
Insecurity Against Selective-Opening Attacks:

Some Key Ideas

Selected Paper: Standard Security Does Not Imply Security Against Selective Opening
by Bellare, Dowsley, Waters, and Yilek

James Mouradian

March 18, 2012

Introduction

Many of the standard notions of security we have examined quarter with respect to two-party
communication may fail to capture notions of security in unusual settings. One such setting, not
unrealistic in multi-party protocols, is the setting in which a receiver receives n individual messages
from n distinct senders, all of which are encrypted and committed to their values. At some point,
the receiver may pick a subset of the messages to be opened, e.g., have their contents decrypted and
verified, before the protocol continues. An adversary may perform what is known as a selective-
opening attack (SOA) to corrupt this subset of messages, obtaining both the messages it contains
and the random parameters (hereafeter referred to as coins) used to encrypt the messages. The
authors demonstrate that an adversary who obtains both the messages and coins is able to, with
high advantage, produce an output which it would not be able to replicate without receiving the
coins. Concisely phrased, standard security does not imply security against selective-opening.

Security against selective-opening attacks can be misleadingly thought of in terms of the fol-
lowing question: “If an adversary obtains the plaintexts and coins of some subset of messages, are
the remaining messages still secure?” In the attack presented, the adversary does not satisfy a
relation that explicitly reveals information about the un-opened messages; however, the adversary
is still able to accomplish something it was unable to without accessing the coins. This highlights
the strength of SOA-secure schemes that the authors provided after writing this paper, presented
in class by Robert.

A wide variety of encryption schemes leak the coins used for encryption. The authors provide
an ElGammal-based example. Other examples include using RSA with OAEP, or CBC-mode with
a prepended IV. The commonality of such schemes highlights the reality of SOA-insecurity, and
the necessity for the authors’ SOA-secure schemes.

SOA-C Insecurity of Hiding and Binding Schemes

First consider an ideal world: we would like to establish a protocol in which n senders each commit
to a single message at a given point in time; from that point forward, they are unable to change
the message they would like to send. At a future point, the receiver of these messages selects which
subset of messages to receive. The receiver then receives only these messages, about which she
had no prior knowledge, and is confident that the senders did not change their messages. We will

1

represent this ideal case with a simulator. We will say an adversary wins a game if it can produce
an output that satisfies some boolean relation that the simulator cannot.

In a real-world scenario, we will use an encryption scheme to try to achieve the goals stated in
the ideal case. After considering the ideal scenario, we might at first wish to ensure our encryption
scheme is both hiding and binding. A scheme is hiding if an adversary cannot learn anything
about the messages before opening them, and a scheme is binding if an adversary cannot give two
distinct plaintexts for a given ciphertext. Ironically, the authors show that any protocol which is
both hiding and binding is SOA-C insecure, assuming only the existence of collision-resistant hash
functions.

In a real-world protocol, let there be n senders and a single receiver. The senders will inde-
pendently determine their messages m and coins r to deterministically encrypt with an encryption
scheme E a ciphertext c = E(m; r). Let m denote a vector of messages, r a vector of coins, and c a
vector of ciphertexts such that c = E(m; r). Let x[i] denote the i-th element of the vector x. Our
adversary will pick some subset I of the numbers {1, 2, ..., |c|}, and corrupt the set of ciphertexts
{c[i] : i ∈ I}, receiving the messages {m[i] : i ∈ I} and coins {r[i] : i ∈ I}. Our simulator would
have received only the set of messages, not the set of ciphertexts or coins.

Our adversary mounts an attack as follows. Let H : {0, 1}∗ → {0, 1}h be a collision-resistant
hash function which outputs a vector b of bits, and let n = 2h. Upon receiving the ciphertext vector
c, the adversary concatenates the ciphertexts into a single string, and then computes b = H(c).
The adversary then selects the subset I of indeces to corrupt as I = {2j − 1 + b[j] : 1 ≤ j ≤ h}.
It should be obvious that knowing the subset I of n is equivalent to knowing the output of the
hash function. The adversary outputs a value w = c||〈{r[i] : i ∈ I}〉. The adversary wishes to
satisfy two constraints on its output: the opening constraint, or that c = E(m; r), and the hash
constraint, or that I = {2j − 1 + b[j] : 1 ≤ j ≤ h} for b[1] . . .b[h] = H(c). The adversary wins
if both these constraints are met. It should be obvious that the adversary is able to always meet
both of these constraints for any c = E(m; r) after successfully performing an SOA. The simulator
should attempt to, given only {m[i] : i ∈ I}, produce an output that matches these constraints.

Suppose the simulator were to attempt to satisfy the opening constraint. Satisfying the opening
constraint is easy - the simulator must simply produce a vector of coins r, and encrypt the messages
{m[i] : i ∈ I} using these coins. The simulator then fills in remaining gaps for {c[i] : i /∈ I} with
any bits it so chooses. However, if H is collision-resistant, this is a task at which the simulator
gains negligible advantage.

Suppose instead the simulator were to prioritize satisfying the hash constraint. Then, it might
attempt to construct ciphertext vectors c such that I = {2j − 1 + b[j] : 1 ≤ j ≤ h}, where
b = H(c). If H is collision-resistant, finding any such c would be difficult. However, even if the
simulator found any such c, meeting opening constraint would be difficult. The simulator would,
given its arbitrarily chosen ciphertexts, attempt to find coins r that, when paired with messages m
ensure this new c = E(m; r). This is difficult because since E is binding, the simulator should not
be able to construct messages and coins of its choice to produce a given ciphertext.

The authors formalize the difficulty of finding hash collisions and violating the binding property
of an encryption scheme, and show that the ability for a simulator to produce an output w which
satisfies both the binding and hash constraints is negligible. Since our adversary can always meet
both these constraints, its advantage in this context is close to 1.

2

Conclusions and Beyond

The authors successfully demonstrate that no hiding and binding encryption scheme is secure
against a selective-opening attack. Many hiding and binding encryption schemes offer the adversary
the coins used for encryption, so SOA-insecurity of real-world schemes is a prevalent problem that
the authors felt the need to address.

In addition to the notion of SOA-C security the authors discuss, they also discuss the notion
of SOA-K security. In the SOA-K notion, a sender sends n messages to n distinct receivers.
An adversary who performs the attack receives not only the subset I of messages, but also the
decryption keys used to decrypt those messages. Adversaries in this context gain high advantage
by using an extremely similar procedure: selecting a subset of messages to corrupt using a collision-
resistant hash function, and outputting a ciphertext and the keys used to decrypt the subset of
messages.

The authors follow up this contribution by offering schemes which are SOA-secure. Such
schemes are lossy and non-committing, and the authors prove that the schemes are SOA-secure for
these reasons.

3

