Multiparty Computation with Faulty Majority*

Extended Announcement

Donald Beaver
Aiken Computation Laboratory
Harvard University

Abstract. We address the problem of performing a multiparty
computation when more than half of the processors are cooper-
ating Byzantine faults. We show how to compute any boolean
function of n inputs distributively, preserving the privacy of in-
puts held by nonfaulty processors, and ensuring that faulty pro-
cessors obtain the function value “if and only if” the nonfaulty
processors do. If the nonfaulty processors do not obtain the cor-
rect function value, they detect cheating with high probability.
Our solution is based on a new type of verifiable secret sharing
in which the secret is revealed not all at once but in small in-
crements. This slow-revealing process ensures that all processors
discover the secret at roughly the same time. Our solution as-
sumes the existence of an oblivious transfer protocol and uses
broadcast channels. We do not require that the processors have
equal computing power.

1 Introduction

Consider a network of n processors, each holding a pri-
vate input z;. Given a function f(z1,...,z.), the processors
must compute f while maintaining the privacy of the local
inputs.

The problem of correct and private multiparty computa-
tions in the presence of malicious faults has recently received
much attention. Yao [36] gave solutions for the two-party
case based on the intractability of factoring; Goldreich, Mi-
cali and Wigderson [22] gave solutions for the multiparty
case where less than half the processors are faulty based
on the existence of trapdoor functions and broadcast chan-
nels. Ben-Or, Goldwasser and Wigderson [4] and Chaum,
Crépeaun, Damgard [10] gave solutions based on the assump-
tion of private channels between pairs of processors, where
less than a third of the processors are faulty. The case of less
than half faults, with the additional assumption of broad-
cast channels, was solved by Ben-Or and Rabin [6] (see also
Beaver [1], Kilian [32]). Other adversary models were dis-
cussed by Chaum [11]. A particularly relevant work is by
Galil, Haber and Yung [26] in which an extension of Yao’s
method for two-party computation to n-party computation
is stated. We discuss their protocol and model and compare
its properties to our solution in §1.6.

1.1 Results
We consider the case that more than half the network

consists of cooperating Byzantine faults. The faulty proces-
sors are allowed probabilistic polynomial time. We assume

1The first author was supported in part under NSF grant CCR-
870-4513. The second author was supported in. part by NSF grant
CCR-8657527 with IBM matching funds, and US-Israel binational
grant.

CH2806-8/89/0000/0468/$01.00 © 1989 IEEE

468

Shafi Goldwasser
Laboratory for Computer Science
MIT

broadcast channels are available. Our main result is a com-
pleteness theorem for multiparty boolean protocols tolerat-
ing any number of faults.

Let n be the total number of players in the network and
t < n be the number of faulty players.

Let f: D1 X --- x Dn— GF(2) be any polynomial-
time boolean function.Our solution satisfies four essential
properties (formal definitions in §2):

¢ Independence of Inputs: The faulty players choose
and commit to their inputs z; independently of the
honest players inputs.

Privacy: At the the end of the execution of the pro-
tocol, ¢t Byzantine faults cannot to compute any more
information about honest players inputs than already
implied by the faulty players’ private inputs and out-
puts.

Validity: The honest players will either output the
value CHEATING (if the number of active Byzantine
faults is greater than n — t), or output v such that
v = f(z1, ., Bn).

Fairness: The faulty players have “no advantage”
over the honest players in “learning” the result of the
computation at any time of the computation.

Theorem 1 Let f be a boolean function of n variables rep-
resented by a polynomial size arithmetic circuit family. Let
the number of faults t satisfy t < n. Assume that a proto-
col for two party oblivious transfer exists. Then there exists
a protocol to compute f which achieves independence of in-
puts, privacy, validity and fairness.

The assumption of an oblivious transfer protocol is neces-
sary (see §1.4). Note that by [19],[21] a protocol for oblivious
transfer exists if trapdoor functions exist.

In this abstract we consider only the special case of a
single boolean function. In the full paper we show a solu-
tion also for the case that {fi} is a collection of probabilistic
polynomial time boolean computations defined on the pri-
vate inputs {z:} and processor i receives as output value
yi = fi(z1, .., Zn)-

1.2 Cheating and Restarting

Our protocols allow only a correct value to be computed,
if anything is computed at all. An unavoidable drawback is
that the majority rules; the faulty players can always prevent
a computation from completing.

We address this problem by presenting an extended so-
lution (in the final paper) which allows the protocol to be
restarted after a value CHEATING is output. We call this a

RESTART model. Upon restarting, all faulty players which
have been detected are cast out and given a default value.
The remaining players are not allowed to change their input.

Though this exiension may allow the faulty players some
bias on the final output for some functions, at least the hon-
est players are assured that they will ultimately obtain a
correct computation based on the inputs of those proces-
sors who have remained nonfaulty. Various protocols for
the restart model are in preparation for the general case in
[8] and the parity function in [25].

1.3 The Method: Slowly Reveal The Output

In the works of [22, 4, 10, 6, 1], the private circuit compu-
tation essentially consists of three stages: an input stage in
which the processors commit to their inputs via verifiable
secret sharing, a computation stage in which the result of
every circuit-gate is computed and kept as a shared secret
by all processors, and finally an output stage in which each
processor sends to all other processors his share of the fi-
nal circuit output. Using the set of all shares received, the
processors compute the output.

In all of these constructions, the condition 2t < n was
unavoidable in order to achieve the following two conditions:

(1) the faulty processors should not be able to recover
the secret output on their own; and

(2) the nonfaulty processors should be able to recover
the secret on their own even if the faulty processors quit
without sending their shares of the output.

We achieve condition (1) and a modification of condi-
tion (2), using a new technique to reveal secrets fairly. The
faulty processors cannot obtain the secret while prevent-
ing the honest players from obtaining the secret, even when
2t > n. Faulty processors which actively fail are identified
and cast out.

Our solution relies on a new idea: how to reveal a shared
secret slowly. Rather than simply broadcasting their shares
of the secret, the processors use a randomized protocol to
generate a sequence of coin flips biased toward the secret. If
enough faulty processors should quit or misbehave, the non-
faulty processors will detect the faults and withdraw with
as much information as the faulty processors, apart {rom
the last coin flip. Thus, the faulty processors can choose
to halt the computation, but they learn virtually the same
as the nonfaulty processors about the secret, and they are
identified as faulty.

The preceding discussion is adequate to describe the case
of randomly generated secrets. When the secret v corre-
sponds to the value of an arbitrary function computed on dif-
ferent inputs belonging to different processors, the situation
becomes more complicated. Different processors may have
different a priori probabilities to know the value of v. For
example, let f(z1,z2) = 1 AND z,, where the initial dis-
tribution of z,, z; is uniform over {0,1}. Clearly, if z; =0
and z2 = 1 then processor 1 knows the result a priori with
better probability than processor 2. Given a partial exe-
cution, the advantage that some processor may have over
others in knowing the result must be discussed with respect
to their initial advantage. One contribution of this paper is
a definition for fairness which addresses this issue (see §2.5).

Luby, Micali and Rackoff [33] present a result related to
our revealing method in which, based on the assumption
that distinguishing quadratic residues from non-residues is
a hard computational problem, two parties can exchange a
single bit secret by flipping a symmetrically biased coin such
that each player knows at most “one coin flip” more about

469

the other player’s secret than the other player knows about
his own. There, the bias of the coin is toward the other
player’s secret. Our solution has a similar flavor: at the
outset of the computation we prepare a sequence of secretly
shared bits, each of which is the secret result of a global
coin biased toward 0; during the output stage, we reveal the
result of the computation exclusive-ored with these secret
coins, one by one, to all the players. Our coin flip procedure
works for any n and ¢, and relies on the general assumption
that one-way functions exist.

1.4 Oblivious Transfer is Necessary & Sufficient

Our solution assumes the existence of a protocol for two-
party oblivious transfer (see §3 for definition) and the exis-
tence of a one-way function. A recent result of Bellare and
Cowen[8] shows that the existence of an oblivious transfer
protocol implies the existence of a one-way function, and
thus it is sufficient to assume that a two-party oblivious
transfer protocol exists.

The assumption of two-party oblivious transfer is neces-
sary since a completeness theorem for multiparty boolean
computation implies the existence of a two-party oblivious
transfer protocol. Let {bo, b1} be the input of the first player
and {r,c} € {0,1} the input of the second player. De-
fine f({ bo,b1},{ r,c},...) =r @ { b.}. By computing f the
network implements an oblivious transfer protocol between
players 1 and 2. Because a multiparty protocol which tol-
erates half or more faults can be projected into a two-party
protocol in which each party simulates half the network, a
two-party protocol for OT is implied [2].

Impagliazzo and Rudich[30] show that it will be hard to
prove that one-way functions alone are sufficient for imple-
menting two-party oblivious transfer. Their proof does not
apply directly to the setting of multiparty protocols, since
there may be additional, nonfaulty players to assist the two
parties performing the OT. In fact, when less than half the
network is faulty, the techniques of [4, 10, 6, 1] imply a
method for two-party OT based only on one-way functions
(the latter assumption replaces the assumption of private
channels). However, when half or more of the network is
faulty, we adapt the proof in [30] to the multiparty setting
by the projection argument of the previous paragraph [2]).

1.5 Noisy Channels

Kilian and Crépeau [31)],[18] have shown an information
theoretic reduction from the existence of noisy channels (see
(18] for definition) to two-party private circuit computation.

In final paper, we show in the multiparty case with faulty
majority, an infromation theoretic reduction from the exis-
tence of broadcast, private, and noisy channels to a mul-
tiparty private function computation as follows. All pro-
cessors must participate in an initialization phase. If no
complaints are made during initialization, results similar to
the cryptographic case can be achieved.

Theorem 2 Let f be a boolean function of n variables rep-
resented by a polynomial size arithmetic circuit family. Let
t < n be the the number of Byzantine faults. Given broadcast
channels, private and noisy channels between every pair of
processors, there exists a protocol to compute f such that if
all processors complete an initialization phase without broad-
casting a complaint, then for any polynomial p(n), with prob-
ability 1 — R‘;;, the protocol achieves independence of inputs,
privacy, validity, and fairness.

1.6 Comparison with Previous Work

Let us compare our solution to the work of [26] in which
an extension of Yao’s method for two-party computation
to n-party computation (where half or more of the proces-
sors may be faulty) is stated. In recent personal communi-
cation [27] the protocol was outlined to us. Assume that
trapdoor encryption schemes E: exist. Obliviously com-
pute an encryption of the global function being computed,
E:(f(21,...,7n)); then, reveal the trapdoor information ¢ bit
by bit to all the players. The claim is that if bad players quit,
the good players are only one bit of the trapdoor behind, and
thus the bad players “in some sense” have no computational
advantage over the good players in computing the result. To
formalize this, they require that the recovery procedure of
the good players (after the bad players quit) relies on the
bad players faulty program.

This requirement restricts the model in two ways:

1. It implicitly amounts to assuming equal or better com-
puting power and knowledge of algorithms on part of the
correct processors, since they can invoke the faulty programs
as a subroutine. This is often unrealistic. Say player A, the
Bank of America, and player B, a private investor, want to
compute a function which tells whether a certain stock is a
wise investment. Since the Bank has a thousand times the
computing power of the investor, it can quit the computa-
tion once it has enough of the trapdoor to determine the
result. Meanwhile, the investor cannot discover the result.

2. The faulty programs (including their decision of when
to abort the computation) cannot depend on the nonfaulty
recovery programs; thus an additional restriction to being
polynomial time bounded is put on the faulty players.

The method presented in this paper makes no such re-
striction.

It is interesting to note that in the model when non-faulty
players program is fixed in advance and does not depend on
the program of the faulty players, perfect fairness is not
achievable, by a generalization of a result of Cleve [15]. Let
n = 2. If p and ¢ are the maximal a priori probabilities of
the players to know the value of f(z1,22) given z; or z»
respectively, then for any two-party protocol running for k&
rounds there exists a quitting strategy of one player enabling
him to predict f with probability at least %,;&ﬂ better
than the other player [16]. Since a multiparty protocol tol-
erating a majority of faunlts can be projected as a two-party
protocol (tolerating one fault), the lower bound applies in
our model.

2 Definitions

In this section we give the background definitions needed to
state the properties of our solution.

2.1 Interactive Proofs, Protocols

A two-party protocolis a pair of interactive probabilistic Tur-
ing machines each'with a private input tape, a private ran-
dom tape, a private output tape, and a public output tape,
and sharing a common read-only input tape and two com-
munication tapes (readable by one, writable by the other).
See [24, 34] for definitions of interactive proof systems and
auxiliary-input zero-knowledge proofs.

A multiparty protocol is a set of interactive probabilistic
Turing machines { M1,...,M,}, each with a public input
tape, a private input tape, a private random tape, a pri-
vate output tape, and a public output tape, and sharing a
common read-only input tape and a common readable and
writable broadcast communication tape. The machines are

470

synchronized by a common clock, and in each round exactly
one machine is active.

Let 1% denote the security parameter. Let z; denote the
input of the ith processors. Let D; denote the domain in
which z; is selected. Let f: Dy x D2 x ... x D — V be the
polynomial time boolean function we want to compute

A maultiparty protocol for fis a multiparty protocol whose
common public input tape contains the security parameter
1* and a circuit description C; specifying the function which
the machines are to compute. The private input tape for
machine M; contains z; € D;.

Let T be a coalition, namely a subset of the processors
of size at most ¢, where ¢ is an upper bound on the allow-
able number of faults. The processors in T are replaced by
arbitrary machines M.

In this paper we will discuss multiparty protocols con-
sisting of three stages: input stage, computation stage and
output stage. We assume that C; is expressed using arith-
metic gates over some fixed finite field E.

2.2 Input Independence

A protocol for f achieves t-independence of inputs if for all
1 € T, for all probabilistic polynomial time predicates R,R;,

for all ¢ > 0, for all k sufficiently large, |prob(R ({%:i € T}, 1%))-

prob(Ri({Zili € T}, 1) R({ z; | § € T},1%))| < £ where 2
is the value committed by the i-th faulty player in the input
stage. This definition is an extention of the one in [13].

2.3 Privacy

The definition of privacy we apply is that of computational
privacy, which is analogous to zero-knowledge: a faulty coali-
tion must be able to generate a view of a run of the protocol
according to the same distribution as one produced by an
actual run of the protocol, given the faulty inputs and faulty
outputs.

Let the complete transcript of the execution including all
tapes and everything written on them during the course of
the execution be called a global view of the protocol, denoted
VIEW(&,). Here, # = <zi,...,z,> is the list of inputs
and & = <01,...,0,> is a list of auxiliary inputs to each
processor. The portion of the transcript corresponding to
tapes that are readable by members of T is called the view
of T, denoted VIEW (&, &), or VIEW for short.

We say that A protocol for f is computational-t-private
if for any coalition T of size ¢, there is a probabilistic poly-
nomial time simulator Mz such that for any # of inputs,
for any output f(Z), for every auxiliary input &, the ensem-
bles { VIEW(Z,&)} and { Mz(#7, dr)} are polynomially
indistinguishable. Here, Zr means the set of z; held by T.

2.4 Validity

We say that a protocol for f achieves validityif the nonfaulty
players either all output the special value CHEATING or all
output v such that for all ¢ > 0, for all k sufficiently large,
we have prob(v = f(&1,...,£a)) > 1 — ;& where (Vi) &; was
committed by player i in the input stage, and (Vi) nonfaulty
Z; = z; the initial input of the honest players.

2.5 Fairness

Our definition for fairness is motivated by definitions of like-
lihood and the weight of evidence frequently used in learning
theory.

When the protocol terminates we think of every player
as writing its current guess of the value of the function on its

private tape. We denote the i*® player’s guess at termination
as yi;. We denote the guess of the coalition of faulty players
at termination by yr.

Let X = (X1, ...Xn) be a vector of random variables dis-
tributed according to input distributions D1 x ... X Dy. Let
X7 be a random variable distributed according to the inputs
of faulty players. Let Z be a random variable which takes
on as a value the (possibly partial) history of an execution.

Define the following probabilities:

pi(zi,b) = prob(yi = bl X = z:)

PT(fi‘y b) = prob(yT = bl/\7T = 1;'5—-)

pi(zi,b,z) = problyi =blXi=1%:,2=2)

pr(zt,b,z) = problyr = blfT =7r,2 = 2)
Define odds(p) = £.

We say that a protocol for f with parameter d > 0 is d-
fairif for all coalitions T, for every i € T, for all input values
committed in the input stage, for all partial histories z,
and for all k sufficiently large:

odds(pr (27, (%)) _ odds(pr(st, f(Z), 2))
odds(pi(zi, f(£))) — odds(pi(zi, f(£),72))

odds(pr(zT, f(Z)))
odds(pi(z:, £(2)))

where § > %; We say that a protocol for f is fair if for
every parameter d > 0 it achieves d-fairness.

3 Tools

1+ 8)‘1 X

<(1+6)x

Two Party Protocols. In [36], a protocol for two-party
private circuit computation was given, based on the assump-
tion that factoring is hard. Goldreich, Micali, and Wigder-
son [22] generalized that result to rely on the existence of
any trapdoor one-way function. We give a new solution to
two-party private circuit computation based on the existence
of a protocol for two-party oblivious transfer.

Informally, a two-way party oblivious transfer protocol

here is defined by two probabilistic polynomial time in k
(the common security parameter) Turing machines A and
B which each have a private random tape, private input
tape, and private output tape. A has two private inputs
bo,b1 € {0,1} and B has a private value ¢ € {0,1}. At
the end of the protocol, B private output is b, with high
probability, and the probability that A’s output is ¢ is at
most 2 + ¢ (where ¢ is negligible.)
Simultaneous VSS. We shall require a threshold scheme,
namely a protocol which allows one processor to distribute
a secret ¢ so that (1) despite faults, a quorum of proces-
sors can reconstruct z; (2) any group of processors with less
than a quorum cannot obtain any information about z. (to
assure privacy, the quorum size must exceed the bound ¢ on
the number of possible faults); and (3) The protocol should
be verifiable in the sense that if the dealer of the secret
has not followed the protocol, then with high probability all
nonfaulty processors will discover it immediately.

Shamir’s method [35] for secret sharing involves selecting
a random polynomial f(z) of degree ¢ — 1 and free term s
and to privately send the piece piece;(s) = f(i) to player
i.Modification of this method making it a verifiable secret
sharing (VSS) scheme were given in {12, 22, 6, 20, 7} for the
case 2t < n.

471

When 2t > n, the minority of nonfaulty players can-
not force the secret to be reconstructed. We present a new
method for VSS which not only allows the nonfaulty players
to verify that the secret is correct if it is in fact revealed,
but which gives them equal knowledge of the secret if it is
only partially revealed. When the dealer distributes pieces
of a random polynomial, he must also broadcast encryptions
of the pieces and the coefficients of the polynomial, includ-
ing the free term. He gives zero-knowledge proofs that the
pieces interpolate to a t*® degree polynomial.

Theorem 3 Given a protocol for Oblivious Transfer, there
exists a protocol for Simultaneous Verifiable Secret Sharing
satisfying fairness, validity and privacy for any t < n.

4 The Protocol for Correct Processors

In this section we describe a protocol which satisfies the
properties of fairness, privacy, and correctness when the pro-
cessors are restricted to fail-stop errors; namely, all proces-
sors produce messages identical with their given programs,
but an adversary can cause them to halt at an arbitrary
time. In the final paper, we add further requirements to the
protocol in order to ensure that all processors behave or are
detected and disqualified.

The overall protocol is divided into Input, Evaluate, and
Output stages. During the Input stage, the processors agree
on encryption keys { Ei},_, , and { Ei;},,; (processor 1
knows the decryptions D;, Dij of E;, E;; for all j). They
broadcast encryptions of their inputs and their random tapes
and then verifiably secret share their inputs. We take the
encrypted input values as the true inputs of all players. The
advantage to using polynomial secret sharing is that in order
to abort the protocol an adversary must cause sufficiently
many Byzantine faults that every nonfaulty processor will
output CHEATING and be able to identify a large number
of faults.

4.1 The Circuit Evaluation Stage

Let the generic arithmetic circuit to be evaluated be Cy. We
consider two types of gates, one computing linear combina-
tions of inputs, the other computing products of inputs.

Linear combinations of secrets shared using polynomials
are straightforward: if f(z) and g(z) have free terms u and
v, then af(z) + bg(z) + ¢ is a polynomial of degree ¢t with
free term au + bv + c.

EVALUATE Cj.

For gates j = 1,...,size(Cy) do:

o Ifgate j is alinear combination z; = azy +bz+c,
set piece;(z;) = a - piece;(xx) + b - piece(z;) + c.

o If gate 7 is a prod-
uct z; = zxay, run the MULTIPLY-SECRETS
protocol using piece;(zx), piece;(z1).

Figure 1: Protocol to evaluate circuit Cy. (Code
for player i.)

Unlike addition, the multiplication of secrets is not a sim-
ple as multiplying piece,(u) - piece;(v). The result would in-
deed be an evaluation point of a polynomial h(z) = f(z)g(x)
such that h(0) = f(0)g(0) = uv, but the degree of h(z)
would be 2¢, which is too large. As in [4], techniques to re-
duce the degree of the product polynomial come in handy.
The techniques developed there do not apply here, since
there are an excess of faulty processors. We present here a
new method that solves the problem of multiplying secrets.

4.2 Synthesis of New Pieces

In order to provide each player with a piece of a random
polynomial H(z) of degree t and free term H(0) = h(0) =

uv, the system computes and broadcasts the values h(—1),...

It is then a matter of straightforward algebra for each pro-
cessor to express its new piece piece;(uv) = H(i) as a linear
combination of the publicized values and its private value
piece; (u) - piece, (v) = f(i)g(i).

Our technique is to reduce the problem of synthesizing a
new value h(m) to the problem of multiplying two weighted
sums of private pieces. This latter problem was solved by
Galil, Haber, and Yung for the field GF(2) in [26]. We
generalize their technique in the next section. First let us
present the reduction from synthesis to multiplying sums.

Recall the LaGrange interpolation polynomial,

Li(z) = H

J#E

T -7
i—J

The key observation is that

f(m) = E Li(m)f(3)

is a linear combination of private values, since each value
Li(m) is publicly known, while each p(i) is private.

We can now express h(m) as the product of two sums,
where the addends in each sum are weighted pieces of u and
v:

h(m) = f(m)g(m) = (3, Li(m)f())(2, Li(m)g(3))
= (22, Li(m) - piece, (w))(L; L;(m) - piece;(v))

4.2.1 Multiplying Sums

In [26], a scheme is presented for computing (@a;)(®b:),
where the a; and b; are bits. Let us address the general
problem of secretly computing (3 a:)(3_ b;), where proces-
sor 1 holds a; and b;. The solution is to run a collection of
pairwise computations for each i and j [26]. Each pair of
processors, t < j, computes the values (a;b; — r) for player
t and r for player j, where r is a newly generated uniformly
random field element. Clearly, this provides i and j with
values which are each uniformly random but together deter-
mine a:b;.

MuLTIPLY-SUM

e Forj=1i+41,...,N run MULTIPLY-PAIRWISE
on a; and b;, where player j supplies b;. Obtain
cij = a;b; —ry;. (Player j receives cj; = ri;.)

e Forj=1,...,i{— 1 run MULTIPLY-PAIRWISE
on a; and bj, where player j supplies b;. Obtain
cij = rji. (Player j receives cj; = ajbj — rj;.)

e Share the value s; = E;‘ cij. Receive a piece
piece;(s;) from every player.

¢ Run the secret addition protocol us-
ing piece;(s1),...,piece;(sn). Use piece; (z i)
as your piece of the result, s.

Figure 2: Protocol to multiply two sums of secrets.
(Code for player i.)

The two-party subprotocol MULTIPLY-PAIRWISE used
in MULTIPLY-SUM is based on two-party oblivious circuit

472

evaluation of the following functions: player A supplies a
and a random field element r4; player B supplies b and a
random field element rp; compute F = (ab—ra — rp) for

h(_Dlayex A; compute G = (r4 + rg) for player B.

3 Multiplying Secrets
Let H(z) be the unique polynomial of degree ¢ satisfying

H(z) = h(z) mod z'*1.

Then using the Chinese Remainder Theorem it is easy to ex-
press H (i) as alinear combination of k(i) and h(-1),..., h(-t).
This will be the new piece for player i. For simplicity we
omit a technical detail: a subprotocol which adds a random
polynomial r(z) of degree ¢t and r(0) = 0, to randomize the
coefficients of H(z).

MULTIPLY-SECRETS(U, V).
¢ Privately compute k(i) = f(¢)g(i).

e Use h(i) as input to a protocol to synthesize and
obtain h(~1),...,h(-t).

o Compute H(i) using the Chinese Remainder
Theorem, and let piece;(uv) = H(z).

Figure 3: Protocol to multiply two secrets.

5 Slowly Revealing the Output

In this section we describe a technique for revealing a secret
V without allowing the faulty processors to gain more than
a negligible amount of confidence in the result in excess of
the correct processors. We rely on the circuit evaluation
protocols of the previous section.

Recall that d is a parameter of the protocol specifying the
fairness constraint. The processors compute a polynomial
number of secret coins biased to 0 with probability exactly
1/2 + 1/k%. By exclusive-or’ing the secret with a coin and
then revealing the result, we obtain a sample of the secret’s
true value (cf. [33]). If the faulty processors prevent the
good players from seeing the exclusive-or’ed result, the good
players quit. At that point, the faulty players have at most
one additional sample of a coin slightly biased toward V.

Sampling a polynomial number of times, the processors
can deduce the value of V' with high probability.

Let R(z1,...,2Zn) = 21 ® --- & zn. If any z; is a uni-
formly random bit, then R is a uniformly random bit. Let
(21, -y Tppa) = 1if 214+ .. 4 2p5a > k441, else ¢ = 0. If
the inputs to ¢ are uniformly random bits, then the output
of ¢ is a coin biased to 0 with bias %+ 1%1 Figure 4 describes
the protocol.

It is easy to see that if the revelation finishes, then the
majority of the biased coin tosses is V with probability ex-
ponentially close to 1, so the nonfaulty players know the
result. On the other hand, if the nonfaulty players output
CHEATING, then the faulty players learn at most one ad-
ditional sample of V. Their odds of guessing V are at most
a factor 2y greater than that of the good players.

The cfescription of the underlying protocol for fail-stop
faults is complete. As per [22], we transform the protocol
into a protocol tolerating Byzantine faults by adding zero-
knowledge proofs to ensure that faulty processors behave
according to the protocol or are detected.

e Forl=1...k% do sequentially:
— Form =1...2k% do:

* Each player i chooses a random bit b;y, .
* Run EVALUATE-R(bim,...,bnm).
Let cm be the output.
— Run EVALUATE-¢(c1,...,¢yxa) to obtain
a secret, biased coin, ;.

Run EVALUATE-exor on V and e; to ob-
tain the masked result r;.

~ Each player i broadcasts his piece of rj.

|

Each player i interpolates r; if n — ¢ pieces
have been broadcast; otherwise he outputs
CHEATING .

e Output MAJORITY(r1,...,7x34)-

Figure 4: Protocol SLOWLY-REVEAL(V).

6 Extensions?

In the case that less than half the processors are faulty, ex-
tending the solution for boolean functions to general func-
tions is immediate. Because the nonfaulty majority rules, if
the network computes the bits of the output in parallel, all
of the output bits are guaranteed eventually to be output.

In the case of a faulty majority, however, the faulty pro-
cessors can choose to abort the computation after discov-
ering the result of a few of the output bits, which in some
situations may give them a large advantage by virtue of their
particular inputs and the particular function. This is best
illustrated by the following example for n = 2, = 1. Let
and y be drawn at random from { 0, 1}". Let f(z,y) =yifz
is even, and the bitwise complement ¥ of y otherwise. Then,
revealing the bits of the output f(z,y) slowly in parallel will
not work. At an intermediate point in the revealing process
the second player can favor y if the majority of his current
guesses for the outputs match y; otherwise he favors 7, while
the first player has no corresponding strategy.

This objection also applies to the solution of [26] out-
lined in §1.6. For general trapdoor functions, when part
of the trapdoor is revealed, it is no longer clear that the
probabilistic encryption scheme utilized is still as secure as
when none of the trapdoor was known. It is quite plausi-
ble that a polynomial time algorithm which knows half the
trapdoor bits might be able to guess an encrypted bit with
probability % One can assume that revealing a fraction of
the trapdoor does not affect the security of the encryption
scheme, but this can be shown quite unlikely for encryption
schemes based on RSA-like functions.

Acknowledgements Many friends helped us, especially in
discussions on the nature of fairness. We are particularly grate-
ful to Richard Cleve, Oded Goldreich and Yishai Mansour. The
observations about the necessity of an oblivious transfer proto-
col were obtained with Yishai. Thanks also to Benny Chor (via
Otto), Phil Klein, Nati Linial, and Ron Rivest.

References

[1] D. Beaver. “Secure Multiparty Protocols Tolerating Half Faulty
Processors.” Technical Report TR-19-88 (1988), Harvard Uni-
versity.

[2] D. Beaver, S. Goldwasser, Y. Mansour. Personal communication.

[3] D. Beaver, R. Cleve, S. Goldwasser. In preparation.

473

[4] M. Ben-Or, S. Goldwasser, A. Wigderson. “Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Com-
putation.” Proc. of 20°* STOC (1988), 1-10.

M. Ben-Or, O. Goldreich, S. Micali, R. Rivest. “Fair Contract
Signing.” Proc. of ICALP (1985).

M. Ben-Or, T. Rabin. “Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority.” Proc. of 21** STOC (1989).
J. Benaloh. “Verifiable Secret Ballot Elections” Yale University
PhD thesis.

M. Bellare, L. Cowen, S. Goldwasser. “On the Power of Secret
Key Exchange.” In preparation.

Blakely, “Security Proofs for Information Protection Systems.”
Proceedings of the 1980 Symposium on Security and Privacy,
IEEE Computer Society Press, NY (1981), 79-88.

D. Chaum, C. Crépeau , I. Damgérd . “Multiparty Uncondi-
tionally Secure Protocols.” Proc. of 20'* STOC (1988), 11-19.
D. Chaum. “Multi Party Protocols with Disruptors and Collud-
ers.” CRYPTO88 Rump Session.

B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. “Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of
Faults.” FOCS 1985.

B. Chor, M. Rabin. “Achieving Independence in a Logarithmic
Number of Rounds.”

B. Chor, E. Kushilevitz. “A 0/1 Law for Boolean Privacy.” Proc.
of 21** STOC (1989).

R. Cleve, “Limits on the Security of Coin Flips when Half the
Processors are Faulty.” Proc. of 19'* STOC (1986), 364-370.
R. Cleve, personal communication.

J. Cohen, M. Fischer. “A Robust and Verifiable Cryptographi-
cally Secure Election.” Proc. of 26'* FOCS (1985).

C. Crépeau , J. Kilian. “Achieving Oblivious Transfer Using
Weakened Security Assumptions.” Proc. of 29* FOCS (1989).
S. Even, O. Goldreich, A. Lempel. “A Randomized Protocol for
Signing Contracts.” Proc. of CRYPTO 1982, 205-210.

P. Feldman, “A practical scheme for Noninteractive Verifiable
Secret Sharing.” Proc. of 19** STOC (1987).

Goldreich, O., Micali, S., A. Wigderson. “Proofs that Yield
Nothing But Their Validity and a Methodology of Cryptographic
Protocol Design.” Proc. of 27'* FOCS (1986), 174-187.
Goldreich, O., Micali, S., A. Wigderson. “How to Play Any Men-
tal Game, or A Completeness Theorem for Protocols with Honest
Majority.” Proc. of 19** STOC (1987), 218-229.

0. Goldreich, R. Vainish. “How to Solve any Protocol Problem
~ An Efficiency Improvement.” Proc. of CRYPTO 1987.

S. Goldwasser, S. Micali, C. Rackoff. “The Knowledge Complex-
ity of Interactive Proof Systems.” Siam J. of Comp. Feb. 1989.
Y. Mansour. “Unbiased Protocols for Parity”. Personal commu-
nication.

Z. Galil, S. Haber, M. Yung. “Cryptographic Computation:
Secure Faulty-Tolerant Protocols and the Public Key Model.”
Proc. of CRYPTO 1989.

S. Haber, M. Yung. Personal communication.

S. Haber. “Multi-Party Cryptographic Computation: Tech-
niques and Applications.” Ph.D. Thesis, Columbia University,
1988.

S. Haber, S. Micali. personal communication.

R. Impagliazzo, S. Rudich. “Limits on The Provable Conse-
quences of One-Way Permutations.” Proc. of 21°* STOC (1989),
44-62.

J. Kilian. “Founding Cryptography on Oblivious Transfer.”
Proc. of 20** STOC (1988), 20-29.

J. Kilian, personal communication.

M. Luby, S. Micali, C. Rackoff. “How to Simultaneously Ex-
change a Secret Bit by Flipping a Symmetrically Biased Coin.”
Proc. of 24'* FOCS (1983).

Y. Oren. “On the Cunning Power of Cheating Verifiers: Some
Observations about Zero Knowledge Proofs.” Proc. of 19'*
STOC (1987), 462-471.

A. Shamir. “How to Share a Secret.” CACM 22 (1979), 612-613.
A. Yao. “How to Generate and Exchange Secrets.” Proc. of 27'*
FOCS (1986), 162-167.

[s}
6]
7
(8]
[9]

[10]
11]
[12}

[13]
(14}
[15]

[16)
(7

18]
[19)
(20]
[21]
[22)
(23]
[24]

[2s]

[26]

[27)
(28]

[29]
30]

[31)

[32)
[33]

[34]

[35)
[36)

