
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE
http://cjtcs.cs.uchicago.edu/

Kolmogorov Complexity, Circuits, and the
Strength of Formal Theories of Arithmetic

Eric Allender∗ George Davie Luke Friedman† Samuel B. Hopkins‡

Iddo Tzameret§

April 23, 2013

Abstract: Can complexity classes be characterized in terms of efficient reducibility to the
(undecidable) set of Kolmogorov-random strings? Although this might seem improbable,
a series of papers has recently provided evidence that this may be the case. In particular,
it is known that there is a class of problems C defined in terms of polynomial-time truth-
table reducibility to RK (the set of Kolmogorov-random strings) that lies between BPP and
PSPACE [5, 4].

The results in this paper were obtained, as part of an investigation of whether this upper
bound can be improved, to show

BPP⊆ C⊆ PSPACE∩P/poly. (∗)

In fact, we conjecture that C= BPP = P, and we close this paper with a discussion of the
possibility this might be an avenue for trying to prove the equality of BPP and P.

In this paper, we present a collection of true statements in the language of arithmetic,
(each provable in ZF) and show that if these statements can be proved in certain extensions
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of Peano arithmetic (PA), then (*) holds. Although it was subsequently proved that infinitely
many of these statements are, in fact, independent of those extensions of PA [1], we present
these results in the hope that related ideas may yet contribute to a proof of C = BPP, and
because this work did serve as a springboard for subsequent work in the area [1].

1 Introduction

Kolmogorov complexity provides a mathematically precise definition of the set R of “random” strings.
Actually, it provides at least two distinct but closely-related notions of randomness that we will need to
discuss here, one defined in terms of the prefix Kolmogorov complexity function K, and one defined in
terms of the plain Kolmogorov complexity function C.1 This yields the two sets that lie at the center
of this paper: RK = {x : K(x)≥ |x|} and RC = {x : C(x)≥ |x|}. When it is not important to distinguish
between K and C we will simply refer to R.

It is known that PSPACE ⊆ PR [3], but it is unknown if any larger class such as EXP is in PR.
In this paper we will focus especially on polynomial-time truth-table reductions (also known as non-
adaptive reductions) ≤p

tt; our motivation comes in part from a theorem of Buhrman et al., showing
BPP⊆ {A : A≤p

ttR} [5].
Because no larger complexity classes have been shown to be reducible to R in this way, we are

interested in the question of whether these inclusions are optimal in some sense. It was observed earlier
[2] that the class {A : A≤p

ttRC} contains arbitrarily complex decidable sets: that is, for every computable
time bound t there is a decidable set A 6∈ DTIME(t(n)) such that A≤p

ttRC. Thus this does not look very
much like a complexity class. But the same paper also suggested that a more promising avenue was
to investigate the classes of problems that are always reducible to R, no matter which universal Turing
machine was used to define the Kolmogorov functions C and K. This gives rise to the following classes:

Definition 1.1. As usual, let ∆0
1 denote the class of decidable sets. Let CU denote the plain Kolmogorov

complexity function as given by universal Turing machine U , and let KU denote the prefix complexity
function as given by universal prefix Turing machine U . Define

• CC = ∆0
1∩

⋂
U{A : A≤p

ttRCU}.

• CK = ∆0
1∩

⋂
U{A : A≤p

ttRKU}.

In each case, the intersection is taken over all universal Turing machines U .2 See Section 2 for more
background and definitions relating to Kolmogorov complexity.

The first upper bound on the complexity of sets in CK was provided recently: CK ⊆ PSPACE [4]. (We
conjecture that similar bounds hold for CC, but at present it is still unknown whether CC = ∆0

1.) Thus, in
particular, we have

BPP⊆ CK ⊆ PSPACE⊆ PR.

1We provide a brief introduction to some basic notions of Kolmogorov complexity in Section 2. For a more comprehensive
introduction to the topic, we refer the reader to standard texts such as [13, 6].

2It was recently announced [14] that CK is equal to
⋂

U{A : A≤p
ttRKU }. That is, any set in this intersection is decidable.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2

http://dx.doi.org/10.4086/cjtcs


KOLMOGOROV COMPLEXITY, CIRCUITS, AND THE STRENGTH OF FORMAL THEORIES OF ARITHMETIC

We conjecture that CK is actually equal to BPP. The results in this paper were proved as part of an
attempt to establish a slightly weaker conjecture:

BPP⊆ CK ⊆ PSPACE∩P/poly.

This, in turn, would follow from the following, which lies at the center of the present investigation:

Conjecture 1.2. A= {A ∈ ∆0
1 : A≤p

ttR} ⊆ P/poly. That is, no matter which universal machine U is used
to define C or K, {A ∈ ∆0

1 : A≤p
ttRC} ⊆ P/poly and {A ∈ ∆0

1 : A≤p
ttRK} ⊆ P/poly.

Our main technical contribution is to build a set of formulas {ΨA(n, j,k)}A∈A in the language of
Peano Arithmetic, and for each A ∈A present a proof (which can be formalized in certain extensions of
Zermelo-Frankel, or ZF) of the statement ∀n∀ j∀kΨA(n, j,k). We then show that if for each A ∈A, and
each fixed tuple (n,j,k), the true statement ΨA(n,j,k) is provable in certain extensions of Peano Arithmetic,
then Conjecture 1.2 holds.3

At the time that the results in this paper were originally submitted for publication, we believed
that a plausible approach to prove Conjecture 1.2 would be to show that proofs of ΨA(n,j,k) exist in
these extensions of PA. However, it is now known that infinitely many of the statements ΨA(n,j,k) are
independent of these extensions of PA [1]. In light of these developments, the reasons for publishing
these results are:

• They served as a springboard for the subsequent work of [1], including results having a flavor
similar to Conjecture 1.2, but in the context of Kolmogorov complexity with (large) time bounds,

• The connection between Conjecture 1.2 and proof theory is of some independent interest, and

• Perhaps a more sophisticated argument, based on our general approach, may yet serve to prove
Conjecture 1.2.

Recall that, if Conjecture 1.2 holds, then BPP⊆ CK ⊆ PSPACE∩P/poly. Thus we think that it is very
reasonable to conjecture that CK = BPP. But in fact we conjecture more. We believe that CC = CK = P.
In fact, for limited classes of truth-table reductions, equalities of this form are known. In particular, it has
been shown that ∆0

1∩
⋂

U{A : A≤p
dttRCU}= ∆0

1∩
⋂

U{A : A≤p
⊕ttRCU}= P [2].

In Section 7 we speculate about the possible advantages of pursuing this avenue toward the goal of
proving BPP= P. At a minimum, we believe that our results raise the possibility that various mathematical
techniques (e. g., from proof theory) might be relevant to the BPP vs. P problem, where such a connection
may have seemed less likely before. Certainly the connection surprised some of the authors.

2 A Warm-Up Result

In this section we start with some basic definitions, and then present an easy theorem that provides
intuition for Conjecture 1.2 and whose proof will help motivate some additional definitions.

3We use the familiar convention that (bound or free) variables are represented by italic characters, as in “ΨA(n, j,k)” whereas
bold-face characters are used, when a variable is replaced by a term of the form 1+1+ · · ·+1, as in “ΨA(n,j,k)”.
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We say that a language A polynomial-time truth-table reduces to a language B, denoted by A≤p
ttB, if

there exists a polynomial-time machine M that computes A when given B as an oracle, with the additional
requirement that, on input x, M must compute the query set Q(x) of all queries it will ask the oracle B
before receiving answers to any of its queries.

We will consider only truth-table reductions in this paper; as such we will write MA to indicate that
machine M is using a set A as an oracle, and it will be implicit that the oracle access is non-adaptive.

The plain Kolmogorov complexity of a string x with respect to a Turing machine M is defined as
CM(x) .

= min{|y| : M(y) = x}. A universal Turing machine is a machine U such that for all M and all
x, CU(x)≤CM(x)+ cM, where cM is a constant depending only on M. At times the choice of reference
machine is not important as long as we choose a universal machine; when this is the case we fix some
universal machine U and write C(x) in place of CU(x). We then define the Kolmogorov random strings to
be the set RC = {x : C(x)≥ |x|}.

In many settings where Kolmogorov complexity arises, it is more appropriate to use what is known
as prefix complexity. A Turing machine M is called a prefix machine, if, for any string x on which M
halts, it is the case that M does not halt on any string of the form xy for any non-empty string y. That
is, the domain of the machine must form a prefix code. Given such a prefix machine M, we define
KM(x) .

= min{|y| : M(y) = x}. A universal prefix Turing machine is a prefix machine U such that for all
prefix machines M and all x, KU(x)≤ KM(x)+ cM , where cM is a constant depending only on M. Similar
to the case with plain complexity, we fix some universal prefix machine U and write K(x) in place of
KU(x). We refer to the set of random strings under this version of Kolmogorov complexity as RK .

All our theorems about random strings from this paper work for both RC and RK ; we will prove them
with respect to RC and simply write R for the set of random strings, but in Section 5 we indicate how to
adjust the proofs to work for RK as well.

For a set S of binary strings, let S≤k be the set of all strings in S that have length at most k; i. e.,
S≤k = ∪i≤kS∩{0,1}i. Let Vk be the set of all sets of binary strings that only contain strings of length
at most k; i. e., Vk = P({0,1}≤k), where P denotes the powerset operation and {0,1}≤k is shorthand for
({0,1}∗)≤k.

The complement of R is computably-enumerable; therefore there is a Turing machine E that outputs an
enumeration x1,x2,x3, . . . of all nonrandom strings. We define Rk,0 = {0,1}≤k, and Rk,i to be Rk,i−1\{x j},
where x j is the ith non-random string of length at most k in the enumeration. One can view Rk,i as an
updated approximation to R≤k after i nonrandom strings of length at most k have been discovered. Note
that for some i∗, Rk,i∗ = R≤k, and that for all i > i∗, Rk,i is undefined, since there are no further nonrandom
strings of length at most k to be discovered. Even though Rk,i is undefined for all i > i∗, in order to make
the following proposition easier to read we state “∀i∃V ⊆ Rk,i . . .” as a shorthand for “for all i for which
Rk,i is defined, there exists a V ⊆ Rk,i . . .” We refer the reader to the Appendix, Section 8 for additional
details regarding how to make precise certain details that we present at a more intuitive level.

Proposition 2.1. Let A ∈ A, and let M be a polynomial-time Turing machine running in time f (n)
computing a truth-table reduction from A to R. Then

1. If ∃d∀n∃Vn ∈ Vd+log f (n)∀x ∈ {0,1}n MVn(x) = A(x), then A ∈ P/poly.

2. ∃d∀n∀x ∈ {0,1}n∀i∃V ⊆ Rd+log f (n),i such that MV (x) = A(x).
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This proposition resembles an earlier observation from [2], but adds the condition in Part 2 that
V ⊆ Rd+log f (n),i.4 The following is an informal interpretation of the proposition. Part 1 states that if
for each n there is some oracle that (a) says that all “long” queries are nonrandom and (b) makes the
reduction work for all x of length n, then A ∈ P/poly. Part 2 says something similar to the hypothesis
of Part 1, but weaker: although there might not be a single such oracle that works for all x, for every x
there is some such oracle that works for that x (and furthermore is a subset of R≤d+log f (n)). Thus, in some
sense it is consistent for an oracle to say that all long queries are nonrandom, although this might entail
giving incorrect answers to short queries; see Section 6 for more on this topic.

Proof. Part 1 is easy. On inputs of size n the advice string is just an encoding of Vn. Because |Vn| ≤
2d+log f (n)+1, the advice can be encoded using nO(1) bits.

Now, we prove Part 2. Suppose, for the sake of contradiction, that ∀d∃n∃x ∈ {0,1}n∃i∀V ⊆
Rd+log f (n),i MV (x) 6= A(x).

Let Q(x′) be the set of queries that M asks on an input x′. Note that because M runs in time f (n),
|Q(x′)| ≤ f (|x′|). Let T be the Turing machine that, on input (d,r), does a dovetailing search until it finds
some tuple (n′,x′, i′) such that for all V ⊆ Rd+log f (n′),i′ , MV (x′) 6= A(x′). (This is where we make use of
the assumption that A is decidable.) By our assumptions, it is guaranteed that T will find such a tuple. T
then outputs the rth element of Q(x′).

The machine T demonstrates that for all queries z ∈ Q(x′), C(z)≤ 2logd + log f (n′)+ cT , where cT

is some constant large enough to encode all the information needed to describe T , including f ,E,M and
the algorithm N that decides membership in A.

However, for the tuple (n′,x′, i′) that T finds, the oracle V ∗ = R≤d+log f (n′) which agrees with R on all
short queries and says that all long queries are nonrandom causes M to give the wrong answer on input x′,
in the following sense:

• V ∗ = R≤d+log f (n′) ⊆ Rd+log f (n′),i′ , and

• MV ∗(x′) 6= A(x′) = MR(x′).

Because MV ∗(x′) 6=MR(x′), there must be some query z∈Q(x′) such that z∈ R and |z|> d+ log f (n′).
However, we know that the Kolmogorov complexity of this z is low, so for sufficiently large d this is a
contradiction: when d is large enough, we have that 2 logd + log f (n′)+ cT < d + log f (n′).

Here is an idea for how we can improve on Proposition 2.1, by deriving additional conclusions about
V in part 2 of Proposition 2.1. The condition that V ⊆ Rd+log f (n),i can be viewed as restricting the set of
V ’s that need to be considered; the proof relies only on the fact that R≤d+log f (n) ends up being one of the
possible V ’s. Thus, in the proof of Proposition 2.1, as the machine T enumerates nonrandom strings as part
of its dovetailing search, we can view this process as T “proving” that certain sets V cannot be R≤d+log f (n).
But enumerating a nonrandom string z such that z ∈ V is not the only way to prove that a set V is not
R≤d+log f (n). For instance, one can prove that for each k, a constant fraction of strings of length k are in R
(see, e. g., [12]). Therefore, if the cardinality of a set V is too small, one can prove that V 6= R≤d+log f (n)

4Adding the condition “Vn ⊆ Rd+log f (n),i∗” to Part 1 results in a false statement [1]! However, the hypothesis of Part 1, as
stated, still seems plausible. Additional discussion of this point can be found in [1].
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without explicitly enumerating a nonrandom string z such that z ∈V . This suggests that we construct the
machine T to consider more general proofs that a set V is not equal to R≤d+log f (n) than just those proofs
based on enumerating nonrandom strings. Theorem 4.1 and Theorem 4.3 strengthen Proposition 2.1, by
concluding not only that V ⊆ Rd+log f (n),i, but also that there is no proof that V 6= Rd+log f (n),i.

This motivates some of the definitions in the next section about formal proof systems.

3 Preliminaries and Notation

3.1 Encoding in Formal Theories

We consider the first-order system Peano Arithmetic (PA) augmented with additional axioms. We will be
concerned with languages from the set A= {A ∈ ∆0

1 : A≤p
ttR}. A language A ∈A will be encoded as a

finite string 〈M,N〉, where N is a Turing machine that computes A, and M is a clocked polynomial-time
Turing machine computing the truth-table reduction from A to R. Note that any A ∈A can be specified by
two such machines; for all A ∈A we fix some such encoding. For a fixed A, we let tA(n) denote an upper
bound on the running time of M, which is bounded by nc for some constant c.

For a given A ∈A encoded by 〈M,N〉, PA may not be able to prove that N halts on every input, or that
for all x, MR(x) = N(x). Therefore we define a predicate Hyp(A), which is an encoding of the sentence
“∀x N halts on input x and MR(x) = N(x)”, corresponding to the hypothesis A ∈A. For each A ∈A, we
define the system PAA to be PA augmented with the additional axiom Hyp(A). Since Hyp(A) is true, PAA

is consistent if PA is.
We also define hierarchies based on these PAA systems as follows. We define PAA

0 to be PAA, and
for each k > 0, define PAA

k to be PAA
k−1 augmented with an extra axiom con(PAA

k−1) stating that PAA
k−1 is

consistent. We also define PAA
ω to be PAA augmented with an extra axiom encoding “For all k, con(PAA

k )”.
The statement of Part 2 of Proposition 2.1 says “∃d . . . ” – but in fact we will find it useful to be

much more explicit about the value of d. The analysis of Part 2 of Proposition 2.1 works as long as we
pick d so that cT +2logd < d. In subsequent arguments we will use a similar style of reasoning, using
slightly more complicated machines T , and of course the choice of universal Turing machine U that is
used to define Kolmogorov complexity will also contribute, but in all cases 2|〈M,N〉|+2|U |+225 is a
conservative over-estimate on the size of cT . Thus, if we define dA to be 8(|〈M,N〉|+ |U |+225), and we
define gA(n) to be dA + log tA(n), then we can restate Part 2 of Proposition 2.1 as follows:

For all A ∈A,
∀n∀x ∈ {0,1}n∀i∃V ⊆ RgA(n),i such that MV (x) = A(x).

Note that the proposition remains true, even if we replace gA by a somewhat larger function. For
technical reasons, we will find it useful to define gA(n) to be dA +2logn+ log tA(n).

3.2 Other definitions

For a set V we define LA(n,V )
.
= {x∈{0,1}n : MV (x)=N(x)}, where A is encoded as 〈M,N〉 as described

in the previous section. That is, LA(n,V ) is the set of all x’s of length n for which M computes the correct
answer when V is substituted in as the oracle in the truth-table reduction in place of R.
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Later on, we will consider a graph whose vertices correspond to different possible V ’s, and where a
vertex V has “label” LA(n,V ). Recalling the definition of gA(n) at the end of Section 3.1, note that Part 1
of Proposition 2.1 still holds when restated as follows:

Proposition 3.1. For all A ∈A, if ∀n∃Vn ∈ VgA(n) such that LA(n,Vn) = {0,1}n, then A ∈ P/poly.

Given any A ∈A and any sets B⊆ VgA(n) and V ∈ VgA(n), we define

SA(n,B,V )
.
=

⋃
V ′⊆V : V ′ 6∈B

LA(n,V ′)

Informally, we think of B as an excluded set of sets, or “bad” V ’s. Thus SA(n,B,V ) is the set of all
strings x that “label” some subset of V that is not in the set B.

With these definitions in hand, we can now restate Part 2 of Proposition 2.1 as follows:

For all A ∈A, ∀n∀i SA(n, /0,RgA(n),i) = {0,1}
n.

Restating things once more, we obtain the following useful corollary, which we claim is provable in
PAA for all A ∈A. (To see this, observe that the proof of this corollary follows exactly along the lines of
the proof of Proposition 2.1, which can be formulated in PA.)

Corollary 3.2. If SA(n, /0,V ) 6= {0,1}n, then ∀i V 6= RgA(n),i.

One more definition is necessary. We define BA(n, j,k) to be the set of all V ∈ VgA(n) such that there
is a PAA

k proof of length at most j of the suitably-encoded sentence “∀i,V 6= RgA(n),i”. Think of BA(n, j,k)
as being a set of V ’s that can be proved to be “bad” (i. e., not equal to R≤gA(n)) via a PAA

k proof of length j.

4 Main Results

Our main focus in this paper is Conjecture 1.2, which we restate below.
Conjecture 1.2 {A ∈ ∆0

1 : A≤p
ttR} ⊆ P/poly.

Before stating and proving our main theorem, which concerns a hierarchy of proof systems PAA
k for

various k, we state and prove a simpler version that focuses on PAA and PAA
1 :

Theorem 4.1. Let ΨA(n, j) be the formula ∀i SA(n,BA(n, j,0),RgA(n),i) = {0,1}
n.

1. For all A ∈A, the sentence ∀n∀ j ΨA(n, j) is true and provable in PAA
1 .

2. If for all A ∈A, and each fixed pair (n, j), PAA proves ΨA(n, j), then Conjecture 1.2 is true.

Before giving the proof, the reader may wish to understand the relationship between Theorem 4.1 and
Proposition 2.1. Part 1 of Theorem 4.1 is stronger than Part 2 of Proposition 2.1, by adding the condition
that there not be a short proof of the sentence ∀iV 6= RgA(n),i. Part 2 of Theorem 4.1 is proved by showing
that the hypothesis of Part 2 of Theorem 4.1 implies the hypothesis of Part 1 of Proposition 2.1.
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Proof. (of Part 2)
Let ΦA(n, j,V ) be the formula “If SA(n,BA(n, j,0),V ) 6= {0,1}n then ∀i V 6= RgA(n),i”. Note that

ΨA(n, j)→ΦA(n, j,V ) (4.1)

and this implication is provable in PAA.
Suppose that for each A ∈A and each fixed pair (n, j), PAA proves ΨA(n, j).
Let A ∈A and 〈M,N〉 be the encoding of A. To prove Conjecture 1.2 we must show that A ∈ P/poly.

Suppose for contradiction that A 6∈ P/poly. Then, for some n, by Proposition 3.1 there does not exist a set
V ∈ VgA(n) such that LA(n,V ) = {0,1}n.

Choose an n with this property. We define a directed graph Gn as follows. For each V ∈ VgA(n) there
is a node in Gn. The graph Gn is leveled, with level h containing all V ’s of cardinality h. There is an edge
from a node V to a node V ′ in Gn if and only if V ⊂V ′ and |V ′|= |V |+1. Thus Gn is a rooted, layered,
directed graph with the empty set as root.

We make use of the following claim:

Claim 4.2. For every V ∈ VgA(n) there is a PAA proof of the sentence ∀i V 6= RgA(n),i.

Proof. The proof is by induction on |V |.
For the basis case, when V = /0, a simple counting argument that can be formalized in PAA proves

that there are random strings of every length, and hence PAA proves ∀i /0 6= RgA(n),i.
Now assume inductively that for all V ′ ∈ VgA(n) such that |V ′|< h there is a PAA proof of the sentence

∀i V ′ 6= RgA(n),i. Let V ∈ VgA(n) with |V |= h. To prove the claim, it suffices to show that there is a PAA

proof of the sentence ∀i V 6= RgA(n),i.
By the inductive hypothesis, for some j′, we have that {V ′ : V ′ ∈ VgA(n) ∧ |V

′| < h} ⊆ BA(n, j′,0).
Since, in the graph Gn−BA(n, j′,0), V has indegree zero, it follows from the definition of SA(·, ·, ·) that
PAA proves

SA(n,BA(n, j′,0),V ) = LA(n,V ),

and by the choice of n we have LA(n,V ) 6= {0,1}n. Hence PA proves that SA(n,BA(n, j′,0),V ) 6= {0,1}n.
By assumption we have that PAA proves ΨA(n, j′), so by (4.1) we have that PAA proves

“If SA(n,BA(n, j′,0),V ) 6= {0,1}n then ∀i V 6= RgA(n),i”.

Therefore PAA proves ∀i V 6= RgA(n),i.

Therefore, by Claim 4.2 we have that PAA proves ∀i {0,1}≤gA(n) 6= RgA(n),i. However, by definition,
{0,1}≤gA(n) = RgA(n),0, which implies that PAA is inconsistent. By the consistency of PAA (which is
provable in, say, ZFA), we therefore get a contradiction. Thus we conclude that A is in P/poly.

Proof. (of Part 1)
Let A ∈ A be encoded by 〈M,N〉, and suppose for contradiction that there exists (n, j) such that

¬ΨA(n, j).
This implies that for some i, SA(n,BA(n, j,0),RgA(n),i) 6= {0,1}

n.
Let T be the following machine. On input (n,r), T does a dovetailing search until it finds some tuple

(x, j′, i′) such that x is a string of length n that is not in SA(n,BA(n, j′,0),RgA(n),i′). PAA can argue that
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under the assumptions, T is guaranteed to find such a tuple. T then computes Q(x), and outputs the rth
element of Q(x).

The input (n,r) to T has length at most 2 logn+ log tA(n). By the discussion at the end of Section 3.1,
this implies that for all queries z ∈ Q(x), C(z) ≤ gA(n), so there can be no z ∈ Q(x)∩ R such that
|z| > gA(n). Thus PAA can argue that MR(x) = MR≤gA(n)

(x), since these oracles answer all queries of
length at most gA(n) identically, and by the previous sentence they answer queries from Q(x) of length
greater than gA(n) identically as well.

Therefore PAA can argue the following points:

• ∃i∗ < 2gA(n)+1 R≤gA(n) = RgA(n),i∗ .

• ∃V ∗ ∈ VgA(n) V ∗ = RgA(n),i∗ .

• A(x) = MR(x) = MR≤gA(n)
(x) = MV ∗(x).

• If V ∗ 6∈ BA(n, j′,0) then x ∈ SA(n,BA(n, j′,0),RgA(n),i′).

(The last item follows from the others together with the definition of SA(·, ·, ·).)
Therefore, since from the way x was obtained we also have that x 6∈ SA(n,BA(n, j′,0),RgA(n),i′), PAA

can conclude that V ∗ is in BA(n, j′,0). From the definition of BA(n, j′,0) this means that PAA can conclude
that there is a length j′ proof in PAA of the sentence ∀i V ∗ 6= RgA(n),i.

However, we have that V ∗ = RgA(n),i∗ , and as the relation R(k,V, i) with intended meaning “V = Rk,i”
can be defined by a Σ0

1 formula, PAA can conclude that there is a PAA proof of V ∗ = RgA(n),i∗ . (See the
Appendix, Section 8, for more details on this.) Therefore PAA proves that PAA is inconsistent. In PAA

this gets us very little, but in PAA
1 this is a contradiction. Thus PAA

1 proves ∀n∀ jΨA(n, j).

Already when we originally submitted this work for publication, we recognized that it was reasonably
likely that the hypothesis of Part 2 of Theorem 4.1 is false. (Subsequently this was shown by [1].) But we
held out hope that, by considering stronger theories, this obstacle could be avoided. This led us to our
main theorem:

Theorem 4.3. Let ΨA(n, j,k) be the formula ∀i SA(n,BA(n, j,k),RgA(n),i) = {0,1}
n.

1. For all A ∈A, the sentence ∀n∀ j∀k ΨA(n, j,k) is true and provable in PAA
ω .

2. If for all A ∈A and each fixed tuple (n, j,k) there exists an l such that PAA
l proves ΨA(n, j,k), then

Conjecture 1.2 is true.

Proof. The proof of Part 2 is almost identical to that of Theorem 4.1, and we omit it here.
The proof of Part 1 is very similar to that of Theorem 4.1 as well, but we include it here for

completeness.
Let A ∈ A be encoded by 〈M,N〉 and suppose for contradiction that there exists (n, j,k) such that

¬ΨA(n, j,k).
This implies that for some i, SA(n,BA(n, j,k),RgA(n),i) 6= {0,1}

n.
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Let T be the following machine. On input (n,r), T does a dovetailing search, until it finds some tuple
(x, j′,k′, i′) such that x is a string of length n that is not in SA(n,BA(n, j′,k′),RgA(n),i′). PAA can argue that
under the assumptions, T is guaranteed to find such a tuple. T then computes Q(x), and outputs the rth
element of Q(x).

The input (n,r) to T has length at most 2 logn+ log tA(n). By the discussion at the end of Section 3.1,
this implies that for all queries z ∈ Q(x), C(z) ≤ gA(n), so there can be no z ∈ Q(x)∩ R such that
|z|> gA(n). Thus PAA can argue that MR(x) = MR≤gA(n)

, since these oracles answer all queries of length
at most gA(n) identically, and by the previous sentence they answer queries from Q(x) of length greater
than gA(n) identically as well.

Thus PAA can argue the following points:

• ∃i∗ < 2gA(n)+1 R≤gA(n) = RgA(n),i∗ .

• ∃V ∗ ∈ VgA(n) V ∗ = RgA(n),i∗ .

• A(x) = MR(x) = MR≤gA(n)
(x) = MV ∗(x).

• V ∗ 6∈ BA(n, j′,k′) implies x ∈ SA(n,BA(n, j′,k′),RgA(n),i′).

(The last item follows directly from the definition of SA(·, ·, ·), along with the preceding items.)
Thus, since from the way x was obtained we also have that x is not in the set SA(n,BA(n, j′,k′),RgA(n),i′),

PAA can conclude that V ∗ is in BA(n, j′,k′). From the definition of BA(n, j′,k′) this means that PAA can
conclude that there is a length j′ proof in PAA

k′ of the sentence ∀i V ∗ 6= RgA(n),i.
However, we have that V ∗ = RgA(n),i∗ , and as the relation R(k,V, i) with intended meaning “V = Rk,i”

can be defined by a Σ0
1 formula, PAA can conclude that there is PAA

k′ proof of V ∗ = RgA(n),i∗ . Therefore
PAA proves that PAA

k′ is inconsistent. In PAA
l , for fixed l, there is not much we can conclude from this,

since it is not clear how to bound k′ by any fixed number. But in PAA
ω this is a contradiction. Thus PAA

ω

proves ∀n∀ j∀kΨA(n, j,k).

5 Adapting to Prefix Complexity

The results in the preceding section were proved with respect to the plain Kolmogorov complexity
function C. Here, we provide a few comments regarding how to adapt the arguments, so that they carry
over to the prefix Kolmogorov complexity function K.

Briefly, the descriptions of the elements y of Q(x) need to be presented as a prefix-free code. The
descriptions that we used were of the form (P,n,r) where we can think of P as being a “program”, and n
and r are numbers. In the analysis for plain complexity, we gave an upper bound on the length of these
descriptions, of the form gA(n) = dA +2logn+ log tA(n) (and we remarked that the analysis also would
carry through if a slightly larger value of gA(n) were used).

The term “2logn” in this expression comes from the fact that we need to encode the “comma” between
n and r in some way, and a very simple way to do this is to simply double each bit of the number n, and
then mark the end of “n” with a pair (either 01 or 10) that is not doubled.
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If we similarly double each bit of r and mark the end of r, then we will obtain a prefix-free encoding
scheme, and the analysis will carry through if we just define gA(n) to be dA +2logn+2log tA(n).

6 Epilogue

Two months after this work was originally submitted for publication, Buhrman and Loff proved some
results that bear directly upon our investigation; see [1]. Buhrman and Loff had read a preliminary version
of our paper, and sought to give an unconditional proof of Conjecture 1.2. Although this conjecture is still
open, one of the theorems in [1] can be seen as lending additional support to the conjectured P/poly upper
bound on the class of decidable sets polynomial-time truth-table reducible to R. For a polynomial-time
reduction from a decidable set A to the undecidable set R, it seems reasonable to hypothesize that the
reduction would also work if one used a very high time-complexity approximation to R, such as Rt(n)

K
for some very rapidly-growing time bound t(n). Buhrman and Loff have shown that, for each decidable
set A and polynomial-time truth-table reduction M, if it is the case that M reduces A to Rt(n)

K for every
large-enough time bound t, then A ∈ P/poly.

In addition, however – the techniques used by Buhrman and Loff also immediately yield that many of
the sentences Ψ(n,j,k) considered here are, in fact, independent of PA` for every `. Moreover, they present
a polynomial-time reduction M0 with the property that it can not be directly replaced by a reduction
that makes queries only of length O(logn), having as oracle a subset of R. Thus the general approach
discussed in here will need to be revised substantially, if it is to be used to obtain a P/poly upper bound
on {A ∈ ∆0

1 : A≤p
ttR}.

The reduction M0 alluded to in the preceding paragraph has the property that it obtains no useful
information from the oracle. Thus it is still conceivable that one can formulate a notion of “useful”
truth-table reductions, for which it still might hold that, for each length n, there is a set of short random
strings V that can be used as an oracle to cause the reduction to give the correct answer for all strings of
length n. However, it is far from clear how to formulate such a definition.

7 Why Care?

It is popular these days to conjecture that BPP = P, and much of this popularity is owing to results such
as those of Impagliazzo and Wigderson [11], who showed that BPP = P if there is a problem in E that
requires circuits of exponential size. But note that a proof that BPP = P that proceeds by first proving
circuit size lower bounds yields much more than “merely” a proof that BPP = P. It also provides a recipe
that one can follow, to start with an arbitrary probabilistic algorithm and replace it with an equivalent
deterministic one of comparable complexity.

Indeed, Goldreich has recently argued that any proof of BPP = P must proceed along these lines,
in that any proof that these classes are equal yields pseudorandom generators that are suitable for
derandomizing BPP [8, 9].

But there is a catch! Goldreich’s proof requires that the BPP = P question be phrased in terms of
promise problems, rather than using the more traditional definition in terms of language classes, that we
have used here.
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We do not dispute Goldreich’s assertion that the formulation in terms of promise problems is in many
ways more natural and useful than the traditional definition. And we certainly agree that it would be
much more useful to have a recipe for obtaining derandomizations, rather than merely a proof that a
derandomization must exist. But we find it intriguing that a proof that CC = P would prove that BPP = P
merely by showing that there would be a contradiction otherwise, and owing to the highly non-computable
objects in the definition, it is not clear that such a proof would lend itself to an effective construction
of a general-purpose derandomization algorithm. (In particular, it is not clear that it would yield the
equality of the promise classes.) That is, since such a proof would deliver less than a proof that yields a
derandomization, it is at least conceivable that it would be easier to obtain.

We do not wish to suggest that we have any idea of how to obtain such a proof. After all, we are
currently unable even to prove CK ⊆ P/poly.

Also, it is clear that such a proof must use nonrelativizing techniques. For instance, the work of [5]
shows that, for any decidable oracle B, BPPB is PB-truth-table reducible to RKU for every U . (There is no
need to add an oracle to the definition of RKU .) Thus it is not true that, for every decidable B, ∆0

1∩
⋂

U{A :

A≤pB

tt RKU}= PB, because Heller [10] has presented such a B relative to which BPPB = NEXPB.
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URGER: Power from random strings. SIAM Journal on Computing, 35:1467–1493, 2006.
[doi:10.1137/050628994] 2

[4] ERIC ALLENDER, LUKE FRIEDMAN, AND WILLIAM I. GASARCH: Limits on the computational
power of random strings. Inf. Comput., 222:80–92, 2013. [doi:10.1016/j.ic.2011.09.008] 1, 2
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8 Appendix: Further Encoding Details

Throughout this paper, for the sake of readability, we have presented informally proofs meant to be in
formal systems. In this section we attempt to clarify the formalization of a couple key definitions in these
proofs.

An important definition, introduced in Section 2, is the definition of the set Rk,i. Formally, we
define Rk,i by means of a relation R(V,k, i) that is TRUE if and only if the set V is equal to Rk,i.
(Of course R takes as input an encoding 〈V 〉 of the set V , but we will continue to abuse notation in
this way). The quantifier complexity of the formula used to define this relation plays an important
role. At the end of the proof of Part 1 of Theorem 4.1, we state that PAA proves the implication
“R(V ∗,gA(n), i∗)→ PAA ` R(V ∗,gA(n), i∗)” (a similar statement occurs in Theorem 4.3 as well). Here
“PAA `R(V ∗,gA(n), i∗)” is shorthand for a formula encoding that R(V ∗,gA(n), i∗) is provable in PAA. That
this implication involving PAA actually is provable in PAA itself depends on R(V,k, i) being definable by
a Σ0

1 formula; i. e., one that can be expressed as ∃~x R′(~x,V,k, i), where R′(~x,V,k, i) is a formula containing
only bounded quantifiers. (See, for example, [7, Theorems 1.3.4 and 1.4.7] for a proof of this fact.)

Below we show that R(V,k, i) can in fact be defined by a Σ0
1 formula:
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R(V,k, i) .
= ∃y T (U,k, i,y)∧∃w≤ y out(w,y)∧∀z ∈ {0,1}≤k

z ∈V ←→∃ j ≤ i z = w j.

Here, T (U,k, i,y) is a formula expressing that y is the transcript of a halting execution of machine
U on input (k, i), where U is the Turing machine that takes as input (a,b) and enumerates the first b
nonrandom strings of length at most a. (If there do not exist b nonrandom strings of length at most a
then no y will satisfy the formula). Also, out(w,y) expresses that w is the output of the execution with
transcript y, and w j stands for the jth element of w (viewing w as a list of strings).

It is standard that the formula T (U,k, i,y) can be defined by a formula containing only bounded
quantifiers.

Note that with the definition R(V,k, i) in hand, we can express a predicate Z(V,k) with intended
meaning “V = R≤k” as:

Z(V,k) .
= ∃i∗ ≤ 2k+1 R(V,k, i∗)∧∀V ′ ∈ Vk ¬R(V ′,k, i∗+1).

Of course, this predicate Z(V,k) is not Σ0
1, but it is sufficient for our purposes that R(V,k, i) is.
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