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3 Ruhr-Universität Bochum, Horst Görtz Institut für IT-Sicherheit (Germany)
e-mail: Carla.Rafols@rub.de

Abstract. Lossy trapdoor functions, introduced by Peikert and Waters (STOC’08), have received a
lot of attention in the last years, because of their wide range of applications in theoretical cryptography.
The notion has been recently extended to the identity-based setting by Bellare et al. (Eurocrypt’12). We
provide one more step in this direction, by considering the notion of hierarchical identity-based (lossy)
trapdoor functions (HIB-TDFs). Hierarchical identity-based cryptography has proved very useful both
for practical applications and to establish theoretical relations with other cryptographic primitives.
The notion of security for IB-TDFs put forward by Bellare et al. easily extends to the hierarchical sce-
nario, but an (H)IB-TDF secure in this sense is not known to generically imply other related primitives
with security against adaptive-id adversaries, not even IND-ID-CPA secure encryption. Our first con-
tribution is to define a new security property for (H)IB-TDFs. We show that functions satisfying this
property imply secure cryptographic primitives in the adaptive identity-based setting: these include
encryption schemes with semantic security under chosen-plaintext attacks, deterministic encryption
schemes, and (non-adaptive) hedged encryption schemes that maintain some security when messages
are encrypted using randomness of poor quality. We emphasize that some of these primitives were
unrealized in the (H)IB setting previous to this work.
As a second contribution, we describe the first pairing-based HIB-TDF realization. This is also the
first example of hierarchical trapdoor function based on traditional number theoretic assumptions: so
far, constructions were only known under lattice assumptions. Our HIB-TDF construction is based on
techniques that differ from those of Bellare et al. in that it uses a hierarchical predicate encryption
scheme as a key ingredient. The resulting HIB-TDF is proved to satisfy the new security definition,
against either selective or, for hierarchies of constant depth, adaptive adversaries. In either case, we
only need the underlying predicate encryption system to be selectively secure.
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1 Introduction

1.1 (Identity-Based) Lossy Trapdoor Functions

Lossy trapdoor functions, as introduced by Peikert and Waters in [32], have been proved very
powerful in theoretical cryptography and received a lot of attention in the recent years (see, e.g.,
[21,26,29,13,27,37]). Roughly speaking, a lossy trapdoor function is a family of functions that can
be instantiated in two different modes. In the injective mode, the function is injective and can be
inverted using the corresponding trapdoor. In lossy mode, the function is (highly) non-injective
since its image size is much smaller than the size of the domain. The key point is that lossy instan-
tiations of the function must be indistinguishable from injective instantiations.

In their seminal paper [32], Peikert and Waters showed that lossy trapdoor functions provide
black-box constructions of chosen-ciphertext secure (IND-CCA) public-key encryption schemes as
well as universal one-way and collision-resistant hash functions. Later on, other applications of
lossy trapdoor functions were discovered: they gave rise to deterministic encryption schemes [5]
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in the standard model [10], public-key encryption hedged schemes maintaining some security in
the absence of reliable encryption coins [6] and even public-key encryption with selective-opening
security [8] (i.e., which offer certain security guarantees in case of sender corruption).

Recently, Bellare, Kiltz, Peikert and Waters [9] introduced the notion of identity-based (lossy)
trapdoor function (IB-TDF), which is the analogue of lossy trapdoor functions in the setting of
identity-based cryptography [35]. In the identity-based scenario, users’ public keys are directly de-
rived from their identities, whereas secret keys are delivered by a trusted master entity. In this
way, the need for digital certificates, which usually bind public keys to users in traditional public-
key cryptography, is drastically reduced. Throughout the last decade, several generalizations of
identity-based cryptography were put forth, including hierarchical identity-based cryptography [22],
attribute-based cryptography [33,23] or predicate-based cryptography [11,28]. In the setting of hi-
erarchical identity-based cryptography, identities are organized in a hierarchical way, so that a user
who holds the secret key of an identity id can generate, use and distribute valid secret keys for any
identity that is a descendant of id in the hierarchy. Hierarchical identity-based encryption (HIBE)
is of great interest due to both practical and theoretical reasons. On the practical side, many or-
ganizations and systems that may need (identity-based) cryptographic solutions are organized in
a hierarchical way. On the theoretical side, generic constructions [15,16] are known to transform a
weakly secure HIBE scheme (i.e., IND-CPA security against selective adversaries) into (public-key)
encryption schemes with strong security properties, like chosen-ciphertext security [16] or forward-
security [4,15], where private keys are updated in such a way that past encryptions remain safe
after a private key exposure.

Bellare et al. [9] proposed instantiations of identity-based lossy trapdoor functions based on
bilinear maps and on lattices (as noted in [9], almost all IBE schemes belong to these families). The
former makes clever use of an anonymous IBE system (where the ciphertext hides the receiver’s
identity) with pseudorandom ciphertexts whereas the latter relies on lossiness properties of learning-
with-error-based cryptosystems. Moreover, they show that their definition of partial-lossiness for
identity-based trapdoor functions leads to the same cryptographic results as lossy trapdoor func-
tions, but in the selective identity-based setting only, where the attacker must choose the target
identity upfront in the attack game. Namely, in the case of selective adversaries, IB-TDFs satisfying
their definition imply identity-based encryption with semantic security, identity-based deterministic
encryption and identity-based hedged encryption. In [9], it was left as an open problem to prove
that the same results hold in the case of adaptive adversaries.

1.2 Our Contributions

This paper extends to the hierarchical setting the notion of identity-based (lossy) trapdoor function.

New Definition of Partial Lossiness. From a theoretical standpoint, we first define a new
security property for hierarchical identity-based trapdoor functions (HIB-TDFs). We show that a
HIB-TDF which satisfies this property can be used to obtain the same kind of results that are
derived from standard lossy trapdoor functions [32]. Namely, they lead to standard encryption
schemes, to deterministic encryption schemes, and to non-adaptive hedged encryption schemes,
which are secure in the hierarchical identity-based setting, in front of adaptive-id adversaries. Since
HIB-TDFs contain IB-TDFs as a particular case, our results for adaptive adversaries solve an open
problem in [9]. Interestingly, the pairing-based IB-TDF of Bellare et al. [9] can be proved to also
satisfy the new security property. As a consequence, it provides adaptively secure deterministic and
hedged IBE schemes. Recently, Xie et al. [38] designed an adaptively secure D-IBE system using
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lattices. The construction of [9] is thus the first adaptively secure pairing-based realization.

Construction of a Pairing-Based Hierarchical Trapdoor Function. On the construc-
tive side, we focus on pairing-based systems where, as already mentioned in [9], greater challenges
are faced. Indeed, in the hierarchical scenario, anonymity – which was used as an important ingre-
dient by Bellare et al. [9] – has been significantly harder to obtain in the world of bilinear maps
than with lattices [17,1,2]: for example, the first pairing-based anonymous HIBE system [12] ap-
peared four years after the first collusion-resistant HIBE [22]. Moreover, very few anonymous IBE
systems seem amenable for constructing IB-TDFs, as noted in [9] where a new scheme was specially
designed for this purpose.

Using bilinear maps, we thus construct a HIB-TDF and prove that it satisfies our new definition
of partial lossiness under mild hardness assumptions in groups of prime order. As an intermediate
step, we design a hierarchical predicate encryption (HPE) system [34,30] with suitable anonymity
properties, which may be of independent interest. Perhaps surprisingly, although this scheme is
proved secure only against weak selective adversaries (who select their target attribute set before
seeing the public parameters), we are able to turn it into a HIB-TDF providing security (namely,
our new version of partial lossiness) against adaptive adversaries for hierarchies of constant depth.
To the best of our knowledge, our HIB-TDF gives rise to the first hierarchy of trapdoor functions
which does not rely on lattices: realizing such a hierarchy using traditional number theoretic tech-
niques was identified as an open problem by Cash et al. [17].

Beyond its hierarchical nature, our construction brings out an alternative design principle for
(H)IB-TDFs. The idea is to rely on hierarchical predicate encryption (HPE) to deal with hierar-
chies. Namely, public parameters consist of a matrix of HPE encryptions and, when the function
has to be evaluated, the latter matrix is turned into a matrix of (anonymous) HIBE ciphertexts.
The homomorphic properties of the underlying HIBE then make it possible to evaluate the function
while guaranteeing a sufficient amount of lossiness in lossy mode.

While the pairing-based construction of Bellare et al. [9] builds on an adaptively secure anony-
mous IBE, our (hierarchical) IB-TDF is obtained from a selectively weakly attribute-hiding HPE
system. This result is somewhat incomparable with [9]: on one hand, we start from a more power-
ful primitive – because predicate encryption implies anonymous IBE – but, on the other hand, we
need a weaker security level to begin with. Both (H)IB-TDF constructions rely on specific algebraic
properties in the underlying IBE/HPE and neither is generic. It would be interesting to see if a
more general approach exists for building such functions.

1.3 Discussion on the Implications

Combining our HIB-TDF with the theoretical implications of our new security property, we obtain:
(1) a semantically secure HIBE encryption scheme under adaptive adversaries, (2) the first secure
deterministic HIBE scheme4, (3) the first HIBE scheme that (non-adaptively) hedges against bad
randomness, as advocated by Bellare et al. [6].

In the case of adaptive adversaries, these results only hold for hierarchies of constant depth (said
otherwise, we do not provide full security). However, using our definition of partial lossiness or that
of Bellare et al. [9], this appears very difficult to avoid. The reason is that both definitions seem
inherently bound to the partitioning paradigm. Namely, they assume the existence of alternative
public parameters, called lossy parameters, where the identity space is partitioned into subsets of

4 See [38] for a recent and independent construction, in the (non-hierarchical) IBE case.

3



injective and lossy identities. The definition of [9] intuitively captures that a fraction δ of identities
are lossy in the case of lossy parameters. In the hierarchical setting, the analogy with HIBE schemes
suggests that all ancestors of a lossy identity be lossy themselves. Hence, unless one can make
sure that certain lossy identities only have lossy descendants, the fraction δ seems doomed to
exponentially decline with the depth of the hierarchy.

Finally, due to the results of Canetti, Halevi and Katz [15], our construction also implies the first
forward-secure deterministic and hedged public-key encryption schemes (note that selective security
suffices to give forward-secure public-key cryptosystems). Although our scheme is not practical due
to very large ciphertexts and key sizes, it provides the first feasibility results in these directions.

2 Hierarchical Identity-Based (Lossy) Trapdoor Functions, and Applications

In this section we extend to the hierarchical scenario the definitions for identity-based (lossy)
trapdoor functions given in [9].

Syntax. A hierarchical identity-based trapdoor function (HIB-TDF) is a tuple of efficient algo-
rithms HF = (HF.Setup,HF.MKg,HF.Kg,HF.Del,HF.Eval,HF.Inv). The setup algorithm HF.Setup

takes as input a security parameter ̺ ∈ N, the (constant) number of levels in the hierarchy d ∈ N,
the length of the identities µ ∈ poly(̺) and the length of the function inputs n ∈ poly(̺), and
outputs a set of global public parameters pms, which specifies an input space InpSp, an identity
space IdSp and the necessary mathematical objects and hash functions. The master key generation
algorithm HF.MKg takes as input pms and outputs a master public key mpk and a master secret
key msk. The key generation algorithm HF.Kg takes as input pms, msk and a hierarchical identity
(id1, . . . , idℓ) ∈ IdSp, for some ℓ ≥ 1 and outputs a secret key SK(id1,...,idℓ). The delegation algorithm
HF.Del takes as input pms, msk, a hierarchical identity (id1, . . . , idℓ), a secret key SK(id1,...,idℓ) for
it, and an additional identity idℓ+1; the output is a secret key SK(id1,...,idℓ,idℓ+1) for the hierarchical
identity (id1, . . . , idℓ, idℓ+1) iff (id1, . . . , idℓ, idℓ+1) ∈ IdSp. The evaluation algorithm HF.Eval takes as
input pms, msk, an identity id = (id1, . . . , idℓ) and a value X ∈ InpSp; the result of the evaluation is
denoted as C. Finally, the inversion algorithm HF.Inv takes as input pms, msk, a hierarchical iden-
tity id = (id1, . . . , idℓ), a secret key SKid for it and an evaluation C, and outputs a value X̃ ∈ InpSp.

A HIB-TDF satisfies the property of correctness if

HF.Inv
(
pms,mpk, id,SKid,HF.Eval

(
pms,mpk, id = (id1, . . . , idℓ),X

))
= X,

for any X ∈ InpSp, any pms, (mpk,msk) generated by HF.Setup and HF.MKg, any hierarchi-
cal identity (id1, . . . , idℓ) ∈ IdSp and any secret key SK(id1,...,idℓ) generated either by running

HF.Kg
(
pms,msk, (id1, . . . , idℓ)

)
or by applying the delegation algorithm HF.Del to secret keys of

shorter hierarchical identities.
Before formalizing the new definition of partial lossiness for a HIB-TDF, let us recall the notion

of lossiness: if f is a function with domain Dom(f) and image Im(f) = {f(x) : x ∈ Dom(f)}, we

say that f is ω-lossy if λ(f) ≥ ω, where λ(f) = log |Dom(f)|
|Im(f)| .

To properly define lossiness in the IB setting, it will also be useful to consider extended HIB-
TDFs, which differ from standard HIB-TDFs in that, in the latter, the algorithm HF.Setup speci-
fies in pms an auxiliary input space AuxSp, and HF.MKg takes as additional auxiliary input aux ∈
AuxSp. Also, given some HIB-TDF HF = (HF.Setup,HF.MKg,HF.Kg,HF.Del,HF.Eval,HF.Inv), a sib-
ling for HF is an extended HIB-TDF LHF = (HF.Setup, LHF.MKg, LHF.Kg, HF.Del,HF.Eval,HF.Inv)
whose delegation, evaluation and inversion algorithms are those of HF, and where an auxiliary space
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AuxSp is contained in pms← HF.Setup(̺), so that IdSp ⊂ AuxSp.
Looking ahead, we will define, as in [9], two different experiments: one corresponding to the

standard setup and one corresponding to the lossy setup, in one of them the experiment will in-
teract with a standard HIB-TDF, in the other one with a sibling in which some identities lead to
lossy evaluation functions. The notion of extended HIB-TDF will serve to construct both of these
functions as an extended HIB-TDF but with different auxiliary inputs ~y(0), ~y(1).

2.1 A New Security Definition for HIB-TDFs

The basic security property of a trapdoor function is one-wayness, which means that the function
is hard to invert without the suitable secret key. In the identity-based setting, one-wayness is re-
quired to hold even when the adversary has oracle access to the secret keys for some identities.
Partial lossiness for identity-based trapdoor functions was introduced in [9], where it was proved
to imply one-wayness. Roughly speaking, partial lossiness requires that the weighted difference of
the probability that any adversary outputs 1 in the lossy or in the real setup is negligible. For the
selective case, the weights can simply be set to 1 and it can be proved that an IB-TDF satisfying
their notion of partial lossiness in the selective scenario can be used to build: (1) identity-based
encryption (IBE) schemes with selective IND-CPA security, (2) selectively secure deterministic IBE
schemes, (3) selectively secure hedged IBE schemes. However, these results are not known to be
true in the adaptive setting, in particular, the definition is not even known to yield an IND-ID-CPA
secure encryption scheme.

To address this question, we propose an alternative definition for the partial lossiness of (hi-
erarchical) identity-based trapdoor functions — in particular, they also result in a new definition
when the hierarchy depth is equal to 1, the case considered by Bellare et al. [9]. We will show that
a HIB-TDF satisfying this new definition gives a secure construction of the same primitives we
mentioned for the selective case.

As in [9], we define two different experiments, a lossy experiment and a real experiment. For
any adversary A against a HIB-TDF, and any ζ ∈ (0, 1), the REALA

HF,LHF,P,ω,ζ experiment and

the LOSSYA
HF,LHF,P,ω,ζ experiment are parameterized by the security parameter ̺ (which we will

usually omit in the notation) and values ζ(̺), ω(̺). The value ζ will be important to show that
our construction implies other cryptographic primitives. Intuitively, ζ will be the advantage of an
adversary against a cryptographic scheme the security of which is reduced to the security of the
HIB-TDF. The experiment also takes as input the specification of some efficient algorithm P which
takes as input ζ, pms,mpk1,msk1, IS, id

⋆, and outputs a bit d2. This procedure P can be, in general,
any probabilistic and polynomial-time algorithm. In the security analysis of the selectively secure
version of our HIB-TDF, P will be the trivial algorithm that always outputs d2 = 1. In other
cases, P could be a more complicated algorithm; for instance, in order to prove the security of the
adaptive-id version of our HIB-TDF, we will take as pre-output stage P Waters’ artificial abort
step. Actually, procedure P is a way to relax the security requirements in Denition 1, in order to
allow the possibility of building cryptographic schemes from secure HIB-TDFs, in a black-box way.

Finally, the value ω is related to the lossiness of the trapdoor function. To simplify notation,
we will simply write REAL instead of REALA

HF,LHF,P,ω,ζ and LOSSY instead of LOSSYA
HF,LHF,P,ω,ζ .

For compactness, we present the two experiments as a single experiment depending of a bit β:
the challenger C, who interacts with the adversary A, runs either REAL if β = 0 or LOSSY if β = 1.
Also, some instructions of both experiments depend on whether selective or adaptive security is
being considered. We say that a hierarchical identity id = (id1, . . . , idℓ) is a prefix of another one
id⋆ = (id⋆1, . . . , id

⋆
ℓ⋆) if ℓ ≤ ℓ⋆ and idi = id⋆i for every i = 1, . . . , ℓ. We denote it by id ≤ id⋆.
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0. C chooses global parameters pms by running HF.Setup. The parameters pms are given to A,
who replies by choosing a hierarchical identity id† = (id†1, . . . , id

†
ℓ†
), for some ℓ† ≤ d.

1. C runs (mpk0,msk0) ← HF.MKg(pms) and (mpk1,msk1) ← LHF.MKg(pms, aux = id†). The
adversary A receives mpkβ and lists IS ← ∅, QS ← ∅ are initialized.

2. A can make adaptive queries for hierarchical identities id = (id1, . . . , idℓ) and identities idℓ+1.

- Create-key: A provides id and C creates a private key SKid. If β = 0, SKid is created by
running HF.Kg(pms,msk0, id). If β = 1, it is created by running LHF.Kg(pms,msk1, id). The
list QS is updated as QS = QS ∪ {id}.

- Create-delegated-key: A provides id = (id1, . . . , idℓ) and idℓ+1 such that id ∈ QS. The
challenger C then computes SKid

′ for id′ = (id1, . . . , idℓ+1) by running the delegation algo-
rithm HF.Del

(
pms,mpkβ, SKid, idℓ+1

)
. The list QS is updated as QS = QS ∪ {id′}.

- Reveal-key: A provides id with the restriction that if A is selective, then id 6≤ id†. C returns
⊥ if id 6∈ QS. Otherwise, SKid is returned to A and the list IS is updated as IS = IS∪{id}.

3. The adversary A outputs a hierarchical identity id⋆ = (id⋆1, . . . , id
⋆
ℓ⋆) and a bit dA ∈ {0, 1}. If A

is selective, then id⋆ = id†. In the adaptive case, no element of IS can be a prefix of id⋆. Let d1 be
the bit d1 :=

(
∀ id ∈ IS, λ (HF.Eval(pms,mpk1, id, ·)) = 0

)
∧
(
λ (HF.Eval(pms,mpk1, id

⋆, ·)) ≥ ω
)
.

4. C sets d2 to be the output of the pre-output stage P with input ζ, pms,mpk1,msk1, IS, id
⋆.

5. The final output of the experiment consists of {dA, dA¬abort}, where dA¬abort = d1 ∧ d2 ∈ {0, 1}.

For notational convenience, from now on, let us define dAexp = dA ∧ dA¬abort.
Note that, in the lossy experiment, some identities may lead to lossy functions, which can be

detected by A if it queries the secret key for such an identity. This causes an asymmetry when
comparing the real and the lossy experiments. For this reason, Bellare et al. defined the advantage
of a distinguisher among the lossy and real experiments as the weighted difference of the probability
of outputting 1 in the real case minus the same probability in the lossy case. Our solution is different:
we force the experiment to adopt the same behavior in the real and lossy settings: if a query would
force the LOSSY experiment to set the bits d1 or d2 to 0 (and, as a consequence, setting dAexp = 0),
then it also forces the REAL experiment to set d1 or d2 to 0, respectively. Therefore, the difference
of probabilities in our definition (see condition (i) below) is not weighted.

Definition 1. A HIB-TDF is (ω, δ)-partially lossy if it admits a sibling and an efficient pre-output
stage P such that for all PPT adversaries A and for all non-negligible ζ, there exist two non-
negligible values ǫ1, ǫ2 with δ = ǫ1ǫ2 such that the following three conditions hold:

(i) the following advantage function is negligible in the security parameter ̺:

Advlossy
HF,LHF,P,ω,ζ(A) = |Pr[d

A
exp = 1| REAL] − Pr[dAexp = 1| LOSSY]| (1)

(ii) Pr[dA¬abort = 1 | REAL] ≥ ǫ1.

(iii) if A is such that Pr[dA = 1 | REAL] − 1
2 > ζ, then

Pr[dA = 1 | REAL ∧ dA¬abort = 1]−
1

2
> ǫ2 · ζ, (2)

where δ may be a function of q the maximal number of secret key queries of A.
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As said above, condition (i) is a simple modification of the definition of partial lossiness of Bellare
et al. [9]. We add condition (ii) to rule out some cases in which the definition would be trivial to
satisfy, like the case where the procedure P aborts with overwhelming probability or the case where
the sibling admits only lossy identities: in any of these scenarios, we would have d¬abort = 1 with
negligible probability, which would render the scheme useless with the sole condition (i). Then, we
add a third condition (iii) which allows reducing HIB-TDFs to other primitives. Roughly speaking,
this condition guarantees that the probability of aborting is somewhat independent of the behavior
of any computationally bounded adversary. Interestingly, it is possible to prove (by proceeding
exactly as in the proof of our HIB-TDF) that the pairing-based IB-TDF described by Bellare et al.
[9] satisfies our new partial-lossiness definition.

2.2 Implications of Lossy (H)IB-TDFs: the Example of (H)IBE

Using the same argument as in [9], it is quite easy to prove that a HIB-TDF which enjoys the
new version of the partial lossiness property is already one-way, in both the selective and adaptive
settings. In this section we prove that a HIB-TDF which satisfies our new security definition can
be used to build other primitives in the hierarchical identity-based security, with security against
adaptive adversaries. We detail the example of hierarchical identity-based encryption (HIBE) with
IND-CPA security5. The construction is the direct adaptation of the Peikert-Waters construction
[32] in the public-key setting.

Let HF be a HIB-TDF with message space {0, 1}n and lossiness ω, and H a family of pairwise
independent hash functions from {0, 1}n to {0, 1}l where l ≤ ω − 2 lg(1/ǫLHL) for some negligible
ǫLHL. The HIBE scheme has message space {0, 1}l. Its setup, key generation and key delegation
algorithms are basically the same ones as those for HF, the rest are as follows:

MKGen(pms) Enc(pms,mpk,m, id) Dec(pms,mpk,SKid, C, id)

(mpk′,msk)← HF.MKg(1k) x← {0, 1}n x = HF.Inv(pms,mpk,SKid, c1, id)
h←H c1 = HF.Eval(pms,mpk, id, x) m = c2 ⊕ h(x)
mpk = (mpk′, h) c2 = h(x)⊕m Return m
Return mpk Return C = (c1, c2)

We prove the following theorem.

Theorem 1. If HF is (ω, δ)-partially lossy for some non-negligible value of δ, then the HIBE
scheme Π described is IND-ID-CPA secure. In particular, for every IND-ID-CPA adversary B
against Π there exists a PPT adversary A against HF such that

Advlossy
HF,LHF,P,ω,ζ(A) ≥

2

3
· δ ·Advind−id−cpa(B)− ν(̺)

for some negligible function ν; both adversaries A and B run in comparable times.

Proof. Let us assume that an adversary B has advantage at least ζ in breaking the IND-ID-CPA
security of the HIBE scheme Π, for some non-negligible ζ. We build an adversary A that breaks the
condition (i) of Definition 1 assuming that conditions (ii) and (iii) are satisfied. Our adversary A,
who interacts with a challenger that runs either the experiment REAL or the experiment LOSSY,
proceeds to simulate the challenger in the IND-ID-CPA game with B as follows.

5 The cases of deterministic HIBE and hedged HIBE are discussed in Appendices C and D.
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A forwards an identity id† to its challenger, which is some random identity in the adaptive case
or corresponds to the challenge identity chosen by B in the selective case. When the challenger
runs the setup and gives the output to A, A forwards this information to B together with a hash
function h←H. When B asks for a secret key for a hierarchical identity id, A forwards the query to
the experiment and forwards the reply to B. At some point, B outputs (m0,m1, id

⋆), with id† = id∗

in the selective case. Adversary A then forwards id⋆ to its challenger, chooses γ ← {0, 1} at random
and encrypts mγ under the identity id⋆. After some more secret key queries, B outputs a guess γ′

and A outputs dA = 1 if γ = γ′ and dA = 0 otherwise.
In the REAL setting, we will have

Pr[γ′ = γ| REAL]−
1

2
= Pr[dA = 1| REAL]−

1

2
≥ ζ,

since A perfectly simulated the IND-ID-CPA game with B. This inequality can be combined with
conditions (ii) and (iii) of the definition of (ω, δ)-partial lossiness (which we assume to be satisfied
by HF), and we obtain

Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1]−

1

2

)
> ǫ1ǫ2ζ. (3)

On the other hand, as proved in [9], in the LOSSY setting when id⋆ is lossy, the advantage of B in
guessing γ is negligible. Indeed, since we are using a pairwise independent hash function, the Leftover
Hash Lemma [24] (more precisely, its variant proved in [18]) implies that the distribution of c2 given
c1 is statistically close to the uniform distribution. We thus have Pr[dA = 1| LOSSY ∧ dA¬abort =

1] ≤
1

2
+ ǫLHL, for some negligible function ǫLHL. Since dAexp = dA¬abort ∧ dA, we find

Pr[dAexp = 1 | LOSSY] = Pr[dA = 1 | LOSSY ∧ dA¬abort = 1]Pr[dA¬abort = 1 | LOSSY]

≤
(1
2
+ ǫLHL

)
· Pr[dA¬abort = 1 | LOSSY]

≤
1

2
·
(
Pr[dA¬abort = 1 | REAL] +Advlossy

HF,LHF,P,ω,ζ(A)
)
+ ν, (4)

for some negligible function ν ∈ negl(̺). The last equality follows from the fact that we can assume

that Pr[dA¬abort = 1| LOSSY]−Pr[dA¬abort = 1| REAL] ≤ Advlossy
HF,LHF,P,ω,ζ(A): otherwise, we can easily

build a distinguisher6 against condition (i) of the partial lossiness definition. If we plug (4) into the

definition of Advlossy
HF,LHF,P,ω,ζ(A), we obtain

Advlossy
HF,LHF,P,ω,ζ(A) =

∣∣Pr[dAexp = 1 | REAL]− Pr[dAexp = 1 | LOSSY]
∣∣

≥

∣∣∣∣Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1]−

1

2

)∣∣∣∣ (5)

−
1

2
·Advlossy

HF,LHF,P,ω,ζ(A)− ν,

so that there exists ν̃ ∈ negl(̺) such that

Advlossy
HF,LHF,P,ω,ζ(A) ≥

2

3
·

∣∣∣∣Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1]−

1

2

)∣∣∣∣− ν̃.

6 This distinguisher A1 is obtained from A by ignoring dA ∈ {0, 1} and replacing it by a 1, so that dA¬abort = dAexp.
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This means that Advlossy
HF,LHF,P,ω,ζ(A) is non-negligible since δ = ǫ1ǫ2 and the right-hand-side mem-

ber of the above expression is at least (2/3) ·δ ·ζ−ν. In other words, any adversary guessing γ′ = γ
with non-negligible advantage ζ in REAL necessarily contradicts condition (i). ⊓⊔

3 Interlude: Hierarchical Predicate Encryption

In this section we propose a new hierarchical predicate encryption scheme with the attribute-
hiding property, which will be used as an ingredient to build, in the next section, a hierarchical
identity-based (lossy) trapdoor function. The syntax and security model for hierarchical predicate
encryption schemes are recalled in Appendix A.1.

3.1 Some Complexity Assumptions

We consider groups (G, Ĝ,GT ) of prime order p for which an asymmetric bilinear map e : G× Ĝ→
GT is efficiently computable. We will assume that the DDH assumption holds in both G and Ĝ,
which implies that no isomorphism is efficiently computable between G and Ĝ. The assumptions
that we need are sometimes somewhat stronger than DDH. However, they have constant size (i.e.,
we de not rely on q-type assumptions) and were previously used in [20].

The Bilinear Diffie Hellman Assumption (BDH): in bilinear groups (G, Ĝ,GT ) of prime or-
der p, the distributionD1 = {(g, g

a, gc, ĝ, ĝa, ĝb, e(g, ĝ)abc) | a, b, c R← Zp}, is computationally

indistinguishable from D2 = {(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)z) | a, b, c, z R← Zp}.

The P-BDH1 Assumption: in asymmetric bilinear groups (G, Ĝ,GT ) of prime order p, the dis-
tribution D1 = {(g, g

b, gab, gc, ĝ, ĝa, ĝb, gabc) | a, b, c R← Zp} is computationally indistinguishable

from D2 = {(g, g
b, gab, gc, ĝ, ĝa, ĝb, gz) | a, b, c, z R← Zp}.

The DDH2 Assumption: in asymmetric bilinear groups (G, Ĝ,GT ) of prime order p, the dis-
tribution D1 = {(g, ĝ, ĝa, ĝb, ĝab) | a, b R← Zp} is computationally indistinguishable from the

distribution D2 = {(g, ĝ, ĝa, ĝb, ĝz) | a, b, z R← Zp}.

3.2 A Selectively Secure Weakly Attribute-Hiding Hierarchical Predicate
Encryption Scheme

The construction is inspired by the Shi-Waters delegatable predicate encryption scheme [34] (at
a high-level, it also bears similarities with the lattice-based scheme of [3]). However, we have to
turn it into a predicate encryption scheme for inner product relations (like the one of Okamoto
and Takashima [30]) instead of a hidden vector encryption [11]. Another difficulty to solve is that
we cannot use composite order groups as in [34] because, in our HIB-TDF of Section 4, one of
the subgroups would eventually leak information on the input in lossy mode (this is actually what
happened with our initial attempt). For this reason, we chose to work with prime-order groups and
used asymmetric pairing configurations to anonymize ciphertexts. As a benefit, we obtain a better
efficiency than by using the techniques of [11] by reducing the number of pairing evaluations.

Setup(̺, d, µ): given a security parameter ̺ ∈ N, the (constant) desired number of levels in the
hierarchy d ∈ N and the desired length µ of the attribute vectors at each level, choose asymmetric
bilinear groups (G, Ĝ,GT ) of order p, where p > 2̺. Choose g R← G, ĝ R← Ĝ. Then, pick
α,αv , αw

R← Z
∗
p and set v = gαv , v̂ = ĝαv , w = gαw and ŵ = ĝαw . For i1 = 1, . . . , d and

9



i2 = 0, . . . , µ, choose αi1,i2
R← Z

∗
p and compute hi1,i2 = gαi1,i2 ∈ G and ĥi1,i2 = ĝαi1,i2 ∈ G . The

master public key is defined to be

mpk :=
(
v, w, e(g, v̂)α, {hi1,i2}i1∈{1,...,d}, i2∈{0,...,µ}

)

while the master secret key is msk :=
(
ĝ, ĝα, v̂, ŵ, {ĥi1,i2}i1∈{1,...,d}, i2∈{0,...,µ}

)
.

Keygen
(
msk, ( ~X1, . . . , ~Xℓ)

)
: to generate a private key for vectors ( ~X1, . . . , ~Xℓ) with ℓ ≤ d, parse

msk as
(
ĝ, v̂, ŵ, {ĥi1,i2}i1∈{1,...,d}, i2∈{0,...,µ}

)
. For i1 = 1 to ℓ, parse ~Xi1 as (xi1,1, . . . , xi1,µ) ∈ Z

µ
p .

Choose rw
R← Z

∗
p and r1, . . . , rℓ

R← Z
∗
p, for i1 ∈ {1, . . . , ℓ}. Then, compute the decryption

component SKD = (D,Dw, {Di1}
ℓ
i1=1) of the key as

D = ĝα ·
ℓ∏

i1=1

( µ∏

i2=1

ĥ
xi1,i2
i1,i2

)ri1 · ŵrw , Dw = v̂rw , Di1 = v̂ri1 .

To define the elements of its delegation component SKDL(
{Kj,k, Lj , Lj,k,i1, Lw,j,k}j∈{ℓ+1,...,d}, k∈{1,...,µ}, i1∈{1,...,ℓ}

)

pick sj
R← Z

∗
p, sj,k,i1

R← Z
∗
p, sw,j,k

R← Z
∗
p for i1 ∈ {1, . . . , ℓ}, i2 ∈ {1, . . . , µ} and set:

Kj,k =

ℓ∏

i1=1

( µ∏

i2=1

ĥ
xi1,i2
i1,i2

)sj,k,i1 · ĥsjj,k · ŵsw,j,k , Lj = v̂sj , Lj,k,i1 = v̂sj,k,i1 , Lw,j,k = v̂sw,j,k .

Output the private key SK( ~X1,..., ~Xℓ)
=
(
SKD, SKDL

)
.

Delegate
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

, ~Xℓ+1

)
: parse the key SK( ~X1,..., ~Xℓ)

as (SKD, SKDL). Given,

~Xℓ+1 = (xℓ+1,1, . . . , xℓ+1,µ) ∈ Z
µ
p , do the following.

1. Randomize SKDL by raising all its component to some z R← Z
∗
p. Call this new key ŜKDL

and write its elements with a hat (e.g., K̂j,k = Kz
j,k).

2. Compute a partial decryption key

Kℓ+1 =

µ∏

k=1

K̂
xℓ+1,k

ℓ+1,k =
ℓ∏

i1=1

(

µ∏

i2=1

ĥ
xi1,i2
i1,i2

)sℓ+1,i1 ·
( µ∏

k=1

ĥ
xℓ+1,k

ℓ+1,k

)sℓ+1 · ŵsw,ℓ+1 , Lℓ+1,ℓ+1 = L̂ℓ+1,

Lℓ+1,i1 =

µ∏

k=1

L̂
xℓ+1,k

ℓ+1,k,i1
= v̂sℓ+1,i1 for i1 ∈ {1, . . . , ℓ}, Lw,ℓ+1 =

µ∏

k=1

L̂
xℓ+1,k

w,ℓ+1,k = v̂sw,ℓ+1

where we define the exponents sℓ+1,i1 = z ·
∑µ

k=1 sℓ+1,k,i1 · xℓ+1,k for i1 ∈ {1, . . . , ℓ}, and
sw,ℓ+1 = z ·

∑µ
k=1 sw,ℓ+1,k · xℓ+1,k.

3. For all j ∈ {ℓ + 2, . . . , d}, k ∈ {1, . . . , µ}, compute re-randomized versions of the partial
decryption key by raising the partial decryption key to a random power τj,k

R← Z
∗
p.

K
(j,k)
ℓ+1 = K

τj,k
ℓ+1, L

(j,k)
w,ℓ+1 = L

τj,k
w,ℓ+1, {L

(j,k)
ℓ+1,i1

= L
τj,k
ℓ+1,i1

}ℓ+1
i1=1.

These values will be used to compute the delegation component of the new key at step 5.
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4. Compute a decryption component SK ′
D = (D′,D′

w, {D
′
i1
}ℓ+1
i1=1) for the delegated key by

setting D′ = D · Kℓ+1, D
′
w = Dw · Lw,ℓ+1. Then, define D′

ℓ+1 = Lℓ+1,ℓ+1 and, for each
i1 ∈ {1, . . . , ℓ}, set D

′
i1
= Di1 · Lℓ+1,i1 .

5. Compute a delegation component for the delegated key. For each j ∈ {ℓ + 2, . . . , d}, set

L′
j = L̂j. Then, for k = 1 to µ and i1 = 1 to ℓ+ 1, set

K ′
j,k = K̂j,k ·K

(j,k)
ℓ+1 , L′

w,j,k = L̂w,j,k · L
(j,k)
w,ℓ+1 L′

j,k,i1 = L̂j,k,i1 · L
(j,k)
ℓ+1,i1

,

where L̂j,k,ℓ+1 = 1 for all j, k. The new delegation component SK ′
DL is

(
{K ′

j,k, L
′
j , L

′
j,k,i1, L

′
w,j,k}j∈{ℓ+2,...,d}, k∈{1,...,µ}, i1∈{1,...,ℓ}

)

Return the delegated private key SK( ~X1,..., ~Xℓ+1)
= (SK ′

D, SK
′
DL).

Encrypt
(
mpk, (~Y1, . . . , ~Yκ),M

)
: given mpk, a plaintext M ∈ GT as well as a hierarchy of vectors

~Y1 = (y1,1, . . . , y1,µ), . . . , ~Yκ = (yκ,1, . . . , yκ,µ), choose s R← Z
∗
p and compute

C0 = M · e(g, v̂)α·s, Cv = vs, Cw = ws, {Ci1,i2 =
(
h
yi1,i2
i1,0

· hi1,i2
)s
}i1∈{1,...,κ}, i2∈{1,...,µ},

The ciphertext is C =
(
C0, Cv , Cw, {Ci1,i2}i1∈{1,...,κ}, i2∈{1,...,µ}

)
.

Decrypt
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

, C
)
: parse the private key SK( ~X1,..., ~Xℓ)

as
(
SKD, SKDL

)
,

where SKD = (D,Dw, {Di1}
ℓ
i1=1) and the ciphertext C as

(
C0, Cv, Cw, {Ci1,i2}i1∈{1,...,κ}, i2∈{1,...,µ}

)
.

1. For each i1 ∈ {1, . . . , ℓ}, compute Ci1 =
∏µ

i2=1C
xi1,i2
i1,i2

=
(
h

~Xi1
·~Yi1

i1,0
·
∏µ

i2=1 h
xi1,i2
i1,i2

)s
.

2. ReturnM ifM = C0·e(Cv ,D)−1·e(Cw,Dw)·
∏ℓ

i1=1 e(Ci1 ,Di1) is in the appropriate subspace7

of GT . Otherwise, return ⊥.

We show that our scheme is correct in Appendix A.2. Our HIB-TDF uses the predicate-only
variant of the above scheme, obtained by discarding the ciphertext component C0 (which contains
the payload) and the factor ĝα from the private key component D.

We remark that the number of pairing evaluations only depends on the depth ℓ of the predicate
( ~X1, . . . , ~Xℓ) encoded in the private key and not on the dimension µ of vectors at each level. Except
a recent fully secure construction [31], all previous schemes required O(ℓ · µ) pairing evaluations
to decrypt. In our HIB-TDF of Section 4, this will make it possible to invert a function admitting
n-bit inputs by computing O(ℓ · n) pairings, instead of O(ℓ · n · µ).

The new HPE scheme is selectively weakly attribute-hiding under the BDH, P-BDH1 and DDH2

assumptions, as established by Theorem 2. The security of its predicate-only variant (which is the
one used as a key ingredient in the design of our HIB-TDF) relies only on the latter two assumptions.

Theorem 2. The HPE scheme is selectively weakly attribute-hiding (in the sense of Definition 2
in Appendix A.1) if the BDH, P-BDH1 and DDH2 assumptions hold in (G, Ĝ,GT ). (The proof is
given in Appendix A.3).

7 As in [11,28], the plaintext space is restricted to have a size much smaller than |GT | to make sure that the decryption
algorithm returns ⊥ if an unauthorized key is used to decrypt.
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4 A Hierarchical Identity-Based (Lossy) Trapdoor Function

From the HPE scheme of Section 3.2, our lossy function is obtained by including a n×n matrix of
HPE ciphertexts in the master public parameters. As in the DDH-based function of [32], each row
of the matrix is associated with an encryption exponent, which is re-used throughout the entire
row. Each column corresponds to a different set of public parameters in the HPE system.

The HIB-TDF that we construct is actually an extended HIB-TDF, and so the master key
generation protocol takes an auxiliary input. Depending on the value of this auxiliary input, we
obtain the trapdoor (injective) function or a partially lossy function, used in the security proofs.
Actually, all HPE ciphertexts in the above-mentioned matrix correspond to different hierarchical
vectors (y1, . . . ,yd) ∈ Z

d·µ
p , depending on the auxiliary input. The selective weak attribute-hiding

property of the HPE scheme guarantees that the two setups are computationally indistinguishable.
In order to evaluate a function for some hierarchical identity id = (id1, . . . , idℓ), the first step

of the evaluation algorithm computes a transformation on HPE ciphertexts so as to obtain a
matrix of HIBE ciphertexts. During this transformation, a set of inner products {〈yi1 , idi1〉}

ℓ
i1=1

is calculated in the exponent in the diagonal entries of the matrix. The transformation provides
a n × n matrix (8) of anonymous HIBE ciphertexts that are always well-formed in non-diagonal
entries. As for diagonal entries, they contain “perturbed” HIBE ciphertexts: at each level, one
ciphertext component contains a perturbation factor of the form 〈yi1 , idi1〉. In this matrix of HIBE
ciphertexts, random encryption exponents are again re-used in all positions at each row.

The function evaluation is then carried out as in [32], by computing a matrix-vector product
in the exponent and taking advantage of homomorphic properties of the HIBE scheme over the
randomness space. The function output can be seen as a set of n anonymous HIBE ciphertexts –
one for each input bit – which are well-formed ciphertexts if and only if the corresponding input
bit is 0 (i.e., if and only if the perturbation factors {〈yi1 , idi1〉}

ℓ
i1=1 are left out when computing the

matrix-vector product in the exponent). The function is thus inverted by testing the well-formedness
of each HIBE ciphertext using the private key.

4.1 Description

HF.Setup(̺, d, n, µ): given a security parameter ̺ ∈ N, the (constant) desired number of levels
in the hierarchy d ∈ N and integers µ, n ∈ poly(̺) specifying the length of identities and that
of function inputs, respectively, choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order

p > 2̺. Define InpSp = {0, 1}n, ΣID = {(1,x) : x ∈ Z
µ−1
p }, IdSp = Σ

(≤d)
ID

and AuxSp = Z
d·µ
p . The

public parameters are pms =
(
p, (G, Ĝ,GT ), d, n, µ, InpSp, IdSp,AuxSp

)
.

Since HF is an extended HIB-TDF, the master key generation algorithm of our HIB-TDF receives
an auxiliary input y ∈ AuxSp. Here, it is seen as a concatenation of d row vectors y1, . . . ,yd ∈ Z

µ
p .

HF.MKg(pms,y): parse the auxiliary input as y = [y1| . . . |yd] ∈ Z
d·µ
p , and proceed as follows.

1. Choose αv
R← Z

∗
p, αw

R← (Z∗
p)

n, and αh
R← (Z∗

p)
d×(µ+1)×n. Define v = gαv , v̂ = ĝαv ,

w = gαw ∈ G
n and ŵ = ĝαw ∈ Ĝ

n. Likewise, set up vectors h = gαh ∈ G
d×(µ+1)×n

and ĥ = ĝαh ∈ Ĝ
d×(µ+1)×n. Define

PPcore :=
(
v, {w[l1]}

n
l1=1, {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,µ}, l1∈{1,...,n}

)

2. For i1 = 1 to d, parse yi1 as (yi1 [1], . . . ,yi1 [µ]) ∈ Z
µ
p . For l2 = 1 to n, do the following.
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a. Choose s[l2]
R← Z

∗
p and compute J[l2] = vs[l2] as well as

Cw[l2, l1] = w[l1]
s[l2], C[i1, i2, l2, l1] =

(
h[i1, 0, l1]

yi1
[i2]·∆(l2,l1) · h[i1, i2, l1]

)s[l2]

for each i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , µ}, l1 ∈ {1, . . . , n}.

b. Define a n× n matrix {CT[l2, l1]}l2,l1∈{1,...,n} of HPE ciphertexts

CT[l2, l1] =
(
J[l2],Cw[l2, l1], {C[i1, i2, l2, l1]}i1∈{1,...,d}, i2∈{1,...,µ}

)
. (6)

The master public key consists of mpk :=
(
PPcore, {CT[l2, l1]}l2,l1∈{1,...,n}

)
while the master

secret key is msk :=
(
v̂, ŵ, ĥ

)
. For each l1 ∈ {1, . . . , n}, it will be convenient to view

(PPcore,msk) as a vector of HPE master key pairs (mpk[l1],msk[l1]), with

mpk[l1] =
(
v,w[l1], {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,µ}

)

msk[l1] =
(
v̂, ŵ[l1], {ĥ[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,µ}

)
.

HF.Kg
(
pms,msk, (id1, . . . , idℓ)

)
: to generate a key for an identity (id1, . . . , idℓ) ∈ IdSp, parse msk

as
(
v̂, ŵ, ĥ

)
and idi1 as idi1 [1] . . . idi1 [µ] for i1 = 1 to ℓ. Choose rw, r1, . . . , rℓ

R← (Z∗
p)

n. For each

l1 ∈ {1, . . . , n}, compute the decryption component SKD = (D,Dw, {Di1}
ℓ
i1=1) of the key as

D[l1] =

ℓ∏

i1=1

( µ∏

i2=1

ĥ[i1, i2, l1]
idi1

[i2]
)ri1 [l1] · ŵ[l1]

rw[l1], Dw[l1] = v̂rw[l1], Di1 [l1] = v̂ri1 [l1] (7)

and the delegation component SKDL =
(
{K[j, k, l1]}j,k,l1 , {L[j, l1]}j,l1 , {L[j, k, i1, l1]}j,k,i1,l1 ,

{Lw[j, k, l1]}j,k,l1
)
, with j ∈ {ℓ+ 1, . . . , d}, k ∈ {1, . . . , µ} and i1 ∈ {1, . . . , ℓ} as

K[j, k, l1] =
ℓ∏

i1=1

( µ∏

i2=1

ĥ[i1, i2, l1]
idi1

[i2]
)s[j,k,i1,l1]

· ĥ[j, k, l1]
s′[j,l1] · ŵ[l1]

sw[j,k,l1],

L[j, l1] = v̂s
′[j,l1], L[j, k, i1, l1] = v̂s[j,k,i1,l1] and Lw[j, k, l1] = v̂sw[j,k,l1].

Output SK(id1,...,idℓ) =
(
SKD,SKDL

)
.

HF.Del
(
pms,mpk, (id1, . . . , idℓ),SK(id1,...,idℓ), idℓ+1

)
: parse SK(id1,...,idℓ) as a HF private key of the

form (SKD,SKDL), and idℓ+1 as a string idℓ+1[1] . . . idℓ+1[µ] ∈ ΣID.

1. For l1 = 1 to n, define ℓ-th level HPE keys SK(id1,...,idℓ)[l1] = (SKD[l1],SKDL[l1]) where

SKD[l1] = (D[l1],Dw[l1], {Di1 [l1]}
ℓ
i1=1)

SKDL[l1] =
(
{K[j, k, l1]}j,k, {L[j, l1]}j , {L[j, k, i1, l1]}j,k,i1 , {Lw[j, k, l1]}j,k

)
.

2. For l1 = 1 to n, run Delegate(mpk[l1], (id1, . . . , idℓ),SK(id1,...,idℓ)[l1], idℓ+1) (as specified in
Section 3.2) to get SK(id1,...,idℓ,idℓ+1)[l1] = (SK′

D[l1],SK
′
DL[l1]).

Finally return {SK(id1,...,idℓ,idℓ+1)[l1]}
n
l1=1.

HF.Eval
(
pms,mpk, (id1, . . . , idℓ),X

)
: Given a n-bit input X = x1 . . . xn ∈ {0, 1}n, for i1 = 1 to ℓ,

parse idi1 as idi1 [1] . . . idi1 [µ]. For l1 = 1 to n, do the following.
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1. For each l2 ∈ {1, . . . , n}, compute modified HPE ciphertexts by defining

Cid[i1, l2, l1] =

µ∏

i2=1

C[i1, i2, l2, l1]
idi1

[i2] =
(
h[i1, 0, l1]

〈yi1
,idi1 〉·∆(l2,l1) ·

µ∏

i2=1

h[i1, i2, l1]
idi1

[i2]
)s[l2]

for each i1 ∈ {1, . . . , ℓ}, l1, l2 ∈ {1, . . . , n}. The modified ciphertexts are

CTid[l2, l1] =
(
J[l2], {CTid[i1, l2, l1]}

ℓ
i1=1

)
∈ G

ℓ+1. (8)

The resulting {CTid[l2, l1]}l2,l1∈{1,...,n} thus form a n×n matrix of anonymous HIBE cipher-
texts for the identity id = (id1, . . . , idℓ).

2. Compute Cid,v =
∏n

l2=1 J[l2]
xl2 = v〈s,X〉, CTid,w[l1] =

∏n
l2=1 Cw[l2, l1]

xl2 = w[l1]
〈s,X〉 and

CTid[i1, l1] =
n∏

l2=1

Cid[i1, l2, l1]
xl2 = h[i1, 0, l1]

s[l1]·xl1
·〈yi1

,idi1 〉 ·
( µ∏

i2=1

h[i1, i2, l1]
idi1

[i2]
)〈s,X〉

(9)

Then, output C =
(
Cid,v, {CTid,w[l1]}

n
l1=1, {CTid[i1, l1]}i1∈{1,...,ℓ},l1∈{1,...,n}

)
∈ G

n+1+n×ℓ. (10)

HF.Inv
(
pms,mpk, (id1, . . . , idℓ),SK(id1,...,idℓ), C

)
: parse the decryption component SKD of the pri-

vate key as a tuple of the form (D,Dw,Dw̄, {Di1}
ℓ
i1=1) and the output C as per (10). Then, for

l1 = 1 to n, set xl1 = 0 if

e(Cid,v,D[l1]) · e(CTid,w[l1],Dw[l1])
−1 ·

ℓ∏

i1=1

e(CTid[i1, l1],Di1 [l1])
−1 = 1GT

. (11)

Otherwise, set xl1 = 1. Eventually, return X = x1 . . . xn ∈ {0, 1}
n.

From (9), we notice that, with overwhelming probability, if there exists some i1 ∈ {1, . . . , d} such
that 〈yi1 , idi1〉 6= 0, relation (11) is satisfied if and only if xl1 = 0. Indeed, in this case, the output
(10) is distributed as a vector of n Boneh-Boyen HIBE ciphertexts (in their anonymous variant
considered in [20]). These ciphertexts correspond to the same encryption exponent 〈s,X〉 and are
generated under n distinct master public keys sharing the same component v ∈ G.

When the function is implemented in injective mode, the auxiliary input consists of a vector
y(0) = [(1, 0, . . . , 0)| . . . |(1, 0, . . . , 0)] ∈ Z

d·µ
p . Since idi1 [1] = 1 for each i1, this guarantees injectivity

since 〈y
(0)
i1

, idi1〉 6= 0 for each i1. In the partially lossy mode, we have 〈yi1 , idi1〉 = 0 for each
i1 ∈ {1, . . . , ℓ} with non-negligible probability, which leads to high non-injectivity.

4.2 Security Analysis

To analyze the security of the scheme (w.r.t. the new definition, in Section 2.1), in both the adaptive
and the selective cases, we define two experiments, RL0 and RLn. In both of them, HF.Setup is run
and the public parameters are given to the adversary A. Algorithm HF.MKg is run with auxiliary

input y(0) = [(1, 0, . . . , 0)| . . . |(1, 0, . . . , 0)] in RL0, and auxiliary input y(1) = [y
(1)
1 | . . . |y

(1)
d ] in RLn,

where y(1) is produced by an auxiliary input generator Aux(id) taking as input a special hierarchical
identity id = (id1, . . . , idℓ). The master public key mpk is given to the A. A can request secret keys
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for identities id, which will be answered using HF.Kg and HF.Del and will be added to IS, initialized
to IS = {∅}. Also, A will output a hierarchical identity id⋆. Finally, A will output a guess dA. Both
in RL0 and RLn, the experiment will halt and output d′ = 0 if: a) for any id = (id1, . . . , idℓ) ∈ IS

we have that 〈y
(1)
i1

, ~idi1〉 = 0 for each i1 ∈ {1, . . . , ℓ}, or b) if 〈y
(1)
i1

, ~id
⋆

i1〉 6= 0 for some i1 ∈ {1, . . . , ℓ
⋆}.

If the experiment has not aborted, it will output the bit d′ = dA. The result in the following lemma
will be used to prove that HF enjoys partial lossiness.

Lemma 1. Under the P-BDH1 and DDH2 assumptions, the experiments RL0 and RLn return 1
with nearly identical probabilities. Namely, there exist PPT algorithms B1 and B2 such that

|Pr[RL0 ⇒ 1]− Pr[RLn ⇒ 1]| ≤ n ·
(
(d · µ+ 1) ·AdvP-BDH1(B1) + q ·AdvP-DDH2(B2)

)
,

where q is the number of “Reveal-key” queries made by A.(The proof is in Appendix B.1).

Adaptive-id Security. The details on the security analysis of HF with respect to selective adver-
saries are given in Appendix B.2. For adaptive security we consider our construction of HF with a
restricted identity space, namely taking ΣID = {(1,x) : x ∈ {0, 1}µ−1}. Define a sibling LHF with

AuxSp = Z
µ·d
p , where the auxiliary input y(1) = [y

(1)
1 | . . . |y

(1)
d ], for any i1 from 1 to d, is defined as

y′i1
R← {0, . . . , 2q − 1}, ξi1

R← {0, . . . , µ+ 1}, y
(1)
i1

[1] = y′i1 − 2ξi1q, {y
(1)
i1

[i] R← {0, . . . , 2q − 1}}µi=2.

The pre-output stage P associated to the scheme HF in the adaptive case will be the artificial
abort used in [36]: if IS is the set of queried identities (only taking into account “Reveal key”
queries) and id⋆ is the challenge identity, let E(IS, id⋆) be the event that the REAL or the LOSSY

experiments set d1 to be 1, and let η(IS, id⋆) = Pr[E(IS, id⋆)]. We prove in Appendix B.3:

Lemma 2. ηlow = 1/
(
2 · (2qµ)d

)
≤ η(IS, id⋆)

P computes an approximation η′(IS, id⋆) of η(IS, id⋆), by using O(ζ−2 ln(ζ−1)η−1
low ln(η−1

low))
samples, for a non-negligible ζ, which is part of the input to P. If η′(IS, id⋆) ≤ ηlow, then d2 is
always set to 1. If η′(IS, id⋆) > ηlow, then d2 = 0 with probability 1 − ηlow/η

′(IS, id⋆) and d2 = 1
with probability ηlow/η

′(IS, id⋆). Adaptive security of HF is established in the following theorem.

Theorem 3. Let n > log p and let ω = n − log p. Let HF be the HIB-TDF with parameters

n, d, µ,ΣID = {(1,x) : x ∈ {0, 1}µ−1}, IdSp = Σ
(≤d)
ID . Let LHF be the sibling with auxiliary input as

above, let the pre-output stage associated to HF be the one specified above. In front of adaptive-id
adversaries that make a maximal number of q ≤ p/(2µ) queries, HF is (ω, δ)-partially lossy, for
δ = 13/

(
32 · (2qµ)d

)
.

Specifically regarding condition (i), for any such adaptive-id adversary A there exist algorithms

B1 and B2 such that Advlossy
HF,LHF,ω,ζ(A) ≤ 2n ·

(
(d · µ+ 1) ·AdvP-BDH1(B1) + q ·AdvP-DDH2(B2)

)
,

where the running time of B1 and B2 is that of A plus a O(ζ−2 ln(ζ−1)η−1
low ln(η−1

low)) overhead, with
ηlow = 1/

(
2 · (2qµ)d

)
. (The proof is given in Appendix B.4).

The fact that η−1
low depends exponentially on d is what makes our adaptive-id security result

valid only for hierarchies of constant depth d. Whether this restriction can be avoided at all is an
interesting open question.
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A Deferred Definitions and Proofs for Hierarchical Predicate Encryption

A.1 Definitions for Hierarchical Predicate Encryption

A tuple of integers ~ν = (µ1, d; ν1, . . . , νd) such that ν0 = 0 ≤ ν1 < ν2 < · · · , < νd = µ1 is called a
format hierarchy of depth d. Such a hierarchy is associated with attribute spaces {Σi}

d
i=0. In our

setting, we set Σi = Z
νi−νi−1
p \{~0} for i = 1 to d, for some p ∈ N, and also define the universe of

hierarchical attributes as Σ := ∪di=1(Σ1×· · ·×Σi). For vectors { ~Xi ∈ Σi}i∈{1,...,d}, we will consider

the (inner-product) hierarchical predicate f( ~X1,..., ~Xℓ)
(~Y1, . . . , ~Yκ) = 1 iff ℓ ≤ κ and ~Xi · ~Yi = 0 for all

i ∈ {1, . . . , ℓ}. The space of hierarchical predicates is defined to be

F = {f( ~X1,..., ~Xℓ)
|{ ~Xi ∈ Σi}i∈{1,...,ℓ}}

and the integer κ (resp. ℓ) is called the depth (resp. the level) of (~Y1, . . . , ~Yκ) (resp. ( ~X1, . . . , ~Xℓ)).
Most of the time we will assume that νi/νi−1 = µ for any i, and to specify the format hierarchy we
will only have to give µ and d.

Let ~ν = (µ1, d; ν1, . . . , νd) be a format hierarchy. A hierarchical predicate encryption (HPE)
scheme for a predicate family F consists of these algorithms.

Setup(̺, ~ν): takes as input a security parameter ̺ ∈ N and a format hierarchy ~ν = (n1, d; ν1, . . . , νd).
It outputs a master secret key msk and a master public key mpk that includes the description
of a hierarchical attribute space Σ.

Keygen
(
msk, ( ~X1, . . . , ~Xℓ)

)
: takes as input predicate vectors ( ~X1, . . . , ~Xℓ) ∈ Σ1×· · ·×Σℓ and the

master secret key msk. It outputs a private key SK( ~X1,..., ~Xℓ)
.

Encrypt
(
mpk, (~Y1, . . . , ~Yκ),M

)
: takes as input attribute vectors (~Y1, . . . , ~Yκ) ∈ Σ1×· · ·×Σk, the

master public key mpk and a message M . It outputs a ciphertext C.
Decrypt

(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

, C
)
: takes in a private key SK( ~X1,..., ~Xℓ)

for the vectors

( ~X1, . . . , ~Xℓ), the master public key mpk and a ciphertext C. It outputs a plaintext M or ⊥.
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Delegate
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

, ~Xℓ+1

)
: takes in a ℓ-th level private key SK( ~X1,..., ~Xℓ)

, the

corresponding vectors ( ~X1, . . . , ~Xℓ) and a vector ~Xℓ+1. It outputs a (ℓ+ 1)-th level private key
SK( ~X1,..., ~Xℓ, ~Xℓ+1)

.

Correctness mandates that, for any message M and hierarchical vectors ( ~X1, . . . , ~Xℓ), (~Y1, . . . , ~Yκ),

we have Decrypt
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

,Encrypt(mpk, (~Y1, . . . , ~Yκ,M)
)
= M whenever

the condition f
( ~X1,..., ~Xℓ)

(~Y1, . . . , ~Yκ) = 1 is satisfied.

Following [30], we write f ′ ≤ f to express that the predicate vector of f is a prefix of that for
f ′, meaning that f ′ is at least as constraining as f .

Definition 2. A Hierarchical Predicate Encryption scheme is selectively weakly attribute-
hiding if no PPT adversary has non-negligible advantage in the following game:

1. The adversary A chooses a format hierarchy ~ν = (n1, d; ν1, . . . , νd) and vectors (~Y 0
1 , . . . ,

~Y 0
d⋆),

(~Y 1
1 , . . . ,

~Y 1
d⋆), for some d⋆ ≤ d. The challenger generates a master key pair (msk,mpk) ←

Setup(̺, ~ν) and mpk is given to A.
2. A is allowed to make a number of adaptive queries.

- Create-key: A provides a predicate f ∈ F and the challenger creates a private key SKf

for f without revealing it to A.
- Create-delegated-key: A chooses a private key that was previously created for some pred-
icate f and also specifies another predicate f ′ ≤ f that f is a prefix of. The challenger then
computes a delegated key SKf ′ for f ′ without revealing it to A.

- Reveal-key: A asks the challenger to give out a previously created key.

For each Reveal-key query ( ~X1, . . . , ~Xℓ), it is required that

f( ~X1,..., ~Xℓ)
(~Y 0

1 , . . . ,
~Y 0
d⋆) = f( ~X1,..., ~Xℓ)

(~Y 1
1 , . . . ,

~Y 1
d⋆) = 0.

3. A outputs messages M0,M1. Then, the challenger chooses β R← {0, 1} and computes a challenge

ciphertext C⋆ = Encrypt
(
mpk, (~Y β

1 , . . . , ~Y β
d⋆),Mβ

)
, which is sent to A.

4. A makes further private key queries for hierarchical vectors ( ~X1, . . . , ~Xℓ) under the same re-
striction as above.

5. A outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

A’s advantage is quantified as the distance Adv(A) = |Pr[β′ = β]− 1/2|.

A.2 Correctness of the HIPE scheme

Lemma 3. The HIPE scheme of Section 3.2 is correct. Namely, for any message M and any
vectors ~X1, . . . , ~Xℓ, ~Y1, . . . , ~Yκ, we have

Decrypt
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

,Encrypt(mpk, (~Y1, . . . , ~Yκ),M
)
= M

whenever f( ~X1,..., ~Xℓ)
(~Y1, . . . , ~Yκ) = 1. This fact does not depend on whether the key SK( ~X1,..., ~Xℓ)

was

created using Delegate or Keygen.
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Proof. Let SK( ~X1,..., ~Xℓ)
=
(
SKD, SKDL

)
be obtained by running Keygen

(
msk, ( ~X1, . . . , ~Xℓ)

)
,

where each attribute vector is ~Xi1 = (xi1,1, . . . , xi1,µ) ∈ Z
µ
p , for each i1 ∈ {1, . . . , ℓ}. Let us write

the decryption component of the key as SKD = (D,Dw, {Di1}
ℓ
i1=1).

Let C =
(
C0, Cv , Cw, {Ci1,i2}i1∈{1,...,κ}, i2∈{1,...,µ}

)
be the output of the encryption algorithm

Encrypt
(
mpk, (~Y1, . . . , ~Yκ),M

)
, for vectors ~Y1 = (y1,1, . . . , y1,µ), . . . , ~Yκ = (yκ,1, . . . , yκ,µ).

Since f( ~X1,..., ~Xℓ)
(~Y1, . . . , ~Yκ) = 1, and by the definition of hierarchical inner-product predicates,

we know that ℓ ≤ κ and ~Xi · ~Yi = 0 for all i ∈ {1, . . . , ℓ}. Therefore, when the decryption protocol

Decrypt
(
mpk, ( ~X1, . . . , ~Xℓ), SK( ~X1,..., ~Xℓ)

, C
)
computes Ci1 , for each i1 ∈ {1, . . . , ℓ}, the obtained

value equals Ci1 =
(∏µ

i2=1 h
xi1,i2
i1,i2

)s
. The decryption protocol computes then the pairing of this

element Ci1 with Di1 = v̂ri1 . Multiplying all these pairings, for indices i1 ∈ {1, . . . , ℓ}, one obtains

e
(
vs ,

∏ℓ
i1=1

(∏µ
i2=1 ĥ

xi1,i2
i1,i2

)ri1 ). This value is canceled out with one of the factors of e(Cv,D),

when computing the final decryption operation C0 · e(Cv ,D)−1 · e(Cw,Dw) ·
∏ℓ

i1=1 e(Ci1 ,Di1). The
other two factors of e(Cv,D) are e(vs, ĝα) and e(vs, ŵrw), which cancel out the factor e(g, v̂)αs,
contained in C0 = M · e(g, v̂)αs, and the factor e(Cw,Dw) = e(ws, v̂rw), respectively. Therefore, the
final computation of the decryption protocol results in the plaintext M contained in C0.

In this way, we have proved that the encryption and decryption protocols work correctly when
the original secret keys (resulting from Keygen) are used. The fact that the decryption protocol
works fine also with delegated secret keys (resulting from Delegate) is a consequence of Lemma
4, inside the proof of Theorem 2. If a delegated secret key could lead to an incorrect decryption,
then this fact could be used to distinguish original secret keys from delegated ones, which would
contradict the statement of Lemma 4.

A.3 Proof of Theorem 2

The proof considers a sequence of games starting with the real game and ending with a game where
the adversary has no advantage and wins with probability exactly 1/2.

For each i, we denote by Si the event that the adversary wins in Gamei. In the whole sequence
of games, we call d⋆ the depth of the challenge hierarchical vectors (~Y 0

1 , . . . ,
~Y 0
d⋆) and (~Y 1

1 , . . . ,
~Y 1
d⋆)

and
C⋆ =

(
C⋆
0 , C

⋆
v , C

⋆
w, {C

⋆
i1,i2}i1∈{1,...,d⋆},i2∈{1,...,µ}

)

denotes the challenge ciphertext.

Game0: is the real attack game at the end of which the challenger outputs 1 in the event, called
S0, that the adversary A manages to output β′ ∈ {0, 1} such that β′ = β, where β ∈ {0, 1} is
the challenger’s hidden bit in the challenge phase. If β′ 6= β, the challenger outputs 0.

Game1: is identical to Game0 with the difference that the challenger always answers private key
queries by returning fresh private keys (i.e., keys produced by Keygen) instead of deriving
those keys using the delegation algorithm.

Game2: is like Game1 but the challenge ciphertext C⋆ is now an encryption under (~Y β
1 , . . . , ~Y β

d⋆)

of a random plaintext M R← GT , which is chosen independently of M0 and M1.
Game3: is identical to Game2 with the difference that, in the challenge ciphertext, C⋆

w is replaced
by a random group element chosen uniformly and independently in G.

Game4,i,j (1 ≤ i ≤ d⋆, 1 ≤ j ≤ µ): is identical to Game 3 with the difference that, in the challenge
ciphertext, C⋆

i1,i2
are replaced by random elements of G if i1 < i or (i = i1) ∧ (i2 ≤ j). Other

group elements (i.e., for which i > i1 or (i = i1) ∧ (i2 > j)) are still computed as in a normal
challenge ciphertext.

19



In Game4,d⋆,µ, it is easy to see that the adversary A cannot guess β ∈ {0, 1} with higher probability
than Pr[S4,d⋆,µ] = 1/2 since the challenge ciphertext C⋆ is completely independent of β ∈ {0, 1}. ⊓⊔

Lemma 4. Game0 and Game1 are computationally indistinguishable if the DDH2 assumption holds
in (G, Ĝ).

Proof. The lemma will be proved by a hybrid argument. We define Game0,i for all 0 ≤ i ≤ q. Game0,i
differs from Game0 in the fact that, when the adversary issues the first i delegation queries, instead
of generating the delegated keys faithfully using the Delegate algorithm, the challenger calls the
Keygen algorithm to generate these delegated keys. For all the remaining queries, the challenger
computes keys and responds faithfully as in Game0. Under the above definition, Game0,0 is the same
as Game0 and Game0,q is the same as Game1. We will prove that Game0,κ is indistinguishable from
Game0,κ+1 for all 0 ≤ κ ≤ q − 1. To this end, we will proceed similarly to [34] and rely on a

generalized version (called GDDH hereafter) of the DDH problem in Ĝ.
Given a group generator GG, define the following distribution P (̺):

(
p, (G, Ĝ,GT ), e

) R
←− GG(̺, 1),

g
R
←− G, ĝ

R
←− Ĝ,

ĥ1, ĥ2, . . . , ĥℓ
R
←− Ĝ

τ
R
←− Zp

X ←
((
p, (G, Ĝ,GT ), e

)
, g, ĝ, ĥ1, ĥ2, . . . , ĥℓ

)

Q←
(
ĥτ1 , ĥ

τ
2 , . . . , ĥ

τ
ℓ

)
,

Output (X,Q)

For an algorithm A, define A’s advantage in solving the above problem:

ℓ-GDDH AdvGG,A(̺) := |Pr [A(X,Q) = 1]− Pr [A(X,R)]|

where (X,Q)← P (̺) and R← Ĝ
ℓ. It is immediate8 that GDDH is not easier than DDH2 and that

the latter advantage function is negligible if the DDH2 assumption holds in (G, Ĝ).
To prove that Game0,κ is indistinguishable from Game0,κ+1 we will use another hybrid argument.

We define Game′0,κ, which differs from Game0,κ in that, for the (κ+1)-th delegation query, ŜKDL

is the delegation component of a fresh key, instead of a delegation component obtained by raising
every element in SKDL to the same random power z ∈R Zp. We show that a PPT adversary cannot
distinguish between the two games.

We also define Game′′0,κ, which differs from Game′0,κ in that, for the (κ+1)-th delegation query,
instead of re-randomizing the components of the partial decryption key with the same exponent

τj.k, {L
(j,k)
ℓ+1,i1

}ℓ+1
i1=1, L

(j,k)
w,ℓ+1 are randomized with different independently chosen exponents, while K ′

j,k
is chosen in such a way that the resulting key is still valid. We also prove that no PPT adversary
can notice the difference.

8 The straightforward reduction computes a GDDH instance from a DDH2 instance
(

g, ĝ, ĝa, ĝb, η̂
?
= ĝab

)

by setting

ĥi = ĝαi · (ĝb)βi and Qi = (ĝa)αi · η̂βi for i = 1 to ℓ with α1, . . . , αℓ
R← Zp, β1, . . . , βℓ

R← Zp. If η̂ = ĝab, we have

Q = (ĥa
1 , . . . , ĥ

a
ℓ ) whereas, if η ∈R Ĝ, Q is a random vector of Ĝℓ.
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We will argue that Game′′0,κ =Game0,κ+1. Indeed, in the first step, we change ŜKDL so that, in
step 2 of the Delegate algorithm, we obtain a randomized decryption key (except for the gα term).

When multiplied by SKD, it gives a randomized decryption key for ( ~X1, . . . , ~Xℓ+1). On the other
hand, in step 2 of the hybrid proof we change the partial decryption keys so that they also are
randomized keys except the gα term.

Claim. Game0,κ is computationally indistinguishable from Game′0,κ.

Proof. Let q0 denote the maximum number of secret key queries (taking into account both the
“Create-key” and “Create-delegated-key” queries) made by the adversary. We build a simulator B
that uses A to break the following (q0dµ(d+ 1))-GDDH assumption.

(p,G, Ĝ,GT , e)
R
←− GG(̺, 1),

g
R
←− G, ĝ

R
←− Ĝ

{v̂i,i1,i2,k ← Ĝ}i∈{1,...,q0},i1∈{1,...,d},i2∈{0,...,µ},k∈{1,...,d+1}

τ
R
←− Zp

X ←
(
(p,G, Ĝ,GT , e), g, ĝ, {v̂i,i1,i2,k}i∈{1,...,q0},i1∈{1,...,d},i2∈{1,...,µ},k∈{1,...,d+1}

)

Q← ({v̂τi,i1,i2,k}i∈{1,...,q0},i1∈{1,...,d},i2∈{1,...,µ},k∈{1,...,d+1})

Then, the challenger randomly decides to give (X,Q′ = Q) or (X,Q′ = R), where R is a random
vector of elements in Ĝ of the size of Q. The simulator will use A as a subroutine to break the
above problem.

Init and Setup. At the beginning of the security game, the adversary commits to two hierarchical

vectors ( ~Y1
0
, . . . , ~Y 0

d⋆) and ( ~Y1
1
, . . . , ~Y 1

d⋆), where d⋆ ≤ d. The simulator chooses the public and the
secret key as usual according to the Setup algorithm. Let c = logv(w) and ai1,i2 = logv(hi1,i2). Note
that these values are known to the simulator since they are easily computable from msk.

Secret key queries. We distinguish three cases:

• When a “create-key” query or one of the first κ delegated secret key queries is made, the
simulator computes and saves a private key, which is given to A when a “reveal-key” query is
made. To compute this secret key, the simulator uses the elements from the GDDH instance, in
such a way that the exponents are distributed at random. In particular, if it is the i-th query,
the simulator defines the components of the decryption component of the key as:

D = gα
ℓ∏

i1=1

D
(
∑µ

i2=1 ai1,i2xi1,i2
)

i1
·Dc

w, Dw = v̂i,0,1,d+1,

Di1 = v̂i,0,1,i1 i1 ∈ {1, . . . , ℓ}.

For the delegation component of the key, for all j ∈ {ℓ+1 . . . d}, all k ∈ {1, . . . , µ}, the simulator
lets:

Lj = v̂i,j,1,ℓ+1, Lj,k,i1 = v̂i,j,k,i1 i1 ∈ {1, . . . , ℓ}, Lw,j,k = v̂i,j,k,d+1.

As the simulator knows the discrete logarithms c = logv̂(ŵ) and ai1,i2 = logv̂(ĥi1,i2), for each
j ∈ {ℓ + 1, . . . d} and all k ∈ {1, . . . , µ}, it can compute the remaining components of the key

21



as follows:

Kj,k =
ℓ∏

i1=1

L
(
∑k

i2=1 ai1,i2 ·xi1,i2
)

j,k,i1
· L

aj,k
j · Lc

w,j,k. (12)

• When the adversary makes the (κ + 1)-th delegation query, it specifies a parent key and asks

to fix the level of the hierarchy to some vector ~Xℓ+1. In particular, assume that the parent
key was created in the i-th query. When performing Step 1 of the Delegate algorithm, for all
j ∈ {ℓ+ 2, . . . d}, k ∈ {1, . . . , µ}, the simulator sets

L̂j = Q′
i,j,1,ℓ+1,

L̂j,k,i1 = Q′
i,j,k,i1 i1 ∈ {1, . . . , ℓ},

L̂w,j,k = Q′
i,j,k,d+1

and computes Kj,k, for each j ∈ {ℓ + 2, . . . d}, k ∈ {1, . . . , µ} exactly in the same way as in
expression (12).

• For all the remaining queries, the simulator responds faithfully as in the real game.

Clearly, if Q′ = Q in the GDDH instance, then the above simulation is identical to Game0,κ.
Otherwise, it is identical to Game′0,κ since, in the the (κ+1)-th delegation query, Q = R implicitly
defines a set of fresh random values for sj, sj,k,i1, sw,j,k, for the appropriate values of j, k, i1.

Challenge The simulator generates the challenge ciphertext as normal.

Guess If the adversary has a difference of ǫ in its advantage in Game0,κ and Game′0,κ, the simulator
has a comparable advantage in solving the GDDH instance. �

Claim. Game′0,κ is computationally indistinguishable from Game′′0,κ.

Proof. To prove this claim, we will appeal to a nested hybrid argument. Let Game′0,κ,0,0 =Game′0,κ,
and for 1 ≤ η ≤ (d−ℓ−1), 1 ≤ ν ≤ µ, define Game′0,κ,η,ν as the game that differs from Game′0,κ in the

following: in the step of the delegation algorithm where the components {L
(j,k)
ℓ+1,i1

}i1∈{1,...,ℓ+1}, L
(j,k)
w,ℓ+1

are created by re-randomizing the partial decryption key with some exponent τj,k, we re-randomize
instead each of these components with a different exponent chosen uniformly and independently
at random whenever (j, k) ≤ (η + ℓ + 1, ν) (in lexicographic order). Observe that, by definition,
Game′0,κ,d−ℓ−1,µ =Game′′0,κ. We will show that an adversary cannot distinguish between one game
and the next. That is, if we define and Game′0,κ,η,µ+1 =Game′0,κ,η+1,0 to simplify the notation, what
we we will show is that no polynomial time adversary can distinguish between Game′0,κ,η,ν and
Game′0,κ,η,ν+1.
The simulator tries to solve the following (µ(d+ 1))-GDDH instance.

(p,G, Ĝ,GT , e)
R
←− GG(̺, 1),

g
R
←− G, ĝ

R
←− Ĝ

{v̂i,k ← Ĝ}i∈{1,...,µ},k∈{1,...,d+1}

τ
R
←− Zp

X ← ((n,G, Ĝ,GT , e), g, ĝ, {v̂i,k}i∈{1,...,µ},k∈{1,...,d+1})

Q← ({v̂τi,k}i∈{1,...,µ},k∈{1,...,d+1})
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The simulator tries to distinguish between (X,Q′ = Q) and (X,Q′ = R) where R is a random
vector from Ĝ. The simulator uses as a subroutine an adversary A who can distinguish between
Game′0,κ,η,ν and Game′0,κ,η,ν+1.

The simulator runs the Setup algorithm as usual in such a way that it knows the discrete
logarithms c = logv(w) = logv̂(ŵ) and ai1i2 = logv(hi1,i2) = logv̂(ĥi1,i2) for any 1 ≤ i1 ≤ d,
0 ≤ i2 ≤ µ.
To answer secret key queries, the simulator proceeds as follows:

• For the first κ-th delegation queries and all of the “create-key” queries, the simulator computes
the keys freshly at random.

• At the (κ+ 1)-th delegation query, the adversary specifies a parent key and requests to fix the

(ℓ + 1)-th level of the hierarchy to ~Xℓ+1. To answer this query, the simulator first generates

some components of ŜKDL simply by choosing at random the values L̂j, L̂w,j,k for all j ∈
{ℓ + 2, . . . , d}, k ∈ {1, . . . , µ}, i1 ∈ {1, . . . , ℓ}. To compute the remaining components and the
decryption key component, the simulator sets

Lℓ+1,i1 =

µ∏

k=1

L̂
xℓ+1,k

ℓ+1,k,i1
=

µ∏

k=1

(v̂k,i1)
xℓ+1,k i1 ∈ {1, . . . , ℓ}

Lℓ+1,ℓ+1 = L̂ℓ+1 = v̂1,ℓ+1

Lw,ℓ+1 =

µ∏

k=1

L̂
xℓ+1,k

w,ℓ+1,k =

µ∏

k=1

(v̂k,d+1)
xℓ+1,k .

Since the simulator knows the discrete logarithms c = logv̂(ŵ) and ai1,i2 = logv̂(ĥi1,i2), the

remaining components of ŜKDL and those of the partial decryption key can be generated
efficiently in the same way as in the proof of indistinguishability of Game0,κ and Game′0,κ. In
particular, the simulator can compute

Kℓ+1 =

ℓ∏

i1=1

µ∏

i2=1

L
ai1,i2
ℓ+1,i1

· L
∑µ

k=1 aℓ+1,k

ℓ+1,ℓ+1 · Lc
w,ℓ+1.

To create K
(j,k)
ℓ+1 , {L

(j,k)
ℓ+1,i1

}i1∈{1,...,ℓ+1}, L
(j,k)
w,ℓ+1, if (j, k) ≤ (η + ℓ + 1, ν) (in lexicographic order),

the values are chosen as fresh random delegation keys. For the (η+ℓ+1, ν+1) partial decryption
key, the simulator lets

L
(η+ℓ+1,ν+1)
ℓ+1,i1

=

µ∏

k=1

(Q′
k,i1)

xℓ+1,k i1 ∈ {1, . . . , ℓ}

L
(η+ℓ+1,ν+1)
ℓ+1,ℓ+1 = Q′

1,ℓ+1

L
(η+ℓ+1,ν+1)
w,ℓ+1 =

µ∏

k=1

(Q′
k,d+1)

xℓ+1,k .

Again, as the simulator knows the discrete logarithm of ŵ, ĥi1,i2 w.r.t. the base v̂, the remain-

ing terms – including K
(η+ℓ+1,ν+1)
ℓ+1 – can be generated efficiently. For the remaining partial

decryption keys, the simulator generates them faithfully using the Delegate algorithm.
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• The remaining delegated key queries are generated faithfully.

Clearly, if Q′ = Q in the GDDH instance, then the above simulation is identically distributed as
Game′0,κ,η,ν , otherwise it is identically distributed as Game′0,κ,η,ν+1.

The simulator generates the challenge ciphertext as normal and sends it to the adversary. If the
adversary has ǫ difference in its advantage in Game′0,κ,η,ν and Game′0,κ,η,ν+1, it is not hard to see
that the simulator has a comparable advantage in solving the GDDH instance. �

Lemma 5. Game1 and Game2 are computationally indistinguishable if the BDH assumption holds
in (G, Ĝ,GT ).

Proof. Assume that there’s an adversary A that can distinguish between Game1 and Game2. We
build an adversary B that uses A as a subroutine to break the BDH assumption. The simulator B
receives as input

(g, ga, gc, ĝ, ĝa, ĝb, Q′),

where Q′ is either e(g, ĝ)abc or an element chosen uniformly at random in GT .

The adversary A commits to two vectors (~Y 0
1 , . . . ,

~Y 0
d⋆) and (~Y 1

1 , . . . ,
~Y 1
d⋆). The challenger B

picks β R← {0, 1}. If d⋆ < d, the simulator picks at random d − d⋆ vectors Y β
d⋆+1, . . . , Y

β
d ∈ Z

µ
p .

The simulator B runs the Setup algorithm as usual except that it implicitly sets α to be ab by
defining e(g, v̂)α = e(ga, ĝb)αv , and then, for i1 = 1, . . . , d and i2 = 1, . . . , µ, it defines hi1,i2 =
(ga)zi1yi1,i2gti1,i2 for i1 ∈ {1 . . . , d}, i2 ∈ {1, . . . , µ} and hi1,0 = (ga)−zi1 , for some random exponents

zi1 , ti1,i2 . The values of ĥi1,i2 for i1 ∈ {1 . . . , d}, i2 ∈ {0, . . . , µ} are defined similarly from the value
ĝa of the BDH instance. Observe that β remains hidden from A and that the parameters are
correctly distributed.

For the secret key queries, in the last lemma we have just proven that delegated keys are
indistinguishable from freshly generated ones. Therefore, B will generate the secret keys using
algorithm Keygen when a reveal query is made. Note that α is defined as ab, which is not known to
B. However, B needs to simulate secret keys for ( ~X1, . . . , ~Xℓ) as long as f( ~X1,..., ~Xℓ)

(~Y β
1 , . . . , ~Y β

d⋆) = 0.

As α does not appear in the delegating component of the key, the delegation component of the
secret keys SKDL can be created using the parameters as usual. Therefore, from now on we focus
on how to create the decryption component of the secret key. Denote by ℓ′ the index of the smallest
element of the vector ( ~X1, . . . , ~Xℓ) for which ~Xℓ′ · ~Y

β
ℓ′ 6= 0. This value ℓ′ always exists if ℓ ≤ d⋆ by

hypothesis and exists with overwhelming probability if ℓ > d⋆, since the vectors Y β
d⋆+1, . . . , Y

β
d ∈ Z

µ
p

are completely hidden from A’s view.
The simulator creates the decryption component of the secret key as follows:

D = ĝab
ℓ∏

i1=1

(
µ∏

i2=1

ĥ
xi1,i2
i1,i2

)ri1

ŵrw

where the term ĝab
(∏µ

i2=1 ĥ
xℓ′,i2
ℓ′,i2

)rℓ′
is computed as

(
µ∏

i2=1

ĥ
xℓ′,i2
ℓ′,i2

)r̂ℓ′

(ĝb)
−(

∑µ
i2=1 xℓ′,i2

tℓ′,i2
)/(zℓ′

~Xℓ′ ·
~Y β

ℓ′
)
,
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while the other terms in the product are just computed as usual. It is not hard to see that, if
we define rℓ′ = r̂ℓ′ − b/(zℓ′ ~Xℓ′ · ~Y

β
ℓ′ ), then the computation is correct. All the other terms in the

decryption component can be computed efficiently, since the simulator knows all the parameters
needed and it also knows ĝb.

At the challenge step, the adversary A gives B two messages, M0 and M1. B then computes

C0 =Mβ · (Q
′)αv , Cv = (gc)αv , Cw = (gc)αw ,

{Ci1,i2 = (gc)ti1,i2}i1∈{1,...,d⋆}, i2∈{1,...,µ}

It is not hard to check that the challenge ciphertext is correctly distributed.
Finally, when the adversary A outputs a guess β′, if β = β′, then B guesses that Q′ = e(g, ĝ)abc

and if β 6= β′ guesses that Q′ = R. If A has ǫ advantage in distinguishing between the two cases,
then B also has ǫ advantage in solving the assumption G3DH instance, except in the case that A
managed to output some secret key query for vector ( ~X1, . . . , ~Xℓ) for which ~Xi · ~Y

β
i = 0 for all

i = d⋆ + 1, . . . , d was zero for all i ∈ {1, . . . , d}, which occurs only with negligible probability.

Lemma 6. Game2 and Game3 are computationally indistinguishable if the P-BDH1 assumption
holds in (G, Ĝ).

Proof. Assuming that the adversary A outputs β′ = β with noticeably different probabilities in
Game2 and Game3, we build an distinguisher B for the P-BDH1 assumption .

Namely, algorithm B receives as input a tuple

(
g, gb, gab, gc, ĝ, ĝa, ĝb, gz

)
,

where a, b, c R← Zp. Its goal is to decide if z = abc or z ∈R Zp.

To this end, B interacts withA as follows. It first receives the vectors (~Y 0
0 , . . . ,

~Y 0
d⋆), (

~Y 1
0 , . . . ,

~Y 1
d⋆),

at some depth d⋆ ≤ d, that A wishes to be challenged upon. We may assume w.l.o.g. that B chooses
its challenge bit β R← {0, 1} at the beginning of the game. Also, if d⋆ < d, for each i ∈ {d⋆+1, . . . , d},

B defines the vector ~Y β
i as a random vector of Zµ

p .
It defines the master public key by setting e(g, v̂)α = e(g, ĝ)α·γv and

v = g
γv
,

hi1,0 = (gb)γi1,0 i1 ∈ {1, . . . , d}

hi1,i2 = (gb)
−γi1,0·y

β
i1,i2 · gγi1,i2 i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , µ} (13)

w = gy · (gab)x,

where α, γv , x, y
R← Zp and γi1,i2

R← Zp, for each i1 ∈ {1, . . . , d}, i2 ∈ {0, . . . , µ}. For each i1, we also
define the vector ~γi1 = (γi1,1, . . . , γi1,µ) ∈ Z

µ
p . We observe that B does not know ŵ (which depends

on the unavailable term ĝab) but can compute {ĥi1,i2}i1∈{1,...,d},i2∈{1,...,µ}.

When the adversary A requests a key for a hierarchical vector X = ( ~X1, . . . , ~Xℓ), B parses ~Xi1

as (xi1,1, . . . , xi1,µ) ∈ Z
µ
p for each i1 ∈ {1, . . . , ℓ}. Then, B responds as follows.

• If ℓ ≤ d⋆, let i ∈ {1, . . . , ℓ} be the smallest index such that ~Xi · ~Y
β
i 6= 0 (by hypothesis, this index

must exist). By choosing rw
R← Zp and ri

R← Zp, B implicitly defines the exponent

r̃i = ri +
a · rw · x

γi,0 · ~Xi · ~Y
β
i

25



and can compute

(

µ∏

i2=1

ĥ
xi,i2
i,i2

)r̃i · ŵrw =
( µ∏

i2=1

ĥ
xi,i2
i,i2

)ri ·
(
(ĝb)−γi,0· ~Xi·~Y

β
i · ĝ ~γi·~Y

β
i
)a· rw·x

γi,0·
~X·~Y

β
i

·(ĝab)rw ·x · ĝrw·y (14)

=
( µ∏

i2=1

ĥ
xi,i2
i,i2

)ri · (ĝa)
~γi·~Y

β
i · rw·x

γi,0·
~X·~Y

β
i · ĝrw ·y

without knowing ĝab. Similarly, it can compute

Di = v̂r̃i = ĝγv ·ri · (ĝa)γv ·rw·x/(γi,0· ~X·~Y β
i )

as well as Dw = v̂rw .
We now turn to indices i1 ∈ {1, . . . , ℓ}\{i}, for which B can trivially compute (

∏µ
i2=1 ĥ

xi,i2
i,i2

)ri1

and Di1 = v̂ri1 · Sv,i1 since it knows {ĥi1,i2}
µ
i2=0 and v. This suffices for computing the whole

decryption component SKD of the private key.
As for the delegation component SKDL, B can compute {Kj,k}j∈{ℓ+1,...,d},k∈{1,...,µ}, {Lj}

d
j=ℓ+1

and {Lw,j,k}j,k by applying exactly the same procedure as for D, Di and Dw (and taking advantage

of the fact that ~Xi · ~Y
β
i 6= 0 for at least one i ∈ {1, . . . , ℓ}). Remaining pieces of SKDL are then

trivially computable since B has {ĥi1,i2}
µ
i2=0 and v̂ at disposal.

• If ℓ > d⋆, it can be the case that ~Xi · ~Y
β
i = 0 for i = 1 to ℓ. However, with overwhelming

probability, there must exist i ∈ {d⋆+1, . . . , ℓ} such that ~Xi · ~Y
β
i 6= 0 since the vectors ~Yd⋆+1, . . . , ~Yd

have been chosen at random and, due to the generation of the public key as per (13), they are
completely independent of A’s view. It comes that B can generate a private key in the same way
as in the case ℓ < d⋆ (see equation (14)).

When B has to construct the challenge ciphertext, B sets C0 = M · e(gc, ĝγv )α, where M R← GT ,
and

Cv = (gc)γv , Cw = (gc)y · (gz)x,

Ci1,i2 = (gc)γi1,i2 i1 ∈ {1, . . . , d
⋆}, i2 ∈ {1, . . . , µ}

We observe that, if z = abc, (C0, Cv, Cw, {Ci1,i2}i1∈{1,...,d⋆},i2∈{1,...,µ}) corresponds to a valid cipher-
text with the encryption exponent s = c. In this situation, B is playing Game2 with A.

In contrast, if z ∈R Zp, we have z 6= c with overwhelming probability. In this case, we have
gz = gabc+θ, for some θ 6= 0, and we can thus write Cw = wc · gθ·x. This means that Cw looks
uniformly random and independent from A’s view. Indeed, until the challenge phase, A has no
information about θ ∈ Zp (recall that public parameters do not depend on c) and the value x ∈ Zp1

is also independent of A’s view. We conclude that, if gz is such that z ∈R Zp, we are in Game3. ⊓⊔

Lemma 7. For each δ1 ∈ {1, . . . , d} and each δ2 ∈ {2, . . . , µ}, Game4,δ1,δ2−1 and Game4,δ1,δ2 are

computationally indistinguishable if the P-BDH1 assumption holds in (G, Ĝ).

Proof. Towards a contradiction, we assume there exists δ1, δ2 such that the adversary A outputs
β′ = β with significantly different probabilities in Game4,δ1,δ2−1 and Game4,δ1,δ2 . We show that A
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implies a distinguisher B against P-BDH1.
Our distinguisher B receives as input

(
g, gb, gab, gc, ĝ, ĝa, ĝb, gz

)
, with a, b, c R← Zp. It aims to

decide if z = abc or z ∈R Zp.

To do this, B runs the adversary A as follows. It first receives the challenge vectors (~Y 0
0 , . . . ,

~Y 0
d⋆),

(~Y 1
0 , . . . ,

~Y 1
d⋆), at some depth d⋆ ≤ d, that are chosen by A. We assume that B chooses its challenge

bit β R← {0, 1} at the outset of the game. Also, if d⋆ < d, for each i ∈ {d⋆ + 1, . . . , d}, B defines the

vector ~Y β
i as a random vector of Zµ

p .
It defines the master public key by setting e(g, v̂)α = e(g, ĝ)α·γv and

v = gγv ,

hi1,0 = g
γi1,0
p1 for i1 ∈ {1, . . . , d}

hi1,i2 = g
−γi1,0·y

β
i1,i2 · gγi1,i2 if i1 ∈ {1, . . . , d}\{δ1} or i2 ∈ {1, . . . , µ}\{δ2}

hδ1,δ2 = g
−γδ1,0·y

β
δ1,δ2 · (gab)γδ1,δ2 (15)

w = gy · (gb)x,

where α, γv, y
R← Zp, x

R← Z
∗
p and γi1,i2

R← Zp, for each i1 ∈ {1, . . . , d}, i2 ∈ {0, . . . , µ}. For each i1,
we also define the vector ~γi1 = (γi1,1, . . . , γi1,µ) ∈ Z

µ
p . Note that, in the implicitly defined master

secret key msk, the distinguisher B knows all the components but ĥδ1,δ2 , which depends on the
unknown term ĝab.

When the adversary A requests a key for a hierarchical vector X = ( ~X1, . . . , ~Xℓ), B parses ~Xi1

as (xi1,1, . . . , xi1,µ) ∈ Z
µ
p for each i1 ∈ {1, . . . , ℓ}. Then, B responds as follows.

• If ℓ ≥ δ1, B chooses r′w
R← Zp and rδ1

R← Zp, B implicitly defines the exponent

rw = r′w −
a · rδ1 · γδ1,δ2

x
(16)

and can compute the product

(
ĥ
yβ
δ1,δ2

δ1,0
· ĥδ1,δ2

)rδ1
· ŵrw = (ĝab)γδ1,δ2 ·rδ1 · ŵr′w ·

(
ĝy(ĝb)x

)−a·rδ1 ·γδ1,δ2/x (17)

= ŵr′w · (ĝa)−y·rδ1 ·γδ1,δ2/x,

which is the only factor of D that it cannot trivially compute without knowing ĝab. Similarly, it
can compute Dw = vrw = ĝγv ·r

′
w · (ĝa)−γv·rδ1 ·γδ1,δ2/x.

To generate the delegation component SKDL of the key, the reduction B is able to compute
{Kj,k, Lw,j,k}j∈{ℓ+1,...,d},k∈{1,...,µ} by repeating (d− ℓ) ·µ times the same procedure as for computing
D and Dw.

• If ℓ < δ1, B can directly compute (D,Dw, {Di1}
ℓ
i1=1) since it knows {ĥi1,i2}i1∈{1,...,ℓ},i2∈{1,...,µ}, v̂

and ŵ. The difficulty is to compute the delegation components {Kδ1,k}
µ
k=1 without knowing ĝab. In

fact, among these components, the only factor of Kδ1,δ2 that B cannot trivially compute is ĥ
sδ1
δ1,δ2

.

However, similarly to (16)-(17), it can choose sδ1 , s
′
w,δ1,δ2

R← Zp, define sw,δ1,δ2 = s′w,δ1,δ2
−

a·sδ1 ·γδ1,δ2
x

and compute the product

h
sδ1
δ1,δ2
· ŵsw,δ1,δ2 = (ĝ

−γδ1,0·y
β
δ1,δ2

·sδ1 ) · (ĝab)γδ1,δ2 ·sδ1 ·
(
ĝy(ĝb)x

)−a·sδ1 ·γδ1,δ2/x · ŵ
s′w,δ1,δ2

= (ĝ
−γδ1,0·y

β
δ1,δ2

·sδ1 ) · ŵ
s′w,δ1,δ2 · (ĝa)−y·sδ1 ·γδ1,δ2/x (18)
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In the same way, B computes

Lw,δ1,δ2 = v̂sw,δ1,δ2 = ĝ
γv ·s′w,δ1,δ2 · (ĝa)−γv ·sδ1 ·γδ1,δ2/x.

Note that, for each k ∈ {1, . . . , µ}\{δ2}, B has to generate Kδ1,k by computing ĥ
sδ1
δ1,k

using the
same random exponent sδ1 as in (18). This is always possible since B knows that exponent.

When it comes to construct the challenge ciphertext, algorithm B first sets C0 = M ·e(gc, ĝγv )α,
where M R← GT . It also chooses Γw

R← G and computes

Cv = (gc)γv , Cw = Γw,

as well as

Ci1,i2 = (gc)γi1,i2 if (i1 > δ1) ∨
(
(i1 = δ1) ∧ (i2 > δ2)

)

Cδ1,δ2 = (gz)γδ1,δ2

If i1 < δ1 or i1 = δ1 and i2 < δ2, then Ci1,i2 is chosen uniformly in G.
We observe that, in the situation where z = abc, (C0, Cv , Cw, {Ci1,i2}i1∈{1,...,d⋆},i2∈{1,...,µ}) is

distributed in the same way as in Game4,δ1,δ2−1.
In contrast, if z ∈R Zp, we have z 6= c with overwhelming probability. In this case, Cδ1,δ2 looks

random to the adversary and B is thus playing Game4,δ1,δ2 . ⊓⊔

B Deferred Proofs for the Security of HF

B.1 Proof of Lemma 1

We consider a sequence of n+1 hybrid experiments RL0, . . . , RLn. For each k ∈ {0, . . . , n}, RLk is
defined to be an experiment where public parameters are generated as follows. First, the simulator
B chooses v R← G, w R← G

n, ŵ R← Ĝ
n, h R← G

d×(µ+1)×n, ĥ R← Ĝ
d×(µ+1)×n and computes PPcore in

the same way as in the real scheme.
In the second step of the setup procedure, the simulator B chooses a vector s R← (Z∗

p)
n. For

l1, l2 ∈ {1, . . . , n}, it first computes

J[l2] = vs[l2],

Cw[l2, l1] =w[l1]
s[l2].

Then, for each pair (l1, l2) such that l1 6= l2, B sets

C[i1, i2, l2, l1] = h[i1, i2, l1]
s[l2].

Finally, for each l ∈ {1, . . . , n}, i1 ∈ {1, . . . , d} and i2 ∈ {1, . . . , µ}, B defines

C[i1, i2, l, l] =
(
h[i1, 0, l]

y
(0)
i1 [i2] · h[i1, i2, l]

)s[l]
if l ≤ k,

C[i1, i2, l, l] =
(
h[i1, 0, l]

y
(1)
i1 [i2] · h[i1, i2, l]

)s[l]
if l > k.

Lemma 8 below demonstrates that, for each k ∈ {1, . . . , n}, experiment RLk is computationally
indistinguishable from experiment RLk−1.

If we assume that the statement of Lemma 1 is false, there must exist k ∈ {1, . . . , n} such that
the adversary can distinguish RLk from RLk−1 and we obtain a contradiction. ⊓⊔
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Lemma 8. If the HPE scheme described in Section 3.2 is selectively weakly attribute-hiding, then
Game RLk is indistinguishable from Game RLk−1 for each k ∈ {1, . . . , n}. Namely, for each k,
there exist algorithms B1 and B2 such that

|Pr[RLk ⇒ 1]− Pr[RLk−1 ⇒ 1]| ≤ (d · µ+ 1) ·AdvP-BDH1(B1) + q ·AdvP-BDH2(B2),

where q is the number of “Reveal-key” queries made by A.

Proof. For the sake of contradiction, let us assume that there exist two auxiliary hierarchical vector

y(0) = [y
(0)
1 | . . . |y

(0)
d ], y(1) = [y

(1)
1 | . . . |y

(1)
d ] and an index k ∈ {1, . . . , n} such that the adversary

A has noticeably different behaviors in experiments RLk and RLk−1. Using A, we construct a
selective weakly attribute-hiding adversary B against the HPE scheme described in Section 3.2 (in
its predicate-only variant).

Our adversary B first declares y(0),y(1) ∈ Z
d·µ
p as the vectors that it wishes to be challenged

upon. Then, the HPE challenger provides B with public parameters

mpkHPE =
(
v, w, {hi1,i2}i1∈{1,...,d},i2∈{0,...,µ}

)
.

Then, B chooses a vector ζ R← Z
n
p and a matrix γ ∈ Z

d×(µ+1)×n
p , which it uses to compute

w[l1] = vζ[l1] for l1 ∈ {1, . . . , n}\{k}

h[i1, i2, l1] = vγ[i1,i2,l1] for i1 ∈ {1, . . . , d}, i2 ∈ {0, . . . , µ}, l1 ∈ {1, . . . , n}\{k}.

It also sets w[k] = w as well as

h[i1, i2, k] = hi1,i2 for i1 ∈ {1, . . . , d}, i2 ∈ {0, . . . , µ}.

Then, B defines core public parameters

PPcore =
(
v, {w[l1], {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,µ}, l1∈{1,...,n}

)
,

that correspond to the master secret key msk = (v̂, ŵ, ĥ), which is not completely known to B
(specifically, v̂, ŵ[k] and ĥ[., ., k] are not available). Then, B notifies its HPE challenger that it
wishes to directly enter the challenge phase without making any pre-challenge query. The challenger
replies with the challenge ciphertext

C⋆ =
(
Cv, Cw, {Ci1,i2}i1∈{1,...,d}, i2∈{1,...,µ}

)
,

where

Cv = vs, Cw = ws,

{ Ci1,i2 =
(
h
y
(β)
i1,i2

i1,0
· hi1,i2

)s
}i1∈{1,...,d}, i2∈{1,...,µ},

for a random element s R← Z
∗
p and a random bit β ∈ {0, 1}. Here we are using, for β ∈ {0, 1}, the

notation y(β) = [y
(β)
1 | . . . |y

(β)
d ] ∈ Z

d·µ
p , where each y

(β)
i1

= (y
(β)
i1,1

, . . . , y
(β)
i1,µ

) ∈ Z
µ
p , for i1 ∈ {1, . . . , d}.

At this point, B constructs the matrix {CT[i1, i2]}l1,l2∈{1,...,n} of HPE ciphertexts by setting

J[k] = Cv

Cw[k, k] = Cw

C[i1, i2, k, k] = Ci1,i2 for i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , µ}.
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and, for each l1 ∈ {1, . . . , n}\{k},

Cw[k, l1] = Cζ[l1]
v

C[i1, i2, k, l1] = Cγ[i1,i2,k,l1]
v for i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , µ}.

Note that this implicity sets s[k] = s, where s is the encryption exponent chosen by the HPE
challenger to compute C⋆. Then, for each l2 ∈ {1, . . . , n}\{k}, B chooses a random exponent
s[l2]

R← Z
∗
p and computes

J[l2] = vs[l2] (19)

Cw[l2, l1] = w[l1]
s[l2] for l1 ∈ {1, . . . , n}\{l2}

C[i1, i2, l2, l1] = h[i1, i2, l1]
s[l2] for i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , µ},

l1 ∈ {1, . . . , n}\{l2} (20)

As for entries of the form {C[i1, i2, l, l]}i1,i2,l 6=k, B computes them as

C[i1, i2, l] =
(
h[i1, 0, l]

y
(0)
i1 [i2] · h[i1, i2, l]

)s[l]
if l < k

C[i1, i2, l] =
(
h[i1, 0, l]

y
(1)
i1 [i2] · h[i1, i2, l]

)s[l]
if l > k.

using the exponents s[l] ∈ Z
∗
p that were chosen in (19). Finally, our adversary B defines the n × n

matrix {CT[l2, l1]}l2,l1∈{1,...,n} of HPE ciphertexts

CT[l2, l1] =
(
J[l2],Cw[l2, l1], {C[i1, i2, l2, l1]}i1∈{1,...,d}, i2∈{1,...,µ}

)
.

Finally, B defines mpk :=
(
PPcore, {CT[l2, l1]}l2,l1∈{1,...,n}

)
and sends it to the adversary A.

When it comes to answer A’s private key queries for hierarchical identities (id1, . . . , idℓ), B first

encodes each level’s identity idi1 ∈ {0, 1}
µ as a µ-vector ~Xi1 = (idi1 [1], . . . , idi1 [µ]) for each i1 ∈

{1, . . . , ℓ}. Although B does not entirely knowmsk, the decryption components (D[l1],Dw[l1],Di1 [l1])
of the private key are always directly computable when l1 6= k: namely, B chooses Dw[l1]

R← Ĝ and
Di1 [l1]

R← Ĝ, for i1 = 1 to ℓ, and computes

D[l1] =

ℓ∏

i1=1

Di1 [l1]
∑µ

i2=1 γ[i1,i2,l1]·idi1 [i2] ·Dw[l1]
ζ[l1].

It is easy to see that (D[l1],Dw, {Di1 [l1]}
ℓ
i1=1) forms a decryption component of the form (7).

Moreover, the delegation components can be obtained exactly in the same way.
As for the remaining coordinate l1 = k, the simulator B aborts if, for any γ̃ ∈ {0, 1}, the

obtained hierarchical vector ( ~X1, . . . , ~Xℓ) is one for which 〈y
(γ̃)
i1

,Xi1〉 = 0 for each i1 ∈ {1, . . . , ℓ}
(which translates into

f
( ~X1,..., ~Xℓ)

(y
(γ̃)
1 , . . . ,y

(γ̃)
d ) = 1

in the predicate encryption language). Otherwise, B can obtain the missing private key components
by invoking its HPE challenger to obtain a complete private key SK(id1,...,idℓ) = (SKD,SKDL).

It is easy to check that, if the HPE challenger’s bit is β = 0, mpk is distributed as in Game
RLk. In contrast, if β = 1, mpk has the same distribution as in Game RLk−1. ⊓⊔
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B.2 Selective Security of HF

We consider our HF with µ = 2, ΣID = {(1, x) : x ∈ Z
∗
p} and IdSp = (ΣID)

(≤d). Let (id⋆1, . . . , id
⋆
ℓ⋆) ∈

IdSp be the identity chosen by the adversary. Define the sibling LHF with AuxSp = Z
2d
p and auxiliary

input y(1) = [y
(1)
1 | . . . |y

(1)
d ] ∈ Z

2d
p where y

(1)
i1

= (−id⋆i1 , 1) for all i1 ∈ {1, . . . , ℓ
⋆} and y

(1)
i1

= (1, 0)
for i1 ∈ {ℓ

⋆ + 1, . . . , d}. Selective security is established in the following theorem. In this selective
setting, we will omit ζ in the notation, because the trivial pre-output stage that always outputs
d2 = 1 will be enough in this case and, as a consequence, the experiments do not depend on ζ.

Theorem 4. Let n > log p and let ω = n − log p. Let HF be the HIB-TDF with parameters
n, d, µ = 2, ΣID = {(1, x) : x ∈ Z

∗
p} and IdSp = (ΣID)

(≤d). Let LHF be the sibling associated with it
as above. Then HF is (ω, 1)-partially lossy against selective-id adversaries.

Specifically regarding condition (i), for any selective-id adversary A there exist algorithms B1
and B2 such that

Advlossy
HF,LHF,ω(A) ≤ n ·

(
(2d+ 1) ·AdvP-BDH1(B1) + q ·AdvP-DDH2(B2)

)

The running time of B1 and B2 are comparable to the running time of A.

Proof. Let RL0 and RLn be the games specified above. We claim that both

Pr[dAexp = 1 | REALAHF,LHF,ω] = Pr[RL0 ⇒ 1]

and
|Pr[dAexp = 1 | LOSSYA

HF,LHF,ω]− Pr[RLn ⇒ 1]| ∈ negl(̺),

which implies condition (i) of partial lossiness, when combined with Lemma 1.
To prove that, we just need to justify that, when using y(0) as the auxiliary input, the function

HF.Eval is injective for all identities id. On the other hand, when using y(1), the function HF.Eval

will be lossy for identities id = (id1, . . . , idℓ) such that 〈y
(1)
i1

, idi1〉 = 0 for all i1 ∈ {1, . . . , ℓ} and
injective for all other identities.

To see that, note that all the terms of the output of HF.Eval are determined by 〈s,X〉 except the
term CTid[i1, l1], which is also determined by s[l1] ·xl1 · 〈yi1 , idi1〉. Therefore, when 〈yi1 , idi1〉 = 0 for
all i1 ∈ {1, . . . , ℓ}, the function will be determined only by 〈s,X〉, which can take only p values, so
HF.Eval will be lossy with lossiness λ

(
HF.Eval

(
pms,mpk, (id1, . . . , idℓ), .

))
≥ n− log p = ω. On the

other hand, if there is at least one index i1 for which 〈yi1 , idi1〉 6= 0, then HF.Eval will be injective
with overwhelming probability and HF.Inv will be its inverse, also with overwhelming probability.
Finally, observe that when the auxiliary input is y(0), then for all identities (id1, . . . , idℓ) and for all

i1 ∈ {1, . . . , ℓ}, 〈y
(0)
i1

, idi1〉 ≡ 1 by construction.

With this, we conclude that y(0) makes HF.Eval injective for all identities and y(1) makes HF.Eval
lossy only for identities such that 〈yi1 , idi1〉 = 0 for all i1 ∈ {1, . . . , ℓ}, and in this case the lossiness
is n− log p (where when we claim that HF.Eval is injective, it holds with overwhelming probability).
This concludes the proof of condition (i).

Regarding conditions (ii) and (iii), when the auxiliary input is y(1), then HF.Eval is injective
for all valid queried id in “Reveal key” queries and HF.Eval is lossy for id⋆ = (id⋆1, . . . , id

⋆
ℓ⋆). Indeed,

we are setting y
(1)
i1

= (−id⋆i1 , 1) for all i1 ∈ {1, . . . , ℓ
⋆} and y

(1)
i1

= (1, 0) for i1 ∈ {ℓ
⋆ + 1, . . . , d}.

This implies that if id = (id1, . . . , idℓ) is an identity, then 〈yi1 , idi1〉 = 0 for all i1 ∈ {1, . . . , ℓ} if
and only if id is a prefix of id⋆. As the adversary is not allowed to make “Reveal key” queries for
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prefixes of id⋆, then the condition is satisfied. This implies that d1 = 1 with overwhelming proba-
bility. Also, the pre-output stage P in this case simply outputs d2 = 1, always. This implies that
dA¬abort is 1 with overwhelming probability and, as a consequence, Pr[dA¬abort = 1 | REALAHF,LHF,ω,ζ ]

is negligibly close to 1 and
(
Pr[dA = 1 | REALA

HF,LHF,ω,ζ ∧ dA¬abort = 1]− 1
2

)
is negligibly close to

Pr[dA = 1 | REALA
HF,LHF,ω] −

1
2 . These are precisely the requirements for HF to fulfill conditions

(ii) and (iii), with δ = 1. ⊓⊔

B.3 Adaptive Security: Proof of Lemma 2

Fix the view of the adversary A, which implies fixing the queried identities id(1), . . . , id(q), id⋆.
Although we are assuming that the adversary A makes the maximum number of queries, with a
smaller number of queries we would have the same bounds. We abbreviate η = η(IS, id⋆), y = y(1)

and also call ℓ⋆ the depth of the challenge identity id⋆. For an integer t, define the event

Et :

q∧

i=1




ℓ(i)∨

i1=1

(
〈id

(i)
i1
,yi1〉 6= 0 mod t

)

 ∧

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod t

)

We denote Y = {y′1, . . . , y
′
d,y1, . . . ,yd, ξ1, . . . , ξd}. For all i1 ∈ {1, . . . , ℓ

⋆}, we have

〈idi1 ,yi1〉 = y′i1 +

µ∑

k=2

yi1 [k]idi1 [k]− 2ξi1q

for some 0 ≤ ξi1 ≤ µ− 1. In particular, observe that

0 ≤ y′i1 +

µ∑

k=2

yi1 [k]idi1 [k] < 2qµ < p.

Let us define the value ξ⋆i1 := ⌊(y
′
i1
+

µ∑

k=2

yi1 [k]id
⋆
i1 [k])/2q⌋. If we have the two conditions

ξi1 = ξ⋆i1 for each i1 ∈ {1, . . . , ℓ
⋆}

〈id⋆i1 ,yi1〉 = 0 mod 2q,

then clearly 〈id⋆i1 ,yi1〉 = 0 mod p. Also, if 〈idi1 ,yi1〉 6= 0 mod 2q, then we also have 〈idi1 ,yi1〉 6= 0
mod p . Using these observations, we have

η ≥ Pr[ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ
⋆}] Pr

Y
[Ep | ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ

⋆}]

=
1

µℓ⋆
Pr
Y
[Ep | ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ

⋆}]

≥
1

µℓ⋆
Pr
Y
[E2q | ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ

⋆}]

=
1

µℓ⋆
Pr
Y′

[E2q | ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ
⋆}]

where Y′ contains {y′
1, . . . ,y

′
d} and y′

i1
= (y′i1 ,yi1 [2], . . . ,yi1 [µ]) for all i ∈ {1, . . . , d}. Note

that the second inequality above holds because of the condition ξi1 = ξ⋆i1 . If we now define
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η2q = PrY′ [E2q | ξi1 = ξ⋆i1 ∀i1 ∈ {1, . . . , ℓ
⋆}], we just showed that η ≥ 1

µℓ⋆ · η2q.

Now, we observe some facts about 〈idi1 ,yi1〉. First, observe that 〈idi1 ,yi1〉 and 〈idi′1 ,yi′1
〉 are

independent for i1 6= i′1. This is because of the way Y is chosen.
Also, note that for any idi1 , a ∈ Z, PrY′ [〈idi1 ,yi1〉 = a mod 2q] = 1/2q. This is because for any

choice of yi1 [2], . . . ,yi1 [µ], there is only one value of y′i1 for which the equality holds.
Consider id = (id1, . . . , idℓ) 6= id′ = (id′1, . . . , id

′
ℓ′) and id not being a prefix of id′ and a, b ∈ Z.

First, if ℓ > ℓ′, for each i1 ∈ {ℓ
′ + 1, . . . , ℓ} such that idi1 6= id′i1 , we have

Pr
Y′

[〈idi1 ,yi1〉 = a mod 2q|
ℓ′∧

k=1

〈id′k,yk〉 = b mod 2q] = Pr
Y′

[〈idi1 ,yi1〉 = a mod 2q] = 1/2q.

This happens because

ℓ′∧

k=1

〈id′k,yk〉 = b mod 2q does not impose any condition on 〈idi1 ,yi1〉 and we

can apply the same arguments as previously.

On the other hand, for all i1 ≤ ℓ′, PrY′ [〈idi1 ,yi1〉 = a mod 2q|
ℓ′∧

k=1

〈id′k,yk〉 = b mod 2q] is

either 0, if idi1 = id′i1 or 1/2q, if idi1 6= id′i1 . The second fact is because, if idi1 6= id′i1 , there exists an
index j for which idi1 [j] = 1 and id′i1 [j] = 0 or the other way around. We see that, if we fix all yi1 [i]
for i 6= j so that 〈id′i1 ,yi1〉 = b mod 2q, then there is only one value for yi1 [j] so that 〈idi1 ,yi1〉 = a
mod 2q.

With all these observations, we calculate the following bound on η2q:

η2q = Pr
Y′




q∧

i=1




ℓ(i)∨

i1=1

(
〈id

(i)
i1
,yi1〉 6= 0 mod 2q

)

 |

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)

 ·

· Pr
Y′

[
ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)
]

= 1/(2q)ℓ
⋆

Pr
Y′




q∧

i=1




ℓ(i)∨

i1=1

(
〈id

(i)
i1
,yi1〉 6= 0 mod 2q

)

 |

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)



= 1/(2q)ℓ
⋆


1− Pr

Y′




q∨

i=1




ℓ(i)∧

i1=1

(
〈id

(i)
i1
,yi1〉 = 0 mod 2q

)

 |

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)





(21)

≥ 1/(2q)ℓ
⋆


1−

q∑

i=1

Pr
Y′




ℓ(i)∧

i1=1

(
〈id

(i)
i1
,yi1〉 = 0 mod 2q

)
|

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)





We now focus on how to bound

Pr
Y′




ℓ(i)∧

i1=1

(
〈id

(i)
i1
,yi1〉 = 0 mod 2q

)
|

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)

 .
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First, observe that 〈id
(i)
i1
,yi1〉 = 0 mod 2q is independent to 〈id

(i)
i1
,yi′1
〉 = 0 mod 2q if i1 6= i′1. As

a consequence, we only need to compute PrY′

[
〈id

(i)
i1
,yi1〉 = 0 mod 2q|

∧ℓ⋆

k=1 (〈id
⋆
k,yk〉 = 0 mod 2q)

]
.

To this end, we consider two cases: that ℓ(i) > ℓ⋆ or ℓ(i) ≤ ℓ⋆. In the first case, for each
i1 ∈ {ℓ

⋆ + 1, . . . , ℓ(i)} such that

Pr
Y′

[
〈id

(i)
i1
,yi1〉 = 0 mod 2q|

ℓ⋆∧

k=1

(〈id⋆k,yk〉 = 0 mod 2q)

]

= Pr
Y′

[
〈id

(i)
i1
,yi1〉 = 0 mod 2q

]
= 1/2q.

For all indices i1 ∈ ℓ⋆, the same probability is either 1 or 1/(2q).
If ℓ(i) ≤ ℓ⋆, for each i1 ∈ {1, . . . , ℓ

(i)}, we have

Pr
Y′

[
〈id

(i)
i1
,yi1〉 = 0 mod 2q|

ℓ⋆∧

k=1

(〈id⋆k,yk〉 = 0 mod 2q)

]

= Pr
Y′

[
〈id

(i)
i1
,yi1〉 = 0 mod 2q|〈id⋆i1 ,yi1〉 = 0 mod 2q

]

which is 1 if id
(i)
i1

= id⋆i1 and 1/(2q) otherwise due to the fact stated above.

Define χ
(i)
1 = max(ℓ(i)− ℓ⋆, 0) and χ

(i)
2 = #{1 ≤ i1 ≤ min(ℓ⋆, ℓ(i))|id

(i)
i1
6= id⋆i1}. Note that, by the

restrictions imposed on id(i), we have χ
(i)
1 + χ

(i)
2 ≥ 1 for all i ∈ {1, . . . , q}. Putting it all together,

we find

Pr
Y′




ℓ(i)∧

i1=1

(
〈id

(i)
i1
,yi1〉 = 0 mod 2q

)
|

ℓ⋆∧

i1=1

(
〈id⋆i1 ,yi1〉 = 0 mod 2q

)



=
1

(2q)χ
(i)
1 +χ

(i)
2

≤
1

(2q)

We can conclude that η2q ≥ 1/(2ℓ
⋆+1qℓ

⋆
). Combining this bound with the bound on η, we get the

statement of the Lemma. ⊓⊔

B.4 Adaptive Security: Proof of Theorem 3

Regarding condition (i) of partial lossiness, let RL0 and RLn be the games specified in Section 4.2.

Let R̂L0 and R̂Ln be the games which are the same as RL0 and RLn except that they include the
artificial abort stage described above. First, we claim that

Pr[R̂L0 ⇒ 1]− Pr[R̂Ln ⇒ 1] ≤ n ·
(
(d · µ+ 1) ·AdvP-BDH1(B1) + q ·AdvP-DDH2(B2)

)

The proof for this statement is almost identical to the proof for Lemma 1.
We now claim that both Pr[dAexp = 1 | REAL] = Pr[R̂L0 ⇒ 1] and

|Pr[dAexp = 1 | LOSSY]− Pr[R̂Ln ⇒ 1]| ∈ negl(̺).
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These statements imply condition (i) of partial lossiness.
The proof of the last two statements is identical to the proof for Theorem 4: when using the

auxiliary input y(0), HF.Eval will always be injective. On the other hand, when using y(1), HF.Eval

will be lossy for identities (id1, . . . , idℓ) such that 〈y
(1)
i1

, idi1〉 = 0 for all i1 ∈ {1, . . . , ℓ}, with lossiness

λ
(
HF.Eval

(
pms,mpk, (id1, . . . , idℓ), .

))
≥ n − log p = ω, and HF.Eval will be injective for the other

identities.
Seeing that condition (ii) is fulfilled is straightforward: from Lemma 2, we know that ηlow ≤

Pr[d1 = 1 | REAL] and, by construction, ηlow ≤ Pr[d2 = 1 | d1 = 1∧REAL]. This gives us the lower
bound η2low on Pr[d¬abort = 1 | REAL], which is non-negligible. However, the value of ǫ1 will not
be this lower bound. Instead, we will show that another condition (which we give at the end of
this proof) is satisfied and guarantees the existence of ǫ1 and ǫ2. The proof for this is actually very
similar to the proof in [36]. Here, we briefly outline the details. First, due to Chernoff bounds we
have the following:

Pr[dA¬abort = 1 | dA = 1 ∧ REAL] ≥ ηlow(1−
1

4
ζ)

and

Pr[dA¬abort = 1 | dA = 0 ∧ REAL] ≤ ηlow(1 +
3

8
ζ)

We refer the reader to [36] for details on how to compute these bounds.
Let us now assume the existence of a PPT adversary A such that

Pr[dA = 1 | REAL] −
1

2
> ζ

for some non-negligible ζ. This implies that we can write Pr[dA = 1 | REAL] > 1/2 + ζ and
Pr[dA = 0 | REAL] < 1/2 − ζ. Combining these inequalities with the two inequalities above (from
Chernoff bounds) we obtain

Pr[dA = 1 | REAL] · Pr[dA¬abort = 1 | dA = 1 ∧ REAL]

− Pr[dA = 0 | REAL] · Pr[dA¬abort = 1 | dA = 0 ∧ REAL] > 2δζ (22)

with δ = 13ηlow/16 = 13/
(
32 · (2qµ)d

)
. Now, let us observe that

Pr[dA = 1 | REAL] · Pr[dA¬abort = 1 | dA = 1 ∧ REAL] = Pr[dA¬abort = 1 ∧ dA = 1 | REAL]

and

Pr[dA = 0 | REAL] · Pr[dA¬abort = 1 | dA = 0 ∧ REAL] =

= Pr[dA¬abort = 1 ∧ dA = 0 | REAL]

= Pr[dA¬abort = 1 | REAL] · Pr[dA = 0 | dA¬abort = 1 ∧ REAL]

= Pr[dA¬abort = 1 | REAL] · (1− Pr[dA = 1 | dA¬abort = 1 ∧ REAL])

= Pr[dA¬abort = 1 | REAL]− Pr[dA¬abort = 1 ∧ dA = 1 | REAL]

Combining these two equalities with inequality (22), we obtain

2δζ < 2Pr[dA¬abort = 1 ∧ dA = 1 | REAL]− Pr[dA¬abort = 1 | REAL].
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Dividing this inequality by 2 and using the fact that

Pr[dA¬abort = 1 ∧ dA = 1 | REAL] = Pr[dA¬abort = 1 | REAL] · Pr[dA = 1 | dA¬abort = 1 ∧ REAL],

we obtain the relation

δζ < Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | dA¬abort = 1 ∧ REAL]−

1

2

)

Finally, this shows that there exist ǫ1 and ǫ2 such that (ii) and (iii) are satisfied and that their
product is δ.

⊓⊔

C Adaptive-id Secure Deterministic (H)IBE

A hierarchical identity-based deterministic encryption scheme (HIB-DE) is a tuple of efficient algo-
rithms HIB-DE = (HIB-DE.Setup, HIB-DE.MKg, HIB-DE.Kg, HIB-DE.Del,HIB-DE.Enc, HIB-DE.Dec).
The setup algorithm HIB-DE.Setup takes as input a security parameter ̺ ∈ N, the (constant) num-
ber of levels in the hierarchy d ∈ N, the length of the identities µ ∈ poly(̺) and the length of the
plaintexts s ∈ poly(̺), and outputs a set of global public parameters pms, which specifies an identity
space IdSp and the necessary mathematical objects and hash functions. The master key generation
algorithm HIB-DE.MKg takes as input pms and outputs a master public key mpk and a master se-
cret key msk. The key generation algorithm HIB-DE.Kg takes as input pms, msk and a hierarchical
identity (id1, . . . , idℓ) ∈ IdSp, for some ℓ ≥ 1 and outputs a secret key SK(id1,...,idℓ). The delegation
algorithm HIB-DE.Del takes as input pms, msk, a hierarchical identity (id1, . . . , idℓ), a secret key
SK(id1,...,idℓ) for it, and an additional identity idℓ+1; the output is a secret key SK(id1,...,idℓ,idℓ+1)

for the hierarchical identity (id1, . . . , idℓ, idℓ+1) iff (id1, . . . , idℓ, idℓ+1) ∈ IdSp. The evaluation algo-
rithm HIB-DE.Enc takes as input pms, msk, a hierarchical identity id = (id1, . . . , idℓ) and a value
m ∈ {0, 1}s; the result of the evaluation is denoted as C. Finally, the inversion algorithm HIB-DE.Dec

takes as input pms, msk, a hierarchical identity id = (id1, . . . , idℓ), a secret key SKid for it and an
evaluation C, and outputs a value m̃ ∈ {0, 1}s.

A HIB-DE satisfies the property of correctness if

HIB-DE.Dec
(
pms,mpk, id,SKid,HIB-DE.Enc

(
pms,mpk, id = (id1, . . . , idℓ),m

))
= m,

for any m ∈ {0, 1}s, any pms, (mpk,msk) generated by HIB-DE.Setup and HIB-DE.MKg, any hier-
archical identity (id1, . . . , idℓ) ∈ IdSp and any secret key SK(id1,...,idℓ) generated either by running

HIB-DE.Kg
(
pms,msk, (id1, . . . , idℓ)

)
or by applying the delegation algorithm HIB-DE.Del to secret

keys of shorter hierarchical identities.
Bellare et al. [7] gave several definitions for deterministic encryption and proved them equivalent.

In the case of block sources9 [10], Boldyreva et al. [10] proved that single-challenge security (called
PRIV1 security in [5,10]) is equivalent to multi-challenge security (referred to as PRIV security [5],
where the adversary is given a vector of challenge ciphertexts) in the sense of indistinguishability-
based definitions. The simplified indistinguishability-based notion, called PRIV1-IND hereafter, is
somewhat handier to work with and we thus use this one.

We define PRIV1-IND-ID security, the natural analogue of PRIV1-IND security in the IBE
scenario. The security notion is defined via the following experiment between a challenger and an
adversary. Some instructions depend on whether we are in the selective or adaptive security case.

9 Informally, a block source is a distribution of message vectors where each component has high min-entropy condi-
tionally on previous ones.
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Definition 3. We define GuessA
HIB-DE

(M), for a random variable M as follows:

0. The challenger C chooses global parameters pms by running HIB-DE.Setup. The parameters pms

are given to A, who replies by choosing a hierarchical identity id† = (id†1, . . . , id
†
ℓ†
), for some

ℓ† ≤ d.
1. The challenger runs (mpk,msk) ← HIB-DE.MKg(pms) and sends mpk to A. Also, two lists

QS ← ∅, IS ← ∅ are initialized.
2. A is allowed to make a number of adaptive queries for hierarchical identities id = (id1, . . . , idℓ)

(where hierarchical identities are encoded as hierarchical vectors ( ~X1, . . . , ~Xℓ)).

- Create-key: A provides id and the challenger C creates a private key SKid by running
HIB-DE.Kg(pms,msk, id). The list QS is updated as QS = QS ∪ {id}.

- Create-delegated-key: A provides id = (id1, . . . , idℓ) and idℓ+1 such that id ∈ QS. The
challenger C then computes SKid

′ for id′ = (id1, . . . , idℓ+1) by running the delegation algo-
rithm HIB-DE.Del

(
pms,mpkβ, SKid, idℓ+1

)
. The list QS is updated as QS = QS ∪ {id′}.

- Reveal-key: A provides id with the restriction that if A is selective, then id 6≤ id†. C returns
⊥ if id 6∈ QS. Otherwise, SKid is returned to A and the list IS is updated as IS = IS∪{id}.

3. The adversary A outputs a hierarchical identity id⋆ = (id⋆1, . . . , id
⋆
ℓ⋆). In the selective setting, we

impose ℓ⋆ = ℓ† and id⋆j = id
†
j for each j ∈ {1, . . . , ℓ⋆}. In the adaptive case, no element of IS is

a prefix of id⋆.
4. The challenger encrypts a message m sampled from the given message distribution M . The

resulting ciphertext is sent to A.
5. A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.

Recall that a random variable X over {0, 1}s is called a (t, s)-source if H∞(X) ≥ t, where
H∞(X) is the min-entropy of X; H∞(X) = − log(maxx PX(x)). We now give the identity-based
version of IND-PRIV1 security of [10].

Definition 4. An s-bit encryption scheme HIB-DE is PRIV1-IND-ID secure for (t, s)-sources if for
any (t, s)-sources M0 and M1 and all polynomial time adversaries A, the PRIV1-IND-ID advantage

Advpriv1-ind-id
HIB-DE

(A,M0,M1) = Pr[GuessAHIB-DE(M0) = 1]− Pr[GuessAHIB-DE(M1) = 1]

of A against HIB-DE is negligible.

C.1 Universal HF implies deterministic encryption

As it can be seen from the definition, a hierarchical identity-based encryption scheme is very close
to an HIB-TDF, even syntactically. Indeed, as shown in [10], in the public key setting a natural
way to construct a deterministic DE encryption scheme is by defining the algorithms of DE as their
natural counterparts in some lossy LTDF. Boldyreva et al. [10] show that if the lossy function is
also universal, this construction is PRIV1-IND secure. For functions not satisfying this property,
the result follows also directly by an extension of the Crooked Leftover Hash Lemma of Dodis and
Smith [19] given by Boldyreva et al. for this purpose. Similarly, in the identity-based setting, one
can construct a hierarchical deterministic identity-based encryption scheme HIB-DE from HF, a
lossy HIB-TDF, by defining the algorithms of HIB-DE from those of HF in the natural way (in this
case, we say that HIB-DE is defined by HF). We will show that with the additional requirement of
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universality, such a construction is secure in some natural extension of PRIV1-IND security. To do
without this extra condition, it is possible to use the same techniques of Boldyreva et al..

More specifically, universality requires that if LHF is the lossy sibling of a (ω, δ)-lossy HIB-TDF
function, then HF.Setup, LHF.MKg and HF.Eval(pms,mpk, id⋆, ·) induce a universal hash function
when we have a lossy function for id⋆, i.e., λ

(
HF.Eval

(
pms,mpk1, (id

⋆
1, . . . , id

⋆
ℓ⋆), ·

))
≥ ω. It is not

difficult to see that both [9] and our construction induce a universal hash in the lossy mode.

Theorem 5. If HF is a universal (ω, δ)-lossy HIB-TDF function with input {0, 1}n, then the hier-
archical deterministic encryption function HIB-DE defined by it is secure for poly-time sampleable
(t, s)-sources such that t ≥ n − ω + 2 log(1/ǫ) for some negligible ǫ. In particular, for any two
(t, s)-sources M0 and M1 and for every PRIV1-IND-ID adversary B against HIB-DE there exists a
PPT adversary A against HF such that

Advlossy
HF,LHF,P,ω,ζ(A) ≥

1

3
· δ ·Advpriv1−ind−id

HIB-DE
(B,M0,M1)− ν(̺).

Proof. We use similar ideas as those of [10]. Namely, our proof goes as follows: assume that there
is an adversary B that breaks PRIV1-ID-IND security of the deterministic encryption scheme.
Namely, there exist two (t, s)-sources M0,M1 and a non-negligible ζ such that

Advpriv1-ind-id
HIB-DE

(B,M0,M1) = Pr[GuessBHIB-DE(M0) = 1]− Pr[GuessBHIB-DE(M1) = 1] ≥ ζ.

Then, we build an adversary A that breaks the security of the underlying HF, that is, A will interact
with a challenger according to the lossy or the real experiment and will tell the difference between
both scenarios with non-negligible probability.

A forwards an identity id† to its challenger, which is some random identity in the adaptive case.
When the challenger runs the setup and gives the output to A, A forwards this information to B.
When B asks for a secret key for a hierarchical identity id, A forwards the query to the experiment
and forwards the reply to B. At some point, B outputs id⋆. Adversary A then forwards id⋆ to its
challenger, chooses γ ← {0, 1} at random and encrypts mγ

R← Mγ under the identity id⋆. Note
that this corresponds to an execution of GuessB

HIB-DE
(Mγ). After some more secret key queries, B

outputs a bit γ′ ∈ {0, 1} and A outputs dA = 1 if γ = γ′ and dA = 0 otherwise.

The security analysis is very similar to the one in Section 2.2. A simple argument shows that

Pr[γ′ = γ| REAL]−
1

2
= Pr[dA = 1| REAL]−

1

2
≥ ζ/2,

since A perfectly simulated the experiment GuessB
HIB-DE

(Mγ) with B. On the other hand, in the
LOSSY setting when id⋆ is lossy, the advantage of B in guessing γ is negligible because the univer-
sality property means that the output distribution of the encryption algorithm is independent of
the input distribution, and this holds regardless of whether dA¬abort = 1, therefore:

Pr[dA = 1| LOSSY ∧ dA¬abort = 1] ≤
1

2
+ ν,

for some negligible ν. At this point the analysis follows as in the analysis of the IND-ID-CPA case
(proof of Theorem 1).
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Related Work

In a recent, independent work [38], Xie, Xue and Zhang gave a lattice-based deterministic IBE
construction in the auxiliary input setting [14]. While their scheme does provide adaptive security
in the auxiliary input setting, it was described as a single-level IBE. Our results are incomparable
to theirs: on one hand, we do not consider auxiliary inputs; on the other hand, we are concerned
with pairing-based schemes in a hierarchical setting and focus on a more powerful primitive.

D On Hedged (H)IBE

Bellare et al. [6] studied the problem of designing hedged public key encryption schemes, which
remain secure even if the randomness used for encryption is relatively bad. They consider two
notions of hedged security: non-adaptive and adaptive. A non-adaptive attacker can make only a
single challenge encryption query, whereas an adaptive attacker can make up to q challenge adaptive
encryption queries, all of them for the same public key.

Bellare et al. give in [6] different constructions of public key encryption scheme enjoying non-
adaptive hedged security. For instance, their construction RtD combines an IND-CPA secure en-
cryption scheme and a deterministic PRIV1-IND secure encryption scheme to achieve non-adaptive
hedged security. Then they prove a general result stating that a public key encryption scheme which
enjoys both anonymity and non-adaptive hedged security, already enjoys adaptive hedged security.
They show how to provide the necessary anonymity property by using universal lossy trapdoor
functions.

The notion of non-adaptive hedged security, with only one challenge encryption query, can be
easily extended to the identity-based setting, as well as the non-adaptively secure constructions in
[6]. In particular, since our new notion of partial lossiness for (H)IB-TDFs implies both IND-CPA
secure IBE and PRIV1-IND secure (H)IB deterministic encryption, we have that the existence
of (H)IB-TDFs enjoying partial lossiness implies (through the identity-based version of RtD) non-
adaptive hedged (H)IBE secure against adversaries who choose the challenge identity in an adaptive
way.

Regarding the notion of adaptive hedged security, the extension to the identity-based setting is
more challenging, because the adversary could choose different identities for each of the q challenge
adaptive encryption queries. The partial lossiness definitions in [9] and in this paper do not seem
to imply any positive result in that case, because these definitions consider only one challenge
(lossy) identity. Maybe more general definitions for the partial lossiness notion of (H)IB-TDFs are
needed to overcome this obstacle, in the line of all-but-N trapdoor functions [25] and all-but-many
trapdoor functions [27]. We leave the problem of designing (H)IBE schemes with adaptive hedged
security as an interesting open problem.
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