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We live in an information society. Information 
science is our profession. But do you know 
what is “information”, mathematically, and 
how to use it to prove theorems?

You will, by the end of the term.



 

Examples

 Average case analysis of Shellsort. Open 
since 1959. 

 What is the distance between two pieces of 
information carrying entities? For example, 
distance from an internet query to an answer.



 

Lecture 1. History and Definition

 History
 Intuition and ideas in the past
 Inventors

 Basic mathematical theory

 The course.
 Textbook: Li-Vitanyi: An 

introduction to Kolmogorov 
complexity and its applications,

preferably the third edition!
 Homework every week about 

last lecture, mid-term and final 
exam (or possibly individual 
project and presentation).



 

1. Intuition & history

 What is the information content of an individual string?
 111 …. 1 (n 1’s)
 π = 3.1415926 …
 n = 21024

 Champernowne’s number: 
        0.1234567891011121314 …
    is normal in scale 10 (every block has same frequency)

 All these numbers share one commonality: there are 
“small” programs to generate them.

 Shannon’s information theory does not help here.



 

1903: An interesting year

This and the next two pages were
stolen from Lance Fortnow



 

1903: An interesting year

   Kolmogorov     Church von Neumann



 

Andrey Nikolaevich Kolmogorov
(1903, Tambov, Russia—1987 Moscow)

 Measure Theory
 Probability
 Analysis
 Intuitionistic Logic
 Cohomology
 Dynamical Systems
 Hydrodynamics
 Kolmogorov complexity



 



 



 

When there
were no digital
cameras (1987).



 

A story of Dr. Samuel Johnson

… Dr. Beattie observed, as something     
remarkable which had happened to him, 
that he chanced to see both No.1 and 
No.1000 hackney-coaches. “Why sir,” said 
Johnson “there is an equal chance for 
one’s seeing those two numbers as any 
other two.”

Boswell’s Life of Johnson



 

The case of cheating casino

Bob proposes to flip a coin with Alice: 
 Alice wins a dollar if Heads; 
 Bob wins a dollar if Tails

Result: TTTTTT …. 100 Tails in a roll.
  

Alice lost $100. She feels being cheated.



 

Alice goes to the court

 Alice complains: T100 is not random.
 Bob asks Alice to produce a random coin flip 

sequence.
 Alice flipped her coin and got 
    THTTHHTHTHHHTTTTH …
 But Bob claims Alice’s sequence has 

probability 2-100, and so does his.
 How do we define randomness?



 

2. Roots of Kolmogorov complexity and 
preliminaries

(1) Foundations of Probability
 P. Laplace: … a sequence is extraordinary 

(nonrandom) because it contains regularity (which is 
rare).

 1919. von Mises’ notion of a random sequence S:
 limn→∞{ #(1) in n-prefix of S}/n =p, 0<p<1
 The above holds for any subsequence of S selected by 

an “admissible” selection rule. 
 If `admissible rule’ is any partial function then there 

are no random sequences.
 A. Wald: countably many admissible selection rules. 

Then there are “random sequences.
 A. Church: recursive selection functions
 J. Ville: von Mises-Wald-Church random sequence 

does not satisfy all laws of randomness.



 

Roots …

(2) Information Theory. Shannon theory is on an 
ensemble. But what is information in an 
individual object?

(3) Inductive inference. Bayesian approach 
using universal prior distribution

(4) Shannon’s State x Symbol (Turing machine) 
  complexity.



 

Preliminaries and Notations

 Strings: x, y, z. Usually binary.
 x=x1x2 ... an infinite binary sequence
 xi:j =xi xi+1 … xj

 |x| is number of bits in x. Textbook uses l(x).
 Sets, A, B, C …

 |A|, number of elements in set A. Textbook 
uses d(A).

 K-complexity vs C-complexity, names etc. 
 I assume you know Turing machines, 

universal TM’s, basic facts ... 



 

3. Mathematical Theory

Solomonoff (1960)-Kolmogorov (1965)-Chaitin (1969): 
The amount of information in a string is the size of the 
smallest program of an optimal Universal TM  U  
generating that string. 

                    C   (x) = min   {|p|: U(p) = x }C   (x) = min   {|p|: U(p) = x }
                                  U                pU                p
Invariance Theorem: It does not matter 

which optimal universal Turing machine 
U we choose. I.e. all “universal encoding 
methods” are ok.



 

Proof of the Invariance theorem

 Fix an effective enumeration of all Turing machines (TM’s): T1, 
T2, …   Define  C  = min  {|p|: T(p) = x}

                                T         p
 U is an optimal universal TM such that (p produces x)
                U(1n0p) = Tn(p)

 Then for all x: CU(x)  ≤  CTn(x) + n+1,  and |CU(x) – CU’(x)| ≤ c .
 Fixing U, we write C(x) instead of CU(x).      QED

Formal statement of the Invariance Theorem: There exists a 
computable function S0 such that for all computable functions S, 
there is a constant cS such that for all strings x ε {0,1}*

               CS0(x) ≤ CS(x) + cS



 

It has many applications

 Mathematics --- probability theory, logic, statistics.
 Physics --- chaos, thermodynamics.
 Computer Science – average case analysis, inductive inference and learning, 

shared information between documents, data mining and clustering, 
incompressibility method -- examples:

 Prime number theorem
 Goedel’s incompleteness
 Shellsort average case
 Heapsort average case
 Circuit complexity
 Lower bounds on combinatorics, graphs,Turing machine computations, formal 

languages, communication complexity, routing
 Philosophy, biology, cognition, etc – randomness, inference, learning, complex 

systems, sequence similarity
 Information theory – information in individual objects, information distance

 Classifying objects: documents, genomes
 Query Answering systems



 

Mathematical Theory cont.

 Intuitively: C(x)= length of shortest description of x 
 Define conditional Kolmogorov complexity similarly, with 

C(x|y)=length of shortest description of x given y.
 Examples

 C(xx) = C(x) + O(1)
 C(xy) ≤ C(x) + C(y) + O(log(min{C(x),C(y)})
 C(1n ) ≤ O(logn)
 C(π1:n) ≤ O(logn); C(π1:n  |n) ≤ O(1)
 For all x, C(x) ≤ |x|+O(1)
 C(x|x) = O(1)
 C(x|ε) = C(x); C(ε|x)=O(1)



 

3.1 Basics

 Incompressibility: For constant c>0, a string x ε {0,1}* 

is c-incompressible if C(x) ≥ |x|-c. For constant c, we 
often simply say that x is incompressible. (We will call 
incompressible strings random strings.)

Lemma. There are at least 2n – 2n-c +1 c-incompressible 
strings of length n.

Proof. There are only ∑k=0,…,n-c-1 2k = 2n-c -1 programs with 
length less than n-c. Hence only that many strings 
(out of total 2n strings of length n) can have shorter 
programs (descriptions) than n-c.                           
QED.



 

Facts

 If x=uvw is incompressible, then 
        C(v) ≥ |v| - O(log |x|). Proof. C(uvw) = |uvw| ≤ |uw| +C(v)+ O(log |u|)

                                                                                                                              +O(log C(v)).

 If p is the shortest program for x, then 
        C(p) ≥ |p| - O(1)
 C(x|p) = O(1) but C(p|x) ≤ C(|p|)+O(1) (optimal because 

of the Halting Problem!)

 If a subset A of {0,1}*  is recursively enumerable (r.e.) 
(the elements of A can be listed by a Turing 
machine), and A is sparse (|A=n| ≤ p(n) for some 
polynomial p), then for all x in A, |x|=n, 

         C(x) ≤ O(log p(n) ) + O(C(n)) +O(|A|)= O(log n).



 

3.2 Asymptotics

 Enumeration of binary strings: 0,1,00,01,10, 
mapping to natural numbers 0, 1, 2, 3, …

 C(x) →∞ as x →∞
 Define m(x) to be the monotonic lower bound 

of C(x) curve (as natural number x →∞). Then
          m(x) →∞, as x →∞, and
     m(x) < Q(x) for all unbounded computable Q.
 Nonmonotonicity: for x=yz, it does not imply 

that C(y)≤C(x)+O(1).



 

Graph of C(x) for integer x. Function m(x) is greatest 
monotonic non-decreasing lower bound.



 

Length-conditional complexity.

 Let x=x_1...x_n. 
 Self-delimiting codes are  
 x’=1^n 0x with |x’|=2n+1 , and
 x’’= 1^{|n|}0nx with |x’’| = n+2|n|+1  (|n|=log n).

 n-strings are x’s of the form x=n’0...0 with n=|x|.
Note that |n’|=2 log n +1.
 So, for every n, C(x| n)=O(1) for all n-strings.



 

Graph of C(x|l(x)). Function m(x) is greatest 
monotonic non-decreasing lower bound.



 

3.3 Properties

Theorem (Kolmogorov) (i) C(x) is not partially recursive. 
That is, there is no Turing machine M s.t. M accepts 
(x,k) if C(x)≥k and undefined otherwise. (ii) However, 
there is H(t,x) such that H(t+1,x) ≤ H(t,x) and

                   limt→∞H(t,x)=C(x)
   where H(t,x) is total recursive.

Proof. (i) If such M exists, then design M’ as follows.  M’ 
simulates M on input (x,n), for all |x|=n in “parallel” (one 
step each), and outputs the first x such that M says `yes.’ 
Choose n >> |M’|. Thus we have a contradiction: C(x)≥n 
by M, but M’ outputs x hence 

          |x|=n >> |M’| ≥ C(x) ≥ n.                       
(ii) TM with program for x running for t steps defines            

H(t,x).        QED 



 

3.4 Godel’s Theorem

Theorem. The statement “x is random 
(=incompressible)” is undecidable for all but finitely 
many x.

Proof (J. Barzdins, G. Chaitin). Let F be an axiomatic theory 
(sound, consistent, containing PA). C(F)= C. If the theorem is 
false and statement “x is random” is provable in F, then we can 
enumerate all proofs in F to find a proof of “x is random”. 
Consider  x’s with (1) |x| >> C+O(log |x|), and output (first) 
random such x. Then (2) C(x) < CC(x) < C +O(log |x|) But the proof for “x 
is random” implies that (3) C(x) ≥ |x|.C(x) ≥ |x|. Now (1)+(2)+(3) yields a 
contradiction, C+O(log |x|) >> C+O(log |x|).               QED 



 

3.5 Barzdin’s Lemma

 A characteristic sequence of set A is an infinite 
binary sequence χ=χ1χ2 …, χi=1 iff iεA.

Theorem. (i) The characteristic sequence χ of an r.e. set 
A satisfies C(χ1:n|n)≤log n+cA for all n. (ii) There is an 
r.e. set such that C(χ1:n)≥log n for all n.

Proof. (i) Use the number m of 1’s in the prefix χ1:n as 
termination condition [C(m) ≤ log n+O(1)].

• (ii) By diagonalization. Let U be the universal TM. 
Define χ=χ1χ2 …, by χi=1 if the i-th bit output by 
U(i)<∞ equals 0, otherwise χi=0. χ defines an r.e. set. 
Suppose, for  some n, we have C(χ1:n)<log n. Then, 
there is a program p such that for all i ≤n we have 
U(p,i)= χi  and |p|< log n, hence p<n. But U(p,p) not 
equal χp by definition.          QED

¿
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