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Abstract

We present homomorphic trapdoor commitments to group elements. In contrast, previous
homomorphic trapdoor commitment schemes only allow the messages to be exponents. Our
commitment schemes are length-reducing, we can make a short commitment to many group
elements at once, and they are perfectly hiding and computationally binding.

The commitment schemes are based on groups with a bilinear map. We can commit to ele-
ments from a base group, whereas the commitments belong to the target group. We present two
constructions based on simple computational intractability assumptions, which we call respec-
tively the double pairing assumption and the simultaneous triple pairing assumption. While
the assumptions are new, we demonstrate that they are implied by well-known assumptions;
respectively the decision Diffie-Hellman assumption and the decision linear assumption.

Keywords: Homomorphic trapdoor commitment, bilinear groups, double pairing assumption,
simultaneous triple pairing assumption.

1 Introduction

A non-interactive commitment scheme makes it possible to create a commitment ¢ to a secret
message m. The commitment hides the message, but we may later disclose m and demonstrate
that ¢ was a commitment to m by revealing the randomness r used when creating it. Revealing
the message and the randomness is called opening the commitment. It is essential that once a
commitment is made, it is binding. Binding means that it is infeasible to find two openings of the
same commitment to two different messages.

In this paper, we are interested in public-key commitments with some useful features. First, we
want the commitment scheme to have a trapdoor property. In normal operation the commitment
scheme is binding, however, if we know a secret trapdoor tk associated with the public commitment
key ck, then it is possible to create commitments that can be opened to any message. We note
that the trapdoor property implies that the commitment hides the message. Second, we want the
commitment scheme to be homomorphic. Homomorphic means that messages and commitments
belong to abelian groups and if we multiply two commitments, we get a new commitment that
contains the product of the two messages. Third, we want to commitment scheme to be length
reducing, ¢.e. the commitment is shorter than the message.

RELATED WORK. There are many examples of homomorphic commitments. Homomorphic cryp-
tosystems such as ElGamal [E1G85], Okamoto-Uchiyama [OU98], Paillier [Pai99], BGN [BGNO05] or
Linear Encryption [BBS04] can be seen as homomorphic commitment schemes that are perfectly
binding and computationally hiding. Commitments based on homomorphic encryption can be
converted into computationally binding and perfectly hiding homomorphic commitments, see for



instance the mixed commitments of Damgard and Nielsen [DN02] and the commitment schemes
used by Groth, Ostrovsky and Sahai [GOS06], Boyen and Waters [BWO06], Groth [Gro06] and
Groth and Sahai [GS08]. Even for the perfectly hiding variation of these commitment schemes,
the size of a commitment is larger than the size of a message though. This length-increase follows
from the fact that the underlying building block is a cryptosystem and a ciphertext must be large
enough to accommodate the message.

There are also direct constructions of homomorphic trapdoor commitment schemes such as
Guillou and Quisquater commitments [GQ88] and Pedersen commitments [Ped91]. Pedersen com-
mitments are one of the most used commitment schemes in the field of cryptography. The public
key consists of two group elements g, h belonging to a group of prime order ¢ and we commit to a
message m € Z, by computing ¢ = g"™h', where t € Z, is a randomly chosen randomizer. Pedersen
commitments are perfectly hiding with a trapdoor and if the discrete logarithm problem is hard
they are computationally binding. There are many variants of the Pedersen commitment scheme.
Fujisaki and Okamoto [FO97] and Damgard and Fujisaki [DF02] for instance suggest a variant
where the messages can be arbitrary integers.

There is an important generalization of the Pedersen commitment scheme that makes it possible
to commit to many messages at once. The public key consists of m+1 group elements v1, ..., Ym, h
and we compute a commitment to (mq,...,my) as ¢ = ' [7"; 4. This commitment scheme
is length-reducing since we only use one group element to commit to m messages, a feature that
has been found useful in contexts such as mix-nets/voting, digital credentials, blind signatures and
zero-knowledge proofs [FS01, Nef01, Bra00, KZ06, Lip03].

Common for all the homomorphic trapdoor commitment schemes® we mentioned above is that
they are homomorphic with respect to addition in a ring or a field. However, in public-key cryp-
tography it is common to work over groups that are not rings or fields and often it is useful to
commit to group elements from such groups. Of course, if we know the discrete logarithms of the
group elements we want to commit to, we can use the Pedersen commitment scheme to commit to
the discrete logarithms. In general, we cannot expect to know the discrete logarithms of the group
elements that we want to commit to though, leaving us with the open problem of constructing
homomorphic trapdoor commitments to group elements.

1

OUR CONTRIBUTION. The contribution of this paper is the construction of homomorphic trapdoor
commitment schemes for group elements. The commitment schemes are perfectly hiding, perfectly
trapdoor and computationally binding. We stress that we can commit to arbitrary group elements
and trapdoor-open to arbitrary group elements, even if we do not know the discrete logarithms of
these group elements. Moreover, the commitment schemes have the additional advantage of being
length-reducing, we can commit to multiple group elements with one short commitment.

Our constructions are based on bilinear groups. These are groups G1,Go, G with a bilinear
map ¢ : G1 X Go — Gp. Messages and randomizers will be elements from G5, whereas the
commitments will consist of a few group elements in Gr. An advantage of our commitment
schemes is that the constructions are very simple. In one construction, the public key consists
of n 4+ 1 group elements (gr, 91, ...,9n) from G and we commit to my, ..., m, € G2 by choosing
r € G2 at random and computing the commitment

n

c=-e(g,T) H e(gi,m;).

i=1

'Boyen and Waters [BW06], Groth [Gro06] and Groth and Sahai [GS08] use homomorphic commitments to group
elements, but do they do not have a trapdoor property that makes it possible to open them to arbitrary group
elements. Moreover, those commitments suffer from being length-increasing.



In the other construction, the public key consists of 2n + 4 group elements
(grs hry gsy hsy g1, R1, - -y gny hy) from G and the commitment consists of picking r,s at ran-
dom from G5 and computing the commitment (¢, d) as

n n

c= e(grar)e(QSas)He(giami) and d= e(hr,T)E(hs,s)He(hi7mi)-

=1 i=1

The commitment schemes are computationally binding assuming the double pairing assumption
respectively the simultaneous triple pairing assumption hold. The double pairing assumption says
that given a random couple (g,,¢:) from G; it is computationally infeasible to find non-trivial
group elements r,t € G5 so

e(gr,r)e(g,t) = 1.

The simultaneous triple pairing assumption says that given two random triples (g,,gs,g:) and
(hy, hs, hy) from G it is computationally infeasible to find non-trivial group elements r,s,t € Go
SO

e(gr,m)e(gs,s)e(gr,t) =1 and  e(h,,r)e(hs, s)e(hy,t) = 1.

We will show that the decision Diffie-Hellman assumption in G implies the double pairing as-
sumption and perhaps surprisingly that the decision linear assumption [BBS04] in G implies the
simultaneous triple pairing assumption.

APPLICATIONS. As an example of the usage of our commitment schemes, we consider in Section 5
the case of committing to Pedersen commitments. Pedersen commitments, allow the commitment
to multiple values my,...,my € Z, as h'[[[~;7"". A Pedersen commitment is itself just a
group element, and we can therefore use our commitment schemes to commit to multiple Pedersen
commitments. Since our commitment schemes are homomorphic and the Pedersen commitment
scheme is homomorphic, their combination is also homomorphic. We get a homomorphic trapdoor
commitment scheme to mn elements from Z,. In contrast with the Pedersen commitment scheme,
however, the public key of our scheme is only O(m + n) group elements and it turns out that
there are honest verifier zero-knowledge arguments of knowledge of the committed values with
complexity O(m + n) field elements.

Such an efficient homomorphic trapdoor commitment scheme may in turn be a useful com-
ponent in constructing more advanced zero-knowledge arguments. One can for instance reduce
the communication complexity of Groth’s [Gro09] sub-linear size zero-knowledge argument for cir-
cuit satisfiability from |C ]% group elements to |C ]% group elements, although the details of the
construction are beyond the scope of this paper.

2 Definitions

NOTATION. Algorithms in our commitment schemes take a security parameter k£ as input written
in unary. For simplicity we will sometimes omit writing the security parameter explicitly, assuming
k can be deduced from the other inputs. All our algorithms will be probabilistic polynomial time
algorithms. We write y = A(zx;r), when A on input z and randomness r outputs y. We write
y < A(x), for the process of picking randomness r at random and setting y = A(x;r). We also
write y < S for sampling y uniformly at random from the set S. When defining security, we
assume that there is an adversary attacking our schemes. The adversary is modeled as a non-
uniform polynomial time stateful algorithm. By stateful, we mean that we do not need to give it
the same input twice, it remembers from the last invocation what its state was. This makes the
notation a little simpler, since we do not need to explicitly write out the transfer of state from one



invocation to the next. Given two functions f,g : N — [0;1] we write f(k) ~ g(k) when there is
negligible difference, i.e., | f(k) — g(k)| = k=),

2.1 Commitments

A commitment scheme is a protocol between Alice and Bob that allows Alice to commit to a secret
message m. Later Alice may open the commitment and reveal to Bob that she committed to m.
Commitment schemes must be binding and hiding. Binding means that Alice cannot change her
mind, a commitment can only be opened to one message m. Hiding means that Bob does not learn
which message Alice committed to.

In this paper, we will focus on non-interactive commitment schemes. In a non-interactive
commitment scheme, Alice computes the commitment herself and sends it to Bob. The opening
process is also non-interactive, it simply consists of Alice sending the message and the randomness
she used when creating the commitment to Bob. Bob can now run the commitment protocol
himself to check that indeed this was the message Alice had committed to.

A non-interactive commitment scheme consists of three polynomial time algorithms (G, K, com).
G is a probabilistic setup algorithm that takes as input the security parameter k& and outputs some
setup information gk. The setup information gk can for instance describe a finite group over which
we are working, but it could also just be the security parameter written in unary so there is no
loss of generality in including a setup algorithm. We include an explicit algorithm for the setup
because when designing cryptographic protocols we often need the commitment scheme to work
with an existing finite group. K is a probabilistic algorithm that takes as input the setup gk
and generates a commitment key ck and a trapdoor key tk. The commitment key ck specifies a
message space M., a randomizer space R, and a commitment space C.r. We assume it is easy
to verify membership of the message space, randomizer space and the commitment space and it is
possible to sample randomizers uniformly at random from R.;. The algorithm com takes as input
the commitment key ck, a message m from the message space, a randomizer r from the randomizer
space and outputs a commitment ¢ in the commitment space.

We are interested in constructing homomorphic trapdoor commitments. By homomorphic,
we mean that Mk, Rex, Cer are groups with the property that if we multiply two commitments,
then we get a commitment to the product of the messages. By trapdoor we mean that given the
secret trapdoor key generated by the key generator, it is possible to open a commitment to any
message. For this purpose, we have two additional probabilistic polynomial time algorithms T'com
and Topen. Tcom takes the trapdoor tk as input and outputs an equivocal commitment ¢ and an
equivocation key ek. Topen on input ek, c and a message m € M, creates an opening r € R of
the commitment, so ¢ = comg(m;r).

Definition 1 (Homomorphic trapdoor commitment scheme) A homomorphic trapdoor
commitment scheme consists of a quintuple of algorithms (G, K,com, Tcom, Topen) as described
above, such that (G, K, com) is hiding and binding and homomorphic and (G, K, com, Tcom, Topen)
has a perfect trapdoor property as defined below.

Definition 2 (Perfect hiding) The triple (G, K,com) is perfectly hiding if for all stateful adver-
saries A we have

Pr [gk: — g(lk); (ck,tk) < K(gk); (mg, m1) < A(gk, ck); c + comq(mg) : A(c) = 1}
= Pr [gk — g(lk); (ck,tk) < K(gk); (mo,m1) < A(gk, ck); c < comg,(mq) : A(c) = 1},

where we require that A outputs mg, my that belong to M.



Definition 3 (Computational binding) The triple (G, K,com) is computationally binding if
for all non-uniform polynomial time stateful adversaries A we have

Pr [gk — G(1%); (ck, tk) + K (gk); (mg, my1,70,71) < A(gk, ck) :
mo #mp A comeg(mo;To) = Comck(muﬁ)] ~ 0,
where we require that A outputs mg,m1 € My, and ro,m1 € Reg.

Definition 4 (Perfect trapdoor) The quintuple (G, K, com, Tcom, Topen) is perfectly trapdoor
if for all stateful adversaries A we have

Pr [gk — G(17); (ck, thk) < K(ghk);m < A(gk, ck);7 + Rep; ¢ = comep(mir) : A(e,r) = 1}
— Pr [gk: < G1R); (ck, th) « K(gk):m « A(gk, ck); (¢, ek) + Tcomes(tk);
r < Topen,(c,m) : Alc,r) = 1],
where A outputs m € M.

We note that the perfect trapdoor property implies that the commitment scheme is perfectly
hiding, since a commitment is perfectly indistinguishable from an equivocal commitment that can
be opened to any message.

Definition 5 (Homomorphic) The commitment scheme (G, K,com) is homomorphic if K al-
ways outputs ck describing groups Mg, Rek, Cer, which we will write multiplicatively, such that for
allm,m' € M, r,r" € C. we have

comeg (m; r)comey (m; ') = comeg, (mm'; rr').

3 Foundation

BILINEAR GROUPS. Let G be a probabilistic polynomial time algorithm that generates
(p,G1, G2, G, e) + G(1¥) such that

e p is a k-bit prime
e (G1,Go, G are cyclic groups of order p
e ¢: (1 X G2 — G is a non-degenerate bilinear map so

— e(71,72) generates Gp if v1, 72 generate G and Go

— V791 € Gi,72 € Ga,a,b € Z, we have e(7§,78) = e(71,72)?

e Group operations, evaluation of the bilinear map, sampling of generators and membership of
G1,G9, G are all efficiently computable.

DOUBLE PAIRING ASSUMPTION. The security of our first commitment scheme will be based on the
double pairing assumption. The double pairing problem is given random elements g, g; € G1 to
find a non-trivial couple (r,t) € G3 such that e(g,,7)e(g,t) = 1.



Definition 6 We say the double pairing assumption holds for the bilinear group generator G if for
all non-uniform polynomial time adversaries A we have

Pr [gk = (p,G1,Ga,Gr,e) <« G(1%); gr, gt < Gy; (1,1) + A(gk, gry gt)

() € GIVL D} A elgrrelgnt) =1] =0,

We remark that the double pairing assumption can only hold when there is no non-trivial efficiently
computable homomorphism v : G; — G2, since otherwise choosing r = ¥ (g¢) and t = ¥(g,) would
break the assumption.

SIMULTANEOUS TRIPLE PAIRING ASSUMPTION. The security of our second commitment scheme will
be based on the simultaneous triple pairing assumption. The simultaneous triple pairing problem
is given random elements g,, by, gs, s, gt, ht € G1 to find a non-trivial triple (r, s, t) € G35 such that
e(gr,r)e(gs, s)e(ge,t) = 1 and e(h,,r)e(hs, s)e(he, t) = 1.

Definition 7 (Simultaneous triple pairing assumption) We say the simultaneous triple
pairing assumption holds for the bilinear group generator G if for all non-uniform polynomial time
adversaries A we have

Pr gk = (p’ Gla G27GT7€) — g(lk)v.gTv hmgs’h&gta ht — Gl;

(T'7S,t) — A(gkvg’r”ahrag&hsagtvht) : (T737t) S G% \ {(17 17 1)}
A e(gr,r)e(gs,s)e(g,t) =1 A e(hy,1)e(hs,s)e(hy,t) =1| = 0.

Unlike the double pairing assumption, the simultaneous triple pairing assumption may hold even
if there is an efficiently computable homomorphism v : G; — G2, and for that matter even if
G1 = Go.

3.1 Security Analysis of the Double Pairing Assumption

The double pairing assumption is a new assumption. To gain confidence in the double pairing
assumption, we will now show that it is implied by the decision Diffie-Hellman assumption in G1.

Definition 8 (Decision Diffie-Hellman assumption) The decision Diffie-Hellman assump-
tion holds in Gy for G if for all non-uniform polynomial time adversaries A we have

Pr [gk = (p,G1,Ga,Gr,e)  G(1*) 5 gr, 90 < Gr; p Ly : Algk, 9r, 95, 92, 97) = 1}
~ Pr [gk = (p,G1,G2,Gr,e) « G(1*) 5 gr, g0 < G p,7 4 Ly 2 Algh, gr, 90,98, 97) = 1]
Theorem 9 If the decision Diffie-Hellman holds in G for G, then the double pairing holds for G.

Proof. We will show that an adversary A that breaks the double pairing assumption with probabil-
ity €(k) can be used to build a decision Diffie-Hellman adversary B that has advantage ¢(k) —3/p in
breaking the decision Diffie-Hellman problem. Given a Diffie-Hellman challenge (g%, g, 9, 97, 97 ),
where 7 may be random or may be equal to p, B gives the challenge (gk,g,,g:) to A. A out-
puts a pair (r,t) in response. B outputs 1 if (r,¢) is a non-trivial pair so e(g,,7)e(g:,t) = 1 and
e(gr,r)e(g],t) = 1, otherwise B outputs 0.

Let us look at the first distribution (gk, g, gt, g7, g ). There is (k) chance for A outputting a
non-trivial pair so e(g,,r)e(gt,t) = 1, in which case we will also have e(gr,r)e(gf,t) = 1. So here
B has probability €(k) of outputting 1.

Let us now look at the second distribution (gk, g, g+, g7, g7 ). There is less than 3/p chance of
g-=1,g=1o0or p=7. Incase g- # 1,9t # 1 and p # 7, there is no non-trivial couple r,¢ such
that e(g,,7)e(gt,t) = 1 and e(gr,7)e(gf,t) = 1. O



3.2 Security Analysis of the Simultaneous Triple Pairing Assumption

To gain confidence in the simultaneous triple pairing assumption, we will explore its relationship
with other cryptographic assumptions. First, we will show that the simultaneous triple pairing
assumption follows from a computational hardness assumption called the simultaneous pairing
assumption introduced by Groth and Lu [GLO7]. Groth and Lu proved that the simultaneous
pairing assumption is secure in the generic group model and since the security reduction only uses
generic group operations this implies that the simultaneous triple pairing assumption is secure in
the generic group model.? Second, we will show that the simultaneous triple pairing assumption
follows from the decision linear assumption [BBS04].

RELATION TO THE SIMULTANEOUS PAIRING ASSUMPTION. The simultaneous pairing problem is
3 €T 1’2 X 122
given g,g1 = ¢, h1 = ¢°1,..., 90 = g"*, hy, = ¢g°» € G, for random z1,...,2, € Z, find a

non-trivial set of elements pu1, ..., u, € Ga such that
n n
[Te(gim) =1 A JleChipm)=1.
i=1 i=1

Definition 10 (Simultaneous pairing assumption) The simultaneous pairing assumption
holds for G if for all non-uniform polynomial time adversaries A we have

Pr [Qk = (p,G1,G2,Gr,e) « G121, ... mn « Zyyg + G1\ {1}

2 2
g =9"hi=g"1,...,91=g"" hn = g"; (1, - ., fin) < A(gk, 91,1, -, Gns hn)
n n
e(hiy i) =1 N Fi:p; #1| =0.
=1

e(gi, i) =1 A

i=1 )

Theorem 11 If the simultaneous pairing assumption with n = 3 holds for G, then the simultaneous
triple pairing assumption holds for G.

Proof. Suppose we have an adversary A that breaks the simultaneous triple pairing assumption
with probability e(k). We will show how to construct an adversary B that breaks the simultaneous
pairing assumption for n = 3 with probability higher than e(k) — 6/p.

Given a random simultaneous pairing problem instance (gk, g1, h1, g2, ho, g3, h3) the adversary
B picks at random p, o, 7 < Z;, and computes

g =97 hy=hl  gs=9¢5 hs=h§ g=95  h=hi.

If gt = 1,90 = 1 or g3 = 1 it is trivial to solve the simultaneous pairing problem. Provided
the discrete logarithms of g1, g2, g3 are non-trivial, i.e., x1 # 1,29 # 1,23 # 1, we get a random
distribution of 6 group elements in G \ {1}, which has statistical distance less than 6/p from a
random six-tuple of group elements in G;. The adversary now runs A on (gk, g,, hr, gs, hs, gt, ht)
and gets an non-trivial simultaneous triple pairing solution (7, s,t) with probability higher than
e(k) — 6/p. We have

e(gr,r)e(gs, s)e(gnt) = e(gr,17)e(gz, s7)e(gs,t7) =1
e(hy,m)e(hs, s)e(hy, t) = e(hi,rP)e(ha,s%)e(hs, t™) =1,

2Groth and Lu [GL07] introduced the simultaneous pairing assumption in the setting, where G; = G2. We adapt
it in a straightforward way to the more general case, where G1 and G2 may be two different groups. The generic
group security in the setting G1 = G2 implies generic group security in the setting where G1 and G2 may be different.



so (rf,s?,t7) is a non-trivial solution to the simultaneous pairing problem. O

RELATION TO THE DECISION LINEAR ASSUMPTION. The decision linear problem is to decide
whether a tuple (g1, g2, 93, 9%, 95, 95) has 7 = p + o or 7 is random.

Definition 12 (Decision linear assumption) The decision linear assumption holds in Gy for
G if for all non-uniform polynomial time adversaries A we have:

Pr [gk: (p,G1,G2,Gr,e) « G(1%) 5 g1, 92,93 « G1; p,0 < Zp
Algk, g1, 92,93, 97,95, 957°) = 1]
~ Pr [gk:(paG1,G2,GT,e)<—g(lk) P 91,92,93 < Gy p,0, T < Ly -
A(gk, 91, 92,93, 91,95, 93) =:1}_

Theorem 13 The simultaneous triple pairing assumption holds for G, if the decision linear as-
sumption holds in Gy for G.

Proof. We will show how to convert an adversary A that breaks the simultaneous triple pairing
assumption with probability e(k) into an adversary B that breaks the decision linear assumption
with more than e(k) — 9/p chance.

On a decision linear challenge (gk, g1, 92, g3, k1, he, h3), B picks o, 8 < Z, at random, sets

9 =091, by =h1, gs=9g2, hs=h2agt:9?2,g?92ﬁ’ ht:h?’h?hg

and runs (r, s,t) < A(gk, gr, hr, gs, hs, gt, ht). B returns 1 if r, s, ¢ is a non-trivial solution to

A e(hy,r)e(hs, s)e(hy, t)
A e(g%rtﬁ)e(gi’nt) = 1a

e(gr,r)e(gs, s)e(ge, t)

1
e(g1,mt%)e(gs, t) =1

and else it returns 0.
Let us now analyze the success probability of B. It is given a challenge (gk, g1, g2, 93, 97+ 95, 95 ),
where 7 = p + o or 7 is random. If e(g,,r)e(gs, s)e(ge,t) =1 A e(hy,7)e(hs, s)e(h, t) =1 we get

(elor.rt)e(9, 1)) (elg2 st)elgs, 1)) =1

A (el rtelgs 1) (elon sthe(gs ) = e(gs, t77).

In case T = p+o, there is more than €(k) —4/p chance of outputting 1. To see this, observe that
g1 # 1,90 # 1,93 # 1, p # o gives a random simultaneous triple challenge with these restrictions.
Since the probability of this condition failing is less than 4/p on a random simultaneous triple
challenge we get more than €(k)—4/p chance of A outputting a non-trivial solution r, s, t. With p #
o and 7 = p+o0, the two equalities above tell us that e(gy, rt%)e(gs, t) = 1 and e(go, st%)e(gs, t) = 1.
We conclude that when 7 = p 4 o we get a probability of more than e(k) — 4/p of outputting 1.

Suppose now 7 is picked at random. If g1 # 1,90 # 1,93 # 1,p # 0,7 # p+ o a solution r, s, t
with e(g1,7t)e(gs, t) = 1 and e(gs, st®)e(gs,t) = 1 would imply ¢ = 1. This in turn implies r = 1
and s = 1, leading us to conclude that r,s,t is trivial. Since the chance of gy =1V go =1V g3 =
1Vp=0cVT=p+oisless than 5/p, there is less than 5/p chance of outputting 1, when 7 is
chosen at random. O



4 Homomorphic Trapdoor Commitments to Group Elements

We will now present the homomorphic trapdoor commitment schemes. The setup algorithm gener-
ates a bilinear group (p, G1, G2, G, e). The commitment schemes permits committing to n group
elements from Gs.

4.1 Commitments based on the Double Pairing Assumption

We have message space M, = G5, randomizer space R, = G2 and commitment space Co, = G,
where each of them are interpreted as a group using entry-wise multiplication.

Setup: On input 1* return gk = (p, G1, Ga, Gr,e) + G(1¥).

Key generator: On input gk pick at random g, < Gi \ {1} and z1,...,2, < Z, and define
g1 =g, ,gn = gF*. The commitment key is ck = (gk, gr,91,--.,9n) and the trapdoor
key is tk = (gk,x1,...,2p).

Commitment: Using commitment key ck on input message (mi,...,m,) € G§ pick randomizer
r <= G. The commitment is given by

n
¢ = e(ge,) [ [ elgi, ma).
=1

Trapdoor commitment: Using commitment key ck and trapdoor key tk generate an equivocal
commitment ¢ € G by picking r < G2 and computing ¢ = e(g,,r) The corresponding
equivocation key is ek = (tk,r).

Trapdoor opening: On an equivocal commitment ¢ € G to a message (ml, ...,my) € G§ using
the equivocation key ek, compute and return the trapdoor opening 7’ = r HZ Lm;

Theorem 14 (G, K, com, Tcom, Topen) described above is a homomorphic trapdoor commitment
scheme to n group elements. It is perfectly trapdoor and assuming the double pairing assumption
holds for G the commitment scheme is computationally binding.

Proof. Let us first prove the commitment scheme is homomorphic. The message space is G, the
randomizer space is Go and the commitment space is G, which with entry-wise multiplication all

are finite abelian groups. Given a commitment key ck = (gk, g, g1, - - ., gn) it is straightforward to
check the homomorphic property. For all (mq,...,my), (m},...,m)) € G% and all r,7’" € Gy we
have

n n n
e(gr,) [ [ eginma) - e(gr ') [ [ e(gismi) = e(gr ') | [ e(gi, mims).
i=1 i=1 i=1
Next, we will prove that the commitment scheme has the perfect trapdoor property. By con-
struction, g, # 1 so both real commitments and trapdoor commitments are distributed uniformly
at random in G, because of their e(g,,r) factor where 7 is chosen randomly from Gj. The fact
that g, # 1 also implies that for any commitment ¢ and set of messages (m1,...,my) € G% there
is a unique randomizer r € G so ¢ = e(g,, ) [[;—; e(gi, m;). To conclude the proof for the perfect
trapdoor property, we therefore just need to show that the trapdoor opening algorithm gives the
correct opening ' of the commitment. This follows from

n n
e(gT>T/) He(giami) = e(ghr Hmz_ml) He(gfzvml) = e(gr,T) =C.
=1

=1 i=1



Finally, we will prove that the commitment scheme is computationally binding if the double
pairing assumption holds for G. More precisely, we will show that if A has probability (k) of break-
ing the binding property, then there is an algorithm B that breaks the double pairing assumption
with at least e(k) — 4/p chance.

Let (gk, gr,g:) be a random double pairing challenge given to B. If g, # 1,g9; # 1 it selects

P1,Tls s Pn,Tn < ZLp and computes g1 = g g/*, ..., gn = gr"g[". It runs A on (ck, gr,91,--.,0n)
and with more than e(k) — 1/p probability it gets two different openings to the same commitment.
If the openings are my,...,my,,r and m},...,m! r', we have by the homomorphic property of

1,7 _
My, ..., Un =

m/, this means we have e(g,, 7~ 1r") [T\, e(gi, i) where at least one y; # 1. This implies

the commitment scheme that e(g,, ") [\, e(gi, m; 'm}) = 1. Defining y1; = m;
—1
mTL

n

n n
e(grr ) [ [ egfiaf s ) = elgrr™ 0" T 18 )eCge, [ [ ) = 1.
=1 =1 =1

This breaks the double pairing assumption unless 7/ [T, pwf" =1and [, p;" =1 at the same

time. However, since the p;’s are perfectly hidden by the 7;’s, we have no more than 1/p chance of
the latter equality holding when there is some p; # 1.

There is less than 2/p chance of g, = 1 or ¢ = 1. If g # 1 and g, # 1 we have at least
e(k) — 2/p chance of breaking the double pairing assumption. We conclude that B has more than
e(k) — 4/p chance of breaking the double pairing assumption. O
4.2 Commitments based on the Simultaneous Triple Pairing Assumption

We have message space M, = G5, randomizer space R, = G% and commitment space Cp, = G%,
where each of them are interpreted as a group using entry-wise multiplication.

Setup: On input 1* return gk = (p, G1, G2, Gr, e) < G(1%).

Key generator: On input gk pick at random g «— G1 \ {1} and x,, Yr, Ts, Ys, T1, Y1, - - - T, Yn <
Zy such that x,ys # rsy, and define

G =9" hr=9" gs=9" hs=¢" g=9" hi=g¢" - gun=9" hp=g".

The commitment key is ck = (gk, g, hr, gs, hs, g1, 1, .., gn, hn) and the trapdoor key is
th = (gkaga TryTsyYryYsy L1y YLy ooy :Enayn)

Commitment: Using commitment key ck on input message (mi,...,m,) € G§ pick randomizer
(r,8) + G3. The commitment is (c,d) € G% given by

¢ = e(gr.r)elges) [[elgimi) A d=elhr,r)e(hs, s) [ ] elhi,my).
i=1 =1

Trapdoor commitment: Using commitment key ck and trapdoor key tk, generate an equivocal
commitment (c,d) € G2 by picking (r, s) < G% and computing

c=e(gr,r)e(gs,s) and d = e(h,,r)e(hs,s).

The corresponding equivocation key is ek = (tk,r, s).
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Trapdoor opening: To trapdoor open an equivocal commitment (c,d) € G% to a message
(m1,...,my) € GY using the equivocation key ek, compute

n n
a = r¥rs’s H m; “* and b=rs¥ H m; .
i=1 i=1

Since .Trys # xsyr we can Compute
( « /3 ) < Ty Tg ) -1
) 5 Yr Ys '

' =a“® and s = a'b’.

Compute

Return the opening (1, s) of (¢, d) to message (my,...,my).

Theorem 15 (G, K, com, Tcom, Topen) described above is a homomorphic trapdoor commitment
scheme to n group elements. It has the perfect trapdoor property and assuming the simultaneous
triple pairing assumption holds for G the commitment scheme is computationally binding.

Proof. Let us first prove the commitment scheme is homomorphic. The message space is G, the
randomizer space is G% and the commitment space is G%, which with entry-wise multiplication all
are finite abelian groups. Given a commitment key ck = (gk, gr, hr, gs, hs, g1, h1, .., Gn, hy) it is
straightforward to check the homomorphic property. For all (my,...,m,), (m},...,m}) € G5 and
all (r,s), (1, s") € G3 we have

e(gi,mi) - e(gr,7)e(gs, ) [ [ e(gimi) = elgr,rr")elgs, 59)
1 i=1 i
e(hi,mi)-e(hr,r')e(hs,s’)He(hi,mg) = e(hy,rr")e(hs,ss)
i=1

=
amp

6’(97«,7')6(95,8) e(gi,mim;)

Il
—

=5
-

Il
—

€(hr,7'>6(h578) e(hz,mzm;)

1

-
Il

)

Next, we will prove that the commitment scheme has the perfect trapdoor property. By con-
struction, z,ys # sy, S0 (x,,y,) and (x4, ys) are linearly independent in ZZ. We can deduce from
this that both real commitments and trapdoor commitments are distributed uniformly at random
in G%, because of their e(g,,7)e(gs, s) and e(h,,7)e(hs, s) factors where r, s are chosen randomly
from Ga. The linear independence of (z;,y,) and (z,ys) also implies that for any pair (c,d) € G%

and a set of messages (m1,...,m,) € G% there is a unique randomizer (r,s) € G3 so
n n
c=-e(gr,r)e(gs, ) H e(gi,m;) AN d=e(hy,r)e(hs,s) H e(hi,m;).
i=1 i=1

To conclude the proof for the perfect trapdoor property, we therefore just need to show that
the trapdoor opening algorithm gives the correct opening (1/,s’) of the commitment. Since

(o))=Y

we have
e(gr,m)e(gs,s') = e(g*,ab?)e(g™,a’b’) = e(g,a”* "7 )e(g, b 1T0) = e(g, a)
e(hr, 7 )e(hs,s') = e(g¥,a®)e(g¥,a"V°) = e(g, aV V7 )e(g, bV H¥=0) = e(g,b).

11



By plugging in a = 7% s% [[I; m; “ and b = r¥rs¥= [[[_; m; ¥ we get

n n
e(gr,)e(gs, 8) He(gi,mi) = e(g,r"s™) [ elg.mi ™) = e(gr.1)e(gs, s) = ¢

1 1

@
Il
-.
Il

::]:
=

e(hr, " )e(hs, s ) e(hi,mi) = e(g,r¥s¥) | | e(g,myY) = e(hy,r)e(hs,s) =d,

@
Il
—
-
Il
—

as we wanted.

Finally, we will prove that the commitment scheme is computationally binding if the simulta-
neous triple pairing assumption holds for G. More precisely, we will show that if .4 has probability
(k) of breaking the binding property, then there is an algorithm B that breaks the simultaneous
triple pairing assumption with at least (k) — 3/p chance.

Let (gk, 9r, gs, gt, hr, hs, h¢) be a random simultaneous triple pairing challenge for B. We pick
at random p1,01,71,. .., Pn,On, Tn < Zyp and define g1, hi,..., gn, hy by

g =997 g hi = hPihgih].

If (z,,y,) and (zs,ys) are linearly independent in ZZQ) all these group elements are randomly dis-
tributed in G;. This means ck = (gk, gr, hr, gs, hs, g1, P11, - - -, G, hy) has the same distribution as
commitment keys generated by K.

B gives this ck to A and in case x,ys # x5y, it has €(k) probability of getting two different

messages (mi,...,my), (m},...,m}) and randomizers (r, s), (r', s’) so
/ / / /
come(Mmiu, ..., My;7,8) = comeg (M, ..., my;7r,s).
Define —1 _ / —1 d "o o d—1 M —1 Bv the h hi t
pr =mhmy oo =mhmot and " = r'r7t s = ¢’s7!. By the homomorphic property
of the commitment scheme we have come (1, ..., un; 7", s"”) = (1,1). This gives us

::]:

n
e(gr,7")e(gs, ") | | e(gi i) = e(gr, " Hu 9873//HN e(ge, [[ o) = 1
=1

i=1 i=1
n n
e(hy,r")e(hs, s" )He(hz,uz) =e hr,r'/l_[;izZ hs,s"Hu ht,HMiﬂ') = 1
=1 i=1 =1
Since (mi,...,my) and (mf,...,m}) are different, there is at least one p; # 1. Recall

gi = gr'g%ig;" and h; = hY'hJih{ for random p;, 04,7 + Z,. With (z,,y,) and (zs,ys) lin-
early independent in Z2 there is for any 7/ a unique pair (p}, o) € Z2 that would yield g;, h;. This
means from A’s perspective 7; is a perfectly hidden random value in Z,. The probability that
[T, p* = 11is therefore at most 1/p.

Conditioned on x,ys # sy, the adversary B breaks the simultaneous triple pairing problem with
probability (k) — 1/p. There is less than 2/p chance for the discrete logarithms satisfying TrYs =
zsyr. We conclude that B has more than e(k) — 3/p chance of (r” [[7, pf, " Tlieq mdt, Ty 1)
being a non-trivial solution to the simultaneous triple pairing problem. O

5 Committing to Commitments

Recall the Pedersen commitment to multiple elements from Z,. The public key consists of
M, - -+ Ym, h and we commit to x1, ..., %, € Z, by computing ¢ = ht [T[i%, 7" for t < Zp. The Ped-
ersen commitment is a homomorphic perfectly hiding trapdoor commitment. It is computationaliy
binding assuming the discrete logarithm problem is hard.

12



Since Pedersen commitments are group elements, we can use the commitment schemes from this
paper to commit to multiple Pedersen commitments. More precisely, we can set up the Pedersen
commitments in G5 and now use our commitment scheme to commit to n Pedersen commitments
at once. Since each Pedersen commitment can hold m elements from Z,, this means we have a
commitment to mn elements from Z, using this technique. The public key size is O(m + n) group
elements, so unlike the Pedersen commitment scheme by itself this combined commitment scheme
has a sub-linear size commitment key.

Since our commitment scheme is homomorphic with respect to the Pedersen commitments in
G2 and the Pedersen commitments are homomorphic with respect to the field elements in Zj,, the
combined commitment scheme is homomorphic with respect to the field elements in Z,. Moreover,
since the Pedersen commitment scheme is a perfectly hiding trapdoor commitment scheme, our
combined commitment scheme is also a perfectly hiding trapdoor commitment scheme. The binding
property relies on the discrete logarithm assumption in GG and either the double pairing assumption
or the simultaneous triple pairing assumption in Gy.

5.1 Honest Verifier Zero-Knowledge Argument of Knowledge for the Combined
Commitment Scheme

While reducing the key size for homomorphic commitments is interesting in its own right, another
concern that comes up in practice is that the opening of the commitment is large. We will now
show that the combined commitment schemes have efficient 3-move honest verifier zero-knowledge
arguments of knowledge, which in some applications means that we do not have to reveal the entire
opening. This stands in contrast to the standard Pedersen commitment to multiple messages, where
all known practical zero-knowledge arguments of knowledge have a size that grows linearly in the
number of field elements we have committed to. It is possible to give similar types of efficient
arguments for statements such as all the committed values being 0 or the committed values having
a particular sum.

We will write ck for the commitment key for our commitment scheme, which can be either one
of the two schemes we have proposed in the paper, and let 71, ...,vm, h be the commitment key
for the Pedersen commitment. The statement is a commitment ¢ € C.; and the prover wants to
give an argument of knowledge of the contents of ¢. The prover’s private input consists of r € R
and t1,...,t, € Zp and M1, ..., My € Zp 50 ¢ = comeg(ci, . .., Cp;7), Where ¢; = bt [0, 4"
The argument runs as follows.

1. The prover picks t¢,d,...,dy < Z, and computes cq = ht | %{11-_ The prover also picks
/ . .

t1,--.,t, and computes c; = h'i. Finally, the prover picks 1/ < R and computes ¢ =
comei(c, ..., ch;r"). The prover sends (cq4, ') to the verifier.

2. The verifier sends the prover random challenges e, e, ..., e, < Z,.

3. The prover answers with 1" = r°", ¢f = c{c},...,cp = chc, and t' = e 371 ejt;+3 77 ejti+

n n

t,mi =dy + 623':1 €My -y My = oy + €Zj:1 €M j.

4. The verifier accepts the argument if c°c’ = come(cf,...,cp;r") and cq[[[_ () =

N P R
The complexity of this argument is roughly n or 2n pairings, m + n exponentiations and mn
multiplications for the prover, and n or 2n pairings and n + m exponentiations for the verifier.
The communication is roughly 2n +m group and field elements. In other words, it is in all aspects
significantly shorter and faster than the process of committing, opening, and verifying the opening
of the commitment.
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Theorem 16 The protocol is a 3-move honest verifier zero-knowledge argument of knowledge of
the contents of the commitment c.

Proof. The protocol clearly has 3 moves and it can be verified by inspection that the argument
given above has perfect completeness.

We will now show that the protocol has perfect special honest verifier zero-knowledge. By
this we mean that given a challenge e,eq,...,e, it is possible to perfectly simulate the en-
tire argument. The simulation works as follows, the simulator picks random commitments
..., and randomizer " and computes ¢ = ¢ “comer(cf, ..., cl;r"). It also picks my,...,my

and ¢’ at random and computes c¢q = h* [[/", A" [Tj=i(cj)~%. The simulated argument is

(ca, e ey .. en, ool t im0 omp).

To see this is a perfect simulation when the challenge is e, ey, .. ., e,, observe that both in a real
argument and in a simulated argument the values ", ¢/, ... ¢ and t/,m1,..., m,, are uniformly
random. Conditioned on these values, both ¢’ and ¢4 can be determined uniquely. Real arguments
and simulated arguments are therefore identically distributed.

Finally, we will show that the protocol is an argument of knowledge. Consider an adversary
A that has probability of e(k) of making an acceptable argument, we will show that there is a
black-box witness-extended emulator B that has success-probability €(k) of answering a random
challenge e, eq, ..., e, and at the same time outputting an opening of the commitment.

B runs A on the random challenges e, e, ..., e,. If A fails to produce an acceptable argument,
we are done. However, with probability e(k) it does produce an accepting argument on the chal-
lenge, and B needs to extract an opening of the commitment. B rewinds A to the point where it
has sent the initial message and selects new random challenges e, ey, .. ., e, (it is possible, although
unlikely, that the same challenge will repeat) until it has 2n + 1 acceptable arguments with the
same initial message cq, ¢’. Since A has probability €(k) chance of making an accepting argument
in the first place, and collecting 2n + 1 acceptable arguments will take an average of 2;651 rewinds,
we get that on average B uses 2n + 1 runs of A.

Let us now look at accepting challenges collected by B. Since B runs an expected 2n + 1 runs
of A, which is expected polynomial time, there is an overwhelming probability that two of the
accepting argument use different e. Picking two different challenges e # é we get two equations
c¢c = comg(cy,...,cl;r") and ¢ = come (&, ..., &,";7"). From this we can compute an opening
of ¢ and then compute an opening of ¢’. By the binding property of the commitment scheme, these
openings will be used by A in all the accepting arguments when answering the challenges.

Consider now the second part of the verification. We have all the accepting arguments satisfy

n n n n m
ca [T = caTTese) = e TT e Theepy =TT
Jj=1 Jj=1 j=1 Jj=1 i=1
With overwhelming probability the 2n + 1 challenge vectors (1, eeq, ..., eey,e1,...,¢e,) are linearly
independent. The 2n 4+ 1 equations given by the accepting arguments then make it possible to
extract openings of all the commitments ¢y, ..., c,. We conclude that the is negligible probability
for A making a valid argument, yet I not being able to extract an opening of c. ([l
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