret key information (skp 1, ska 1) in the clear.

Subsequently, Applebaum, Cash, Peikert and Sahai [5] adapted the circular-
secure construction of [I3] into the lattice setting. Camenisch, Chandran and
Shoup [14] extended[13] to the first cryptosystem which is simultaneously CCA-
secure and n-circular-secure (for any n) in the standard model, by applying the
“double encryption” paradigm of Naor and Yung [34]. (Interestingly, we use this
same approach in Section 4] to extend our public-key counterexample from
CPA to CCA security.)

Haitner and Holenstein [26] recently provided strong impossibility results for
KDM-security with respect to 1-key cycles (a.k.a., self-loops.) They study the
problem of building an encryption scheme where it is secure to release E(k, g(k))
for various functions g. First, they show that there exists no fully-black-box re-
duction from a KDM-secure encryption scheme to one-way permutations (or even
some families of trapdoor permutations) if the adversary can obtain encryptions
of g(k), where g is a poly(n)-wise independent hash function. Second, there exists
no reduction from an encryption scheme secure against key-dependent messages
to, essentially, any cryptographic assumption, if the adversary can obtain an
encryption of g(k) for an arbitrary g, as long as the security reduction treats
both the adversary and the function g as black boxes. These results address
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the possibility of achieving strong single-user KDM-security via reductions to
cryptographic assumptions. The results in this paper study a version of KDM
security that is in one sense weaker — we only allow a narrow class of functions g
— but also stronger because it considers multiple users. Our results also address
a different question regarding KDM security. We study whether or not KDM se-
curity is always implied by regular security while Haitner and Holenstein study
the possibility of achieving strong single-user KDM security via specialized con-
structions.

Recently, Acar et al. [2] demonstrated both public and private key encryption
systems that are provably CPA-secure and yet also demonstrably not 2-circular
secure. Their counterexample does not apply to CCA or weak circular security.

There is also a relationship to recent work on leakage resilient and auxiliary
input models of encryption, which mostly falls into the “self-loop” category.
In leakage resilient models, such as those of Akavia, Goldwasser and Vaikun-
tanathan [4] and Naor and Segev [33], the adversary is given some function h
of the secret key, not necessarily an encryption, such that it is information the-
oretically impossible to recover sk. The auxiliary input model, introduced by
Dodis, Kalai and Lovett [18], relaxes this requirement so that it only needs to
be difficult to recover sk.

Self-Loops. In sharp contrast to all n > 2, the case of l-circular security is
fairly well understood. A folklore counterexample shows that CPA-security does
not directly imply 1-circular security. Given any encryption scheme (G, E, D),
one can build a second scheme (G, E’,D’) as follows: (1) E’(pk,m) outputs
E(pk,m)||0 if m # sk and m||1 otherwise, (2) D’(sk,c||b) outputs D(sk,m) if
b =0 and sk otherwise. It is easy to show that if (G, F, D) is CPA-secure, then
(G,E’,D’") is CPA-secure. When E’(pk,sk) = sk||1 is exposed, then there is
a complete break. Conversely, given any CPA-secure system, one can build a
1-circular secure scheme in the standard model [13].

2 Definitions of Security

A public-key encryption system II is a tuple of algorithms (KeyGen, Enc, Dec),
where KeyGen is a key-generation algorithm that takes as input a security pa-
rameter A and outputs a public/secret key pair (pk, sk); Enc(pk, m) encrypts a
message m under public key pk; and Dec(sk, ¢) decrypts ciphertext ¢ with secret
key sk. A symmetric-key encryption system is a public-key encryption system,
except that it always outputs pk = 1, and the encryption algorithm computes
ciphertexts using sk, i.e. by running Enc(sk, m). In the symmetric case we will
sometimes write K instead of sk. As in most other works, we assume that all algo-
rithms implicitly have access to shared public parameters establishing a common
algebraic setting.

Our definitions of security will associate a message space, denoted M, with
each encryption scheme. Throughout this paper, we assume that the space of
possible secret keys output by KeyGen is a subset of the message space M and
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IND-CPA(IT, A, \) AE(IT, A, \)
b < {0,1} b < {0,1}
(pk, sk) < KeyGen(1%) K <+ KeyGen(1%)
(mo,m1,2) = Ai(pk) b ATKHCDPRLO (1Y)
Y= Enc(pk, ms) Output (b < b).
b Aa(y, 2)

Output (b < b)

Fig. 1. Experiments for Definitions [l and [

thus any secret key can be encrypted using any public key. For symmetric en-
cryption schemes we will always have M C {0, 1}*.

By v(k) we denote some negligible function, i.e., one such that, for all ¢ > 0
and all sufficiently large k, v(k) < 1/k°. We abbreviate probabilistic polynomial
time as PPT.

2.1 Standard Security Definitions

Public-key encryption. We recall the standard notion of indistinguishability of
encryptions under a chosen-plaintext attack due to Goldwasser and Micali [22].

Definition 1 (IND-CPA). Let IT = (KeyGen, Enc, Dec) be a public-key encryp-
tion scheme for the message space M. For b € {0,1}, A= (A1, A2) and X € N,
let the random wvariable IND-CPA(IT, A, \) be defined by the probabilistic algo-
rithm described on the left side of Figure[dl. We denote the IND-CPA advantage
of A by Advii 4 (A) = 2-Pr[IND-CPA(IT, A, \) = 1]—1. We say that IT is IND-CPA
secure if Adviy",(N) is negligible for all PPT A.

We also consider the indistinguishability of encryptions under chosen-ciphertext
attacks [34U35/19].

Definition 2 (IND-CCA). Let IT = (KeyGen, Enc, Dec) be a public-key encryp-
tion scheme for the message space M. Let the random variable IND-CCA(IT, A, \)
be defined by an algorithm identical to IND-CPA(II, A, X) above, except that both
Ay and As have access to an oracle Dec(sk,-) that returns the output of the
decryption algorithm and Ag cannot query this oracle on input y. We denote the
IND-CCA advantage of A by Advy;?4(A) = 2-Pr[IND-CCA(II, A, \) = 1] - 1. We
say that IT is IND-CCA secure if Adviy® 4 (\) is negligible for all PPT A.

Symmetric-key authenticated encryption. We recall the definition of secure au-
thenticated (symmetric-key) encryption due to [36], except that we will not
require pseudorandom ciphertexts. Bellare and Namprempre [I0] showed that
AE implies IND-CCA, and is in fact strictly stronger. For our counterexample,
we target this very strong definition of security in order strengthen our results
by showing that even this does not imply weak circular security.
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IND-CIRC-CPA™ (11, A, X)
b <& {0,1}
For i =1 to n:
(pk;, ski) < KeyGen(1*)

IND-WCIRC-CPA™ (I1, A, \)
b < {0,1}
For i =1 ton:
(pk;, sk;) + KeyGen(1?)

If b=1 then
y < EncCycle(pk, sk)
Elsey + EncCycle(pk, sk) (4, mo, m1, z) + Ai(pk,y)
y < EncZero(pk, sk) Y= Enc(pk;, ms)
b+ A(pk,y) b As(y, 2)

Output (b = b) Output (b = b)
EncZero(pk, sk)
Fori=1ton
y; < Enc(pk;, 0% moa mt1ly
Output y

EncCycle(pk, sk)
Fori=1ton
yi < Enc(pk;, sk(; mod n)+1)
Output y

Fig. 2. Experiments for Definitions d] and [l Each is defined with respect to a mes-
sage space M, and we assume that mo, mi1 € M always. We write pk, sk, and y for
(pky,...,pk,), (sk1,...,skn) and (y1,...,yn) respectively

Definition 3 (AE). Let I = (KeyGen, Enc,Dec) be a symmetric-key encryp-
tion scheme for the message space M. Let the random variable AE(II, A, X) be
defined by the probabilistic algorithm described on the right side of Figure [1
In the experiment, the oracle 5}*(‘?’})(.7.) takes as input a pair of equal-length
messages (mo,m1) and computes Enc(K,my). The oracle DF () takes as in-
put a ciphertext ¢ and computes Dec(K,c) if b = 1 and always returns L if
b = 0. The adversary is not allowed to submit any ciphertext to D () that
was previously returned by E38,(-,-). We denote the AE advantage of A by
Adviy 4(A) = 2-Pr[AE(IT, A, \) = 1]—1. We say that IT is AE secure if Advi; 4())
is negligible for all PPT A.

2.2 Circular Security Definitions

We next give definitions for circular security of public-key and symmetric-key
encryption. These definitions are variants of the Key-Dependent Message (KDM)
security notion of Black et al. [IT]. By restricting the adversary’s power, we make
it significantly harder for us to devise a counterexample and thus prove a stronger
negative result 3

Definition 4 (IND-CIRC-CPA™). Let II = (KeyGen, Enc,Dec) be a public-key
encryption scheme for the message space M. For b € {0,1}, integer n > 0,
adversary A and X\ € N, let the random variable IND-CIRC-CPA™(II, A, \) be

2 If we allowed the adversary to obtain encryptions of any affine function of the secret
keys, as is done in [27JI3], then we could devise a trivial counterexample where the
adversary uses 1-cycles to break the system.
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defined by the probabilistic algorithm on the left side of Figure[d We denote the
IND-CIRC-CPA™ advantage of A by

Advi P (\) = 2 - Pr[IND-CIRC-CPA™ (I, A, \) = 1] — 1.

We say that IT is IND-CIRC-CPA™ secure if Adv%ﬁi{c‘Cpa(}\) is negligible for all
PPT A.

One could augment this definition by modifying the IND-CIRC-CPA" experiment
to allow for a challenge “left-or-right” query as in IND-CPA. While this is a quite
natural modification, it only strengthens the definition, and we are interested in
studying the weakest notions for which we can give a separation. Next we give
a definition of weak circular security of public-key encryption.

Definition 5 (IND-WCIRC-CPA™). Let IT = (KeyGen, Enc, Dec) be a public-key
encryption scheme for the message space M. For b € {0,1}, integer n > 0,
adversary A and X\ € N, let the random variable IND-WCIRC-CPA"™ (1T, A, \)
be defined by probabilistic algorithm on the center of Figure[2. We denote the
IND-WCIRC-CPA™ advantage of A by

Advi P2 (\) = 2 Pr[IND-WCIRC-CPA™(IT, A, \) = 1] — 1.

We say that IT is IND-WCIRC-CPA" secure if the function Adv%ﬁirc{pa()\) is
negligible for all PPT A.

Finally, we give a definition of weak circular security for symmetric encryption.
We will abuse notation and also call this IND-WCIRC-CPA™ security, since it will
be clear from the context whether or not we mean public-key and symmetric-key.

Definition 6 (IND-WCIRC-CPA™). Let IT = (KeyGen, Enc, Dec) be a symmetric-
key encryption scheme for the message space M. For b € {0,1}, integer n > 0,
adversary A and X € N, let IND-WCIRC-CPA"(II, A, \) be defined by the follow-
ing probabilistic algorithm:

IND-WCIRC-CPA} (I, A, \) EncCycle(K)

b < {0,1} Fori=1ton
Fori =1 ton: Yi < Enc(Ki, K (i mod n)+1)
K; + KeyGen(1*) Output y

y < EncCycle(K)

b AEC) (y)

Output (b < b)
We denote the IND-WCIRC-CPA™ advantage of A by

Enc(j, mo, m1)
Return Enc(K;, my)

AV ST ()) = 2 Pr[IND-WCIRC-CPA" (I, A, A) = 1] — 1.

We say that IT is IND-WCIRC-CPA" secure if Adv;;vfrc'q’a(/\) is negligible for
all PPT A.
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Discussion. In both the IND-CPA and IND-CIRC-CPA notions, the adversary
must distinguish an encryption (or encryptions) of a special message from the
encryption of zero. This choice of the message zero is arbitrary. We keep it in the
statement of our definition to be consistent with [I3]; however, it is important
to note, for systems such as ours where zero is not in the message space, that
zero can be replaced by any constant message for an equivalent definition. Acar
et al. [2] use an equivalent definition where zero is replaced by a fresh random
message.

We will not need to define a notion of security to withstand circular and
chosen-ciphertext attacks, because we are able to show a stronger negative re-
sult. In Section 4], we provide an IND-CCA-secure cryptosystem, which is prov-
ably not IND-CIRC-CPA-secure. In other words, we are able to devise a peculiar
cryptosystem: one that withstands all chosen-ciphertext attacks, and yet breaks
under a weak circular attack which does not require a decryption oracle.

3 Counterexample for Symmetric Encryption

Encryption Scheme Il,e. Let II., = (KeyGen’, Enc’, Dec’) be a secure authenti-
cated encryption scheme. To simplify our results, we assume that KeyGen’(1*)
outputs a uniformly random key K in {0,1}*, that the message space M’ =
{0,1}*, and that ciphertexts output by Enc'(K,m) are always in {0,1}P("D,
where p is some polynomial that depends on A\. We also assume that the first A
bits of a ciphertext are never equal to K. All of these assumptions can be re-
moved via straightforward and standard modifications to our arguments below.

Fix a positive integer n. We now construct our counterexample scheme, de-
noted IT,e = (KeyGen, Enc, Dec). We will take KeyGen = KeyGen', i.e., IT, also
uses keys randomly chosen from {0, 1}*. The message-space of IT,. will consist of
M = {0,1}*U{0,1}"?N) bit strings of length either X or np()\). The algorithms
Enc and Dec are defined as follows.

Enc(K,m)
If IsCycle( K, m) then IsCycle( K, m)
ElOutput K |m Tf [m]| # np(A)
8¢ , Return false
Output Enc’(X,m) Parse m as (c1,...,¢Cn)

Ky + Dec (K, c;)

Dec(K,c) ) Fori=2ton
If c = K || m then Kimod nt1 + Dec (K, c;)
Output m ?
e Return (K; = K)

Output Dec' (K, ¢)

Decryption is always correct. This follows from our assumption that Enc’ will
never output a ciphertext that contains K as a prefix. We first establish the AE
security of our scheme.
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Theorem 1. Encryption scheme Il e is AE secure whenever II., is AE secure.
(Proof in the full version of this work [17].)

The proof proceeds by showing that computing an encrypted key-cycle during
the AE game is equivalent to recovering the secret key. From there we can reduce
the security of Il,e to IT., easily.

Curiously, Theorem [I] is no longer true if one replaces AE security with a
symmetric version of IND-CPA security for both IT,e and II],. Namely, some type
of chosen-ciphertext security is required on IT,, to prove even chosen-plaintext
security of IT,e. Intuitively, this is because it might be possible for an adversary
to compute an encrypted key-cycle on its own if the scheme is only IND-CPA-
secure, but not if the scheme is AE-secure. In fact, the work of Boneh et al. [13]
gives an explicit example of a scheme where the adversary can compute a cycle
himself.

The Attack. We now show that IT,. is not circular-secure for n cycles, even in a
weak sense.

Theorem 2. I1,. is not IND-WCIRC-CPA" secure.

Proof. We give an explicit adversary A that has advantage negligibly close to 1.
The adversary takes as input the encrypted key-cycle y in the IND-WCIRC-CPA™
game. It queries Enc(1,mg, m1), where my =y and m; is a random message of
the same length. Let y be the ciphertext returned by the oracle.

At this point, there are many ways to proceed; perhaps the simplest is to
observe that the length of y depends on the challenge bit b. This is because, if
b =0, then my =y was encrypted, resulting in y = K || y, which is A + np(})
bits long. If b = 1 then y was computed by running Enc’'(K,m;), which will be
p(m1]) = p(np(A)) bits long if IsCycle(K,my) returns false. Thus, as long as
IsCycle(K,mq) returns false, Ay can compute the value of b by measuring y’s
length.

But why should IsCycle( K, m1) return false? This follows from the AE security
of IT,.. Let us parse m; into (ci,...,¢c,), where each ¢; € {0, 1}*V is random.
When IsCycle(K,m1) returns true, it must be that Dec’(K, ¢;) did not return L.
But if this happens, then we can construct an adversary to break the AE security

of IT... The adversary simply queries D?;?’b(-) at a random point, observes if it

returns L or not, and outputs b = 0 or 1 depending on this observation.

We note that we could design an encryption scheme that does not have this
type of ciphertext-length behavior by giving a different attack that abuses the
fact that K is present in the ciphertext in one case, but not the other. We have
chosen to present the attack this way for simplicity only.

4 Counterexamples for Public-Key Encryption

4.1 Preliminaries and Algebraic Setting

Bilinear Groups. We work in a bilinear setting where there exists an efficient
mapping function e : G; X Gy — G7 involving groups of the same prime order p.
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Two algebraic properties required are that: (1) if g generates G; and h generates
Ga, then e(g,h) # 1 and (2) for all a,b € Z,, it holds that e(g%, h®) = e(g, h)*.

Decisional Diffie-Hellman Assumption (DDH): Let G be a group of prime
order p € ©(2*). For all PPT adversaries A, the following probability is 1/2 plus
an amount negligible in A:

pr | 970 < G;a,b <« Zp; 21 + g2 d + {0,1}; .

d <+ A(gagaagbv Zd) cd=d

Strong External Diffie-Hellman Assumption (SXDH): Let e : G; x Gg —
Gr be bilinear groups. The SXDH assumption states that the DDH problem is
hard in both G; and in G,. This implies that there does not exist an efficiently
computable isomorphism between these two groups. The SXDH assumption ap-
pears in many prior works, such as [21I38/32|T2IR6I249I25/2].

Indistinguishability and Pseudorandom Generators.

Definition 7 (Indistinguishability). Two ensembles of probability distribu-
tions {Xk}ren and {Yi}lren with index set N are said to be computationally
indistinguishable if for every polynomial-size circuit family {Dy}ren, there ex-
ists a negligible function v such that

|[Prjz « Xj: Di(x) =1 —Prly « Yi: Di(y) =1]|

is less than v(k). We denote such sets { Xy }ren ~ {Yi}ken.

Definition 8 (Pseudorandom Generator [30]). Let U, denote the uniform
distribution over {0,1}*. Let £(-) be a polynomial and let G be a deterministic
polynomial-time algorithm such that for any input s € {0,1}", algorithm G
outputs a string of length £(n). We say that G is a pseudorandom generator if
the following two conditions hold:

— (Expansion:) For every n, it holds that {(n) > n.
— (Pseudorandomness:) For every n, {Uppn)}n ~ {s < Uy, : G(s)}n.

The constructions of Section use a PRG where the domain of the function is
an exponentially-sized cyclic group.

4.2 Encryption Scheme II,,

We now describe an encryption scheme 1., = (KeyGen, Enc, Dec). It is set in
asymmetric bilinear groups e : Gy X Go — G of prime order p where we assume
that the groups G; and G, are distinct and that the DDH assumption holds in
both. We assume that a single set of group parameters (e, p, G1, G2, Gr, g, h),
where G1 = (g), Ga = (h), will be shared across all keys generated at a given
security level and are implicitly provided to all algorithms.
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The message space is M = {0,1} x Z% x Z7. Let encode : M — {0,1}¢(
and decode : {0,1}¥») — M denote an invertible encoding scheme where £(\)
is the polynomial length of the encoded message. Let F : G — {0, 1} be a
pseudorandom generator secure under the Decisional Diffie Hellman assumption.

(Recall that pseudorandom generators can be constructed from any one-way
function [28].)

KeyGen(1*). The key generation algorithm selects a random bit 3 < {0,1} and
random values a1, az < Zy. The secret key is set as sk = (8,a1,a2). We note
that sk € M. The public key is set as:

= 3 (0,elg, h)™, g%2) € {0,1} X Gr x Gy i 5 =0
PEZ N (1 e(g, ), he2) € {0,1) x G x Go if B = 1.

Encrypt(pk, M). The encryption algorithm parses the public key pk = (5, Y1, Y2),
where Y5 may be in G; or G2 depending on the structure of the public key,
and message M = (a, m1,mz) € M. Note that m; and my cannot be zero,
but these values can be easily included in the message space by a proper
encoding.

Select random 7 < Z, and R < Gp. Set I = F(R) @ encode(M).
Output the ciphertext C' as:

o= (gr7 R- Y{, }/Zrmz .gm17 I) lfﬁ — O;
(", ROYY, Y™ LIy ifg=1.

We note that in the first case, C € G x G x Gy x {0, 1}[(’\)7 while in the
second C € Go x G x G x {0, I}Z(A).

Decrypt(sk, C). The decryption algorithm parses the secret key sk = (8, a1, az)
and the ciphertext C' = (Cy, Ca, C3,Cy). Next, it computes:

o [(Carecmym g =0,
(Cofelg, C1) if B =1.

Then it computes M’ = F(R) @ Cy € {0,1}¥M and outputs the message
M = decode(M’).

Discussion. Like the circular-secure scheme of Boneh et al. [I3], the above cryp-
tosystem is a variation on El Gamal [20]. It is a practical system, which on first
glance might be somewhat reminiscent of schemes the readers are used to seeing
in the literature. The scheme includes a few “artificial” properties: (1) placing
a public key in either G; or Gz at random and (2) the fact that the ciphertext
value C3 is unused in the decryption algorithm. We will shortly see that these
features are “harmless” in a semantic-security sense, but very useful for recov-
ering the secret keys of the system in the presence of a two cycle. While it is
not unusual for counterexamples to have artificial properties (e.g., [16l23]), we
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can address these points as well] In the full version of this work [17], we show
that property (1) can be removed by doubling the length of the ciphertext. For
property (2), we observe that many complex protocols such as group signatures
(e.g., [12]) combine ciphertexts with other components that are unused in de-
cryption but are quite important to the protocol as a whole. Thus, we believe
our counterexample is not that far fetched. It is possible that such an attack
could exist on one of today’s commonly-used encryption algorithms.
We first show that I1.,, meets the standard notion of CPA security.

Theorem 3. Encryption scheme I, is IND-CPA secure under the Decisional
Diffie-Hellman Assumption in Gy and Gy (SXDH).

The proof is given in the full version of this work [I7]. It is relatively standard
and involves repeated applications of the DDH assumption and PRG security.

4.3 The Attack

Despite being IND-CPA-secure, cryptosystem Il.,, is not even weakly circular
secure for 2-cycles. Specifically, given a circular encryption of two keys, we show
that an adversary can distinguish another ciphertext with advantage 1/2. Our
adversary actually does much more than this: with probability 1/2 over the coins
used in key generation, it can recover both secret keys.

This is the first circular attack that allows the adversary to recover the secret
keys. (In the full version of this work [I7], we discuss how to improve these
probabilities to almost 1.) Our attack combines elements of both ciphertexts in
an attempt to recover sk 4, which can then be used to decrypt the first ciphertext
and obtain skp. It is counterintuitive that this is possible, given that it is easy
to see that IND-CPA-security guarantees that it is safe for one of them to send
their message.

Theorem 4. Il.p, is not IND-WCIRC-CPA2-secure.

Proof. We give PPT adversary A = (Aj, As) such that Adv%r;:iifc"a()\) is equal
to 1/2. Since IND-WCIRC-CPA security requires that this advantage be negligible,
this attack breaks security. The adversary proceeds as follows. The first stage of
the adversary, A;, obtains the two public keys, which we will write as pk 4 and
pk g, and an encrypted cycle, which we will write as (Ca, Cg).

If both keys have 8 = 0 or 8 = 1 (call this event E1), the adversary aborts and
instructs the second stage (Az) to output a random bit. Since the two keys are
independently generated by the challenger, this event will occur with probability
exactly 1/2. Below we will condition on F; not happening, and wlog assume that
pk 4 = (0,e(g,h)%, g%2) and pky = (1,e(g, h)’, h*?). The corresponding secret
keys ska = (0,a1,a2), skg = (1,b1,b2) are not known to the adversary.

3 While our scheme is different from that of Acar et al. [2], that scheme also has similar
artificial properties such as the presence of values that are not used in decryption.
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We write the given ciphertexts C4 = (ca.1,¢a,2,¢4,3,¢4,4) and Cp = (cB 1,
CB,2, CB,3, CB,4). A1 will output two arbitrary distinct messages, and request
that the challenge use pk 4. For the state passed to A, it now computes:

e(ca,n,¢B,3)

X :=cpyo- .
€(CA,3703,1)

Aj sets ska = decode(cp 4 ® F(X)) and passes this with the challenge messages
as state to As.

As receives a ciphertext y and the passed state. It parses sk 4 as a secret key
for Il.p, and computes Dec(sAkA,y), and tests if this is equal to either of the
challenge messages. If so, it outputs the corresponding bit. Otherwise it outputs
a random bit.

Let’s explore why this test works. Write C4 = Enc(pk 4, skp) and Cp =
Enc(pk g, ska). Then:

Ca = (can,ca2,ca3,CA4)

= (g",R-e(g,h)" ", g"*2% T F(R) @ encode(skp))
= (¢B,1,¢B,2,CB,3,CB.4)

(h%,S - e(g, h)*tr, h*@2%2 F(S) @ encode(sk 4))

for some r, s € Z, and R, S € Gr. Then we have that:

e(gT7 hsagbg)
e(gTa2b2+b1 , hs)

e(can,¢B,3)

=S-e(g,h)*r.
e(ca3,¢B,1) (9, h)

X = CB,2 -

elg, e

- 9. h)sot . —
S e(ga ) 6(97 h)?"sa2b2 . e(g7 h)3b1

Thus, A; recovers ska = sk as decode(cp .4 B F(S)), and A, will correctly guess
bit b in tlgis case.
Write b for the output of As. We have

Adv ?g:j";ﬁpa(x) = 2Prlb=b] —
= 2(Pr[b = b| By Pr[Ey ]+
Pr[b = b|-E1] Pr[-E1]) —
=2(1-1/2+1/2-1/2) -1
=1/2

This completes the proof.

4.4 Extension: A Counterexample for CCA Security

We show that there exists an IND-CCA-secure cryptosystem, which suffers a
complete break when Alice and Bob trade secret keys over an insecure channel;



New Definitions and Separations for Circular Security 555

i.e., transmit the two-key cycle E(pk 4, skp) and E(pk g, ska). Our construction
follows the “double-encryption” approach to building IND-CCA systems from
IND-CPA systems as pioneered by Naor and Yung [34] and refined by Dolev,
Dwork and Naor [19] and Sahai [37]. Our building blocks will be:

1. The IND-CPA-secure cryptosystem I, = (G, E,D) from Section @ Let
E(pk,m;r) be the encryption of m under public key pk with randomness 7.

2. An adaptively non-malleable non-interactive zero-knowledge (NIZK) proof
system with unpredictable simulated proofs and uniquely applicable proofs
for the language L of consistent pairs of encryptions, defined as:

I — (eo,e1,c0,c1) s Im,ro,m1 € {0,1}" s.t.
" 1 co = E(eg,m;19) and ¢; = E(ey, m;m1) ’

A proof system for L can be realized under relatively mild assumptions, such
as the difficulty of factoring Blum integers (e.g., [37]). One complication is that
the secret keys for this cryptosystem now change and the construction must be
adapted accordingly, so that the secret key can still be recovered by the adversary
during a circular attack. We show that this is possible.

5 Conclusion and Open Problems

In this work, we presented a natural relaxation of the circular security definition,
which may prove interesting for positive results in its own right. We demon-
strated that its guarantees are mot already captured by standard definitions
of encryption. To do this, we presented symmetric and public-key encryption
systems that are secure in the IND-CPA and IND-CCA sense, but fail catastroph-
ically in the presence of an encrypted cycle. This provides the first answer to the
foundational question on whether IND-CCA-security captures (weak or regular)
circular security for all cycles larger than self-loops. In either case, it does not.

Our work leaves open the interesting problem of finding a public-key coun-
terexample for cycles of size > 3. Secondly, while our symmetric counterexample
depended only on the existence of AE-secure symmetric encryption, our public-
key counterexample, like that of Acar et al. [2], required a specific bilinear map
assumption. It would be highly interesting to find a counterexample assuming
only that IND-CPA- or IND-CCA-secure systems exist.

Finally, we observe that our public-key counterexample contains a novel and
curious property — certain combinations of independently generated ciphertexts
trigger the release of their underlying plaintext. From Rabin’s é—OT system to
DH-DDH gap groups, the cryptographic community has a strong history of turn-
ing such oddities to an advantage. If we view a cryptosystem with this property
as a new primitive, what new functionalities can be realized using it?

Acknowledgments. The authors thank Ronald Rivest for the suggestion to
view the public key counterexample in Section Ml as a potential building block
for other functionalities.
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