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Preface

Massimiliano Sala

In the period February–July 2006 a major research event took place in Linz (Aus-
tria): the Special Semester in Gröbner Bases and Related Areas.1 Organized by RI-
CAM (in close cooperation with RISC) and funded by the Austrian Academy of
Sciences, it saw the involvement of hundreds of people working in Gröbner bases
theory and their applications. In particular, a workshop (D12) was held, co-chaired
by Mikhail Klin (algebraic combinatorics), Ludovic Perret (cryptography) and me
(coding theory). The aim of the workshop was twofold: to present possible appli-
cations of the theory to experts in Gröbner bases (so that they could explore new
research fields) and to present Gröbner bases as an attractive tool to people working
in other areas. Therefore, the invited talks were mainly tutorials and surveys, while
posters and contributed talks outlined specific research results.

Workshop D1 was a success, with a large audience coming from different back-
grounds. It was suggested that some3 of the best D1 presentations related to cryptog-
raphy and codes would be collected in a book of the RISC Book Series. The invited
talks would become book chapters. The posters and contributed talks would become
short notes at the end of the book. I was appointed Managing Editor, with an Edi-
torial Board composed of Teo Mora (Gröbner bases related papers), Ludovic Perret
(cryptography), Shojiro Sakata (AG codes) and Carlo Traverso (Gröbner bases and
coding). To cover some interesting aspects not presented at Workshop D1, we in-
vited a few more papers and notes.

I would like to thank all of them for their great help and assistance in planning,
shaping and editing this book. The Board and I would like to express our grateful-
ness for their supervision to Bruno Buchberger and the series editor Peter Paule.

1http://www.ricam.oeaw.ac.at/specsem/srs/groeb/index.htm.
2“Gröbner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics”.
3Other D1 presentations will appear in a special issue of Journal of Symbolic Computation, edited
by D. Augot, J.-C. Faugère and L. Perret.

M. Sala
Univ. of Trento, Trento, Italy
e-mail: sala@science.unitn.it
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Gröbner Bases, Coding, and Cryptography:
a Guide to the State-of-Art

Massimiliano Sala

1 In the Beginning

Last century saw a number of landmark scientific contributions, solving long-
standing problems and opening the path to entirely new subjects. We are interested
in three1 of these:

1. Claude Shannon’s (1948),
2. Claude Shannon’s (1949),
3. Bruno Buchberger’s (1965)

The title of Shannon’s (1948) paper says it all: “A mathematical theory of com-
munication”. It was later reprinted as Shannon and Weaver (1949) with an even
more ambitious title: “The Mathematical Theory of Communication”. Although
people have exchanged information in speech and writing for centuries, nobody
had ever treated the information exchange (or even information itself) in a rigorous
mathematical way. In Shannon’s time there was a need for it, since the last century
saw a dramatic increase in the amount and speed of information exchange, with the
spreading of new media, like radio, television and telephone.

In Shannon (1948), communication theory is the study of some stationary sto-
chastic processes. Random variables describe information sources and probability
distributions describe channels, through which information is sent. Noisy channels
are modelled and (error correcting) codes are introduced to permit information re-
cover after the transmission. In particular, the (probabilistic) foundation of Coding
Theory was laid.

One year later, another astonishing paper by Shannon appeared: Shannon (1949).
For centuries “secret codes” have been used to protect messages from unauthorized
readers. Unsurprisingly, the lack of a rigorous model for communication prevented
the study of a more specific model for secure communication. Cryptography had
been largely regarded as an art, often mixed with esoteric and obscure references.
A cipher was considered secure until an attacker could break it. Like a lighthouse
in the dark, Shannon’s paper introduces basic definitions and results, which make

1Here listed in chronological order.
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cryptography into a science. Shannon views a cipher as a set of indexed functions
from the plain-text space to the cipher-text space, where the index space is the key
space. Building on his previous paper, he focuses on the probability distribution of
(the use of) the keys and of the plain-texts, on the way they determine the cipher dis-
tribution and on how an attacker can use them. The paper is also full of invaluable
(and prophetic) remarks, such as: “The problem of good cipher design is essentially
one of finding difficult problems . . . How can we ever be sure that a system which
is not ideal . . . will require a large amount of work to break with every method of
analysis? . . . We may construct our cipher in such a way that breaking it is equiva-
lent to . . . the solution of some problem known to be laborious.”

Among the mathematical problems known to be “laborious” (to use Shannon’s
terminology), there is one which has always received a lot of interest: how to “solve”
a system of polynomial equations. This reduces to a more general problem: how to
represent in a “standard” way a (multivariable) polynomial ideal. Even a simple
decision problem like ideal membership2 had no way to be solved and some even
believed it was undecidable, after the word problem in group theory was proved so
in Novikov (1955, 1958).

However, in 1965 Buchberger’s (1965, 2006) thesis he presented the appropri-
ate framework for the study of polynomial ideals, with the introduction of Gröbner
bases. There is no way to summarize in a few pages the surge in computational alge-
bra research originated from Buchberger’s stunning contribution, with uncountable
applications in Mathematics, Engineering, Physics and recently even Biology and
other sciences. Fortunately, this book deals only with the applications of Gröbner
bases to coding theory and cryptography, and in the next section we will hint at
them within the book.

2 Until Now

A finite field F may not look particularly interesting to mathematicians accustomed
to infinite fields. After all, it contains only a finite number of elements. Also, all
nonzero elements are exactly the powers of a primitive element, providing a rather
dull group structure for its multiplicative elements. Nevertheless, it is a field, which
means a lot3 from the point of view of its polynomial rings and their algebraic
varieties. Moreover, it has a very peculiar property: all functions from F

n to F can be
represented as polynomials in F[x1, . . . , xn]. Here lies the heart of the interaction4

between Gröbner bases and coding theory/cryptography.

2Determining whether a polynomial belongs to an ideal I given a finite basis for I .
3For example, the number of roots of p ∈ F[x] is deg(p) (counting multiplicities).
4Some recent research has focused on special classes of rings, we will discuss it at the end of
Sect. 2.3.
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2.1 Classical Coding Theory

After Shannon (1948), coding theory has developed along two main directions:5

algebraic coding theory and probabilistic coding theory. The rationale behind the
(apparently unnatural) introduction of algebra is that it is very difficult to predict (or
even to estimate) the performance of codes constructed and decoded in a probabilis-
tic way, while already the pioneeristic work by Hamming (1950) showed how easy it
is to construct algebraic codes, with algebraic decoding, whose performance can be
easily estimated by the computation of a parameter called the (Hamming) distance.
The main objects of study in algebraic coding theory are “codes”, that is, subsets
of finite-dimensional vector spaces over F. There has been extensive study into lin-
ear codes (subspaces) and much less into non-linear codes, due to implementation
issues. A lot of research has been devoted to cyclic codes, that form a class of lin-
ear codes enjoying special algebraic properties, allowing both easier determination
of their distance and low-complexity decoders. An introduction to linear and cyclic
codes is provided in our chapter (Augot et al. 2009). The two introductory chapters
(Mora 2009a, 2009b) lay down our commutative algebra notation, sketch Gröbner
basis theory and describe its powerful results for 0-dimensional ideals.6 The first in-
stance of applications we present is the chapter on the “Cooper philosophy” (Mora
and Orsini 2009), where it is showed how to decode efficiently cyclic codes using
Gröbner bases. We have a few short notes on linear and non-linear codes, where
some Gröbner basis computation is needed:

• Lally (2009) gives a description of quasi-cyclic codes7 in term of Gröbner bases
of polynomial modules,

• Giorgetti (2009) introduces nth root codes8 and show how to compute their dis-
tance and weight distribution,

• Bulygin and Pellikaan (2009) explains how to decode a (general) linear code,
• Guerrini et al. (2009) explains how to find the distance of (systematic) non-linear

codes (and of linear codes as a special case); a variation allows to classify all such
codes with some given parameters,

• Kim (2009) presents a prize problem in coding theory about the existence of a
code with special parameters (it could be solved by a variation to the methods in
Guerrini et al. 2009),

• Borges-Quintana et al. (2009) provides a Gröbner basis description for binary
linear codes, allowing their decoding and the calculation of their distance,

• Martinez-Moro and Ruano (2009) presents a new family of linear codes endowed
with a natural Gröbner basis description.

5See our note Gluesing-Luerssen et al. (2009) for a hybrid approach.
6I.e., ideals having a finite number of solutions, as it is always the case in coding and cryptography.
7A class of linear codes which can be seen as a generalization of cyclic codes.
8A wide class of linear codes containing cyclic codes.
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2.2 AG Codes

In the eighties (Goppa 1981) the so-called AG (short for “Algebraic Geometry”)
codes were proposed. These are linear codes obtained as evaluation of function
spaces on algebraic curves. Standard results in curve theory yield sharp estimates
for their distance. Their geometric structure permits specific decoding algorithms.
For problems related to these codes, a polynomial formulation is natural and hence
Gröbner bases find a field fertile in applications. Our treatment (chapters) of AG
codes is as follows:

• Leonard (2009a) introduces the AG codes, especially the one-point AG codes,9

• Little (2009) explains their encoding (with Gröbner bases) and the relation with
the curve automorphisms,

• Sakata (2009a) describes the Berlekamp–Massey–Sakata (BMS) algorithm,
which can be specialized to decode AG codes,10 as explained in Sakata (2009b),

• Leonard (2009b) further explores their decoding.

Recently, it has been observed that the classical presentation of AG codes suffers
from some limitations, such as the need for a lot11 of theoretical prerequisites in
order to understand theory and the absence of explicit code descriptions.12 To over-
come these difficulties, a new constructive approach has been proposed: the Order
Domain codes. These codes and their relation to classical AG codes are discussed
in our chapter (Geil 2009). Interestingly, Gröbner bases have turned out to be very
convenient tools for their study.

2.3 Coding Miscellanea

Classical decoding algorithms for cyclic and AG codes can be reinterpreted in terms
of Gröbner basis computation, as explained in our chapter (Guerrini and Rimoldi
2009), where also list-decoding algorithms are detailed. A list-decoding algorithm
is an algorithm13 that decodes a received message into a list of possible codewords.
A probabilistic algorithm is then used to choose the most likely among them. These
algorithms are a compromise between algebraic decoding and probabilistic decod-
ing, which is necessary in order to fully exploit the channel capacity without losing
the advantage of the algebraic approach. Also the BMS algorithm can be adapted to
a list-decoding algorithm (Sakata 2009b).

9Which is their most important subclass, enjoying an easier description. See our note (Matthews
2009) for multi-point AG codes.
10Historically, this was the first fast algorithm to decode such codes.
11In comparison to the prerequisites for standard linear code theory.
12Which would prevent actual use of these codes.
13See also our notes (Augot and Stepanov 2009; Beelen and Brander 2009).
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We report that recently also (linear and cyclic) codes over rings have been stud-
ied. For an introduction to this theory see our chapter (Greferath 2009). Also Gröb-
ner basis theory can be adapted to special classes of rings. This is sketched in our
chapter (Byrne and Mora 2009), where it is also explained how the Gröbner ba-
sis decoding techniques in Guerrini and Rimoldi (2009) are extended to codes over
(special) rings.

2.4 Cryptography

After Shannon’s (1949) paper two main kinds of ciphers have been developed: block
ciphers and stream ciphers. Block ciphers are closer to Shannon’s original idea of
key-indexed transformations from the plain-text space to the cipher-text space, and
can be viewed as maps from F

n to F
m, for some n,m≥ 1. Stream ciphers assume the

message to come in a (ideally) infinite stream (of field elements in F) and they add14

element by element the message stream with a key stream produced by the cipher
itself. Block ciphers and their relation to Gröbner bases are discussed in our chapter
(Cid and Weinmann 2009), while stream ciphers and their relation to Gröbner bases
are discussed in chapter (Armknecht and Ars 2009). It is interesting to note that
Gröbner basis attacks on some stream ciphers have outmatched all classical attacks
and so they are now widely used for assessing the security of keystream generators
(Armknecht and Ars 2009). This is not the case for Gröbner basis attacks on block
ciphers, yet.

The problem with the ciphers as designed by Shannon is that the two peers need
to exchange the key before data transmission. This can be difficult since it requires
the presence of a secure channel. In Diffie and Hellman (1976) they solved this
problem with an ingenious key exchange protocol and their ideas were adapted to
design a cipher based on two keys, a public KP and a secret KS , such that only
a key exchange of KP in a public channel is required (see e.g. Rivest et al. 1978;
McEliece 1978). This branch of cryptography is nowadays called public key (or
asymmetric) cryptography (PKC), while traditional cryptography is called symmet-
ric cryptography. Although PKC cannot provide the same security level as symmet-
ric cryptography without a larger computational cost, in many real situations (such
as in the Internet) there is little choice. Among the PKC systems brought forward
in the last 40 years, there are two families that rely on “laborious” problems in
polynomial rings. They are deeply discussed in our chapters (Billet and Ding 2009)
and (Levy-dit-Vehel et al. 2009). The ciphers in the latter family are called Polly
Cracker systems. Although Gröbner bases are used to attack the systems discussed
in both chapters, Gröbner bases are used to build the systems themselves in the Polly
Cracker case (which then deserves a deeper analysis).

14Or, rarely, perform more complicate transformations.
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As mentioned at the beginning of the section, it is the polynomial nature of all
functions from F

n to F that allows the use of Gröbner bases in coding and cryptog-
raphy. A special case is the binary case, i.e. when F = F2, since in most applica-
tions the encoding/enciphering is binary. Any function from (F2)

n to F2 is called
a Boolean function and any function from (F2)

n to (F2)
m is a vectorial Boolean

functions. As expected, their properties are amply studied in connection with cryp-
tography problems.

We present three notes dealing with three different aspects:

• Simonetti (2009) shows how to use Gröbner bases to compute the non-linearity
of any Boolean function f , which is an important parameter in evaluating the
security of using f in building a cipher;

• Gligoroski et al. (2009b) sketches the use of (vectorial) Boolean functions in
building hash functions;15

• Gligoroski et al. (2009a) uses Gröbner bases to represent a special class of
Boolean functions (quasigroups) which are used to construct a PKC system.

3 Final Comments

In the previous sections, I have tried to convey the general plan behind our book and
its chapters (notes) division. This book is a collection of papers by many authors,
some of them with a very different background.16 As such, it cannot be read as a
text-book, but the accurate choice of the subjects should allow the reader to have a
comprehensive view of the most common applications of Gröbner bases to coding
and cryptography. It is especially important to read carefully the introductory chap-
ters and understand their notation. Within every chapter and note, I have done my
best to insert all inter-book cross-references that I felt adequate. Still, there are many
parts of the theory we have not been able to cover and a lot of further interactions
that we have not detailed.

It is my belief (shared by the Board) that this book can be an excellent guide to
the subject, both for the researcher wishing to go deeper into some unfamiliar part
of the theory and for the student approaching this area.
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Gröbner Technology

Teo Mora

1 Notation and Definitions

F denotes an arbitrary field, F denotes its algebraic closure and Fq denotes a finite
field of size q (so q is implicitly understood to be a power of a prime) and P :=
F[X] := F[x1, . . . , xn] the polynomial ring over the field F.

For any ideal I⊂ P and any extension field E of F, let VE(I) denote the set of the
rational points of I over E. We also write V(I)= V

F
(I).

Let T be the set of terms in P , id est

T := {xa1
1 · · ·xann : (a1, . . . , an) ∈N

n},
which is a multiplicative version of the additive semigroup N

n, the relation between
these notations being obvious: given

α := (a1, . . . , an), β := (b1, . . . , bn), γ := (c1, . . . , cn)

and the terms

τa :=Xα = xa1
1 · · ·xann , τb :=Xβ = xb1

1 · · ·xbnn , τc :=Xγ = xc11 · · ·xcnn ,
we have

τa · τb = τc ⇐⇒ ai + bi = ci for each i ⇐⇒ α + β = γ,
τa | τb ⇐⇒ ai ≤ bi for each i ⇐⇒ α ≤P β,

where <P is the natural partial ordering over N
n.

The assignment of a finite set of terms

G := {τ1, . . . , τν} ⊂ T , τi = xa
(i)
1

1 · · ·xa(i)nn
—or, equivalently of a finite set of integer vectors

{a(1), . . . , a(ν)} ⊂N
n, a(i) = (a(i)1 , . . . , a

(i)
n ) ∈N

n,

defines a partition of T (resp. N
n) in two parts (see Fig. 1 whereG := {x6

1x2, x
4
1x

3
2 , x

2
1x

5
2} ⊂

T ):

T. Mora
DIMA and DISI, Università di Genova, Genova, Italy
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M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography,
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Fig. 1 A Gröbner escalier

• T := {ττi : τ ∈ T ,1 ≤ i ≤ ν} ∼= {α + a(i) : α ∈ N
n,1 ≤ i ≤ ν} =: Σ which is a

semigroup ideal, id est a subset T ⊂ T (resp. Σ ⊂N
n) such that

τ ∈ T , t ∈ T =⇒ τ t ∈ T , resp. a ∈Σ,b ∈N
n, a ≤P b=⇒ b ∈Σ;

	 N := T \ T ∼=N
n \Σ =:Δ which is an order ideal, id est a subset N ⊂ T (resp.

Δ⊂N
n) such that

τ ∈ T , t ∈N,τ | t =⇒ τ ∈N, resp. a ∈Δ,b ∈N
n, a ≥P b=⇒ b ∈Δ.

Remark that the assignment of

• a finite monomial set G⊂ T ,
• a semigroup ideal T ⊂ T ,
• an order ideal N ⊂ T

uniquely characterizes the other data: in fact

− N and T are related by their being complementary in T ,
− each semigroup ideal T ⊂ T has a unique minimal basis G⊂ T such that T :=
{ττi : τ ∈ T , τi ∈G}; the fact, whose proof is quite involved, that G is finite is
known as Dickson’s lemma but actually was already proved by Gordan (1900).

We recall that the well-orderings on T which are a semigroup ordering, id est
satisfy

τ1 < τ2 =⇒ ττ1 < ττ2 for each τ, τ1, τ2 ∈ T

are called term orderings, even if the old-fashioned notion of admissible ordering
can still be found somewhere.

For a free-module Pm, m ∈N, we denote by {e1, . . . , em} its canonical basis,

T (m) = {tei , t ∈ T ,1≤ i ≤m}
= {xa1

1 · · ·xann ei , (a1, . . . , an) ∈N
n,1≤ i ≤m}
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denotes its monomial F-basis and ≺ denotes a well-ordering on T (m) which is com-
patible with the term-ordering < on T , that is, satisfying

τ1 ≤ τ2, t1 � t2, =⇒ τ1t1 � τ2t2

for each τ1, τ2 ∈ T , t1, t2 ∈ T (m).
Note that T (1) = T .
For each f =∑τ∈T (m) c(f, τ )τ ∈ Pm, its support is

supp(f ) := {τ ∈ T (m) : c(f, τ ) �= 0},
its leading term is the term T≺(f ) := max≺(supp(f )), its leading coefficient is
lc≺(f ) := c(f,T≺(f )) and its leading monomial is M≺(f ) := lc≺(f )T≺(f ).

When ≺ is understood we will drop the subscript, as in T(f )= T≺(f ).
For any set F ⊂ Pm, write

• T{F } := T≺{F } := {T(f ) : f ∈ F };
• M{F } :=M≺{F } := {M(f ) : f ∈ F };
• T(F ) := T≺(F ) := {τT(f ) : τ ∈ T , f ∈ F }, a monomial module1;
• N(F ) :=N≺(F ) := T (m) \T≺(F ), an order module2;
• I(F )= 〈F 〉 the module generated by F .

Remark that, if m= 1, the assignment of T{F } gives the partition T = T(F ) �
N(F ) discussed above, that the related semigroup ideal T(F ) is also denoted Σ(F)
while the related order ideal N(F ) is also denoted Δ(F) and labelled Δ-set or foot-
print. When F is the Gröbner basis of the module I(F ) it generates, N(F ) is called
the Gröbner éscalier (Galligo 1974) of I(F ).

We can now induce a finer partition of T (m) in terms of a module M ⊂ Pm
and a term-ordering ≺, by defining (see Fig. 2 where this time we have set M :=
I(x6

1 , x
4
1x

3
2 , x

5
2)⊂ P )

	 N≺(M)= T (m) \T<(M) its Gröbner éscalier;
◦ B≺(M) := {xhτ : 1≤ h≤ n, τ ∈N≺(M)} \N≺(M), its border set;
• J≺(M) := T≺(M) \B≺(M),
* G≺(M)⊂ B≺(M) the unique minimal basis of T≺(M),
· C≺(M) := {τ ∈N≺(M) : xhτ ∈ T≺(M),∀h} its corner set.

Under this notation, the following properties are trivially satisfied:

Lemma 1 It holds

1. T≺(M)= {τ ∈ T : ∃g ∈M : T≺(g)= τ };
2. J≺(M)= {τ ∈ T≺(M) : xi | τ =⇒ τ

xi
∈ T≺(M)};

3. B≺(M)= {τ ∈ T≺(M) : ∃xi | τ, τxi ∈N≺(M)};

1Id est a subset T ⊂ T (m) such that τ ∈ T , t ∈ T =⇒ τ t ∈ T .
2Id est a subset N ⊂ T (m) such that τ ∈ T , τ t ∈N =⇒ t ∈N.
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Fig. 2 A refined Gröbner
escalier

4. G≺(M)= {τ ∈ T≺(M) : ∀xi | τ, τxi ∈N≺(M)};
5. C≺(M)= {τ ∈N≺(M) : ∀i, xiτ ∈ B≺(M)};
6. N≺(M)= {τ ∈ T :� ∃g ∈M : T≺(g)= τ };
7. C≺(M)∪T≺(M) is a monomial module;
8. N≺(M)∪G≺(M) and N≺(M)∪B≺(M) are order modules.
9. τ ∈ J≺(M) ⇐⇒ ∀xi | τ, τxi ∈ T≺(M);
10. τ ∈ B≺(M) \G≺(M) ⇐⇒ ∃h,H : τ

xh
∈N≺(M), τxH ∈ B≺(M)⊂ T≺(M);

11. τ ∈ B≺(M) \G≺(M)=⇒∀xi | τ, τxi ∈N≺(M)∪B≺(M);
12. τ ∈N≺(M)∪G≺(M) ⇐⇒ ∀xi | τ, τxi ∈N≺(M);
13. τ ∈ T≺(M)∪C≺(M) ⇐⇒ ∀i, xiτ ∈ T≺(M);
14. τ ∈N≺(M) \C≺(M) ⇐⇒ ∃h : xhτ ∈N≺(M).

Lemma 2 Let N be a finitely generated P -module, Φ : Pm �→ N be any surjective
morphism and set M := ker(Φ). Then

1. Pm ∼=M⊕ SpanF(N(M));
2. N∼= SpanF(N(M));
3. for each f ∈ Pm, there is a unique g := Can(f,M,≺) ∈ SpanF(N(M)) such that
f − g ∈M.

Such g is called the canonical form of f w.r.t. M and satisfies also:
(a) Can(f1,M,≺)= Can(f2,M,≺) ⇐⇒ f1 − f2 ∈M;
(b) Can(f,M,≺)= 0 ⇐⇒ f ∈M.

Definition 3 Let N be a finitely generated P -module,Φ : Pm �→ N be any surjective
morphism and set M := ker(Φ).

Let G⊂M, f,h,f1, f2 ∈ Pm. Then

1. G will be called a Gröbner basis of M if

T(G)= T(M),

that is, T{G} := {T(g) : g ∈G} generates T(M)= T{M}.
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2. For each f1, f2 ∈ Pm such that

T(f1)= t1el1, T(f2)= t2el2,

the S-polynomial of f1 and f2 exists only if el1 = el2 := ε, in which case it is

S(f1, f2) := lc(f2)
−1 δ(f1, f2)

t2
f2 − lc(f1)

−1 δ(f1, f2)

t1
f1,

where δ := δ(f1, f2) := lcm(t1, t2); δε is called the formal term of S(f1, f2).
3. f has a Gröbner representation

∑μ
i=1 pigi in terms of G if 3

f =
μ∑

i=1

pigi, pi ∈ P, gi ∈G, T(pi)T(gi)� T(f ), for each i.

4. f has the (strong) Gröbner representation
∑μ
i=1 ci tigi in terms of G if

f =
μ∑

i=1

ci tigi, ci ∈ F \ {0}, ti ∈ T , gi ∈G,

with T(f )= t1T(g1)� · · · � tiT(gi)� · · · .
5. f has the weak Gröbner representation

∑μ
i=1 ci tigi in terms of G if

f =
μ∑

i=1

ci tigi, ci ∈ F \ {0}, ti ∈ T , gi ∈G,

with T(f )= t1T(g1)� · · · � tiT(gi)� · · · .
6. For any f1, f2 ∈ Pm, whose S-polynomial exists and has δε as formal term, we

say that S(f1, f2) has a quasi-Gröbner representation in terms of G if it can
be written as S(g,f ) =∑μ

k=1 pkgk, with pk ∈ P, gk ∈ G and T(pk)T(gk) ≺
δε for each k.

7. h :=NF≺(f,G) is called a normal form of f w.r.t. G, if

• f − h ∈ I(G) has a strong Gröbner representation in terms of G and
• h �= 0=⇒ T(h) /∈ T(G).

8. The reduced Gröbner basis of M wrt ≺ is the set

{τ −Can(τ,M,≺) : τ ∈G≺(M)}.
9. The border basis of M w.r.t. ≺ is the set

{τ −Can(τ,M,≺) : τ ∈ B≺(M)}.

3Note that here, unlike in (4), we are not assuming i �= j =⇒ T(pi)T(gi) �= T(pj )T(gj ); moreover
both here, in (4) and in (5) a same element of G can repeatedly appear.
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10. A Gröbner representation of M is the assignment of

• a linearly independent set q= {q1, . . . , qs} (q1 = 1), where s = #(N(M)), such
that Pm/M= SpanF(q),

• the set

M = M(q) := {(a(h)lj
) ∈ F

s2,1≤ h≤ n}

of the s × s square matrices (a(h)lj ) defined by the equalities

xhql =
∑

j

a
(h)
lj qj , ∀l, j, h,1≤ l, j ≤ s,1≤ h≤ n

in Pm/M= SpanF(q).

11. For each f ∈ P the Gröbner description of f in terms of a Gröbner represen-
tation (q,M) is the unique vector

Rep(f,q) := (γ (f, q1,q), . . . , γ (f, qs,q)) ∈ F
s

such that f −∑j γ (f, qj ,q)qj ∈M.
12. The linear representation of M w.r.t. ≺ is the Gröbner representation (N≺(M),

M(N≺(M))) where q=N≺(M).

With these definitions, if N≺(M)= {τ1, . . . , τs}, the Gröbner description

Rep(f,N≺(M)) := (γ (f, τ1,N≺(M)), . . . , γ (f, τs,N≺(M)))
of f in terms of the linear representation of M w.r.t. ≺ is a convoluted synonym of
the notion of canonical form

Can(f,M,≺)=
s∑

j=1

γ (f, τj ,≺)τj =
s∑

j=1

γ (f, τj ,N≺(M))τj

of f in terms of ≺.

2 Term-Orderings: Classification and Representation

Definition 4 A weight function vw : T �→ R on T and P is the assignment of a
vector w := (w1, . . . ,wn) ∈R

n,wi ≥ 0, so that vw(X
a)= w · a =∑i wiai .

Theorem 5 (Erdös 1956) Each semigroup ordering < on T is characterized by
assigning r ≤ n linearly independent vectors

w1, . . . ,wj := (wj1, . . . ,wjn), . . . ,wr ∈R
n
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—or equivalently an r × n matrix (wji) ∈ R
rn of maximal rank—so that for each

τa :=Xa, τb :=Xb in T , we have

τa < τb ⇐⇒ ∃j : wj · a < wj · b and wi · a = wi · b for i < j.

Moreover, such an ordering is a well-ordering iff, for each i, Xi > 1, that is iff,
for each i, wji > 0, where j denotes the minimal value for which wji �= 0.

Finally, ifM1,M2 are two r×n matrices, then they characterize the same order-
ing < iff there is an invertible r-square matrix A= (aij ) such that

M1 =AM2 and aij =
{

0 if i < j,

1 if i = j.

Among the term-orderings we will quote those which have common and practical
use, also for applications.

• The lexicographical (lex) ordering induced by X1 < X2 < · · · < Xn is defined
by

X
a1
1 · · ·Xann < Xb1

1 · · ·Xbnn ⇐⇒ ∃j : aj < bj and ai = bi for i > j ;
it has good elimination properties since it allows to compute all the elimination
ideals I ∩ F[X1, . . . ,Xi]:
Fact 6 If G is the Gröbner basis of I ⊂ F[X1, . . . ,Xn] w.r.t. lex then, for each
i ≤ n, G∩ F[X1, . . . ,Xi] is the Gröbner basis of I ∩ F[X1, . . . ,Xi] w.r.t. lex.

• Note that the lexicographical ordering depends on a chosen ordering imposed
on the variables; recently many authors prefer using the lexicographical ordering
induced by X1 >X2 > · · ·>Xn which is defined by

X
a1
1 · · ·Xann < Xb1

1 · · ·Xbnn ⇐⇒ ∃j : aj < bj and ai = bi for i < j.

• The reverse lexicographical (rev-lex) ordering induced by X1 <X2 < · · ·<Xn
is defined by

X
a1
1 · · ·Xann < Xb1

1 · · ·Xbnn ⇐⇒ ∃j : aj > bj and ai = bi for i < j ;
it is not a well-ordering since · · ·<Xd+1

i < Xdi < · · ·<X1 < 1.
• The deg-rev-lex4 (degree reverse lexicographical) ordering induced by X1 <

X2 < · · · < Xn is the one where terms are first compared by their degree and
the ties are solved using rev-lex: it is defined by

Xa <Xb ⇐⇒ exists j : aj > bj and ai = bi for 0≤ i < j,
where we set a0 := −∑i ai , b0 := −∑i bi and has the following property

4Often shorthanded as drl.
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Fact 7 Denoting, for each i ≤ n, πi : T �→ T ∩ F[X1, . . . ,Xi] the projection5

defined by

πi(Xj ) :=
{
Xj if j > i

1 if j ≤ i
then any two terms t1, t2 ∈ T satisfy

t1 < t2 ⇐⇒ exists j : dj1 < dj2, and di1 = di2 for each i < j

where we have set dji := deg(πj (ti)).

• Naturally, also the definitions of the rev-lex and deg-rev-lex orderings depend
on a chosen ordering imposed on the variables; thus, the deg-rev-lex ordering
induced by X1 >X2 > · · ·>Xn is defined as

Xa <Xb ⇐⇒ ∃j : aj > bj and ai = bi for n+ 1≥ i > j,
where we set an+1 := −∑i ai , bn+1 := −∑i bi .• More in general, given an ordering < on T its degree extension is the ordering
≺ defined as

t1 ≺ t2 ⇐⇒ deg(t1) < deg(t2) or deg(t1)= deg(t2), t1 < t2.

• If we have a weight vector w := (w1, . . . ,wn) ∈ R
n \ {0} and a term ordering <,

the construction leading to the degree extension of < can be performed to lead to
the weight extension ≺ of < (or the refinement of vw with <) defined as

t ≺ T ⇐⇒ vw(t) < vw(T ) or vw(t)= vw(T ), t < T .

Bayer and Stillman (1987) proved that the rev-lex ordering is the ‘most effi-
cient’ refinement of a weight function vw.

Given a term-ordering < on T , a <-compatible well-ordering ≺ on T (m) can
be defined in different ways; we limit ourselves to quote the more standard con-
structions referring to Carrà Ferro and Sit (1994), Caboara and Silvestri (1999) for
a more general treatment: setting an ordering � on the canonical basis {e1, . . . , em},
• the TOP (term over position) ordering is defined as

t1el1 ≺ t2el2 ⇐⇒ t1 < t2 or t1 = t2, el1 � el2;
• the POT (position over term) ordering is defined as

t1el1 ≺ t2el2 ⇐⇒ el1 � el2 or el1 = el2 , t1 < t2.

5Obviously π0 is just the identity.
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Fig. 3 Buchberger normal form algorithm

3 Buchberger’s Theorem and Algorithm

The Buchberger Normal Form Algorithm (Buchberger 1965, 1970, 1998, 2006)
(see Fig. 3) is a Gaussian-like linear algebra reduction which, given a finite set
F ⊂ Pm and an element f ∈ Pm, returns a normal form g of f w.r.t. F and a strong
Gröbner representation6 ∑μ

i=1 ci tigi of f − g in terms of F ; extending it we obtain
the Buchberger Canonical Form Algorithm (Buchberger 1965, 1970, 1998, 2006)
(see Fig. 4) which, if F is assumed to be a Gröbner basis, returns the canonical form
g := Can(f,M,≺) ∈ SpanF(N(I)) and strong Gröbner representation

∑μ
i=1 ci tigi of

f − g in terms of F .

Corollary 8 Let N be a finitely generated P -module,Φ : Pm→ N be any surjective
morphism and set M := ker(Φ). Let G be a Gröbner basis of M w.r.t. ≺ . Then

1. For each f ∈ Pm,f − Can(f,M) has a strong Gröbner representation in terms
of G;

2. The reduced Gröbner basis of M w.r.t. ≺ is the unique set G⊂M such that7

(a) T≺{G} is an irredundant basis of T≺(M);
(b) for each g ∈G, lc(g)= 1;
(c) for each g ∈G,g −T(g) ∈ SpanF(N(M)).

On each free module Ps ({e1, . . . ,es} denotes its canonical basis) one can impose
a valuation v : Ps→ T by fixing s terms τ1, . . . , τs and defining for each i v(ei ) :=
τi , so that, for each f := (h1, . . . , hs)=∑i hiei we have v(f ) :=max<{T<(hi)τi};
by definition, its leading form L(f ) is the homogeneous component (of degree
v(f )) (ν1, . . . , νm) where

νi =
{

M(hi) iff T(ti)τi = v(f )
0 otherwise.

6The reason why strong Gröbner representations are pinned up among Gröbner representations of
a polynomial is that the output of Buchberger Form Algorithms is necessarily strong.

The notion of weak Gröbner representation (Definition 3.5) has a similar rôle in the more
esoteric theory of Gröbner bases for polynomials over a ring, for which the reader is directed to
Byrne and Mora (2009).
7A basis which satisfies only conditions (a) and (b), but not necessarily (c), is called a minimal
Gröbner basis.
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Fig. 4 Buchberger canonical form algorithm

Such valuation is of course compatible with the natural valuation of P and an
element

∑
i hiei is homogeneous of degree τ iff, for each i

hi �= 0 =⇒ hi =M(hi) and T(hi)τi = τ.

Definition 9 Denoting, for each set F ⊂ Ps ,

L{F } := {L(f ) : f ∈ F }, L(F ) := I(L{F }),
given a module E⊂ Ps , the homogeneous module L(E) is called the leitmodul of E.
Any set B ⊂ E such that L(B)= L(E) is called a standard basis of E and is a basis
of it.

Fixed a set {g1, . . . , gs} := G ⊂ M, with M(gj ) := cj τjelj , for each j , I will
freely use the shorthand

T(l1, l2, . . . , lr ) := lcm(τi : i ∈ {l1, i2, . . . , lr})ε
for each set {l1, l2, . . . , lr} ⊆ {1, . . . , s} satisfying el1 = · · · = elr =: ε; in particular
for i, j, k,1≤ i, j, k ≤ s, eli = elj = elk =: ε, we have

T(i)= T(gi), T(i, j) := lcm(τi, τj )ε, T(i, j, k) := lcm(τi, τj , τk)ε;
for each pair {i, j},1≤ i < j ≤ s for which eli = elj =: ε, I will also use the short-
hand S(i, j) to denotes S(gi, gj ), ω(i, j) := T(i, j)ε to denote its formal term and

s(i, j) := c−1
j

T(i, j)
τj

ej − c−1
i

T(i, j)
τi

ei .

If, with the current notation, we impose on the module Ps the valuation v de-
fined by v(ej ) := τj , we have that if f :=∑j hjej ∈ Ps satisfies

∑
j hjgj = 0
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necessarily, denoting

τε :=max≺ {T<(hi)T≺(gi)} and I := {i,1≤ i ≤ s : T(hi)T(gi)= τε}

the homogeneous element L(f ) :=∑j νjej ∈ Ps of degree τ satisfies

• 0 �= νj =⇒ j ∈ I and νj =M(hj )=: djωj ,
• ∑s

j=1 νjM<(gj )=∑j∈I (djωj ) · (cj τj elj )= (
∑
j∈I (dj cj ) · (τjωj ))ε = 0,

• ∑j∈I dj lc(gj )= 0 and ωjT<(gj )= τε for each j ∈ I .

Definition 10 Given a finite set G := {g1, . . . , gs} ⊂ Pm, M(gj ) := cj τjelj , and
denoting S : Ps→ P the map defined by

∑s
i=1 piei �→

∑s
i=1 pigi :

1. each element of ker(S)⊂ Ps is called a syzygy of G;
2. the syzygy module of G is the module

ker(S) := {(p1, . . . , ps) :
s∑

i=1

pigi = 0} ⊂ Ps;

3. the natural valuation v on Ps is the one defined by v(ej ) := τj .

Remark 11

1. if f := (p1, . . . , ps) is a syzygy of G, then L(f ) :=∑j νjej ∈ Ps is a homoge-
neous syzygy of M{G};

2. for each homogeneous syzygy φ :=∑j djωjej ∈ Ps of M{G} the element
h :=S(φ)=∑j djωjgj ∈ Pm, if is not zero, satisfies

T(h) < v(φ)= ωjτj for each j ;
therefore if h=∑j pjgj is a Gröbner representation in terms of G, then

f := φ − h= φ −
∑

j

pjej =
∑

j

(djωj − pj )ej ∈ ker(S)

is a syzygy and satisfies v(f )= v(φ) and L(f )= φ;
3. for each i, j,1 ≤ i < j ≤ s, for which S(i, j) exists and has ω(i, j) := T(i, j)ε

as formal term, it holds L(S(i, j))= s(i, j) which is a homogeneous element of
degree T(i, j);

4. conversely S(i, j)=S(s(i, j));
5. denoting B := {{i, j} : 1 ≤ i < j ≤ s, S(i, j) exists}, {s(i, j) : {i, j} ∈ B} is a

homogeneous basis of the syzygy module of M{G}.

Lemma 12 (Buchberger’s First Criterion 1979) With the present notation, under
the assumption that M is an ideal, it holds

T(i)T(j)= T(i, j) =⇒ NF(S(i, j),G)= 0.
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Lemma 13 (Buchberger’s Second Criterion 1979) For i, j,1 ≤ i < j ≤ s, eli =
elj =: ε, if there is k,1≤ k ≤ s: T(k) | T(i, j),—so that in particular elk = ε,—and
S(i, k) and S(k, j) have a quasi-Gröbner representation in terms of G, then also
S(i, j) has a quasi-Gröbner representation.

Definition 14 (Gebauer and Möller 1985, 1988) Denoting B := {{i, j} : 1 ≤ i <
j ≤ s, S(i, j) exists} and

B1 :=
{
{{i, j} : T(i)T(j)= T(i, j)} iff M is an ideal,

∅ otherwise

a subset GM ⊂B \B1 is called a Gebauer–Möller set for G iff the set {s(i, j) :
{i, j} ∈GM∪B1} is a homogeneous basis of the syzygy module of M{G}.

Theorem 15 (Buchberger) Let M⊂ Pm be a sub-module, and {g1, . . . , gs} =:G⊂
M, with T(gj ) := τj elj and wlog lc(gj ) = 1 for each j ; denoting B and B1 as
in Definition 14 and GM ⊂B \B1 any Gebauer–Möller set for G, the following
conditions are equivalent:

1. G is a Gröbner basis of M;
2. f ∈M ⇐⇒ it has a Gröbner representation in terms of G;
3. f ∈M ⇐⇒ it has a strong Gröbner representation in terms of G;
4. for each f ∈ Pm \ {0} and any normal form h := NF(f,G) of f w.r.t. G, f ∈

M ⇐⇒ h= 0;
5. for each f ∈ P \ {0}, f − Can(f,M) has a strong Gröbner representation in

terms of G;
6. for each i, j,1 ≤ i < j ≤ s, the S-polynomial S(i, j) (if it exists) has a quasi-

Gröbner representation in terms of G.
7. for each homogeneous basis B of the syzygy module of M{G} and for each ele-

ment φ ∈ B, there is a syzygy fφ ∈ ker(S) of G, such that L(fφ)= φ;
8. for each {i, j} ∈GM, the S-polynomial S(i, j) has a quasi-Gröbner representa-

tion in terms of G.
9. for each {i, j} ∈GM the S-polynomial S(i, j) has a Gröbner representation in

terms of G.

Corollary 16 With the present notation and under the equivalent conditions of The-
orem 15, the set

{fφ : φ ∈GM} ∪
{

c−1
j

T(i, j)
τj

ej − c−1
i

T(i, j)
τi

ei : (i, j) ∈B1

}

is a standard basis of ker(S).

Lemma 17 (Möller 1988) For each i, j, k : 1≤ i, j, k ≤ s, eli = elj = elk , it holds

lcm(τi, τj , τk)

lcm(τi, τk)
S(i, k)− lcm(τi, τj , τk)

lcm(τi, τj )
S(i, j)+ lcm(τi, τj , τk)

lcm(τk, τj )
S(k, j)= 0.



Gröbner Technology 23

Corollary 18 (Gebauer and Möller 1985, 1988) (Compare Lemma 13)
Under the assumption of Lemma 17 if the equivalent conditions T(i, j, k) =

T(i, j) and T(k) | T(i, j) are satisfied and both S(i, k) and S(k, j) have a quasi-
Gröbner representation in terms of G, then also S(i, j) has a quasi-Gröbner repre-
sentation.

Proposition 19 (Gebauer and Möller 1985, 1988) With the present notation, denote

GM∗ ⊂ {{i, j},1≤ i < j < s} a Gebauer–Möller set for {g1, . . . , gs−1}
B2 := {{i, j} ∈GM∗ : T(i, j, s)= T(i, j),T(i, s) �= T(i, j) �= T(j, s)}.
Let T := {T(j, s) : 1 ≤ j < s} and T′ ⊂ T be the set of the elements τ ∈ T such

that either

• exists τ ′ ∈ T : τ ′ | τ �= τ ′ or
• (in case M is an ideal) exists iτ : 1≤ iτ < s,T(iτ )T(s)= T(iτ , s)= τ ;

for each τ ∈ T \ T′ choose iτ ,1≤ iτ < s, such that T(iτ , s)= τ and define

B3(G) := {{iτ , s} : τ ∈ T \ T′}.
Then (GM∗ \B2)∪B3(G) is a Gebauer–Möller set for G

Thus, given a finite basis F := {g1, . . . , gs} ⊂ M, the Buchberger Algorithm
(Fig. 5) returns a Gröbner basis G of M by iteratively forcing condition (9) of The-
orem 15 and applying Proposition 19 in order to efficiently remove the so called
useless pairs, id est those which are known, for theoretical reasons (Lemmas 12
and 13, Corollary 18), having 0 as normal form.

Fig. 5 Buchberger’s algorithm (sketch)
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Figure 5 is a poor sketch of the standard implementation, whose description
can be found in Giovini et al. (1991) and which is mainly based on Traverso’s
analysis (Traverso and Donato 1989); the reader is suggested to consider the re-
cently proposed new implementation (Brickenstein 2005) of Buchberger’s algo-
rithm, Faugère’s algorithms F4 (Faugére 1999) and F5 (Faugère 2002) which
compute Gröbner basis by a strongly improved version of Macaulay’s algorithms
(Macaulay 1913, 1916) and Gerdt–Blinkov (Zarkov 1996; Gerdt and Blinkov 1998a,
1998b) algorithm which computes Gröbner basis via an adaptation of Janet’s notion
of complete bases and his corresponding algorithm to compute them (Janet 1920).

Since often a lex Gröbner basis computation is either infeasible or time-
consuming, it is efficient to deduce the required lex Gröbner basis from the feasible
degrevlex one via elementary linear algera (see Mora 2009).

Acknowledgements For their comments and suggestions, the author thanks all the authors of
this book and especially M. Sala.
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The FGLM Problem and Möller’s Algorithm
on Zero-dimensional Ideals

Teo Mora

Our notation on Gröbner bases (Buchberger 1965, 2006) is from Mora (2009).

1 Duality

Denote P∗ :=HomF(P,F) the F-vector space of all F-linear functionals � : P �→ F

and remark that f ∈ P, � ∈ P∗ =⇒ �(f )=∑τ∈T c(f, τ )�(τ ) and that P∗ is made
a P -module by defining � · f ∈ P∗, for each � ∈ P∗, f ∈ P , as

(� · f )(g) := �(fg) for each g ∈ P .

Two sets L= {�1, . . . , �r} ⊂ P∗ and q= {q1, . . . , qs} ⊂ P are said to be

• triangular if r = s, �i(qj )= 0, for each i < j and �j (qj ) �= 0, for each j ;
• biorthogonal if

r = s and �i(qj )=
{

1 if i = j
0 if i �= j.

For each F-vector subspace L⊂ P∗, let

P(L) := {g ∈ P : �(g)= 0,∀� ∈ L}
and, for each F-vector subspace P ⊂ P , let

L(P ) := {� ∈ P∗ : �(g)= 0,∀g ∈ P }.

Lemma 1 For each F-vector subspaces P,P1,P2 ⊂ P and each F-vector sub-
spaces L,L1,L2 ⊂ P∗ it holds

1. if P is an ideal then L(P ) is a P -module;
2. if L is a P -module then P(L) is an ideal;
3. P1 ⊂ P2 =⇒ L(P1)⊃ L(P2);

T. Mora
DIMA and DISI, Università di Genova, Genova, Italy
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4. L1 ⊂ L2 =⇒P(L1)⊃P(L2);
5. L(P1 ∩ P2)⊃ L(P1)+L(P2);
6. P(L1 ∩L2)⊃P(L1)+P(L2);
7. L(P1 + P2)= L(P1)∩L(P2);
8. P(L1 +L2)=P(L1)∩P(L2);
9. P =PL(P );

10. L⊂ LP(L);
11. dimF(L) <∞=⇒ L= LP(L).

Id est P and L define a duality between finite dimensional P -modules of functionals
and zero-dimensional ideals.

2 Möller’s Algorithm

Let L= {�1, . . . , �s} ⊂ P∗ be a (not necessarily linearly independent) set of F-linear
functionals such that L := SpanF(L) is a P -module, and let us denote, for each
f ∈ P , v(f,L) := (�1(f ), . . . , �s(f )) ∈ F

s . Since dimF(L) <∞ then I :=P(L) is
a zero-dimensional ideal and

#(N(I))= deg(I)= dimF(L)=: r ≤ s;
therefore, denoting

N(I)= {t1, . . . , tr}, 1= t1 < · · ·< ti < ti+1 < · · ·< tr,
we can consider the s × r matrix �i(tj ) whose columns are the vectors v(tj ,L) and
are linearly independent, since any relation

∑
j cj v(tj ,L)= 0 would imply

�i

(∑

j

cj tj

)

=
∑

j

cj �i(tj )= 0 and
∑

j

cj tj ∈P(L)= I

contradicting the definition of N(I).
The matrix �i(tj ) has rank r ≤ s and it is possible to extract an ordered subset

Λ := {λ1, . . . , λr} ⊂ L, satisfying SpanF{Λ} = SpanF{L} and to renumber the terms
in N(I) in such a way that each principal minor λi(tj ),1≤ i, j ≤ σ ≤ r is invertible.
Therefore, if we consider a set

q := {q1, . . . , qr} ⊂ P

which is triangular w.r.t. Λ, and (aij ) denotes the invertible matrix such that qi =∑r
j=1 aij tj ,∀i ≤ r, then for each σ ≤ r

• {q1, . . . , qσ } and {λ1, . . . , λσ } are triangular;
• SpanF{t1, . . . , tσ } = SpanF{q1, . . . , qσ };
• (aij ) is lower triangular.
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If we now further assume that

1. dimF(L)= r = s and
2. each subvectorspace Lσ := SpanF({�1, . . . , �σ }) is a P -module

so that each Iσ =P(Lσ ) is a zero-dimensional ideal and there is a chain

I1 ⊃ I2 ⊃ · · · ⊃ Is = I,

then we have, for each σ

• λσ = �σ ,
• N(Iσ )= {t1, . . . , tσ } is an order ideal,
• Iσ ⊕ SpanF{q1, . . . , qσ } = P,
• T(qσ )= tσ .

In conclusion we can prove the following theorems.

Theorem 2 (Möller) Let P := F[x1, . . . , xn], and < be any term-ordering. Let
L = {�1, . . . , �s} ⊂ P∗ be a set of F-linear functionals such that P(SpanF(L)) is
a zero-dimensional ideal.

Then there are

• an integer r ∈N,

• an order ideal N := {t1, . . . , tr} ⊂ T ,
• an ordered subset Λ := {λ1, . . . , λr} ⊂ L,

• an ordered set q := {q1, . . . , qr} ⊂ P,
such that, denoting L := SpanF(L) and I :=P(L), it holds:

1. r = deg(I)= dimF(L),

2. N(I)=N,
3. SpanF(Λ)= SpanF(L),

4. SpanF{t1, . . . , tσ } = SpanF{q1, . . . , qσ },∀σ ≤ r ,
5. {q1, . . . , qσ }, {λ1, . . . , λσ } are triangular, ∀σ ≤ r .

If, moreover, we have

• dimF(L)= r = s and
• Lσ := SpanF({�1, . . . , �σ }) is a P -module, ∀σ ,

then it further holds

6. λσ = �σ ,
7. N(Iσ )= {t1, . . . , tσ } is an order ideal,
8. Iσ ⊕ SpanF{q1, . . . , qσ } = P ,
9. T(qσ )= tσ
for each σ ≤ r , where Iσ =P(Lσ ).

Corollary 3 (Lagrange Interpolation Formula) Let P := F[x1, . . . , xn], < be any
term-ordering. L = {�1, . . . , �s} ⊂ P∗ be a set of linearly independent F-linear
functionals such that I :=P(SpanF(L)) is a 0-dim. ideal.
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There exists a set q= {q1, . . . , qs} ⊂ P such that

1. qi = Can(qi, I) ∈ SpanF(N(I));
2. L and q are triangular;
3. P/I∼= SpanF(q).

There exists a set q′ = {q ′1, . . . , q ′s} ⊂ P such that

1. q ′i = Can(q ′i , I) ∈ SpanF(N(I));
2. L and q′ are biorthogonal;
3. P/I∼= SpanF(q

′).

Let c1, . . . , cs ∈ F and let q :=∑i ciq
′
i ∈ P . Then, if {g1, . . . , gt } denotes a Gröb-

ner basis of I, one has

1. q is the unique polynomial in SpanF(N(I)) such that �i(q)= ci, for each i;
2. for each p ∈ P the following statements are equivalent:

(a) �i(p)= ci, for each i,
(b) q = Can(p, I),
(c) exist hj ∈ P such that

p = q +
t∑

j=1

hjgj ,T(hj )T(gj )≤ T(p− q).

Möller’s Algorithm (Möller and Buchberger 1982; Faugère et al. 1993; Mari-
nari and Möller 1993; Alonso and Marinari 2003) is a procedure which, given a
set of F-linear functionals L= {�1, . . . , �s} ⊂ P∗ such that P(SpanF(L)) is a zero-
dimensional ideal, allows to compute the data whose existence is stated in Theo-
rem 2. The stronger version of the algorithm (Fig. 1), which assumes that for each
σ ≤ s Lσ := SpanF({�1, . . . , �σ }) is a P -module, is performed by induction on σ
and gives the complete structure of each ideal Iσ =P(Lσ ).

Its correctness is based on the following

Lemma 4 Let P := F[x1, . . . , xn], < be any term-ordering; L= {�1, . . . , �r} ⊂ P∗
be a set of linearly independent F-linear functionals such that I :=P(SpanF(L)) is
a zero-dimensional ideal and let

N := {t1, . . . , tr} ⊂ T ,

q := {q1, . . . , qr} ⊂ P,

G := {g1, . . . , gt } ⊂ P,

be such that

• N is an order ideal,
• SpanF{t1, . . . , tr} = SpanF{q1, . . . , qr},
• {q1, . . . , qr} and {�1, . . . , �r} are triangular,
• �(g)= 0 for each g ∈G and each � ∈ L,
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Fig. 1 Möller’s Algorithm (1)

• N �T<(G)= T ,
• for each g ∈G,g − lc(g)T<(g) ∈ SpanF(N),

then G is a reduced Gröbner basis of P(SpanF(L)) w.r.t. <.

The assumption that for each σ ≤ s, Lσ := SpanF({�1, . . . , �σ }) can be satisfied
if for instance the 0-dimensional ideal I =P(SpanF(L)) is described in terms of a
Macaulay representation (cf. Alonso and Marinari 2006), but often1 it is not sat-
isfied, thus requiring an alternative version (Fig. 2) performed by induction on the
terms and not on the functionals and which returns also a basis of SpanF(L).

1Mainly in the solution of the FGLM Problem, where in any case the functionals are properly
reordered so they satisfy such property.
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Fig. 2 Möller’s Algorithm (2)

Remark 5 If, in the algorithm of Fig. 1, we define p in instruction 	 as p := xhf
instead of p := xht , we have two counterbalancing effects:

• the final output, while still a Gröbner basis, is not, in principle, reduced;
• since f ∈ Iσ , we have xhf ∈ Iσ and �i(p)= 0 for each i ≤ σ so that one can perform

the instruction ∗ for the single value i := σ .

Equivalently, defining, in the algorithm of Fig. 1, p in instruction 	 as

p := xhf− �σ (xhf)qσ =
(
xh − �σ (xhf)�σ (f)

−1)f (1)

we can simply remove the instruction ∗.
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Finally note that the algorithm discussed in Guerrini and Rimoldi (2009) is the
generalization to modules of the version of the algorithm of Fig. 1 where, in instruc-
tion 	, p is defined as in (1) and the instructions ∗ and • are removed.

3 The FGLM Problem

For its elimination property, the lex ordering is a good tool for solving [Gianni–
Kalkbrener Algorithm (Gianni 1989b; Kalkbrener 1989; Mora and Orsini 2009),
Lazard’s triangular sets (Lazard 1991, 1992; Aubry et al. 1999; Aubry and Moreno
Maza 1999)] or for applications [see the CRHT-like algorithms in BCH codes (Mora
and Orsini 2009)] but both practical experience and theoretical argument show that,
in general, lex is a very bad choice for applying the Buchberger (1965, 2006) Algo-
rithm. On the other side the degrevlex ordering is the optimal choice for applying it
(Bayer and Stillman 1987). This suggests (Faugère et al. 1993) the

Problem 6 (FGLM Problem) Given

• a term-ordering < on the polynomial ring P := F[x1, . . . , xn],
• a zero-dimensional ideal I⊂ P and
• its reduced Gröbner basis G≺ w.r.t. the term-ordering ≺,

to deduce the Gröbner basis G< of I w.r.t. <.

4 The FGLM Matrix

Let ≺ be a term-ordering and N≺(I)= {τ1, . . . , τs}; in order to apply Möller’s Algo-
rithm to the FGLM Problem, we just need to choose as functionals L := {�1, . . . , �s}
the coefficients of the canonical forms �i(·) := γ (·, τi,N≺(I)) so that we need to
compute

Rep(f,N≺(I)) := (γ (f, τ1,N≺(I)), . . . , γ (f, τs,N≺(I)))

for each f ∈ B := {xiτj ,1≤ i ≤ n,1≤ j ≤ s}.
The key idea of FGLM is to treat such elements by ≺-increasing ordering, so

that, when the loop is treating a term xhτl , we have previously managed the term τl
and thus previously computed Rep(τl,N≺(I)) which satisfies the relation

τl −
s∑

j=1

γ (τl, τj ,N≺(I))τj = τl −Can(τl, I,≺) ∈ I,

so that xhτl −∑s
j=1 γ (τl, τj ,N≺(I))xhτj ∈ I, and
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Can(xhτl, I,≺) =
s∑

j=1

γ (τl, τj ,N≺(I))Can(xhτj , I,≺)

=
s∑

i=1

(
s∑

j=1

γ (τl, τj ,N≺(I))γ (xhτj , τi,N≺(I))
)

τi .

For the ≺-minimal ω := xhτl ∈ B under consideration we have the following
three cases:

• if ω �∈ T≺(I) then ω ∈N≺(I), so that we add ω to N and {ωxh : 1≤ h≤ n} to B;
• if there is g ∈G≺ such that

T≺(g)= ω and g = ω−
∑

τ∈N≺(I)
γ (ω, τ,N≺(I))τ,

since the procedure iterates on ≺-increasing values of ω, we have

γ (ω, τ,N≺(I)) �= 0 =⇒ τ ≺ ω =⇒ τ ∈N;
• if there is H,1 ≤ H ≤ n, τ ∈ T≺(I) such that ω = xHτ ; thus τ ≺ ω has been

already treated so that we have obtained a representation

Can(τ, I,≺)=
s∑

j=1

γ (τ, τj ,N≺(I))τj ;

since in such representation we have

γ (τ, τj ,N≺(I)) �= 0 =⇒ τj ≺ τ =⇒ τj ∈N, xH τj ≺ xH τ = ω= xhτl
and τ = xhτι for τι := τl

xH
, we also have the representation

Can(xH τ, I,≺)=
s∑

j=1

γ (τ, τj ,N≺(I))Can(xH τj , I,≺)

and we can use the same formula as above to derive

γ (xhτl, τi,N≺(I)) = γ (xH τ, τi,N≺(I))

=
s∑

j=1

γ (τ, τj ,N≺(I))γ (xH τj , τi,N≺(I))

=
s∑

j=1

γ (xhτι, τj ,N≺(I))γ (xH τj , τi,N≺(I)).

These remarks can be formalized in the algorithm described in Fig. 3; Fig. 4
proposes the instantiation of Möller’s Algorithm (Fig. 2) to the setting of the FGLM
Problem.
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Fig. 3 The FGLM Matrix

5 Pointers

Remark (Compare Guerrini and Rimoldi 2009) that the Berlekamp–Massey Algo-
rithm can be interpreted as a sort of FGLM Algorithm on modules with functionals
depending on the state of the computation.2

2in fact, with Berlekamp’s (1968) notation we assume to have found the basis
{(σ (k),ω(k)), (τ (k), γ (k))} of the module

Mk :=
{
(a(z), b(z)) ∈ F2[z]2 : (1+ S)a(z)≡ b(z) mod zk+1

}
⊂ F2[z]2

and we consider the new functional λk+1 : F2[z]2 → F2 defined by

λk+1(a(z), b(z)) :=Δ(k)1

where Δ(k)1 ∈ F2 is the value for which

(1+ S)a(z)− b(z)≡Δ(k)1 z
k+1 mod zk+2.
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Fig. 4 The FGLM Algorithm

In other words, we can consider the functionals λk : F2[z]2 → F2,0 ≤ k ≤ 2t defined by
λk+1(a(z), b(z)) := ck where

∑

k

ckz
k = (1+ S)a(z)− b(z) ∈ F2[[z]]

and each moduleMk satisfies

Mk :=
{
(a(z), b(z)) ∈ F2[z]2 : λi(a(z), b(z))= 0,0≤ i ≤ k

}
⊂ F2[z]2.
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However, the earliest instance of the FGLM Algorithm goes back to 1936: in fact,
the Todd–Coxeter Algorithm (Todd and Coxeter 1936) can be easily read (Reinert
and Madlener 1998) as a re-formulation of FGLM-Matrix (Fig. 3) over groups
viewed as quotients of a non-commutative polynomial rings modulo a binomial
ideal.

The FGLM Problem was already solved essentially by means of the FGLM Al-
gorithm in Buchberger (1970, 1998).

Möller’s Algorithm was introduced for the first time in Möller and Buchberger
(1982): in that setting the considered functionals were point evaluations, the aim be-
ing multivariate interpolation; the same procedure was proposed in Gianni (1989a)
as a tool to efficiently perform a change of coordinate in a 0-dimensional ideal.

Faugère et al. (1993) introduced the FGLM Problem and solved it with the al-
gorithm presented in Fig. 4; the paper gives also a precise complexity analysis and
introduced both the FGLM Matrix and the efficient algorithm (Fig. 3) computing it.

Marinari and Möller (1993) reconsidered Möller’s and the FGLM Algorithms,
merging them and interpreting them in the setting of functionals; Alonso and Mari-
nari (2003) is a survey which discusses also Macaulay’s Algorithm to describe the
structure of the canonical module L(I).

The FGLM Algorithm proper solves the FGLM Problem only for a 0-dim. ideal;
Licciardi (1994) explains how to extend it to a multi-dimensional ideal; the corre-
sponding algorithm is however far from being fast. The same weakness is shared by
the Gröbner Walk Algorithm (Collard 1993).

The most efficient algorithm for the solution of the FGLM Problem, at least in the
multidimensional case, is the Hilbert Driven Algorithm (Traverso 1996): assuming
wlog that I is homogeneous, the knowledge of the basis G≺ allows to compute the
Hilbert function of I and thus, at each step, to predict how many new generators of
a fixed degree are needed in the basis G<; when such generators are produced, all
other S-pairs of same degree are discarded and the Hilbert function of the monomial
ideal (T<(g) : g ∈G<) is re-evaluated and the computation is performed in higher
degree.

Recently new ideas have been proposed which, in my opinion, promise to be
more efficient than the FGLM and the Hilbert Driven Algorithms (Basiri and
Faugère 2003; Sala and Zanoni 2004).

Möller’s Algorithm has been generalized to projective spaces (Abbott et al. 2000)
and to non-commutative setting (Borges-Trenard et al. 2000).

Borges-Quintana et al. (2006a, 2006b, 2007) use an improved version of the
FGLM algorithm for binomial ideals in order to correct binary linear codes (see
Borges-Quintana et al. 2009).

For this interpretation I am strongly indebted to Fitzpatrick and Jennings (1998), Gianni and Trager
(2002).
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6 Point Evaluation

6.1 Möller’s Algorithm

As we have already remarked the functionals considered in Möller and Buchberger
(1982) were evaluations at a set of points

X := {a1, . . . ,as} ⊂ F
n, ai := (ai1, . . . , ain),

id est �i(p) := p(ai ),1 ≤ i ≤ s, for each p ∈ P . Using the notation of Corollary 3
and denoting

v(X,p) := (p(a1), . . . , p(as)) ∈ F
s for each p ∈ P,

we can say that the aim of Möller and Buchberger (1982) was to produce the Newton
interpolators q and, by further linear algebra,—which of course requires the explicit
computation of the vectors vect(i)= v(X, qi)—the Lagrange interpolators q′; as a
byproduct the Algorithm returns also some irrelevant (for Möller and Buchberger
1982) data, namely the Gröbner basis G and the Gröbner escalier N of the defining
ideal I(X) :=P(L) of X, which, on the other side, are the data whose computation
is the aim of Faugère et al. (1993).

In merging the two algorithms, Marinari and Möller (1993) proposed four varia-
tions of the algorithm: Alg. 1 (p. 115) which iterates on the terms and Alg. 2 (p. 117)
which iterates on the functionals are essentially respectively Figs. 2 and 1; Alg. 1v
and Alg. 2v (p. 127) are an adaptation aimed to take, in the case of point evaluation,
explicitly advantage of the fact that each Iσ is an ideal so that

p ∈ Iσ =⇒ �i(xhp)= 0 for each i, h,1≤ h≤ n,1≤ i ≤ σ ;

in particular, Alg. 1v is obtained from Fig. 1 by defining p as p := xhf in the instruc-
tion 	, as in Remark 5, and substituting the instruction ∗ with p := Can(p, I)−aσhf.

6.2 Cerlienco–Mureddu Correspondence

In the case in which < is lex, Cerlienco and Mureddu (1990, 1995, 2002) proposed
an efficient combinatorial algorithm which to each ordered finite set of points X
associates an order ideal N(X) and a bijection, the Cerlienco–Mureddu Correspon-
dence, Φ(X) : X �→N(X) satisfying

Theorem 7 (Cerlienco and Mureddu 1990) N<(X)= N(I(X)) holds for each finite
set of points X⊂ F

n.



The FGLM Problem and Möller’s Algorithm on Zero-dimensional Ideals 39

Remark 8 (Cerlienco and Mureddu 1990) Once, the set N(I(X)) := {t1, . . . , ts} is
obtained via the Cerlienco–Mureddu Algorithm and Theorem 7, one deduces

G<(I(X)) := {τ1, . . . , τr} , τ1 < τ2 < · · ·< τr, τi :=Xd
(i)
1

1 · · ·Xd(i)nn
and can obtain the lex Gröbner basis of I(X) by interpolation: for each τj ∈G(I(X))
we have just to find the unknowns aij ∈ F which satisfy the linear equalities
v(X, τj )=∑s

i=1 aij v(X, ti ).

The Cerlienco–Mureddu Algorithm is iterative, in the sense that its input consists
of a set of points X, the related Cerlienco–Mureddu Correspondence Φ(X) : X �→
N(X) and a point b ∈ F

n \ X and its output is a single term τ ∈ T \N(X) such that,
setting Y := X∪ {b}, we have

N(Y) :=N(X)∪ {τ }, and Φ(Y)(a) :=
{
Φ(X)(a) a ∈ X,

τ a= b.

The Cerlienco–Mureddu Correspondence and Lazard’s Structural Theorem
(Lazard 1985) are merged in

Theorem 9 (Marinari 2006) With the present notation, there is a combinatorial
algorithm which, given X, returns sets of points Xmδi ⊂ F

m,∀m,δ, i : 1≤ i ≤ r,1≤
m≤ n,1≤ δ ≤ d(i)m , thus allowing to compute, by means of the Cerlienco–Mureddu
Algorithm the corresponding order ideal

Fmδi :=N(Xmδi)⊂ T ∩ k[X1, . . . ,Xm−1]
and, by interpolation, unique polynomials γmδi := Xm −∑ω∈Fmδi cωω such that,
setting fi :=∏m

∏
δ γmδi,{f1, . . . , fr} is a minimal (non reduced) Gröbner basis

of I(X).

An alternative combinatorial algorithm returning at least the set N(X) satisfying
Theorem 7, has been independently proposed in Gao et al. (1993) and Felszeghy et
al. (2006); apparently, unlike the Cerlienco–Mureddu Algorithm, it is not iterative.

A recent (Lederer 2008) Cerlienco–Mureddu-like proposal, very similar to those
of Gao et al. (1993) and Felszeghy et al. (2006), while still not iterative, suggests
a clever interpolation formula which successfully strengthens the weak proposal of
Remark 8.

6.3 Farr–Gao Analysis

In Farr and Gao (2000) the authors specialize the Fitzpatrick Algorithm (Guerrini
and Rimoldi 2009) in the case of ideal and for point evaluation as functionals, thus
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essentially returning (see Remark 5) Fig. 1, and propose to improve it by computing
reduced Gröbner basis at any iteration, thus giving a nearly verbatim version of
Alg. 2v in Marinari and Möller (1993); next they compare on a series of random
points the performance (the algorithms were implemented in MAGMA version 2.8)
of Fitzpatrick’s Algorithm a.k.a. Alg. 2 in Marinari and Möller (1993) (Fig. 1),
their version of Alg. 2v (Marinari and Möller 1993) and “the algorithm of Marinari
and Möller (1993)”—from the context it is clear that among the four algorithms of
Marinari and Möller (1993), they are speaking of the one reported in Abbott et al.
(2000) id est Alg. 1 (Fig. 2).

Notwithstanding that the chosen tests3 are strongly biased, they are illuminating
and give a good perspective both on the performance of Figs. 2 and 1 and on the
structure of the Gröbner escalier N(X) of the defining ideal of a set X of simple
points.

Remark 10

1. As I said, the experiment is biased against Fig. 2, which according to the orig-
inal Möller’s proposal, explicitly computes all vectors vect(i) thus requiring s2

evaluation of a polynomial at a functional; remark that in the worst case Fig. 1
and Alg. 2v (Marinari and Möller 1993) require at most half of such evaluation:
remark that for the drl case and n≥ 31 in fact the timing of Fig. 2 is roughly the
double of the one of Fig. 1; the worst behaviour for lex will be explained below.

2. For lex, Cerlienco–Mureddu Correspondence implies

• N(I) = {Xi1,0 ≤ i < #X} if and only if for i, j,1 ≤ i, j ≤ s, i �= j =⇒ ai1 �=
aj1 and

• Xh ∈N(I) iff there are i, j,1≤ i, j ≤ s for which ail = ajl for each l < h.

Table 1 Average running times for 250 random points from (Fq )r (100 experiments)

q r Figure 2 Alg. 2v (Marinari and
Möller 1993)

Figure 1

drl lex drl lex drl lex

2 10 11.56 4.37 9.38 3.18 13.08 24.45

2 15 39.85 9.28 42.49 19.18 41.32 61.37

2 20 110.08 13.72 152.06 44.18 106.99 93.52

11 3 9.60 5.21 4.25 1.08 3.83 2.40

31 3 11.20 5.64 5.10 0.988 4.57 1.44

101 3 11.57 5.53 5.31 0.747 4.75 0.833

1009 3 12.51 6.41 5.70 0.477 5.03 0.464

3Compare Table 1 (Table 1 of Farr and Gao 2000); the other tests (Table 2–3) are similar; Table 4–6
report the application of the algorithm to the same points after the reordering induced by Gao et al.
(1993); Table 4 of Farr and Gao (2000) is reported here in Table 2.
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Table 2 Average running times for 250 random points (sorted) from (Fq)r (100 experiments)

q r Figure 2 Alg. 2v (Marinari and
Möller 1993)

Figure 1

drl lex drl lex drl lex

2 10 7.78 2.72 6.60 1.84 7.17 2.22

2 15 32.71 6.24 35.65 9.17 31.58 7.14

2 20 98.97 9.26 139.66 24.05 92.93 11.28

11 3 8.11 2.80 3.96 0.944 3.43 1.01

31 3 11.15 3.75 5.10 0.932 4.47 0.950

101 3 11.63 4.18 5.31 0.721 4.71 0.704

1009 3 12.52 6.11 5.70 0.469 5.02 0.462

Thus, for lex and random points, Fig. 1 and Alg. 2v (Marinari and Möller 1993)
need to evaluate in general one polynomial for each functional; thus in this exper-
iment they have to perform s evaluations against s2; in such an handicap setting,
Fig. 2 performs quite fairly.

3. The better behaviour of their algorithm (Alg. 2v Marinari and Möller 1993) w.r.t.
Fitzpatrick’s (Fig. 1) is correctly justified by Farr and Gao remarking that Fitz-
patrick’s Algorithm computes polynomials whose length (i.e. the size of their
support) may grow exponentially in the number of variables; as a consequence,
most of the computing time in the Fitzpatrick Algorithm is taken up with dealing
with dense polynomials, and most of the time in the Farr–Gao algorithm involves
the reduction step; this is true but does not hold for the algorithms presented here
and in Marinari and Möller (1993) where dense polynomials are never used since
all polynomials inG, being a combination of polynomials in q are always canon-
ical forms. The advantage of the algorithms proposed here against Fitzpatrick’s
and the improvement suggested in Farr and Gao (2000) is that, since the New-
ton interpolators are necessarily stored, they can be next efficiently applied to
maintain the data as combination of elements in the Gröbner escalier N.

This can be easily seen in the data for q = 2 where Fig. 2 competes fairly well
with the other algorithms notwithstanding its handicap provided that r is small
relative for the number n of points. If r is larger, then the advantage swings to
Fig. 2 (Farr and Gao 2000). This suggests that Fig. 1 performs better than the
data reported here, since the criticisms moved by Farr and Gao (2000) to their
version of Fitzpatrick’s Algorithm does not apply to Fig. 1.

4. Other indirect consequences of the structural properties pointed by Cerlienco–
Mureddu Correspondence are of course also the behaviour of the algorithms in
relation with the ratio r/n as well as the other remark of Farr and Gao (2000):
The reduced Gröbner bases for the defining ideal of a random set of 500 points
from (F2)

10 under lex order usually contains around 100 polynomials, while the
border basis typically contains over 200!

Which means, that the algorithm of Farr and Gao (2000) has really need to
compute canonical forms, while Möller gets them for free.



42 T. Mora

5. A direct consequence of Cerlienco–Mureddu Correspondence is also the other
behaviour pointed by Farr and Gao (2000), namely that if the field size is al-
lowed to grow, then the running time for Fig. 1 and Alg. 2v (Marinari and Möller
1993) under lex order actually decreases. The reason is that the Gröbner basis
polynomials actually become simpler.

6. In connection with Cerlienco–Mureddu Correspondence remark that for de-
grevlex, if ni < s < ni+1 for s random points there is high probability of having
{τ ∈ T ,deg(τ ) ≤ i} ⊂ N ⊂ {τ ∈ T ,deg(τ ) ≤ i + 1} thus allowing to properly
adapt the remarks given for lex also for degrevlex.

7. Quite interesting are also the data of Table 2:
(a) For r = 3, q > s and both ordering, the data of the two tables are really

similar, due to the fact that, with good probability, the Gröbner escalier is
nearly the same for each subset of s′ < s points of X.

(b) For q = 2 and lex the significant speed up in Fig. 1 and Alg. 2v (Marinari
and Möller 1993) is an indirect consequence of the point ordering given by
Gao et al. (1993), Felszeghy et al. (2006) which gives a better chance of
maximizing the value of t in instruction ◦ thus minimizing the computation
of instruction �.4

Remark 11 It is probably necessary to justify why Faugère et al. (1993) defined p
in instruction 	 of Fig. 1 as p := xhf, thus being followed by Fitzpatrick and Farr
and Gao (2000), instead of p := xht : the point is that, since the algorithms return a
Gröbner description of p in terms of q, if it is applied to elements of q instead of
N(I) one freely obtains the corresponding sparser Gröbner description.

Also, for points evaluations, even multiple, computing �(xhf) does not require
explicit evaluation but can be immediately deduced, at cost of 1 product and sum,
from that of �(f) via Leibniz formula (compare Möller 1993).

6.4 Points with Multiplicities

Points with multiplicity can be described in terms of functionals by means of
Macaulay representations introduced by Macaulay (1913, 1916) and studied in
Möller (1993), Marinari and Möller (1996), Marinari (2003), Marinari (2006) which
describe their properties and algorithms to deal with them; a recent survey is Alonso

4Preliminary hand computations suggest that Gao et al. (1993), Felszeghy et al. (2006) do not
obtain such advantage on Cerlienco–Mureddu Correspondence in the context of Theorem 9.

Oddly, Farr and Gao (2000) does not compare, in the lex case, the versions of Möller’s Algo-
rithm with the interpolation scheme suggested by Remark 8.

The theoretical arguments of Marinari (2003) seem to suggest that Cerlienco–Mureddu in-
terpolation scheme is a potential competitor of Möller’s Algorithm, probably the more so if we
interpolate with the procedure sketched in Lederer (2008).
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and Marinari (2006). For projective points compare Cioffi (1999), Cioffi and Orec-
chia (2001), Abbott et al. (2000). For characteristic 0, efficient techniques for solv-
ing zero-dimensional ideal via the FGLM Matrix are discussed in Auzinger and
Stetter (1988), Möller and Stetter (1995), Mourrain (2005).
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An Introduction to Linear and Cyclic Codes

Daniel Augot, Emanuele Betti and
Emmanuela Orsini

Abstract Our purpose is to recall some basic aspects about linear and cyclic codes.
We first briefly describe the role of error-correcting codes in communication. To do
this we introduce, with examples, the concept of linear codes and their parameters,
in particular the Hamming distance.

A fundamental subclass of linear codes is given by cyclic codes, that enjoy a
very interesting algebraic structure. In fact, cyclic codes can be viewed as ideals in
a residue classes ring of univariate polynomials. BCH codes are the most studied
family of cyclic codes, for which some efficient decoding algorithms are known, as
the method of Sugiyama.

1 An Overview on Error Correcting Codes

We give a brief description of a communication scheme, following the classical pa-
per by Shannon (1948). Suppose that an information source A wants to say some-
thing to a destination B . In our scheme the information is sent through a channel.
If, for example, A and B are mobile phones, then the channel is the space where
electromagnetic waves propagate. The real experience suggests to consider the case
in which some interference (noise) is present in the channel where the information
passes through.

The basic idea of coding theory consists of adding some kind of redundancy to
the message m that A wants to send to B . Following Fig. 1, A hands the message
m to a device called a transmitter that uses a coding procedure to obtain a longer
message m′ that contains redundancy. The transmitter sends m′ through the channel
to another device called a receiver. Because of the noise in the channel, it may
be that the message m′′ obtained after the transmission is different from m′. If the
occurred errors are not too many (in a sense that will be clear later), the receiver is
able to recover the original message m, using a decoding procedure.
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Fig. 1 A communication schema

To be more precise, the coding procedure is an injective map from the space
of the admissible messages to a larger space. The code is the image of this map.
A common assumption is that this map is a linear function between vector spaces.
In the next section we will describe some basic concepts about coding theory using
this restriction. The material of this tutorial can be found in Berlekamp (1968),
Blahut (1983), Lin (1970), MacWilliams and Sloane (1977), Peterson and Weldon
(1972), Pless (1982), Pless et al. (1998) and van Lint (1999).

2 Linear Codes

2.1 Basic Definitions

Linear codes are widely studied because of their algebraic structure, which makes
them easier to describe than non-linear codes.
Let Fq =GF(q) be the finite field with q elements and (Fq)n be the linear space of
all n-tuples over Fq (its elements are row vectors).

Definition 1 Let k,n ∈ N such that 1≤ k ≤ n. A linear code C is a k-dimensional
vector subspace of (Fq)n. We say that C is a linear code over Fq with length n and
dimension k. An element of C is called a word of C.

From now on we shorten “linear code on Fq with length n and dimension k” to
“[n, k]q code”.

Denoting by “·” the usual scalar product, given a vector subspace S of (Fq)n,
we can consider the dual space S⊥.
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Definition 2 IfC is an [n, k]q code, its dual codeC⊥ is the set of vectors orthogonal
to all words of C:

C⊥ = {c′ | c′ · c= 0,∀c ∈ C}.
Thus C⊥ is an [n,n− k]q code.

Definition 3 If C is an [n, k]q code, then any matrix G whose rows form a basis
for C as a k-dimensional vector space is called a generator matrix for C. If G has
the form G= [Ik |A], where Ik is the k× k identity matrix, G is called a generator
matrix in standard form.

Thanks to this algebraic description, linear codes allow very easy encoding.
Given a generator matrix G, the encoding procedure of a message m ∈ (Fq)k into
the word c ∈ (Fq)n is just the matrix multiplication mG = c. When the generator
matrix is in standard form [Ik | A], m is encoded in mG = (m,mA). In this case
the message m is formed by the first k components of the associated word. Such an
encoding is called systematic.

We conclude this section with another simple characterization of linear codes.

Definition 4 A parity-check matrix for an [n, k]q code C is a generator matrix H ∈
F
(n−k)×n
q for C⊥.

It is easy to see that C may be expressed as the null space of a parity-check
matrix H :

∀x ∈ (Fq)n, HxT = 0 ⇔ x ∈ C.

2.2 Hamming Distance

To motivate the next definitions we describe what could happen during a transmis-
sion process.

Example 1 We suppose that the space of messages is (F2)
2:

(0,0)= v1, (0,1)= v2, (1,0)= v3, (1,1)= v4.

Let C be the [6,2]2 code generated by

G=
(

0 0 0 1 1 1
1 1 1 0 0 0

)

.

Then:

C = {(0,0,0,0,0,0), (1,1,1,1,1,1), (0,0,0,1,1,1), (1,1,1,0,0,0)} .
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To send v2 = (0,1) we transmit the word v2G = (0,0,0,1,1,1); typically, during
the transmission the message gets distorted by noise and the receiver has to per-
form some operations to obtain the transmitted word. Let w be the received vector.
Several different situations could come up:

1. w = (0,0,0,1,1,1), then w ∈ C, so the receiver deduces correctly that no errors
have occurred and no correction is needed. It concludes that the message was v2.

2. w = (0,0,0,1,0,1) �∈ C, then the receiver concludes that some errors have oc-
curred. In this case it may “correct” and “detect” the error as follows. It may
suppose that the word transmitted was (0,0,0,1,1,1), since that is the word that
differs in the least number of positions from the received word w.

3. w = (0,0,0,1,0,0) �∈ C. The receiver correctly reaches the conclusion that there
were some errors during the transmission, but if it tries to correct as in the pre-
vious case, it concludes that the word “nearest” to w is (0,0,0,0,0,0). In this
case it corrects in a wrong way.

4. w = (0,0,0,0,0,0) ∈ C. The receiver deduces incorrectly that no errors have
occurred.

From the previous example we understand that, when the decoder gets a received
vector which is not a word, it has to find the word in C which has been sent by
the encoder, i.e., among all words, it has to find the one which has the “highest
probability” of being sent. To do this it needs a priori knowledge on the channel,
more precisely it needs to know how the noise can modify the transmitted word.

Definition 5 A q-ary symmetric channel (SC for short) is a channel with the fol-
lowing properties:

(a) the component of a transmitted word (an element of Fq that here we name
generally “symbol”) can be changed by the noise only to another element of Fq ;

(b) the probability that a symbol becomes another one is the same for all pairs of
symbols;

(c) the probability that a symbol changes during the transmission does not depend
on its position;

(d) if the i-th component is changed, then this fact does not affect the probability
of change for the j -th components, even if j is close to i.

To these channel properties it is usually added a source property:

− all words are equally likely to be transmitted.

The q-ary SC is a model that rarely can describe real channels. For example the
assumption (d) is not reasonable in practice: if a symbol is corrupted during the
transmission there is a high probability that some errors happened in the neighbor-
hood. Despite this fact, the classical approach accepts the assumptions of the SC,
since it permits a simpler construction of the theory. The ways of getting around
the troubles generated by this “false” assumption in practice are different case by
case and these are not investigated here. From now we will assume that the channel
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is a SC, and that the probability that a symbol changes to another is less than the
probability that it is uncorrupted by noise.

In our assumptions, by Example 1, it is quite evident that a simple criterion to
construct “good” codes would be to try to separate as much as possible the words of
code inside (Fq)n.

Definition 6 The (Hamming) distance dH (u, v) between two vectors u,v ∈ (Fq)n
is the number of coordinates in which u and v differ.

Definition 7 The (Hamming) weight of a vector u ∈ (Fq)n is the number w(u) of
its nonzero coordinates, i.e. w(u)= dH (u,0).

Definition 8 The distance of a code C is the smallest distance between distinct
words:

dH (C)=min{dH (ci, cj ) | ci, cj ∈ C,ci �= cj }.

Remark 1 If C is a linear code, the distance dH (C) is the same as the minimum
weight of nonzero words:

dH (C)=min{w(c) | c ∈ C, c �= 0}.

If we know the distance d = dH (C) of an [n, k]q code, then we can refer to the
code as an [n, k, d]q code.

Definition 9 Let C be an [n, k]q code and let Ai be the number of words of C of
weight i. The sequence {Ai}ni=1 is called the weight distribution of C.

Note that in a linear code A0 = 1 and mini>0{i |Ai �= 0} = dH (C).
The distance of a codeC is important to determine the error correction capability

of C (that is, the numbers of errors that the code can correct) and its error detection
capability (that is, the numbers of errors that the code can detect). In fact, we can see
the noise as a perturbation that moves a word into some other vector. If the distance
between the words is great, there is a low probability that the noise can move a
codeword near to another one. To be more precise, we have:

Theorem 1 Let C an [n, k, d]q code, then

(a) C has detection capability �= d − 1
(b) C has correction capability t = # d−1

2 $.

From now on t denotes the correction capability of the code.

Example 2 The code in the Example 1 has distance d = 3. Its detection capability
is �= 2 and its correction capability is t = 1.
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The following proposition gives an upper bound on the distance of a code in
terms of the length and the dimension.

Proposition 1 (Singleton Bound) For an [n, k, d]q code

d ≤ n− k + 1.

A code achieving this bound is called maximum distance separable (MDS).

2.3 Decoding Linear Codes

In the previous section we have seen that the essence of decoding is to guess which
word was sent when a vector y is received. This means that y will be decoded as
one of the words which is most “likely” to have been sent.

Proposition 2 If the transmission uses a q-ary SC and the probability that a symbol
changes into another one is less than the probability that a symbol is uncorrupted
by noise, the word sent with the highest probability is the word “nearest” (in the
sense of the Hamming distance) to the received vector. If no more than t (the error
correction capability) errors have occurred, this word is unique.

Proof See Hoffman (1991). �

In Example 1 we have informally described this process. We now formally de-
scribe the decoding procedure in the linear case. It should be noted that for the
remainder C denotes an [n, k]q code.

Let c, e, y ∈ (Fq)n be the transmitted word, the error, and the received vector,
respectively. Then:

c+ e= y.
Given y, our goal is to determine an e of minimal weight such that y − e is in C.
Of course, this vector might not be unique, since there may be more than one word
nearest to y, but if the weight of e is less than t , then it is unique. By applying the
parity-check matrix H to y, we get:

HyT =H(c+ e)T =HeT = s.

Definition 10 The elements in (Fq)n−k , s = HyT , are called syndromes. We say
that s is the syndrome corresponding to y.

Note that the syndrome depends only on the occurred error e and not on the
particular transmitted word.

Given a in (Fq)n, we denote the coset {a + c | c ∈ C} by a + C. (Fq)n can be
partitioned into qn−k cosets of size qk . Two vectors a, b ∈ (Fq)n belong to the same
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coset if and only if a − b ∈ C. The following fact is just a reformulation of our
arguments.

Theorem 2 Let C be an [n, k, d]q code. Two vectors a, b ∈ (Fq)n are in the same
coset if and only if they have the same syndrome.

Definition 11 Let C be an [n, k, d]q code. For any coset a + C and any vector
v ∈ a +C, we say that v is a coset leader if it is an element of minimum weight in
the coset.

Definition 12 If s is a syndrome corresponding to an error of weight w(s)≤ t , then
we say that s is a correctable syndrome.

Theorem 3 (Correctable syndrome) If no more than t errors occurred (i.e.
w(e)≤ t), then there exists only one error e corresponding to the correctable syn-
drome s =HeT and e is the unique coset leader of e+C.

We are ready to describe the decoding algorithm. Let y be a received vector.
We want to find an error vector e of smallest weight such that y − e ∈ C. This is
equivalent to finding a vector e of smallest weight in the coset containing y.

Decoding linear codes:

1. after receiving a vector y ∈ (Fq)n, compute the syndrome s =HyT ;

2. find z, a coset leader of the corresponding coset;

3. the decoded word is c= y − z;

4. recover the message m from c (in case of systematic encoding m consists of first
k components of c).

Remark 2 (Complexity of decoding linear codes) The procedure described above
requires some preliminary operations to construct a matrix (named standard array)
that contains the 2n vectors of (Fq)n ordered by coset. Then the complexity of the
decoding procedure is exponential in terms of memory occupancy.

In Barg et al. (1999), Berlekamp et al. (1978) and (Vardy 1997) it is shown that
the general decoding problem for linear codes and the general problem of finding
the distance of a linear code are both NP-complete. This suggests that no algorithm
exists that decodes linear codes in a polynomial time.
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3 Some Bounds on Codes

We have seen that the distance d is an important parameter for a code. A funda-
mental problem in coding theory is, given the length and the number of codewords
(dimension if the code is linear), to determine a code with largest distance, or equiv-
alently, to find the largest code of a given length and distance.

The following definition is useful to state some bounds on codes more clearly.

Definition 13 Let n,d be positive integers with d ≤ n. Then the number Aq(n, d)
denotes the maximum number of codewords in a code over Fq of length n and
distance d . This maximum, when restricted to linear code, is denoted by Bq(n, d).

Clearly it can be Bq(n, d) < Aq(n, d). Then, given n and d , if we look at the
largest possible code, we have sometimes to use nonlinear codes.

We recall some classical bounds that restrict the existence of codes with given
parameters. For any x ∈ (Fq)n and any positive number r , let Br(x) be the sphere
of radius r centered in x, with respect to the Hamming distance. Note that the size
of Br(x) is independent of x and depends only on r, q and n. Let Vq(n, r) denote
the number of elements in Br(x) for any x ∈ (Fq)n. For any y ∈ Br(x), there are
(q − 1) possible values for each of the r positions in which x and y differ. So we
see that

Vq(n, r)=
r∑

i=0

(
n

i

)

(q − 1)i .

From the fact that the spheres of radius t = # d−1
2 $ about codewords are pairwise

disjoint, the sphere packing bound (or Hamming bound) immediately follows:

Aq(n, d)≤ qn

Vq(n, t)
.

We rewrite the Singleton bound (see Proposition 1)

Aq(n, d)≤ qn+1−d .

Abbreviating γ = q−1
q

and assuming γ n < d there holds the Plotkin bound, which
says that

Aq(n, d)≤ d

d − γ n.

The Elias bound, as an extensive refinement of the Plotkin bound, states that for
every t ∈R with t < γ n and t2 − 2tγ n+ dγ n > 0 there holds

Aq(n, d)≤ γ nd

t2 − 2tγ n+ dγ n ·
qn

Vq(n, t)
.
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We conclude with a lower bound, the Gilbert–Varshamov bound

Aq(n, d)≥ Bq(n, d)≥ qn

Vq(n, d − 1)
.

4 Cyclic Codes

4.1 An Algebraic Correspondence

Definition 14 An [n, k, d]q linear code C is cyclic if the cyclic shift of a word is
also a word, i.e.

(c0, . . . , cn−1) ∈ C =⇒ (cn−1, c0, . . . , cn−2) ∈ C.

To describe algebraic properties of cyclic codes, we need to introduce a new
structure. We consider the univariate polynomial ring Fq [x] and the ideal I =
〈xn − 1〉. We denote by R the ring Fq [x]/I . We construct a bijective correspon-
dence between the vectors of (Fq)n and the residue classes of polynomials in R:

v= (v0, . . . , vn−1)←→ v0 + v1x + · · · + vn−1x
n−1.

We can view linear codes as subsets of the ring R, thanks to the correspondence
above. The following theorem points out the algebraic structure of cyclic codes.

Theorem 4 Let C be an [n, k, d]q code, then C is cyclic if and only if C is an ideal
of R.

Proof Multiplying by x modulo xn − 1 corresponds to a cyclic shift:

(c0, c1, . . . , cn−1)→ (cn−1, c0, . . . , cn−2)

x(c0 + c1x + · · · + cn−1x
n−1)= cn−1 + c0x + · · · + cn−2x

n−2. �

Since R is a principal ideal ring, if C is not trivial there exists a unique monic
polynomial g that generates C. We call g the generator polynomial of C. Note
that g divides xn − 1 in Fq [x]. If the dimension of the code C is k, the generator
polynomial has degree n− k.

A generator matrix can easily be given by using the coefficients of the generator
polynomial g =∑n−k

i=0 gix
i :

G=

⎛

⎜
⎜
⎜
⎝

g

xg
...

xkg

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

g0 g1 . . . gn−k 0 . . . 0
0 g0 . . . gn−k−1 gn−k 0 . . .
...

. . .
...

. . .
...

0 . . . 0 g0 g1 . . . gn−k

⎞

⎟
⎟
⎟
⎠
.
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Moreover, a polynomial f in R belongs to the code C if and only if there exists
q in R such that qg = f .

Since the generator polynomial is a divisor of xn − 1 and is unique, the parity-
check polynomial of C is well defined as the polynomial h(x) in R such that h(x)=
(xn − 1)/g(x). The parity-check polynomial provides a simple way to check if an
f (x) in R belongs to C, since

f (x) ∈ C ⇔ f (x)= q(x)g(x) ⇔ f (x)h(x)= q(x)(g(x)h(x))= 0 in R.

Proposition 3 Let h(x), g(x) be, respectively, the parity-check and the generator
polynomial of the cyclic code C. The dual code C⊥ is cyclic with generator polyno-
mial

g⊥(x)= xdeg(h)h(x−1).

Proof The generator matrix obtained by g⊥(x) has the form:

H =

⎛

⎜
⎜
⎜
⎝

hk . . . h1 h0
hk . . . h1 h0

...

hk . . . h1 h0

⎞

⎟
⎟
⎟
⎠
.

Given c in R, the i-th component of H · cT is xih(x)c(x), which vanishes if and
only if c ∈ C. �

4.2 Encoding and Decoding with Cyclic Codes

The properties of cyclic codes suggest a very simple method to encode a message.
Let C be an [n, k, d]q cyclic code with generator polynomial g, then C is capable
of encoding q-ary messages of length k and requires n− k redundancy symbols.

Let m = (m0, . . . ,mk−1) be a message to encode, we consider its polynomial
representation m(x) in R. To obtain an associated word it is sufficient to multiply
m(x) by the generator polynomial g(x):

c(x)=m(x)g(x) ∈ C.

Even if this way to encode is the simpler, another procedure is used to obtain a
systematic encoding, which again exploits some properties of the polynomial ring.

Given the message m(x), multiply it by xn−k and divide the result by g, obtain-
ing:

m(x)xn−k = q(x)g(x)+ r(x)
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where deg(r(x)) < deg(g(x)) = n − k. So the remainder can be thought of as an
(n − k)-vector. Joining the k-vector m with the (n − k)-vector r we obtain an n-
vector c, which is the encoded word, i.e.:

c(x)=m(x)xn−k + r(x).
This way, in absence of errors the decoding is immediate: the message is formed by
the last k components of the received word.

On the other hand, the receiver does not know if no errors have occurred during
transmission, but it is sufficient to check if the remainder of the division of the
received polynomial by g is equal to zero to state that it is most likely that no errors
have occurred.

It is not hard to prove that if an error e occurred during the transmission, the
remainder of the division by g in the procedure below gives exactly the syndrome
associated to e, and then we can find e in the same way as described for linear codes.

Other decoding procedures exist for particular cyclic codes, such as the BCH
codes (Bose and Ray-Chaudhuri 1960), which work faster than the procedure above.
(See Sect. 7.)

4.3 Zeros of Cyclic Codes

Cyclic codes of length n over Fq are generated by divisors of xn − 1. Let

xn − 1=
r∏

j=1

fj , fj irreducible over Fq .

Then to any cyclic code of length n over Fq there corresponds a subset of {fj }rj=1.

A very interesting case 1 is when GCD(n, q)= 1. Let F= Fqm be the splitting field
of xn − 1 over Fq and let α be a primitive n-th root of unity over Fq . We have:

xn − 1=
n−1∏

i=0

(x − αi).

In this case the generator polynomial of C has powers of α as roots. We recall that,
given g ∈ Fq [x], if g(αi)= 0 then g(αqi)= 0.

Definition 15 Let C be an [n, k, d]q cyclic code with generator polynomial gC ,
with GCD(n, q)= 1. The set:

SC,α = SC = {i1, . . . , in−k | gC(αij )= 0, j = 1, . . . , n− k}

1In Castagnoli et al. (1991) is shown that if there exists a family of “good” codes {Cm}m over Fq

of lengths m with GCD(m,q) �= 1, there exists a family {C′n}n with GCD(n, q)= 1 with the same
properties.
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is called the complete defining set of C.

We can collect the integers modulo n into q-cyclotomic classes Ci :

{0, . . . , n− 1} =
⋃
Ci, Ci = {i, qi, . . . , qr i},

where r is the smallest positive integer such that i ≡ iqr (mod n). So the complete
defining set of a cyclic code is collection of q-cyclotomic classes.

From now on we fix a primitive n-th root of unity α and we write SC,α = SC .
A cyclic code is defined by its complete defining set, since

C = {c ∈R | c(αi)= 0, i ∈ SC} ⇐⇒ gC =
∏

i∈SC
(x − αi).

By this fact it follows that

H =

⎛

⎜
⎜
⎜
⎝

1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
. . .

...

1 αin−k α2in−k · · · α(n−1)in−k

⎞

⎟
⎟
⎟
⎠

is a parity-check (defined over Fqm ) matrix for C, since

HcT =

⎛

⎜
⎜
⎜
⎝

c(αi1)

c(αi2)
...

c(αin−k )

⎞

⎟
⎟
⎟
⎠
= 0 ⇔ c ∈ C.

Remark 3 H maybe defined over Fqm , but C is its null space over Fq .

Remark 4 We note that, as SC is partitioned into cyclotomic classes, there are some
subsets S′C of SC any of them sufficient to specify the code unambiguously and we
call any such S′C a defining set.

5 Some Examples of Cyclic Codes

5.1 Hamming and Simplex Codes

Definition 16 A code which attains the Hamming bound (see Sect. 3) is called a
perfect code.

In other words, a code is said to be perfect if for every possible vector v in (Fq)n

there is a unique word c ∈ C such that dH (v, c)≤ t .
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Let C be an [n,n−r, d]q code with parity-check matrixH ∈ (Fq)r×n. We denote
by {Hi}ni=1 the set of columns ofH . We observe that if two columnsHi,Hj belongs
to the same line in (Fq)r (i.e. Hj = λHi ), then the vector

c= (0, . . . ,0 ,−λ, 0, . . . ,0 ,1, 0, . . . ,0)
i j

belongs to C, since HcT = 0. Then d(C) ≤ 2. On other hand, if we construct a
parity-check matrix H such that the columns Hi belong to different lines, the cor-
responding linear code has distance at least 3.

Definition 17 (Hamming 1950) An Hamming Code is a linear code for which the
set of columns of H ∈ (Fq)n×r contains all nonzero vectors in (Fq)r .

By the definition above, given two columns Hi,Hj of H , there exists a third
column Hk of H , and λ ∈ Fq such that Hk = λ(Hi +Hj). This fact implies that

c= (0, . . . ,0 ,−λ, 0, . . . ,0 ,−λ, 0, . . . ,0 ,1, 0, . . . ,0)
i j k

is a word, and hence the minimum distance of a Hamming code is 3. In the vector
space (Fq)r there are n = qr−1

q−1 distinct lines, each with q − 1 elements different
from zero. Hence:

Proposition 4 An [n, k, d]q code is a Hamming code, if and only if n= qr−1
q−1 , k =

n− r , d = 3, for some r ∈N
∗.

On the other hand, a direct computation shows that:

Proposition 5 The Hamming codes are perfect codes.

Example 3 Let C be the [7,4,3]2 code with parity-check matrix:

H =
⎛

⎝
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞

⎠ .

Then C is an [7,4,3] Hamming code. Note that the columns of H are exactly the
non-zero vectors of (F2)

3.

The following theorem states that Hamming codes are cyclic.

Theorem 5 Let n= (qr − 1)/(q − 1). If GCD(n, q − 1)= 1, then the cyclic code
over Fq of length n with defining set {1} is a [n,n− r,3] Hamming code.



60 D. Augot et al.

Proof By Proposition 4 it is sufficient to show that the distance of C is equal to 3.
The Hamming bound applied to C ensures that the distance cannot be greater than 3;
we show that it can not be 2 (it is obvious that it is not one). Let α be a primitive n-th
root of unity over Fq such that c(α)= 0 for c in C. If c is a word of weight 2 with
nonzero coefficients ci and cj (i < j), then ciαi + cjαj = 0. Then αj−i =−ci/cj .
Since−ci/cj ∈ F

∗
q , α(j−i)(q−1) = 1. Now GCD(n, q−1)= 1 implies that αj−i = 1,

but this is a contradiction since 0< j − i < n and the order of α is n. �

Example 4 The Hamming code of Example 3 can be viewed as the [7,4,3]2 cyclic
code with generator polynomial g = x3 + x + 1.

We have seen that the dual code of a cyclic code is cyclic itself. This means in
particular that the dual of a Hamming code is cyclic.

Definition 18 The dual of a Hamming code is called a simplex code.

The simplex code has the following property:

Proposition 6 A simplex code is a [(qr − 1)/(q− 1), r, qr−1] constant weight code
over Fq .

5.2 Quadratic Residue Codes

Let n be an odd prime. We denote by Qn ⊂ {1, . . . , n − 1} the set of quadratic
residues modulo n, i.e.:

Qn = {k | k ≡ x2 mod (n) for some x ∈ Z}.
If q is a quadratic residue modulo n, it is easy to see that Qn is a collection of
q-cyclotomic classes with cardinality (n − 1)/2. Then we can give the following
definition.

Definition 19 Let n be a positive integer relatively prime to q and let α be a prim-
itive n-th root of unity. Suppose that n is an odd prime and q is a quadratic residue
modulo n. The [n, (n − 1)/2 + 1]q cyclic code with complete defining set Qn is
called quadratic residue code.

Example 5 The [23,12,7]2 quadratic residue code is the perfect binary Golay code.

6 BCH Codes

Theorem 6 (BCH bound) Let C be an [n, k, d]q cyclic code with defining set
SC = {i1, . . . , in−k} and let (n, q)= 1. Suppose there are δ−1 consecutive numbers
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in SC , say {m0,m0 + 1, . . . ,m0 + δ − 2} ⊂ SC . Then

d ≥ δ.
Definition 20 Let S = (m0,m0 + 1, . . . ,m0 + δ − 2) be such that

0≤m0 ≤ · · · ≤m0 + δ− 2≤ n− 1

If C is the [n, k, d]q cyclic code with defining set S, we say that C is a BCH code of
designed distance δ. The BCH code is called narrow sense if m0 = 1 and it is called
primitive if n= qm − 1.

Example 6 We consider the polynomial x7 − 1 over F2:

f0 f1 f3
� � �

x7 − 1= (x + 1) (x3 + x2 + 1) (x3 + x + 1)

Let C be the cyclic code generated by g = f0 · f1. Then SC = {0,1,2,4} with
respect to a primitive n-th root of unity α s.t. f1(α) = 0. C is a [7,3, d]2 code
with SC = {0,1,2,4} and so it is a BCH code of designed distance δ = 4. The
BCH bound ensures that the minimum distance is at least 4. On the other hand, the
generator polynomial

g(x)= x4 + x2 + x + 1

has weight 4 and we finally can state that d = 4.

6.1 On the Optimality of BCH Codes

Definition 21 Given n and d two integers, a code is said to be optimal if it has
maximal size in the class of codes with length n and distance d .

Theorem 7 Narrow sense primitive binary BCH codes of fixed minimum distance
are optimal when the length is large, but the relative distance

d/n→ 0.

In other words, consider such an [n, k, d]2 BCH code, with t = # d−1
2 $, then k ≥

n−mt . Then there does not exist a t + 1 correcting code with the same length and
dimension.

Proof Let t be fixed, and let n= 2m − 1 go to infinity. Then

V2(n, t + 1)=
∑

i≤t+1

(
n

i

)

>

(
n

t + 1

)

= n!
(t + 1)!(n− t − 1)!

=O
(

1

(t + 1)! · n
t+1
)

∼ 1

(t + 1)!2
m(t+1)' 2mt > 2n−k.
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This means that the Hamming bound is exceeded for the parameters n, k and t + 1,
which implies that a t + 1 error correcting code does not exist. �

A precise evaluation of the length n such that an [n, k,n − mt] BCH code is
optimal is given in Berlekamp (1984), p. 299.

We now define a subclass of BCH codes that are always optimal (Reed and
Solomon 1960).

Definition 22 A Reed Solomon code over Fq is a BCH code with length n= q − 1.

Note that if n = q − 1 then xn − 1 splits into linear factors. If the designed
distance is d , then the generator polynomial of a RS code has the form g(x) =
(x − αi0)(x − αi0+1) · · · (x − αi0+d−1) and k = n− d + 1. It follows that RS codes
are MDS codes.

7 Decoding BCH Codes

There are several algorithms for decoding BCH codes. In this section we briefly
discuss the method, first developed in 1975 by Sugiyama et al. (1975), that uses the
extended Euclidean algorithm to solve the key equation. Note that the Berlekamp–
Massey (1968, 1969) algorithm is more used. Some alternative decoding algorithms
are detailed in Mora and Orsini (2009), Guerrini and Rimoldi (2009).

Let C be a BCH code of length n over Fq , with designed distance δ = 2t + 1
(where t is the error correction capability of the code), and let α be a primitive n-th
root of unity in Fqm . We consider a word c(x)= c0+· · ·+cn−1x

n−1 and we assume
that the received word is v(x)= v0 + · · · + vn−1x

n−1. Then the error vector can be
represented by the error polynomial

e(x)= v(x)− c(x)= e0 + e1x + · · · + en−1x
n−1.

If the weight of e is μ≤ t , let

L= {l | el �= 0,0≤ l ≤ n− 1}
be the set of the error positions, and {αl | l ∈ L} the set of the error locators. Then
the classical error locator polynomial is defined by

σ(x)=
∏

l∈L
(1− xαl),

i.e. the univariate polynomial which has as zeros the reciprocal of the error locations.
The error locations can also be obtained by the plain error locator polynomial, that
is

Le(x)=
∏

l∈L
(x − αl).
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The error evaluator polynomial is defined by

ω(x)=
∑

l∈L
elα

l
∏

i∈L\{l}
(1− xαi).

We find the two polynomials σ(x) and ω(x) to correct errors: an error is in position
l if and only if σ(α−l )= 0 and in this case the value of the error is:

el =−αl ω(α
−l )

σ ′(α−l )
, (1)

in fact, since the derivative σ ′(x) = ∑l∈L−αl
∏
i �=l (1 − xαi), so σ ′(α−l ) =

−αl∏i �=l (1− αi−l) and σ ′(α−l ) �= 0. The goal of decoding can be reduced to de-
termine the error locator polynomial and apply a search of the roots (Chien 1964) to
obtain the error positions. We need the following lemma later on.

Lemma 1 The polynomials σ(x) and ω(x) are relatively prime.

Proof It is obvious, since no zero of σ(x) is a zero of ω(x). �

We are now ready to describe the decoding algorithm.

The First Step: the Key Equation

At the first step we calculate the syndrome of the received vector v(x):

HvT =

⎛

⎜
⎜
⎜
⎝

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

... · · · ...

1 αδ−1 α2(δ−1) · · · α(δ−1)(n−1)

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e0
e1
...

en−1

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

e(α)

e(α2)
...

e(αδ−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

S1
S2
...

S2t

⎞

⎟
⎟
⎟
⎠

We define the syndrome polynomial:

S(x)= S1 + S2x + · · · + S2t x
2t−1,

where Si = e(αi)=∑l∈L elαil , i = 1, . . . ,2t . The following theorem establishes a
relation among σ(x),ω(x) and S(x).
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Theorem 8 (The key equation) The polynomials σ(x) and ω(x) satisfy:

σ(x)S(x)≡ ω(x) (mod x2t ) (key equation)

If there exist two polynomials σ1(x), ω1(x), such that deg(ω1(x)) < deg(σ1(x))≤
t and that satisfy the key equation, then there is a polynomial λ(x) such that σ1(x)=
λ(x)σ (x) and ω1(x)= λ(x)ω(x).

Proof Interchanging summations and the sum formula for a geometric series, we
get

S(x)=
2t∑

j=1

e(αj )xj−1 =
2t∑

j=1

∑

l∈L
elα

jlxj−1

=
∑

l∈L
elα

l

2t∑

j=1

(αlx)j−1 =
∑

l∈L
elα

l 1− (αlx)2t
1− αlx .

Thus

σ(x)S(x)=
∏

i∈L
(1− αix)S(x)=

∑

l∈L
elα

l(1− (αlx)2t )
∏

i �=l∈L
(1− αix),

and then

σ(x)S(x)≡
∑

l∈L
elα

l
∏

i �=l∈L
(1− αix)≡ ω(x) (mod x2t ).

Suppose we have another pair (σ1(x),ω1(x)) such that

σ1(x)S(x)≡ ω1(x) (mod x2t )

and deg(ω1(x)) < deg(σ1(x))≤ t . Then

σ(x)ω1(x)≡ σ1(x)ω(x) (modx2t )

and the degrees of σ(x)ω1(x) and σ1(x)ω(x) are strictly smaller than 2t . Since
GCD(σ(x),ω(x)) = 1 by Lemma 1, there exists a polynomial λ(x) s.t. σ1(x) =
λ(x)σ (x) and ω1(x)= λ(x)ω(x). �

The Second Step: the Extended Euclidean Algorithm

Once we have the syndrome polynomial S(x), the second step of the decoding al-
gorithm consists of finding σ(x) and ω(x), using the key equation.
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Theorem 9 (Bezout’s Identity) Let K be a field and f (x), g(x) ∈ K[x]. Let us
denote d(x)= gcd(f (x), g(x)). Then there are u(x), v(x) ∈ K[x] \ {0}, such that:

f (x)u(x)+ g(x)v(x)= d(x).
It is well known that is possible to find the greatest common divisor d(x) and the
polynomials u(x) and v(x) in Bezout’s identity using the Extended Euclidean Al-
gorithm (EEA). Suppose that deg(f (x)) > deg(g(x)), then let:

u−1 = 1, v−1 = 0, d−1 = f (x),
u0 = 0, v0 = 1, d0 = g(x).

The first step of the Euclidean algorithm is:

d1(x)= d−1(x)− q1(x)d0(x)= f (x)− q1(x)g(x),

so that

u1(x)= 1, v1(x)=−q1(x) and

deg(d1) < deg(d0) and deg(v1) < deg(d−1)− deg(d0).

From the j -th step, we get:

dj (x)= dj−2(x)− qj (x)dj−1(x)

= uj−2(x)f (x)+ vj−2(x)g(x)− qj (x)[uj−1(x)f (x)+ vj−1(x)g(x)]
= [−qj (x)uj−1(x)+ uj−2(x)]f (x)
+ [−qj (x)vj−1(x)f (x)+ vj−2(x)]g(x).

This means:

uj (x)=−qj (x)uj−1(x)+ uj−2(x) and vj (x)=−qj (x)vj−1(x)+ vj−2(x)

with deg(dj ) ≤ deg(dj−1), deg(uj ) =∑j

i=2 deg(qi), deg(vj ) =∑j

i=2 deg(qi) and
deg(vj ) = deg(f ) − deg(dj−1). The algorithm proceeds by dividing the previous
remainder by the current remainder until this becomes zero.

STEP 1 d−1(x)= q1(x)d0(x)+ d1(x), deg(d1) < deg(d0)

STEP 2 d0(x)= q2(x)d1(x)+ d2(x), deg(d2) < deg(d1)

.

.

.
.
.
.

STEP j dj−2(x)= qj (x)dj−1(x)+ dj (x), deg(dj ) < deg(dj−1)

.

.

.
.
.
.

STEP k dk−1(x)= qk+1(x)dk(x)

We conclude that the GCD(f (x), g(x))=GCD(d−1(x), d0(x))= dk(x).
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We would like to be able to find ω(x) and σ(x) using the Euclidean algorithm.
First we observe that deg(σ (x)) ≤ t and deg(ω(x)) ≤ t − 1. For this reason we
apply the EEA to the known polynomials f (x) = x2t and g(x) = S(x), until we
find a dk−1(x) such that:

deg(dk−1(x))≥ t and deg(dk(x))≤ t − 1.

In this way we obtain a polynomial dk(x) such that:

dk(x)= x2t uk(x)+ S(x)vk(x), (2)

with deg(vk(x))= deg(x2t )− deg(dk−1(x))≤ 2t − t = t .

Theorem 10 Let dk(x) and vk(x) as in (2). Then the polynomials vk(x) and dk(x)
are scalar multiplies of σ(x) and ω(x), respectively, i.e:

σ(x)= λvk(x) ω(x)= λdk(x),
for some scalar λ ∈ Fq .

We can determine λ by σ(0)= 1, i.e. λ= vk(0)−1. So we have:

σ(x)= vk(x)
vk(0)

, ω(x)= dk(x)
vk(0)

.

The Third Step: Determining the Error Values

In the last step we have to calculate the error values. In the binary case it is immedi-
ate. Otherwise we can use the relations

el =−αl ω(α
−l )

σ ′(α−l )
, l = 1, . . . ,μ.

See also Forney (1965).

8 On the Asymptotic Properties of Cyclic Codes

There is a longstanding question which is to know whether the class of cyclic codes
is asymptotically good. Let us recall that a sequence of linear binary [ni, ki, di]2
codes Ci is asymptotically good if

lim inf
ki

ni
> 0, and lim inf

di

ni
> 0.
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The first explicit construction of an asymptotically good sequence of codes is due
to Justensen (1972), but the codes are not cyclic. Although it is known that the class
of BCH codes is not asymptotically good (Camion 1969; Lin and Weldon 1967),
(see MacWilliams and Sloane 1977 for a proof), we do not know if there is a family
of asymptotically good cyclic codes. Still on the negative side, Castagnoli (Castag-
noli 1989) has shown that, if the length ni goes to infinity while having a fixed set
of prime factors, then there is no asymptotically good family of codes Ci of length
ni . Other negative results are in Berman 1967. Known partial positive results are
due to Kasami (1974), for quasi-cyclic codes.2 Bazzi and Mitter (2006) have shown
that there exists an asymptotically good family of linear codes which are very close
to cyclic codes. Willems and Martínez-Pérez (2006) have shown that there exists
an asymptotically good family of cyclic codes, provided there exists an asymptot-
ically good family of linear codes Ci with special properties on their lengths ni .
So, although some progress has been achieved, the question is still open.
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Decoding Cyclic Codes: the Cooper Philosophy

Teo Mora and Emmanuela Orsini

Abstract In 1990 Cooper suggested to use Gröbner basis computations in order to
deduce error locator polynomials of cyclic codes.

The aim of this tutorial is to show, with illuminating examples, how Cooper’s
approach has been refined up to give both an online decoder and general error
locator polynomials.

1 Introduction

In this tutorial we assume that the reader is familiar with the notation for linear and
cyclic codes adopted in Augot et al. (2009). In particular, we will use without com-
ments concepts like: generator polynomial, defining set, correctable syndrome, error
polynomial, classical error locator polynomial and plain error locator polynomial.
We also assume that the reader is familiar with Gröbner bases (Buchberger 1965,
1985, 2006) especially with the notation in Mora (2009).

In 1990 Cooper (1990, 1991, 1993) suggested to use Gröbner basis computations
in order to correct cyclic codes (for a different approach see Guerrini and Rimoldi
2009). Let C be a binary BCH code correcting up to t errors, s̄ = (s1, . . . , s2t−1)

be the syndrome vector associated to a received word. Cooper’s idea consisted in
interpreting the error locations of C as the roots of the syndrome equation sys-
tem:

fi :=
t∑

j=1

z2i−1
j − s2i−1 = 0, 1≤ i ≤ t,

and, consequently, let F2m be some extension field of F2, the plain error locator
polynomial as the monic generator g(z1) of the principal ideal

{
t∑

i=1

gifi, gi ∈ F2(s1, . . . , s2t−1)[z1, . . . , zt ]
}

∩ F2(s1, . . . , s2t−1)[z1],
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which can be directly computed via the elimination property of lexicographical
Gröbner bases.

In a series of papers Chen et al. (1994a, 1994b, 1994c) improved and generalized
Cooper’s approach to decoding. In particular, for a q-ary [n, k, d] cyclic codes, with
correction capability t , they made the following alternative proposals:

1. denoting, for an error with weight μ, z1, . . . , zμ the error locations, y1, . . . , yμ
the error values, s1, . . . , sn−k ∈ Fqm the associated syndromes, they interpreted
(Chen et al. 1994c) the coefficients of the plain error locator polynomial as the
elementary symmetric functions

σj (z1, . . . , zμ)= (−1)j
∑

1≤l1≤···≤lμ≤μ
zl1 · · · zlμ, 1≤ j ≤ μ,

and the syndromes as the power sum functions, si =∑μ
j=1 yj z

i
j , and suggested

to deduce the σj ’s from the (known) si ’s via a Gröbner basis computation of the
ideal generated by the Newton identities;

2. they considered (Chen et al. 1994a) the syndrome variety

{

(s1, . . . , sn−k, y1, . . . , yt , z1, . . . , zt ) ∈ (Fqm)n−k+2t : si

=
μ∑

j=1

yj z
i
j , 1≤ i ≤ n− k

}

and proposed to deduce via a Gröbner basis pre-computation in

Fq [x1, . . . , xn−k, y1, . . . , yt , z1, . . . , zt ]
a series of polynomials gμ(x1, . . . , xn−k,Z),μ ≤ t such that, for any error with
weight μ and associated syndromes s1, . . . , sn−k ∈ Fqm , gμ(s1, . . . , sn−k,Z) in
Fqm [Z] is the plain error locator polynomial.

Their suggestions were improved and refined in (respectively) Augot et al. (2003)
and Caboara (2002), Loustaunau and York (1997); remark that

1. requires to perform for each received vector up to t Gröbner basis computations;
the μ-th computation deducing the unknown σ1, . . . , σμ in terms of the known
syndromes s1, . . . , sn ∈ Fqm ;

2. requires a pre-computation of a Gröbner basis into a polynomial ring in 2t+n−k
variables.

Both computations are therefore not-necessarily feasible, the first since it requires
an on line computation, the second since the syndrome variety has too many roots
so that the Gröbner basis is less feasible to compute.

The investigation on the structure of the syndrome variety and on its Gröb-
ner basis shows that most of its roots are spurious (Chen et al. 1994a) and that
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the pre-computed polynomials gμ(x1, . . . , xn,Z) have the telescopical relations
(Berlekamp 1968; Caboara 2002)

gμ = Zgμ−1 + c(x1, . . . , xn).

To improve (Orsini and Sala 2005) the pre-computation it was sufficient to add
equations removing the spurious roots. This new idea permitted to prove the exis-
tence of a computable general error locator polynomial L, that is, a polynomial that
satisfies the following property:

given a syndrome vector s ∈ (Fqm)n−k corresponding to an error with weight
μ≤ t , the t roots of L (evaluated at s) are the μ error locations plus zero counted
with multiplicity t −μ.

This tutorial has the following structure. In the second section we present
Cooper’s idea of using Gröbner bases to decode binary BCH codes. In the third
and fourth sections we describe Chen et al. ideas and we introduce the syndrome
variety. The fifth section applies the Gianni–Kalkbrener Gröbner shape theorem
to describe the structure of the syndrome variety. Section six introduces the gen-
eral error locator polynomial for cyclic codes. Section seven is devoted to the on
line decoder due to Augot et al. based on Newton’s identities and Waring formu-
las.

2 Decoding Binary BCH Codes

We now describe the decoding algorithm proposed by Cooper (1990, 1991) to cor-
rect a primitive binary BCH codes of length n= 2m − 1.

Let α ∈ F2m be a primitive n-th root of unity and C a primitive BCH code over
F2, with defining set S = {2i+ 1,0≤ i < t}. From the BCH bound we know that C
can correct at least t errors.

We analyze the decoding process. Once the decoder receives a vector v ∈ (F2)
n,

it computes the associated syndrome s ∈ (F2m)
2t and then uses it to find the un-

known error locations αj . We introduce the variables Z = (z1, . . . , zt ), where zj
stands for the error location αj , j = 1, . . . , t . Thus we obtain the following system
of t polynomials in F2m [Z]:

FC :
{

fi :
t∑

j=1

z2i−1
j − s2i−1, i = 1, . . . , t

}

.

The error locations form a solution (ξ1, . . . , ξt ) ∈ (F2m)
t of FC . In this way an error

correction procedure is a method of solving the nonlinear polynomial system FC
for z1, . . . , zt . Sometimes finding this solution could be difficult and ineffective.
Cooper’s idea is to transform the system FC to another simpler system of equations
having the same roots.
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Let I be the ideal generated by FC in F2m [Z] and V(I ) the set of its roots. LetG
be the reduced Gröbner basis of I w.r.t. the lex ordering< induced by z1 < · · ·< zt ;
we denote by g ∈ F2m [z1] the unique polynomial such that G ∩ F2m [z1] = {g}.
To find the error locations, it is useful to define E to be the set of error locations:

E= {ξ1, . . . , ξμ} (1)

and Z the set of all components of the zeros of FC :

Z= {ξ | (ξ, a2, . . . , at ) ∈ V(I )}. (2)

Theorem 1 (Cooper 1991) Let G,I and g be as above. The following hold:

(a) E= Z= {ξ | g(ξ)= 0};
(b) |E| = μ= deg(g)≤ t ;
(c) Le(z)= g(z)=∏ξ∈Z(z− ξ), i.e. g is the polynomial whose roots are the error

locators;
(d) σ(z)= zμg(z−1), where σ is the classic error locator.

Remark 1 There is in Cooper a designed ambiguity; the arithmetic is performed
on the si in F2[si , i ∈ S] but are interpreted as performed on si = si (α) in F2m .
All over this section we have deliberately maintained this ambiguity which will be
solved in the next section; we have done so based on the interpretation of error lo-
cator polynomials suggested in Berlekamp (1968): an error locator polynomial is
a cascade of devices, each evaluating a rational function al(si ) ∈ F2(si ) and con-
nected by gates activated by the value of polynomials β(si ) ∈ F2[si]; at arrival of
the word, the devices are properly connected, by evaluation of β(si) ∈ F producing
an expression

∑μ
l=1 al(si )z ∈ F2(si )[z], whose evaluation returns the error locator

polynomial
∑μ
l=1 al(si)z ∈ F2(si )[z].

Example 1 (Cooper 1991) Let C be a BCH code over F2 and defining set S = {1,3}.
We want to find the classical error locator polynomial σ(z). As t = 2, we set P :=
F2[s1, s3][z1, z2]. Then

I := I(z1 + z2 + s1, z
3
1 + z3

2 + s3)⊂ P

and the reduced Gröbner basis w.r.t. the lex ordering is

G= {z2
1s1 + z1s2

1 + s3
1 + s3, z2 + z1 + s1}.

So g(z) = z2s1 + zs2
1 + s3

1 + s3, id est (cf. Berlekamp 1968, Example 5.6,
pp. 138–139)

σ(z)= 1+ zs1 + z2
(

s3
1 + s3

s1

)

.
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Example 2 (Cooper 1991) Let C be a BCH code over F2, defining set S = {1,3,5}
and t = 3. As in the previous example we set P := F2[s1, s3, s5][z1, z2, z3]. Then

I := I(z1 + z2 + z3 + s1, z
3
1 + z3

2 + z3
3 + s3, z

5
1 + z5

2 + z5
3 + s5)⊂ P

and the reduced Gröbner basis w.r.t. the lex ordering, with z1 < z2 < z3, is

G= {z3
1s3

1 + z3
1s3 + z2

1s4
1 + z2

1s1s3 + z1s2
1s3 + z1s5 + s6

1 + s3
1s3 + s1s5 + s2

3,

z2
2s3

1 + z2
2s3 + z2z1s3

1 + z2z1s3 + z2s4
1 + z2s1s3 + z2

1s3
1 + z2

1s3 + z1s4
1

+ z1s1s3 + s2
1s3 + s5,

z2
2z1 + z2

2s1 + z2z
2
1 + z2s2

1 + z2
1s1 + z1s2

1 + s3
1 + s3, z3 + z2 + z1 + s1},

so that

g(z)= z3(s3
1 + s3)+ z2(s4

1 + s1s3)+ z(s2
1s3 + s5)+ s6

1 + s3
1s3 + s1s5 + s2

3

and σ(z)= 1+ zs1 + z2(
s2

1s3+s5

s3
1+s3

)+ z3(
s6

1+s3
1s3+s1s5+s2

3

s3
1+s3

).

In the following example we perform decoding.

Example 3 Let C be the binary BCH [15,5,7] code. This code has defining set
{1,3,5}. If we set β1 := s3

1 + s3, β2 := s2
1s3 + s5, and

β3 := s6
1 + s3

1s3 + s1s5 + s2
3 = s1β2 + β2

1 ,

we obtain:

σ(z)= 1+ zs1 + z2β2β
−1
1 + z3β3β

−1
1 .

(i) Suppose that the error polynomial is e(x)= x3. Obviously the decoder does not
know the error polynomial, but it receives a vector in (F2)

15 and it calculates
the syndrome components, which in this case are:

s1 = α3, s3 = α9, s5 = 1.

So β1 = 0, β2 = 0, β3 = 0 and σ(z) = 1 + zα3. The decoder correctly con-
cludes that the error location is α3.

(ii) If the error polynomial is e(x)= x3 + x2, the syndromes are:

s1 = α6, s3 = α5, s5 = α5,

that is, β1 = α11, β2 = α, β3 = 0 and

σ(z)= 1+ zα6 + z2α5 = (1+ zα2)(1+ zα3).
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(iii) Let e(x)= x3 + x2 + x be the error polynomial, then we have:

s1 = α11, s3 = α11, s5 = 0,

that is, β1 = α5, β2 = α3, β3 = α11 and then

σ(z)= 1+ zα11 + z2α13 + z3α6 = (1+ zα)(1+ zα2)(1+ zα3).

3 Gröbner Bases for Cyclic Codes

3.1 Decoding Binary Cyclic Codes

Chen et al. (1994c) generalize the Cooper’s idea of using Gröbner techniques to
decoding binary cyclic codes.

We consider a cyclic code C over F2 with length n and defining set S. As usual
we denote by μ the number of errors which occurred and we name v an integer such
that 0< v ≤ t and μ≤ v. Using the zj ’s variables for the error locations (which are
n-th roots of unity), we can consider the following system where each syndrome si
represents a value (si ∈ F2m ):

FCRHT2 :
{{

v∑

j=1

zij − si , i ∈ S
}

∪ {zn+1
j − zj ,1≤ j ≤ v}

}

⊂ F2m [z1, . . . , zv].

Let E and Z be as in (1) and (2). The system FCRHT2 defines an ideal I = I(FCRHT2)

in F2m [z1, . . . , zv]. The zero set of this ideal gives the error locations and, conse-
quently, the error vector that occurred in the transmission. Gröbner basis computa-
tion can be used to find the solutions of this system.

LetG⊂ F2m [z1, . . . , zv] be the reduced Gröbner basis of I w.r.t. the lex ordering
with z1 < · · ·< zv , and g(z1) ∈ F2m [z1] such that g(z1)=G∩ F2m [z1].

Proposition 1 (Chen et al. 1994c) We have:

(a) E⊆ Z= {ξ | g(ξ)= 0};
(b) |E| = μ≤ v = deg(g).

Compare Theorem 1(a)–(b) and Proposition 1, which is a generalization of the
previous. As regards (c) and (d) the following theorem describes the relation be-
tween g and the plain error locator polynomial Le(z) in function of μ (the weight
of the error) and hence implies a decoding algorithm for any binary cyclic code up
to its true minimum distance.

Theorem 2 (Chen et al. 1994c) We have:
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(i) If v = μ then V(I ) consists of all coordinate permutations of the root
(ξ1, . . . , ξμ), E= Z, Le(z)= g(z) and σ(z)= zμg(z−1).

(ii) If v = μ+1 then (0, ξ1, . . . , ξμ) ∈ V(I ), E= Z∪{0}, and g(z)= z(zμσ(z−1))

= zLe(z).
(iii) If v ≥ μ+ 2 then (ζ, ζ, ξ1, . . . , ξμ,0, . . . ,0) ∈ V(I ), ∀ζ ∈ F2m , E = F2m and

g(z)= zn+1 − z.
(iv) If v < μ then G= {1}.

From this theorem we easily deduce a decoding algorithm for all binary cyclic
codes. We will see some examples.

Example 4 Let C be the binary cyclic code [21,6,7] with defining set S = {1,5,9}.
The splitting field is F26 and t = 3.

1. We first suppose that two errors occurred with the error polynomial e(x)= 1+x.
Obviously the decoder does not know μ and e(x), but it calculates the syndrome
components, which are s1 = 1+ α, s5 = 1+ α5 and s9 = 1+ α9. We set v = 2.
Then the associated polynomial system FCRHT2 is

{z1 + z2 + (1+ α), z5
1 + z5

2 + (1+ α5), z9
1 + z9

2 + (1+ α9), z22
1 − z1, z

22
2 − z2}

We obtain g(z)= z2 + (1+ α)z+ α = (z+ 1)(z+ α)= Le(z).
2. Let e(x) = 1+ x + x3 be the error polynomial. The syndrome components are
s1 = 1+ α + α3, s5 = 1+ α3 + α15 and s9 = 1+ α9 + α27. We set v = 2. Then
FCRHT2 is

{z1 + z2 + s1, z5
1 + z5

2 + s5, z9
1 + z9

2 + s9, z22
1 − z1, z

22
2 − z2}

and the reduced Gröbner basis of I (FCRHT2) is G = {1}. So we set v = 3, the
associated polynomial system FCRHT2 is

{z1+z2+z3+s1, z5
1+z5

2+z5
3+s5, z9

1+z9
2+z9

3+s9, z22
1 −z1, z

22
2 −z2, z

22
3 −z3}

and

g(z)= z3 + (α3 + α+ 1)z2 + (α4 + α3 + α)z+ α4 = (z+ 1)(z+ α)(z+ α3)

= Le(z).

3.2 Decoding Cyclic Codes over Fq

Chen et al. (1994a) generalize Cooper’s approach to q-adic codes proposing a so-
lution for decoding an error whose weight μ is assumed known. They also give an
alternative approach via Newton’s identities in the binary case.
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If we consider a cyclic code over Fq , we use the variables y = (y1, . . . , yμ)

for the error values. We suppose that we know the number of errors μ. As be-
fore, our goal is to find the error locations and the corresponding error values from
the known syndromes si ∈ Fqm , i ∈ SC . So we consider the polynomial system in
Fqm [z1, . . . , zμ, y1, . . . , yμ]:

FCRHTq :
{{

μ∑

j=1

yj z
i
j − si , i ∈ SC

}

∪ {zn+1
j − zj ,1≤ j ≤ μ}

∪ t{yq−1
j − 1,1≤ j ≤ μ}

}

.

Let I be the ideal in Fqm [z1, . . . , zμ, y1, . . . , yμ] generated by FCRHTq , and G
the reduced Gröbner basis of I w.r.t. the lex ordering < induced by z1 < · · ·< zμ <
y1 < · · · < yμ. Then we generalize the definitions (1) and (2). Let V(I ) ⊂ F

2μ be
the roots of I , we set

Z := {ξ | (ξ, a2, . . . , aμ, e1, . . . , eμ) ∈ V(I)}, E := {ξ1, . . . , ξμ}
the set of the error locations of an error with weight μ.

Theorem 3 (Chen et al. 1994a) Let g be the monic polynomial in G ∩ F[x1]. We
have:

(a) E= Z= {ξ | g(ξ)= 0};
(b) #E= μ= deg(g)≤ t ;
(c) Le(z)= g(z)=∏ξ∈Z(z− ξ);
(d) σ(z)= zμg(z−1).

3.3 A New System with the Newton Identities

Let F := F2.
Denoting σj ,1 ≤ j ≤ μ, the j -th elementary symmetric function on the zi ’s,

the plain error locator polynomial is Le(z) = 1 +∑μ
j=1 σj z

j . The second decod-
ing scheme proposed in Chen et al. (1994a) is based on the relations among all
syndromes si , i = 1, . . . , n, and coefficients σj of Le(z), given by the following
theorem.

Theorem 4 (Newton identities) Let si =∑μ
j=1 z

i
j (as in FCRHT2 ), then the follow-

ing identities hold:
{
si +∑i−1

j=1 σj si−j + iσi = 0 1≤ i ≤ μ
si +∑μ

j=1 σj si−j = 0 μ< i < n.
(3)
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Remark 2 If 2μ≤ n, polynomial Le(z) can be uniquely determined from (3).

We now need some more notation. We denote by R = {�1, . . . , �r} a set of rep-
resentatives for the cyclotomic cosets of {i,1 ≤ i ≤ n, i �∈ S}. We use variables
(T1, . . . , Tμ) and we set that Ti stands for σi , 1≤ i ≤ μ, and variables (U1, . . . ,Ur)

for (s�1 , . . . , s�r ). Then let P := F[T1, . . . , Tμ,U1, . . . ,Ur ] and let π be the evalua-
tion defined by

π :K[T1, . . . , Tμ,X1, . . . ,Xn] −→ P, π(Xi) :=
{
si ∈ F i ∈ SC
U2α
j i = 2α�j /∈ SC.

We consider the set FN of polynomials in P :
{

π

(

Xi +
μ∑

j=1

TjXi−j

)

,μ < i < n

}

∪ {U2m
j −Uj ,1≤ j ≤ r

}

∪ {T 2m
l − Tl,1≤ l ≤ μ

}
.

Theorem 5 (Chen et al. 1994a) For each l,1 ≤ l ≤ μ, let gl ∈ F[Tl] be the monic
generator polynomial of I (FN)∩ F[Tl]. Then gl = Tl − σl.

Remark 3 Any gl can be found in an appropriate Gröbner basis.

4 The CRHT Syndrome Variety

In the decoding algorithms presented up to now, we have to do, for any word to be
decoded, a Gröbner basis computation with syndromes considered as parameters,
which are calculated from the received word and substituted into the system. More-
over, different Gröbner basis computations must be performed for different potential
error weights, until the true weight of the actual error is obtained.

In Chen et al. (1994b) a new method is described in which we calculate the
Gröbner basis as a “preprocessing”, with the syndromes taken as variables xi . In
this way the system has more variables, but we have to calculate the Gröbner basis
only once and then simply evaluate it at the actual syndromes each time a word is
received.

We use the variables x, z and y with the usual meaning (syndromes, locations,
values) and we consider system FCRHT ⊂ Fq [x1, . . . , xn−k, zt , . . . , z1, y1, . . . , yt ]:
{{

t∑

j=1

yj z
i
j − xi, i ∈ S

}

∪ {zn+1
j − zj ,1≤ j ≤ t

}∪ {yq−1
j − 1,1≤ j ≤ t}

}

.

Let V(I )⊂ (Fqm)2μ and G be the reduced Gröbner basis of I = I(FCRHT) w.r.t.
lex < with x1 < · · ·< xn−k < zt < · · ·< z1 < y1 < · · ·< yt .
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Table 1 CRHT decoding
algorithm μ := 1

While cμ,0(s1, . . . , sn−k)= 0 do μ := μ+ 1

g := gcd(gμ(s1, . . . , sn−k,0, . . . ,0, z), zn − 1)

σ (z) := zμg(z−1)

Remark 4 The ideal I is zero-dimensional. From now on we refer to I as the syn-
drome ideal and to V(I ) as the syndrome variety.

The decoding algorithm presented in Chen et al. (1994b) is built on this claim:
the Gröbner basis G contains for each i,1≤ i ≤ t , a single element

gi ∈ Fq [x1, . . . , xn−k, zt , . . . , zt−i+1]
with positive degree in zt−i+1.

Remark 5 This claim is clearly not true, as shown in Loustaunau and York (1997).

Theorem 6 (Chen et al. 1994b) Let e be the error vector of weight μ′ ≤ t and
s= (s1, . . . , sn−k) the syndrome vector.

Under the assumption above and setting

gi(x1, . . . , xn−k,0, . . . ,0, zt−i+1)=
ni∑

j=0

ci,j z
j

t−i+1,

we have that

1. The following conditions are equivalent:
(a) there are exactly μ errors;
(b) c1,0(s)= · · · = ct−μ,0(s)= 0 �= ct−μ+1,0(s);

2. Le(z)= gcd(gt−μ(s,0, z), zn − 1).

From the theorem we directly design the decoding algorithm (see Table 1).
The proposed algorithm needs the assumption that the related Gröbner basis has

a particular structure, but in Loustaunau and York (1997) Loustaunau and York
remark that the CRHT assumption, in general, does not hold and they make a
weak proposal to correct the CRHT algorithm. Moreover, they observe that the
suggested Gröbner computation cannot be performed by the best software and
hardware of the period (1997), therefore suggest to use the FGLM algorithm (the
ideal is 0-dimensional). Their remark is particular significant, since the same soft-
ware/hardware is able to compute Cooper’s ideal Example 3 within 18 secs.

5 The Gianni–Kalkbrener Shape Theorem

The structure of the Gröbner basis of a zero-dimensional ideal has been deeply an-
alyzed in Gianni (1989) and Kalkbrener (1989). Caboara (2002) gives a correct



Decoding Cyclic Codes: the Cooper Philosophy 79

and optimized version of the CRHT decoding algorithm, based on the Gianni–
Kalkbrener Gröbner shape theorem.

Let F be a field and F its algebraic closure. We set P = F[x1, . . . , xn]. For any
f ∈ P , we will denote by T(f ) the leading term of f (w.r.t. a fixed term ordering);
and, for any set H ⊂ P , T{H } denotes the set {T(h) | h ∈H }.

We will use the lexicographical ordering < induced by x1 < · · ·< xn. In order to
describe the structure of the Gröbner basis of an ideal, we need to consider P also
as univariate polynomials in the variable xn with coefficients in the polynomial ring
F[x1, . . . , xn−1]. For any element f ∈ P we have:

f =
h∑

k=0

bk(x1, . . . , xn−1)x
k
n = Tp(f )+ · · · + Lp(f )xhn ,

where we will denote by Lp(f )= bh(x1, . . . , xn−1) the leading polynomial and by
Tp(f )= b0(x1, . . . , xn−1) the trailing polynomial of f .

Definition 1 Let I ⊂ P be an ideal and d an integer such that d ≤ n. The d-
th elimination ideal Id is the ideal of F[x1, . . . , xd ] defined by Id = I ∩
F[x1, . . . , xd ].

We consider an ideal I ⊂ P and we name V(Id) ⊂ F
d

the set of the roots of
Id . Let G = {g1, . . . , gs} be a Gröbner basis of I ⊂ P w.r.t. <, ordered so that
T(g1) < · · ·< T(gs). For any ι≤ n, let Gι be G∩ F[x1, . . . , xι] and

∀� ∈N, Gι� := {g ∈Gι \Gι−1 | degxι (g)= �},
so that each Gι can be decomposed into blocks of polynomials according to their
degree with respect to the variable xι: Gι =��Gι�. In this way, if g ∈Gι�, we have:

• g ∈ F[x1, . . . , xι−1][xι] \ F[x1, . . . , xι−1];
• degxι (g)= �, i.e. g = Lp(g)x�ι + · · · + Tp(g).

Theorem 7 (Gianni 1989; Kalkbrener 1989) Let α := (a1, . . . , ad) ∈ V(Id) and�α
s.t.

�α : P → F[xd+1, . . . , xn]
f (x1, . . . , xn) �→ f (α, xd+1, . . . , xn).

Let ε be the minimal value such that �α(Lp(gε)) �= 0 and j, δ the values such that
gε ∈Gjδ . Then

1. j = d + 1;
2. for each g ∈Gι�:
• if ι≤ d then �α(g)= 0;
• if ι= d + 1= j, � < δ then �α(g)= 0;
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3. �α(gε)= gcd(�α(g) : g ∈Gd+1) ∈ F[xd+1];
4. for each a ∈ F;

(a1, . . . , ad, a) ∈ V(Id+1) ⇐⇒ �α(gε)(a)= 0.

This theorem allows us to improve the CRHT–algorithm.
We use variables (x1, . . . , xn−k), (z1, . . . , zt ) and (y1, . . . , yt ) as in FCRHTq , and

we set

Q := Fq [x1, . . . , xn−k] and P := Fq [x1, . . . , xn−k, zt , . . . , z1, y1, . . . , yt ].
Then we consider the following equations:

fi :=
t∑

l=1

ylz
j
l − xi, hj := zn+1

j − zj , λj := yqj − 1, χi := xq
m

i − xi.

We obtain the polynomial equations system:

FCM = {fi, hj , λj ,χi : 1≤ j ≤ t,1≤ i ≤ n− k} ⊂ P .

Remark 6 With respect to FCRHTq this system adds the relations xq
m

i = xi satis-
fied by the syndromes. The role of the polynomials hj ,λj ,χj , is noteworthy, since
they remove all the roots that are in algebraic extensions outside F and they make
the other roots simple. This means that the syndrome ideal I , which is a zero-
dimensional ideal, is also radical.

Let G be the reduced Gröbner basis of the I w.r.t. the lex ordering < induced by
x1 < · · ·< xn−k < zt < · · ·< z1 < y1 < · · ·< yt . Let us then denote, for each ι≤ n
and each � ∈N

Gι :=G∩Q[zt , . . . , zι] and Gι� := {g ∈Gι \Gι+1 : degxι (g)= �}.
Moreover, we enumerate each Gι� as

Gι� := {gι�1, . . . , gι�jι�}, T(gι�1) < · · ·< T(gι�jι� ).

Theorem 8 With the above notation, we have:

• if � < ι then Gι� = ∅;
• if � > ι then �= n+ 1,Gι� = {zn+1

ι − zι}.
For each g ∈Gιι,

Lp(g)(s1, . . . , sn−k,0, . . . ,0) �= 0 ⇐⇒ g(s1, . . . , sn−k,0, . . . ,0, zμ) �= 0.

If the error has weight μ, then, for each g ∈Gιι,
1. if ι < μ then g(s1, . . . , sn−k,0, . . . ,0, zι)= 0;
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2. if ι= μ and Lp(g)(s1, . . . , sn−k,0, . . . ,0) �= 0 then

0 �= g(s1, . . . , sn−k,0, . . . ,0, zμ)= zμμLe(zμ);
3. if ι= μ+ 1 and Lp(g)(s1, . . . , sn−k,0, . . . ,0) �= 0 then

g(s1, . . . , sn−k,0, . . . ,0, zι)= zι · (zμι Le(zι));
4. if ι > μ+ 1 and Lp(g)(s1, . . . , sn−k,0, . . . ,0) �= 0 then

zι · (zμι Le(zι)) | g(s1, . . . , sn−k,0, . . . ,0, zι).

Example 5 We consider the cyclic code [15,5,7] over F2 and defining set {1,3,5}.
The syndrome ideal I is generated by:

{z1 + z2 + z3 + x1, z
3
1 + z3

2 + z3
3 + x3, z

5
1 + z5

2 + z5
3 + x5, x

16
1 + x1,

x16
2 + x2, x

16
3 + x3, z

16
1 + z1, z

16
2 + z2, z

16
3 + z3}.

The relevant part of the reduced Gröbner basis of I is1

g3 3 1 = z3
3(x2x3

3 + x2)+ z2
3x1x2x

3
3 + z2

3x1x2 + z3x
11
1 x

3
2 + z3x

8
1x

4
2x

3
3

+ z3x
6
1x

3
2x3 + z3x

5
1x

10
2 + z3x

5
1x

5
2x

3
3 + z3x

5
1x

3
3 + z3x

4
1x

2
2x

2
3 + z3x

3
1x

4
2x3

+ z3x
2
1x

11
2 x

3
3 + z3x

2
1x

11
2 + z3x

2
1x

6
2x

3
3 + z3x

2
1x

6
2 + z3x1x

8
2x

2
3 + z3x1x

3
2x

2
3

+ z3x
10
2 x3 + z3x

5
2x3 + z3x3 + x121 x32 + x81x2x

2
3 + x71x

8
2x3 + x71x

3
2x3

+ x61x
10
2 + x61x

3
3 + x51x

12
2 x23 + x41x

9
2x3 + x31x

11
2 + x31x

6
2x

3
3 + x31x

6
2

+ x31x2x
3
3 + x31x2 + x21x

13
2 x23 + x1x

15
2 x3 + x1x

10
2 x3 + x1x3

+ x122 x33 + x72x
3
3 + x22,

g3 3 2 = z3
3(x

5
2 + x3

3)+ z2
3x1x

5
2 + z2

3x1x
3
3 + z3x

11
1 x

2
2 + z3x

8
1x

13
2 x

3
3 + z3x

8
1x

8
2

+ z3x
8
1x

3
2 + z3x

7
1x

5
2x

2
3 + z3x

6
1x

7
2x3 + z3x

5
1x

14
2 x

3
3 + z3x

5
1x

9
2x

3
3 + z3x

5
1x

9
2

+ z3x
4
1x2x

2
3 + z3x

3
1x

13
2 x3 + z3x

2
1x

10
2 x

3
3 + z3x

2
1x

5
2x

3
3 + z3x

2
1x

5
2 + z3x

2
1

+ z3x1x
12
2 x

2
3 + z3x1x

7
2x

2
3 + z3x

9
2x3 + x121 x22 + x81x

5
2x

2
3 + x71x

12
2 x3

+ x71x
2
2x3 + x61x

9
2x

3
3 + x61x

4
2 + x51x2x

2
3 + x41x

13
2 x3 + x31x

15
2

+ x31x
10
2 x33 + x31x

10
2 + x31x

3
3 + x31 + x21x

2
2x

2
3 + x1x

9
2x3 + x112 ,

g3 3 3 = z3
3(x1 + x2

2x2
3)+ z2

3x
2
1 + z2

3x1x
2
2x

2
3 + z3x

12
1 x

2
2 + z3x

8
1x

5
2x

2
3 + z3x

8
1x

2
3

1The bold polynomials are the leading polynomials, the typewriter ones are the trailing poly-
nomials.
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+ z3x
7
1x

12
2 x3 + z3x

7
1x

7
2x3 + z3x

7
1x

2
2x3 + z3x

6
1x

14
2 x

3
3 + z3x

6
1x

9
2x

3
3 + z3x

6
1x

9
2

+ z3x
5
1x

11
2 x

2
3 + z3x

5
1x2x

2
3 + z3x

4
1x

13
2 x3 + z3x

4
1x

8
2x3 + z3x

4
1x

3
2x3

+ z3x
3
1x

10
2 x

3
3 + z3x

3
1x

10
2 + z3x

3
1x

5
2x

3
3 + z3x

3
1x

5
2 + z3x

2
1x

12
2 x

2
3 + z3x1x

4
2x3

+ z3x
11
2 x

3
3 + z3x

6
2x

3
3 + x101 x32 + x81x

12
2 x3 + x81x

7
2x3 + x71x

4
2x

3
3

+ x61x
11
2 x23 + x61x

6
2x

2
3 + x51x

8
2x3 + x51x

3
2x3 + x41x

15
2 + x41x

10
2

+ x41x
5
2x

3
3 + x31x

7
2x

2
3 + x21x

4
2x3 + x1x

11
2 + x1x

6
2x

3
3 + x1x

6
2

+ x132 x23 + x82x
2
3,

g3 16 1 = z16
3 + z3,

g2 2 1 = z2
2(x2x3

3 + x2)+ z2z3(x2x3
3 + x2)+ z2x1(x2x3

3 + x2)+ z2
3x2x

3
3 + z2

3x2

+ z3x1x2x
3
3 + z3x1x2 + x111 x32 + x81x

4
2x

3
3 + x71x2x

2
3 + x61x

3
2x3

+ x51x
10
2 + x51x

5
2x

3
3 + x51x

3
3 + x41x

2
2x

2
3 + x31x

4
2x3 + x21x

11
2 x33 + x21x

11
2

+ x21x
6
2x

3
3 + x21x

6
2 + x1x

8
2x

2
3 + x1x

3
2x

2
3 + x102 x3 + x52x3 + x3,

g2 2 2 = z2
2(x

5
2 + x3

3)+ z2z3(x5
2 + x3

3)+ z2x1(x5
2 + x3

3)+ z2
3x

5
2 + z2

3x
3
3 + z3x1x

5
2

+ z3x1x
3
3 + x111 x22 + x81x

13
2 x33 + x81x

8
2 + x81x

3
2 + x71x

5
2x

2
3 + x51x

9
2x

3
3

+ x51x
9
2 + x41x2x

2
3 + x31x

13
2 x3 + x21x

10
2 x33 + x21x

5
2x

3
3 + x21x

5
2 + x21

+ x1x
12
2 x23 + x1x

7
2x

2
3 + x92x3,

g2 2 3 = z2
2(x1 + x2

2x2
3)+ z2z3(x1 + x2

2x2
3)+ z2x1(x1 + x2

2x2
3)+ z2

3x1 + z2
3x

2
2x

2
3

+ z3x
2
1 + z3x1x

2
2x

2
3 + x121 x22 + x81x

5
2x

2
3 + x81x

2
3 + x71x

12
2 x3 + x71x

7
2x3

+ x71x
2
2x3 + x61x

14
2 x33 + x61x

9
2x

3
3 + x61x

9
2 + x51x

11
2 x23 + x51x2x

2
3

+ x41x
13
2 x3 + x41x

8
2x3 + x41x

3
2x3 + x31x

10
2 x33 + x31x

10
2 + x31x

5
2x

3
3

+ x31x
5
2 + x21x

12
2 x23 + x1x

4
2x3 + x112 x33 + x62x

3
3,

g2 2 4 = z2
2(z3 + x2

2x2
3)+ z2z3(z3 + x2

2x2
3)+ z2x1(z3 + x2

2x2
3)+ z2

3x
2
2x

2
3 + z3x1x

2
2x

2
3

+ x121 x22 + x81x
5
2x

2
3 + x81x

2
3 + x71x

12
2 x3 + x71x

7
2x3 + x71x

2
2x3

+ x61x
14
2 x33 + x61x

9
2x

3
3 + x61x

9
2 + x51x

11
2 x23 + x51x2x

2
3 + x41x

13
2 x3

+ x41x
8
2x3 + x41x

3
2x3 + x31x

10
2 x33 + x31x

10
2 + x31x

5
2x

3
3 + x31x

5
2 + x31

+ x21x
12
2 x23 + x1x

4
2x3 + x112 x33 + x62x

3
3 + x2,

g2 16 1 = z16
2 + z2,

g1 1 1 = z1 + z2 + z3 + x1,
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that we can rewrite compactly as

g3 3 1 = z3
3(x2x3

3 + x2)+ · · · +A
g3 3 2 = z3

3(x
5
2 + x3

3)+ · · · +B
g3 3 3 = z3

3(x1 + x2
2x2

3)+ · · · +C
g3 16 1 = z16

3 + z3,

g2 2 1 = z2
2(x2x3

3 + x2)+ · · · +D
g2 2 2 = z2

2(x
5
2 + x3

3)+ · · · +E
g2 2 3 = z2

2(x1 + x2
2x2

3)+ · · · + F
g2 2 4 = z2

2(z3 + x2
2x2

3)+ · · · +G
g2 16 1 = z16

2 + z2, g1 1 1 = z1 + z2 + z3 + x1.

If we restrict our attention to the leading polynomials we note that Lp(g3 3 1)=
Lp(g2 2 1), Lp(g3 3 2) = Lp(g2 2 2) and Lp(g3 3 3) = Lp(g2 2 3). Moreover we can
observe a telescopical behavior, namely:

g3 3 1(x1, x2, x3, z3) = z3g2 2 1(x1, x2, x3,0, z3)+ Tp(g3 3 1)(x1, x2, x3),

g3 3 2(x1, x2, x3, z3) = z3g2 2 2(x1, x2, x3,0, z3)+ Tp(g3 3 2)(x1, x2, x3),

g3 3 3(x1, x2, x3, z3) = z3g2 2 3(x1, x2, x3,0, z3)+ Tp(g3 3 3)(x1, x2, x3),

g2 2 ∗(x1, x2, x3,0, z2) = z2Lp(g2 2 ∗)(z2 + x1)+ Tp(g2 2 ∗)(x1, x2, x3).

We conclude this section with the algorithm proposed in Caboara (2002), which
accepts as input a syndrome vector and outputs an error locator polynomial (see
Table 2).

The decoder performs the following branching:

s2s
3
3 + s2 �= 0 A �= 0 → g3 3 1

A= 0 D �= 0 → g2 2 1
D = 0 → g1 1 1

s2s
3
3 + s2 = 0 s5

2 + s3
3 �= 0 B �= 0 → g3 3 2

B = 0 E �= 0 → g2 2 2
E = 0 → g1 1 1

s5
2 + s3

3 = 0 s1 + s2
2s

2
3 �= 0 C �= 0 → g3 3 3

C = 0 F �= 0 → g2 2 3
F = 0 → g1 1 1

s1 + s2
2s

2
3 = 0 s2

2s
2
3 �= 0G �= 0 → g2 2 4

G= 0 s1 �= 0→ g1 1 1
s1 = 0→ 1

s2
2s

2
3 = 0 s1 �= 0 → g1 1 1

s1 = 0 → 1
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Table 2 Caboara decoding
algorithm Input μ := t , g := 1,

Repeat

j := 0

Repeat j := j + 1

Until Lp(gμμj )(s,0) �= 0 or j > jμμ
if j > jμμ then μ := μ− 1 else

if Tp(gμμj )(s,0)= 0 do μ := μ− 1

else g(z) := gμμj (s,0, z);
Until g �= 1 or μ= 0

Output μ, xμg(x−1)

Remark 7 (Caboara 2002) reports also a proposal (suggested by M. Sala) of com-
puting and processing, for each μ,1 ≤ μ ≤ t , the Gröbner basis of the ideal, en-
coding only the case in which there are exactly μ errors and performing a post-
processing using Gröbner technology in order to improve the syndrome test. The
result (still for {1,3,5}) is a very promising decision tree:

s2 = 0 s3 = 0 =⇒ L = 1
s2 = 0 s3 �= 0 =⇒ L = 1+ zs1 + z2s2

1
s5

2 + 1= 0 s3 = 0 s1 = 0 =⇒ L = 1+ z3s2
s5

2 + 1= 0 s3 = 0 s1 �= 0 =⇒ L = 1+ zs1
+z2

(
s11

1 s
2
2s

5
1s

4
2

)+ z3s9
1s

3
2

s5
2 + 1= 0 s3 �= 0 σ = 0 =⇒ L = 1+ zs1
s5

2 + 1= 0 s3 �= 0 σ �= 0 =⇒ L = 1+ zs1
+z2

(
s2

1 + s4
2s

4
3

) (
s5

1s
2
3 + σ−1

)

+z3s2
1s

2
2s3
(
s5

1 + s10
2 s

10
3

)
σ−1

s6
2 + s2 �= 0 s3 = 0 =⇒ L = 1+ zs1 + z2s2

1s
5
2

s6
2 + s2 �= 0 s3

3 �= 0 s1 = 0 =⇒ L = 1+ z2s−1
2 s3 + z3s2

s6
2 + s2 �= 0 s3

3 �= 0 ρ = 0 =⇒ L = 1+ zs1 + z2s9
2s3

s6
2 + s2 �= 0 s3

3 �= 0 s1ρ �= 0 =⇒ L = 1+ zs1
+z2

(
s5

1s
8
2s3 + s3

1s
2
2s

2
3

)
ρ−1

+z2
(
s2

1s
9
2s3 + s13

2 s
2
3

)
ρ−1

+z3s4
1s

3
2s3

+z3s3
1s

5
2 + s1s−1

2 s3 + s−4
2 ,

where ρ := s2
1 + s1s2

2s
2
3 + s−1

2 s3

σ := s1 + s2
2s

2
3 .
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6 The General Error Locator Polynomial

If we consider the syndrome variety V(FCM), then we have that, for any given cor-
rectable syndrome s ∈ (Fqm)n−k , there are some points in V(FCM) that uniquely
determine the error locations and the error values. Unfortunately, in V(FCM) there
are also other points that do not correspond directly to error vectors. Such points are
of type:

(ξ1, . . . , ξμ, ζ, ζ,0, . . . ,0︸ ︷︷ ︸
t−(μ+2)

, y1, . . . , yμ,Y,−Y, y1, . . . , yt−(μ+2)) ,

with ζ any n-th root of unity, Y, yj arbitrary elements in Fq and yj in Fq the error
values corresponding to the error locations ξj . In Orsini and Sala (2005) a new
syndrome variety is proposed, which permits to eliminate these spurious solutions
and to define the general error locator polynomial.

We consider [n, k, d] cyclic codes over Fq , with (q,n)= 1. We need the follow-
ing definition.

Definition 2 Let n ∈N be an integer. We denote by p
ll̃
∈K[z1, . . . , zt ] the polyno-

mial:

p
ll̃
:=
znl − znl̃
zl − zl̃

, 1≤ l < l̃ ≤ t.

We consider a new syndrome ideal I = I(V (FOS)), the O S ideal, as:

F O S = {fi, hj ,χi, λj ,pll̃ ,1≤ l < l̃ ≤ t,1≤ i ≤ n− k, j ∈ S} ⊂ P,

where

fi :=
t∑

l=1

ylz
j
l − xi, p

ll̃
:= z

l̃
zlpll̃ ,

hj := zn+1
j − zj , λj := yq−1

j − 1, χi := xq
m

i − xi.
Let G be the reduced Gröbner basis of I w.r.t. the lex ordering with x1 < · · · <
xn−k < zt < · · ·< z1 < y1 < · · ·< yt . We have

Theorem 9 (Orsini and Sala 2005) Let I and G be as above. Then:

1. G∩Q[z1, . . . , zt ] = ∪ti=1Gi ;

2. Gi =⋃iδ=1Giδ and Giδ �= ∅, 1≤ i ≤ t and 1≤ δ ≤ i;
3. Gii = {gii1}, 1≤ i ≤ t , i.e. exactly one polynomial exists with degree i w.r.t. the

variable zi in Gi ;
4. Lt(gii1)= zii , Lp(gii1)= 1;
5. if 1≤ i ≤ t and 1≤ δ ≤ i − 1, then ∀g ∈Giδ , Tp(g)= 0.
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Let gtt1 be the unique polynomial with degree t w.r.t. variable zt in Gt :

gtt1 = ztt +
t∑

l=1

at−lzt−lt .

The following properties are equivalent:

• there are exactly μ errors;
• at−l(s)= 0 for l > μ and at−μ(s) �= 0;
• gtt1(s, zt )= zt−μ(Le(z));
and imply that σ(z)= zμgtt1(s, z−1). This means that gtt1 is a monic polynomial in
Q[z] which satisfies the following property:

given a syndrome vector s = (s1, . . . , sn−k) ∈ (Fqm)n−k corresponding to an error
with weight μ≤ t , then its t roots are the μ error locations plus zero counted with
multiplicity t −μ,

and is called a general error locator polynomial of C.

Theorem 10 (Orsini and Sala 2005) Every cyclic code possesses a general error
locator polynomial.

Once we have computed a general error locator polynomial for the code C, the
decoding algorithm is straightforward (see Table 3).

Remark 8 The existence of such polynomials for larger class of linear codes is
proved in Giorgetti and Sala (2006, 2009).

Example 6 We consider the cyclic code of Example 5 with the O S syndrome ideal.
The result is already relatively small

g331 = z3
3 + z2

3x1 + z3
(
x3x

9
2 + x3x

8
2x

3
1 + x3x

4
2 + x3x2x

9
1

)

+ z3
(
x15

2 x
2
1 + x14

2 x
5
1 + x13

2 x
8
1 + x12

2 x
11
1 + x11

2 x
14
1

)

+ z3
(
x10

2 x
2
1 + x7

2x
11
1 + x6

2x
14
1 + x5

2x
2
1 + x3

2x
8
1 + x2

2x
11
1 + x2

1

)

+ x3x
9
2x1 + x3x

8
2x

4
1 + x3x

4
2x1 + x3x2x

10
1 + x15

2 x
3
1 + x14

2 x
6
1 + x13

2 x
9
1

+ x12
2 x

12
1 + x11

2 x
15
1 + x10

2 x
3
1 + x7

2x
12
1 + x6

2x
15
1 + x5

2x
3
1 + x3

2x
9
1 + x2

2x
12
1 + x2

Table 3 Orsini–Sala
decoding algorithm Input s= (s1, . . . , sn−k)

μ= t
While at−μ(s1, . . . , sn−k)= 0 do

μ := μ− 1;

Output μ, Le(z)
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but clever guessing inspired by eye-inspection gives a more compact presentation

g331 =A3 +AE +B
where

A := x1 + z3, B := x2 + x3
1 , C := x3 + x5

1 ,

D := x8
2 + x7

2x
3
1 + x3

2 + x9
1 , E := x2

1(B
15 − 1)−Cx2D.

The efficiency of this algorithm obviously depends on the sparsity of the general
error locator polynomial. Even if at present there is no known theoretical proof of the
sparsity of general error locator polynomials, there is some experimental evidence,
at least in the binary case. In Mora et al. (2006) and Orsini and Sala (2007) it is
shown that this algorithm may be applied efficiently to all binary cyclic code with
t ≤ 2 and length n less then 63, as we now detail. Recalling that the following trivial
theorem holds for each binary cyclic codes with t ≤ 2.

Theorem 11 Let C be a code with t = 1 and s a correctable syndrome, then the
general error locator polynomial is LC(X, z)= z+ a, where a ∈ F2[X]. Moreover,
there is one error if and only if a(s) �= 0 and in that case the error location is a(s).

Let C be a code with t = 2, s a correctable syndrome and z̄1 and z̄2 the er-
ror locations. Then LC(X, z)= z2 + az+ b, where a, b ∈ F2[X], and b(s)= z̄1z̄2,
a(s)= z̄1 + z̄2. Moreover, there are two errors if and only if b(s) �= 0, and there is
an error if and only if b(s)= 0 and a(s) �= 0.

Let us now state the main theorems of Mora et al. (2006):

Theorem 12 Let C be a binary [n, k, d] code with n ≤ 61 and d = 3,4 [t = 1].
We denote by S a defining set of C and LC ∈ Fq [x1, . . . , xn−k][z] a general error
locator polynomial. Then there are only four cases:

(1) C has a defining set of type S = {m}, with (n,m) = 1. Then there exists an
integer k modulo n such that LC = z+ xk1 .

(2) C has a defining set of type S = {m,h}, with (m,h) = 1. Then there exist two
integers m′ and h′ modulo n such that

LC = z+ xm′1 x
h′
2 .

(3) C is a sub-code of a code C′ of type (1) or (2) and LC = LC′ .
(4) C is equivalent to a code C′ of type (1), (2) or (3) and LC can be trivially

obtained from LC′ .

The following theorem shows an interesting property for a wide class of 2-error
correcting codes.

Theorem 13 Let C be a code with length 3 ≤ n ≤ 125 (n �= 105) and distance
d = 5,6. Then C is equivalent to a code D s.t. 1 ∈ S.
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From this it is easy to prove that if C is a binary [n, k, d] code with 7≤ n < 63
(n odd) and d = 5,6, then

LC = z2 + x1z+ b(x1, . . . , xn−k),

where b(x1, . . . , xn−k)⊂ F2[x1, . . . , xn−k].

Theorem 14 Let C be a binary [n, k, d]-code with 7≤ n < 63 (n odd) and d = 5,6,
[t = 2]. Then there are seven cases:

1. n is such that the code with defining set {0,1} has distance d ≥ 5;
2. C is a BCH code, i.e. S = {1,3} and

b= xn−1
1 (x3

1 + x2);
3. C admits a defining set S = {1, n− 1, l}, with l = 0, n/3, and

b=
⎧
⎨

⎩

x1x
−1
2 (1+ x3) l = 0
x3

3+1

x
n/3
1 x

2/3n
2 x3+1

l = n/3;

4. C admits a defining set S = {1, n/ l}, for some l ≥ 3;
5. C is one of the following:
n= 31 and S = {1,15}, n= 31 and S = {1,5}, n= 45 and S = {1,21}, n= 51
and S = {1,9}, n= 51 and S = {0,1,5};

6. C is a sub-code of one of the codes of the above cases;
7. C is equivalent to one of the codes of the above cases.

In all cases b is very short and in most cases a formula can be given.

7 A Newton-Based Decoder

A different approach based on Newton identities (3) has been recently proposed
by Augot et al. (2007) (see also Augot et al. 2003): unlike Orsini and Sala (2005),
whose aim is to produce a single general locator, they follow the suggestion given by
Caboara (2002) (Remark 7) of splitting the computation according to the potential
weights. Denote

F (σ̂ )
μ :=

{

σ̂j − (−1)j
∑

1≤l1≤···≤lj≤μ
zl1 · · · zlj ,1≤ j ≤ μ

}

⊂ F[σ̂1, . . . , σ̂μ, z1, . . . , zμ],

F (X)
μ :=

{

xi −
μ∑

j=1

zij ,1≤ i ≤ μ+ n
}

∪ {xi+n − xi,1≤ i ≤ μ} ⊂ F[X,z1, . . . , zμ],
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Iμ ⊂ F[σ̂ ,X,Z] = F[σ̂1, . . . , σ̂μ, x1, . . . , xμ+n, z1, . . . , zμ] := Q

the ideal generated by F (σ̂ )
μ ∪ F (X)

μ , Δμ :=∏μi=1 zi
∏

1≤i<j≤μ(zi − zj ) and I∞μ 2 =
{f ∈ Q : exists n ∈N : fΔnμ ∈ Iμ} ∩ F[σ̂1, . . . , σ̂μ, x1, . . . , xμ+n].
Fact 15 (Augot et al. 2007) Denoting by Gμ the Gröbner basis of I∞μ w.r.t. the lex
ordering induced by σ̂i < xl, l �∈ S and σ̂i > xl, l ∈ S, Tμ :=Gμ ∩ F[xl : l ∈ S], the
following hold

1. I∞μ is a radical 0-dimensional ideal;
2. its roots (σi, sl) are exactly the values σi = (−1)j

∑
1≤l1≤···≤lj≤μ el1 and sl =

∑μ
j=1 e

l
j where e1, . . . , eμ run among the error locations of the words of weight

exactly μ;
3. for each i,1 ≤ i ≤ μ there are piμ, qiμ ∈ F[xl : l ∈ S] such that piμσi − qiμ
∈Gμ;

4. for an error e and the corresponding syndromes (sl : l ∈ S) we have

• the weight of e is μ if and only if t (sl)= 0 for each t ∈ Tμ
• the corresponding error locator polynomial is 1+∑μ

i=1
qiμ(sl )

piμ(sl )
zi .

Thus the associated decoding algorithm consists in

1. (precomputation) For each weight μ compute the Gröbner basis Gμ of I∞μ w.r.t.
the lex ordering induced by σ̂i < xl, l �∈ S and σ̂i > xl, l ∈ S,

2. (precomputation) For each μ and each i extract the polynomials piμ, qiμ ∈ F[xl :
l ∈ S] such that piμσi − qiμ ∈Gμ,

3. (precomputation) For each μ, identify the set Tμ :=Gμ ∩ F[xl : l ∈ S],
4. (on line) for any received word

(a) compute the corresponding syndromes (sl : l ∈ S)
(b) evaluating t (sl), t ∈ Tμ, deduce μ

(c) return Le(z) := 1+∑μ
i=1

qiμ(sl )

piμ(sl )
zi .

Remark 9 Unfortunately, Augot et al. (2007) avoid discussing the size of the data,
thus preventing the reader from to making a fair comparison with the results of
Orsini and Sala (2005). Mainly on the basis of the results of Alonso et al. (1996)
the gut feeling of the first author is that while Augot et al. (2007) loses against
Orsini and Sala (2005) as regards space (μ different error locator polynomials have
necessarily to be stored) probably one should prefer Augot et al. (2007) as regards
time. The reader can in any case reach his own opinion comparing Orsini and Sala
(2005) data (Example 6) with the best available approximation of Augot et al. (2007)
data, namely Remark 7.

For an approach to decode linear codes with Gröbner bases, see Bulygin and
Pellikaan (2009).

2I∞μ can be computed as I∞μ = ¯Iμ ∩ F[σ̂1, . . . , σ̂μ, x1, . . . , xμ+n] where Īμ ⊂ Q[T ] is the ideal gen-

erated by F (σ̂ )
μ ∪F (X)

μ ∪ {1−ΔμT }.
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A Tutorial on AG Code Construction
from a Gröbner Basis Perspective

Douglas A. Leonard

1 Introduction

This tutorial is meant to stimulate interplay between those working with AG codes
and those working with Gröbner bases (Buchberger 1965, 2006), as well as mak-
ing this material more accessible to those not trained in algebraic geometry. It will
be presented in two separate chapters. This first chapter is meant primarily as an
introduction to AG codes, but includes material on producing proper one-point de-
scriptions of these codes as well. The second Chap. (Leonard 2009) contains ma-
terial about syndrome decoding and list decoding. For encoding of AG codes see
Little (2009). The terminology chosen is therefore that of the easily understood con-
cepts of multivariate polynomial rings and ideals of relations among the variables,
which is closer to the notation of function fields, and much more useful computation-
ally than the more standard algebraic geometry terminology. It is also an approach
that generalizes to other projective varieties. Gröbner basics are covered elsewhere
(Mora 2009) in this volume, but there are sections introducing the needed concepts
about weighted orderings and the needed concepts for describing RS and AG codes;
given that the readers of this paper may know one topic but not the other, or may
know both but have not seen this material expressed in a language that can be used
by both. (Those familiar only with RS codes and not AG codes, should be able to
catch on by paying attention to the parity-check or generator functions used in the
examples, since all the algorithms are generalizations of algorithms known for RS
codes.)

History and bibliography, at least through 1998, is sufficiently covered by
Høholdt, Pellikaan, and van Lint in Chap. 10 of the Handbook of Coding Theory
(Høholdt et al. 1998), but some interesting papers in the literature about producing
one-point descriptions relative to this viewpoint are Leonard (2001, 2009), Leonard
and Pellikaan (2003). There are also some recent papers related to finding good AG
codes (Beelen et al. 2006; Garcia and Stichtenoth 2005), which in turn cite the liter-
ature of that topic. Examples are freely “borrowed” from existing literature because
they are described and/or worked differently here, reflecting more or less a decade
of extra insight. Though there is some background material throughout, this is not

D.A. Leonard
Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA
e-mail: leonada@auburn.edu

M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography,
DOI 10.1007/978-3-540-93806-4_6, © Springer-Verlag Berlin Heidelberg 2009
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meant as a “survey” paper, but strictly as a “tutorial” for Gröbner basis methods that
can be applied to AG codes to properly define them (this chapter) and decode them
(Leonard 2009).

Linear codes are described in Augot et al. (2009). They are subspaces of dimen-
sion k of (Fq)n, n being the wordlength. Such codes are the row-spaces of k × n
generator matrices and have (n− k)× n parity-check matrices (generators for the
orthogonal complements or dual codes), given either explicitly or implicitly.

Consider an evaluation matrix Eval with entries Evali,j := fi(Pj ) for some
points Pj and functions fi . The classic RS codes (short for Reed–Solomon) have
both generator and parity-check matrices of this form, with points Pj the non-zero
elements of Fq (with extended RS codes using 0 as well) and functions fi := xi for
some appropriate consecutive sequence of indices i.

Functionally decoded RS codes (those with Eval as parity-check matrix) gener-
ally use syndromes si , the entries of s := rEvalT = eEvalT for decoding by deter-
mining the error e with weight less than d/2, d the minimum distance of the code.
Algorithms such as Berlekamp–Massey or the extended Euclidean algorithm are
used to reduce a syndrome matrix efficiently, to produce an error-locator polyno-
mial, with roots the error positions. There are various other algorithms that can then
be invoked to calculate the error magnitudes. Functionally encoded RS codes (those
with Eval as generator matrix) on the other hand, lend themselves to list-decoding
techniques for recovering a list of messages with some corresponding to codewords
c close to the received word r .

RS codes are maximum-distance-separable codes, satisfying the Singleton
bound, k + d = n + 1. But the wordlength is bounded by the field size q , so that
creating longer length codes requires increasing the field size, or paying a severe
penalty to use subfield subcodes, as with BCH codes.

To generalize these codes to AG codes (short for algebraic geometry codes in
recognition of their origin), first start by thinking of the elements α ∈ Fq as affine
points, then change them to projective points (α : 1) on the projective line over Fq ,
the algebraic closure of Fq ; having one extra point P∞ := (1 : 0), at which the
rational homogeneous functions (x1/x0)

i have all i of their poles. Then Evali,j =
(x1/x0)

i((αj : 1))= (αj /1)i . (So far this is merely a notational change to motivate
the generalization.)

Then consider replacing the projective line by a projective variety,

X := {(xN : · · · : x1 : x0) ∈ PN(Fq) : f (xN, . . . , x1, x0)= 0 for all f ∈ I}
for some ideal I of defining relations (polynomials that should be zero at points
of X ). X is a projective curve, roughly speaking, when there is only one independent
variable relative to these relations. Some such curves have many points and easily
described parameters.

Simple examples of this are Hermitian curves defined projectively by

(
x2

x0

)q
+
(
x2

x0

)

−
(
x1

x0

)q+1

= 0
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or in easier affine terms (without the homogenizing variable x0) by xq2 + x2 − xq+1
1

= 0 having 1+ q3 points rational over Fq2 There are more complicated examples,
such as those from the towers defined by Garcia and Stichtenoth (1996), described
in affine terms by

x
q

i+1 + xi+1 = x
q
i

x
q−1
i + 1

, 1≤ i ≤N.

(Warning such descriptions are not unique, as shall be mentioned in the section on
curve definition below.)

These AG codes pay a penalty, g, relative to the Singleton bound, namely that k+
d ≥ n+1−g. They were initially of interest as a source of codes with k/n+d/n≥
1− (g − 1)/n≥ 1− 1/(

√
q − 1), the Tsfasman–Vlăduţ–Zink bound, which can be

better than the more traditional Gilbert–Varshamov bound, meaning that they had a
reasonably good tradeoff between information rate and relative distance. Moreover,
they were codes with structure to them as well as having good parameters, meaning
that they probably could be efficiently decoded. While these codes can have length
much larger than q , it is at most the Hasse–Weil bound n≤ q + 1+ 2g

√
q .

This chapter of the tutorial will discuss producing a reasonable description (in
terms of the function space of an evaluation matrix) of AG codes from less useful
definitions (as above), while the subsequent chapter (Leonard 2009) will be devoted
to syndrome decoding algorithms for functionally decoded AG codes (called geo-
metric Goppa codes C∗(D,G) in the Handbook of Coding Theory Høholdt et al.
1998 and dual codes in Sakata 2009) and list-decoding algorithms for functionally
encoded AG codes (called geometric Reed–Solomon codes C(D,G) in Høholdt et al.
1998 and primary codes in Sakata 2009). All are topics intimately related to ideals
and their Gröbner bases and Δ-sets (or footprints or standard monomial bases).
However, in general, in the literature, for various reasons, this purely ideal-theoretic
approach is often slighted.

There are example programs for some of this material, written in MAGMA, as
opposed to some generic pseudo-code. Those with access to MAGMA (MAGMA
et al. 2008; Bosma et al. 1997; Cannon and Playoust 1996) can run these easily
enough, while those without such access will have to treat it as fairly readable
pseudo-code. More example calculations and programs should be available on the
author’s Auburn University website: www.dms.auburn.edu/~leonada

2 Traditional AG Approach

A more traditional algebraic geometry approach to curves might start with divisors,
D :=∑P nP · P , with (finite) degree deg(D) :=∑P nP , which are useful addi-
tive bookkeeping devices for keeping track of zeros and poles of functions. As an
example, relative to the Klein quartic, the divisors

(
x1

x0

)

=−2 · P−1 ·Q+3 ·R,
(
x2

x0

)

=−3 · P+2 ·Q+1 ·R

www.dms.auburn.edu/~leonada
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denote that both functions have 3 poles and 3 zeros restricted to the support P :=
(1 : 0 : 0), Q := (0 : 1 : 0), and R := (0 : 0 : 1). In general, (equivalence classes
of rational homogeneous) functions (modulo the curve) necessarily have the same
(finite) number of poles as zeros, except for the identically zero function itself. More
significantly, these functions have Laurent series expansions at each point P on the
curve, written in terms of some local parameter, tP , a function having a simple zero
at P . So, for instance,

x1

x0
= t−2

P + · · · = t−1
Q = t3R + · · · ,

x2

x0
= t−3

P + · · · = t2Q + · · · = t1R
if tP := x1/x2, tQ := x0/x1, and tR := x2/x0.

Divisors are also useful in defining vector spaces modulo the curve; namely

L(D) := {0} ∪ {f : (f )+ D � 0},
meaning that the valuation νP (f ), the trailing exponent in the Laurent series expan-
sion of f at P satisfies νP (f )+ nP (D)≥ 0.

Differentials, df , can also be defined modulo the curve; and by rewriting df =
fP dt (P ), the divisor (df ) :=∑P νP (fP ) ·P can be defined as well. If ω is a fixed
differential, then the Riemann–Roch theorem is:

dim(L(D))− dim(L((ω)−D))= deg(D)− g+ 1

for g the genus of the underlying (smooth projective) curve. And the corollary that
deg((ω))= 2g − 2 suggests a method of computing said genus.

Here the divisor D in the definitions of AG codes above will always be of the
form

∑n
j=1 1 ·Pj , denoting the points used for evaluation. The divisor G , with sup-

port disjoint from that of D, will define the vector space L(G) of functions used
for evaluation. And for one-point AG codes this means G = m · P∞, so that these
functions will have at most a pole of order m at P∞ and no other poles. The code
C∗(D,G) = C(D, (ω)+ D − G), but the encoding is usually described in terms of
the map fω �→ (Res(Pj , f ω) : 1≤ j ≤ n), so that the Residue theorem:

∑

P

Res(P,hfω)= 0

can be invoked to show the duality of the two codes, with residue having the standard
meaning as the coefficient of 1/t (P ) in the Laurent series expansion.1

Riemann–Roch can also be used to show that dim(L(G)) ≥ deg(G) − (g − 1)
with equality when deg(G) > deg(ω). And it can be used as well to show that d ≥
(n− k)− (g− 1), explaining g as a penalty relative to the Singleton bound alluded
to earlier.

1In the literature all that is usually found is the use of entries f (P ) to define a generator matrix G
or parity-check matrixH , with very little reference to the other, defined by evaluating Res(P,f ω).
This is probably because those using functional encoding to get G do not usually use H , and those
using it to define H , limit their investigations to decoding, ignoring G.
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3 Weighted Total-Degree Orders

There are many good books covering introductory material on Gröbner bases, with
Cox et al. (2007) being the author’s favorite. The classical papers by Bruno Buch-
berger himself are Buchberger (1965, 1970, 1998, 1985, 2006). Much information is
in the Gröbner Technology section of this volume, written by Mora (2009); but the
emphasis there is not on the orderings (called term orders there). So the following
is an addendum to Mora (2009) for this purpose. The (default) lexicographical or-
der is based on comparing products by considering their indices (that is, exponents)
lexicographically. So, for instance, in the multivariate polynomial ring F[x3, x2, x1]
the order looks like

1≺ x1 ≺ x2
1 ≺ · · · ≺ x2 ≺ x2x1 ≺ · · · ≺ x2

2 ≺ · · · ≺ x3 ≺ · · ·

which can be described by xi33 x
i2
2 x

i1
1 � xj33 x

j2
2 x

j1
1 iff (i3 > j3) or (i3 = j3 and i2 >

j2) or (i3 = j3 and i2 = j2 and i1 > j1). The total-degree orders of interest here are
the grevlex and wtdeg orders (short for graded reverse lexicographical and weighted
total degree), in which (weighted) total degree is the first concern.

These can be defined in ways similar to that above; but the non-singular matrices

Agrevlex :=
⎛

⎝
1 1 1
1 1 0
1 0 0

⎞

⎠ , Awtdeg :=
⎛

⎝
w3 w2 w1
1 1 0
1 0 0

⎞

⎠

can be used to reduce these to the lexicographical case by converting the column
vector of exponents

⎛

⎝
i3
i2
i1

⎞

⎠ to

⎛

⎝
i3 + i2 + i1
i3 + i2
i3

⎞

⎠ or

⎛

⎝
w3i3 +w2i2 +w1i1

i3 + i2
i3

⎞

⎠

respectively.

4 Hermitian Codes and Affine-Variety Codes

The most common (and easily implemented) examples of one-point AG codes are
those from Hermitian curves alluded to above; but, at the same time, these least ex-
emplify the general theory, as shall be described here. Let q := pm, p a prime. Then
the affine equation Trace(y) := yq + y = xq+1 =: Norm(x) defines an Hermitian
curve in characteristic p by

X := {(x2 : x1 : x0) ∈ P2(Fp) : xq2 x0 + x2x
q

0 − xq+1
1 = 0}
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The rational functions fq := x1/x0 and fq+1 := x2/x0 have divisors

(fq)= (−q) · P∞ +
q−1∑

i=0

1 · Pi, (fq+1)= (−q − 1) · P∞ + (q + 1) · P0

with P∞ := (1 : 0 : 0) and Pi := (αi : 0 : 1), α0 := 0, and αq−1
i +1= 0, 1≤ i ≤ q−1

defined over Fq2 if p is odd, Fq if p is even.
These curves are already in one-point form, since fq and fq+1 clearly have no

poles except at P∞. Also the differential ω := d(fq) has divisor (ω)= (q − 2)(q +
1) ·P∞. So here ω= 1d(tP ) for all P �= P∞. And the genus g = q(q− 1)/2, mean-
ing the (rational) functions f(q+1)i+qj := f iq+1f

j
q , 0 ≤ i < q , 0 ≤ j can be used to

index the rows of both generator and parity-check matrices for the corresponding
linear codes, normally chosen over Fq2 , since there are 1+ q3 = q2 + 1+ 2g

√
q2

rational points there.

If Iq2 := 〈f q2

q+1 − fq+1, f
q2

q − fq〉, then I := 〈Iq2 , f
q

q+1 − f q+1
q + fq+1〉 has

Gröbner basis 〈f qq+1 − f q+1
q + fq+1, f

q2

q − fq〉, with

Δ(I)= {f iq+1f
j
q , 0≤ i < q, 0≤ j < q2}

of size n= q3. In the examples below, with q = 4, the elements of {0, γ 0, γ 5, γ 10}
have trace 0, those of {γ 1, γ 2, γ 4, γ 8} have trace 1, those of {γ 6, γ 9, γ 7, γ 13} have
trace γ 5, and those of {γ 12, γ 3, γ 14, γ 11} have trace γ 10. And xi = 1, γ 5, γ 10 for
i ≡ 0,1,2 (mod 3) respectively. This describes all 64 points other than P∞.

Some of the reasons why these curves are atypical are:

1. most good curves are not given initially in one-point form;
2. most curves (in affine form) are not described by only one defining relation in

two variables;
3. there are usually functions (used to define either the generator or parity-check

matrices) that are not monomials in the given variables;
4. most codes need different sets of functions to define generator and parity-check

matrices, because (ω) is not usually a multiple of P∞.

It is also possible to think of AG codes strictly in terms of ideals in multivariate
polynomial rings, meaning it is possible to choose a (necessarily finite) set of affine
points V ⊆ (Fq)s , produce by interpolation the ideal I(V ) having V as its variety,
and think of X as having intersection V with (Fq)s , without ever really defining it.
The codes gotten by evaluating some f ∈Δ(I) on the points of V are called affine-
variety codes for obvious reasons. Reed–Muller codes (and hence extended Reed–
Solomon codes as well) can be viewed this way with V := F

s
q and I := Iq := 〈xq1 −

x1, . . . , x
q
s − xs〉. Conceivably it is possible to consider all these as AG codes, but

it is probably better, in general, to limit the usage of the term AG code to V⊆V(I )
for I describing a curve (or surface), since any linear code over Fq can be viewed
as an affine-variety code.

A recent interesting approach is that of Order Domain codes (Geil 2009).
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5 Curve Definition

Producing descriptions of codes from curves can be done in various ways. For
instance, the standard projective description of the Klein quartic in characteris-
tic 2 (which has 24 rational points over F8) is x3

2x0 + x3
1x2 + x3

0x1 = 0, but a
proper description for use as a one-point AG code is given in affine terms by
f 2

7 + f5f
3
3 + f7 = 0, f7f5 + f 4

3 + f5 = 0, and f 2
5 + f7f3 = 0 for f3 := x2/x0,

f5 := x2x1/x
2
0 , and f7 := x2x

2
1/x

3
0 , this being an induced Gröbner basis gotten from

the standard description after changing variables. (21 of the 24−1 affine points over
F8 := F2[β]/(1+ β + β3) have f3(P ) := β5i , f5(P ) := β6iδj and f7(P ) := δ2

j for

δ3
j + δj + 1= 0; the other two having f3(P )= 0= f5(P ) and f7(P ) ∈ {0,1}.) And

there is a two-point description given by x3
1x2 + x3

2(x2 + x1 + x0) + (x2 + x1 +
x0)

3x1 = 0 with the 2 points at infinity, rational over F4, not F8.
One-point AG codes, that is, those described by the functions from L(m · P∞)

(with poles only at P∞ and of pole order at most m there), will have an Fq [fρ]-
module basis of size ρ with elements having smallest possible pole sizes for each
i mod (ρ); said functions describing the multivariate polynomial ring used, and an
ideal of relations describing the multiplication of those functions, modulo X . For
some results on the relations between multi-point codes and one-point codes, see
Matthews (2009).

The problem is that X is not usually given in a such a friendly manner. Consider
the curve described by:

x2
2 + x2 = x2

1

x1 + 1
, x2

3 + x3 = x2
2

x2 + 1

in characteristic 2, an example from the second towers found by Garcia and
Stichtenoth. While this may define the curve X , it doesn’t allow for evaluation at
several points at which some of the variables have poles. (In fact some points P can-
not even be described in terms of the projective coordinates x3(P ), x2(P ), x1(P ),
and x0(P ).)

The following MAGMA code first uses a change of variables to x4, x6 :=
x2(x4 + 1) and x7 := x1(x2 + 1)(x4 + 1) with poles of orders 4, 6, and 7 at some
point P∞ and no other poles, followed by a computation of a valueΔ ∈ F2[x4] such
that L(m ·P∞)⊆ 1/ΔF2〈1, y6, y7, y7y6〉/I for I := 〈x2

7+x7(x6+x4)+x6x
2
4 , x

2
6+

x6(x4+1)+x2
4(x4+1)〉, followed by an implementation of the author’s q-th power

algorithm (that suffices for this and some similar examples) to produce the missing
function y5, to get a full set of parity-check functions L(m · P∞ for the AG codes
related to this curve.

q:=2;
F:=FiniteField(q);
wt:=[7,6,4];
n:=#wt;r:=n-1;
P<x1,x2,x7,x6,x4>:=PolynomialRing(F,n+r);
e1:=x1*(x1+1)*(x2+1)-x2^2;
e2:=x2*(x2+1)*(x4+1)-x4^2;
def6:=x2*(x4+1)-x6;
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def7:=x1*(x2+1)*(x4+1)-x7;
I:=ideal<P|e1,e2,def6,def7>;
EI:=EliminationIdeal(I,r);
GI:=GroebnerBasis(EI);
JM:=JacobianMatrix(GI);
M:=Minors(JM,n-1);
J:=ideal<P|GI,M>;
GJ:=GroebnerBasis(J);
d:=GJ[#GJ];
"---------------------------------";
R:=PolynomialRing(F,n,"grevlexw",wt);
AssignNames(~R,["y7","y6","y4"]);
x:=R.n;
hPR:=hom<P->R|0,0,R.1,R.2,R.3>;
wR:=function(ff)

return &+[Degree(LeadingMonomial(ff),R.i)*wt[i]: i in [1..n]];
end function;
IR:=ideal<R|[GI[i]@hPR:i in [1..#GI]]>;
GR:=GroebnerBasis(IR);
QR:=quo<R|IR,R.n-1>;
N0:=MonomialBasis(QR);
h0:=hom<QR->R|[R.i:i in [1..n]]>;
M0:=h0(N0);
dR:=d@hPR;"Delta=",dR;
"---------------------------------";
for i in [1..#M0] do

"B[",wR(M0[i])-wR(dR),"]=",M0[i];
end for;
DR:=(dR)^(q-1);
nf:=function(gg)

return NormalForm(gg^q,IR);
end function;
LT:=function(ff) return LeadingTerm(ff); end function;
LM:=function(ff) return LeadingMonomial(ff); end function;
LC:=function(ff) return LeadingCoefficient(ff); end function;
N:=wR(dR)+1+Maximum([wR(M0[i]):i in [1..#M0]]);
zero:=[R|0: i in [1..N]];

change:=true;
while change do

change:=false;
g_new:=zero;
k:=zero;
Bnew:=[];
for i in [1..#M0] do

j:=1+wR(M0[i]);
g_new[j]:=M0[i];
k[j]:=nf(g_new[j]);

end for;
"------------------------------";

loop:=true;
i:=1;
while loop and (i le N) do

loop:=false;
empty:=false;
if g_new[i] eq 0 then

loop:=true;
i+:=1;
empty:=true;

end if;
if empty eq false then

if k[i] eq 0 then
Append(~Bnew,i);
"B[",i-wR(dR)-1,"]=",g_new[i];
loop:=true;
i+:=1;

else
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for j in [1..#M0] do
bool,qu:=IsDivisibleBy(LT(k[i]),LT(M0[j]*DR));
if bool then

k[i]-:=qu*M0[j]*DR;
loop:=true;
break;

end if;
end for;
if (i gt 1) and (loop eq false) then

lki:=LM(k[i]);
for j in [1..i-1] do

if k[j] ne 0 then
if lki eq LM(k[j]) then

lc:=LC(k[i])/LC(k[j]);
g_new[i]-:=lc*g_new[j];
k[i]-:=lc*k[j];
loop:=true;
change:=true;
break;

end if;
end if;

end for;
end if;
if loop eq false then

j:=i+wt[n];
g_new[j]:=g_new[i]*x;
k[j]:=k[i]*x^q;
loop:=true;
change:=true;
i+:=1;

end if;
end if;

end if;
end while;
M0:=[g_new[i]:i in Bnew];

end while;

W:=wR(dR)+1;
"-------------------------------------------";
S:=PolynomialRing(F,4,"grevlexw",[7,6,5,4]);
AssignNames(~S,["s7","s6","s5","s4"]);
hSR:=hom<S->R|g_new[7+W],g_new[6+W],g_new[5+W],g_new[W]*x>;
nn:=wt[n];
hRS:=hom<R->S|0,0,S.nn>;
BB:=[R|0: i in [1..nn]];
for i in Bnew do

j:=wR(LT(g_new[i])) mod nn +1;
BB[j]:=g_new[i];

end for;
s:=[S.(nn+1-i):i in [1..nn]];
s[1]:=1;
module:=function(i,j)

ff:=NormalForm((s[i]*s[j])@hSR,IR) div dR;
MM:=[R|0: i in [1..nn]];
while ff ne 0 do

j:=wR(LM(ff)) mod nn +1;
k:=LT(ff) div LT(BB[j]);
ff-:=k*BB[j];
MM[j]+:=k;

end while;
return MM;

end function;
SS:=[S|];
for i in [2..nn] do

for j in [2..i] do
mm:=module(i,j)@hRS;
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ms:= &+[mm[k]*s[k]:k in [1..nn]];
nij:=(s[i]*s[j])-ms;
Append(~SS,nij);

end for;
end for;
SI:=ideal<S|SS>;
SG:=GroebnerBasis(SI);
"A Grobner basis for the induced ideal is",SG;

Since there are other methods of producing the these functions (such as using
MAGMA’s IntegralClosure function or SINGULAR’s normal function), perhaps
a few words of explanation are in order, though there are various descriptions avail-
able in Leonard (2001), Leonard and Pellikaan (2003), and Leonard (2009). The
integral closure ic(R) of a ring R (in this case, R = F2[x7, x6, x4]/I ) in its field of
fractions is the ring of all elements satisfying a monic (that is, having leading coeffi-
cient 1) polynomial with coefficients from R (in this case, ic(R)=⋃m L(m ·P∞)).
Standard methods produce ic(R) by finding a nested sequence of larger and larger
rings living between R and ic(R). The q-th power algorithm finds a module M0

of the form Δ−1R, (with Δ only involving the independent variable(s), in this case
just x4) known to contain ic(R), and then produces a nested sequence of smaller
modules known to stabilize at ic(R). These modules are easily described mathe-
matically by Mi+1 := {f ∈Mi : NormalForm(f q,I) ∈Mi}, and easily produced
by an algorithm (such as the single-variable implementation given above) which is
linear over Fq . (The competing algorithms were designed to work over characteris-
tic 0, to work on number fields, and not with any idea of weights in mind; so they
do not immediately provide an appropriate description for this type of application.)

The output of the MAGMA program above, modified to be more readable,
gives Δ := y2

4 , and F2-module bases for ΔMi as B0 := {1, y6, y7, y7y6}, B1 :=
{y4, y6y4, y7y4, y7y6}, B2 := {y2

4 , y7y6 + y6y4, y6y
2
4 , y7y

2
4} =: B3, meaning the

missing function is y5 := (y7y6 + y6y4)/y
2
4 . The curve can then be properly de-

fined in one-point form as F2[y7, y6, y5, y4]/J for J the ideal of induced relations
(also produced by the code above) as

J := 〈y2
7 + y6y

2
4 + y5y

2
4 + y7y4 + y6y4 + y7,

y7y6 + y5y
2
4 + y6y4,

y2
6 + y3

4 + y6y4 + y2
4 + y6,

y7y5 + y3
4 + y7y4 + y6y4 + y5y4 + y2

4 + y7,

y6y5 + y7y4 + y5y4 + y2
4 + y7 + y5 + y4,

y2
5 + y6y4 + y5y4 + y2

4 + y6 + y5 + y4〉.

The codes over F4 are then functionally encoded or functionally decoded rela-
tive to (some of) the n = 13 functions f0 := 1, f4 := y4, f5 := y5, f6 := y6, f7 :=
y7, f8 := y2

4 , f9 := y5y4, f10 := y6y4, f11 := y7y4, f12 := y3
4 , f13 := y5y

2
4 , f14 :=

y6y
2
4 , f15 := y7y

2
4 as generator or parity-check functions respectively. The n = 13
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affine points rational over F4 correspond to the variety of the above ideal J (inter-
sected with 〈y4

4 − y4, y
4
5 − y5, y

4
6 − y6, y

4
7 − y7〉 to restrict the curve to that sub-

field. In particular (y7(P ), y6(P ), y5(P ), y4(P )) is a coordinatization of the affine
point P .

A slightly more complicated example of producing a one-point AG code descrip-
tion is:

pI (T ) :=
m∑

k=0

akT
k ∈ Fq [T ]

be monic and irreducible. Define inductively, Pk ∈ Fq [x, y] by P0(x, y) := 1 and

Pk+1(x, y) := xPk(x, y)q2 + yPk(x, y)q for k ≥ 0.

Then let

F(x, y)= FI (x, y) :=
m∑

k=0

akPk(x, y).

The equation FI (x, y)= 0 is an analogue of the modular equation.
As a small example, let q := 2 and pI (T ) := 1+ T + T 3. Then

P1(x, y)= x + y, P2(x, y)= x5 + x2y + xy4 + y3,

P3(x, y)= x21 + x10y + x9y4 + x5y16 + x4y3 + x2y9 + xy12 + y7,

F (x, y)= x21 + x10y + x9y4 + x5y16 + x4y3 + x2y9 + x(y12 + 1)

+ (y7 + y + 1).

Start by using x1 := x and x2 := y + x to get

x5
1(x

16
2 + x8

2)+ x3
1(x

8
2 + x4

2)+ x2
1(x

9
2 + x5

2)+ x1(x
12
2 + x6

2)+ (x7
2 + x2 + 1),

(x1)= (−8) · P1 + (−4) · P2 + (−4) · P3 + 5 · P4 + 4 · P5 +
7∑

j=1

1 ·Qj,

(x2)= 0 · P1 + 2 · P2 + 3 · P3 + (−1) · P4 + (−4) · P5 +
7∑

j=1

0 ·Qj .

Use y2 := x1x2 to get

x11
1 + x10

1 (y
4
2 + y2)+ x8

1(y
8
2 + y5

2)+ x6
1(y

8
2 + y6

2)+ x4
1(y

9
2 + y7

2)+ (y16
2 + y12

2 ),

(y2)= (−8) · P1 + (−2) · P2 + (−1) · P3 + 4 · P4 + 0 · P5 +
7∑

j=1

1 ·Qj .

Use y1 := x1/y2, to get

y11
1 + y10

1 (y
3
2 + 1)+ y8

1(y
5
2 + y2

2)+ y6
1(y

3
2 + y2)+ y4

1(y
2
2 + 1)+ (y5

2 + y2),
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(y1)= 0 · P1 + (−2) · P2 + (−3) · P3 + 1 · P4 + 4 · P5 +
7∑

j=1

0 ·Qj .

Use z2 := y2(y1 + 1)2 to get

z5
2 + z3

2y
6
1 + z2

2(y
6
1 + y4

1)+ z2(y
6
1 + 1)+ y4

1(y1 + 1)2(y7
1 + y1 + 1),

(z2)= 2 · P1 + (−6) · P2 + (−7) · P3 + 4 · P4 + 0 · P5 +
7∑

j=1

1 ·Qj .

Use

h21 := y7
1 + z2

2y1 + z2y
2
1 + z2 + y2

1 ,

h25 := z2y
6
1 + z3

2 + z2
2y1 + z2y1 + y5

1 + y3
1 + y2

1 + 1,

to get a single defining relation:

h21
25 + h20

25h21 + h18
25(h

3
21 + h21 + 1)+ h17

25(h
3
21 + 1)

+ h16
25(h

4
21 + h21)+ h15

25(h
7
21 + h6

21 + h3
21 + h21 + 1)+ h14

25h
7
21

+ h13
25(h

8
21 + h7

21 + h6
21 + h4

21 + h3
21 + 1)+ h12

25(h
9
21 + h8

21 + h4
21 + 1)

+ h11
25(h

11
21 + h9

21 + h8
21 + h5

21 + h4
21 + h3

21 + h2
21)

+ h10
25(h

12
21 + h9

21 + h8
21 + h7

21 + h5
21 + h3

21 + h21 + 1)

+ h9
25(h

14
21 + h13

21 + h10
21 + h9

21 + h8
21 + h7

21 + h6
21 + h3

21 + h2
21 + 1)

+ h8
25(h

13
21 + h9

21 + h8
21 + h6

21 + h4
21 + h3

21 + h21)

+ h7
25(h

16
21 + h15

21 + h13
21 + h12

21 + h11
21 + h7

21 + h3
21 + h21)

+ h6
25(h

17
21 + h16

21 + h13
21 + h9

21 + h8
21 + h21)

+ h5
25(h

17
21 + h16

25 + h12
25 + h7

21 + h5
21 + h2

21 + h21 + 1)

+ h4
25(h

19
21 + h16

21 + h15
21 + h12

21 + h6
21 + h5

21 + h3
21 + 1)

+ h3
25(h

18
21 + h15

21 + h12
21 + h10

21 + h9
21 + h7

21 + h4
21 + h21)

+ h2
25(h

22
21 + h21

21 + h20
21 + h18

21 + h13
21 + h12

21 + h9
21 + h8

21 + h7
21 + h5

21 + h4
21 + h3

21)

+ h25(h
23
21 + h22

21 + h20
21 + h17

21 + h15
21 + h14

21 + h12
21 + h9

21)

+ (h25
21 + h23

21 + h19
21 + h17

21 + h15
21 + h13

21 + h11
21 + h5

21).

But then the q-th power algorithm produces the integral closure:

F2[h16, h15, h13, h12, h11, h10, h7]/I;
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with I having Gröbner basis consisting of

h2
10 + h13h7 + h11h7 + h10h7 + h15 + h13,

h11h10 + h3
7 + h13h7 + h15 + h13 + h11 + h10,

h2
11 + h15h7 + h13h7 + h12h7 + h15 + h13 + h11 + h10,

h12h10 + h15h7 + h13h7 + h12h7 + h12,

h12h11 + h16h7 + h12h7 + h10h7,

h2
12 + h10h

2
7 + h16h7 + h15h7 + h3

7 + h13h7 + h12h7 + h11h7 + h14 + h12 + h7,

h13h10 + h16h7 + h15h7 + h13h7 + h12h7 + h11h7 + h2
7 + h12 + h7,

h13h11 + h10h
2
7 + h16h7 + h11h7 + h13 + h10 + h7 + 1,

h13h12 + h11h
2
7 + h15h7 + h12,

h2
13 + h12h

2
7 + h10h

2
7 + h15h7 + h15h

2
7 + 1,

h15h10 + h11h
2
7 + h13h7 + h15 + h7,

h15h11 + h12h
2
7 + h11h

2
7 + h10h

2
7 + h15h7 + h13h7 + h15 + h2

7 + h7,

h15h12 + h13h
2
7 + h12h

2
7 + h10h

2
7 + h15h7,

h15h13 + h4
7 + h13h

2
7 + h12h

2
7 + h10h

2
7 + h15h7 + h10h7 + h2

7 + h7,

h2
15 + h16h

2
7 + h4

7 + h12h
2
7 + h11h

2
7 + h10h

2
7 + h15h7 + h10h7 + h15 + h2

7 + h7,

h16h10 + h12h
2
7 + h11h

2
7 + h13h7 + h16 + h10 + h7 + 1,

h16h11 + h13h
2
7 + h11h

2
7 + h15h7 + h13h7 + h12h7 + h16 + h2

7 + h11 + h7 + 1,

h16h12 + h4
7 + h12h

2
7 + h11h

2
7 + h10h

2
7 + h16h7 + h12h7 + h12 + h7,

h16h13 + h4
7 + h13h

2
7 + h10h

2
7 + h16h7 + h10h7 + h16 + h15 + h2

7 + h13 + 1,

h16h15 + h10h
3
7 + h4

7 + h12h
2
7 + h11h

2
7 + h10h

2
7 + h15h7 + h3

7 + h10h7 + h7,

h2
16 + h11h

3
7 + h16h

2
7 + h15h

2
7 + h4

7 + h13h
2
7 + h15h7 + h12h7 + h10h7

+ h16 + h2
7 + h7.

As a by-product, the smallest type I representation (relative to this choice of P∞)
would then be in terms of the single polynomial relating h10 and h7:

h7
10 + h6

10h7 + h5
10(h

2
7 + 1)+ h4

10(h7 + 1)+ h3
10(h

5
7 + h4

7 + h2
7 + 1)

+ h2
10(h

7
7 + h6

7 + h3
7 + h2

7 + 1)+ h10(h
7
7 + h6

7 + h5
7 + 1)

+ (h10
7 + h9

7 + h8
7 + h7

7 + h4
7 + h3

7 + h2
7 + h7 + 1).
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Automorphisms and Encoding of AG and Order
Domain Codes

John B. Little

Abstract We survey some encoding methods for AG codes, focusing primarily on
one approach utilizing code automorphisms. If a linear code C over Fq has a finite
Abelian groupH as a group of automorphisms, then C has the structure of a module
over a polynomial ring P . This structure can be used to develop systematic encoding
algorithms using Gröbner bases for modules. We illustrate these observations with
several examples including geometric Goppa codes and codes from order domains.

1 Introduction

In order for a code to be useful in practice, it should admit efficient encoding and ef-
ficient decoding. Although most of the research effort on algebraic geometric (AG)
Goppa codes from curves has focused on the decoding side, several approaches have
been considered for encoding as well.

In this article we will briefly survey several approaches to encoding these codes.
We will then concentrate on a systematic encoding method based on the fact that
codes possessing permutation automorphisms have the structure of modules over
polynomial rings. This discussion is based on Heegard et al. (1995), which shows
how to use module Gröbner bases (Buchberger 1965, 1985, 2006; Mora 2009)
for such codes to construct encoders. This approach is a direct generalization of
the commonly-used polynomial division encoding method for cyclic codes that
appears in most textbook treatments of coding theory. The module Gröbner ba-
sis furnishes an analog of the generator polynomial of a cyclic code (see Theo-
rem 2). This particular connection between encoding and Gröbner bases was well-
established previously in the case of Abelian (m-dimensional cyclic) codes. See,
for instance, Poli and Huguet (1992), Sect. 6.1.6, or Chap. 9 of Cox et al. (2005).
Since it relies only on the presence of suitable groups of code automorphisms,
it applies to many classes of codes, including cyclic (Augot et al. 2009), quasi-
cyclic (Lally 2009), Abelian, and many Goppa-type evaluation codes (Leonard
2009; Sakata 2009) from curves, higher-dimensional varieties, and order domains
(Geil 2009). In the last three cases, interesting code automorphisms often arise from
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automorphisms of the underlying algebraic variety (see Sect. 6). Some results on im-
plementation of this approach in hardware for the case of codes from the Hermitian
curves considered in Sect. 7 have been reported by Chen and Lu (2004).

To conclude this introduction, we note that codes with sufficiently large auto-
morphism groups may also be amenable to permutation decoding. In this decoding
method, a fixed collection of code automorphisms is applied to the received word.
If the error weight is sufficiently small, at least one of the automorphisms will move
the errors out of the information positions. Then the correct information symbols can
be re-encoded to accomplish the decoding. Chabanne (1992) has considered this de-
coding method from the point of view of Gröbner bases in the case of Abelian codes,
and [L1] gives an example for a Hermitian code.

2 Other Encoding Methods for AG Goppa Codes

The most basic encoding method for these codes simply treats them as linear codes
and uses matrix multiplication of the information word with any generator matrix
G to do the encoding.

Matsumoto et al. (1997) propose a faster encoding method for the one-point
residue codes CΩ(D,mQ) (and also their dual codes). This method is based on
the structure of a special basis

{xiωj : i ≥ 0,0≤ j ≤ a − 1, vQ(x
iωj )≥m}

for the vector space of differentials Ω(mQ − D). Here x is an element of the
Riemann-Roch space L(aQ), where a is the smallest pole order of a nonconstant
function with poles only at Q. The ωj are differentials in Ω(−∞Q−D) having
the maximum valuation atQ among differentials ω such that vQ(ω)− j is divisible
by a. The resulting generator matrix G possesses a block factorization that can be
exploited to reduce the number of multiplications involved in computing a prod-
uct of the form xG. This method does not make use of Gröbner bases and yields a
nonsystematic encoder.

More recently, Matsui and Mita (2007), have described a method combining dis-
crete Fourier transforms (DFT) and Gröbner bases that yields a systematic encoder
for the CΩ(D,mQ)= CL(D,mQ)⊥ codes from a Ca,b curve. Their method works
as follows. A pair (i, j) with 0 ≤ i, j ≤ q − 1 can represent either the monomial
xiyj or the point (αi, αj ) where α is a primitive element of the field. For simplicity,
assume D is supported at points in (F∗q)2. Partition the support into two subsets:
a set of information positions P ′ of cardinality k, and a set of parity-checks P of
cardinality n− k = dimL(mQ), where Q is the point at infinity on the Ca,b curve.
A Gröbner basis G for the ideal I(P ) is pre-computed. For most choices of P , the
monomials in the footprint or Gröbner éscalier are identified with the collection of
pairs (i, j) as above with ai + bj ≤m.
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To encode a given information word a = (a(i,j) : (i, j) ∈ P ′), the DFT A is com-
puted, where A(i,j) = f (αi, αj ) for the polynomial

f (x, y)=
∑

(αk,αl)∈P ′
a(k,l)x

kyl.

The portion of the DFT corresponding to (i, j) with ai + bj ≤m is then extended
to an array A′ for all (i, j) with 0 ≤ i, j ≤ q − 1 by means of the Gröbner basis
G. The difference array A−A′ represents the DFT of a codeword in CΩ(D,mQ)
since its syndromes corresponding to xiyj with ai + bj ≤m are all zero. Moreover
it can be seen that the inverse DFT of A−A′ provides a systematic encoding of the
information a.

3 Automorphisms and Module Structures

We now prepare for another encoding method by introducing some general infor-
mation on automorphisms of codes and module structures. The symmetric group Sn
acts on F

n
q by permuting the entries of vectors. A permutation automorphism of a

linear code C ⊂ F
n
q is an element of Sn that maps the set of codewords to itself. We

will only consider code automorphisms of this type in the following.
Let C be a code that has a nontrivial Abelian group H of automorphisms. For

instance, the ordinary cyclic codes and m-dimensional cyclic codes (also known
as Abelian codes) are well-studied examples. For simplicity of notation, we will
usually restrict to the case that H = 〈σ 〉 is cyclic. The generalization to the prod-
uct of several cyclic groups is essentially immediate. With the restriction to cyclic
groupsH , cyclic codes are the most basic examples. But note that we do not assume
that H acts transitively on the set of codeword components. Hence, for instance, the
quasicyclic codes of length n also have this sort of structure (by definition, C is
quasicyclic if its automorphism group contains an m-fold cyclic shift for some m
dividing n).

Let Oi , i = 1, . . . , r be the orbits of the components of the codewords c under
the action of H . Pick any component ci,0 in the ith orbit and label the components
in that orbit as ci,j where j = 0, . . . , |Oi | − 1. With the convention that the second
index is an integer modulo |Oi |, the action of σ can be written as σ(ci,j )= ci,j+1

for all i = 1, . . . , r , and j = 0, . . . , |Oi | − 1.
For the remainder of this article, P will denote the polynomial ring in one vari-

able, Fq [t]. As usual, let ei be the ith standard basis vector in the free module Pr .
Then the orbit structure of the components of the codewords of C determines the
submodule 〈(t |Oi | − 1)ei : i = 1, . . . , r〉 of Pr . We can view the code C as subset of
the quotient module

N = Pr/〈(t |Oi | − 1)ei : i = 1, . . . , r〉, (1)
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via the mapping

φ : C −→N

(ci,j ) �−→
r∑

i=1

(|Oi |−1∑

j=0

ci,j t
j

)

ei mod 〈(t |Oi | − 1)ei : i = 1, . . . , r〉.

We have the following theorem describing the structure of the image φ(C).

Theorem 1 Let C be a linear block code over Fq with a cyclic group H of auto-
morphisms and φ,N be as above. Then φ(C) has the structure of a P -submodule
of N .

Proof First φ is linear, so φ(C) is an Fq -vector subspace of N . By the definition of
φ, if c ∈ C is any codeword, multiplication of φ(c) by t yields

tφ(c) =
r∑

i=1

(|Oi |−1∑

j=0

ci,j t
j+1

)

ei ≡
r∑

i=1

(|Oi |−1∑

j=0

ci,j−1t
j

)

ei mod N = φ(σ−1(c)).

By hypothesis, this is another element of φ(C). Hence φ(C) is closed under mul-
tiplication by t , hence under multiplication by all polynomials in P . It follows that
φ(C) is a P -submodule of N . �

Note that if the theorem applies to a code C, it applies to the dual code C⊥ as
well.

In Heegard et al. (1995), Little et al. (1997), and Little (1995), this essentially
straightforward generalization of the usual construction showing that a cyclic code
of length n over Fq is an ideal in P/〈tn − 1〉 was applied to some AG Goppa
codes. We will present several explicit examples in Sect. 7. The article (Lally and
Fitzpatrick 2001) applies the module structures described here to study quasicyclic
codes (Lally 2009). The module structure is even used for some convolutional codes,
as in Gluesing-Luerssen et al. (2009). Theorem 1 can also be generalized to more
general finite Abelian automorphism groups. In those cases, we obtain module struc-
tures over the polynomial ring in s variables if a minimal generating set for the group
H has s elements.

4 A Systematic Encoding Algorithm

We will now show how the theory of Gröbner bases for modules can be applied to
work with these codes. Let M(C) be the submodule of Pr corresponding to φ(C)⊂
N under the mapping

π : Pr −→N,
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whereN is the quotient module from (1). The key observation here is that the canon-
ical form algorithm with respect to a Gröbner basis G for M(C) with respect to any
term ordering ≺ on Pr can be used to produce a systematic encoder for C.

The encoding algorithm can be described succinctly using the standard and non-
standard terms for M(C). Following the general notational conventions of this vol-
ume, N≺(M(C))will denote the Gröbner éscalier or “footprint” of the module M(C)
with respect to a term order ≺. Similarly, T≺(M(C)) will denote the leading term
module of M(C). The terms tj ei ∈N≺(M(C)) will be called the standard terms. The
nonstandard terms are the tjei with j ≤ |Oi | − 1 contained in T≺(M(C)).

In this method, the coefficients of the nonstandard terms give the information
positions in the codewords, and the coefficients of the standard terms are the parity
checks. The precise statement of the encoding method is given in the following
theorem.

Theorem 2 Let G be a Gröbner basis for the module M(C) with respect to a term
ordering ≺ on Pr . The algorithm below produces a codeword c in all cases and
gives a systematic encoder for the code C.

Input: G, the nonstandard terms mi , information symbols ci
Output: c, a codeword

f =∑ cimi ;
c := f −CanonicalForm(f,G);

Proof Since

CanonicalForm(c)=CanonicalForm(f −CanonicalForm(f,G),G)= 0,

it follows that c ∈ M(C), which means that c represents a codeword of C. The
information symbols appear as coefficients of the nonstandard terms in f , but
CanonicalForm(f,G) is a linear combination of standard terms. The sets of non-
standard and standard terms are disjoint, hence this encoder is systematic, in the
sense that the information symbols appear unchanged in a subset of the codeword
entries. �

Some important examples of the term orderings that can be used here are ob-
tained as follows. First order the ej themselves; we will use

e1 > e2 > · · ·> er ,

but the opposite order is also possible and is used too. The position over term (or
POT) ordering on Pr is defined by

t iej ≺POT t
ke�
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if j > �, or j = � and i < k. Reversing the way the comparison is made, we obtain
the term over position (or TOP) ordering on Pr :

t iej ≺TOP t
ke�

if i < k, or i = k and j > �.
See also Guerrini and Rimoldi (2009) for other uses of these orderings.

5 Complexity Comparisons

The basic encoding method described at the start of Sect. 2 requires kn products
and (k− 1)n sums in Fq to compute the matrix product xG if G is a general, dense
generator matrix. By way of comparison, the method of Matsumoto et al. (1997) de-
scribed in Sect. 2 effectively reduces the storage space and the number of operations
needed. However, as noted above, this encoding method is not systematic.

One potential advantage of exploiting the module structures described in Theo-
rem 1 is that, as is true for the generator polynomial of a cyclic code, a Gröbner
basis for M(C) is typically significantly smaller than a full systematic generator ma-
trix. The exact savings in stored information (or the size of the circuit in hardware)
required for the encoding depends on the particular code. However, the situation in
Example 2 in Sect. 7 below is quite typical. The code C there is a [64,44,8] code
over F8. A reduced echelon form systematic generator matrix would be a 44× 64
matrixG= (I |X) with X a 44× 20 block of potentially nonzero entries. The Gröb-
ner basis for the module M(C) has 10 generators, which contain at most

5× 2+ 6× 4+ 7× 6+ 8× 7+ 9= 141

nonzero, non-leading terms. The division algorithm used for encoding in Theorem 2
takes roughly the same amount of arithmetic as the matrix product xG (see Heegard
et al. 1995).

The authors of Matsui and Mita (2007) conjecture that their method requires less
field arithmetic than multiplication xG with a systematic generator matrix but do
not prove this. The Gröbner basis for the ideal I(P ) would typically be even smaller
than the Gröbner basis for the module M(C) when there is a module structure.

6 Automorphisms of Curves and AG Goppa Codes

In Heegard et al. (1995), it was pointed out that many examples of AG Goppa codes
have the module structures described in Theorem 1, hence systematic encoders as
described in Theorem 2, because of the presence of automorphisms of the underly-
ing curves. Indeed, many interesting curves with large numbers of Fq -rational points
also tend to have large automorphism groups.
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Let X be a smooth projective algebraic curve defined over Fq . An automorphism
of X is a regular mapping from X to itself with a regular inverse. An automor-
phism σ of X defined over Fq induces an Fq -automorphism of the function field
K = Fq(X ) (an isomorphism of fields from K to itself that is the identity on Fq )
via f �→ f ◦ σ−1. The set of all automorphisms of X forms a group Aut(X ) un-
der function composition and Aut(X ) acts on divisors on X in the obvious way:
σ(
∑
nPP )=∑nP σ(P ).

In fact, all of the examples of automorphisms we will consider will be induced by
invertible linear mappings on the ambient projective space of X . If such a mapping
takes the curve X to itself, then it induces an automorphism of X .

For instance, consider the Hermitian function fields and curves over Fq2 . The
Hermitian curve may be defined as the variety

V(xq+1
0 + xq+1

1 + xq+1
2 )⊂ P

2,

where (x0 : x1 : x2) is the homogeneous coordinate vector of a point in P
2.

In Sect. VI.3 of Stichtenoth (1993), it is shown that (in geometric language) the
tangent line to this curve at an Fq2 -rational point can be taken to the line at infinity
by a linear change of coordinates in P

2. When that is done, the defining equation is
taken to the form given in the following

H Cq = V(xq+1 − yqz− yzq)= {(x : y : z) ∈ P
2 : xq+1 − yqz− yzq = 0}. (2)

We will use this form of the equations of the Hermitian curves. Let α be a primitive
element of Fq2 . The mapping

σ : P2 −→ P
2

(x : y : z) �−→ (αx : αq+1y : z)
(3)

induces an automorphism of the curve H Cq because it is easy to check that if the
point (x : y : z) satisfies the equation in (2), the same is true of σ(x : y : z).

In the construction of an AG Goppa evaluation code on a curve X , recall that one
begins by selecting Fq -rational divisors D =∑n

i=1Pi and E with disjoint supports
on X . The codewords are obtained by evaluating the rational functions f in the
vector space

L(E)= {f : (f )+E ≥ 0} ∪ {0}
at the points in D:

ev : L(E) −→ F
n
q

f �−→ (f (P1), . . . , f (Pn)).

The image of the evaluation mapping is the AG Goppa evaluation code CL(D,E).
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Theorem 3 In this situation, let σ be an automorphism of the curve X and assume
the divisors D and E are fixed by σ . Then σ induces an automorphism of the code
CL(D,E).

Proof Since σ fixes the divisor E, it follows that f �→ f ◦σ−1 takes L(E) to itself.
Hence we can define an action of σ on the codewords of CL(D,E) by

(f (P1), . . . , f (Pn)) �−→ (f (σ−1(P1)), . . . , f (σ
−1(Pn))).

Since the divisor D is also assumed to be fixed by σ , this means that the points
{σ−1(Pi)} are a permutation of the {Pi}. Hence σ induces a permutation automor-
phism of the code CL(D,E). �

By Proposition VII.3.3 of Stichtenoth (1993), the subgroup 〈σ 〉 of Aut(X ) can
be viewed as a subgroup of the permutation automorphism group of CL(D,E)
whenever n > 2g + 2, where g is the genus of X . Furthermore, Joyner and Ksir
(2006) have given conditions under which the permutation automorphism group of
CL(D,E) is isomorphic to the subgroup of Aut(X ) fixing D and E.

Because of these observations, Theorems 1 and 2 from Sect. 3 apply to any
CL(D,E) code from a curve X with an automorphism σ fixing D and E, pro-
vided n= degD is sufficiently large. In the case of maximal length one-point codes
(E = aQ for some point Q, a ≥ 0, and D the sum of the other Fq -rational points),
it suffices to find a σ defined over Fq fixing Q. One usually takes σ with maximal
order to make the number of orbits as small as possible.

7 Examples

In this section, we will consider a series of examples to illustrate the previous theory.

Example 1 As shown in Sect. VII.4 of Stichtenoth (1993), the Hermitian curve H Cq
is a smooth plane curve of degree q + 1, hence has genus q(q − 1)/2. In addition,
H Cq has q3 + 1 Fq2 -rational points. There are q3 affine points. In the coordinates
used in (2), there are q points on each line x = c and Q = (0 : 1 : 0) at infinity.
As is well-known, this is the maximum number possible for a curve of genus g =
q(q − 1)/2 over Fq2 by the Hasse–Weil bound. If g = g(X )= q(q − 1)/2, then

|X (Fq2)| ≤ 1+ q2 + 2gq = 1+ q2 + q(q − 1)q = q3 + 1.

With q = 2, we get the picture of the F4-rational points on the Hermitian curve
V(x3 + y2z+ yz2) given below in Fig. 1.

The mapping σ from (3) is an automorphism of the Hermitian curve fixingQ and
permuting the q3 affine Fq2 -rational points. The subgroup of the full automorphism
group generated by σ has order q2−1. Theorem 3 and the construction from Sect. 3
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Fig. 1 The F4-rational points
of the Hermitian curve with
q = 2

apply if we take the divisor E = aQ for any a ≥ 0, and let D be the sum of the q3

affine Fq2 -rational points, each with coefficient 1.
In the case q = 2, the automorphism σ is given by

σ(x : y : z)= (αx : y : z)
(since α3 = 1). This permutes the eight affine F4-rational points in four orbits, two
of length three, and two of length one:

O1 = {(1 : α : 1), (α : α : 1), (α2 : α : 1)}
O2 = {(1 : α2 : 1), (α : α2 : 1), (α2 : α2 : 1)}
O3 = {(0 : 0 : 1)}
O4 = {(0 : 1 : 1)}.

There are similar patterns for the orbits of G= 〈σ 〉 on the Fq2 -rational points in
D for any q . Under σ there are q orbits of length q2 − 1 (all coordinates nonzero),
one orbit of length q − 1 (the points with x = 0, y �= 0), and one orbit of length 1
(a fixed point—{(0 : 0 : 1)}). See Heegard et al. (1995) and Little et al. (1997) for
more detail on these Hermitian examples.

We next show the module structure for the code C = CL(D,3Q) from the Her-
mitian curve over F4 and a Gröbner basis in detail. The affine coordinate functions
x/z and y/z are elements of L(3Q), as is 1= z/z. Hence, if we order the F4-rational
points on H C 2 according to the orbit structure above (listing the points in O1, then
O2, then O3, and finally O4), the code CL(D,3Q) has generator matrix

M =
⎛

⎝
1 1 1 1 1 1 1 1
1 α α2 1 α α2 0 0
α α α α2 α2 α2 0 1

⎞

⎠

and parameters [n, k, d] = [8,3,5] over F4 (incidentally, the best possible d for this
n, k over F4).
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Under the mapping φ from Sect. 3, the first row corresponds, for instance, to the
module element

(1+ t + t2,1+ t + t2,1,1).
With respect to the ≺POT term ordering, the reduced Gröbner basis G for the sub-
module of P 4 corresponding to φ(C) is:

g1 = (α + t, α + t, α2, α2)

g2 = (0,1+ t + t2, α,α2)

g3 = (0,0,1+ t,0)
g4 = (0,0,0,1+ t).

The element g1, for instance, equals the linear combination

α2(1+ t + t2,1+ t + t2,1,1)+ (1+ αt + α2t2,1+ αt + α2t2,0,0)

of the module elements from rows 1 and 2 of M which would be computed in the
course of Buchberger’s algorithm. (Recall that α2 + α + 1= 0 in F4.)

In the systematic encoding presented in Theorem 2, we have

• Information positions: coefficients of t2e1, te1, t2e2.
• Parity checks: coefficients of e1, te2, e2, e3, e4.

Then, to do encoding in this example, it suffices to compute remainders on division
byG. For the ≺POT term ordering, this amounts to ordinary polynomial divisions in
each component. For example, if we want to encode

f = (t + αt2, α2t2,0,0),

it is easy to check that dividing first by g1, then g2 yields

CanonicalForm(f,G)= (α2, α,α,α2).

The corresponding codeword is

c= f −CanonicalForm(f,G)= (α2 + t + αt2, α + α2t2, α,α2).

As indicated in the proof of Theorem 2, the information from the coefficients of f
is visible immediately in the codeword c, so this is a systematic encoding method.

We note that Hermitian curves have many automorphisms besides those in the
subgroup generated by σ above. Indeed, for some q , there are σ of order larger
than q2 − 1 fixing Q and D (see Heegard et al. 1995). Moreover, by (Stichtenoth
1993), VII.4.6, there is also a non-Abelian subgroup H of order |H | = (q2 − 1)q3

in the full automorphism group of the Hermitian curve that fixes both the point at
infinityQ, and the divisorD, hence induces automorphisms of CL(D,aQ) for all a.
The elements of this subgroup can be written as the mappings

τλ,δ,mu(x : y : z)= (λx + δz : λq+1y + λδqx +μz : z),
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where λ ∈ F
∗
q2 , and (δ : μ : 1) is any affine Fq2 -rational point on the curve. Note that

τλ,δ,μ(0 : 0 : 1)= (δ : μ : 1).
This implies that H acts transitively on the affine Fq2 -rational points, or equiv-

alently, that there is only one orbit of points under H . Consequently, the codes
CL(D,aQ) can also be studied as ideals in the group algebra Fq2 [H ]. Since H
is not Abelian, however, the analogs of Gröbner bases in the group algebra do not
seem to be as convenient for encoding.

AG Goppa codes from several other classes of curves with the maximal number
of rational points for their genus over the given field Fq can be treated in a very
similar fashion.

Example 2 Let q = 22n+1, q0 = 2n and let Yn be the curve over Fq defined by the
affine equation

zq + z= yq0(yq + y).
These curves were studied by Hansen and Stichtenoth in Hansen and Stichtenoth
(1990), and by a number of other authors. With n = 1, for example, the curve Y1

over F8 in this family has affine equation

z8 + z= y2(y8 + y).
This defines a curve of degree 10, genus 14, with a single (singular) point Q at
infinity. The singularity at Q is a cuspidal (unibranch) singularity—more precisely,
there is only one point Q̃ that lies over Q on the normalization (smooth model)
Ỹn→ Yn.

From the point of view of coding theory, the curves Yn are interesting because
they have as many Fq -rational points as possible for a curve of their genus (how-
ever, the Hasse–Weil bound is not sharp in these cases). Indeed, Yn passes through
every point of the affine plane over Fq . For constructing AG Goppa evaluation codes
from Yn, one can use G = aQ̃ and D the sum of the q2

Fq -rational affine points,
each with coefficient 1.

Letting α denote a primitive element of Fq , the mapping

σ(y, z)= (αy,αq0+1z) (4)

restricts to an automorphism of Yn. Since σ fixes the divisors D and G = aQ̃, σ
induces an automorphism of each of the codes CL(D,aQ̃) constructed from Yn, by
Theorem 3. The automorphism σ has order q−1 in Aut(Yn). The following explicit
example of the module structure of one of these codes comes from Little (1995).

The code C = CL(D,57Q̃) on the Hansen–Stichtenoth curve Y1 has parame-
ters n = 64, k = 44, d = 8 by Chen and Duursma (2003). The automorphism σ

from (4) permutes the points of D in 10 orbits, 9 of length 7 and one of length 1.
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The semigroup of pole orders at Q̃ of rational functions on the curve Y1 is gen-
erated by the natural numbers 8,10,12,13. Moreover y ∈ L(8Q̃), z ∈ L(10Q̃),
f = y5 + z4 ∈ L(12Q̃), and g = yz4 + y20 + z16 = yz4 + y6 + z2 ∈ L(13Q̃)
(see Hansen and Stichtenoth 1990). We use these functions to generate a basis for
L(57Q̃), the normalization F8 = F2[α]/〈α3 + α + 1〉, and the orbit representatives
(y, z) = (1, α6), . . . , (1, α), (1,1), (0,1), (1,0), (0,0) (in that order). The reduced
≺POT Gröbner basis G of the module M(C) has the form

g1 = (1,0,0,0,0,∗,∗,∗,∗,∗)
g2 = (0,1,0,0,0,∗,∗,∗,∗,∗)
g3 = (0,0,1,0,0,∗,∗,∗,∗,∗)
g4 = (0,0,0,1,0,∗,∗,∗,∗,∗)
g5 = (0,0,0,0,1,∗,∗,∗,∗,∗)
g6 = (0,0,0,0,0, t2 + (α2 + α)t + α + 1,∗,∗,∗,∗)
g7 = (0,0,0,0,0,0, t4 + (α + 1)t3 + (α2 + 1)t2 + α2 + α + 1,∗,∗,∗)
g8 = (0,0,0,0,0,0,0, t6 + t5 + t4 + t3 + t2 + t + 1,0,1)

g9 = (0,0,0,0,0,0,0,0, t7 + 1,0)

g10 = (0,0,0,0,0,0,0,0,0, t + 1).

(To save space, the coefficients in the non-maximal terms are omitted. Also, it is
only the maximal terms that determine the information positions and parity check
positions for the code.)

Like the Hermitian curves, the Hansen–Stichtenoth curve Y1 has many automor-
phisms besides those in the subgroup generated by the σ from (4) we have used.
There is a (non-Abelian) subgroup H of Aut(Y1), of order 448 that fixes both aQ̃
and D, hence induces automorphisms of each CL(D,aQ̃) code. The elements of
this subgroup can be written as

τλ,δ,μ(y, z)= (λy + δ,λ3z+ λδ2y +μ),
where λ ∈ F

∗
8, and (δ,μ) is any affine F8-rational point on Y1. Once again, H acts

transitively on the points of D, and the codes CL(D,aQ̃) are ideals in the group
algebra F8[H ].

Codes from both the Hermitian and Hansen–Stichtenoth curves can be studied
with the language of order domains introduced in Høholdt et al. (1998). Higher-
dimensional varieties can also be used to construct examples of order domains
and generalized Goppa-type evaluation codes. See, for instance, Geil and Pellikaan
(2002) and Little (2007) for a general discussion of order domains (Geil 2009),
how they arise, and how the theory of Gröbner bases yields key insights about their
structure and their special relevance for coding theory.
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Example 3 For instance let

H Sq = V(xq+1
0 + xq+1

1 + xq+1
2 + xq+1

3 )

be the Hermitian surface in P
3. The variety H Sq has

(q2 + 1)(q3 + 1)

Fq2 -rational points. Changing coordinates to put a tangent plane to the surface as
the plane at infinity gives the affine surface

H S ′q = V(xq+1 + yq+1 − zq − z)
(whose affine coordinate ring has an order domain structure). H S ′q has q5

Fq2 -rational points. H S ′q also has many automorphisms, for instance

σ(x, y, z)= (αx,αy,αq+1z)

(of order = q2−1). This σ fixes the plane at infinity and permutes the q5
Fq2 -rational

points in q3 + q orbits of size q2 − 1, one of size q − 1, and one of size 1. So
Theorem 1 applies to all evaluation codes constructed from H′ and subspaces L⊂
Fq2 [x, y, z]. For instance, the code from the Hermitian surface over F4 constructed
by evaluating 1, x, y, z has [n, k, d] = [32,4,22]. The minimum weight codewords
come by evaluating linear polynomials that define the tangent plane at one of the
F4-rational points on the surface. The minimum distance d = 22 equals the best
possible for a code with n= 32, k = 4 over F4 by Brouwer’s online tables. But these
codes also have Gröbner basis encoding, and good decoding algorithms because of
the extra order domain structure.

Acknowledgements Part of these results have been presented at Linz D1 2006, which was a
workshop within the Special Semester on Gröbner Bases, February–July 2006, organized by RI-
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Algebraic Geometry Codes from Order Domains

Olav Geil

Abstract In this tutorial we introduce order domains and study the related codes.
Special attention is given to the one-point geometric Goppa codes. We show how
Gröbner basis theory helps us constructing order domains as well as helps us dealing
with the related codes.

1 Introduction

The theory of order domains is a relatively new key object in the study of algebraic
geometry codes. It provides us with a simplified understanding of more well es-
tablished results and gives rise to new findings and constructions. By use of the
theory one can give a simple proof of the usual bounds from algebraic geome-
try on the minimum distance of one-point geometric Goppa codes CL(D,mP)
and CΩ(D,mP). In a Feng–Rao type manner it is often possible to improve
on the above bounds and using the improved information one can then con-
struct improved codes. Furthermore, order domain theory gives us an easy way
of generalizing the concept of one-point geometric Goppa codes (Leonard 2009;
Little 2009) to algebraic structures of higher transcendence degree. The very defin-
ition of order domains finally implies that the Berlekamp–Massey–Sakata decoding
algorithm Sakata (2009a, 2009b) can be easily applied to any of the above codes for
which a parity check matrix description is given.

Order domain codes can be viewed as generalizations of Reed–Solomon codes
(Augot et al. 2009). Recall that Reed–Solomon codes are defined from the polyno-
mial ring R = Fq [X]. Denoting Fq = {P1, . . . ,Pq} the Reed–Solomon code with
parameters [n= q, k, d = n− k+ 1] (here of course k ≤ q must hold) is

{(F (P1), . . . ,F (Pq)) | deg(F ) < k} = {(F (P1), . . . ,F (Pq)) | deg(F ) < n− k}⊥.
The parameters of the Reed–Solomon code are easily demonstrated by using the
fact that a polynomial of degree t can have at most t zeros. From an order domain
perspective R = Fq [X] is an order domain and the degree function ρ : Fq [X] →
N0 ∪ {−∞}, ρ(F (X)) = deg(F ) is a weight function. The codes are defined by
using the map ϕ : Fq [X] → (Fq)

n = F
n
q , ϕ(F (X)) = (F (P1), . . . ,F (Pn)) and the

parameters can be found by studying the properties of ρ and ϕ.
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The next most simple examples of order domain codes are the Hermitian codes,
the improved Hermitian codes, the generalized Reed–Muller codes and the im-
proved generalized Reed–Muller codes known as hyperbolic codes. Throughout the
paper we will investigate the behavior of these codes and the nature of the algebraic
structures used for their construction. The idea is to make it easier for the reader to
grasp the general theory of order domains.

The paper is organized as follows. In Sect. 2 we explain what is an order do-
main with a weight function. Then in Sect. 3 we introduce codes defined from order
domains and estimate their parameters. Section 4 is concerned with one-point geo-
metric Goppa codes. In Sect. 5 we show how to easily construct order domains by
use of Gröbner basis methods (Buchberger 1965, 1985, 2006), and in Sect. 6 we
see how Gröbner basis theory helps us construct the corresponding codes. Finally,
in Sect. 7 we briefly discuss the connection to valuation theory. Being a tutorial the
paper contains only known results. Our presentation mostly relies on Høholdt et al.
(1998), O’Sullivan (2001), Geil and Pellikaan (2002) and Andersen and Geil (2008).

2 Order Domains with Weight Functions

We start our treatment of weight functions by considering in detail the Hermitian
order domain.

Example 1 Consider the Hermitian polynomial Xq+1 − Yq − Y and let I be
the ideal I = 〈Xq+1 − Yq − Y 〉 ⊆ Fq2 [X,Y ]. The Hermitian order domain is
R = Fq2 [X,Y ]/I . As will be shown in Example 9 of Sect. 5 one possible basis
for R as a vector space over Fq2 is B = {XiY j + I | 0 ≤ i,0 ≤ j < q}. Denote by
M(X,Y ) the monomials in X and Y and define a function w : M(X,Y )→ N0 by
w(XiY j )= iq + j (q + 1). The value w(XiY j ) will be called the weight of XiY j .
We observe that the restriction of w to {XiY j | 0≤ i,0≤ j < q} is injective. There-
fore w induces a bijective map ρ : B → 〈q, q + 1〉 by ρ(XiY j + I ) = w(XiY j ).
Here, 〈q, q + 1〉 denotes the numerical semigroup generated by q and q + 1.
As B is a basis it is clear that any element f ∈ R can be uniquely described as
f = F(X,Y )+ I where every monomial XiY j in the support of F(X,Y ) satisfies
0≤ i, 0≤ j < q . This unique polynomial will be called the canonical representative
of f . Given a description F ′(X,Y )+ I not of this form we can substitute repeat-
edly any occurrences of Yq with Xq+1−Y and thereby eventually get a description
F(X,Y ) + I of the desired form. We can now extend ρ to a function on R. Let
F(X,Y ) be the canonical representative of f , we define ρ(0+ I )=−∞ and

ρ(f )=max{w(M) |M is in the support of F(X,Y )}
when F(X,Y ) �= 0. Observe, that F(X,Y ) either is 0 or has precisely one monomial
of highest weight in its support. Given two nonzero elements f1 = F1(X,Y ) + I ,
f2 = F2(X,Y ) + I where F1(X,Y ) respectively F2(X,Y ) is the canonical repre-
sentative of f1 respectively f2 we conclude that there will be exactly one monomial
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in G′(X,Y )= F1(X,Y )F2(X,Y ) of highest weight and this highest weight equals
ρ(f1) + ρ(f2). Substituting in G′(X,Y ) repeatedly any occurrences of Yq with
Xq+1 − Y will as mentioned above eventually give a description G(X,Y ) + I of
G′(X,Y )+ I such that every monomialXiY j inG(X,Y ) satisfies 0≤ i, 0≤ j < q .
The crucial observation now is that by induction at any step in this reduction the de-
rived polynomial will have exactly one monomial in its support of highest weight
and this weight equals

max{w(M) |M is in the support of F1(X,Y )F2(X,Y )} = ρ(f1)+ ρ(f2).

The above observation follows from the fact that the polynomialXq+1−Y replacing
Yq has exactly one monomial in its support of highest weight and from the fact that
this weight equals w(Yq). As a consequence of the above observation we get the
nice result ρ(f1f2)= ρ(f1)+ ρ(f2).

The function ρ : R→〈q, q + 1〉 ∪ {−∞} described in Example 1 is an instance
of a weight function. Keeping this in mind should make it easier to understand the
general definition of a weight function. We will need the concept of a well-behaving
basis.

Definition 1 Let F be a field and let R be a F-algebra. Let Γ ⊆N
r
0 be a semigroup

and assume <N
r
0

is a term ordering on N
r
0. Given a basis B for R and a bijective

map ρ : B → Γ we will write B = {fλ | λ ∈ Γ } (with the underlying assumption
that ρ(fλ)= λ) and for all λ ∈ Γ define Rλ = SpanF{fγ | γ ≤N

r
0
λ}. We also define

R−∞ = {0}. The ordered basis B is called a well-behaving basis if for all λ,γ ∈ Γ
we have fλfγ ∈Rλ+γ but fλfγ /∈Rδ for any δ <N

r
0
λ+ γ .

The basis B from Example 1 clearly satisfies the conditions of Definition 1 and is
therefore a well-behaving basis. Just as was the case in Example 1 the ordered basis
from Definition 1 induces a map ρ :R→ Γ ∪ {−∞}. We have

Definition 2 Let B = {fλ | λ ∈ Γ } be a well-behaving basis. If f = 0 we define
ρ(f )=−∞. For nonzero f we consider the expansion f =∑t

i=1 kifλi , ki ∈ F\{0}
for i = 1, . . . , t and λi �= λj for i �= j . We then define ρ(f )=max{λi | i = 1, . . . , t}.
A function ρ defined in this way is called a weight function.

Remark 1 It is not hard to show that Definition 2 is equivalent to the following char-
acterization. Let <N

r
0

be a term ordering on N
r
0 and let Γ , Γ ⊆N

r
0 be a semigroup.

For all λ ∈ Γ define λ + (−∞) = −∞. A surjective map ρ : R→ Γ ∪ {−∞} is
called a weight function if for all f,g,h ∈R we have

(W.0) ρ(f )=−∞⇔ f = 0
(W.1) ρ(af )= ρ(f ) for all a ∈ F\{0}
(W.2) ρ(f + g)≤N

r
0

max{ρ(f ),ρ(g)}
(W.3) ρ(fg)= ρ(f )+ ρ(g)
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(W.4) If f and g are nonzero and ρ(f ) = ρ(g) then there exists a nonzero a ∈ F

such that ρ(f − ag) <N
r
0
ρ(g)

Remark 2 Weight functions are special cases of order functions. The general de-
finition of order functions (Geil and Pellikaan 2002, Definition 2.1) calls for the
following changes in the characterization in Remark 1. We start by replacing
(Γ ⊆N

r
0,<N

r
0
) by any well-order (Γ,<Γ ). Then we replace (W.3) with

(O.3) If ρ(f ) <Γ ρ(g) and h �= 0 then ρ(f h) <Γ ρ(gh).

A F-algebra with an order function is called an order domain (over F).

Remark 3 The original definition of an order function in Høholdt et al. (1998, De-
finition 3.4) is a little less general than the definition in Geil and Pellikaan (2002).
More precisely it is in Høholdt et al. (1998) required that Γ ⊆N0 and therefore au-
tomatically<Γ becomes the usual ordering< on N0. For a weight function to be an
order function under this description one must require that the ordering <N

r
0

on N
r
0

is isomorphic to the ordering < on N0. We will see later in the paper that mapping
to N

r
0 rather than just to N0 gives us a method for dealing with order domains of

transcendence degree more than one.

In Sect. 5 we will observe that all order functions relevant in coding theory are
actually weight functions. Although Definitions 1 and 2 are not very involved they
will be general enough to help us construct quite a large class of algebraic geom-
etry codes. The following example describes the algebraic structure needed in the
construction of one-point geometric Goppa codes.

Example 2 Let P be a rational place in an algebraic function field of one variable
and let vP be the valuation corresponding to P . Then R =⋃∞

m=0 L(mP) is an order
domain with a weight function given by ρ(x)=−vP (x) for any x ∈R.

The next example describes the algebraic structures needed in the construction
of generalized Reed–Muller codes and hyperbolic codes.

Example 3 Let R = Fq [X1, . . . ,Xm] and fix any term ordering <N
m
0

on N
m
0 . Define

a weight function ρ : R→ N
m
0 ∪ {−∞} as follows. We have ρ(0) = −∞ and for

nonzero F(X1, . . . ,Xm) we have

ρ(F (X1, . . . ,Xm))=max{(α1, . . . , αm) |Xα1
1 · · ·Xαmm is in

the support of F(X1, . . . ,Xm)}.
Here max is taken with respect to the ordering <N

m
0

. An obvious choice of a well-

behaving basis is B = {Xi11 · · ·Ximm | 0 ≤ i1, . . . ,0 ≤ im}. For m ≥ 2 there are infi-
nitely many term orderings on N

m
0 and therefore a polynomial ring in more variables

possesses infinitely many weight functions.
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The construction of order domains and weight functions in Examples 1 and 3
was not very involved whereas the construction in Example 2 relies on algebraic
function field theory or algebraic geometry. Later in this paper we present a method
for constructing order domains and weight functions by use of only simple Gröbner
basis theoretical methods. The construction is very similar to the one in Example 1
and deals with any weight function for which the semigroup Γ is finitely generated.
The Gröbner basis construction provides us in particular with much more sophis-
ticated examples of order domains of higher transcendence degree than the one in
Example 3. However, before continuing our study of order domains we should get
involved with the codes. This is done in the next section.

3 Codes from Order Domains

With a reference to Høholdt et al. (1998, p. 873) by an algebraic geometry code
we mean a code that is defined from an algebraic geometry structure by use of some
kind of evaluation map.1 We now consider algebraic geometry codes related to order
domains over finite fields Fq . As we will see this set of codes contains in particular
one-point geometric Goppa codes (Leonard 2009; Little 2009; Sakata 2009b).

We start by recalling that the component-wise product in F
n
q is given by

(a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn). With this product F
n
q becomes an

Fq -algebra. For the code constructions we consider any map ϕ of the following
type.

Definition 3 Let R be an Fq -algebra. A surjective map ϕ : R→ F
n
q is called a

morphism of Fq -algebras if ϕ is Fq -linear and ϕ(fg) = ϕ(f ) ∗ ϕ(g) holds for all
f,g ∈R.

Example 4 By using the fact that αq+1 is the norm map from Fq2 to Fq and by
using the fact that αq + α is the trace map from Fq2 to Fq the zeros of the Her-
mitian polynomial Xq+1 − Yq − Y can be determined. There are n = q3 of them.
Hence, if I = 〈Xq+1 − Yq − Y 〉 ⊆ Fq2(X,Y ) then the variety VF

q2 (I ) consists of

q3 points, say P1, . . . ,Pq3 . The evaluation map ϕ : R = Fq2 [X,Y ]/I → F
n
q2 given

by ϕ(F (X,Y )+ I )= (F (P1), . . . ,F (Pq3)) is a morphism of Fq2 -algebras. Recall
from the previous section, that B = {XiY j +I | 0≤ i,0≤ j < q} is a well-behaving
basis for the Hermitian order domain. The most natural codes from the Hermitian
order domains are the one-point geometric Goppa codes

E(s) = ϕ(Rs)= SpanF
q2
{ϕ(XiY j + I ) | 0≤ i,0≤ j < q,w(XiY j )≤ s}

C(s) = (E(s))⊥

1In recent literature the name geometric Goppa code is often replaced with the name algebraic
geometric code. Hence, algebraic geometry codes and algebraic geometric codes are not the same
and the word AG-code should be used with caution.
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In the remainder of this section let R be an order domain with a weight func-
tion ρ : R→ Γ ∪ {−∞}, Γ ⊆ N

r
0 and let ϕ : R→ F

n
q be a morphism between Fq

algebras. Consider the following very general problem. Let B = {fλ | λ ∈ Γ } be a
well-behaving basis and consider a subset B′ ⊆ B. We would like to know what is
the minimum distance of SpanFq

{ϕ(f ) | f ∈ B′} and what is the minimum distance

of (SpanFq
{ϕ(f ) | f ∈ B′})⊥. As we shall demonstrate the semigroup Γ holds a lot

of information about these questions. The information even suggests clever ways of
choosing B′. We start our investigation by stating some useful lemmas and proposi-
tions.

Definition 4 For λ ∈ Γ define

N(λ)= {η ∈ Γ | ∃β ∈ Γ with η+ β = λ} and μ(λ)= #N(λ).

Remark 4 In Høholdt et al. (1998, Definition 4.8) N(λ) is defined slightly differ-
ently and #N(λ) is called ν(λ). To apply the definition in Høholdt et al. (1998) to the
weight functions described in the present paper we must require that the well-order
(Nr0,<N

r
0
) is isomorphic to the well-order (N0,<). In other words, for every nonzero

λ ∈ Γ there exists a maximal element γ ∈ Γ for which γ <N
r
0
λ holds. We then have

ν(γ )= μ(λ). The main motivation for using Definition 4 rather than Høholdt et al.
(1998, Definition 4.8) is that in this way N(λ) and therefore also the size of it be-
comes independent on the term ordering on N

r
0. Given r > 1 and two different term

orderings using Høholdt et al. (1998, Definition 4.8) we would have to keep track
of two different functions ν.

Lemma 1 Given a nonzero word c ∈ F
n
q let λ ∈ Γ be the (unique) element such that

c · ϕ(fλ) �= 0 but c · ϕ(fγ ) = 0 for all γ <N
r
0
λ. Then c · ϕ(f ) �= 0 for all f with

ρ(f )= λ and c · ϕ(f )= 0 for all f with ρ(f ) <N
r
0
λ.

Proof The lemma follows by linearity of ϕ. �

Proposition 1 Given a nonzero word c ∈ F
n
q let λ be as in Lemma 1. The Hamming

weight of c satisfies wH(c)≥ μ(λ).

Proof Let N(λ)= {i1, . . . , iμ}. By the definition of N(λ) for every is , s = 1, . . . ,μ
there exists a js ∈ Γ with is + js = λ. Consider any nonzero linear combination of
fi1, . . . , fiμ over Fq ,

r =
μ∑

s=1

ksfis .

Let t ∈ {1, . . . ,μ} be the maximal value such that kt �= 0. That is, ρ(r) = it .
From (W.3) in Remark 1 we conclude that ρ(rfjt )= λ and therefore by Lemma 1
c · ϕ(rfjt ) �= 0 must hold. Using the fact that ϕ is a morphism, we get
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c · (ϕ(r) ∗ ϕ(fjt )) �= 0 ⇒ (c ∗ ϕ(r)) · ϕ(fjt ) �= 0

⇒ c ∗ ϕ(r) �= 0 (1)

⇒ c ∗
(
μ∑

s=1

ksϕ(fis )

)

�= 0.

Aiming for a contradiction, assume

wH(c) < μ. (2)

Without loss of generality we assume that the nonzero entries of c are among the
first μ− 1 entries. Recall, that (1) holds for any choice of k1, . . . , kμ not all zero.
We will choose k1, . . . , kμ not all zero in such a way that the first μ− 1 entries of∑μ
s=1 ksϕ(fis ) are zero. This is possible due to a standard linear algebra result. But

then (1) can not be true and therefore the assumption (2) was wrong. �

To state the next lemma we will need two definitions.

Definition 5 Let α(1) = 0. For i = 2,3, . . . , n recursively define α(i) to be the
smallest element in Γ that is greater than α(1), α(2), . . . , α(i − 1) and satisfies
ϕ(Rγ )� ϕ(Rα(i)) for all γ <N

r
0
α(i). Write Δ(R,ρ,ϕ)= {α(1), . . . , α(n)}.

It is clear that the set {ϕ(fα(1)), . . . , ϕ(fα(n))} constitutes a basis for F
n
q as a vec-

tor space over Fq . Before proceeding we illustrate the definition with two examples.

Example 5 This is a continuation of Example 4. Recall, that B = {XiY j + I | 0 ≤
i,0 ≤ j < q} constitutes a well-behaving basis for the Hermitian order domain.
Clearly, ϕ(XiY j + I ) = ϕ(Xi+q2−1Y j + I ) for all i > 0 and therefore the ele-
ments in Δ(R,ρ,ϕ) need to be of the form iq + j (q + 1) with 0 ≤ i < q2 and
0 ≤ j < q . But there are exactly n= dim(ϕ(R)) = q3 such numbers and therefore
Δ(R,ρ,ϕ)= {iq + j (q + 1) | 0≤ i < q2,0≤ j < q}.

Example 6 This is a continuation of Example 3 where we considered a family of
weight functions on the order domainR = Fq [X1, . . . ,Xm]. Denote {P1, . . . ,Pqm} =
F
m
q and write n= qm. Define ϕ :R→ F

n
q by ϕ(F (X1, . . . ,Xm))= (F (P1), . . . ,F (Pn)).

Recall, that for any of the described weight functions B = {Xi11 · · ·Ximm | 0 ≤
i1, . . . ,0≤ im} is a well-behaving basis. Clearly, ϕ(Xi11 · · ·Ximm )= ϕ(Xi1+q1 · · ·Ximm )
= · · · = ϕ(Xi11 · · ·Xim+qm ) and therefore the elements in Δ(R,ρ,ϕ) need to be
of the form (i1, . . . , im) with 0 ≤ i1 < q, . . . , 0 ≤ im < q . But there are exactly
n = dim(ϕ(R)) = qm such values and therefore Δ(R,ρ,ϕ) = {(i1, . . . , im) | 0 ≤
i1 < q, . . . ,0≤ im < q}.

Definition 6 For α ∈Δ(R,ρ,ϕ) let

M(α)= {λ ∈Δ(R,ρ,ϕ) | ∃β ∈ Γ such that α + β = λ} and σ(α)= #M(α).



128 O. Geil

Proposition 2 Let {α(1), . . . , α(n)} be as in Definition 5. Given a nonzero word c
expand it as follows

c=
n∑

s=1

ksϕ(fα(s)), k1, . . . , kn ∈ Fq .

Let t be the maximal value such that kt is nonzero. The Hamming weight of c satisfies
wH(c)≥ σ(α(t)).

Proof Write σ(α(t))= σ , M(α(t))= {λ1, . . . , λσ } and let β1, . . . , βσ be such that
α(t)+ β1 = λ1, . . . , α(t)+ βσ = λσ . Writing f =∑t

s=1 ksfα(s) we get c= ϕ(f ).
Now by assumption kt is nonzero but ks = 0 for t < s and therefore ρ(f ) = α(t)
follows. We get ρ(ffβ1) = λ1, . . . , ρ(ffβσ ) = λσ . But then from the definition
of Δ(R,ρ,ϕ) we conclude that ϕ(ffβ1), . . . , ϕ(ffβσ ) are linearly independent. In
other words c∗ϕ(fβ1), . . . , c∗ϕ(fβσ ) are linearly independent. However, the vector
space {b | there exists an a such that b = c ∗ a} is clearly of dimension exactly
wH(c) and therefore σ ≤wH(c) must hold. �

With Propositions 1 and 2 in hand we are now able to deal with some very large
classes of codes. We start by stating a very general theorem.

Theorem 1 Given numbers i1, . . . , it with 1≤ i1 < · · ·< it ≤ n consider the corre-
sponding elements fα(i1), . . . , fα(it ) ∈ B. The code

SpanFq
{ϕ(fα(i1)), . . . , ϕ(fα(it ))}

is of dimension t and has minimum distance at least

min{σ(α(is)) | s = 1, . . . , t}.
The dual code is of dimension n− t and has minimum distance at least

min{μ(α(i)) | i ∈ {1, . . . , n}\{i1, . . . , it }} (3)

≥min{μ(λ) | λ ∈ Γ \{α(i1), . . . , α(it )}}. (4)

Proof The result concerning the first code follows immediately from Proposition 2.
Concerning the dual code we observe that since {ϕ(fα(1)), . . . , ϕ(fα(n))} consti-
tutes a basis for F

n
q , a nonzero word c will have to satisfy c · ϕ(fα) �= 0 for some

α ∈ Δ(R,ρ,ϕ). Combining Lemma 1 with the definition of Δ(R,ρ,ϕ) we see
that the smallest value λ ∈ Γ such that c · ϕ(fλ) �= 0 is an element in Δ(R,ρ,ϕ).
But by construction of the dual code c · ϕ(fα(i1)) = · · · = c · ϕ(fα(it )) = 0 holds.
Hence, the smallest possible λ ∈ Γ such that c · ϕ(fλ) �= 0 must be contained in
Δ(R,ρ,ϕ)\{α(i1), . . . , α(it )}. The estimate (3) of the minimum distance of the dual
code now follows immediately from Proposition 1. The number in (3) is clearly
larger than or equal to the number in (4). �
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The estimates (3) and (4) of the minimum distance of the dual code are known as
the order bound. They are instance of the Feng–Rao bound. Consider the following
particular classes of codes.

Definition 7

E(λ) = ϕ(Rλ)= SpanFq
{ϕ(fγ ) | γ ≤N

r
0
λ}

Ẽϕ(s) = SpanFq
{ϕ(fλ) | λ ∈Δ(R,ρ,ϕ) and σ(λ)≥ s}

C(λ) = (E(λ))⊥ = {c ∈ F
n
q | c · ϕ(fγ )= 0 for all γ ≤N

r
0
λ}

C̃(s) = {c ∈ F
n
q | c · ϕ(fγ )= 0 for all γ with μ(γ ) < s}

C̃ϕ(s) = {c ∈ F
n
q | c · ϕ(fγ )= 0 for all γ ∈Δ(R,ρ,ϕ) with μ(γ ) < s}

Note that the codes in Example 4 were of the type E(λ) and C(λ). In larger gen-
erality we see from Example 2 that one-point geometric Goppa codes CL(D,mP)
are codes E(λ) from order domains with a numerical semigroup. Similarly one-
point geometric Goppa codes CΩ(D,mP) are codes C(λ) from order domains with
a numerical semigroup. The codes Ẽϕ(s), C̃(s) and C̃ϕ(s) are said to be improved
codes. This name is justified by the following theorem.

Theorem 2 We have

E(λ) = SpanFq
{ϕ(fγ ) | γ ∈Δ(R,ρ,ϕ) and γ ≤N

r
0
λ}

C(λ) = {c ∈ F
n
q | c · ϕ(fγ )= 0 for all γ ∈Δ(R,ρ,ϕ) with γ ≤N

r
0
λ}

The minimum distances of the codes in Definition 7 satisfy

d(E(λ)) ≥ min{σ(γ ) | γ ∈Δ(R,ρ,ϕ) and γ ≤N
r
0
λ} (5)

d(Ẽϕ(s)) ≥ s
d(C(λ)) ≥ min{μ(η) | η ∈Δ(R,ρ,ϕ),λ <N

r
0
η} (6)

≥ min{μ(η) | η ∈ Γ,λ <N
r
0
η} (7)

d(C̃(s)) ≥ s
d(C̃ϕ(s)) ≥ s

Proof The description of E(λ) and C(λ) is an immediate consequence of the defi-
nition of Δ(R,ρ,ϕ). The estimates of the minimum distances of all codes but C̃(s)
follow from Theorem 1. Finally, C̃(s) ⊆ C̃ϕ(s) and therefore d(C̃(s)) ≥ d(C̃ϕ(s))
holds. �

To illustrate the theorem we consider two examples.
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Table 1 Parameters from Example 7

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

α(i) 0 3 4 6 7 8 9 10 11 12 13 14 15 16

μ(α(i)) 1 2 2 3 4 3 4 6 6 7 8 9 10 11

σ(α(i)) 27 24 23 21 20 19 18 17 16 15 14 13 12 11

i 15 16 17 18 19 20 21 22 23 24 25 26 27

α(i) 17 18 19 20 21 22 23 24 25 26 28 29 32

μ(α(i)) 12 13 14 15 16 17 18 19 20 21 23 24 27

σ(α(i)) 10 9 8 7 6 6 4 3 4 3 2 2 1

Example 7 This is a continuation of Example 5. Consider the Hermitian polyno-
mial X4−Y 3−Y over F9. The setΔ(R,ρ,ϕ)= {α(1), . . . , α(27)} was established
in Example 5. We now list the corresponding values of μ(α(i)) and σ(α(i)). For
i = 1, . . . ,19 σ(α(i))= n− α(i) and therefore for i = 1, . . . ,19 the code E(α(i))
has minimum distance at least n − α(i) = 27 − α(i) and dimension k = i. For
larger values of i the picture is a little more complicated. For instance the min-
imum distance of E(22) is at least 6. The minimum distances of E(24), E(25)
and E(26) are all estimated to 3. The corresponding dimensions are k = 22,23,24.
The code Ẽϕ(4) however has minimum distance at least 4 and dimension k = 22.
For i = 8, . . . ,23 min{μ(α(s)) | i < s} = i − 2 and therefore for i = 8, . . . ,23 the
code C(α(i)) has minimum distance at least i − 2 and dimension k = 27− i. For
smaller or larger values of i the picture is a little more complicated. For instance the
minimum distance of C(4), C(6) and C(7) are estimated by 3. The corresponding
dimensions are k = 24,23,22. The code C̃ϕ(4) however has minimum distance at
least 4 and dimension 22. The codes C(26), C(28) and C(29) have minimum dis-
tances at least 23, 24 respectively 27. In this example we considered the particular
case q2 = 9. The general case where q2 is arbitrary is treated in Geil (2003). It is
shown that all estimates on the minimum distances are tight. The class of codes
E(λ) equals the class of codes C(λ). Similarly, the class of codes Ẽϕ(s) equals the
class of codes C̃ϕ(s).

Example 8 This is a continuation of Examples 3 and 6. Consider the polynomial
ring F5[X,Y ]. For any of the described weight functions the values of Δ(R,ρ,ϕ)
are

(0,4) (1,4) (2,4) (3,4) (4,4)
(0,3) (1,3) (2,3) (3,3) (4,3)
(0,2) (1,2) (2,2) (3,2) (4,2)
(0,1) (1,1) (2,1) (3,1) (4,1)
(0,0) (1,0) (2,0) (3,0) (4,0)
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with corresponding σ -values respectively μ-values

5 4 3 2 1
10 8 6 4 2
15 12 9 6 3
20 16 12 8 4
25 20 15 10 5

respectively

5 10 15 20 25
4 8 12 16 20
3 6 9 12 15
2 4 6 8 10
1 2 3 4 5

To choose a particular weight function among the ones described in Example 3 we
need to fix the term ordering <

N
2
0

on N
2
0. Let the term ordering <

N
2
0

be the graded
lexicographic ordering given by (a, b) <

N
2
0
(c, d) if either a + b < c + d holds or

a + b= c+ d holds with b < d . The generalized Reed–Muller code

RM5(s,2)= {ϕ(F (X,Y )) | deg(F )≤ s}
is then seen to be equal to E((0, s)). By the first part of Theorem 2 we see that

E((0, s)) = SpanF5
{ϕ(XiY j ) | 0≤ i < 5,0≤ j < 5, i + j ≤ s}.

We list the performance of a few of the codes. We have d(Ẽϕ(5)) ≥ 5 and
k(Ẽϕ(5)) = 17 whereas d(E((0,4)))) ≥ 5 and k(E((0,4)))) = 15. We have
d(Ẽϕ(4)) ≥ 4 and k(Ẽϕ(4)) = 20 whereas d(E((0,5)))) ≥ 4 and k(E((0,5))) =
19. The study of μ gives a similar picture of the codes C(λ) and C̃ϕ(s). In this ex-
ample we considered the particular case F5[X,Y ]. The general case Fq [X1, . . . ,Xm]
was treated in Geil and Høholdt (2001). It is shown that the estimates on the mini-
mum distances are always tight. The class of codes E(λ) equals the class of codes
C(λ). Similarly, the class of codes Ẽϕ(s) equals the class of codes C̃ϕ(s). The
improved codes coming from the order domain Fq [X1, . . . ,Xm] are known as hy-
perbolic codes or Massey-Costello-Justesen codes.

The above example illustrates the fact that using weights in N
r
0 with r > 1 one

can often construct rather long and still relatively good codes in a very simple way.
We will see one more example of this in Sect. 5. In an unpublished work the author
of the present paper has constructed asymptotically good concatenated codes that
beats the performance of the Justesen codes for small rates by using as outer codes
hyperbolic codes instead of Reed–Solomon codes.

We conclude the section by mentioning briefly some other interesting results
from the literature. First we note that the bounds in Theorems 1 and 2 can be eas-
ily extended to deal not only with the minimum distance but with any generalized
Hamming weight. Details can be found in Heijnen and Pellikaan (1998), Geil and
Thommesen (2006) and Andersen and Geil (2008). Next we note that a modifica-
tion of the order bound was made in Beelen (2007) to make the bound applicable
to general geometric Goppa codes. Another result we would like to mention is that
it is possible to modify Sudan’s list decoding without multiplicity so that it works
for any evaluation code from order domain theory. Details can be found in Geil and
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Matsumoto (2007). Finally, we note that there exists another improved code con-
struction besides the ones described here, namely the improved generic evaluation
codes. They were introduced in Bras-Amorós and O’Sullivan (2006) and allow for
correction of so-called generic errors of high weight. The minimum distances of
these codes however are not in general very high. In the next section we relate the
bounds in Theorem 2 to the usual bounds from algebraic geometry on codes defined
from curves.

4 One-Point Geometric Goppa Codes

In this section we treat weight functions with a numerical semigroup. We will al-
ways assume that N0\Γ is finite which is not really a restriction as any numer-
ical semigroup will be isomorphic to a (unique) numerical semigroup such that
the requirement holds. We observed in Example 2 that if P is a rational place
in an algebraic function field of one variable and vP is the corresponding valua-
tion then R =⋃∞

m=0 L(mP) is an order domain with a weight function given by
ρ(x) = −vP (x). Clearly, any subring of such an order domain will again be an
order domain and if the subring is non trivial then the corresponding semigroup
Γ ⊆ N0 will be non trivial. It is an obvious question if there are other exam-
ples of order domains with numerical weight functions than the ones coming from
R =⋃∞

m=0 L(mP). This question was settled in Matsumoto (1999, Theorem 1).
The answer is no. Hence, if we restrict to algebraic structures over Fq then what we
are discussing in the present section are nothing but the algebraic structures giving
us one-point geometric Goppa codes. Let Q1, . . . ,Qn be pairwise different rational
places not equal to P . Then the map ϕ :⋃∞

m=0 L(mP)→ F
n
q is clearly a surjec-

tive morphism between Fq -algebras and therefore one-point geometric Goppa codes
CL(Q1+ · · ·+Qn, sP) respectively CΩ(Q1+ · · ·+Qn, sP) are codes of the form
E(s) respectively C(s) coming from order domains with a weight function with a
numerical semigroup. As we shall see we will be able to establish the usual bounds
from algebraic geometry on their minimum distances using only a little effort.

We start by introducing some notation. Write Γ = {λ1 = 0, λ2, . . .} where λi <
λi+1 for i = 1,2, . . . . We define g(i) = #{λ ∈ N0\Γ | λ < λi} and g = #N0\Γ .
According to the discussion above Γ is the Weirstrass semigroup of a rational place
and therefore by the Weirstrass Gap Theorem g equals the genus of the function field
under consideration. The following results from Høholdt et al. (1998, Lemma 5.15
and Theorem 5.24) are easily proven.

Lemma 2 For any i ∈N0 we have Γ \(λi +Γ )= λi and μ(λi)= i− g(i)+ #D(i)
where D(i)= {(x, y) | x, y ∈N0\Γ and x + y = λi}.

Applied to the special case of one-point geometric Goppa codes the Goppa
bounds from algebraic geometry states.
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Theorem 3 Assume Γ is numerical with N0\Γ finite. We have

d(E(s)) ≥ n− s (8)

d(C(λt )) ≥ t + 1− g (9)

The usual proof of the Goppa bounds requires the use of the Riemann-Roch theo-
rem. However, in the case of one-point geometric Goppa codes order domain theory
provides an alternative proof by combining Theorem 2 and Lemma 2.

Theorem 4 Assume Γ is numerical with N0\Γ finite. The bound in (5) is at least
as good as the bound (8) and sometimes better. The bound in (7) is at least as good
as the bound (9) and sometimes better.

Proof To prove the first claim we need only consider numbers i ∈ Δ(R,ρ,ϕ)
with i ≤ s. We have σ(i) = #(Δ(R,ρ,ϕ) ∩ (i + Γ )). By Lemma 2 the num-
ber of elements in Δ(R,ρ,ϕ) that are not in i + Γ is at most i and therefore
σ(i) ≥ n− i holds. Equality holds only when Γ \(i + Γ ) ⊆ Δ(R,ρ,ϕ). We con-
clude min{σ(i) | i ∈Δ(R,ρ,ϕ), i ≤ s} ≥ n− s. Concerning the last claim we have

min{μ(η) | η ∈ Γ and λt < η} =min{i − g(i)+ #D(i) | t < i} ≥ t + 1− g

with equality if and only if λt+1 = λt + 1, g(t + 1)= g and #D(t + 1)= 0 holds. �

5 Gröbner Basis Theoretical Tools for the Construction of Order
Domains

In this section we will see how to construct order domains by use of only simple
Gröbner basis theoretical tools. The method to be described can be viewed as a
generalization of the Hermitian order domain construction from Example 1. We
start by recalling some basic facts from Gröbner basis theory. In the following let F

be any field.

Definition 8 Denote by M(X1, . . . ,Xm) the set of monomials in X1, . . . ,Xm.
Given a term ordering <M on M(X1, . . . ,Xm) and an ideal I ⊆ F[X1, . . . ,Xm]
the footprint (or the Gröbner éscalier) of I is the set

Δ<M(I ) = {M ∈ M(X1, . . . ,Xm) |M is not

a leading monomial of any polynomial in I }.

Theorem 5 Let I ⊆ F[X1, . . . ,Xm] be an ideal. Then {M + I |M ∈Δ<M(I )} is a
basis for F[X1, . . . ,Xm]/I as a vector space over F.
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Example 9 This is a continuation of Example 1 where we considered the Hermitian
order domain R = Fq2 [X,Y ]/I , with I = 〈Xq+1− Yq − Y 〉. Let a weighted degree
lexicographic ordering <w on M(X,Y ) be given as follows. We have XαYβ <w
Xγ Y δ if either αq + β(q + 1) < γ q + δ(q + 1) holds or αq + β(q + 1) = γ q +
δ(q + 1) but β < δ holds. Clearly, Δ<w(I)= {XiY j | 0 ≤ i,0 ≤ j < q} and there-
fore by Theorem 5 B = {XiY j + I | 0≤ i,0≤ j < q} is a basis for R.

For the construction of order domains we will need generalized weighted degree
orderings. These are defined as follows

Definition 9 Given weights w(X1), . . . ,w(Xm) ∈ N
r
0\{0} let N

r
0 be ordered by

some fixed term ordering <N
r
0
. Let <M be a fixed term ordering on M(X1, . . . ,

Xm). The weights extend to a monomial function w : M(X1, . . . ,Xm)→ N
r
0 by

w(X
α1
1 · · ·Xαmm ) =

∑m
i=1 αiw(Xi). For a monomial M we call w(M) the weight

of M . Now the generalized weighted degree ordering <w induced by w, <N
r
0

and
<M is the term ordering defined as follows. GivenM1,M2 ∈ M(X1, . . . ,Xm) then
M1 <w M2 if and only if one of the following two conditions holds

(GWD.1) w(M1) <N
r
0
w(M2)

(GWD.2) w(M1)=w(M2) andM1 <M M2.

We observe, that if the weights are numerical then we do not need to define the
ordering <

N
r=1
0

as there exists only one term ordering on N0. In this case the gen-
eralized weighted degree ordering simplifies to the usual weighted degree ordering.
We can now describe the main result of this section.

Theorem 6 Let I be an ideal in F[X1, . . . ,Xm] and assume G is a Gröbner basis
for I with respect to a generalized weighted degree ordering <w . Suppose that the
elements of the corresponding footprint Δ<w(I) have mutually distinct weights and
that every element of G has exactly two monomials of highest weight in its support.
Write Γ = {w(M) |M ∈ Δ<w(I)} ⊆ N

r
0. For f ∈ F[X1, . . . ,Xm]/I denote by F

the (unique) remainder of any polynomial in f after division with G . Then R =
F[X1, . . . ,Xm]/I is an order domain with a weight function ρ : R→ Γ ∪ {−∞}
defined by ρ(0)=−∞ and ρ(f )=max<

N
r
0
{w(M) |M ∈ Supp(F )} for f �= 0.

Proof Theorem 5 tells us that B = {M+I |M ∈Δ<w(I)} is a basis forR as a vector
space over F. For f ∈ B let F ∈Δ<w(I) be the unique monomial such that f = F +
I . The map ρ : B → Γ given by ρ(f )=w(F) is well-defined and by assumption it
is bijective. If we can show that B = {fλ | λ ∈ Γ } is a well-behaving basis then from
Definition 2 it follows that a weight function is given just as described in the theorem
above. For γ ∈ Γ we denote by fγ the element in B with ρ(fγ ) = γ and write
fγ = Fγ + I where Fγ ∈ Δ<w(I). It follows by the definition of ρ that w(Fγ ) =
γ holds. Recall from Definition 1, that R−∞ = {0} and that for λ ∈ Γ we define
Rλ = SpanF{fγ | γ ≤N

r
0
λ}. We must show that if α,β ∈ Γ then fαfβ ∈ Rα+β but
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fαfβ /∈ Rδ for any δ with δ <N
r
0
α + β . By the definition of ρ this corresponds to

showing that if fαfβ is written as

∑

η∈Γ,kη∈F

kηFη + I

then

max
<

N
r
0

{

w(M) |M is in the support of
∑

η∈Γ,kη∈F

kηFη

}

= α + β

holds. Multiplying fα = Fα + I with fβ = Fβ + I we get FαFβ + I . Clearly, FαFβ
is a monomial but it need not be an element in Δ<w(I). To find

∑

η∈Γ,kη∈F

kηFη

we reduce FαFβ modulo G . At every stage of this reduction by induction the derived
polynomial will have exactly one monomial of highest weight in its support and the
weight of this monomial equals w(FαFβ)= α + β . �

Example 10 This is a continuation of Examples 1 and 9 where we considered the
Hermitian order domain. Clearly, G = {Xq+1−Yq−Y } is a Gröbner basis for I with
respect to <w . We have w(Xq+1)= w(Yq)= q(q + 1) > w(Y )= q and therefore
all polynomials in G contains exactly two monomials of highest weight. It is easily
verified that no two different monomials in Δ<w(I) are of the same weight and
therefore all the conditions in Theorem 6 are satisfied.

Example 11 This is a continuation of Example 3 where we considered a family of
weight functions on the order domain R = F[X1, . . . ,Xm]. Using the convention
that G = ∅ is a Gröbner basis for the ideal 〈0〉 the description in Example 3 can be
viewed as an instance of Theorem 6.

Theorem 6 actually captures all order domains relevant in coding theory includ-
ing the spaces R =⋃∞

m=0 L(mP) used in the construction of one-point geometric
Goppa codes (Example 2 and Sect. 4). This not too obvious result is the content
of Geil and Pellikaan (2002). To explain precisely what Geil and Pellikaan (2002,
Theorem 10.4) is saying we consider the general definition of an order function
in Remark 2. We observe that although the well-order (Γ,<Γ ) is not born with
a binary operation the order function induces one. More precisely, one can define
an operation ⊕ on Γ by the rule ρ(f )⊕ ρ(g) = ρ(fg). Denoting by 0 the mini-
mal element of Γ , (Γ,⊕,0) becomes a semigroup. Now Geil and Pellikaan (2002,
Theorem 10.4) deals with the case where an order domain and an order function is
given for which the semigroup (Γ,⊕,0) is finitely generated. Under this condition
the following three things hold. Firstly, (Γ,⊕,0) is isomorphic to a sub semigroup
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of N
r
0 for some r . Secondly, under the isomorphism <Γ is the restriction of a term

ordering on N
r
0 to Γ . Finally and most importantly, up to isomorphism the order

domain and the order function can be described as in Theorem 6. In particular if an
order function ρ has a finitely generated semigroup (Γ,⊕,0) then ρ is isomorphic
to a weight function. Furthermore, Geil and Pellikaan (2002, Theorem 11.9) states
that if the transcendence degree of R is r and (Γ,⊕,0) is finitely generated then
it is possible to embed (Γ,⊕,0) into (Nr0,+,0) but impossible to embed it into
(Nr−1

0 ,+,0). We next observe that every numerical semigroup is finitely generated
and therefore in theory the algebraic structure R =⋃∞

m=0 L(mP) used in the con-
struction of one-point geometric Goppa codes can be described as in Theorem 6.
One main advantage of Theorem 6 is that it allows us to construct in a very easy
way order domains of higher transcendence degree. We now give such an example.

Example 12 Let

H1(X,Y,Z,U)=Xq + YZq − YqZ −X,
H2(X,Y,Z,U)=Uq −Zq+1 + aXq − aY qZ+ bY q+1 +U

where a, b ∈ Fq . Consider I = 〈H1(X,Y,Z,U),H2(X,Y,Z,U)〉 ⊆
Fq2 [X,Y,Z,U ] and define the generalized weighted degree ordering <w on
M(X,Y,Z,U) as follows. Consider weights w(X)= (q,1),w(Y )= (0, q),w(Z)
= (q,0),w(U) = (q + 1,0) ∈ N

2
0 and let <

N
2
0

be any fixed term ordering on

N
2
0 that satisfies (q2, q), (q, q2), (0, q2 + q) <

N
2
0
(q2 + q,0) and (q, q2) <

N
2
0

(q2, q). Finally let <M be any fixed term ordering on M(X,Y,Z,U) that sat-
isfies YZq <M Xq and Zq+1 <M Uq . The leading monomial of H1 is Xq

and the leading monomial of H2 is Uq . Hence, the two leading monomials are
relatively prime. By a standard result in Gröbner basis theory this implies that
{H1(X,Y,Z,U),H2(X,Y,Z,U)} constitutes a Gröbner basis. It is easily shown
that the remaining conditions in Theorem 6 are satisfied. From Theorem 6 we get a
weight function

ρ :R = Fq2 [X,Y,Z,U ]/I→〈(q,1), (0, q), (q,0), (q + 1,0)〉 ∪ {−∞}.
The particular choice of terms not of highest weight in H1 and H2 will be important
in a later example where we derive codes from the above order domain.

Consider any finitely generated semigroup Γ = 〈λ1, . . . , λm〉 ⊆ N
r
0 and a term

ordering <N
r
0
. Let an ordering <w on M(X1, . . . ,Xm) be defined by w(X1) =

λ1, . . . ,w(Xm)= λm and some term ordering <M. The ideal

IΓ = 〈M −N |M,N ∈ M(X1, . . . ,Xm), w(M)=w(N)〉
⊆ F[X1, . . . ,Xm] (10)

is called a toric ideal. IΓ has a Gröbner basis with respect to <w that consists of
a collection of binomials of the form from (10). In fact, the Gröbner basis can be
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found by use of elimination theory (see Geil and Pellikaan 2002, Proposition. 10.6).
By (10) no two different monomials of the same weight can be simultaneously mem-
bers of Δ<w(IΓ ) and therefore the conditions in Theorem 6 are satisfied. That is,
we have a weight function

ρ :RΓ = F[X1, . . . ,Xm]/IΓ → Γ ∪ {−∞}.
This sort of a trivial order domain plays a special role in order domain theory.
Namely, it was shown in Little (2007) that the conditions in Theorem 6 regard-
ing the defining polynomials of a F-algebra R = F[X1, . . . ,Xm]/I and a semigroup
Γ ⊆N

r
0 are equivalent to saying that R has a flat deformation to RΓ . This result has

proved very useful. As an example it is used in Little (2007, Sect. 6) in combination
with some results on deformation of Grassmannians to derive weight functions on
all Grassmannians.

6 Gröbner Basis Theoretical Tools for the Code Construction

In this section we shall see that not only is Gröbner basis theory an important tool
for the construction of order domains—it is also an important tool for the con-
struction of the corresponding codes. Recall, that for the code construction we
need an order domain R over Fq and a surjective Fq -linear map ϕ : R→ F

n
q sat-

isfying ϕ(fg) = ϕ(f ) ∗ ϕ(g). Recall, that such a map is called a morphism be-
tween Fq -algebras. Given an order domain R = Fq [X1, . . . ,Xm]/I as in Theorem 6
the most obvious choice of ϕ would be ϕ(F + I ) = (F (P1), . . . ,F (Pn)) where
{P1, . . . ,Pn} ⊆ VFq

(I ). Here, VFq
(I ) denotes the variety of I . Theorem 7 tells us

that there are no maps beside this that have the desired properties.

Theorem 7 Let ϕ : Fq [X1, . . . ,Xm]/I → F
n
q be a surjective Fq -linear map satis-

fying ϕ(fg) = ϕ(f ) ∗ ϕ(g) for all f,g ∈ Fq [X1, . . . ,Xm]/I . Then there exists a
set {P1, . . . ,Pn} ⊆ VFq

(I ), Pi �= Pj for i �= j such that ϕ(F (X1, . . . ,Xm)+ I ) =
(F (P1), . . . ,F (Pn)) holds for all F(X1, . . . ,Xm) ∈ Fq [X1, . . . ,Xm].

Proof We will use the notation ϕ(f ) = (ϕ1(f ), . . . , ϕn(f )). The assumption
that ϕ is surjective implies that ϕi : Fq [X1, . . . ,Xm]/I → Fq , i = 1, . . . , n are
pairwise different surjective maps. The remaining assumptions imply that ϕi :
Fq [X1, . . . ,Xm]/I → Fq is a ring homomorphism with ϕi(c + I ) = c for all
c ∈ Fq . Writing x1 =X1 + I, . . . , xm =Xm + I and identifying c+ I with c for all
c ∈ Fq we get F(X1, . . . ,Xm)+ I = F(x1, . . . , xm). This is nothing but the usual

way of doing arithmetic on residue classes. Now let P (1)i = ϕi(x1), . . . ,P
(m)
i =

ϕi(xm) ∈ Fq . The fact that ϕi is a ring homomorphism with ϕi(c + I ) = c for all

c ∈ Fq now implies that ϕi(F (x1, . . . , xm)) = F(P (1)i , . . . ,P (m)i ) holds. That is,

ϕi(F (X1, . . . ,Xm) + I ) = F(P (1)i , . . . ,P (m)i ). For every F(X1, . . . ,Xm) ∈ I we

have ϕi(F (x1, . . . , xm)) = ϕi(0 + I ) = 0 and therefore Pi = (P (1)i , . . . ,P (n)i ) is a
zero of F(X1, . . . ,Xm). In other words Pi ∈ VFq

(I ). �
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In conclusion we see that a very large class of algebraic geometry codes including
one-point geometric Goppa codes can be described by use of only simple Gröbner
basis theoretical tools. Unfortunately, given a general order domain R then it is
not at all obvious how to derive the description in Theorem 6. However, it is still
possible to apply the simple Gröbner basis theoretical tools when dealing with the
codes at a theoretical level. As an example we note that one can reprove the result
in Sect. 4 regarding the minimum distance of the codes E(λ) and Ẽϕ(s) in a pure
Gröbner basis theoretical setting.

The remainder of the present section is about the case where a description as in
Theorem 6 is known. As we are normally interested in large codes we concentrate
mostly on the case where ϕ is defined by evaluating in all the points of the variety
VFq
(I ). Recall, that for the actual code construction we would like to know for

which λ ∈ Γ we have ϕ(Rλ) �= ϕ(Rγ ) for all γ <N
r
0
λ. The set of such λs was

denoted Δ(R,ρ,ϕ) in Sect. 3. The following not too surprising theorem explains
the choice of notation.

Theorem 8 Consider an order domain R and a weight function ρ :R→ Γ ∪{−∞}
described as in Theorem 6. Let ϕ be the morphism ϕ : R→ F

n
q given by ϕ(F +

I )= (F (P1), . . . ,F (Pn)) where VFq
(I )= {P1, . . . ,Pn}, Pi �= Pj for i �= j . We have

Δ(R,ρ,ϕ)= {w(M) |M ∈Δ<w(Iq)} where Iq = I + 〈Xq1 −X1, . . . ,X
q
m −Xm〉.

Remark 5 It is possible to generalize Theorem 8 to deal with the situation where
{P1, . . . ,Pn} (Pi �= Pj for i �= j ) is not necessarily the entire variety VFq

(I ) but
is any subset. From the fact that every finite set of points constitutes a variety we
conclude that there exist polynomials G1(X1, . . . ,Xm), . . . ,Gs(X1, . . .Xm) such
that {P1, . . . ,Pn} = VFq

(I +〈G1, . . . ,Gs〉). But then we can apply Andersen (2007,
Proposition 20) which states that if {P1, . . . ,Pn} = VFq

(I + 〈G1, . . . ,Gs〉) then the
result in Theorem 8 holds again if we replace Iq = I + 〈Xq1 −X1, . . . ,X

q
m −Xm〉

with I + 〈G1, . . . ,Gs〉 + 〈Xq1 −X1, . . . ,X
q
m −Xm〉.

Remark 6 The concept of affine variety codes was coined in Fitzgerald and Lax
(1998). The construction is based on an ideal I ⊆ Fq [X1, . . . ,Xm] from which
we define Iq just as in Theorem 8. We write {P1, . . . ,Pn} = VFq

(Iq), R =
Fq [X1, . . . ,Xm]/Iq and let L be any subspace of the vector space R. Defining
ϕ : R→ F

n
q by ϕ(F (X1, . . . ,Xm)+ I )= (F (P1), . . . ,F (Pn)) the code C(I,L)=

{ϕ(f ) | f ∈ L} and its dual are called affine variety codes. We observe that Theo-
rems 7, 8 and Remark 5 provide us with a way of interpreting order domain codes
as affine variety codes.

Theorem 8 immediately applies to the Hermitian order domain and the poly-
nomial ring Fq [X1, . . . ,Xm]. However, we already derived the corresponding set
Δ(R,ρ,ϕ) in Examples 5 and 6 so we will not treat them again. Instead we apply
Theorem 8 to the order domain in Example 12.

Example 13 In Example 12 we considered R = Fq2 [X,Y,Z,U ]/I where I =
〈H1(X,Y,Z,U),H2(X,Y,Z,U)〉 and H1(X,Y,Z,U) = Xq + YZq − YqZ − X,
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H2(X,Y,Z,U)=Uq −Zq+1+aXq −aY qZ+bY q+1+U with a, b ∈ Fq . We de-
fined weights w(X) = (q,1),w(Y ) = (0, q),w(Z) = (q,0),w(U) = (q + 1,0) ∈
N

2
0 and chose as term ordering <

N
2
0

any term ordering satisfying (q2, q), (q, q2),

(0, q2+q) <
N

2
0
(q2+q,0) and (q, q2) <

N
2
0
(q2, q). As ordering<M we chose any

term ordering on M(X,Y,Z,U) that satisfies YZq <M Xq and Zq+1 <M Uq .
Defining <w accordingly we showed that R is an order domain satisfying the con-
ditions in Theorem 6. By applying Buchberger’s first criterion we now see that

G′ = {H1(X,Y,Z,U),H2(X,Y,Z,U),X
q2 −X,Yq2 − Y,Zq2 −Z,Uq2 −U}

constitutes a Gröbner basis for Iq2 . Hence, we get

Δ<w(Iq)= {XαYβZγUδ | α, δ < q and β,γ < q2}.

The footprint is of size q6 and we therefore get codes of length n= q6. The footprint
Δ<w(Iq) has the form of a box. From this observation it is not difficult to show that
the dimension of C̃ϕ(s) equals the dimension of Ẽϕ(s) for all s = 1,2, . . . , q6. In
Fig. 1 we plot the estimated performances of the codes Ẽϕ(δ) and C̃ϕ(δ) from the
present example in the case Fq2 = F64. These codes are of length n= 262144 and
are marked with a 	. The hyperbolic codes and the generalized Reed–Muller codes
from F64[X1,X2,X3] are of the same length. For comparison we also plot their
performances. The performances of the hyperbolic codes are given by the graph
marked with a ◦ and the performances of the generalized Reed–Muller codes are
marked with +’s. The last graph is the asymptotic Gilbert–Varshamov bound.

Fig. 1 Code performance
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7 The Connection to Valuation Theory

The theory of order domains has grown too large in its almost ten years lifetime
for us to be able to cover all interesting aspects in the present paper. One of the as-
pects that we have not treated is the connection to valuation theory. We now give a
brief discussion of the subject and refer the reader to the literature for more de-
tails. In Example 2 and Sect. 4 we demonstrated the close connection between
weight functions with Γ ⊆ N0 ∪ {−∞} and valuations on curves. It should come
as no surprise that every weight function corresponds to a valuation on an exten-
sion of the order domain. In Remark 2 we defined a more general class of func-
tions called order functions which maps to a well-order (Γ,<Γ ). As mentioned
in Sect. 5 we can make Γ into a semigroup by defining the binary operation ⊕
on Γ by ρ(f )⊕ ρ(g) = ρ(fg). It was shown in O’Sullivan (2001, Theorem 2.1)
and Geil and Pellikaan (2002, Proposition 6.1) that the above observation regarding
a connection to valuation theory applies to order functions in general, in that an or-
der function ρ : R→ Γ ∪ {−∞} defines a valuation ρ̃ : QF(R)→ D(Γ ) ∪ {∞} by
ρ̃(0)=∞ and ρ̃(f/g)= ρ(g)− ρ(f ). Here, QF(R) denotes the field of fractions
of R and D(Γ ) is the totally ordered semigroup of differences of Γ . We have seen
in Sect. 4 that every valuation related to a rational place of a function field in one
variable defines an order function. For function fields in more variables the picture is
more complicated as for these there are classes of valuations that do not define order
functions. A thoroughly treatment of the problem in the case of a function field in
two variables can be found in O’Sullivan (2001). In Little (2007) order functions are
constructed on the basis of projective varieties that have a flag of subvarieties sat-
isfying certain mild conditions. Using this method order functions on all Hermitian
hypersurfaces are described.
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The BMS Algorithm

Shojiro Sakata

Abstract We present a sketch of the n-dimensional (n-D) Berlekamp–Massey algo-
rithm (alias Berlekamp–Massey–Sakata or BMS algorithm) w.r.t. n-D arrays. That
is: (1) How is it related to Gröbner basis? (2) What problem can it solve? (3) How
does it work? (4) Its variations. First we discuss another problem closely related
to our main problem, and introduce some concepts about n-D linear recurrences
and modules of n-D arrays as their general solutions. These two problems are just
the inverse (or rather dual) to each other, which can be solved by the Buchberger
algorithm (Buchberger in Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Inns-
bruck, 1965; J. Symb. Comput. 41(3–4):475–511, 2006; Multidimensional systems
theory, Reidel, Dordrecht, pp. 184–232, 1985; Mora in Gröbner technology, this
volume, pp. 11–25, 2009b), and the BMS algorithm, respectively. Furthermore, we
discuss some properties of BMS algorithm and its outputs, including its computa-
tional complexity, as well as several variations of the BMS algorithm.

1 Introduction

In this paper, we present a sketch of the multidimensional Berlekamp–Massey algo-
rithm (alias Berlekamp–Massey–Sakata algorithm or BMS algorithm) from (Sakata
1988, 1990). It is a generalization of the Berlekamp–Massey algorithm (Berlekamp
1968; Massey 1969) from one-dimensional (1-D) arrays to n-dimensional (n-D) ar-
rays for n≥ 1. We discuss:

(1) How is it related to the Gröbner basis theory?
(2) What problem can it solve?
(3) How does it work?
(4) its several variations.

In another paper (Sakata 2009) of this issue we present its applications to de-
coding of algebraic error-correcting codes. In most part of this paper we restrict
ourselves to treating finite fields although the contents remain valid in any field F

provided that we have exact computations over F.
Before we introduce our main theme, i.e. our main problem and its solution by

the BMS algorithm, we discuss another problem closely related to it as well as
some concepts which are important in this paper, where we call these problems

S. Sakata
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primal and dual, respectively. The duality of the two problems are similar to the
duality discussed by Mora (2009a). About these details we give several remarks in
the following. Although the concept of “functional” given in ibid. is mathematically
natural and more general, we use the terminology of “array” instead of that of func-
tional for the convenience of our discussions. The descriptions of this chapter are
rather elementary and intuitive, which are not necessarily refined mathematically as
in ibid. The topic also turns to be a history of Gröbner basis in the world of Coding
Theory.

Now we start to consider sequences (or 1-D arrays) and linear recurrences sat-
isfied by them. The following is a linear recurrence over the real number field R,
which is satisfied by the famous Fibonacci sequence:

sj+2 − sj+1 − sj = 0, j ≥ 0

When we start with the initial values s0 = 1, s1 = 1, we have not only the 1-D ar-
ray (sj ) = (1,1,2,3,5,8, . . .) but also an explicit form of the j -th element sj for
any j ∈N (over a finite field we have another array, of course). Well, we generalize
such 1-D arrays and 1-D linear recurrences to multidimensional arrays and multi-
dimensional linear recurrences. For example, we consider the following system of
two-dimensional (2-D) linear recurrences over F:

⎧
⎨

⎩

ui+2,j + ui,j = 0
ui+1,j+1 + ui,j = 0,
ui,j+2 + ui,j = 0

(i, j) ∈N2

In general such a condition as above is called a system of constant-coefficient
linear recurrences or (partial) finite difference equations. Given a system of
n-Dimensional (n-D) linear recurrences over any field F, we want to find all n-D
arrays satisfying them. It is just a digital version of finding the general solutions of
a system of (homogeneous) constant-coefficient linear partial differential equations.
We want to obtain not only a special solution but also the general solutions (the
whole set of solutions). We treat multiple recurrences satisfied by n-D arrays. To
discuss our problem in general we need some notation as follows.

An n-D array over a field F is a mapping u from Nn into F. An array can
be extended to a mapping (functional) from the n-variate polynomial ring P =
F[X1, . . . ,Xn] into F so that a refinement of our discussions on duality can be
given as in Mora (2009a). Since an n-D array u identifies a field element in F to
an n-dimensional vector a = (a1, . . . , an) ∈ Nn of nonnegative integers (and hence
to any termXa :=Xa1

1 · · ·Xann ), we can associate to u the unique functional L taking
the values of u on the corresponding term (and vice versa). If we know the values of
a functional L on all terms, then by linearity we know all of its values. Moreover, the
value of L on one term is completely independent from its value on any other term.
We persist in using the terminology of array, which has been used in most literature
on the (applications of) BMS algorithm. We denote an array u also as u= (ua)a∈Nn ,
where ua := u(a) ∈K and we consider these elements to be arranged on the whole
n-D integral lattice which is identified with Nn. Let A be the set of all n-D arrays
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over F defined on Nn, and introduce basic operations upon arrays u ∈ A. Naturally,
we have the sum of two arrays u= (ua), v = (va) ∈ A as u+v = (ua+va) ∈ A, and
the scalar product of u by an element c of the coefficient field F as cu= (cua) ∈ A.
Furthermore, we consider polynomials f =∑a∈supp(f ) c(f, a)X

a ∈ P . In this pa-
per we often refer to exponents (integer vectors) a = (a1, . . . , an) ∈ Nn as basic
entities instead of terms τ = Xa so that we denote the coefficient of τ = Xa as
c(f, a) instead of c(f,Xa). We call the (finite) set of exponents a (∈ Nn) of its
nonzero monomials c(f, a)Xa (having the nonzero coefficient c(f, a) ∈ K \ {0})
by the name of the support1 of f and denote it as supp(f ) (⊂ Nn). A polynomial
f ∈ P is operated on an array u ∈ A (it is the same as multiplying a functional L
by f ) so that the following array v is obtained:

v = f ◦ u := (vb) ∈ A, vb :=
∑

a∈supp(f )

c(f, a)ua+b, b ∈Nn

This polynomial operation ‘f ◦’ is just a transformation of an array u to another ar-
ray v. In particular, the operation by the monomial f =Xj , 1≤ j ≤ n is a unit shift
along the Xj -axis (to the negative direction), where v =Xj ◦ u= (va), a ∈Nn has
the elements va1,...,aj ,...,an = ua1,...,aj+1,...,an (the elements of u which are put out of
the domain Nn are pruned away). For example, in case of n = 1, for X :=X1 and
u= (ui), the unit-shifted array v =X ◦ u= (vi) has the elements vi = ui+1, i ∈N,
and the double-shifted array w =X2 ◦ u= (wi) has wi = ui+2, i ∈N, etc.2 Conse-
quently, the module A is a P -module, i.e. a module with the ring P of operators.
By using this notation, we can write any linear recurrences with the characteristic
polynomials F = {f (1), . . . , f (μ)} (⊂ P ) as follows,

f (i) ◦ u= 0, 1≤ i ≤ μ, (1)

where 0 is the all-zero array. From now on, we do not distinguish between lin-
ear recurrences and the corresponding characteristic polynomials, identifying them.
That is, for simplicity, provided that the formula (1) holds, we often say that the
array u satisfies the polynomial f (i), and that ‘the polynomial f (i) is valid for
the array u,’ etc. For a given F ⊂ P , it is easy to see that the set A(F ) of solu-
tions u of (1) is a P -submodule of the P -module A, since f ◦ (g ◦ u) = (fg) ◦ u
for f,g ∈ P . For example, for a univariate polynomial f = x2 − x − 1 over R,
A(f ) is the set of 1-D arrays (Fibonacci sequences) u = (ui) which are obtained
by setting any initial values u0, u1 and then uniquely by determining the other
values ui , i ≥ 2 iteratively with the linear recurrence f ◦ u = 0. In general, for
any polynomial set F ⊂ P and the ideal I(F ) := 〈F 〉P (⊂ P ) generated by F ,
A(F )= A(I(F )) := {u ∈ A | f ◦ u= 0, f ∈ I(F )}.

1In Mora (2009a) the support is defined as a subset of the whole set T of terms Xa , a ∈Nn.
2Trivially, by multiplying a polynomial g =∑0≤i≤d giXi with X, one gets the polynomial ḡ =
Xg =∑0≤i≤d giXi+1 =∑1≤i≤d+1 gi−1X

i , where the array of coefficients of its monomials is

obtained by shifting to the positive direction: (gi)→ (gi−1) in contrast with the above shift (to the
negative direction) by operation X.



146 S. Sakata

As is seen, in case of n= 1, we can easily obtain P -submodules A(f ) and A(F )
of 1-D arrays. In particular, for F = {f (1), . . . , f (μ)} (⊂ F[X]), A(F ) = A(g),
where g = gcd(F ) (gcd = greatest common divisor). However, it is not so easy
to obtain A(F ) in case of n ≥ 2 as in case of n= 1. In case of n ≥ 2, it is difficult
not only to give the solutions of a system of homogeneous linear recurrences (1) but
also to specify even the positions of initial values. In fact, the Buchberger algorithm
gives the solution of the present problem, which we will mention in the next section.
For our discussions, we need some variants of basic notion from the Gröbner basis
theory. In this paper we consider any term ordering < over Nn, although it usually
is defined over the set T = {Xa | a ∈Nn} of terms in the Gröbner basis theory. Fur-
thermore, we often consider the leading exponent le(f ) := max< supp(f ) (∈ Nn)
of f instead of the corresponding leading term T(f )=Xle(f ) ∈ T .

2 Generating Arrays

We consider the problem of initial value positions via the following example in
case of n = 2. Now we assume for a set of polynomials F = {f (1), . . . , f (μ)}
(⊂ F[X1,X2]) that the leading exponents le(f (i)) = d(i) = (d(i)1 , d

(i)
2 ) ∈ N2,

1≤ i ≤ μ of its elements satisfy

d
(1)
1 > d

(2)
1 > · · ·> d(μ−1)

1 > d
(μ)
1 = 0, d

(1)
2 = 0< d(2)2 < · · ·< d(μ−1)

2 < d
(μ)
2

Then, N2 can be split into two parts:

Σ(F) := {a ∈N2 | a ≥P d(i),1≤∃ i ≤ μ}, Δ(F ) :=N2 \Σ(F),
where ≥P is the natural partial ordering over Nn. These subsets have the following
properties and are called stable sets (sometimes the former and latter sets are called
upper and lower sets, respectively),

a ∈Σ(F), b ∈N2, a ≤P b ⇒ b ∈Σ(F);
a ∈Δ(F), b ∈N2, a ≥P b ⇒ b ∈Δ(F).

If F is a Gröbner basis (w.r.t. <) of an ideal I, there are complementary subsets
T(I) and N(I) (⊂ T ) which are determined uniquely by I (Mora 2009a). Now we
consider any stable subsets without assuming any knowledge of Gröbner basis. The
latter setΔ(F) called delta-set or footprint seemingly can be used as the initial value
positions. That is, after having specified any values ua ∈ F, a ∈Δ(F) as the initial
values, we proceed to find each of the remaining values ub , b ∈Σ(F) iteratively by
using the following (pseudo)algorithm of generating an array up to an prescribed
position r ∈ N2. In the following we denote the next greater point (w.r.t. the term
ordering <) of any point a ∈N2 as a⊕ 1, and define supp(f ) := supp(f ) \ {le(f )}
(⊂ N2), Σr := {b ∈ N2 | b < r}; min<Σ(F) is the minimum element of Σ(F)
w.r.t. <.
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Table 1 Initial values ua ,
a ∈Δ(F) and partial array
ua , a ∈Σ(1,2)

a1 \ a2 0 1 2 3

0 1 0

1 1

2

3

4

a1 \ a2 0 1 2 3

0 1 0 1

1 1 1

2 1 0∗

3 1

4

Algorithm 1 Generating an array ub , b ∈Σr ;
Step 1 (initialization): b :=min<Σ(F);
Step 2 (computation): if b ∈Σ(F) then

begin let i be any i, 1≤ i ≤ μ s.t. d(i) ≤P b;

ub := 1

lc(f (i))

(

−
∑

a∈supp(f (i))

c(f (i), a)ua+b−d(i)
)

end;

Step 3 (termination): b := b⊕ 1; if b < r then go to Step 2 else stop.

Although it seems that we could find an array u before the terminal point r by
using this algorithm, it will turn out naturally that we do not always succeed in get-
ting a proper array having the specified initial values and satisfying all of the given
linear recurrences. In Step 2, the value ub is determined by using the polynomial
f (i) so that one of the desired conditions

f (i)[u]b :=
∑

a∈supp(f (i))

c(f (i), a)ua+b−d(i) = 0

is satisfied, but some conditions corresponding to other polynomials f (j), j �= i
with d(j) ≤P b might not always be satisfied. Consider the previous example (1)
over F2. The linear recurrences are specified by F = {f (1) := X2

1 + 1, f (2) :=
X1X2+1, f (3) :=X2

2+1}, and the delta-set isΔ(F)= {(0,0), (1,0), (0,1)}. Start-
ing with the initial values shown in the left half of Table 1 we proceed to find the
other values of u iteratively w.r.t. the graded reverse lexicographic ordering < (i.e.
the term ordering with the weight w = (1,1) associated with the reverse lexico-
graphic ordering X1 <L X2). Then, we have the intermediate result shown in the
right half of Table 1.

The value u2,1 = 0 with signature ∗ is found by using f (1), but it does not satisfy
the linear recurrence of f (2). Thus, there exists no array u which has the initial val-
ues and is a solution of the linear recurrences (1) over F2. In other words, the above
delta-set is not appropriate as a set of positions for initial values. On taking into con-
sideration the properties of Gröbner basis, it might be hit upon that the polynomial
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set F is not a Gröbner basis and that the corresponding delta-set is too large to be
a set of positions for initial values so that the algorithm3 for generating arrays fails
to find proper arrays. In fact, it is easy to see that the reduced Gröbner basis (w.r.t.
the term ordering < with w = (1,1)) of the ideal I = 〈F 〉P is {X2

1 + 1,X2 +X1},
and that the proper set of positions for initial values is {(0,0), (1,0)}. As we have
seen, the problem of finding the proper set of positions for initial values, given
a set of linear recurrences or its characteristic polynomials, is just identical with
that of finding a Gröbner basis of the ideal I(F ). Furthermore, iteratively from F ,
we can find a polynomial f (b) := Xb −∑a∈Δ(F) c(f (b), a)Xa ∈ I(F ), by which
we can get the value ub for any b ∈ Σ(F) directly from any given values ua ,
a ∈ Δ(F), so that the so-called S-polynomial at any outer corner point outside
Δ(F) can be obtained. By repeating reductions of such S-polynomials modulo
F and consequent modifications of F and Δ(F), we finally get a Gröbner basis.
Of course, it is just the Buchberger algorithm. Let us illustrate it with the pre-
vious example. We get X2f

(1) = X2
1X2 + X2 ∈ I(F ) from f (1) = X2

1 + 1, and
X1f

(2) = X2
1X2 + X1 from f (2) = X1X2 + 1. Then, we obtain the S-polynomial

f (3) :=X2f
(1) −X1f

(2) =X2 +X1 ∈ I(F ) at the corner point (2,1), which is not
reducible further modulo F . Finally, {f (1), f (3)} turns out to be the reduced Gröbner
basis.

As a summary, we have that the problem of finding a module of linear recurrences
is equivalent to that of finding a Gröbner basis of its characteristic polynomials, and
thus these problems can be solved by the same algorithm. In the world of Coding
Theory, it is a historical fact that the concept (Ikai et al. 1976) equivalent to Gröbner
basis and an algorithm (Sakata 1981) equivalent to the Buchberger (1965, 1985,
2006) algorithm were introduced in the process of solving a certain problem of
constructing a kind of multidimensional codes independently. In general, as it is
shown in Lemma 4 of Mora (2009a), the general solution of the system of linear
recurrences (1) is just the P -module L which is dual (in the sense of Mora 2009a)
to the ideal I generated by F = {f (1), . . . , f (μ)} and dimFL= #N(I),4 where N(I)
is the delta-set of the Gröbner basis of I which is called Gröber escalier in Mora
(2009a), provided dimFL<∞, i.e. I is a zero-dimensional ideal.

3 BMS Algorithm

Our main problem is just the inverse (or rather dual from the viewpoint of duality
in Mora 2009a) to the problem of finding the general solution of a given system
of linear recurrences which we have discussed in the previous section. Now, for an
integer μ, we are given a pair of sets U := {u(i) | 1 ≤ i ≤ μ} and V := {v(i) | 1 ≤

3As it is seen from these considerations, Algorithm 1 can be an actual algorithm if and only if F
is a Gröbner basis.
4In Sakata (1978), this fact is described in the terminology of array, which is a little bit different
from Mora (2009a).



The BMS Algorithm 149

i ≤ μ} of infinite (periodic) n-D arrays, i.e. U,V ⊂ A, and consider the following
linear recurrences corresponding to (unknown) polynomials f ∈ P :

f ◦ u(i) = v(i), 1≤ i ≤ μ (2)

We might be required to find a valid polynomial f having a (unknown) minimal
leading exponent le(f ). In most part of this paper we concentrate upon the homo-
geneous problem with the right-hand side arrays v(i) = 0, 1 ≤ i ≤ μ, leaving the
non-homogeneous problem (see Sect. 4).

It is easy to see that the following set of polynomials is an ideal of P =
F[X1, . . . ,Xn], which we call the characteristic ideal of the given set U of arrays
u(i), 1≤ i ≤ μ:

I(U) := {f ∈ P | f ◦ u(i) = 0, 1≤ i ≤ μ}
This is the ideal dual to a P -module generated by U in the terminology of Mora
(2009a).

In this section, we treat only the case of a single array,5 i.e. U = {u} ⊂ A, and
we will give a method of finding a Gröbner basis of the characteristic ideal I(u) :=
{f ∈ P | f ◦u= 0}. We want to find a set of polynomials f =∑a∈supp(f ) c(f, a)X

a

with a minimal leading exponent d = le(f ) which satisfy f ◦ u= 0, i.e.

∑

a∈supp(f )

c(f, a)ua+b = 0, b ∈Nn (3)

We try to find a set of polynomials with a minimal leading exponent satisfying a
(partial) condition specified by a finite part of a given infinite array u.

To be more precise, we introduce some notations. According to a specified
term ordering < over Nn, we arrange the points a ∈ Nn so that we have Nn =
{a(0) = 0, a(1), a(2), . . . , a(i), . . . | a(i+1) = a(i) ⊕ 1, i ∈ N}, and a partial array
ub := (ua), a < b for any point b ∈ Nn. If a polynomial f =∑a∈supp(f ) c(f, a)X

a

(∈ P ) satisfies for a certain r ∈Nn

f [u]b :=
∑

a∈supp(f )

c(f, a)ua+b−d = 0, d = le(f )≤P b < r, (4)

we say that f is valid (w.r.t. u) before r . From now on, having fixed an array u,
we often omit the phrase “w.r.t. u.” Furthermore, if the condition (4) holds and
f [u]r �= 0, then we say that f is not valid at the point r for the first time. A monic
(i.e. lc(f )= 1) polynomial f which is valid before a and whose leading exponent
le(f ) is minimal w.r.t. the partial ordering ≤P is called a minimal polynomial of
the partial array ua . Since there exist in general plural minimal polynomials f
with distinct leading exponents le(f ) of a given partial array ua , we can define a
minimal polynomial set F(a) (or simply, F ) of ua associated with a finite set of

5For the general case of multiple arrays, see Sect. 4.
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points D(a)= {le(f ) | f ∈ F(a)} ⊂Nn s.t. there is a single element f ∈ F(a) with
le(f )= d and lc(f )= 1 for each d ∈D(a) and there exists no polynomial h with
le(h) ∈Δ(a) which is valid (w.r.t. u) before a, where for Σd := {b ∈Nn | b ≥P d},
we have a complementary pair of subsets ⊂Nn:

Σ(a) :=
⋃

d∈D(a)
Σd, Δ(a) :=Nn \Σ(a)

In addition to D(a), letting �c := {b ∈ Nn | b ≤P c} for c ∈ Nn, we have a finite
subset C(a)(⊂ Nn) s.t. Δ(a) =⋃c∈C(a) �c . We call Δ(a) the delta-set of F(a),
which is, roughly speaking, in form of a stack of multidimensional building blocks
and whose apices (corner points) are c ∈ C(a). As above-mentioned, there exists no
polynomial h with le(h) ∈Δ(a) which is valid before a. These subsetsD(a), C(a),
Σ(a) andΔ(a) are unique for the given array ua , but a minimal polynomial set F(a)
is not necessarily unique for ua . In view of the definition of minimal polynomial set
F(a), Δ(a)⊆Δ(a⊕ 1). Similar notations can be used for an infinite array u, e.g. a
minimal polynomial set F(⊂ P) of u, the delta-set Δ(⊂Nn) of u, etc. if they exist.

The BMS algorithm is just to find a minimal polynomial set F(a) of a given
partial array ua for a fixed point a ∈ Nn. Starting with the origin 0 ∈ Nn, we pro-
ceed to find a minimal polynomial set F(b) of the partial array ub iteratively at each
point b ≤ a accordingly to the term ordering <. If f ∈ F(b) is valid still at b⊕ 1,
then f ∈ F(b⊕ 1). However, if some f ∈ F(b) is not valid at b, then we must up-
date these invalid f . Whether Δ(a ⊕ 1)=Δ(a) or not depends on certain relations
among a,D(a) and C(a). The following basic lemma (Sakata 1990) describing this
fact stipulates the main procedure of the BMS algorithm.

Lemma 1 If a polynomial f is not valid (w.r.t. u) for the first time at a, i.e.

f [u]b = 0, d = le(f )≤P b < a; f [u]a �= 0,

then there exists no polynomial g with le(g)= d ′ ≤P a − d satisfying the following
condition:

g[u]b = 0, d ′ ≤P b ≤ a

Lemma 1 is very important because it determines the delta-set Δ(a ⊕ 1) and its
complement Σ(a⊕ 1), where the minimal (w.r.t. the partial ordering <P ) points of
Σ(a⊕ 1) are just identical with the set {le(f ) | f ∈ F(a⊕ 1)} of leading exponents
of all elements of a minimal polynomial set F(a ⊕ 1).

Based on Lemma 1 we define the discrepancy, fail and span6 of f , respectively,
as

dis(f ) := f [u]a(�= 0), fail(f ) := a, span(f ) := a − d (= fail(f )− le(f ))

6This is not the usual ‘linear span.’
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In addition we introduce the following notation for later convenience.

Val(ub) := {f ∈ P | f [u]a = 0, le(f )≤P a < b}
mVal(ub) := {f ∈Val(ub) | le(f ) :minimal}
Aux(u; c) := {g ∈ P | span(g)= c}

mAux(u; c) := {g ∈Aux(u; c) | le(g) :minimal}
Associated with the finite subset C(a) related to the delta-set Δ(a), we have a

finite set of polynomials G(a) := {g | span(g) ∈ C(a)}, which we call an auxiliary
polynomial set of ua . An auxiliary polynomial g ∈ G(a) is characterized by the
property that it has a maximal (w.r.t. the partial ordering ≤P ) span(g) among the
polynomials s.t. fail(g) < a. If a minimal polynomial f ∈ F(a) fails to be valid at a,
minimal polynomial(s) f ′ ∈ F(a⊕ 1) at a⊕ 1 can be obtained by using appropriate
auxiliary polynomial(s) g ∈ G(a) (if it exists) as shown in Lemma 2 or without
any g ∈G(a). First we have in view of Lemma 1 that, if there exists a polynomial
f ∈ F(a) with d = le(f ) which is not valid at a and a−d �∈Δ(a), thenΔ(a⊕1) �=
Δ(a). Thus, we define Ffail := {f ∈ F(a) | fail(f ) = a}, Ffall := {f ∈ Ffail | a −
d �∈Δ(a)}, Dfall := {le(f ) | f ∈ Ffall}. Furthermore, for c = (ci)1≤i≤n(∈ C(a)), let
max(d, a − c) := (max{di, ai − ci})1≤i≤n (∈ Nn), and let D′ be the set of minimal
elements d ′ in D′′ := {d ′ :=max(d, a − c) | d ∈Dfall, c ∈ C(a)} (⊂Nn), and let D̂
be the set of minimal elements in Σ(a) \ �a . Now we have the following lemma
about how to update F (Sakata 1990).

Lemma 2 (1) For f ∈ Ffail \Ffall, there exists c ∈ C(a) s.t. d ≥P a−c. In this case,
by using an auxiliary polynomial g ∈G(a) s.t. span(g)= c, we obtain

h := f − dis(f )

dis(g)
Xd−(a−c)g ∈ F(a ⊕ 1)

(2) For a pair (f, g) ∈ Ffall ×G(a) with d = le(f ), c = span(g), respectively, if
it holds that d ′ :=max(d, a − c) ∈D′, then we obtain

h :=X(a−c)−dd ′−df − dis(f )

dis(g)
g ∈ F(a ⊕ 1)

(3) For d̂ ∈ D̂, if there exists no d ′ ∈D′ s.t. d̂ ≥P d ′, then, by using f ∈ Ffail s.t.
d̂ ≥P d = le(f ), we obtain

h :=Xd̂−df ∈ F(a ⊕ 1)

Based on the above observations we have the following form of the BMS algo-
rithm, whose validity can be proven based on Lemmas 1, 2, where some notational
simplicities are used, i.e. minimal polynomial set F(b) and auxiliary polynomial
set G(b) at each point b are denoted simply as F and G, respectively. For f ∈ F ,



152 S. Sakata

g ∈G, let d := le(f ), c := span(g), df := dis(f ), dg := dis(g),

D = {d = le(f ) | f ∈ F }, C = {c= span(g) | g ∈G},
and Σ = Σ(b), Δ = Δ(b) at the beginning of Step 2. A simple example of its
computation is shown in Appendix A.

Algorithm 2 (BMS algorithm) Finding a minimal polynomial set of a finite n-D
array ur over F (Sakata 1988, 1990);7

Step 1 (initialization): b := 0; F := {1}; D := {0}; Σ :=Nn;
G := ∅; C := ∅; (Δ := ∅;)

Step 2 (discrepancy): for each f ∈ F , df := f [u]b;
Ffail := {f ∈ F | df �= 0};
Ffall := {f ∈ Ffail |� ∃c ∈ C s.t. d ≥P b− c };
Dfall := {d = le(f ) ∈D | f ∈ Ffall}; D̂ := {minimal d̂ ∈Σ \ �b};
D′′ := {max(d, b− c) | d ∈Dfall, c ∈ C}; D′ := {minimald ′ ∈D′′};

Step 3 (updating): (1) for each f ∈ Ffail \ Ffall
begin h := f − dfXd−(b−c)g (for g ∈G s.t. d ≥P b− c);
F ′ := F ∪ {h} end;

for each (f, g) ∈ Ffall ×G s.t. d ′ :=max(d, b− c) ∈D′
begin h :=Xd̂−dd ′−df − df g; F ′ := F ∪ {h} end;

for each d̂ ∈ D̂ if � ∃d ′ ∈D′ s.t. d̂ ≥P d ′ then
for f ∈ Ffall s.t. d ≤P d̂

begin h :=Xd̂−df ; F ′ := F ∪ {h} end;
(2) F := F ′ \ Ffail; G′′ := {g ∈G | ∃f ∈ Ffall s.t. c <P b− d};
G := (G∪ { 1

df
f | f ∈ Ffall}) \G′′;

D := {le(f ) | f ∈ F ′ \ Ffall}; Σ :=⋃d∈D Σd ; (Δ :=⋃c∈C �c;)
C := (C ∪ {b− d | ∃f ∈ Ffall s.t. b− d >P c})

\{c ∈ C | ∃f ∈ Ffall s.t. b− d >P c};
Step 4 (termination): b := b⊕ 1; if b < r then go to Step 2 else stop.

A minimal polynomial set F(b) is not necessarily unique for the given array u.
Let F be the class of all reduced minimal polynomial sets F = F(b) of ub , where
F ∈ F is said to be reduced iff any f ∈ F has support supp(f ) s.t. supp(f ) :=
supp(f )\{le(f )} is contained in the delta-setΔ :=Δ(a). Let le(f )+Δ := {le(f )+
a | a ∈Δ}. Now, we have the following theorems (Sakata 1990) about the complete
class F = F(b) which consists of all minimal polynomial sets F = F(b) of ub and
the condition of uniqueness of F , i.e. #F = 1.

Theorem 1 (Complete class) Let F ∈ F (= F(b)) and G = G(b) be a minimal
polynomial set and an auxiliary polynomial set of ub with D = D(b), C = C(b)

7The 1-D case of this algorithm is reduced to a refined version of the well-known Berlekamp–
Massey (BM) algorithm (Berlekamp 1968; Massey 1969).
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s.t. Σ =Σ(b)=⋃d∈D Σd and Δ=Δ(b)=⋃c∈C �c . Take a minimal polynomial
f ∈ F and an F ′ ∈ F . Then, any f ′ ∈ F ′ with le(f ′) = le(f ) = d ∈ D is of the
form:

f ′ = f +
∑

g∈Gd
hgg,

where hg ∈ P , le(hg)≤ d + span(g)− b, and Gd := {g ∈G | d + span(g)≥P b}.

Theorem 2 (Uniqueness) Let F ∈ F . Then, we have that #F = 1 iff

⋃

f∈F
(le(f )+Δ)⊆Σb,

or in other words,

max<{le(f )+ fail(g)− le(g) | f ∈ F,g ∈G}< b,
whereG is an auxiliary polynomial set of ub , and max<{· · · } is the maximum (w.r.t.
<) element of the set {· · · }.

Theorem 3 (Gröbner basis of I(u)) Let P = {∑1≤i≤n cia(i) ∈Nn | 0≤ ci ≤ 1, ci ∈
Q,1 ≤ i ≤ n} be a fundamental period parallelotope P ⊂ Nn of an infinite n-D
periodic array u s.t. ub+a(i) = ub for any b ∈ Nn, and let 2P := {a + c | a, c ∈ P }.
Then, if the subset Σb = {a ∈Nn | a < b} contains 2P , a minimal polynomial set F
of the partial array ub is a Gröbner basis of I(u).

In real applications of the BMS algorithm, we usually know in advance the ap-
proximate size #Δ(F) for the delta-set Δ(F) of the Gröbner basis F (without any
other knowledge of F itself). In such cases, in view of Theorem 2, we can terminate
the iterations of the BMS algorithm much earlier than described in Theorem 3. We
assume the term ordering < with the weight w = (wi)1≤i≤n whose elements wi are
almost equal to each other, i.e. w1 ∼ w2 ∼ · · · ∼ wn. This is just the case that the
Buchberger algorithm has the least complexity. Let m := #Δ for the delta-set Δ of
the Gröbner basis which is the minimal polynomial set F at the termination point,
and let μ := #F (∼ #G). Then, if the computational complexity8 of the BMS algo-
rithm is measured as the total number of arithmetic operations over the finite field

F, in view of μ∼m1− 1
n , it is O(μm2) ∼m3− 1

n when n is fixed. This complexity is
somewhat better than O(m3) of any relevant algorithm based on the usual Gaussian
elimination if n is not large. We should remark that we can have various modifi-
cations of the original BMS algorithm and that the computational complexities of
these versions are reduced considerably when they are applied to various practical

8To determine the set of D′ ∪ D̂ of le(f ′), f ′ ∈ F(b ⊕ 1) we need to have some combinatorial
manipulation, particularly finding minimal (w.r.t. <P ) elements d ′ of D′′. We omit complexity of
such integer operations which are independent from finite field arithmetic.
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problems including decoding of algebraic error-correcting codes because they clev-
erly can make use of the structures or properties of the given input data (i.e. arrays)
which depend on each individual problem (Sakata 2009, 1989; Sakata et al. 1995).

4 Variations

In this section we present several versions of the BMS algorithm, each of which
solves a distinct extension or generalization of the original BMS problem, respec-
tively. The following are a list of these problems.

(1) Multiarray BMS problem (Sakata 1989; Feng and Tzeng 1989, 1991)
Given a finite set U = {u(i) | 1 ≤ i ≤ μ} of finite n-D arrays over F, where

all component arrays u(i), 1 ≤ i ≤ μ are defined over Σr ⊂ Nn (w.r.t. a fixed
term ordering <) for a certain point r ∈Nn;

Find a minimal polynomial set F composed of polynomials f which are
valid (w.r.t. every u(i), 1≤ i ≤ μ), i.e. satisfy the following conditions

f [u(i)]b :=
∑

a∈supp(f )

c(f, a)u
(i)
a+b−d = 0,

d = le(f )≤P b < r, 1≤ i ≤ μ (5)

and have a distinct minimal leading exponent d = le(f ) among the valid poly-
nomials s.t. (Σ(F )=⋃f∈F Σle(f ),Δ(F )) is a separation of Nn and there exists
no valid polynomial g ∈ P with le(g) ∈Δ(F).

This is a multidimensional extension of the multisequence shift-register syn-
thesis problem treated by Feng and Tzeng (1989, 1991).

(2) Vectorial BMS problem (Sakata 1991)
Similarly to the Gröbner basis theory of modules we define the leading ex-

ponent, leading position and leading coefficient of a polynomial vector f =
(f (1), . . . , f (m)) ∈ Pm(:= (F[X1, . . . ,Xn])m) as follows:

le(f) :=max<{le(f (i)) ∈Nn | 1≤ i ≤m}
lp(f) :=max{i ∈ [1,m] | le(f (i))= le(f)}
lc(f) := c(f (i), le(f (i))) ∈K for i = lp(f),

where [1,m] := {1, . . . ,m} ⊂ N, and we use the pair le(f) ∈ Nn, lp(f ) ∈ N
instead of T(f ) ∈ T m in Mora (2009a).

Given an array vector u = (u(1), . . . , u(m)) whose components are finite n-
D arrays u(i) over F, 1 ≤ i ≤ m, defined over Σr ⊂ Nn (w.r.t. a fixed term
ordering <) for a certain point r ∈Nn;

Find a minimal polynomial vector set F of u which is a union of m subsets
F(i)(⊂ Pm), 1 ≤ i ≤ m, where each F(i) is composed of polynomial vectors
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f = (f (1), . . . , f (m)) ∈ Pm with leading position lp(f) = i, 1 ≤ i ≤ m, which
are valid w.r.t. u, i.e. satisfy the following condition:

f[u]b :=
m∑

i=1

∑

a∈supp(f (i))

c(f (i), a)u
(i)
a+b−d = 0, d = le(f)≤P b < r (6)

s.t. there exists no valid polynomial vector g with lp(g)= i and le(g) <P le(f)
for any f ∈ F(i), 1≤ i ≤m.

Naturally this problem can be generalized to finding a minimal polynomial
vector set of a given finite set U= {u(1), . . . ,u(L)} of array vectors. For the set
U composed of infinite array vectors, it amounts to find a Gröbner basis of the
characteristic module of U which is defined as

M(U) := {f ∈ Pm | f[u(l)]b = 0, b ∈Nn,1≤ l ≤ L}
similarly to the characteristic ideal I(U)⊂ P of a set U of infinite n-D arrays
introduced in Sect. 3 (if it exists).

As far as we know, neither any 1-D version of this problem nor its solution
had been published before (Sakata 1991).

(3) Non-homogeneous BMS problem (Sakata 2003)
At the beginning of Sect. 3, we introduced the nonhomogeneous BMS prob-

lem (2) for a given pair of sets U := {u(i) | 1≤ i ≤ μ} and V := {v(i) | 1≤ i ≤
μ}. Now we consider the simplest case of μ= 1 as follows.

Given a pair of finite n-D arrays u,v over F, where u and v are defined
over 2Σr := {a+ b | a, b ∈Σr} andΣr (⊂Nn), respectively, w.r.t. a fixed term
ordering < for a certain point r ∈Nn.

Find a set F of polynomials f which are valid w.r.t. the given pair (u, vr ),
i.e. satisfy the following condition

f 〈u〉b :=
∑

a∈supp(f )

c(f, a)ua+b = vb, 0≤ b < r, (7)

and have a distinct minimal leading exponent d = le(f ) among the valid poly-
nomials s.t. (Σ(F )=⋃f∈F Σle(f ),Δ(F )) is a separation of Nn and there exists
no valid polynomial g ∈ P with le(g) ∈Δ(F).

In addition to Val(ub), mVal(ub), Aux(u; c), and mAux(u; c) introduced be-
fore, we define

Val(u;vb) := {f ∈ P | f 〈u〉a = va,0≤ a < b}
mVal(u;vb) := {f ∈Val(u;vb) | le(f ) :minimal}

For the 1-D case Sugiyama (1986) gave a solution based on the Euclidean
algorithm.

(4) Submodule BMS problem (Sakata 2007)
For a fixed pair (Σ̄, Δ̄) of stable subsets of Nn s.t. Σ̄ =⋃d∈D̄ Σd and Δ̄ =
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Nn \ Σ̄ =⋃c∈C̄ �c , where D̄ and C̄ are given a priori consistently, we consider
a module P(Σ̄) over P which is defined to be the set of all polynomials f
with supp(f ) ⊂ Σ̄ . In such a specified module P(Σ̄) we have P -submodules
and their Gröbner bases, and correspondingly several similar concepts extended
from the original BMS problem to the present case. Particularly, given a finite
array ur = (ua), a < r (w.r.t. a term ordering <) defined over the subset Σ̄r =
{a ∈ Σ̄ | a < r}, a polynomial f ∈ P(Σ̄) is said to be valid for the array ur iff
the identity of the same form holds as (4). And, a minimal polynomial set F ⊂
P(Σ̄) of ub , b ∈ Σ̄ is defined similarly together with Σ(b) =⋃d∈D Σd ⊂ Σ̄
and Δ(b)= Σ̄ \Σ(b), where there exists no valid polynomial g (for ub) with
le(g) ∈ Δ(b) and there exists a valid polynomial f with le(f ) = d for each
d ∈D, etc. In this case we have the following problem:

Given a finite array ur (defined over Σ̄r ⊂ Σ̄ );
Find a minimal polynomial set F ⊂ P(Σ̄) of ur .
We have such a problem in decoding two-point codes from curves (Sakata

2007).
(5) Semigroup BMS problem (Sakata 1995)

Instead of the usual integral lattice Nn and polynomial ring P we consider a
semigroup Σ̄ of the additive group Zn (or an n-D convex cone in geometrical
terms) and the corresponding ring P̄ which are define by a given unimodular
matrix W = (wij ) ∈ Zn×n as follows:

Σ̄ := {a ∈ Zn | aW ∈Nn}

P̄ :=
{

f =
∑

a∈supp(f )

c(f, a)Xa ∈ F[X1, . . . ,Xn,X
−1
1 , . . . ,X

−1
n ] |

supp(f )⊂ Σ̄
}

Over Σ̄ we have a special partial ordering <P̄ as follows:

a ≤P̄ b ⇔ b− a ∈ Σ̄.
We can consider not only ideals of this special ring P̄ and their Gröbner bases
(w.r.t. a specified term ordering < over Σ̄ ) but also a minimal polynomial set
F(⊂ P̄) of a (finite or infinite) array u defined over Σ̄ , where any f ∈ F satis-
fies the condition:

f [u]b :=
∑

a∈supp(f )

c(f, a)ua+b−d = 0, d = (f )≤P̄ b. (8)

Thus we have the present problem:
Given a finite array ur (defined over Σ̄r (:= {a ∈ Σ̄ | a < r});
Find a minimal polynomial set F(⊂ P̄) of ur .

We have such a problem in decoding codes from Klein curves (Sakata 1995).
In the following subsections we present a series of extended BMS algorithms for

these problems, where the validity of these algorithms can be proven similarly to the
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original BMS algorithm. The theorems about complete class, uniqueness condition,
and relevant Gröbner bases also can be given. All of them can be applied to fast
decoding of certain algebraic codes (see Sakata 2009).

4.1 Multiarray BMS Algorithm

In this subsection we present the extended BMS algorithm (Sakata 1989) for solv-
ing the multiarray BMS problem (5), which is a multidimensional extension of the
Feng-Tzeng algorithms (Feng and Tzeng 1989, 1991). As above-mentioned, given
a finite set U = {u(i) | 1 ≤ i ≤ μ} of (finite or infinite) n-D arrays over F, we want
to find a minimal polynomial set of U . To discuss this problem, we introduce some
additional notation.

For a given pair (j, r) ∈ [1,μ] ×Nn, where [1,μ] := {1, . . . ,μ} ⊂N, let

Σ(j,r) :=
(⋃

i<j

{(i, a) ∈ [1,μ] ×Nn | a ∈Σr⊕1}
)

∪
(⋃

i≥j
{(i, a) ∈ [1,μ] ×Nn | a ∈Σr}

)

and consider the corresponding set of partial arrays defined over Σ(j,r)

U(j,r) :=
(⋃

i<j

{u(i,r⊕1) := (u(i)a ), a ≤ r}
)

∪
(⋃

i≥j
{u(i,r) := (u(i)a ), a < r}

)

If a polynomial f =∑a∈supp(f ) c(f, a)X
a satisfies

f [u(i)]b :=
∑

a∈supp(f )

c(f, a)u
(i)
a+b−d = 0 (9)

for any (i, b) ∈Σ(j,r) s.t. d = le(f ) ≤P b, we say that f is valid (w.r.t. U ) before
(j, r). As in case of a single array, i.e. μ= 1, we can define a minimal polynomial
set F(j, r) (or simply F ) ⊂ P of U(j,r) for a pair (j, r) ∈ [1,μ] × Nn associated
with a finite set of points D(j, r) := {le(f ) | f ∈ F(j, r)} ⊂Nn s.t. there is a single
element f ∈ F(j, r) with le(f ) = d and lc(f ) = 1 for each d ∈D(j, r) and there
exists no polynomial h with le(h) ∈Δ(j, r) which is valid (w.r.t. U ) before (j, r),
where we have a complementary pair of subsets ⊂Nn:

Σ(j, r) :=
⋃

d∈D(j,r)
Σd, Δ(j, r) :=Nn \Σ(j, r)

We call Δ(j, r) the delta-set of F(j, r). These subsets D(j, r), Σ(j, r) and
Δ(j, r) are unique for the given set U(j,r) of partial arrays, but a minimal poly-
nomial set F(j, r) is not necessarily unique for U(j,r). In view of the definition
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of minimal polynomial set F(j, r), Δ(j, r) ⊆ Δ(j, r ⊕ 1), Δ(j, r) ⊆Δ(j + 1, r),
1≤ j < μ and Δ(μ, r)⊆Δ(1, r ⊕ 1). Similar notations can be used for any set of
infinite arraysU , e.g. a minimal polynomial set F(⊂ P) ofU , the delta-setΔ(⊂Nn)
ofU , etc. if they exist. In the present problem we do not have a single auxiliary poly-
nomial set of U , which is associated directly to the minimal polynomial set F of U
and its delta-set Δ, but μ distinct auxiliary polynomial sets G(i) =G(i)(j, r) with
C(i) = C(i)(j, r) = {span(g) | g ∈ G(i)} ⊂ Nn and Δ(i) = Δ(i)(j, r) =⋃c∈C(i) �c ,
1≤ i ≤ μ s.t. #Δ(j, r) =∑1≤i≤μ #Δ(i). Below we show the multiarray BMS al-
gorithm, which is almost the same as the original BMS algorithm (Algorithm 2)
except for appearance of the additional loop w.r.t. j and C(i) (and G(i)) 1 ≤ i ≤ μ
instead of C.

Algorithm 3 (Multiarray BMS algorithm) Finding a minimal polynomial set of
U(μ,r) for U = {u(i) | 1≤ i ≤ μ} of finite n-D arrays over F (Sakata 1989);

Step 1 (initialization): j := 1; b := 0; F := {1}; D := {0}; Σ :=Nn;
G(i) := ∅, 1≤ i ≤ μ; C(i) := ∅, 1≤ i ≤ μ;

Step 2 (discrepancy): for each f ∈ F df := f [u]b;
Ffail := {f ∈ F | df �= 0};
Ffall := {f ∈ Ffail |� ∃c ∈ C(j) s.t. d ≥P b− c };
Dfall := {d ∈D | f ∈ Ffall}; D̂ := {minimal d̂ ∈Σ \ �b};
D′′ := {max(d, b− c) | d ∈Dfall, c ∈ C(j)};
D′ := {minimald ′ ∈D′′};

Step 3 (updating): (1) for each f ∈ Ffail \ Ffall
begin h := f − dfXd−(b−c)g (for g ∈G(j) s.t. d ≥P b− c);
F ′ := F ∪ {h} end;

for each (f, g) ∈ Ffall ×G(j) s.t. d ′ :=max(d, b− c) ∈D′
begin h :=Xd̂−dd ′−df − df g; F ′ := F ∪ {h} end;

for each d̂ ∈ D̂
if � ∃d ′ ∈D′ s.t. d̂ ≥P d ′ then for f ∈ Ffall s.t. d ≤P d̂

begin h :=Xd̂−df ; F ′ := F ∪ {h} end;
(2) F := F ′ \ Ffail; G′′ := {g ∈G(j) | ∃f ∈ Ffall s.t. c <P b− d};
G(j) := (G(j) ∪ { 1

df
f | f ∈ Ffall}) \G′′;

D := {le(f ) | f ∈ F ′ \ Ffall}; Σ :=⋃d∈D Σd ;
C(j) := (C(j) ∪ {b− d | ∃f ∈ Ffall s.t. b− d >P c})

\{c ∈ C(j) | ∃f ∈ Ffall s.t. b− d >P c};
Step 4 (termination): j := j + 1: if j ≤ μ then go to Step 2

else begin j := 1; b := b⊕ 1;
if b < r then go to Step 2 else stop.

4.2 Vectorial BMS Algorithm

In this subsection we present the vectorial BMS algorithm (Sakata 1991) for solving
the vectorial BMS problem (6), for which the special 1D case of the vectorial BMS
problem had not been treated and the vectorial BM algorithm had not given before.
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As above-mentioned, we are given an array vector u ∈ Am, u = (u(1), . . . , u(m)),
whose components are n-D arrays u(j) over F, 1 ≤ j ≤ m, defined over Σr ⊂ Nn

(w.r.t. a certain term ordering <) for a fixed point r ∈Nn;
The following is the vectorial BMS algorithm which finds m minimal polyno-

mial vector sets F(i)(b), 1≤ i ≤m of the partial array vector ub as well as an aux-
iliary polynomial vector set G(b) at each point b ∈ Σr iteratively w.r.t. the term
ordering <, where all the elements f of F(i)(b) have lp(f) = i, 1 ≤ i ≤ m. F(i)(b),
1 ≤ i ≤ m and G(b) are denoted simply as F(i), 1 ≤ i ≤ m and G, respectively.
During the execution of the algorithm, we have m delta-set Δ(i) = Σ \Σ(i), 1 ≤
i ≤ m associated to F(i) with D(i) = {d = le(f) | f ∈ F(i)} s.t. Σ(i) =⋃d∈D(i) Σd ,
1 ≤ i ≤ m, and an auxiliary polynomial vector set G ∈ Pm, to which a subset
C = {c= span(g) | g ∈ G}(⊂ Nn) is associated. Every initial F(i) is composed of
a singleton ei = (0, . . . ,0,1,0, . . . ,0) ∈ Pm, i.e. the i-th unit vector, 1≤ i ≤m.

Algorithm 4 (Vectorial BMS algorithm) Finding minimal polynomial vector sets
of a finite n-D array vector ub ∈ Am over F (Sakata 1991);

Step 1 (initialization): j := 1; b := 0; F(i) := {ei}, 1≤ i ≤m; G := ∅;
D(i) := {0} (⊂Nn), 1≤ i ≤m; Σ(i) :=Nn, 1≤ i ≤m; C := ∅;

Step 2 (discrepancy): for each f ∈ F(j) df := f[u]b;
F(j)fail := {f ∈ F(j) | df �= 0};
F(j)fall := {f ∈ F(j)fail |� ∃c ∈ C s.t. d ≥P b− c };
D
(j)

fall := {d = le(f) ∈D(j) | f ∈ F(j)fall}; D̂ := {minimal d̂ ∈Σ \ �b};
D′′(j) := {max(d, b− c) | d ∈D(j)fall, c ∈ C};
D′(j) := {minimald ′ ∈D′′(j)};

Step 3 (updating): (1) for each f ∈ F(j)fail \ F(j)fall

begin h := f− dfX
d−(b−c)g (for g ∈G s.t. d ≥P b− c);

F′(j) := F(j) ∪ {h} end;
for each (f,g) ∈ F(j)fall ×G s.t. d ′ :=max(d, b− c) ∈D′(j)

begin h :=Xd ′−d f− dfg; F′(j) := F(j) ∪ {h} end;
for each d̂ ∈ D̂ if � ∃d ′ ∈D′(j) s.t. d̂ ≥P d ′ then

for f ∈ F(j)fall s.t. d ≤P d̂
begin h :=Xd̂−d f; F′(j) := F(j) ∪ {h} end;

(2) F(j) := F′(j) \ F(j)fail; G′′ := {g ∈G | ∃f ∈ F(j)fall s.t. c <P b− d};
G := (G∪ { 1

df
f | f ∈ F(j)fall}) \G′′;

D(j) := {le(f) | f ∈ F′(j) \ F(j)fall}; Σ(j) :=
⋃
d∈D(j) Σd ;

C := (C ∪ {b− d | ∃f ∈ F(j)fall s.t. b− d >P c})
\{c ∈ C | ∃f ∈ F(j)fall s.t. b− d >P c};

Step 4 (termination): j := j + 1: if j ≤m then go to Step 2
else begin j := 1; b := b⊕ 1;

if b < r then go to Step 2 else stop.
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4.3 Non-Homogeneous BMS Algorithm

This is a two-path algorithm, the first path of which is just the (homogeneous) BMS
algorithm for the given array u2r . As a byproduct of the BMS algorithm, we get a
series of minimal auxiliary polynomial sets mAux(u; c) for each c ∈Σr based on
the following two lemmas.

Lemma 3 Let h∈Val(ub) and h[u]b �=0 (thus, span(h)= b− le(h)). If span(h)=
c �∈Δ(ub), then h ∈mAux(u; c).

Lemma 4 Let Δ(ub) = Δ(ub⊕1) = · · · = Δ(ub⊕l ) ⊂ Δ(ub⊕(l+1)) and h ∈
mValΔ(ub⊕l ), h[u]b⊕l �= 0, where b ⊕ (l + 1) := (b ⊕ l)⊕ 1, 1 ≤ l (∈ Z0). Then,
h ∈ mAux(u; c) for c := span(h) (= b ⊕ l − deg(h)), and furthermore, Xah ∈
mAux(u; c − a) for 0 ≤ a <P c − c′, provided that there exists h′ ∈ mVal(ub⊕l )
with deg(h′)= c′ ≤P c.

First, by applying the BMS algorithm, we get a series of auxiliary polynomials
gc for several intermittent points c = c1, c2, . . . , cλ s.t. 0 ≤ c1 < c2 < · · ·< cλ < r
and ci = span(g(ci )), 1 ≤ i ≤ λ, where λ is an integer determined by execution of
BM algorithm. Furthermore, by Lemmas 3, 4, we can have a certain delta set Δ̄(=⋃

1≤i≤λ �ci ) and an auxiliary polynomial h(c) for each point c ∈ Δ̄ s.t. span(h(c))=
c, c ∈ Δ̄. The following lemma leads us to have a fast algorithm of solving the
nonhomogeneous BMS problem.

Lemma 5 Let h ∈ mAux(u; c), f ∈ mVal(u;vc) and le(f ) < le(h). If f �∈
Val(u;vc⊕1), then there is no polynomial f ′ ∈Val(u;vc⊕1) s.t. le(f ′) < le(h).

Algorithm 5 (Nonhomogeneous BMS algorithm) Finding f ∈ mVal(u;vr) for
u= (ua), a ∈Σ2r and v = (va), a ∈Σr (Sakata 2003);

Step 1: b := 0; f := 1; d := 0;
Step 2: If f 〈u〉b �= vb then

begin h := h(b); f := f + 1
db
(vb − f 〈u〉b)h; d := le(h) end;

Step 3: b := b⊕ 1; if b < r then go to Step 2 else stop.

If b �∈ Δ̄ in Step 2, then Algorithm 5 halts, which implies that (7) has no solution.

4.4 Submodule BMS Algorithm

To solve this problem, we can have a modification (Sakata 2007) of BMS algorithm
which is obtained by modifying Step 1 (initialization) as follows:

Step 1 (initialization): b :=minT D̄;F := {Xd | d ∈ D̄};G := ∅ : C := ∅;
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The validity of the algorithm can be proven similarly to the original BMS al-
gorithm. Particularly, it holds during the whole iterations of the algorithm that for
Δ(F) := Σ̄ \Σ(F), whereΣ(F)=Σ(b),Δ(F)=Δ(b) (⊂ Σ̄ ) for a minimal poly-
nomial set F and an auxiliary polynomial set G of ub , and Δ(G) := {a ∈Nn | a ≤P
span(g), g ∈G} (⊂Nn), it holds that #Δ(F)= #Δ(G), although Δ(F) �=Δ(G).

4.5 Semigroup BMS Algorithm

In this case we also have a specific term ordering over Σ̄ , and we have a version
(Sakata 1995) of the BMS algorithm, which is obtained by replacing every partial
ordering ≤P by ≤P̄ in the descriptions of the original BMS algorithm.

5 Conclusion

First we have discussed that the BMS algorithm (Sakata 1988, 1990) is related to
Gröbner basis via multidimensional arrays and multidimensional linear recurrences
satisfied by them, and that it can solve just the inverse problem of that of the Buch-
berger algorithm. Second, we have presented the essence of the BMS algorithm
which outputs a minimal polynomial set of a given finite n-D array. Then, we have
given theorems about the complete class of minimal polynomial sets, uniqueness
condition and a Gröbner basis of the ideal I(u) defined by an infinite array u, and
discussed its computational complexity. Furthermore, we presented various exten-
sions of the original BMS problem and their algorithms (Sakata 1989, 1991, 1995,
2003, 2007) which solve these problems. Those extended algorithms are useful for
decoding several algebraic codes efficiently (Sakata 2009).

Acknowledgements Part of these results have been presented at Linz D1 2006, which was a
workshop within the Special Semester on Gröbner Bases, February–July 2006, organized by RI-
CAM, Austrian Academy of Sciences, and RISC, Johannes Kepler University, Linz, Austria.

Appendix A: Computation of BMS Algorithm

Example of Computation

In Table 3 is shown a result of computations by BMS algorithm applied to the 2-D
array shown in Table 2, where we take the graded reverse lexicographic ordering as
the term ordering <. The symbol � implies an updated polynomial. We can make
sure by the Buchberger criterion that the minimal polynomial set obtained at the final
iteration is a Gröbner basis. (Remark: A minimal polynomial set is not necessarily
a Gröbner basis.)
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Table 2 2-D array over F2:
u= (uij ) i \ j 0 1 2 3 4

0 0 1 0 0 1

1 1 1 1 1

2 1 0 0

3 1 0

4 0 *

5 1

Table 3 Computations by
BMS algorithm b F D G C

(0,0) 1 (0,0) – –

(1,0) · ·
(0,1) �x2 (2,0) �1 (1,0)

y (0,1)

(2,0) x2 (2,0) 1 (1,0)

�y + x (0,1)

(1,1) �x2 + x (2,0) 1 (1,0)

y + x (0,1)

(0,2) · ·
(3,0) x2 + x (2,0) 1 (1,0)

�xy + x2 (1,1) �y + x (0,1)

�y2 + xy + x (0,2)

(2,1) · ·
(1,2) x2 + y (2,0) 1 (1,0)

�xy + x2 + 1 (1,1) y + x (0,1)

y2 + xy + x (0,2)

(0,3) · ·
(4,0) · ·
(3,1) · ·
(2,2) �x3 + xy + y + x (3,0) �xy + x2 + 1 (2,0)

�x2y + x2 + x + 1 (2,1) �x2 + y (1,1)

y2 + xy + x (0,2) y + x (0,1)

(1,3) · ·
(0,4) x3 + xy + y + x (3,0) xy + x2 + 1 (2,0)

x2y + x2 + x + 1 (2,1) x2 + y (1,1)

�y2 + x2 + x + 1 (0,2) y + x (0,1)

(5,0) · ·
(4,1) *
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The BMS Algorithm and Decoding of AG Codes

Shojiro Sakata

Abstract In this paper, we review various decoding methods of algebraic geometry
(or algebraic-geometric) codes (Goppa in Soviet Math. Dokl. 24(1):170–172, 1981;
Høholdt et al. in Handbook of coding theory, vols. I, II, North-Holland, Amsterdam,
pp. 871–961, 1998; Geil in Algebraic geometry codes from order domains, this vol-
ume, pp. 121–141, 2009) mainly based on the Gröbner basis theory (Buchberger
in Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965; Aequa-
tiones Math. 4:374–383, 1970; Multidimensional systems theory, Reidel, Dordrecht,
pp. 184–232, 1985; London Math. Soc. LNS 251:535–545, 1998; J. Symb. Comput.
41(3–4):475–511, 2006; Mora in Gröbner technology, this volume, pp. 11–25,
2009b) as well as the BMS algorithm (Sakata in J. Symbolic Comput. 5(3):321–
337, 1988; Inform. and Comput. 84(2):207–239, 1990) and its variations (Sakata in
n-dimensional Berlekamp–Massey algorithm for multiple arrays and construction
of multivariate polynomials with preassigned zeros, LNCS, vol. 357, pp. 356–376,
1989; Finding a minimal polynomial vector set of a vector of nD arrays, LNCS,
vol. 539, pp. 414–425, 1991), where the BMS algorithm itself is reviewed in an-
other paper (Sakata in The BMS algorithm, this volume, pp. 143–163, 2009) in this
issue. The main subjects are:

(1) Syndrome decoding of dual codes up to the designed distance (Saints and
Heegard in IEEE Trans. Inform. Theory 41(6):1733–1751, 1995; Sakata et al. in
Finite Fields Appl. 1(1):83–101, 1995b; IEEE Trans. on Inf. Th. 41(6):1672–1677,
1995c; IEEE Trans. on Inf. Th. 41(6):1762–1768, 1995a) by using the BMS algo-
rithm. (There have been published several methods of decoding algebraic geom-
etry codes, e.g. Kötter in On decoding of algebraic-geometric and cyclic codes,
Ph.D. thesis, Linköping University, 1996; O’Sullivan in IEEE Trans. on Inf. Th.
41(6):1709–1719, 1995; Guerrini and Rimoldi in FGLM-like decoding: from Fitz-
patrick’s approach to recent developments, this volume, pp. 197–218, 2009, which
are described in some terminology rather from the perspective of algebraic geom-
etry, but are in principle equivalent to the BMS decoding method. We omit their
descriptions here.)

(2) List decoding of primal codes (Numakami et al. in IEICE Trans. Fundamen-
tals J83:1309–1317, 2000; Sakata in LNCS, vol. 2227, pp. 172–181, 2001; Proc. of
ISIT2003, pp. 363–363, 2003). (The original list decoding algorithms are given for
RS codes by Sudan in J. of Complexity 13:180–193, 1997, and for algebraic geome-
try codes by Shokrollahi and Wassermann in IEEE Trans. on Inf. Th. 45(2):432–437,

S. Sakata
The University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan
e-mail: sakata@ice.uec.ac.jp
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1999, and their improved versions by Guruswami and Sudan in IEEE Trans. on Inf.
Th. 45:(6):1757–1767, 1999.)

(3) Other relevant decoding algorithms of primal and dual codes (Augot in Proc.
of ISIT2002, pp. 86–86, 2002; Justesen and Høholdt in A course in error-correcting
codes, EMS Textbooks in Mathematics, EMS, 2004; Fujisawa and Sakata in Proc. of
SITA2005, pp. 543–546, 2005; Sakata and Fujisawa in Proc. of SITA2006, pp. 93–
96, 2006; Fujisawa et al. in Proc. of SITA2006, pp. 101–104, 2006).

In discussing list decoding and usual bounded-distance decoding of primal/dual
codes we show that multi-variate interpolation problem is a key and that it can
be solved by using the BMS algorithm efficiently. The computational complexities
of our methods are less than the other decoding methods including the Feng–Rao
(IEEE Trans. on Inf. Th. 39(1):37–45, 1993) algorithm simply based on Gaussian
elimination. These reductions in computational complexity are based on the spe-
cial structures or properties of the given input data (syndrome arrays, etc.) which
originate in the definition of codes themselves and are used cleverly by the BMS al-
gorithm. In Leonard (A tutorial on AG code decoding from a Gröbner basis perspec-
tive, this volume, pp. 187–196, 2009b), Guerrini and Rimoldi (FGLM-like decod-
ing: from Fitzpatrick’s approach to recent developments, this volume, pp. 197–218,
2009) in this issue, several other efficient decoding methods of algebraic geometry
codes from Gröbner basis perspectives are reviewed. Additionally, we mention a
recent development of decoding algorithm based on higher-dimensional interpola-
tion (Parvaresh and Vardy in Proc. of IEEE FOCS2005, IEEE Computer Society,
pp. 285–294, 2005), which has error correction performance superior to the im-
proved list decoding by Guruswami and Sudan. As a general method of multivariate
interpolation the BMS algorithm is an alternative of the Buchberger–Möller (The
construction of multivariate polynomials with preassigned zeros, LNCS, vol. 144,
pp. 24–31, 1982), Mora (The FGLM problem and Möller’s algorithm on zero-
dimensional ideals, this volume, pp. 27–45, 2009a) algorithm and the Marinani–
Möller–Mora (AAECC 4:(2):103–145, 1993) algorithm, but any exact comparisons
of computational complexities of these methods remain to be investigated.

1 Introduction

In this paper, we review various decoding methods of algebraic geometry (or
algebraic-geometric) codes over finite fields, particularly one-point codes from al-
gebraic curves mainly based on the BMS algorithm (Sakata 1988, 1990), which we
review in another paper (Sakata 2009) in this issue, and we use almost the same
terminology as ibid. These algebraic geometry codes are the most important class
of error-correcting codes from both practical and theoretical viewpoints. They are
a subclass of so-called linear codes which are defined as linear subspaces of the
vector space F

n
q = (Fq)n over a finite field Fq . Since most of the basic concepts in

Coding Theory are introduced in another paper (Augot et al. 2009) in this issue,
we omit many of their detailed descriptions here and assume that the readers know
terminologies such as (n, k, d)-code C (⊂ F

n
q ) over Fq , codelength n, dimension k,
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minimum distance d , the number t = # d−1
2 $ of correctable errors, etc. Decoding,

which is to recover or estimate the sent codeword c ∈ C from the given received
word r ∈ F

n
q , is a kind of algebraic computation procedure over the finite field Fq ,

and it is given basically in the form of an algorithm. If the received word r contains
more errors than t , the decoding algorithm might output a wrong codeword which is
different from the sent codeword. But, error events are probabilistic phenomena in
practical applications, and more errors can occur with less probability, which usu-
ally is negligibly smaller. Therefore, in decoding, we have only to find candidate
codewords which are as close to the received word r as possible.

The algebraic geometry codes which we are going to discuss in this paper are de-
fined based on a triplet (K,L,C), where K is the set of symbols carrying information
with them and L is the set of locators (or labels) Pj denoting the position or index j
of each component symbol cj (∈ Fq ) of a codeword c= (cj )0≤j≤n−1. We call K and
L the information symbol set and the symbol locator set, respectively. The set C is a
linear space of functions defined on a domain including L, from which we have two
kinds of codes as follows. First, we have a code C which is the subspace of (Fq)n

composed of the vectors ev(f ) := (f (P0), . . . , f (Pn−1)) ∈ F
n
q corresponding to a

function f ∈ C . Second, we have another code which is the orthogonal complement
(null space) of the subspace C in F

n
q

C⊥ := {c= (cj ) ∈ F
n
q | c · ev(f )= 0},

where c · ev(f ) :=∑0≤j≤n−1 cjf (Pj )(∈ Fq) is the inner product of two vectors

c and ev(f ) (∈ F
n
q ). Sometimes we call C and C⊥ primal and dual codes, respec-

tively.1

For example, primal and dual Reed–Solomon codes C and C⊥, which are nowa-
days one of the most practically used algebraic error-correcting codes, are defined2

by taking K := Fq , n := q − 1, L := {Pj (:= αj ) | 0 ≤ j ≤ n − 1(= q − 2)}(=
Fq \ {0}), and C := {f ∈ Fq [x] | deg(f ) ≤ h − 1} for a certain integer h s.t.
0< h< n. Their dimensions and minimum distances are

k(C)= h, k(C⊥)= n− h; d(C)= n− h+ 1, d(C⊥)= h+ 1.

RS codes are among the broader class of one-point codes from algebraic curves
which contains codes having better performance and greater potentialities in the
near future. One-point codes from an algebraic curve X over a finite field Fq are

1About the definition of these codes, see also another paper (Leonard 2009a) in this issue, where C
and C⊥ are called functionally encoded and functionally decoded codes, respectively. Furthermore,
about codes from order domains, which are a generalization of these codes and can be decoded by
our methods, see Geil (2009).
2This definition of the dual RS code C⊥ is equivalent to the conventional definition C⊥ := {c(x)=
a(x)g(x) | a(x) ∈ Fq [x], deg(a)≤ n−h−1} s.t. each codeword c= (cj ) ∈ C⊥ is represented as a
polynomial c(x)=∑0≤j≤n−1 cj x

j , where g(x) :=∏0≤i≤h−1(x−αi) is the generator polynomial
of the code.
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defined by taking K := Fq , L := {Pj | 0≤ j ≤ n− 1}, which is a set of Fq -rational
points on the curve X , and C := L(mP∞), which is the set of algebraic functions
on the curve X having a single pole at the infinity point P∞ with pole order less
than or equal to m, where m is a given integer. Similarly, we have primal and dual
codes C and C⊥. As a special case, if we take as X the projective line over Fq

containing the infinity point P∞ as well, and let L be the set of all affine points on
X or equivalently the finite field Fq , then we have the extended RS code with length
n= q . By deleting 0 from L, we have the ordinary RS code of length n= q − 1.

Although we can take the defining curve X in the projective space of any dimen-
sion N , we restrict to a plane curve X (i.e. N = 2) or particularly the Hermitian
curve over Fq as follows, where q = q2

1 .

X : yq1 − xq1+1 + y = 0.

We take as L all the Fq -rational points on X excluding the infinity point P∞, where
we remember that the coordinate functions x and y have pole orders o(x) = q1
and o(y) = q1 + 1, respectively at the single pole P∞. For a = (a1, a2) ∈ N2. we
denote Xa := xa1ya2 , which has pole order o(Xa) = q1a1 + (q1 + 1)a2. Letting
Π := {a = (a1, a2) ∈ N2 | 0≤ a2 ≤ q1 − 1}, Π(m) := {a = (a1, a2) ∈Π | o(Xa)=
q1a1 + (q1 + 1)a2 ≤m}, and C = 〈Xa = xa1ya2 | a = (a1, a2) ∈Π(m)〉Fq ⊂ Fq [Π]
(:= 〈Xa | a ∈ Π〉Fq ), we can have the primal code C = C(m) and the dual code
C⊥ = C⊥(m)with length n := q3

1 , whose dimensions and minimum distances are as

follows in case of 2g− 1≤m< n, where g = q1(q1−1)
2 is the genus of the curve X :

k(C) = m− g + 1, d(C)≥ n−m;
k(C⊥) = n−m+ g− 1, d(C⊥)≥m− 2g + 2,

where dG := n−m and d⊥G :=m− 2g + 2 are called Goppa bounds of the primal
code C and the dual code C⊥, respectively. Actually, if m+m′ = q3

1 + q2
1 − q1− 2,

the primal Hermitian codeC(m) and the dual Hermitian codeC⊥(m′) are equivalent
(Stichtenoth 1988).

2 Syndrome Decoding of Dual Codes

First we show that decoding of a dual RS code C⊥ with minimum distance
d = h + 1 is reduced to the problem of finding a polynomial in Fq [x] which is
valid for a certain one-dimensional (1-D) array derived from the received word. Let
c = (cj )0≤j≤n−1 ∈ C⊥ and e = (ej )0≤j≤n−1 ∈ F

n
q be a sent codeword and an er-

ror vector, respectively. Then, the received word is r= c+ e= (rj )0≤j≤n−1 ∈ F
n
q ,

where rj = cj + ej , 0≤ j ≤ n− 1. We assume that the number of errors, or in other
words the size of the set E := {Pj | ej �= 0} (⊂ L) of error locators, is t ′ := #E ≤ t ,
where t (= #h2 $) is the number of correctable errors. The receiver gets the received
word r= (rj ), but he has no knowledge of both c and e. How can he find either c or
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e from r? Since no error, i.e. the case of e= 0 is the most likely in actual channels,
he begins with checking whether the received word r contains any error or not. For
a dual RS code, it is very easy and he has only to check for some f ∈ C whether
the inner product r · ev(f )= 0 or not. More precisely, he calculates the syndromes
si := r · ev(xi) corresponding to the basis functions xi , 0≤ i ≤ h−1 of the function
space C , and obtains the array s = (si)0≤i≤h−1. If s = 0, then he most probably can
suppose no error so that he does not need to go further. But, if s �= 0, then he enters
the procedure of decoding. A basic decoding method consists of two stages, finding
the error locators, i.e. the unknown ji or αji , 1≤ i ≤ t ′ for E = {αji | 1≤ i ≤ t ′}, and
calculating the error values eji , 1≤ i ≤ t ′. Provided the error locators E are found in
the first stage, the second stage is easier and reduced to finding the unique solution
eji , 1≤ i ≤ t ′ of the linear system of equations:

∑
1≤i≤t ′ eji αjij = sj , 0≤ j ≤ h−1.

Now, our main concern is in the first stage. Assuming t ′ ≤ t for E = {αji |
1 ≤ i ≤ t ′}, where t ′ and ji , 1 ≤ i ≤ t ′ are unknown, we consider an infinite ar-
ray u= (uj ) defined by uj := e · ev(xj )=∑1≤i≤t ′ eji αjij , j ∈N instead of s, and
further the ideal I = I(u) := {f ∈ Fq [x] | f ◦ u = 0}, which is called the charac-
teristic ideal of u, as well as the zero variety V (I) := {γ ∈ Fq | f (γ )= 0, ∀f ∈ I}
defined by it, where for f = f (x)=∑0≤l≤d flxl , v = f ◦u := (vj )j∈N is the array
defined by vj :=∑0≤l≤d flul+j , j ∈N (see Sakata 2009). Actually, we have

Lemma 1 E = V (I).

Proof For f = f (x)=∑0≤l≤d flxl , we have

f (αji )= 0, 1≤ i ≤ t ′ ⇔
∑

0≤l≤d
flα

ji l = 0, 1≤ i ≤ t ′

⇔
∑

1≤i≤t ′

( ∑

0≤l≤d
flα

ji l

)

eji α
jij = 0, ∀j ∈N

⇔
∑

0≤l≤d
fl
∑

1≤i≤t ′
eji α

ji (l+j) = 0, ∀j ∈N,

where the last identity is equivalent to
∑

0≤l≤d flul+j = 0, ∀j ∈ N, i.e. f ◦ u= 0.
By the way, the equivalence between the second and third identities comes from
the fact that t ′ arrays u(i) := (u(i)j ), 1≤ i ≤ t ′ which are defined by u(i)j := αjij are
linearly independent of each other. �

Since we have that si = r · ev(xi)= (c+ e) · ev(xi)= e · ev(xi), 0≤ i ≤ h− 1,
the subarray uh := (uj )0≤j≤h−1 of the above infinite array u coincides with the syn-
drome array s = (sj )0≤j≤h−1, although we cannot obtain the whole infinite array u.
Particularly, the values uj , j ≥ h sometimes are called unknown syndromes. How-
ever, if deg(f ) = t ′ ≤ t , in view of h− 1− t ′ ≥ t ′ − 1, for 1 ≤ i ≤ t ′, we have t ′
finite arrays u(i)j := αjij , 0≤ j ≤ h− 1− t ′, which also are linearly independent of
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each other. Consequently, we have for V (f ) := {γ ∈ Fq | f (γ )= 0},
E = V (f ) ⇔

∑

0≤l≤t ′
flul+j = 0, 0≤ j ≤ h− 1− t ′, (1)

which implies that we can find the error locators E as the roots of a polynomial
f which is valid for the known syndromes ui(= si), 0 ≤ i ≤ h − 1 obtained from
the received word r and has the minimum degree, provided the actual number t ′ of
errors contained in r does not exceed the number t of correctable errors.

As we have seen, the problem of decoding dual RS codes is reduced to find-
ing a valid polynomial for a certain finite (1-D) array. Naturally this fact can be
extended to the problem of decoding more general codes including codes from alge-
braic curves. Particularly, in the multidimensional case, it also implies that we must
find a Gröbner basis of the characteristic ideal of the array. Below we will show that
the decoding of a dual Hermitian code C⊥ is reduced to the problem of finding a
minimal polynomial set (in Fq [x, y]) of a certain 2-D array derived from a received
word.

Let c= (cj ) ∈ C⊥, e= (ej ) ∈ F
n
q , r= c+ e= (vj ) ∈ F

n
q be the sent codeword,

the error vector, and the received word, respectively. We assume that the size of
the error locators E := {Pj | ej �= 0} = {Pli | 1 ≤ i ≤ t ′}(⊂ L) is t ′ := #E ≤ t⊥G :=
# d⊥G−1

2 $. As each point of the curve can be represented as Pl = (αl, βl) ∈ (Fq)2, the
syndrome s = (sa), with a ∈Π(m), obtained by sa := r · ev(Xa) from the received
word r is a finite subarray of the infinite 2-D array u= (ua), a ∈N2, defined by

ua := e · ev(Xa)=
∑

1≤i≤t ′
eli α

a1
li
β
a2
li
, a = (a1, a2) ∈N2,

which we call error locator array. About the characteristic ideal (submodule)
I = I(u) := {f ∈ Fq [Π] | f ◦ u = 0} of a 2-D array u = (ua), a ∈ N2 and its zero
variety V (I) := {P ∈ L | f (P ) = 0, ∀f ∈ I}, we have the following lemma simi-
lar to Lemma 1. Thus, we call I also the error locator ideal (or submodule), and
sometimes denote it as I(e) (or M(e)).

Lemma 2 E = V (I).
Proof For f = f (x, y)= f (X)=∑a∈supp(f ) c(f, a)X

a ∈ Fq [Π], we have

f (αli , βli )= 0, 1≤ i ≤ t ′ ⇔
∑

a=(a1,a2)∈supp(f )

c(f, a)α
a1
li
β
a2
li
= 0, 1≤ i ≤ t ′ ⇔

∑

1≤i≤t ′

( ∑

a∈supp(f )

c(f, a)α
a1
li
β
a2
li

)

eli α
b1
li
β
b2
li
= 0, (∗) ⇔

∑

a∈supp(f )

c(f, a)
∑

1≤i≤t ′
eli α

a1+b1
li

β
a2+b2
li

= 0, (∗)
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where (∗) implies “∀b = (b1, b2) ∈ N2”. The last identity is equivalent to∑
a∈supp(f ) c(f, a)ua+b = 0, ∀b ∈ N2, i.e. f ◦ u= 0. The equivalence between the

second and third identities comes from the fact that t ′ arrays u(l) := (u(l)a ), 1≤ l ≤ t ′
defined by u(l)a := αa1

l β
a2
l , a ∈N2, are linearly independent from each other. �

In the above, for the ring P := Fq [x, y], the function space Fq [Π] := 〈Xa =
xa1ya2 | a = (a1, a2) ∈Π〉Fq is viewed as a P -submodule which coincides with the
whole set P (as a module) modulo the P -submodule MX := 〈yq1 − xq1+1 + y〉P .
The known syndromes sa = r · ev(Xa), a ∈ Π(m), which are obtained from the
received word, are identical with the subarray ua , a ∈Π(m), but the part ua , a ∈
Π \Π(m) are unknown syndromes. On the other hand, among the functions defined
on the curve, since Xa , a ∈N2 \Π are linearly dependent on {Xb | b ∈Π , o(Xb)≤
o(Xa)}, the subarray ua , a ∈ 2Π(m) also is known, where 2Π(m) := {a+b | a, b ∈
Π(m), o(Xa+b)≤m}. In the linear recurrence f ◦ u= 0, i.e.

∑

a∈supp(f )

c(f, a)ua+b = 0, b ∈Π,

not only the components ua , a ∈Π(m) but also the components ua , a ∈ 2Π(m) \
Π(m) are concerned. Therefore, all the components ua , a ∈ 2Π(m) are necessary
for decoding by using the BMS algorithm. Furthermore, treating only the known
syndrome is not enough for decoding of this kind of codes up to half of the designed
distance, which we will discuss below.

There have been several investigations on designed distances or lower bounds for
minimum distances of codes from curves. We consider the Feng–Rao (1993) bound
of dual Hermitian codes, which is equal to the so-called order bound (Høholdt et al.
1998; Geil 2009) as well as to the Goppa bound d⊥G in case of 2g − 1 ≤ m < n
for these codes. Although the Feng–Rao decoding algorithm based on Gaussian

elimination and majority logic can decode up to t⊥G = # d
⊥
G−1

2 $ errors, it will turn out
that the BMS algorithm with majority logic can do the same more efficiently (Sakata
et al. 1995a). By using the BMS algorithm w.r.t. the term ordering corresponding
to the pole order o(Xa) as mentioned in the next paragraph, we can determine the
unknown syndromes based on majority logic in its unique (basically, similar to the
Feng–Rao algorithm) fashion so that we can find a minimal polynomial set of the
array u which is a Gröbner basis of the error locator ideal I(e).

Let O be the set of pole orders o(f ) of functions f on the algebraic curve X
over the closed extension (closure) F̃q1 :=

⋃
i≥1 Fqi1

of Fq1 , and O(m) := {l ∈ O |
l ≤ m}. Particularly, we denote the pole order o(Xa) of the coordinate function
Xa simply as o(a), a ∈ N2, which determines the term ordering < together with a
certain lexicographic ordering <L. Then, via o(a), a ∈N2, O and O(m) one-to-one
correspond to Π and Π(m), respectively. For l ∈ O,

ν(l) := #{(i, j) ∈ O2 | i + j = l}
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is introduced and the order bound of the code C⊥(m) is defined as

d(m) :=min{ν(l) | l ≥m+ 1}.
On the other hand we sometimes have a couple of points r ∈Π and r ′ = r ⊕ 1 (i.e.
the next point after r w.r.t. the term ordering <) ∈ 2Π \Π s.t. o(r) = o(r ′), and
thus, Xr

′ −Xr =∑a:o(a)<o(r) caXa mod MX and so it holds that the value ur ′ is
determined from ur via the values ua , a ∈Π s.t. o(a) < o(r), and vice versa, where
r and r ′ are called conjugate to each other. We consider subsets �r := {a ≤P r |
a ∈ N2} and �r ′ := {a ≤P r ′ | a ∈ N2}. In our terminology, we have that if o(r) =
o(r ′)= l ∈ O,

ν(l)= #(�r ∪ �r ′)∩Π,
where if such a couple does not exist, �r ∪ �r ′ should be regarded simply as �r for
r s.t. o(r)= l.

As we show below, in case of t⊥G or less errors, we can find iteratively at each
a ∈ 2Π \ 2Π(m) the value of the unknown syndrome ua and update a pair of min-
imal polynomial set F and auxiliary polynomial set G by using the modified BMS
algorithm with majority voting among the candidate syndrome values, where a pair
of conjugate points are treated simultaneously at each BMS iteration, i.e. F and G
are updated at each pole order l s.t. o(r) = o(r ′) = l. Thus, we consider the syn-
drome subarray u(l) := ur ′ s.t. o(r ′) = o(r) = l, where r ′ = r ⊕ 1 ∈ 2Π \Π (if it
exists), for each l > m. First we remark that ν(l) > 2tG, l ≥m+ 1. From the known
syndromes ua , a ∈Π(m), we can get a minimal polynomial set F of the subarray
u(m)= (ua), a ∈ 2Π(m). Now, assume that we have got already the syndrome sub-
array u(l) for some l ≥ m together with F and G of u(l), which is accompanied
with the stable subsets Σ(F), Δ(F), and Δ(G) (see Sakata 2009). We stipulate the
following as the total number of votes at l

v(l) := #((�r ∪ �r ′)∩Π ∩Σ(F)) \ ((r −Δ(G))∪ (r ′ −Δ(G))),
where r −Δ(G) := {r − a ∈Π | a ∈Δ(G)}. Furthermore, for a subset F̄ ⊂ F at l,
we stipulate the following as the number of votes for F̄ or for the candidate values
of the unknown syndromes determined by using f ∈ F̄ at l

v(F̄ ) := #((�r ∪ �r ′)∩Π ∩Σ(F̄ )) \ ((r −Δ(G))∪ (r ′ −Δ(G))).
From the nature of iteration of BMS algorithm, we have the following:

Lemma 3 If we have a minimal polynomial set F⊕ of u(l + 1) by updating F at
the iteration at l, the difference #Δ(F⊕)− #Δ(F) is identical with the number of
votes for Ffail := {f ∈ F | f [u]r �= 0∨ f [u]r ′ �= 0} for the pair of conjugate points
r and r ′ at l.

Then, we have the following conclusion, which assures the validity of the BMS
algorithm with majority voting for finding the correct values of the unknown syn-
drome in case of correctable number of errors.
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Lemma 4 Provided the number of errors is t ′ ≤ t⊥G , the polynomials f in F which
give the correct syndrome values ur or ur ′ have the majority of votes among F .

Proof It is shown that #((r −Δ(G))∪ (r ′ −Δ(G)))∩Π = #Δ(G), and thus if the
subset Ffail of f which does not give the correct syndrome values ur or ur ′ at l has
the majority of votes, in view of Lemma 3 and #Δ(F)\Δ= #Δ(G), we should have
#Δ(F⊕)\Δ> #Δ(F)\Δ+ 1

2v(l)= #Δ(F)\Δ+ 1
2 (2t

⊥
G −#Δ(F)\Δ−#Δ(G))=

t⊥G , which contradicts the fact that for the eventual minimal polynomial set F and
auxiliary polynomial set G, we have #Δ(F) \Δ(= #Δ(G))= t ′, where t ′ = #E for
the zero variety V (M(e))= E of the error locator submodule M(e). �

Our syndrome decoding method for Hermitian codes of codelength n has

computational complexity O(n 7
3 ) compared with O(n3) of the method based on

Gaussian elimination. This method can be applied to not only any one-point codes
from algebraic curves but also codes from order domains (Høholdt et al. 1998;
Geil 2009) at lease when the transcendence degree is one.

3 Multivariate Polynomial Interpolation and List Decoding
of Primal Codes

A univariate polynomial interpolation is given by the well-known Lagrange interpo-
lating polynomial, i.e. given a set of M points {(x(l), y(l)) ∈ F

2
q | 1≤ l ≤M} in the

2-D space F
2
q , where x(j) �= x(l), j �= l, 1≤ j, l ≤M , a polynomial with minimum

degree satisfying the interpolation condition f (x(l))= y(l), 1≤ l ≤M is

f (x)=
M∑

l=1

yl

∏
j �=l (x − x(j))

∏
j �=l (x(l) − x(j))

.

We can consider any field, provided exact computation without numerical errors is
done. However, we restrict to finite fields Fq with sufficiently large q to concern
ourselves with decoding of algebraic geometry codes and to make our discussions
simpler.

In the general case of multivariate interpolation, we cannot always have such an
explicit interpolating polynomial as above. This is the following problem. Given a
set of M points {(X(l), y(l)) ∈ (Fq)N+1 | 1 ≤ l ≤M} in the (N + 1)-dimensional

space F
N+1
q over Fq , where X(l) = (x(l)1 , . . . , x

(l)
N ) ∈ F

N
q , y(l) ∈ Fq , 1 ≤ l ≤M and

we assume X(j) �= X(l), j �= l, 1 ≤ j, l ≤M , we want to find a N -variate polyno-
mial f , which is simplest in some sense, satisfying the following condition:

f (X(l))= y(l), 1≤ l ≤M. (2)

Since this is a system of linear equations for the unknown coefficients of f , its
solution is not always unique (if it exists), which is given as a sum of a (special)
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solution of (2) and a general solution f of the following homogeneous system which
is derived from (2) by putting y(l) = 0, 1≤ l ≤M :

f (X(l))= 0, X(l) ∈ V, (3)

where V := {X(l) | 1≤ l ≤M} ⊂ F
N
q . The set of solutions f of (3)

I(V ) := {f ∈ P | f (X(l))= 0, X(l) ∈ V }
is an ideal of the ring P = Fq [x1, . . . , xN ]. Thus, provided ‘simplicity’ is interpreted
as ‘minimality’ as in Gröbner basis theory, the interpolation problem (2) can be
divided into two subproblems, i.e. finding a Gröbner basis of the ideal corresponding
to the homogeneous system (3) and obtaining a special (minimal) solution of the
non-homogeneous system (2).

Now, for the arrays u(l) = (u(l)a ), v(l) = (v(l)a ), a ∈NN , 1≤ l ≤M and u= (ua),
v = (va), a ∈NN defined by

u(l)a := (X(l))a, v(l)a := y(l)(X(l))a, a ∈NN, 1≤ l ≤M;
ua :=

∑

1≤l≤M
u(l)a , va :=

∑

1≤l≤M
v(l)a , a ∈NN,

it holds that

Lemma 5 A polynomial f =∑a∈supp(f ) c(f, a)X
a satisfies the interpolation con-

dition (2) iff f ◦ u= v, i.e.

f 〈u〉b =:
∑

a∈supp(f )

c(f, a)ua+b = vb, b ∈NN. (4)

Proof

∑

a∈supp(f )

c(f, a)(X(l))a = y(l), 1≤ l ≤M ⇔

∑

a∈supp(f )

c(f, a)(X(l))a+b = y(l)(X(l))b, b ∈NN, 1≤ l ≤M ⇔

∑

a∈supp(f )

c(f, a)u
(l)
a+b = v(l)b , b ∈NN, 1≤ l ≤M ⇔

∑

a∈supp(f )

c(f, a)ua+b = vb, b ∈NN,

where the equivalence between the third and fourth conditions comes from the linear
independence of the arrays u(l), 1≤ l ≤M (Remark: we assume that q is sufficiently
large). �
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The linear recurrence corresponding to the homogeneous system (3) is just the
homogeneous linear recurrence which is derived from (4) by letting the right-hand
array v := 0, and it is easy to see that the characteristic ideal I(u) of the left-hand
array u is identical with I(V ).

Such a multivariate interpolation problem as above appears in the context of list
decoding (Sudan 1997; Shokrollahi and Wasserman 1999; Guruswami and Sudan
1999), which is a generalization of conventional bounded-distance decoding (in-
cluding syndrome decoding) of algebraic geometry codes. First, we give a simple
sketch of list decoding of (primal) RS codes. We take a primal (n = q − 1, k, d =
q − k) RS code C = {c = (f (αi))0≤i≤n−1 | f ∈ Fq [x], deg(f ) ≤ k − 1} and an
integer τ(< n) which is more than the number of correctable errors t = #n−k2 $.
Given a received word r = (rj )0≤j≤n−1 ∈ F

n
q , we want to find all the codewords

c = (cj )0≤j≤n−1 ∈ C whose components differ from r by at most τ components,
i.e. for r= c+ e with e= (ej )0≤j≤n−1 ∈ F

n
q , we assume that the size t ′ := #E of the

error locators E = {αj | ej �= 0, 0 ≤ j ≤ n− 1} is less than or equal to τ . Then, it
is shown below that list decoding is reduced to an interpolation problem, where the
leading exponent le(Q)(∈N2) of a bivariate polynomialQ=Q(x,y) is introduced
according to the term ordering < defined by the weight w = (1, k − 1) (and the
lexicographic ordering <L s.t. x <L y).

Lemma 6 Assume that a nonzero bivariate polynomial Q(x,y) in Fq [x, y],
Q(x,y)=∑(i,j)∈supp(Q) Qij x

iyi , satisfies the condition

Q(αj , rj )= 0, 0≤ j ≤ n− 1 (5)

and that its leading exponent le(Q) < (n − τ,0). Then, the polynomial f corre-
sponding to a codeword c within the radius τ from the received word r satisfies
y − f (x) |Q(x,y).

Proof By the condition le(Q) < (n− τ,0), the univariate polynomial Q(x,f (x))
has degree at most n − τ − 1. On the other hand, since the identities rl = f (αl)
hold except for at most τ integers l, 1≤ l ≤ n, we have thatQ(αl, f (αl))= 0 for al
least n− τ integers l, from which it follows that Q(x,f (x))= 0 identically. Thus,
y − f (x) |Q(x,y) as univariate polynomials over the polynomial ring Fq [x]. �

Therefore, by finding Q(x,y) satisfying the interpolation condition (5) and fur-
thermore finding its factors in the form of y − f (x), we can obtain f which gives
a candidate codeword. The 2-D linear recurrence derived from (5) is a special case
of the homogeneous linear recurrence (4), where the right-hand side is 0. As a con-
clusion, we can obtain Q among a Gröbner basis of the characteristic ideal of the
2-D array u= (ua) defined by ua :=∑0≤j≤n−1(X

(j))a , a ∈N2 forX(j) = (αj , rj ),
0≤ j ≤ n− 1. Our method of finding the interpolation polynomial for list decoding
of RS codes of codelength n and coding rate k

n
= R has computational complexity

O(R− 1
2 n2), which is O(n2) if the coding rate R is fixed as a constant when both
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values n and k become asymptotically larger, compared with O(n3) of the method
based simply on Gaussian elimination.

We do not discuss the existence condition of such an interpolation polynomial as
above, although it is related with a practically important problem of how much list
decoding can contribute to improvement of reliability in transmission. If it exists, it
is the most convenient to have an interpolation polynomialQ with minimal leading
exponent le(Q).

List decoding of codes from curves also is reduced to an interpolation problem.
For simplicity, we consider only primal Hermitian codes C := {c =
(f (Pj ))0≤j≤n−1 | f ∈ L(mP∞)(= Fq [Π(m)])}. In this case, the leading exponent
of a tri-variate polynomial Q(x,y, z) with support supp(Q) (⊂ Π(m) × N) is in-
troduced over Π(m)× N according to the term ordering < defined by the weight
w = (q1, q1 + 1,m) (and the lexicographic ordering <L s.t. x <L y <L z). Then,
we have:

Lemma 7 We assume that a nonzero polynomial (or rather function) Q(P, z) =
Q(x,y, z)=∑(a,l)∈supp(Q) qa,lP

azl (∈ Fq [Π(m)][z]) satisfies the condition

Q(Pj , rj )= 0, 0≤ j ≤ n− 1 (6)

and has leading exponent le(Q) < (#n−τ
q1
$,0,0), where the components of P =

(x, y) are viewed not only as the coordinates of P but also as functions on the curve
X . Then, the function f (x, y) ∈ Π(m) corresponding to a codeword c within the
radius τ from the received word r satisfies z− f (x, y) |Q(x,y, z).

Proof Since le(Q) < (#n−τ
q1
$,0,0), the algebraic function Q(x,y,f (x, y)) has

pole order less than n− τ (at the pole P∞). On the other hand, since rj = f (Pj ) ex-
cept for at most τ integers j , we have that Q(Pj ,f (Pj )) = 0 for at least n − τ
integers j , from which it follows that Q(P,f (P )) has the total zero order of
n − τ or more. Since it does not have any other pole except for P∞, we have
that Q(P,f (P ))= 0 identically, which implies that z− f (x, y) |Q(x,y, z) when
Q(x,y, z)=Q(P, z) is viewed as a univariate polynomial w.r.t. the main variable z
over the ring Fq [Π]. �

Also in this situation, the interpolation condition (6) is reduced to a homogeneous
linear recurrence. Consequently, we can obtain Q among a Gröbner basis of the
characteristic ideal of the 3-D array u= (ua) defined by ua :=∑0≤j≤n−1(X

(j))a ,

a ∈N3 for X(j) = (Pj , rj ), 0≤ j ≤ n− 1.
From the viewpoint of linear algebra, the linear recurrence (4) is nothing but

a system of linear equations for unknowns c(f, a), a ∈ supp(f ). Particularly, in
the 2-D case, it is just a 2-D block-Hankel or 2-D block-Toeplitz system of linear
equations, where the extent supp(f ) of a solution f is also unknown in our situation,
distinctly from solving the ordinary system of linear equations. For the purpose of
multivariate interpolation or decoding of codes, our method is unique and distinct
from the known fast methods of solving block-Hankel systems or other interpolation
methods.
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Soon after Sudan (1997) proposed his list decoding method, Guruswami and Su-
dan (1999) gave an improvement called the GS list decoding method, which can be
effective even for higher coding rate, while the original Sudan list decoding works
only for coding rate ≤ 1

3 . It is based on the notion of zeros with multiplicity de-
fined as follows. Here we consider RS codes as in Lemma 6 for simplicity. A point
X(l) = (x(l), y(l)) ∈ (Fq)2 is called a zero with multiplicity s or more of a polyno-
mial Q(x,y) =∑(i,j)∈supp(Q) Qij x

iyi =∑a∈supp(Q) c(Q,a)X
a ∈ Fq [x, y] iff in

the expansion

Q(l)(x, y)=
∑

a∈N2

c(Q(l), a)Xa (7)

of the polynomial Q(l)(x, y) := Q(x + x(l), y + y(l)), all the terms c(Q(l), a)Xa

vanish, i.e. c(Q(l), a)= 0, for ∀a = (a1, a2) ∈N2 s.t. a1 + a2 < s. Then, we have a
modification of Lemma 6:

Lemma 8 Assume that a nonzero bivariate polynomial Q(x,y) =∑(i,j)∈supp(Q)

Qij x
iyi (∈ Fq [x, y]) has zeros (αj , rj ), 0≤ j ≤ n− 1, each with multiplicity s or

more and that it has deg(Q) <T (s(n− τ),0). Then, the polynomial f correspond-
ing to a codeword within the radius τ from r satisfies y − f (x) |Q(x,y).

Neglecting discussions on the error correction performance of GS list decoding,
we will show that one can apply the BMS algorithm to find such an interpolation
polynomial with minimal degree. First we remark the following facts.

Lemma 9 For a finite subset V = {X(l) = (x(l), y(l)) | 0 ≤ l ≤ n − 1} ⊂ F
2
q , any

integer s, and any point c ∈ N2, each of the following sets is an ideal of Fq [x, y],
the former of which we call the ideal of the zero variety V with multiplicity s.

I(V ; s) := {Q(x,y) ∈ Fq [x, y] | c(Q(l), a)= 0, a = (a1.a2) ∈N2,

a1 + a2 < s,0≤ l ≤ n− 1},
I(V ; c) := {Q(x,y) ∈ Fq [x, y] | c(Q(l), a)= 0, a = (a1.a2) ∈N2,

a ≤P c,0≤ l ≤ n− 1}.

Next, for two points a = (a1, a2), b= (b1, b2) ∈N2, we introduce the 2-D bino-
mial coefficients

(
b

a

)

:=
(
b1

a1

)(
b2

a2

)

,

where if it does not hold that a ≤P b,
(
b
a

) = 0. Then, the coefficients c(Q(l), a) of
the expansion of (7) are written as

c(Q(l), a)=
∑

b∈supp(Q):b≥P a

(
b

a

)

c(Q,b)(X(l))b−a.
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Therefore,

Lemma 10 Q=∑a∈supp(Q) c(Q,a)X
a ∈ I(V , c)⇔

∑

b∈supp(Q):b≥P a

(
b

a

)

c(Q,b)(X(l))b−a = 0, a ∈ �c, 0≤ l ≤ n− 1.

For a point c ∈N2, we introduce a 2-D array u= (ub) as follows:

ub :=
∑

0≤l≤n−1

(
b

c

)

(X(l))b−c, b ∈N2.

Then,

Lemma 11 Q=∑a∈supp(Q) c(Q,a)X
a ∈ I(V , c)⇔ Q ◦ u= 0, i.e.

∑

a∈supp(Q)

c(Q,a)ua+b = 0, b ∈N2.

For the ideal I(V , s), we introduce s 2-D arrays u(i) = (u(i)b ), 1 ≤ i ≤ s as fol-
lows:

u
(i)
b :=

∑

0≤l≤n−1

(
b

c(i)

)

(X(l))b−c(i) , b ∈N2, (8)

where c(i) := (i − 1, s − i) ∈ N2, 1 ≤ i ≤ s. Then, in view of {a = (a1, a2) ∈ N2 |
a1 + a2 < s} = ∪1≤i≤s�c(i) , we have

Corollary 1 Q ∈ I(V , s)⇔ Q ◦ u(i) = 0, 1≤ i ≤ s, i.e.

∑

a∈supp(Q)

c(Q,a)u
(i)
a+b = 0, b ∈N2, 1≤ i ≤ s.

Consequently, it turns out that GS list decoding of primal RS codes can be solved
by the multiple-array BMS algorithm (Sakata 1989), which is a modification of the
BMS algorithm for finding a minimal polynomial set of a finite set of 2-D arrays
u(i), 1≤ i ≤ s as in (8) with X(l) = (αl, rl) ∈ F

2
q , 0≤ l ≤ n− 1.

Compared with O(n3s6) of the method based simply on Gaussian elimination,
our method (Numakami et al. 2000) of finding the interpolation function for GS list
decoding with multiplicity s of RS codes of codelength n and coding rate R has

the same computational complexity O(R− 1
2 n2s4) as other efficient algorithms, e.g.

Koetter–Vardy (2003), O’Kieffe–Fitzpatrick (2002), Lee–O’Sullivan (2006), but our
method is unique in the sense that it uses (syndrome-like) arrays which contain in



The BMS Algorithm and Decoding of AG Codes 179

the condensed form all the information necessary for decoding. For GS list decod-
ing of algebraic geometry codes, there have been several approaches (Sakata 2001;
O’Keeffe and Fitzpatrick 2007; Lee and O’Sullivan 2008), etc., which we do not
treat here because we need more involved discussions for that purpose. For general
multivariate interpolation the Buchberger–Möller (1982, 2009a) and the Marinani–
Möller–Mora (1993) algorithm are alternatives, in comparison with which the BMS
algorithm is conjectured to have less computational complexity, depending on the
situations, although the exact estimations remain to be investigated.

4 Other Relevant Decoding Methods of Primal/Dual Codes

In this section, we consider a special case of Sudan list decoding, i.e. the case of
list size 1. In this case, we treat nothing but polynomials of degree 1 w.r.t. the main
variable and bounded-distance decoding of primal codes up to half the correction
bound.3

Again we take a primal (n= q − 1, k, d = q − k) RS code, and we assume that
the number τ of errors is less than d

2 as in Sect. 2. As a corollary of Lemma 6, we
have

Lemma 12 4 If a bivariate polynomial of the form

Q(x,y)=Q0(x)− yQ1(x) (�= 0) (∈ Fq [x, y])
satisfies the conditions

(1) deg(Q0(x)) < n− τ, deg(Q1(x)) < n− τ − (k − 1);
(2) Q(αj , rj )= 0, 0≤ j ≤ n− 1,

(9)

thenQ1(x) is an error locator polynomial which has E as its zeros, i.e.Q1(α
j )= 0

for αj ∈ E , and Q1(x) | Q0(x) so that the quotient f (x) = Q0(x)
Q1(x)

is the message

polynomial corresponding to the sent codeword c= (cj ), i.e. cj = f (αj ).

In fact, such a polynomialQ(x,y) exists as shown in the following lemma so that
we can obtain it by applying the BMS algorithm to the 2-D array u= (ua) defined
by ua :=∑0≤j≤n−1(X

(j))a , a ∈N2 for X(j) = (αj , rj ), 0≤ j ≤ n− 1 similarly to
list decoding, where in this case we do not need to be worried about factorization of
Q(x,y).

3Of course, a primal code can be decoded as a dual code of its dual by using syndrome decoding.
But, sometimes from both the practical and theoretical points of view it is required to have some
direct decoding method as a primal code itself.
4This lemma is given in Justesen and Høholdt (2004).
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Lemma 13 There exists at least one nonzero polynomialQ(x,y) as in Lemma 12.

Sine we assume that τ is less than or equal to the number of correctable errors
t = # d−1

2 $, there exists only a single codeword c s.t. dis(c, r)≤ τ and thus the above
method gives us the ordinary bounded-distance decoding of primal RS codes. By
the way, the above method based on the 2-D BMS algorithm can be replaced by the
vectorial BM algorithm, which is the 1-D vectorial BMS algorithm. First, we take n
pairs of 1-D arrays v(j) = (v(j)i ), w(j) = (w(j)i ), i ∈N, 0≤ j ≤ n− 1 defined by

v
(j)
i := (αj )i , w

(j)
i := −rj (αj )i , i ∈N,

from which we have a pair of 1-D arrays v = (vi), w = (wi) defined by

vi :=
n∑

j=1

v
(j)
i , wi :=

n∑

j=1

w
(j)
i , i ∈N.

Then, we have

Lemma 14 The condition (9) is equivalent to the compound linear recurrence

d0∑

i=0

c(Q0, i)vi+j +
d1∑

i=0

c(Q1, i)wi+j = 0, j ∈N. (10)

Thus, we can apply the vectorial BM algorithm (Sakata 1991, 2009) to the pair
(v,w) of 1-D arrays so that we can have a Gröbner basis of the module defined by
the pair of arrays as a minimal polynomial vector set, in which the desired solution
(Q0,Q1) is contained. Thus, we have another method of the ordinary bounded-
distance decoding of primal RS codes.5 In form, this method is similar to the de-
coding method (Sakata 2006) based on the vectorial BM algorithm which we gave
as an alternative to the Welch–Berlekamp (1986) decoding algorithm of the dual RS
code, where we have instead of the condition (9)

Q

(

αj ,
rj

pjαj

)

= 0, 0≤ j ≤ d − 2, (11)

where pj , 0≤ j ≤ d − 2 are defined by

p(x)=
d−2∏

i=1

(x − αi)=
d−2∑

j=0

pjx
j . (12)

5The vectorial BMS algorithm (Sakata 1991, 2009) for any dimension N is given in 1991. Fitz-
patrick (1995) gave a similar method, which may be considered to be equivalent to a version of the
vectorial BM algorithm according to Blackburn–Chambers’ (1996) explanation, where the swap-
ping based on the special term ordering <r used in the Fitzpatrick algorithm corresponds to the
degree change in the (vectorial) BM algorithm.
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For the primal Hermitian code C(m) we have a corollary of Lemma 7.

Lemma 15 If a trivariate polynomial

Q(x,y, z)=Q0(x, y)− zQ1(x, y) ∈ Fq [Π(m)][z]
satisfies the conditions

(1) o(Q0)≤m+ τ + g, o(Q1)≤ τ + g;
(2) Q(xl, yl, rl)= 0, 0≤ l ≤ n− 1,

(13)

then Q1(x, y) is an error locator function which has E as its zeros, i.e. Q1(Pj )= 0

for Pj ∈ E , and Q1(x, y) |Q0(x, y) so that the quotient f (x, y) := Q0(x,y)
Q1(x,y)

is the
message function corresponding to the sent codeword c, i.e. cj = f (Pj ), 0 ≤ j ≤
n− 1.

In fact, such a function Q(x,y, z) exists as shown in the following lemma so
that we can obtain it by applying the 3-D BMS algorithm to the 3-D array u= (ua)
defined by ua :=∑0≤j≤n−1(X

(j))a , a ∈ N3 for X(j) = (Pj , rj ), 0 ≤ j ≤ n − 1
similarly to the list decoding, where in this case we do not need to be worried about
factorization of Q(x,y, z).

Lemma 16 There exists at least one nonzero function Q(x,y, z) as in
Lemma 15.

If τ is less than or equal to t̂ = # dG−g−1
2 $ (< tG), then there exists only a single

codeword c s.t. dis(c, r)≤ τ and thus this method (Fujisawa and Sakata 2005) gives
us the ordinary bounded-distance decoding of primal Hermitian codes up to t̂ . By the
way, the method based on the 3-D BMS algorithm can be replaced by the vectorial
2-D BMS algorithm. Instead of the 3D array u as above, we take a pair of 2D arrays
v = (va), w = (wa), a = (a1, a2) ∈Π defined by

va :=
∑

0≤l≤n−1

Pal =
∑

0≤l≤n−1

(αl)
a1(βl)

a2 , (14)

wa := −
∑

0≤l≤n−1

rlP
a
l =−

∑

0≤l≤n−1

rl(αl)
a1(βl)

a2 , (15)

for which the following compound linear recurrence must hold:

∑

a∈supp(g)

c(g, a)va+b +
∑

a∈supp(h)

c(h, a)wa+b = 0, b ∈Π, (16)

where g(:= Q0) =∑a∈supp(g) c(g, a)X
a and h(:= Q1) =∑a∈supp(h) c(h, a)X

a .
Thus, we can apply the vectorial BMS algorithm to the pair (v,w) of 2-D arrays



182 S. Sakata

so that we can have a Gröbner basis of the module defined by the pair of arrays as
a minimal polynomial vector set, in which the desired solution (g,h)= (Q0,Q1) is
contained. Thus, we have another method of the ordinary bounded-distance decod-
ing of primal Hermitian codes up to t̂ . Furthermore, it is shown in Fujisawa et al.
(2006) that most of errors up to half the Goppa bound dG of the code C(m) over a
large finite field Fq can be corrected by the decoding method, i.e. for t := # dG−1

2 $,
1− 1

q
of t or less errors can be corrected.

We should not ignore the fact that the interpolation problems (9), (13) can be
solved either by Buchberger–Möller (1982) algorithm or Mariani–Möller–Mora
(1993) algorithm, both of which are a general method of multi-variate interpola-
tion problem although our method based on the BMS algorithm discussed above
also is a general method of multi-variate interpolation problem, or by the Farr–Gao
(2005) algorithm which is explained as a generalization of Newton’s interpolation
for univariate polynomial. Our method seems to have less computational complexity
than them, but the exact comparison remains to be investigated.

Recently a novel decoding algorithm of primal RS codes which is based
on higher-dimensional interpolation has been published by Parvaresh and Vardy
(2005). Its error correction performance is superior to GS list decoding, where the

ratios of the number of correctable errors per the codelength are τPV
n
= 1− R N

N+1 ,
if (N + 1)-variate polynomial interpolation is used, for the Parvaresh–Vardy (PV)

method and τGS
n
= 1−R 1

2 for GS method, respectively. In fact, GS list decoding is
a special case of N = 1 of the PV method. In case of N = 2, in encoding, the PV
method gives not only the codeword of c= (cj ) = ev(f ) ∈ C for a message poly-
nomial f (x)=∑k−1

i=0 fix
i ∈ K[x] of the actual RS code C (⊂ Kn) but also another

codeword c′ := ev(g) ∈ C for g(x) = (f (x))a mod h(x), and then sends the pair
of codewords c, c′ ∈ C, where h(x) ∈ K[x] is an irreducible polynomial over K of
degree k, and a is any integer satisfying a special condition. In decoding, given a
pair of received words y= (yj ), z= (zj ) ∈ Kn, one tries to find a Gröbner basis of
the ideal

I(y, z) := {Q(x,y, z) ∈ K[x, y, z] |Q(αj , yj , zj )= 0,0≤ j ≤ n− 1}
w.r.t. the term order defined by the weight (1, k−1, k−1). Then, from the minimum
element Qm(x,y, z) of I(y, z) one computes P(y, z) =Qm(x,y, z) mod h(x), in-
terpreted as an element of K̃[y, z], where K̃ - K[x]/〈h(x)〉 is the extension field
of K, and obtains the univariate polynomial P̃ (y) := P(y, ya) ∈ K̃[y], whose roots
∈ K̃ can be candidates of the message polynomial f (x) ∈ K[x]. Thus, the multivari-
ate interpolation, which is a key step of the PV decoding method, can be solved by
the BMS algorithm efficiently.

5 Conclusion

We have discussed how the BMS algorithm and its variations (Sakata 1988, 1989,
1990, 1991, 2009) are applied to various decoding methods of algebraic geometry
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codes and multivariate interpolation related to list decoding, and how these decoding
methods are connected with Gröbner bases via multidimensional arrays and linear
recurrences. Although we have explained our decoding methods mainly as regards
Reed–Solomon codes and Hermitian codes, our methods work for one-point codes
from any algebraic curves and codes from order domains. For example, primal and
dual one-point codes which have an Fq(fρ)-module basis (see Sect. 7 of Leonard
2009a) can be decoded by the vectorial BMS algorithm. In the sequel, we have
clarified that these problems are reduced to finding a set of minimal polynomials,
which corresponds to a Gröbner basis, of a given (set of) multidimensional array(s).6

We have given a basic set of algorithms for solving these problems, which consti-
tute a unified system of unique methods in comparison with other various relevant
methods related to Gröbner bases. In fact, there have been many other pioneer-
ing investigations (Justesen et al. 1989, 1992; Pellikaan 1989, 1993; Skorobogatov
and Vlăduţ 1990; Porter et al. 1992; Shen 1992; Duursma 1993; Ehrhard 1993;
Feng et al. 1994), etc.7 on decoding algebraic geometry codes, but those are less ef-
ficient than our methods based on the Gröbner basis theory (Buchberger 1965, 1970,
1985, 1998, 2006) and the BMS algorithm (Sakata 1988, 1990). In Leonard (2009b),
Guerrini and Rimoldi (2009) in this issue, other decoding methods from Gröbner
basis perspectives are discussed. For encoding of AG codes, see Little (2009).
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A Tutorial on AG Code Decoding
from a Gröbner Basis Perspective

Douglas A. Leonard

1 Introduction

The notation and AG code description were set up in Leonard (2009). While syn-
drome decoding of RS codes dates back at least to the 60’s, the syndrome decoding
of AG codes should be viewed in terms of Sakata’s generalization of the Berlekamp–
Massey algorithm (see Sakata 2009a, 2009b) and Feng and Rao’s (1993) majority
voting scheme to decode up to the designed minimum distance.

Sudan popularized list-decoding, but the important follow-up papers are Høholdt
and Nielsen (1999) (for a much more readable introduction to Sudan’s ideas), and
Roth and Ruckenstein (2000), Wu and Siegel (2001), and Augot and Pecquet (2000)
for three differently flavored views on implementing these ideas.

2 Functional Decoding of RS Codes and AG Codes Using
Syndromes and Error-Locator Ideals

Moving from RS codes to AG codes means moving theoretically from univari-
ate polynomial rings to multivariate polynomial rings. In univariate polynomial
rings all ideals are principal (that is, have a single generator), so finding genera-
tors for the error-locator ideals is equivalent to finding a single error-locator poly-
nomial. The generalization to multivariate polynomial rings is to finding Gröbner
bases (Buchberger 1970, 1985, 1998, 2009) for the error-locator ideals, that is ideal
bases with leading monomials that divide leading monomials of any elements in the
ideal.

Syndrome decoding algorithms recursively compute such Gröbner bases that are
consistent with the initial part of the sequence of syndromes; that is,∑t
i=0 σisi+j = 0. If there is an error of smallest weight t ≤ e, then the Δ-set pro-

duced by such algorithms will have size t , and the variety of the ideal will also have
size t .

D.A. Leonard
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Let F24 := F2[γ ]/〈1+γ +γ 4〉. Consider the example syndrome vector (consist-
ing of functions eEvalT = rEvalT of the supposed error e of weight t at most 3:

s := (0 γ 1 γ 1 γ 2 γ 13 γ 1
)

relative to the underlying functions (xi : 0 ≤ i ≤ 5), which is a shiftable shorthand
for the (backshifted or Hankel) syndrome matrix

S := EvalΔ(r)EvalT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 γ 1 γ 1 γ 2 γ 13 γ 1

γ 1 γ 1 γ 2 γ 13 γ 1

γ 1 γ 2 γ 13 γ 1

γ 2 γ 13 γ 1

γ 13 γ 1

γ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with (i, j)-th entry clearly of the form
∑
P x

i(P )r(P )xj (P ). (In matrix terminol-
ogy, an error-locator polynomial corresponds to a linear dependence σ among the
rows of S; which can be gotten (inefficiently) by simple row-reduction techniques.

The Berlekamp–Massey algorithm, the extended Euclidean algorithm, or even
the standard matrix row-reduction will produce recursively at least the sequence
1+0x, γ 4+x+x2, and σ(x) := γ 4+γ 14x+γ 7x2+x3, consistent with initial parts
of the total sequence of syndromes, with the former two being more efficient, in that
they take advantage of the back-shifted nature of the matrix to avoid recalculating
intermediate results.

The factorization σ(x)= (x+γ 0)(x+γ 1)(x+γ 3) gives the variety {γ 0, γ 1, γ 3}
of error positions from which various other algorithms can be used to produce the
error magnitudes.

Consider an example for the Hermitian code with affine definition given by the
single generator f := x4

2 + x2 − x5
1 having 1+ 16+ 2 · 6√16= 65> 1+ 16 pro-

jective points (equal to the Hasse–Weil bound) rational over F16, and genus g = 6.
Since f4 := x1 has pole order 4 and f5 := x2, pole order 5 at the projective

point P∞ := (1 : 0 : 0) at which these rational functions have all their poles, there
are functions of the form f

i5
5 f

i4
4 of every pole order other than the g = 6 values

1,2,3,6,7,11.
L(m · P∞) is given by an F2[f4]-module basis (1, f5, f

2
5 , f

3
5 ), and the curve X

is defined by the quotient ring

Q := F2[f5, f4]/I, I := 〈f 4
5 + f 5

4 + f5〉
with the monomial order a weighted total-degree order relative to the weights (5,4),
the pole orders of the variables.

Consider the original example Feng and Rao (1993) used to exemplify majority
voting to determine extra syndromes (also used by Leonard (1995) to introduce
the idea of an error-locator ideal and the computation of a basis for same). The
syndrome “vector” (now a 2-dimensional array, given that there are two variables
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involved)

s :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ 1 γ 14 γ 11 γ 4 γ 0 γ 1 γ 5 γ 12 γ 2 γ 6

γ 2 γ 4 γ 11 γ 6 γ 12 γ 7 γ 1 γ 14

γ 9 γ 10 γ 8 γ 5 γ 1 γ 7 0
γ 5 γ 2 γ 10 γ 4 γ 9 γ 0

γ 5 γ 8 γ 0 γ 3 γ 4

γ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with entries
∑
P r(P )f

i
5 (P )f

j

4 (P ) relative to the underlying functions hi,j :=
f i5f

j

4 :
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 f4 f 2
4 f 3

4 f 4
4 f 5

4 f 6
4 f 7

4 f 8
4 f 9

4
f5 f5f4 f5f

2
4 f5f

3
4 f5f

4
4 f5f

5
4 f5f

6
4 f5f

7
4

f 2
5 f 2

5 f4 f 2
5 f

2
4 f 2

5 f
3
4 f 2

5 f
4
4 f 2

5 f
5
4 f 2

5 f
6
4

f 3
5 f 3

5 f4 f 3
5 f

2
4 f 3

5 f
3
4 f 3

5 f
4
4 f 3

5 f
5
4

f 4
5 f 4

5 f4 f 4
5 f

2
4 f 4

5 f
3
4 f 4

5 f
4
4

f 5
5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a shorthand (shiftable in both directions) for the (almost backshifted) syndrome
matrix S := EvalΔ(r)EvalT = EvalΔ(e)EvalT :

γ 1 · · · γ 14 γ 2 · · γ 11 γ 4 γ 9 · γ 4 γ 11 γ 10 γ 5 γ 0 γ 6 γ 8 γ 2 γ 1 γ 12 γ 5 γ 10 γ 5

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · ·

γ 14 · · · γ 11 γ 4 · · γ 4 γ 11 γ 10 · γ 0 γ 6 γ 8 γ 2 γ 1 γ 12 γ 5 γ 10 γ 5

γ 2 · · · γ 4 γ 9 · · γ 11 γ 10 γ 5 · γ 6 γ 8 γ 2 γ 5 γ 12 γ 5 γ 10 γ 8

· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

γ 11 · · · γ 4 γ 11 · · γ 0 γ 6 γ 8 · γ 1 γ 12 γ 5 γ 10 γ 5

γ 4 · · · γ 11 γ 10 · · γ 6 γ 8 γ 2 · γ 12 γ 5 γ 10 γ 8

γ 9 · · · γ 10 γ 5 · · γ 8 γ 2 γ 5 · γ 5 γ 10 γ 8

· · · · · · · · · · · · · ·
γ 4 · · · γ 4 γ 11 · · γ 1 γ 12 γ 5 · γ 5

γ 11 · · · γ 11 γ 10 · · γ 12 γ 5 γ 10 ·
γ 10 · · · γ 10 γ 5 · · γ 5 γ 10 γ 8

γ 5 · · · γ 5 γ 0 · · γ 10 γ 8

γ 4 · · · γ 1 γ 12 · · γ 5

γ 11 · · · γ 12 γ 5 · ·
γ 10 · · · γ 5 γ 10 ·
γ 5 · · · γ 10 γ 8

γ 1 · · · γ 5

γ 12 · · ·
γ 5 · ·
γ 10 ·
γ 5

with (4i+k,4j + l)-th entry clearly of the form
∑
P f

k
5 (P )f

i−k
4 (P )r(P )f5(P )

l ×
f
j−l
4 (P ).

The algorithm producing the following computations of pairs, (
∑
h σf,hh,∑

h σf,hsh), is simply a multi-dimensional row-reduction and shifting algorithm,
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a version of the Berlekamp–Massey–Sakata algorithm discussed in Sakata (2009a,
2009b):

γ 0 γ 1

γ 13 γ 0 0 γ 0

γ 7 γ 1 0 0
γ 0 γ 5

γ 3 γ 14 γ 0 0 0 0 0 γ 12
0 0 0 0

0 0
0

0 γ 0 γ 0 0 0 0 0 0 0 0
γ 0 γ 0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 γ 0 γ 4 0 0 0 0 0 0 0
γ 0 γ 1 0 0 0 0 0 0
γ 0 0 0 0 0 0

0 0 0

0 γ 3 γ 14 γ 0 0 0 0 γ 12
0 0 0 0
0 0

0 0 γ 3 γ 14 γ 0 0 0 γ 12
0 0 0 0
0 0
0

0 γ 12 0 0 γ 0 γ 0 0 0 0 0 0
γ 11 0 0 0 0 0 0

0 0 0 0 0
0 0 0

The minimal, (unreduced) Gröbner basis for the error-locator ideal I can be read
off from the left-hand side entries, with corresponding right-hand side zero as:

f5f4+f 2
4 +f5+f4, f

2
5 +γ 1f5f4+γ 4f 2

4 +γ 0f5+γ 0f4, f
5
4 +f 4

4 +γ 11f5+γ 12f4

relative to the implicit weighted total-degree order induced by the pole orders. This
is consistent with the syndromes computed from the received word (or those com-
puted, given the extra assumption that the error weight and hence the rank of S is at
most 6) in the sense that

∑
h σf,hsh = 0 for each σf :=∑h σf,hh in the basis.

A factored lex basis

f4(f4 + 1)(f 4
4 + f 3

4 + 1) · 1, (f4 + 1) · (f5 + f4), 1 · (f 2
5 + γ 4f5 + f 2

4 + γ 4f4)

can be used to find the variety (of error positions) Pj with

(f5(Pj ), f4(Pj )) ∈ {(0,0), (γ,1), (γ 7, γ 7), (γ 14, γ 14), (γ 13, γ 13), (γ 11, γ 11)},
{γ 7, γ 14, γ 13, γ 11} being the set of roots of x4 + x3 + 1.

The following similar example in the handbook (Høholdt et al. 1998) is originally
due to Sakata: The syndrome “vector” is

s :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ 9 γ 14 γ 5 γ 7 γ 2 γ 5 γ 0

0 γ 9 γ 14 γ 12 γ 5 γ 5

γ 9 γ 11 0 γ 12

γ 6 γ 4 γ 7

γ 5 γ 7

γ 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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with

S = γ 9 · · · γ 14 0 · · γ 5 γ 9 γ 9 · γ 7 γ 14 γ 11 γ 6 γ 2 γ 12 0 γ 4 γ 5 γ 5 γ 12 γ 7 γ 0 γ 5

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · ·

γ 14 · · · γ 5 γ 9 · · γ 7 γ 14 γ 11 · γ 2 γ 12 0 γ 4 γ 5 γ 5 γ 12 γ 7 γ 0 γ 5

0 · · · γ 9 γ 9 · · γ 14 γ 11 γ 6 · γ 12 0 γ 4 γ 5 γ 5 γ 12 γ 7 γ 7 γ 5

· · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

γ 5 · · · γ 7 γ 14 · · γ 2 γ 12 0 · γ 5 γ 5 γ 12 γ 7 γ 0 γ 5

γ 9 · · · γ 14 γ 11 · · γ 12 0 γ 4 · γ 5 γ 12 γ 7 γ 7 γ 5

γ 9 · · · γ 11 γ 6 · · 0 γ 4 γ 5 · γ 12 γ 7 γ 7 γ 6

· · · · · · · · · · · · · · ·
γ 7 · · · γ 2 γ 12 · · γ 5 γ 5 γ 12 · γ 0 γ 5

γ 14 · · · γ 12 0 · · γ 5 γ 12 γ 7 · γ 5

γ 11 · · · 0 γ 4 · · γ 12 γ 7 γ 7 ·
γ 6 · · · γ 4 γ 5 · · γ 7 γ 7 γ 6

γ 2 · · · γ 5 γ 5 · · γ 0 γ 5

γ 12 · · · γ 5 γ 12 · · γ 5

0 · · · γ 12 γ 7 · ·
γ 4 · · · γ 7 γ 7 ·
γ 5 · · · γ 0 γ 5

γ 5 · · · γ 5

γ 12 · · ·
γ 7 · ·
γ 0 ·
γ 5

The row-reduction computations are:

γ 0 γ 9

γ 5 γ 0 0 γ 8

γ 6 γ 1 0 0
γ 0 γ 13

γ 6 γ 11 γ 0 0 0 γ 5

γ 3 0

γ 1 γ 14 0 0 0 0 γ 5

γ 13 γ 0 0 0
0

γ 11 γ 13 0 0 0 0 0 0 0 0
γ 13 γ 10 0 0 0 0 0 0
γ 0 0 0 0 0 0

0 0 0

γ 10 0 γ 5 γ 0 0 0 0
γ 14 γ 3 0 γ 5

0

γ 4 γ 7 γ 3 0 0 0 0 0 0
γ 1 γ 3 γ 0 0 0 0

0 0 0
0

γ 13 γ 3 0 γ 3 γ 0 0 0 0 0
γ 2 γ 9 0 γ 3 0

0 0
0

γ 11 0 0 0 0 γ 0 0 0 0 0 0
γ 11 0 0 0 0 0 0

0 0 0 0 0
0 0 0
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so a minimal, reduced Gröbner basis for the error-locator ideal I is

f 2
5 + γ 10f5f4 + γ 13f5 + γ 13f4 + γ 11,

f5f
2
4 + γ 4f5f4 + γ 3f 2

4 + γ 1f5 + γ 7f4 + γ 3, f 5
4 γ

11f5 + γ 11.

A factored lex basis is

1 · (f4 + 1)(f4 + γ 1)(f4 + γ 2)(f4 + γ 5)(f4 + γ 8)(f4 + γ 11)(f4 + γ 14),

(f5 + γ 4f 5
4 + 1) · 1

and the variety (of error positions) is

(1, γ ), (γ, γ 7), (γ 2, γ 3), (γ 5, γ 3), (γ 8, γ 3), (γ 11, γ 3), (γ 14, γ 3).

3 Interpolation to Do List Decoding for RS Codes and AG Codes

Sudan was first to suggest list decoding of a k-dimensional functionally-encoded
RS code, by treating r and x as having weights k − 1 and 1, respectively, in the
polynomial ring F[r, x], interpolating the received pairs (ri , xi), and finding factors
(linear in the variable r) of some resulting polynomial. For an example of such,
consider the received word:

r = (γ 14,0, γ 6, γ 11,0, γ, γ 3, γ 6, γ 10, γ 6, γ 10, γ 2, γ 11,1, γ 3, γ 2)

indexed by the elements of F16 := F2[γ ]/〈1+ γ + γ 4〉:
x = (1, γ 1, γ 2, γ 3, γ 4, γ 5, γ 6, γ 7, γ 8, γ 9, γ 10, γ 11, γ 12, γ 13, γ 14,0)

for a functionally-encoded RS code with k = 4 (and n = 16). The MAGMA
code1 is:

F16<c>:=FiniteField(16);
P<r,x>:=PolynomialRing(F16,2,"weight",[3,1,3,0]);
R:=[c^14,0 ,c^6,c^11,0 ,c^1,c^3,c^6,c^10,c^6,c^10,c^2 ,c^11,c^0 ,c^3 ,c^2];
X:=[c^0 ,c^1,c^2,c^3 ,c^4,c^5,c^6,c^7,c^8 ,c^9,c^10,c^11,c^12,c^13,c^14,0];
L<u,t>:=PolynomialRing(F16,2,"grevlex");
hpl:=function(i) return hom<P->L|R[i]+u,X[i]+t>; end function;
hlp:=function(i) return hom<L->P|u-R[i],t-X[i]>; end function;
tt:=function(f) return TrailingTerm(f); end function;
f_0_0:=(P!1)@hpl(1);0,0,1,tt(f_0_0);
f_0_1:=(f_0_0*t)@hlp(1)@hpl(2);0,1,2,tt(f_0_1);
f_0_2:=(f_0_1*t)@hlp(2)@hpl(3);0,2,3,tt(f_0_2);
f_0_3:=(f_0_2*t)@hlp(3)@hpl(4);0,3,4,tt(f_0_3);
f_1_0:=((((f_0_0*u)@hlp(1)@hpl(2)-c^14/c^4*f_0_1)@hlp(2)@hpl(3)
-c^13/c^13*f_0_2)@hlp(3)@hpl(4)-c^3/c^14*f_0_3)@hlp(4)@hpl(5);
1,0,5,tt(f_1_0);
f_0_4:=((f_0_3*t)@hlp(4)@hpl(5)-c^3/c^2*f_1_0)@hlp(5)@hpl(6);

1For information on MAGMA see MAGMA et al. (2008), Bosma et al. (1997), Cannon and Play-
oust (1996).
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0,4,6,tt(f_0_4);
f_1_1:=((f_1_0*t)@hlp(5)@hpl(6)-c^13/c^5*f_0_4)@hlp(6)@hpl(7);
1,1,7,tt(f_1_1);
f_0_5:=((f_0_4*t)@hlp(6)@hpl(7)-c^10/c*f_1_1)@hlp(7)@hpl(8);
0,5,8,tt(f_0_5);
f_1_2:=((f_1_1*t)@hlp(7)@hpl(8)-c^3/c*f_0_5)@hlp(8)@hpl(9);
1,2,9,tt(f_1_2);
f_0_6:=((f_0_5*t)@hlp(8)@hpl(9)-c^13/c^14*f_1_2)@hlp(9)@hpl(10);
0,6,10,tt(f_0_6);
f_1_3:=((f_1_2*t)@hlp(9)@hpl(10)-1/c^8*f_0_6)@hlp(10)@hpl(16);
1,3,16,tt(f_1_3);
f_2_0:=(((((((f_1_0*u)@hlp(5)@hpl(6)-c^6/c^5*f_0_4)@hlp(6)@hpl(7)
-c^11/c*f_1_1)@hlp(7)@hpl(8)-c^7/c*f_0_5)@hlp(8)@hpl(9)
-c^9/c^14*f_1_2)@hlp(9)@hpl(10)-c/c^8*f_0_6)@hlp(10)@hpl(16)
-c^3/c^3*f_1_3)@hlp(16);2,0,Factorization(f_2_0);
f_0_7:=(f_0_6*t)@hlp(10)@hpl(11);0,7,11,tt(f_0_7);
f_1_4:=(f_1_3*t)@hlp(16);1,4,Factorization(f_1_4);
f_0_8:=(f_0_7*t)@hlp(11)@hpl(12);0,8,12,tt(f_0_8);
f_0_9:=(f_0_8*t)@hlp(12)@hpl(13);0,9,13,tt(f_0_9);
f_0_10:=(f_0_9*t)@hlp(13)@hpl(14);0,10,14,tt(f_0_10);
f_0_11:=(f_0_10*t)@hlp(14)@hpl(15);0,11,15,tt(f_0_11);
f_0_12:=((f_0_11*t)@hlp(15)@hpl(16)-c^5/c^3*f_1_3)@hpl(16);
0,12;

produces output (slightly edited for readability)

f2,0 = r2 + crx3 + c6x6 + c10rx2 + c12x5 + c3rx + c12x4 + c6r + c7x3

+ c11x2 + c7x + c5;
f1,4 := rx4 + c14x7 + c13rx3 + c2x6 + c2rx2 + c10x5 + c12rx + c3x4

+ c13x3 + c2x2 + x;
f0,12 := x12 + rx8 + c2x11 + c11rx7 + c5x10 + c9rx6 + c7x9 + crx5 + c12x8

+ c4rx4 + c11x7 + c4x6 + crx2 + c12x5 + c7rx + c3x4 + c12r

+ c8x3 + c14

with weighted total degrees 6, 7, and 12 respectively. These form a Gröbner basis
for the interpolating ideal. And any message with codeword at most 4 errors away
from the received word must be a common root of the first two. Indeed,

f2,0 = (r + c7x3 + c6x2 + c7x + c2)(r + c14x3 + c7x2 + c4x + c3)

f1,4 = x(x + c3)(x + c4)(x + c5)(r + c14x3 + c7x2 + c4x + c3)

with common root M(x) = γ 14x3 + γ 7x2 + γ 4x + γ 3; which interpolates all the
pairs except possibly the four with x ∈ {γ 3, γ 4, γ 5,0}. In general, it is necessary to
use interpolation to some depth s greater than 1 to get lists of such messages that can
correspond to nearest codewords, allowing decoding beyond the standard minimum
distance bound e < d/2.

To generalize this to AG codes, as first suggested by Sudan and Guruswami,
let (f0, fρ, . . . , fm) be a canonical vector-space basis (of size k) for L(m · P∞)
with increasing pole sizes 0, ρ, . . . ,m at P∞ (and for m > 2(g − 1), this means
m+ 1 = k + g). It may be possible to directly recover a message M :=∑j mjfj
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from the received word r = (r1, . . . , rn) by interpolation techniques. First extend the
weighted total-degree ordering on L(m · P∞) given by the matrix A to A := ( m A

1T 0

)

to extend it to an extra variable r representing the received word.
Since these f have all their poles at P∞, the Laurent series at points Pj �= P∞

must be just power series. So map r �→ r(Pj )+ u and each f ∈ L(m · P∞) to its
power series expansion, truncated to t ij , i < s at Pj . Depth-s interpolation means
finding functions with images having total degree (in u and tj ) at least s.

If M(fm, . . . , f0) is encoded as a codeword c at distance at most e from the
received word r and H(M(fm, . . . , f0), fm, . . . , f0) ∈ L(((n− e)s − 1) ·P∞), then
H(M(fm, . . . , f0), fm, . . . , f0) is a rational function with fewer than (n− e)s poles
but at least that many zeros. But that means thatH(M(fm, . . . , f0), fm, . . . , f0)≡ 0,
so r−M(fm, . . . , f0)|H(r,fm, . . . , f0). Thus anyM that encodes to a word at most
e errors away from r , will correspond to a common linear factor r−M of all suchH .

At each point Pj there are
(
s+1

2

)
“bad” trailing terms uit�j , with i + � < s, so a

total Δ-set of size n
(
s+1

2

)
. The smallest element H(r,fm, . . . , f0) of the interpolat-

ing Gröbner basis will be a combination of the first 1 + n(s+1
2

)
monomials in the

order described by A. There will be at least one such good function H guaranteed,
interpolating n− e of the n points, if interpolation to depth s is done, and there are
more monomials f ∈ L(((n− e)s − 1) · P∞) than n

(
s+1

2

)
, the number of elements

in the Δ-set. Simple combinatorial arguments can be used to determine the depth s
needed to correct e errors using this method. And some lists will have more than one
entry when e ≥ d/2, as in the example below with d = 4 and e = 2. (Initial papers
on list decoding spent far too much time on this combinatorial aspect of the topic to
the detriment of the more interesting interpolation and ideal-theoretic aspects.)

Consider the example from Høholdt and Nielsen (1999) using the Hermitian
curve with q = 2. This has 8 rational points Pj := (x2(Pj ) : x1(Pj ) : 1) over
F4 := F2[α]/〈1+ α+ α2〉 other than P∞ := (1 : 0 : 0). Let f2 := x1 and f3 := x2 to
reflect the respective pole sizes at P∞. Consider the values:

f2(Pj ) 0 0 1 1 α α α2 α2

f3(Pj ) 0 1 α α2 α α2 α α2

r(Pj ) α
2 0 0 α2 0 0 0 0

c1(Pj ) 0 0 0 0 0 0 0 0
c2(Pj ) α

2 α2 α2 α2 0 0 0 0

forM1 := 0 andM2 := α2(1+ f2 + f 2
2 ). A :=

( 3 2
1 0

)
, so

A :=
⎛

⎝
4 3 2
1 1 0
1 0 0

⎞

⎠

for m= 4.
For n = 8 and e = 2, the size of the Δ-set and the number of monomials

for various values of s are Δ(1) = 8 > 6, Δ(2) = 24 > 21, Δ(3) = 48 > 45,
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Δ(4)= 80> 78, Δ(5)= 120= 120, and Δ(6)= 168< 171. For instance the stan-
dard monomials of weight less than 6 are f0, f2, f3, f

2
2 , r, f3f2, and the others of

weight less than 12 are

f 3
2 , rf2, f3f

2
2 , rf3, f

4
2 , rf

2
2 , r

2, f3f
3
2 , rf3f2, f

5
2 , rf

3
2 , r

2f2, f3f
4
2 , rf3f

2
2 , r

2f3.

So interpolating to depth 6 is guaranteed to produce at least 171−168= 3 functions
H(r,f3, f2) for list decoding.

The functions f2 and f3 with pole orders 2 and 3 respectively at the point
P∞ at infinity, have series expansions f2 = x1(Pj ) + tj and f3 = x2(P ) +
∑∞
�=0(x1(Pj )

2tj+x1(Pj )t
2
j + t3j )2

�
at each other point Pj . But with x1(Pj ) ∈ F4 (so

that x1(Pj )
4 + x1(Pj ) = 0) and working mod t6j , this reduces to f3 ≡ x2(Pj ) +

x1(Pj )
2tj + t3j . So map r to r(Pj ) + u as well, and ask for functions with im-

ages having total degree (in u and tj ) at least 6. In this example there are 5 > 3
H(r,f3, f2)’s, all with common roots r = 0 and r = α2(1+ f2+ f 2

2 ), the two mes-
sages listed above.

Remark 1 Similar ideas could work with Order Domain codes (Geil 2009). For a
different approach to list-decoding, see Guerrini and Rimoldi (2009), Augot and
Stepanov (2009) and Beelen and Brander (2009).
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FGLM-Like Decoding: from Fitzpatrick’s
Approach to Recent Developments

Eleonora Guerrini and Anna Rimoldi

Abstract Many decoding problems in algebraic coding theory can be solved by the
computation of a suitable Gröbner basis. The Gröbner basis can often be computed
via the FGLM algorithm or a related algorithm (like the Buchberger–Möller algo-
rithm). In this tutorial we describe how this has been done in the literature from a
historical point of view, starting from Fitzpatrick’s seminal 1995 paper, and covering
recent developments for list decoding.

Keywords FGLM · Gröbner basis · Algebraic coding theory · Decoding · List
decoding

1 Introduction

Algebraic decoding of error correcting codes has been studied for a long time, at
least since the 1950 paper by Hamming (1950). A breakthrough came with the
now-called “Berlekamp–Massey”(BM) algorithm (Massey 1969), with which any
cyclic code can be decoded up to its BCH bound. Extensions to other types of cor-
rections (erasure-and-error decoding, burst decoding, etc.) have appeared, as well
as generalizations to other families of codes, such as the Algebraic-Geometry (AG)
codes (Leonard 2009; Sakata 2009b). Among the numerous alternatives that have
been proposed in the literature, some of them rely on Gröbner basis computations
for suitable polynomial ideals or polynomial modules (Buchberger 1965, 1970,
1985, 1998, 2006). Other chapters of this book treat some of them (Mora 2009a;
Mora and Orsini 2009).

In this tutorial we describe a specific family of decoding algorithms depending
on the computation of a Gröbner basis, that is, we describe those algorithms where
the basis can be obtained by an FGLM-like algorithm (or similar techniques, see
e.g. the Buchberger–Möller algorithm Mora 2009b) in a polynomial module. We
will call such algorithms “FGLM-like algorithms”.
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First, in Sect. 2, we give some versions of the “functional approach to the compu-
tation of Gröbner bases”, which are convenient for our later discussions. We remark
that this approach has been detailed in Mora (2009b) in this volume.

In Sect. 3 we provide the first instance ever published of FGLM-like algorithms,
which appears in Fitzpatrick (1995).

In Sect. 4 we present some variations and improvements.
In Sect. 5 we show a first application to some AG codes.
In Sect. 6 we detail how errors and erasures can be simultaneously decoded by

FGLM-like algorithms.
In Sect. 7 we explain how FGLM-like algorithms can perform list decoding of

both Reed–Solomon (RS) codes and one-point AG codes. Here we present the orig-
inal Sudan approach, the solution by Kötter and Vardy, the solution by O’Keeffe
and Fitzpatrick. Moreover, we show how also list-decoding with soft-information
can be performed with an FGLM-like algorithm.

Finally, in Sect. 8 we draw some conclusions.

2 Iterative Computation of Gröbner Basis

Let F be a field, P = F[x1, . . . , xn] be a polynomial ring and L ≥ 1 be a natural
number.

Recall that any term in PL is of the form t = φek , 1≤ k ≤ L where φ is a term
in P , and {e1, . . . , eL} is the canonical basis of PL, and that the set of terms in PL
is denoted by T (L).

Let S and S′ be P -submodules of a free module PL such that:

• S′ ⊆ S
• S′ = {a ∈ S | λ(a)= 0}, where λ : S→ F is an F-homomorphism.

Since S′ = ker(λ), ∀a, b ∈ S \ S′, the elements
(

b− λ(b)
λ(a)

a

)

and xi

(

b− λ(b)
λ(a)

a

)

are in S′. So, we have the following equality λ(xib)/λ(b)= λ(xia)/λ(a).
It follows that, for any xi , there exists βi ∈ F such that, for all c ∈ S,

λ((xi − βi)c)= 0, (1)

that is, (xi − βi)c ∈ S′ (for example βi = λ(xib)/λ(b)).
Suppose that we know an ordered Gröbner basis G = {g1, . . . , gr} of S with re-

spect to a certain term ordering <. We want to determine a Gröbner basis G′ of S′.
It is shown1 in O’Keeffe and Fitzpatrick (2002) that such a Gröbner basis consists

1Of course, this is closely related to a version of the algorithm presented in Mora (2009b, Fig. 1)
but we report it for later convenience. See also O’Keeffe and Fitzpatrick (2007).
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of three parts:

G′ = G1 ∪ G2 ∪ G3

These parts can be constructed as follows. If λ(gh) = 0 for all 1 ≤ h ≤ r , then
G ⊆ S′ ⊆ S and so S′ = S. (In this case, G1 = G′ and G2 = G3 = ∅.) Otherwise, let
λ(gh)= αh for 1≤ h≤ r and let h∗ be the least h such that αh∗ �= 0. We have:

• G1 = {gh | 1≤ h < h∗}; note G1 ⊆ S′.
• Clearly, gh∗ /∈ S but it follows from (1) that, for any integer i,

(xi − βi)gh∗ =
(

xi − λ(xigh∗)
αh∗

)

gh∗ ∈ S′.

So we take

G2 =
{

(xi − βi)gh∗ | 1≤ i ≤ n
}

(note G2 ⊆ S′).

• For h > h∗, we have gh − αh
αh∗
gh∗ ∈ S′ and so we take

G3 =
{

gh − αh

αh∗
gh∗ | h∗ < h≤ 1

}

(again G3 ⊆ S′).

In fact, by assumption of ordered Gröbner basis, it follows that the leading term of
an element a ∈ S′ is divisible by the leading term of an element of G′, if h �= h∗.
Then, we may suppose that the leading term of gh∗ is the only leading term of the
basis elements gh that divides the leading term of a and prove that xnT(gh∗) also
divides T(a) for some n.

It is possible to apply the previous result as an incremental step of a more general
situation. Let M0 ⊃ · · · ⊃M� ⊃ · · · ⊃MN be submodules of a P -module M . Let
θ� :M�→ F be a F-homomorphism such that

ker(θ�)=M�+1. (2)

Let H : PL→M be an F-linear function such that, for any 1 ≤ i ≤ n, there exists
γi ∈ F satisfying

H(xib)= (xi + γs)H(b) (3)

where b = (b1, . . . , bL) ∈ PL. Suppose that our submodules S and S′ are, respec-
tively, the sets of elements satisfying the following congruences

H(b)≡ 0 mod M�

and

H(b)≡ 0 mod M�+1.
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If we have a ordered Gröbner basis G = {g1, . . . , gr} of S, the Gröbner basis G′ of
S′ will be determined as before

G′ = G1 ∪ G2 ∪ G3

defining the F-homomorphism λ : S→ F by λ= θ� ◦H .
Observe that G2 can be written as

G2 = {(xi − (βi + γi))gh∗ | 1≤ i ≤ n}.
Moreover, a further generalization of the previous result can be considered.
Let T ⊂N, |T |<∞. Suppose that the sequences

M
(k)
0 ⊃ · · · ⊃M(k)

� ⊃ · · · ⊃M(k)
Nk
=M(k)

satisfy the previous conditions for any k ∈ T , i.e. there exists an F-homomorphism
such that

θk� :M(k)
� → F, ker(θk� )=M(k)

�+1 (4)

and Hk : PL→M(k). We can construct Ĥ : PkL→M(1) × · · · ×M(k) such that
Ĥ (a1, . . . , ak)= (H (1)(a1), . . . ,H

(k)(ak)) and consider the corresponding submod-
ules S and S′ as before.

In the next theorem we give a sufficient condition for submodules of PL which
leads to the construction of a descending chain of modules and the corresponding
functions.

Theorem 1 LetM be a submodule of PL with a finite codimension. Let t0, . . . , tN−1
be the terms in N(M), ordered by some term ordering<′ (not necessarily<). Define
MN =M and M� = Ft� +M�+1, 0 ≤ � ≤ N − 1. For b ∈M� define θ�(b) to be
the coefficient of t� in b. The subsets M� form a descending chain of submodules
satisfying condition (2) withM0 = PL.

Clearly, it is possible to apply this result when H is a P -homomorphism (i.e.,
when γs = 0 for all s), and whenM = P andM�,M�+1 are ideals.

The well-known Vanishing Ideal Problem on a finite set of points

P (k) = (p(k)1 , . . . , p
(k)
s ) ∈ F

s

can be addressed in a natural way as a special case2 of the previous general algo-
rithm. In order to do this, we define, for f ∈ P , an F-linear function

H(k)(f )= f (x1 − p(k)1 , . . . , xs − p(k)s )
such that H(k)(xif )= (xi − pki )H (k)(f ), where i = 1, . . . , s.

2Again, also this is reported fully in Mora (2009b).



FGLM-Like Decoding: from Fitzpatrick’s Approach to Recent Developments 201

The ideal I = {f ∈ P | f (P k)= 0, k = 1, . . . , s} is the solution set of a sequence
of congruences

H(k)(f )≡ 0 mod 〈x1, . . . , xs〉,
where k = 1, . . . , p.

In the rest of the paper we will see that many solution sets S and S′ arising for
applications require particular conditions on their degrees.

3 The Key Equation for Alternant Codes

A well-known problem in decoding t-error correcting alternant codes consists of the
determination of ω,σ ∈ P = F[x] satisfying the key equation

ω≡ σh mod x2t (5)

where h is the syndrome polynomial and σ and ω represent the error locator and
error evaluation polynomials, respectively. There are some constraints on the de-
gree of these polynomials, that is, deg(h) ≤ 2t − 1, deg(ω) < deg(σ ) ≤ t and
gcd(ω,σ )= 1. To deal with this problem, in Fitzpatrick (1995) proposed two tech-
niques for finding particular solutions of the congruence

a ≡ bg mod xn (6)

for a given polynomial g such that deg(g)≤ n− 1, satisfying the following degree
constraints:

deg(a)≤ l, deg(b)≤m, l +m< n, gcd(a, b)= 1. (7)

The main point is to identify the required solution by its degree constrains and then
to define the term order so that the required solution becomes the minimal element
in the solution module with respect to this order. Since this minimal element must
appear in a Gröbner basis with respect to this order, it can be determined by find-
ing a Gröbner basis of the solution module.3 It is easy to show that the solution set
M of the congruence (6) is a submodule of P 2. Thus, it is possible to apply the
algorithm presented in the previous section in order to solve the sequence of par-
tial problems a ≡ bg mod xk (where 0≤ k ≤ n), determining Gröbner bases of the
modulesM0, . . . ,Mn with respect to the special term ordering <r defined as:

(xi,0) <r (x
i′ ,0) if i < i′

(0, xj ) <r (0, x
j ′) if j < j ′

3In Flynn–Fitzpatrick (1992) the idea is more general: the required solution is not necessarily
minimal but it is forced to lie in a Gröbner basis anyway by good choice of <.
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(xi,0) <r (0, x
j ) if i ≤ j + r.

As proved in Fitzpatrick and Jennings (1998), using this technique for decoding
alternant codes rather than the B-M algorithm, the designer has the same computa-
tional complexity. The number of multiplications used by this algorithm is at most
2t2, instead of the 2t2 − 2t + 1 multiplications of the B-M algorithm. Both algo-
rithms use 2t divisions but it is trivial to convert the former algorithm into a division
free algorithm.

The second technique, proposed in Fitzpatrick (1997) to solving the key equa-
tion (6) consists of a direct application of the FGLM algorithm. Since it is easy to
show that G = {(g,1), (xn,0)} is a Gröbner basis of M with respect to the order
<deg(g), using FGLM we can determine a Gröbner basis G′ with respect to the term
ordering <r . The computation is equivalent to the Euclidean algorithm technique
for decoding alternant codes.

4 Variations

Remark that, if, with the notation of Sect. 2, we are given ρ functionals λi :
S→ F, 1 ≤ i ≤ ρ, and we denote S∗ := {a ∈ S|λi(a) = 0,1 ≤ i ≤ ρ} necessarily
dimF(S

∗) ≤ ρ and, given any ρ + 1 elements a0, a1, . . . , aρ ∈ S, necessarily there
is an F-linear relation

∑ρ
i=0 ciai ∈ S∗.

The specialization of this general remark performed by Fitzpatrick in 1995 to the
key equation perfectly illustrates the general scheme4: denoting S := P 2, given the
ρ := n functionals which impose (6) and the λ+μ+ 2= ρ + 1= n+ 1 elements

a0 := (1,0), a1 := (x,0), . . . , aλ := (xλ,0),
aλ+1 := (0,1), aλ+2 := (0, x), . . . , aλ+μ+1 := (0.xμ),

we obtain

S∗ .
ρ∑

i=0

ciai =
λ∑

i=0

ci(x
i,0)+

μ∑

i=0

cλ+1+i (0, xi),

i.e., setting a :=∑λ
i=0 cix

i and b :=∑μ
i=0 cλ+1+ixi , the relation (6) with the degree

constraints (7).
The same scheme, of course, can be applied to more general setting. Decoding

multidimensional cyclic codes, for instance, can be obtained via the following the-
orem.

Theorem 2 (Little et al. 2003) Denote with τ(p) the total degree of a generic
polynomial p, assume that |N | + |D| ≥ |N(I )| + 1, with N = {xα : |α| ≤ t1} and
D = {xβ : |β| ≤ t2}. Then a Gröbner basis for M w.r.t. <τ contains an element
(a, b) such that τ(a) < τ(b)≤ t2, if such a solution exists inM .

4As well as the specialization performed by the FGLM Algorithm.
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As Little et al. point out, these hypotheses are still limiting. However, it is suffi-
cient, as it was suggested in Farr and Gao (2005), to consider any term ordering ≺
on S := P 2, enumerate the elements in T (2) as xα1ei1,x

α2ei2, . . . , fix a value t and
set J1 := {j ≤ t + 1 : ij = 1} and J2 := {j ≤ t + 1 : ij = 2} in order to obtain the
following theorem.

Theorem 3 (Farr and Gao 2005) For any f in P there is a pair of polynomials
(a, b) ∈ P 2, not both zero, satisfying

bf ≡ a mod I, a =
∑

i∈J1

aixαi , b=
∑

i∈J2

bixαi .

Furthermore, (a, b) is contained in the reduced Gröbner basis ofM .

As shown Farr and Gao (2005), we can allow N := {xαi | i ∈ J1} and D := {xαi |
i ∈ J2} to take a much wider variety of shapes than has been studied previously (e.g.,
the triangular ones and the rectangular shapes), simply by playing freely with ≺ and
its underlining term-ordering < on T .

5 Some Applications to AG Codes

An interesting application arises from a method of decoding certain AG codes pro-
posed in Shen’s (1992) thesis (see also Porter et al. 1992). Without going into the
details of the algebraic geometric background, it is possible to interpret their tech-
nique as follows.

Let f ∈ F[x, y] such that the affine curve f = 0 is regular. For a certain geo-
metric Goppa code C defined from f it is shown in Porter et al. (1992) that there
exists a polynomial g such that the decoding problem for C is equivalent to the
determination of a solution (a, b) of the congruence

a ≡ bh mod I, (8)

where I is the zero dimensional ideal I = 〈f,g〉 of F[x, y] in which deg(b) is min-
imal subject to deg(a)− deg(b) ≤ s for a fixed positive integer s (associated with
the curve), and h is a given polynomial in normal form relative to a Gröbner basis
of I .

To solve this problem with the techniques presented in Sect. 2, we refer to Fitz-
patrick (1997) defining a term order <2 in T (2) as follows. Let < be the total de-
gree lexicographic order in T with x < y and let <u be the term order in T de-
fined in Mora (2009a). Let u= (u1, . . . , un) ∈ N

n, define φei <2 ψei , for i = 1,2,
if and only if φ <u ψ , and define φe1 <2 ψe2 if either deg(ψ) − deg(φ) ≤ s or
(deg(ψ)− deg(φ)= s and φ <u ψ) and ψe2 <2 φe1 otherwise.
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6 Errors and Erasures for Alternant Codes

In Sect. 2 we have seen how the theory of Gröbner bases of modules could be applied
to the solution of the key equation for BCH codes to derive an algorithm whose com-
putational complexity is the same as the Berlekamp–Massey algorithm, but which
has a more regular structure and certain hardware advantage. In Fitzpatrick (1995)
it is also shown how the algorithm could be adapted to solve the errors-and-erasures
problem using the modified syndrome polynomial. However it is well-known that
this approach can be improved in the case of the Berlekamp–Massey algorithm by
initializing it with the erasure locator polynomial, thereby removing the need to cal-
culate the modified syndromes. In this section we describe how it is possible to apply
this corresponding simplification in the Fitzpatrick’s algorithm. For this section, we
refer to Fitzpatrick (1999).

We consider the following more general interpolation problem: given c, g ∈ P
and n a non-negative integer, determine a pair (a, b) ∈ P 2 such that c|b, satisfy both
(6) and the degree constraint

deg(a)≤ l, deg(b)≤m, l +m< n+ deg(c). (9)

6.1 Errors and Erasures

We recall the classical equations for errors and erasures. We consider a t-error cor-
recting BCH code C of length n over the field F, and denote the error and erasure
polynomials by

e(x)=
∑

i∈I
eix

i, E(x)=
∑

j∈J
Ejx

j (10)

respectively, where I, J are disjoint subsets of {1, . . . , n− 1}. We may assume that
deg(e)= |I |, deg(E)= |J | satisfy 2 deg(e)+deg(E)≤ 2t . The corresponding error
locator and erasure locator polynomials are

σ(x)=
∑

i∈I
(1− αix), Σ(x)=

∑

j∈J
(1− αjx), (11)

where α is a primitive n-th root of unity in some extension of F and, for simplicity,
we assume that the code is defined by the roots αk , k = 1, . . . ,2t . The syndrome
polynomial is

S(x)=
2t−1∑

k=0

(e(αk+1)+E(αk+1))xk

=
2t−1∑

k=0

[
∑

i∈I
eiα

i(k+1) +
∑

j∈J
Ejα

j (k+1)

]

xk
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=
∑

i∈I

eiα
i

1− αix +
∑

j∈J

Ejα
j

1− αjx mod x2t .

Multiplying by the product σ(x)Σ(x) we obtain

σ(x)Σ(x)S(x) ≡Σ(x)
∑

i∈I
eiα

i
∏

i′∈I
i′ �=i

(1− αi′x)

+ σ(x)
∑

j∈J
Ejα

j
∏

j ′∈J
j ′ �=j

(1− αj ′x) mod x2t . (12)

The right hand side of this congruence will be denoted Ω(x) and we note that it is
relatively prime to σΣ and its degree is at most deg(e)+deg(E)−1. Hence, taking
g = S, n= 2t , a =Ω , b= σΣ , c=Σ , we have

2 deg(b)= 2 deg(e)+ 2 deg(E)≤ 2t + deg(E)

and

deg(b)≤
⌊
n+ deg(c)

2

⌋

.

Also,

2 deg(a)≤ 2 deg(e)+ 2 deg(E)− 2≤ 2t + deg(E)− 2

and hence

deg(a)≤
⌊
n+ deg(c)

2

⌋

− 1.

Taking

l =
⌊
n+ deg(c)

2

⌋

, m=
⌊
n+ deg(c)

2

⌋

− 1, (13)

we have l + m < 2t + deg(c), so conditions (9) hold and the errors-and-erasures
decoding problem is a special case of (6) with c|b and conditions (9).

Notice that the errors-only case is recovered when c is a constant.

6.2 Solutions Using Gröbner Bases

We define the sequence P 2 =M0,M1, . . . ,Mn =M of submodules of P 2, where
Mk is the set of all pairs (a, b) ∈ P 2 satisfying

a ≡ bg mod xk and c|b. (14)
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We want to determine a Gröbner basis ofMn =M relative to <r and the main point
is whether the sequence of Gröbner bases of theMk can be initialized at some point
other than k = 0. The next result shows that the polynomial c can be used to define
the initialization. Let f̄ denote the reduction of f modulo xk (where the value of k
will be clear from the context) and define

Bk =
{
{(c̄g, c), (xk,0)} if k ≥ 0

{(0, c), (1,0)} if k < 0
(15)

Lemma 1 Let k = deg(c)+ r + 1. Then Bk is a Gröbner basis with respect to <r
ofMk if k ≥ 0, and ofM0 if k ≤ 0.

It is now clear that, keeping to the conventions of Fitzpatrick (1995), the set

Bdeg(c)+r+1 = {(xdeg(c)+r+1,0), (c̄g, c)}
in which the first element has leading term on the left and the second element is
minimal, can be used to initialize the algorithm in Fitzpatrick (1995). Also, as in the
Berlekamp–Massey algorithm, we can avoid computing the left hand components.
Thus the algorithm can be initialized with the pair (0, c) and continued through
n− deg(c)− r − 1 iterations. Furthermore, the previous lemma allows us to avoid
initialization of the parameter d by adopting the convention that coefficients of neg-
ative powers of x are zero when they arise.

Algorithm 1 Fitzpatrick (1999)
Require: c, g,n, r
Ensure: bi
b0, k← 0, b1 ← c, α0 ←−1, i, i′, j, d← 1
while k < n− ∂c− r − 1 do
αj ← (bjg)k+∂c+r+1
k← k + 1
if αi �= 0 then
bi′ ← bi′ − ai′

ai
bi

bi← xbi
j← i′, d← d − 1
if d = 0 then
i← i′, d← 1

end if
else
bi′ ← xbi′
j← i, d← d + 1

end if
end while
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Table 1 Intermediate steps in locator computation

k b0 b1 α0 α1 i j d

0 0 α13x2 + α9x + 1 1 α3 1 1 1

1 α10x2 + α6x + α12 α13x3 + α9x2 + x α5 α3 0 0 1

2 α10x3 + α6x2 + α12x α13x3 + α12x2 + αx + α10 α5 α4 1 1 1

3 α11x3 + x2 + α7x + α11 α13x4 + α12x3 + αx2 + α10x α9 α4 0 0 1

out α11x4 + x3 + α7x2 + α11x α13x4 + α4x3 + α8x2 + α4x + α6 α9 α4 1 1 1

Example 1 Consider the (15,9) RS code over F16 defined by the roots αk , k =
1, . . . ,6 where α is a primitive field element satisfying α4+α+1= 0. Suppose that
the erasure locator polynomial is

∑= α13x2 + α9x + 1, corresponding to erasures
in locations α2, α11, and the syndrome polynomial is g = α14x5 + x4 + α2x3 +
α5x2 + α5x + α12. From (13) the value of r is −1, so we iterate from k = 0 to
k = 3. The output is given in Table 1

Thus

σΣ = α−6(a13x4 + α4x3 + α8x2 + α4x + α6) (16)

= α7x4 + α13x3 + α2x2 + α13x + 1 (17)

from which we derive the error locations α, α8. The erasure and error values can be
obtained from (12) by the usual argument.

7 List Decoding Problem

When the number of errors in a received word exceeds half the minimum distance of
the code, there may be more than one codeword consistent with the error vector. As
an alternative to finding a particular codeword, the decoder may attempt to generate
a list of consistent codewords, and then choose among these according to some
criterion. Ideally, such a list would be short and have only one element on most
occasions. This is known as list decoding.

Sudan (1997) proposed a polynomial-time technique (for low rate codes) which
performs list decoding of RS codes. The essential idea consists of two steps:

1. use a received word to create a set of points and construct a 2-variable polynomial
interpolating these points,

2. factorize the computed polynomial to yield the required list of codewords.

This approach was extended in 1999 to RS codes of all rates by Guruswami and
Sudan (1999). They also applied it to 1-point AG codes. An improved interpola-
tion step was presented by Høholdt and Nielsen (2000); Sakata also provided an
interpolation improvement by using a Gröbner basis approach and the Berlekamp–
Massey–Sakata algorithm (Sakata 2009a, 2009b).
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Kötter and Vardy (2003) used an approach similar to Guruswami–Sudan for the
soft-decision decoding of RS and AG codes. Recently, Pellikaan and Wu (2004)
showed that Reed Muller codes of certain orders can be described by 1-point AG
codes and list decoding can be performed using AG list decoding techniques.

O’Keeffe and Fitzpatrick (2002, 2007) applied their general Gröbner basis algo-
rithm to solving constrained interpolation problems in hard and soft-decision decod-
ing of RS codes. Moreover, they addressed the interpolation problems for 1-point
AG codes arising in Guruswami–Sudan and in Kötter–Vardy, starting from their
general algorithm.

7.1 Sudan’s Approach

A RS code of dimension K and length N = q − 1 (Augot et al. 2009) can viewed
as the evaluation of polynomials in Fq [x] with degree less than K at the non-zero
elements {α1, . . . , αN } ⊆ Fq , that is, the RS code is

Cq(N,K)= {(f (α1), . . . , f (αN)) | f ∈ Fq [x], deg(f ) < K}.
The minimum distance of Cq(N,K) is N −K + 1. The size of the base field is a
limit on the length of such a code.

Let the transmitted codeword correspond to f ∈ Fq [x] and the received word be
(β1, . . . , βN). If τ errors occurred then τ = |{i | f (αi) �= βi}|. When τ ≤ #N−K2 $ a
unique closest codeword can be found; otherwise uniqueness cannot be guaranteed.

The approaches to list decoding of RS codes, based on Sudan’s method, seek a
polynomial Q(x,y) ∈ Fq [x, y]. Polynomial Q interpolates a set of points (αi, βi).
The univariate polynomials corresponding to the candidate codewords are among
the factors y − f (x) of Q. The conditions on the original Sudan algorithm confine
its applicability to low rate codes. Guruswami and Sudan (1999) extended the al-
gorithm to codes of all rates and required that the polynomial Q(x,y) have some
derivatives equal to zero (i.e. have multiple zeros) at the interpolating points. We
give a sketch of their algorithm.

1. Interpolation step. Given the received vector (β1, . . . , βn), the decoder constructs
a two variable polynomial

Q(x,y)=
∑

i,j

ai,j x
iyj

such that Q has a given multiplicity m5 at any point (αi, βi) and for which the
(1,K − 1) weighted degree of Q(x,y) is as small as possible.

5We say that Q(x,y)=∑i,j aij x
iyj ∈ F [x, y] has a zero of multiplicity (or order) m at (0,0) if

Q(x,y) involves no term of total degree less than m, i.e., ai,j = 0 if i + j < m.
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2. Factorization step. The decoder then finds all factors of Q(x,y) of the form
y − f (x), where f (x) is a polynomial of degree K − 1 or less. Let

L= {f1(x), . . . , f|L|(x)}

be the list of polynomials produced by this step. The polynomials (codewords)
f (x) ∈ L are of three possible types: the transmitted codeword, codewords with
Hamming distance ≤ τm from the received vector or codewords with distance
> τm from the received vector.

We recall the following (over any F). Let < be a fixed monomial ordering:

1= φ0(x, y) < φ1(x, y) < φ2(x, y) < · · · .

With respect to < any nonzero polynomial in F[x, y] can be expressed uniquely as

Q(x,y)=
J∑

j=1

ajφj (x, y)

for suitable coefficients aj ∈ F with aJ �= 0. Monomial φJ is the leading monomial
of Q(x,y).

As proposed in McEliece (2003), we can rewrite the Guruswami–Sudan algo-
rithm. Given an (N,K) RS code over F, with support set (α1, . . . , αN), and a posi-
tive integer m, the Guruswami–Sudan decoder accepts a vector β = (β1, . . . , βN) ∈
F
N in input, and produces a list of polynomials {f1, . . . , fL} as output. In particular,

it constructs a non zero two-variable polynomial

Q(x,y)=
J∑

j=0

ajφj (x, y)

where φ0 < φ1 < · · · is (1, v)-revlex monomial order,6 such thatQ(x,y) has a zero
of order m at each of the N points (αi, βi) for i = 1, . . . ,N . The output of the
algorithm is the list of y-roots of Q(x,y), i.e.

L= {f (x) ∈ F [x] : (y − f (x)) |Q(x,y)}.

It easy to prove the following theorem:

Theorem 4 The list L contains every polynomial of degree ≤ v such that

|{i | f (αi)= βi}| ≥max{deg1,v φi(x, y) : i = 0, . . . ,C}.

6I.e. the refinement of the weight (1, v) with the revlex ordering induced by x < y.
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Furthermore, the number of polynomials in the list is at most

Lm =
⌊√
N

v
m(m+ 1)+

(
v+ 2

2v

)2

− v + 2

2v

⌋

.

The construction of AG codes is analogous to that of RS codes. It is based on
evaluating rational functions at points on algebraic curves. Practical decoding of AG
codes was introduced in Justesen et al. (1989), and faster decoding was presented in
Justesen et al. (1992). We will only consider the special case of 1-point (AG) codes.
Drawing on Algebraic Geometry, longer codes can be created by analogy with the
description of RS codes above. Rational functions on a curve are evaluated at Fq -
rational points of that curve, where the pole order of these functions at a single point
plays the role corresponding to polynomial degree in the case of RS codes.

Let χ be an absolutely irreducible curve of genus g over Fq . Denote n+ 1 Fq -
rational points on χ by P1, . . . ,Pn,P∞ (where P∞ is the point at infinity). Define
as usual L(l(P∞)) to be the set of rational functions in χ at P∞ whose pole order
at P∞ is at most l. For 2g− 1≤ k < n, a 1-point code Cχ (k,P∞) can be defined as
the Fq -vector space

{(f (P1), . . . , f (Pn)) | f ∈ L(kP∞)}. (18)

For any l ≥ 2g − 1 there are functions φ1,∞, . . . , φl−g+1,∞, with increasing pole
orders, that form a (vector space) basis of L(lP∞). Thus, a code defined by (18) has
length N = n and dimension K = k − g + 1.

It is well-known (Kötter and Vardy 2000; Kötter and Vardy 2003; Guruswami
and Sudan 1999; Høholdt and Nielsen 2000) that for any of the points Pi �= P∞,
there is also a basis for L(lP∞) of functions φ1,i , . . . , φl−g+1,i with increasing zero
order at Pi . There is a set of basis conversion constants

{δi,j2,j3 ∈ Fq | i ∈ [n], j2, j3 ∈ [l − g + 1]}
such that for any i, j2

φj2,∞ =
∑

j3

δi,j2,j3φj3,i .

These observations lead to the extension of Sudan’s algorithm to 1-point codes (Gu-
ruswami and Sudan 1999), which we do not detail.

7.2 Improvements on the Interpolation Steps for the RS Codes

There have been some improvements on the interpolation steps in RS list decoding
using a module approach:

1. Kötter (1996) present an algorithmic which outputs the minimal element in a
specified submodule;
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2. Kötter and Vardy (2000, 2003) give a similar algorithm for the more general case
when soft-information are available;

3. McEliece (2003) rewrites the two previous algorithm showing that they actually
compute a basis for the submodule and recognize some Gröbner aspects (El-
Khamy and McEliece 2005);

4. O’Keeffe and Fitzpatrick (2002) give a Gröbner computation an a similar mod-
ule.

Let FL[x, y] denote the set of polynomials in F[x, y] whose y-degree is ≤ L, i.e.
those of the form

Q(x,y)=
L∑

k=0

qk(x)y
k

where each qk(x) ∈ F[x]. We note that FL[x, y] is an F[x]-module, since if
Q(x,y) ∈ FL[x, y], and f (x) ∈ F[x], then f (x)Q(x, y) ∈ FL[x, y], as well.

Let D1, . . . ,DC be C linear functionals defined on FL[x, y] and let K1, . . . ,KC
be the corresponding kernels, i.e.

Ki = {Q(x,y) ∈ FL[x, y] :Di(Q)= 0}.
The cumulative kernels K̄0, . . . , K̄C are defined as follows: K̄0 = FL[x, y] and for
i = 1, . . . ,C,

K̄i = K̄i−1 ∩Ki =K1 ∩ · · · ∩Ki
= {Q(x,y) ∈ FL[x, y] :D1(Q)= · · · =Di(Q)= 0}.

The key point here is that any Ki is a F[x, y]-module. Kötter and Vardy decode
by iterative computation of Gröbner basis for sub-modules K̄i , as detailed in Algo-
rithm 3. Algorithm 3 is seen by McEliece as an instance of a more general algorithm
(Algorithm 2 already present in Kötter’s thesis). However, nor Kötter, nor Vardy, nor
McEliece notice that the two algorithms are actually computing a Gröbner basis (see
the following remark).

Remark 1 Algorithm 2 is related to O’K-F. In fact we can rewrite

gj :=Δxf −Di(xf )f
where f = gh∗ and Δ= αh∗ , which gives

αh∗(xgh∗)− λ(xgh∗)gh∗ = αh∗(xgh∗)− βiλ(gh∗)gh∗
= βiαh∗ = αh∗(x − βi)gh∗ .

Remark 2 We would like also to report on a recent result by Lee and O’Sullivan
(2008). They consider the same submodule and the same term-order used by Köt-
ter, but they do not apply an FGLM-like algorithm to compute the Gröbner basis.
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Algorithm 2 Kötter algorithm. (Complexity O(C2))

Require: L, (Di)Ci=1, arbitrary monomial order
for j = 0 to L do
gj := yj

end for
for i = 1 to C do

for j = 0 to L do
Δj :=Di(gj )
j := {j :Δj �= 0}

end for
if j �= 0 then
j∗ := argmin{gj :Δj �= 0}
f := gj∗; Δ :=Δj∗
for j ∈ J do

if j �= j∗ then
gj :=Δgj −Δjf

else
gj :=Δxf −Di(xf )f

end if
end for

end if
end for
Q0(x, y) :=minLj=0{gj (x, y)}

Instead, they apply directly a specialized form of the Buchberger algorithm.
According to the authors, the complexity of their approach is essentially the same

as that of the FGLM-like technique.

7.3 Method in Sect. 12.2 Applied to List Decoding for AG Codes

For this subsection we refer to O’Keeffe and Fitzpatrick (2002) (but see also Fitz-
patrick and O’Keeffe 2002).

LetR =⋃∞
l=0 L(lP∞) and let z be transcendental over Fq(χ). Consider the poly-

nomial Q ∈R[z] where

Q(z)=
b∑

j1=0

a∑

j2=1

qj1,j2z
j1φj2,∞.

Here the expansion of the polynomial with respect to the zero basis at Pi plays
the role of the shifting of the first indeterminate by xi in the RS case. By associ-
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Algorithm 3 Kötter Interpolation Algorithm.
Require: L, (αi, βi)ni=1, (mi)

n
i=1, (1, k − 1)wdeg arbitrary monomial order

for j = 0 to L do
gj := yj

end for
for i = 1 to n do

for (r, s)= (0,0) to (mi − 1,0) do
for j = 0 to L do
Δj :=Dr,sgj (α1, βi)

J := {j :Δj �= 0}
end for
if J �= 0 then
j∗ := argmin{gj : j ∈ J }
f := gj∗; Δ :=Δj∗
for j ∈ J do

if j �= j∗ then
gj :=Δgj −Δjf

else
gj :=Δ(x − αi)f

end if
end for

end if
end for

end for
Q0(x, y) :=minj {gj (x, y)}

ating φj2,∞ with ej2 , we can view Q as an element QM of the free Fq [z]-module
M = Fq [z]a , where each component has degree ≤ b.

Let Q(i,γ )(z) =Q(z+ γ ). We can expand Q(i,γ )(x) around the basis elements
φ1,i , . . . , φl,i at Pi . By associating φj2,i with ej2 in this expansion, Q(i,γ )(z) can be

viewed as an element Q(i,γ )M of M . The function which maps Q to Q(i,γ ) depends
only on γ and

{
δi,j2,j3 ∈ Fq |i ∈ {1, . . . , n}, j2, j3 ∈ {1, . . . , a}

}
.

We define as its counterpart the function H(i,γ ) :M→M that maps QM to Q(i,γ )M .
This can be represented graphically as follows

Q Q(i,γ )

QM Q
(i,γ )

M
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We see that H(i.γ ) is F-linear and H(i,γ )(zb)= (z+ γ )H(i,γ )(b). Thus H(i,γ ) sat-
isfies (3).

Polynomial Q is said to have a zero of multiplicity at least m at (Pi .γ ) if the
coefficients of the terms φj2,iz

j1 of Q(i,γ )(z) are zero when j1 + (j2 − 1) < m.
Equivalently, QM has a zero of multiplicity at leastm at (Pi, γ ) if the coefficients of
the terms zj2 ej2 of Q(i,γ )M are zero when j1+ (j2−1) < m. Thus a module sequence
satisfying (4) can be constructed as in Theorem 1.

The following problems have interpolations at their core. The parameters for
these interpolations are chosen so as to guarantee the existence of interpolating
polynomials whose factors provide the list of valid codewords. These parameters
also curtail the search space for polynomials so that efficient techniques can be in-
troduced. In particular, this module description may lead to practical algorithms.

7.4 Hard-Decision List Decoding and List Decoding with Soft
Information

Let (z1, . . . , zn) be the received word. Define s = # l−g
k+g−1$. A polynomial of the

form

Q(z)=
s∑

j1=0

l−g+1−(k+g−1)j1∑

j2=1

qj1j2φj2,∞zj1

is sought which has a zero of multiplicity at leastm at each point (Pi, zi), 1≤ i ≤ n.
Using the module description, there exists a solution QM ∈ F[z]l−g+1 whose terms
satisfy

(1, k + g − 1)− deg(zj1 ej2)= (k + g− 1)j1 + (j2 − 1) < l − g + 1.

All solutions whose terms have this property are contained in F[z]l−g+1. A fortiori
there is a minimal solution with respect to <k+g−1,(0,1,2,...,l−g) in F[z]l−g+1. This
element will be the first of an ordered Gröbner basis, with respect to this order, of the
solution module

{b ∈ Fq [z]l−g+1 |Hi,yi (b)≡ 0 mod Mm, i = 1, . . . , n}

where

Mm = {f ∈ Pu| the coefficients of terms t of f are 0 ∀t= zj1 ej2

with j1 + (j2 − 1) < m}
Thus, all the requirements of the general algorithm in Sect. 2 are satisfied and the
minimal element produced is a solution to the interpolation problem.
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We now consider the polynomial

Q(z)=
a∑

j2=0

b∑

j1=0

qj1,j2φj2,∞zj1 .

We will say Q has a zero of multiplicity at least m at (Pi, γ ) if the coefficients of
the terms φj2,iz

j1 of Q(i,γ )(z) are zero when j1 + j2 <m.
Let γ1, . . . , γq be the elements of Fq . The task is to find a polynomialQ(z) with

minimal leading term with respect to kj1 + j2, which has a multiplicity at least
mij �= 0 for each point (Pj , γj ) with j ∈ [n] and γi ∈ Fq , when mij �= 0. Again,
the existence of this polynomial is guaranteed by the problem parameters. The cost
C(M) of the multiplicity matrixM is defined as 1

2

∑q

i=1

∑n
j=1mij (mij + 1). If we

choose ν to be the minimum value such the dimension of the vector space of terms
where kj1 + j2 ≤ ν is grater than C(M) and we can confine our search to Fq [z]L
where L= ν + 1.

We associate φj,i with ej+1. Similarly, QM has a zero of multiplicity at least m

at (Pi, γ ) if the coefficients of the terms zj1 ej2 of Q(i,γ )M are zero when j1+ (j2− 1)
< m. In this way, it is possible to generate a descending module sequence. A min-
imal element of the solution submodule with respect to <k,w where w = (0,1,2,
. . . ,L− 1) corresponds to the required solution and thus, it is possible to apply the
general algorithm.

While an algorithm for the hard-decision interpolation problem is an immediate
consequence of the general algorithm in O’Keeffe and Fitzpatrick (2002), this prob-
lem can also be considered as a special case of the soft-decision interpolation and a
common algorithm can be used to solve both.

We can create a “multiplicity” matrix from the received word (z1, . . . , zn). Let
mij =m when zi = γi andmij = 0 otherwise. Set L= l−g+1 andK = k+g−1.

Both problems can be solved using Algorithm 5.2 in O’Keeffe and Fitzpatrick
(2007). We just observe that the basis element in G2 can be discarded by the ord
function if the (1,K)-deg of its leading term is less than L.

Remark 3 A different approach is provided by Kötter (1998). Let Q be a rational
point on a smooth and absolutely irreducible curve C over a finite field Fq . Let R be
the ring of functions on C with poles only at Q. Let γ be the smallest positive pole
order of functions in R and let x ∈R have pole order γ . Kötter’s algorithm treats the
ring R as a free module over the polynomial ring Fq [x]. The Kötter algorithm finds
a basis for the ideal I of functions vanishing at the error locations (which is also a
free module over Fq [x]). The advantage of Kötter’s algorithm is that the decoder is
more regular in structure. The updating of the polynomials involves multiplication
by x only, and is therefore simple to implement using linear shift registers. More
recently, O’Sullivan (2004) showed that Kötter’s algorithm may also be used to
compute error evaluator polynomials. One can use the update polynomials and the
derivators of the locators to compute error values, thus he avoids computing error
evaluator polynomials.

Remark 4 For more decoding of AG codes, see Sakata (2009b) in this volume.



216 E. Guerrini, A. Rimoldi

8 Conclusions

Virtually any non-trivial algebraic decoding algorithm has at its core an interpo-
lation step. Since (Mora 2009b) interpolation is an applications of Gröbner bases,
especially for techniques like FGLM or Buchberger–Möller, it is hardly surprising
that many “FGLM-like” decoding algorithms (as we called them) have arisen in the
past.

However, it is a historic fact that the first FGLM-like decoding appeared only in
Fitzpatrick (1995), since clearly it took time for the Gröbner basis theory to spread
among the coding research community. After 1995 this approach has received more
and more attention and when new research directions started in coding theory (no-
tably, the list decoding problem), they have nearly immediately been followed by
researchers proposing Gröbner basis approaches.

Now that the Gröbner basis theory is part of the background of most algebraic
coding theorists, we think that in a near future we will see more and more applica-
tions of these techniques, as for example to oder domain codes (Geil 2009).
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An Introduction to Ring-Linear Coding Theory

Marcus Greferath

Abstract This contribution gives an introduction to algebraic coding theory over
rings. We will start with a historical sketch and then present basics on rings and
modules. Particular attention will be paid to weight functions on these, before some
foundational results of ring-linear coding will be discussed. Among these we will
deal with code equivalence, and with MacWilliams’ identities about the relation
between weight enumerators. A further section is devoted to existence bounds and
code optimality. An outlook will then be presented on the still unsolved problem of
the construction of large families of ring-linear codes of high quality.

1 Introduction and History

Ring-linear coding theory is a discipline of algebraic coding theory where the un-
derlying alphabet does not carry the structure of a finite field but merely of a finite
ring or, more generally, of a module. Such a setup was considered much earlier than
widely assumed: in their contribution Error-Correcting Codes: an Axiomatic Ap-
proach, Assmus and Mattson (1963) first mention rings as possible alphabets for
linear codes. It took however considerable time for ring-linear coding theory to de-
velop from these origins to nowadays’ state-of-the-art. For an introduction to linear
and cyclic codes over fields, see Augot et al. (2009).

In the seventies of the previous century, Blake (1972, 1975) presented linear
codes first over semi-simple, later over primary integer residue rings. Analogs of
Hamming, Reed–Solomon and BCH Codes were also introduced. Spiegel (1977,
1978) pursued a group-algebraic approach to linear codes over Zm. Like Blake,
he used the Chinese Remainder Theorem to investigate BCH Codes over these
rings. Shankar (1979) presented a polynomial approach to cyclic codes over inte-
ger residue rings which enabled notions of generator polynomials for cyclic codes.
Later, Satyanarayana (1979) investigated linear codes over integer residue rings
equipped with the Lee weight. Constant weight codes and Reed–Muller type codes
were presented as well. It was common to most of these early papers to consider
alphabets equipped with the Hamming weight. Although the Lee metric was used
by Satyanarayana, a significant change in the metrics used would occur only much
later.

In the eighties Klemm (1987) considered linear codes over integer residue rings
and proved MacWilliams’ weight enumerator theorem. His investigations were
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based on a suitable weight function to obtain his result. Nechaev (1991) discov-
ered that all Kerdock codes can be understood as cyclic linear codes over Z4. While
Klemm introduced a novelty regarding the metrical aspect, Nechaev’s result did not
involve a statement regarding metrics. The latter paper predates however the break-
through that came with the paper by Hammons et al. (1994) in the nineties.

Traditional finite-field coding theory had shown that considering linear codes
promises significant advantages over the non-linear counterparts when it comes to
complex tasks like encoding and decoding. Although very good linear codes were
known, it was recognized early (Preparata 1968; Kerdock 1972a, 1972b) that the
class of binary block codes contained excellent codes, which were however not lin-
ear. This was the case for the families of Preparata, Kerdock codes, Goethals and
Goethals–Delsarte codes. Apart from their quality, these families showed formal du-
ality properties in terms of their distance enumerators that resembled those among
linear codes and their duals.

This phenomenon went unexplained for a long time. A breakthrough in the un-
derstanding of this behavior came in the 1990’s when Nechaev (1991) and, indepen-
dently, Hammons et al. (1994) discovered that these families allow a representation
in terms of Z4-linear codes.

The central insight in this Z4-linear representation came from the fact that the
alphabet was equipped with an alternative weight function, the Lee weight. The
Hamming weight distinguishes only whether an element is zero or not. The Lee
weight is finer, giving the zero-divisor 2 a weight different from that of the other
ring elements.

Figure 1 depicts the so-called Gray isometry which is a bijection between
(Z4,wLee) and (Z2

2,wH ) that preserves the weight. Extending this isometry coordi-
natewise to Z

n
4 we obtain a binary code of length 2n from each Z4-code of length

n. It is exactly this way that the above code families found their Z4-linear represen-
tations.

To be more specific: Let f ∈ F2[x] be a primitive monic polynomial of degree r .
This polynomial divides the polynomial xn− 1 ∈ F2[x] where n= 2r − 1. Hensel’s
lemma shows that there exists a monic divisor f̃ of xn − 1 ∈ Z4[x] which is a
preimage of f under the natural epimorphism ν : Z4 −→ F2. Taking this polynomial
f̃ as generator polynomial for a cyclic Z4-linear code, and extending this code by an
overall parity check, we end up with a linear code Pr which for odd r has parameters

Fig. 1 Gray isometry
between Z4 and Z

2
2
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[2r ,2r − 1− r,6] with respect to the Lee distance on Z4. The binary image of this
code under the above Gray isometry is a code that has the same parameters as the
Preparata code of order r .

The above observations suggest to expand the traditional theory of linear codes
in at least two directions. On the one hand, it seems obvious that the next more gen-
eral algebraic structure that might serve as an alphabet for linear coding is that of
finite rings, or slightly more general, finite modules. On the other hand, the appro-
priateness of the Lee weight for Z4-linear coding shows that the metric component
of a generalized coding theory also requires a generalisation.

2 Rings and Modules

As this book is interested only in the commutative case, we will assume rings to be
commutative, associative and unital in the sequel. Note however, that most of the
concepts and results that we present here have a non-commutative counterpart. The
unit group of a ring R, i.e. the set of its multiplicatively invertible elements, will be
denoted by R×. Talking about a module RM we will always assume that 1 ·m=m
for all m ∈M .

For a subset X of a module RM we denote by AnnR(X) the annihilator of X in
RR, which is an ideal of R. The module RM is called faithful if AnnR(M)= 0, and
an element x ∈M is called free if AnnR({x})= 0.

If the kernel of any epimorphism onto RM is a direct summand in the source
module, then RM is called a projective module. Alternatively the class of all pro-
jective modules can be characterized as the class of all direct summands of free
modules. We call a module RM injective, if its image under any monomorphism is
a direct summand in the target module. If R as a module over itself is injective then
we call R self-injective.

The intersection of all maximal proper submodules of a module RM is called
the Jacobson radical of RM and is denoted by rad(RM). The sum of all nonzero
minimal submodules of RM is called the socle of RM and is denoted by soc(RM).
Particular attention will be paid to rad(R) and soc(R).

2.1 Some Classes of Rings

Various kinds of rings are important for ring-linear coding theory, among them also
classes of non-finite rings (cf. Calderbank and Sloane 1995). But even in the con-
text of traditional finite-field coding theory this is not surprising if one thinks of
convolutional codes as linear block codes over polynomial rings.

We will now discuss some classes of rings considering their logical dependen-
cies. We will start with the class of all Noetherian rings which is defined by what is
called the ascending chain condition: every ascending chain of ideals has a largest
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Fig. 2 Classes of
commutative rings and their
logical dependencies

element. The class of Noetherian rings contains Z, but also all (multivariate) poly-
nomial rings F[x1, . . . , xn] over fields as prominent examples. A subclass of this
class is that of all Artinian rings, which is defined by the so-called descending chain
condition: every descending chain of ideals has a smallest element.

A Noetherian ring is called a Frobenius ring if it is self-injective. It can be seen
that a ring R of this class is Artinian at the same time, and that (R/rad(R))∼= soc(R)
as R-modules (cf. Rowen 1991, p. 347f, Lam 1999, Chap. 15). The class of all
Frobenius rings contains all Artinian chain rings (as defined below) as subclasses.
For some aspects of our presentation it is important that within the class of all finite
rings exactly the Frobenius rings are those which possess a free character module.
Equivalently, these rings are exactly those which possess a cyclic socle (cf. Wood
1999 and Honold 2001).

A further important class of commutative rings is that of all local (commutative)
rings, i.e. those rings which possess a unique maximal ideal. It can be shown that
every Artinian ring is a ring-direct product of local rings. As mentioned earlier,
we need to emphasize the chain rings. A ring is called a chain ring if the set of its
ideals forms a chain. For a classification of all chain rings see (Al-Khamees 1995;
Clark and Liang 1973; Clark and Drake 1973).
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Last, but not least, there is a large class of finite chain rings which are called
Galois rings. For this let p be a prime number, k, r positive integers, and let
f ∈ Zpk [x] be a monic polynomial of degree r that is irreducible modulo Zp . Then
the chain ring GR(pk, r) := Zpk [x]/(f ) is—up to isomorphism—uniquely deter-
mined by pk and r , and is called Galois ring of characteristic pk and rank r (cf. Krull
1923; Clark and Liang 1973). It Jacobson radical is generated by the number p, and
its residual field is isomorphic to Fpr .

3 Weight Functions on Finite Rings and Modules

For traditional algebraic coding theory over finite fields the Hamming weight plays
a dominant role which stems from the fact that non-zero elements of a field F can-
not be distinguished as vectors in the space FF . This does not hold in a module
based theory of linear codes. An important property of finite rings and modules is
their non-trivial lattice of submodules and consequently the possibility to distinguish
module elements in an order-theoretic way.

In search for a weight function on a finite module RM that plays the same role
for ring-linear coding theory as the Hamming weight for finite-field coding theory
a first contribution was due to Constantinescu (1995) who coined the notion of ho-
mogeneous weights on integer residue rings. These weight functions are prominent
for two reasons: firstly, homogeneous weights are constant on classes of associate
elements of Zm; secondly the average weight of every ideal of Zm is constant.

The existence of homogeneous weights on a finite module can easily be proved
using Möbius inversion on certain function spaces. This has been done first in
Greferath and Schmidt (2000) for all finite rings, and later in Greferath et al. (2004)
for arbitrary finite modules. For preparation recall the inversion calculus on partially
ordered sets (cf. Rota 1964; Stanley 1997, Chap. 3.6; Aigner 1997, Chap. IV): If P
is a locally finite partially ordered set, the Möbius function μ : P × P −→R is de-
fined by μ(x, x) := 1 and μ(x, y) := 0 for all x �≤ y, and implicitly by the relation∑
x≤t≤y μ(x, t)= 0 for all x < y. This function induces the following equivalence

for arbitrary pairs f,g of real-valued functions on P :

g(y)=
∑

x≤y
f (x) for all y ∈ P ⇐⇒ f (y)=

∑

x≤y
g(x)μ(x, y) for all y ∈ P.

Let R be a finite ring in the following, and let RM be a finite module. Finally, let
μ denote the Möbius function on the set of all {Rx | x ∈M} which is clearly par-
tially ordered by set inclusion, and let R×x denote the set of all generating elements
of the submodule Rx of RM .

Call a weight w :M −→R homogeneous, if w(0)= 0 and the following hold:

(H1) For all x, y ∈M the equality Rx =Ry implies w(x)=w(y).
(H2) There exists a real number γ such that for all x ∈ M \ {0} there holds∑

y∈Rx w(y)= γ |Rx|.
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We then have the following characterization of homogeneous weights on finite
modules (cf. Greferath et al. 2004).

Theorem 1 A weight w on the finite module RM is homogeneous if and only if the
following holds:

(H) There exists a positive real number γ such that w(x)= γ (1− μ(0,Rx)
|R×x| ).

The reader should note further work on weight functions which is in close con-
nection to the homogeneous weight that we have introduced here. A first paper to
mention is the one by Carlet (1998) who generalised the above-mentioned concept
of Gray isometry for the rings Z2k . Such an isometry will generally be onto a suit-
able binary first order Reed–Muller code, and hence not onto the ambient space
of the latter code. A further result dealing with such isometries can be found in
Salagean (1999).

4 Linear and Cyclic Codes

A module theoretic generalisation of the traditional setup of algebraic coding theory
is quite simple. It only requires to acknowledge the possible non-existence of bases
and complements.

If RM is a finite module and n a natural number then the submodules of RMn

will be called R-linear codes of length n over M . This is the most general context
for ring-linear coding theory. In most contributions M = R assuming a restriction
on R like being a finite Frobenius ring. Note however that often such a restriction
can be given up by exchanging the ring by a suitable module.

Let C be an R-linear code over R. We say that C is splitting, if it possesses a
complement in RRn. If C possesses a basis, we will call it a free code. A (k × n)-
matrix G with coefficients in R is called a generator matrix for C if C = {xG |
x ∈ Rk}. Such a matrix will be called a check matrix for C if C = {x ∈ Rn |
xGt = 0}.

Note that if R is a finite Frobenius ring then all R-linear codes possess parity-
check matrices. For obvious reasons statements on the number of rows of generator
and check matrices, as well as standard forms for these matrices, can be proved only
under suitable additional conditions.

For the following consider the standard inner product

Rn ×Rn −→R, (x, y) �→ xy :=
n∑

i=1

xiyi .

If C is a linear code of length n over R then the code C⊥ := {x ∈ Rn | cx =
0 for all c ∈ C} is again linear, and will be called the dual code of C. Let us call
the left R-linear code C self-dual, if C = C⊥.
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4.1 Cyclic Linear Codes

It is well known that cyclic linear codes of length n over a (finite) field F can be
characterized in terms of the divisors of the polynomial xn − 1 in F[x].

This has been generalised in Greferath (1997). There are only a few algebraic
facts which need to be observed in order to obtain a complete characterization of a
large class of cyclic linear codes over finite rings. One of these is that if gh= xn−1
for some g,h ∈ R[x], then it can then be seen that R[x]h is a free R-module, and
that R[x]g is a direct summand of the R-module R[x]. Further preparation can
be looked up in most standard texts on abstract algebra: if R is a finite ring, then
rad(R)[x] is a negligible submodule of the R-module R[x], which means for any
R-submodule U of R[x] with rad(R)[x] +U =R[x] there follows U =R[x].

Theorem 2 For a cyclic linear code C of length n over a finite ring R the following
are equivalent:

(a) C is a splitting code.
(b) There exists a divisor g of xn − 1 in R[x] such that C =R[x]g/(xn − 1).

Another interesting result deserves to be mentioned here. It has been first ob-
served in Calderbank and Sloane (1995, Theorem 6) (see also Kanwar and López-
Permouth 1997).

Theorem 3 Let R be a Galois ring of characteristic pm, and let C ≤Rn be a cyclic
code of length n where p � n. Then there exists a polynomial f ∈R[x] such that

C = (fR[x] + (xn − 1))/(xn − 1).

In summary, we can state that, among the cyclic codes of length n over a Galois
ring R, exactly the free codes are those which possess a generator polynomial which
is a divisor of xn − 1 ∈R[x].

It is plausible that cyclic codes that do not possess a generator polynomial should
allow to be dealt with using Gröbner bases (Buchberger 1965, 1985, 2006). Among
various papers approaching this question we mention the work by Salagean and Nor-
ton (2001a, 2001b, 2002, 2003). Further work, particularly in the context of multi-
variate polynomials rings was done by Martinez-Moro et al. (2006). For a Gröbner
basis decoding, see Byrne and Mora (2009).

5 A Foundational Result: Code Equivalence

Let R be a finite ring that is equipped with a weight function w :R −→R. As usual,
we extend this function additively to the Rn, and the natural question arises if all
w-isometries ϕ : C −→ Rn, i.e. of all those linear mappings for which w(ϕ(c)) =
w(c) for all c ∈ C can be characterised in a nice way.
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A basic theorem achieving this in the context of traditional finite-field linear cod-
ing theory is MacWilliams’ (1962) equivalence theorem. To understand its terms, let
a Hamming isometry of C into Rn be an R-linear map that preserves the Hamming
weight. A monomial transformation of Rn is a mapping ψ :Rn −→Rn with

ψ(x)= xPD
for all x ∈ Rn, where P is a (coordinate) permutation matrix and D is an invertible
diagonal matrix inMn(R).

MacWilliams’ equivalence theorem then can be stated as follows:

Theorem 4 If F is a finite field and C ≤ F
n a linear code, then every Hamming

isometry C −→ F
n can be extended to a monomial transformation of F

n.

This means that the usual textbook definition of monomial code equivalence is
justified for the class of all linear codes and linear Hamming isometries.

It was Wood (1999) who first suggested that finite Frobenius rings form an appro-
priate class of rings for ring-linear coding theory, in that MacWilliams’ equivalence
theorem holds for linear codes over finite Frobenius rings.

Theorem 5

(a) If R is a finite Frobenius ring and C ≤ Rn a linear code, then every Hamming
isometry C −→Rn can be extended to a monomial transformation of Rn.

(b) If a finite (commutative) ring R satisfies, that all Hamming isometries between
linear codes over R allow for monomial extensions, then R is a Frobenius ring.

Another recent work (Greferath et al. 2004) shows that when the character
module R̂ := Hom(R,Q/Z) is used as alphabet in lieu of the ring R itself, then
MacWilliams’ equivalence theorem holds without imposing any hypotheses on the
underlying ring R.

So far, we have only discussed Hamming isometries and their monomial repre-
sentation. The immediate question now is if also other weight functions on finite
Frobenius rings lead to results like MacWilliams’ equivalence theorem. This ques-
tion has not been answered yet in general, but there at least one result that should be
quoted here. A homogeneous isometry will be a linear isomorphism that preserves
the homogeneous weight as discussed in a previous section.

Theorem 6 If R is a finite Frobenius ring and C ≤ Rn a linear code, then every
homogeneous isometry C −→ Rn can be extended to a monomial transformation
of Rn.

Regarding a complete characterization of all those weight functions for which
isometries between linear codes can be extended to monomial transformations of
the ambient space there has appeared work by Wood (1997). It characterises such
weight functions when the underlying ring is a chain ring.
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Theorem 7 LetR be a finite chain ring. Then every weight functionw :R −→R for
which

∑
r∈soc(R) w(r) does not vanish, allows a MacWilliams’ equivalence theorem.

6 Weight Enumerators and MacWilliams’ Identity

One of the most important computational tools in traditional algebraic coding theory
is based on a theorem by MacWilliams’ that establishes a connection between the
weight enumerators of a linear code and its dual.

Let C ≤Rn be a linear code. The integer polynomial

WC(x)=
n∑

i=0

Aix
i where Ai := #{c ∈ C |w(c)= i} for i ∈ {0, . . . , n}

is called the weight enumerator of C.
As stated earlier the dual code C⊥ is again an R-linear code, and there arises the

question in how far the weight enumerator of C determines that of C⊥.
MacWilliams’ famous theorem on weight enumerators states an answer to this

question and may be quoted as follows (cf. MacWilliams and Sloane 1977):

Theorem 8 Let Fq be the finite field of q elements, and let C ≤ F
n
q be a linear code

with Hamming weight enumerator WC(x). Then the Hamming weight enumerator
of C⊥ is given by

WC⊥(x)=
1

|C|
[
1+ (q − 1)x

]n
WC

(
1− x

1+ (q − 1)x

)

.

Again, it was J. Wood to observe that this theorem remains true when F is ex-
changed by any finite Frobenius ring R. This stems from the fact that the statement
allows for a formulation in a much more general context. For this let x = (xs)s∈R
be a family of indeterminates and Z[x] be the multivariate polynomial ring. Define
the complete weight enumerator of C as the integer polynomial

CWEC(x)=
∑

c∈C

n∏

i=1

xci .

Theorem 9 Let R be a finite Frobenius ring and let C ≤ Rn be a linear code with
complete weight enumerator CWEC(x). Then the complete weight enumerator of
C⊥ is given as

CWEC⊥(x)=
1

|C|CWEC(Mx)

where M is the matrix with entry Ms,t = χ(st) and χ is a generating character
of R.
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For a proof of this theorem see Wood (1999). From the same source we cite the
following result which states that MacWilliams’ weight enumerator theorem allows
for a generalisation to symmetrized versions. The first to mention is the one dealing
with Hamming weight enumerators.

Theorem 10 Let R be a finite Frobenius ring, and let C ≤Rn be a linear code with
Hamming weight enumeratorWC(x). Then the Hamming weight enumerator of C⊥
is given by

WC⊥(x)=
1

|C|
[
1+ (|R| − 1)x

]n
WC

(
1− x

1+ (|R| − 1)x

)

.

For a more general symmetrisation let U be a subgroup of R×. Let S := R/U
denote the set of all U -associate classes of elements in R. Consider the polynomial
ring Z[xUr |Ur ∈ S], and define the symmetrized weight enumerator of theR-linear
code C ≤Rn as

SWEUC (x)=
∑

c∈C

∏

Ur∈S
x
nUr (c)
UR , where nUr(c)= #{1≤ i ≤ n | ci ∈Ur}.

Then we have the following theorem (cf. Wood 1999):

Theorem 11 Let R be a finite Frobenius ring and let C ≤Rn be a linear code with
symmetrized weight enumerator SWEUC (x). Then the symmetrized weight enumera-
tor of C⊥ is given as

SWEU
C⊥(x)=

1

|C|SWEUC (N
†x)

where N is the matrix with entry NUs,Ut =∑u∈U χ(ust).

It was clear early that other weight functions on a finite ring, such as the homoge-
neous weight, cannot give rise to a symmetrised version of the above theorem in the
traditional way, since the partition induced by the homogeneous weight is not com-
patible with the Fourier transform in general. A recent article by Byrne et al. (2007)
however shows that even in this case something can be done.

For that, let E(R) denote the set of all equivalence relations on the finite Frobe-
nius ring R. Given an arbitrary equivalence relation θ ∈E(R), we write R/θ for the
set of equivalence classes of θ and write rθ for the equivalence class containing the
element r ∈R. Note that E(R) is a partially ordered set, with respect to the relation
given by θ ≤ θ ′ if and only rθs implies rθ ′s for all r, s ∈ R. Equivalently, we say
that the partition induced by θ is a refinement of that induced by θ ′ if and only if
θ ≤ θ ′. Note that E(R) has a least element Δ which is the equality relation on R.

We consider the map Φ : E(R) −→ E(R) that assigns to each θ ∈ E(R) the
relation Φ(θ) defined by

sΦ(θ)s′ if and only if
∑

t∈rθ
χ(ts)=

∑

t∈rθ
χ(ts′) for all r ∈R.
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It is easily seen that Φ(θ) is indeed an equivalence relation on R and that Φ is
an order preserving mapping on E(R). Moreover, the image of Φ is contained in
the interval [Δ,θH ], where θH is the equivalence relation induced by the Hamming
weight on R.

As presented above, Wood (1999) derived MacWilliams identities for three
choices of θ being fixed by Φ: firstly θ = Δ (the unsymmetrized case relating
complete weight enumerators), then θ = θH (the relation induced by the Hamming
weight on R), and finally the relation θU , which is induced by the subgroup U
of R×.

The following example now shows that the partition induced by the homoge-
neous weight is not invariant under Φ .

Example 1 On the ring Z8, the homogeneous weight (with γ = 1) satisfies 0 �→ 0,
4 �→ 2 and r �→ 1 for all remaining r ∈ Z8. The relation θhom induced by this weight
has therefore the classes {0}, {4} and {1,2,3,5,6,7}. The classes of Φ(θhom) are
given by {0}, {2,4,6} and {1,3,5,7} which shows that Φ(θhom) �= θhom in general.
Note however that here Φ(Φ(θhom))= θhom.

For applications of the MacWilliams identities to obtaining bounds on the size of
a code it is important to know how an equivalence relation θ on a finite ring needs
to be chosen such that Φ(θ) = θhom. That has been settled at least in the case of a
local Frobenius ring. It is conjectured that it can be proven in general.

Proposition 1 Let R be a finite local Frobenius ring. Let θ ∈ E(R) be the equiva-
lence relation with partition R/θ = [{0}, rad(R) \ {0},R×]. Then

Φ(θ)= θhom.

For an equivalence relation θ on R, consider the corresponding family of inde-
terminates y = (yrθ )rθ∈R/θ . Let τ ∈ E(R) be given such that τ ≤Φ(θ), and let the
family of indeterminates z= (zrτ )rτ∈R/τ belong to the classes of τ .

We will now establish an identity relating the θ -symmetrized weight enumerator

SC⊥(y) :=
∑

c∈C⊥

n∏

i=1

yciθ of C⊥

to the τ -symmetrized weight enumerator

SC(z) :=
∑

c∈C

n∏

i=1

zciτ of C

which is given in the following theorem.

Theorem 12 (MacWilliams’ Identity) Let θ, τ be equivalence relations on R such
that τ ≤Φ(θ). Let C ≤Rn be a linear code with τ -symmetrized weight enumerator
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SC(z), and let C⊥ ≤ Rn denote its dual with θ -symmetrized weight enumerator
SC⊥(y). Then

SC⊥(y)=
1

|C|N(SC(z)),

whereN is defined as the natural extension ofN(zsτ )=∑rθ∈R/θ yrθ [
∑
t∈rθ χ(ts)].

The reader might understand that for computational reasons the case τ = Φ(θ)
is of particular interest.

We finally remark that the mentioned work (Greferath et al. 2004) again shows
that using the character module R̂ as alphabet rather than R itself, many of the above
theorems hold without imposing any hypotheses on the underlying ring R.

7 Code Optimality: Bounds on the Parameters of Codes

Among the traditional bounds on the parameters of block codes over finite fields the
most important are probably the sphere-packing bound, the Singleton bound, the
Gilbert–Varshamov bound, the linear programming bound, the Plotkin and Elias
bounds and the Griesmer bound. With the exception of the Gilbert–Varshamov
bound, which asserts the existence of codes having parameters above a given bound,
all these bounds restrict the existence of codes with given parameters, and give rise
to various notions of code optimality.

In the traditional context (see Augot et al. 2009) Fq is the finite field with q
elements, and Aq(n, d) denotes the maximal number of words that a block code of
length n over Fq with minimum Hamming distance d can have. It is clear that the
sphere of radius t in the Hamming space F

n has volume

volq(n, t)=
t∑

i=0

(
n

i

)

(q − 1)i .

Now the sphere-packing bound states that

Aq(n, d)≤ qn

volq(n, # d−1
2 $)

.

The Singleton bound states that

Aq(n, d)≤ qn+1−d .

Abbreviating γ = q−1
q

and assuming γ n < d there holds the Plotkin bound
which says that

Aq(n, d)≤ d

d − γ n.



An Introduction to Ring-Linear Coding Theory 231

The Elias bound, an extensive refinement of the Plotkin bound, states that for every
t ∈R with t < γ n and t2 − 2tγ n+ dγ n > 0 there holds

Aq(n, d)≤ γ nd

t2 − 2tγ n+ dγ n ·
qn

volq(n, t)
.

Finally, there is the famous linear programming bound which says that

Aq(n, d)≤max
n∑

i=1

Ai

where the (Ai)i=1...n are taken to be families of non-negative numbers with A0 = 1
and Ai = 0 for all 1≤ i ≤ d − 1, such that

n∑

i=0

AiPk(i)≥ 0 for k = 0, . . . , n.

Here

Pk(x)=
n∑

j=0

(
x

j

)(
n− x
k − j

)

(−1)j (q − 1)k−j

are the well-known Krawtchouk polynomials.
Regarding existence bounds for ring-linear codes it might not be surprising that

on the algebraic side the class of all finite Frobenius rings is a class subject to most
investigations. It is also clear that traditional bounds need to be generalized to the
case where a finite ring is equipped with a weight function that differs from the
Hamming weight.

Regarding rings equipped with the Hamming weight we mention an approach
in Shiromoto (2000) for codes over finite commutative Frobenius rings (Singleton
bound). In Shiromoto and Storme (2003) there can be found a generalisation of the
Griesmer bound for codes over finite commutative Frobenius rings.

For other weight functions it turns out most of the classical bounds have natural
counterparts, at least as far as the homogeneous weight as introduced before is given
on the ring under consideration. The sphere-packing bound for example requires no
modification, except that its version for a finite ring no longer involves a simple
expression in terms of a binomial distribution.

Some recent work in Greferath and O’Sullivan (2004) provides a character based
method to derive versions of the Plotkin and Elias bounds when the ring is equipped
with a homogeneous weight.

Let R be a finite Frobenius ring and let w be a homogeneous weight on R of
average value γ . Let Ahom(n, d) denote the maximal number of words a (not neces-
sarily linear) code of length n over R that has minimum homogeneous distance d .
Finally let volw(n, t) be the volume of the sphere of (homogeneous) radius t in the
space Rn.
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Theorem 13 (Plotkin bound) For every n,d with γ n < d there holds

Ahom(n, d)≤ d

d − γ n .

Using a refinement in the technique of proof the mentioned work (Greferath and
O’Sullivan 2004) establishes a version of the Elias bound.

Theorem 14 (Elias Bound) For every n,d, t with t ≤ γ n and t2− 2tγ n+ dγ n > 0
there holds

Ahom(n, d)≤ γ nd

t2 − 2tγ n+ dγ n ·
|R|n

volw(n, t)
.

To derive a version of the linear programming bound we need some further
notation and preparation. For α ∈ N

R we write |α| = n in order to indicate that∑
r∈R αr = n. It is also common to abbreviate xα :=∏r∈R xαrr .
Let now α,β ∈N

R be given with |α| = n= |β|. We implicitly define Pα(β) by

Mxβ =
∑

α∈N
R

|α|=n

Pα(β)x
α.

Here M is the matrix that we introduced in Theorem 9, which means Ms,t = χ(st)
for all s, t ∈R where χ is a generating character of R.

For equivalence relations τ, θ on R with τ ≤Φ(θ) we recall the homomorphism
N : C[z] −→ C[y] that we derived from the symmetrizations with respect to τ
and θ , respectively. For α ∈ N

R/θ and β ∈ N
R/τ with |α| = n = |β|, we will im-

plicitly define Qα(β) by

Nzβ =
∑

α∈N
R/θ

|α|=n

Qα(β)y
α.

It can be shown that Pα and Qα are indeed polynomial functions in their argu-
ments, satisfying particular orthogonality relations like those known for the tradi-
tional Krawtchouk polynomials. We may refer to these polynomials as generalized
Krawtchouk polynomials. Summarizing, any pair of equivalence relation θ, τ on the
finite Frobenius ring R with τ ≤Φ(θ) gives rise to such a family of polynomials.

Let now w : R −→R be a weight function with w(r)= 0 if r = 0 and w(r) > 0
otherwise. We will give the linear-programming bound onAw(n,d) using the equiv-
alence relations θ and τ = Φ(θ) in which we assume that w is constant on each
class in R/τ . This is particularly the case if τ is induced by w, i.e. rτs if and only
w(r)=w(s) for all r, s ∈R.

With the assumed compatibility, we can extend the definition of w to

w :NR/τ −→R, α �→
∑

rτ∈R/τ
αrτw(r).
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We emphasize the fact that we do not require any compatibility of w with the rela-
tion θ .

Theorem 15 (Linear programming bound) Using the notation above, there holds:

Aw(n,d)≤max
c

∑

β∈N
R/τ

|β|=n

cβ

where the maximum is taken over all c : {β ∈N
R/τ : |β| = n} −→N that satisfy

cβ ≥ 0

cβ =
{

1 if β = nδ0
0 if 0<w(β) < d

and

∑

β∈N
R/τ

|β|=n

cβQα(β)≥ 0 for all α ∈N
R/θ with |α| = n.

8 Outlook: the Future of Ring-Linear Coding

As a first instance of a ring alphabet equipped with a non-Hamming metric the
ring Z4 turned out to cover a leading role in ring-linear coding theory. In fact it
is probably not surprising that there is a strong emphasis on Z4-linear coding with
respect to the Lee weight (cf. Bonnecaze et al. 1997, 2000; Dougherty et al. 2001;
Langevin and Solé 2000). Moreover we may view Z4 is the ring-linear coding ana-
log of Z2 in finite-field linear coding theory.

Apart from the Z4-linear series of codes that led to a discovery of the true role
of rings in algebraic coding theory, we mention the so-called Calderbank–McGuire
(1997) code, a sporadic Z4-linear example of a code whose Gray image is a binary
code that has more codewords than any other known code of the same length and
minimum distance.

Regarding other rings, we mention that using the rings Z8 and Z9 equipped with
the homogeneous weights the papers (Duursma et al. 1999, 2001) yield a simi-
lar type of outperforming examples by Hensel-lifting the extended binary Golay
code and the ternary [24,12,9]3 quadratic residue code. A further example is that
the GR(4,2)-linear code generated by a generator matrix of the [8,4]4 Octacode
can be used to produce an example of a non-linear code of length 32 over F4
(cf. Muegge 2002), that has four times the number of codewords of any previously
known F4-code of same length and distance.

Inspired by the success in providing an algebraic representation of good families
of codes in terms of ring-linearity, there is a natural interest in further examples of
good ring-linear codes. All the examples that we have given might be promising.
They should however not deceive the reader about the fact that algebraic coding
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theory over rings is in need for many more powerful examples of good ring-linear
code and code families.

From the engineering aspect, Z4-linear coding on the basis of the Lee weight
has been emphasized (cf. Dougherty et al. 2001; Langevin and Solé 2000; Bon-
necaze et al. 1997, 2000), partly because many communications systems use so-
called QPSK modulation which is well suited to the Lee weight. What is desirable
in practice is to have a weight function that matches the error probabilities in the
modulation scheme, that is, higher weight elements of the ring should correspond
to errors that are less likely to occur. Finite rings provide a much better variety of
weight functions for this task than finite fields.

Another practical aspect is the decoding problem. As to this question the pa-
per (Hammons et al. 1994) gives an algebraic decoding algorithm for the Z4-linear
Preparata and Kerdock codes. Further decoders have been developed by Helleseth
and others (cf. Helleseth and Kumar 1995; Rong et al. 1999) for the Z4-linear ver-
sions of the Goethals and the Goethals–Delsarte codes.

There are a number of contributions (cf. Byrne and Fitzpatrick 2001, 2002) which
mainly deal with algorithms decoding a given ring-linear code up to half of its Ham-
ming minimum distance. There is a clear demand however for decoders realizing
half of the minimum distance with respect to a given metric on the underlying al-
phabet. This would at least be a first step if we ignore the fact that for performance
reasons contemporary coding theory is mostly interested in decoders that perform
beyond half of the minimum distance of a given code.

9 Addendum: the Non-commutative Case

The reader might have noticed that restricting to the commutative case is somewhat
artificial as for most of the results that we have discussed there are non-commutative
analogues in place. The following statements will provide some insight in what
changes need to be made in case a non-commutative ring is underlying.

Rings and modules:

A first important class of rings is that of all Dedekind-finite rings which are defined
by the property that these rings do not contain elements which are invertible only on
one side. Of course every commutative ring is Dedekind-finite.

The class of all Dedekind-finite rings contains that of all left (or right) Noetherian
rings, where we have the mentioned ascending chain condition on the left (or right)
side. This class contains the class of all (left) Artinian rings, defined by the descend-
ing chain condition (on the left side).

A left Noetherian ring is called a quasi-Frobenius ring if it is left (or right)
self-injective. It can be shown that rings of this class are always Artinian and self-
injective on both sides (cf. Rowen 1991, p. 347f), but they are not Frobenius yet.
A quasi-Frobenius ring R is called a Frobenius ring if R(R/rad(R)) ∼= Rsoc(RR),
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or, equivalently, (R/rad(R))R ∼= soc(RR)R in addition. Both the class of all quasi-
Frobenius rings, and that of all Frobenius rings are closed under ring-direct prod-
ucts, group ring constructions and (full) matrix ring constructions. As mentioned
earlier, the classes of all quasi-Frobenius rings and all Frobenius rings coincide in
the commutative case (cf. Atiyah and MacDonald 1969, Theorem 8.7).

As before, within the class of all local Frobenius rings we emphasize the chain
rings. A ring is called a left chain ring if the set of its left ideals forms a chain. It can
be shown that every finite left chain ring is a right chain ring at the same time.

Weight functions:

Call a weight w :R −→R left homogeneous, if w(0)= 0 and the following hold:

(H1) For all x, y ∈R the equality Rx =Ry implies w(x)=w(y).
(H2) There exists a real number γ such that for all x ∈ R \ {0} there holds∑

y∈Rx w(y)= γ |Rx|.
It can then be shown that for all u ∈ R× and x ∈ R there holds w(xu)= w(x),

which means that both symmetry groups of homogeneous weights on rings are max-
imal. Honold (2001) showed that for a finite Frobenius ring R every left homoge-
neous weight on R is at the same time right homogeneous.

Linear and cyclic codes:

The possible non-commutativity of the underlying ring R suggests that we distin-
guish between left and right R-linear codes. Note that ifR is a finite quasi-Frobenius
ring then all (left) R-linear codes possess parity-check matrices.

For a duality notion, consider the natural pairing

RR
n ×RnR −→R, (x, y) �→ xy :=

n∑

i=1

xiyi .

If C is a left R-linear code of length n then the dual code C⊥ := {x ∈ Rn | cx = 0
for all c ∈ C} will be right R-linear.

If ∗ : R −→ R,x �→ x∗ is an involutory antiautomorphism which is extended to
a semilinear antiautomorphism RR

n −→ RnR then we find a one-to-one correspon-
dence between all left linear codes of length n and all right linear codes of the same
length. For all C ≤ RRn we then have C⊥∗ = C∗⊥. Let us call the left R-linear code
C self-dual, if C∗ = C⊥.

Example 2 Let R be the ring of all (2× 2)-matrices over the three element field and
consider the code C defined by the generator matrix

⎡

⎣
1 0 0 1 ω −ω

0 1 0 ω 1 ω

0 0 1 −ω ω 1

⎤

⎦ , with ω=
[

1 2
1 1

]

,

1=
[

1 0
0 1

]

and 0=
[

0 0
0 0

]

.
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This code is free of rank 3 over R and self-dual with respect to the transposition
automorphism on R.

The characterisation of all cyclic splitting codes stays valid also for finite non-
commutative rings.

Foundational results:

Regarding the equivalence notion for algebraic coding theory, there are natural non-
commutative versions of the results that we have presented.

Theorem 16 For a finite ring R the following are equivalent:

(a) R is a Frobenius ring.
(b) Every Hamming isometry between left R-linear codes of length n can be ex-

tended to a monomial transformation of the ambient space RRn.

Note that the monomial transformation will act from the right side in this case.
Similarly MacWilliams weight enumerator theorem will stay true with slight

modifications. It was observed by Wood, for example, that if U is a subgroup of
R× of R which is central in R (this means ur = ru for all u ∈ U and r ∈ R), then
the induced partition on R is compatible with the Fourier transform.

But even for U = R× which will not be central in general, we have the insight
that one has to distinguish between the left and right actions.

Example 3 Let θ be defined by rθr ′ if and only if R×r = R×r ′ where R× is the
group of units of R. Then sΦ(θ)s′ if and only if sR× = s′R×.

Existence bounds:

All results that we have stated in the respective section of this paper stay true in the
non-commutative case.
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Gröbner Bases over Commutative Rings and
Applications to Coding Theory

Eimear Byrne and Teo Mora

Abstract We give a survey of results and applications relating to the theory of
Gröbner bases of ideals and modules where the coefficient ring is a finite commuta-
tive ring. For applications, we specialize to the case of a finite chain ring. We discuss
and compare the main algorithms that may be implemented to compute Gröbner and
(in the case of a chain ring) Szekeres-like bases. We give an account of a number of
decoding algorithms for alternant codes over commutative finite chain rings.

Keywords Commutative rings · Finite chain rings · Galois ring · Gröbner bases ·
Szekeres-like bases · Buchberger’s algorithm · Key-equation · Solution module ·
Berlekamp–Massey algorithm · FGLM algorithm · Alternant codes · Decoding
algorithms · List decoding

1 Introduction

The theory of Gröbner bases was introduced by Buchberger in 1965 (Buchberger
1965, 1970, 1985, 1998, 2006). It has been widely studied and extended. A gen-
eral introduction to the subject can be found in any of Becker and Weispfen-
ning (1993), Cox et al. (1992), Mora (2005). Apart from Buchberger’s original
algorithm, there are now other algorithms for the computation of a Gröbner ba-
sis (cf. Gebauer and Möller 1988; Traverso and Donato 1989; Giovini et al. 1991;
Faugère et al. 1993; Faugère 1999, 2002; Brickenstein 2005). Applications of the
theory continues to grow. This can be particularly observed in coding theory and
in cryptography. For example, in Fitzpatrick (1995) new algorithms correspond-
ing to the Euclidean, Berlekamp–Massey, and Peterson–Gorenstein–Zierler algo-
rithms were derived from the perspective of Gröbner bases, with each as effi-
cient as its classical analogue (Fitzpatrick 1995; Fitzpatrick and Jennings 1998;
Guerrini and Rimoldi 2009). The Gröbner basis approach has been applied to ratio-
nal interpolation problems and to the solution of multivariable congruences (Fitz-
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patrick 1996, 1997, Guerrini and Rimoldi 2009). Very general decoding algorithms
using Gröbner bases have been outlined in Mora et al. (2006), Orsini and Sala (2005,
2007), Mora and Orsini (2009). In recent times, the theory has been applied to alge-
braic cryptanalysis (Faugère and Joux 2003), which attacks cryptosystems based on
hidden field equations and relies on solving systems of equations in many variables
(Billet and Ding 2009).

Often Gröbner bases and their applications involve solving systems of polyno-
mial equations over a field. They are, however, relevant in more general settings.
In Spear (1977), Zacharias (1978), Gröbner bases in R[x1, . . . , xk] are considered
for a Noetherian commutative ring R; the specialized case where R is an Euclidean
Ring was studied in Kandri-Rody and Kapur (1988), that where R is a domain in
Pan (1989), that where R is a principal ideal ring in Möller (1988). For applications
to coding theory we focus on special PIRs (cf. Zariski and Samuel 1958, p. 245),
i.e. those PIRs that are commutative finite chain rings. The problem of solving a
key equation arises in coding theory as part of a well-known algorithm for decoding
an alternant code. Several papers have considered this problem for codes over rings
(Interlando et al. 1997; Norton and Sălăgean 2000; Byrne and Fitzpatrick 2002;
Byrne 2001, 2002). See Greferath (2009) for a survey on codes over rings. Both
Byrne and Fitzpatrick (2002) and Byrne (2002) use Gröbner bases to determine a
solution as a minimal element of a sub-module of R[x]2, the former computes a
Gröbner basis over R, while the latter computes bases over its residue field. These
algorithms correct all errors up to half the minimum distance of the code, the former
for the Hamming distance and the latter for the Lee distance.

List decoding includes a variety of procedures that can decode beyond half the
minimum distance of a code. First introduced in Elias (1957), a polynomial time
list decoding algorithm for RS codes was given in Sudan (1997), and since then
many more papers have been published on the subject (Guruswami and Sudan 1999;
O’Keeffe and Fitzpatrick 2002; Kötter and Vardy 2003; Ratnakar and Kötter 2005;
Roth and Ruckenstein 2000). It turns out that the results of Guruswami and Sudan
(1999) and O’Keeffe and Fitzpatrick (2002) extend in part to the ring case, and can
be used to decode certain alternant codes over commutative rings (Armand 2005a,
2005b).

2 Gröbner Basis over Commutative Rings: the Lost Lore

2.1 Notation

This section is a straightforward extension and generalization of the results dis-
cussed in Mora (2009). Here we take the same approach and notation. We therefore
assume the reader to be familiar with the results in Mora (2009).
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R denotes an arbitrary commutative ring with unity1 and Q := R[X] :=
R[x1, . . . , xn] the polynomial ring over the ring R whose set of terms we denote
by

T := {xa1
1 · · ·xann : (a1, . . . , an) ∈N

n}.
For a free-module Qm, m ∈ N endowed with a valuation v : Qm→ T , as usual

we denote by the symbols {e1, . . . , em} its canonical basis, T (m) = {tei , t ∈ T ,1 ≤
i ≤ m} its monomial R-basis and we write ≺ to denote a well-ordering on T (m)

compatible with a fixed term-ordering < on T .
For each f =∑τ∈T (m) c(f, τ )τ ∈ Qmc(f, τ ) ∈ R, its leading term is the term

T(f ) :=max≺(supp(f )), its leading coefficient is lc(f ) := c(f,T(f )), its leading
monomial is M(f ) := lc(f )T(f ) and L(f ) denotes its leading form with respect to
the valuation v.

For any set F ⊂ Qm, we define the following:

• T{F } := {T(f ) : f ∈ F },
• M{F } := {M(f ) : f ∈ F },
• L{F } := {L(f ) : f ∈ F };
• T(F ) := {τT(f ) : τ ∈ T , f ∈ F },
• M(F ) := I(M{F }),
• L(F ) := I(L{F }),
• N(F ) := T (m) \T(F ).

Let G := {g1, . . . , gs} ⊂ Qm, with M(gj ) := cj τj elj , for each j . Consider the free
module Qs , with canonical basis {e1, . . . ,es}. We impose the valuation v : Qs→ T
defined by v(ej ) := τj for each j . Define the map

S : Qs→ Q,
s∑

i=1

piei �→
s∑

i=1

pigi .

We further define H(G) := {{l1, l2, . . . , lr} ⊆ {1, . . . , s} : el1 = · · · = elr } and for
each H = {l1, l2, . . . , lr} ∈H(G) we set

εH := el1 = · · · = elr , τH := lcm(τi : i ∈H) and T(H) := τH εH .
Observe that if f :=∑j hjej ∈ ker(S) then denoting

τε :=max≺ {T<(hj )T≺(gj )} and I := {j,1≤ j ≤ s : T(hj )T(gj )= τε}

its leading form L(f ) :=∑j νjej ∈ Qs of degree τ satisfies

• 0 �= νj ⇐⇒ j ∈ I and νj =M(hj )=: djωj ,

1Most of what is written here can be nearly verbatim generalized cum grano salis to the non-
commutative case. For the sake of simplicity, such easy generalization is not performed here and
is left to the interested reader, who could consult (Pritchard 1996) for further details.
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• ∑s
j=1 νjM<(gj )=∑j∈I (djωj ) · (cj τj elj )= (

∑
j∈I (dj cj ) · (τjωj ))ε = 0,

• ∑j∈I dj lc(gj )= 0 and ωjT<(gj )= τε for each j ∈ I .

Definition 1 (Compare Mora 2009, Definitions 3, 9 and 10) Let N be a finitely
generated Q-module, Φ : Qm �→ N be any surjective morphism and let M= kerΦ.
Let G= {g1, . . . , gs} ⊂M, with M(gj ) := cj τjelj∀j ; let f,h,f1, f2 ∈ Qm.

1. G is called a (weak) Gröbner basis of M if M(G)=M(M).
2. G is called a strong Gröbner basis of M if for each f ∈ M there is g ∈ M such

that M(g) |M(f ).
3. We say that f has a Gröbner representation

∑μ
i=1 pigi in terms of G if

f =
μ∑

i=1

pigi, pi ∈ Q, gi ∈G, T(pi)T(gi)� T(f ), for each i.

4. We say that f has the (weak) Gröbner representation
∑μ
i=1 ci tigi in terms of G

if

f =
μ∑

i=1

ci tigi, ci ∈ F \ {0}, ti ∈ T , gi ∈G,

with T(f )= t1T(g1)� · · · � tiT(gi)� · · · .
5. We say that f has the strong Gröbner representation

∑μ
i=1 ci tigi in terms of G

if

f =
μ∑

i=1

ci tigi, ci ∈ F \ {0}, ti ∈ T , gi ∈G,

with T(f )= t1T(g1)� · · · � tiT(gi)� · · · .
6. h :=NF≺(f,G) is called a normal form of f with respect to G if

• f − h ∈ I(G) has a (weak) Gröbner representation in terms of G and
• h �= 0=⇒ T(h) /∈ T(G).

7. The syzygy module of G is the module

ker(S) :=
{

(p1, . . . , ps) :
s∑

i=1

pigi = 0

}

⊂ Qs;

each of its element is called a syzygy of G.
8. any basis B ⊂M is called a standard basis of M iff L{B} generates the leitmodul

L(M) of M.
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Fig. 1 Normal form algorithm

In the notions related to Gröbner bases over a field2 strong Gröbner represen-
tations were pinned up in Mora (2009) being the natural result of Buchberger re-
duction; over an arbitrary unital ring, Buchberger reduction returns weak Gröb-
ner representations. For example, for the ideal I := I(2X,3Y) ⊂ Z[X,Y ], the set
A = {2X,3Y } is a weak Gröbner basis of I and XY = X · 3Y − Y · 2X ∈ I has a
weak Gröbner representation with respect to A, but not a strong one. In order to
obtain a strong Gröbner bases of I we must add XY to A.3

The related Buchberger Normal Form Algorithm can be properly adapted as in
Fig. 1.

Over a ring, the notion of canonical form never had practical interest.4

The following result by Möller characterizes a Gröbner basis of a module M,
(compare with Mora 2009, Theorem 15).

Theorem 1 (Möller 1988) Let M⊂ Pm be a sub-module, and {g1, . . . , gs} =:G⊂
M, with M(gj ) := cj τj elj , for each j ; denoting by GM any homogeneous basis of
the syzygy module of M{G}, the following conditions are equivalent:

1. G is a Gröbner basis of M;
2. f ∈M ⇐⇒ it has a Gröbner representation in terms of G;
3. f ∈M ⇐⇒ it has a weak Gröbner representation in terms of G;
4. for each f ∈ Qm \ {0} and any normal form h := NF(f,G) of f with respect

to G, f ∈M ⇐⇒ h= 0;
5. for each φ ∈GM, there is a syzygy fφ ∈ ker(S) of G, such that L(fφ)= φ;
6. for each φ ∈GM, S(φ) has a Gröbner representation in terms of G.

2The point is that over a field one can assume that each produced polynomial is monic.
The reason why the crucial notion of Gröbner representation is the strong one also in a chain

ring is Artinianity.
3We remark that, mutatis mutandis the same example applies also to polynomials over the PIR Z12.
The difference between a PIR and a special PIR is that the latter is a local ring. The example we
have built in the (non-special) PIR Z12 cannot be constructed for the special PIR Zpn .
4Membership test has always been solved via normal and not canonical forms; in order to test f ≡
g mod M no reasonable person tests whether Can(f,M) = Can(g,M) instead of testing whether
NF≺(f − g,M)= 0.
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Fig. 2 Extended Buchberger algorithm

Corollary 1 With the same notation and under any of the equivalent conditions of
Theorem 1, the set {fφ : φ ∈GM} is a standard basis of ker(S).

Thus, given a finite basis F := {g1, . . . , gs} ⊂ M, an easy adaptation (Fig. 2) of
the Buchberger Algorithm returns a Gröbner basis G of M.

As the reader may realize, in this version of Buchberger’s Algorithm, Gröbner
bases are produced by iteratively forcing condition (6); the difference with Gröb-
ner theory over a field5 is that the notions of (useful) S-polynomials and Gebauer–
Möller sets, which were central in Gröbner theory over a field, must be interpreted
as (minimal) homogeneous basis of the syzygy module of M{G} in order to play the
same rôle in Gröbner theory over a generic ring with unity. The problem of course
is to devise a procedure which allows to compute such bases.

2.2 Zacharias Rings

One of the oldest and most general settings in which Buchberger’s algorithm can be
applied is for a Zacharias ring (Zacharias 1978). The rationale is as follows: Gröb-
ner bases are introduced in Q in order to test membership and to compute the syzy-
gies of an ideal, thus one can assume that the same computations are performable in
the coefficient ring R and clearly this is required as a precondition.

Definition 2 A ring R with identity is called a Zacharias ring if it satisfies the
following properties.

1. R is a Noetherian ring.
2. There is an algorithm such that for each c ∈ R, non-empty set C = {c1, . . . ct } ⊂
R \ {0}, decides whether or not c ∈ I(C), in which case it produces elements
di ∈R satisfying c=∑t

i=1 cidi .
3. There is an algorithm such that given C := {c1, . . . ct } ⊂ R \ {0}, computes a

finite set of generators for the syzygy R-module of C.

5Or, say, over a principal ideal domain (see Sect. 2.3).
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Proposition 1 (Zacharias 1978) LetG := {g1, . . . , gs} ⊂M, with M(gj ) := cj τj elj ,
for each j . Let T := {lcm{τh : h ∈H },H ∈H(G)} and for any m ∈ T, i ∈ {1, . . . , s},
let us define

v(m)i :=
{
ci if T(gi) |m
0 otherwise

and ti (m) :=
{

m
T(gi )

if T(gi) |m
1 otherwise.

Let C(m)⊂Rs be a finite basis of the syzygy module of {v(m)1, . . . , v(m)s} and
set

S(m) := {(c1t1(m), . . . , cs ts(m)) : (c1, . . . , cs) ∈ C(m)}.
Then S(G) :=⋃m∈T S(m) is a homogeneous basis of the syzygy module of M{G}.

Corollary 2 (Zacharias 1978) If R is a Zacharias ring, then it is possible to com-
pute, via the algorithm of Fig. 2, a Gröbner basis of each given module I(F )⊂ Qm.

Corollary 3 (Zacharias 1978) If R is a Zacharias ring, then Q is a Zacharias ring.

Proof Condition (1) is trivial. Once a Gröbner basis G of a module I(F ) ⊂ Qm

is computed via the algorithm of Fig. 2, Condition (2), i.e. membership testing, is
granted by applying the algorithm of Fig. 1. Moreover, the computation of a Gröbner
basis G returns a basis of the syzygy module of G. Since we have explicit linear
representations of F in terms of G and conversely, elementary linear algebra allows
to obtain also a basis of the syzygy module of F , giving Condition (3). �

2.3 Möller: Gröbner Basis over a Principal Ideal Ring

Concluding a mainstream of research (Kandri-Rody and Kapur 1988; Pan 1989),
Möller extended Gröbner bases to PID’s and PIR’s by generalizing to them the
construction and the main properties of Gebauer–Möller sets, as follows: let us as-
sume that R is a principal ideal ring and for each H ⊂ H(G) let us also denote
cH := lcm(lc(h) : h ∈H),M(H) := cH τH and

M(H)= cHT(H)= cH τH εH =M(H)εH .
For each i, j,1≤ i < j ≤ s, eli = elj we set

b(i, j) := M({i, j})
M(i)

ei − M({i, j})
M(j)

ej ∈ Qs ,

B(i, j) := M({i, j})
M(i)

gi − M({i, j})
M(j)

gj = lcm(ci, cj )

ci

lcm(τi, τj )

τi
gi

− lcm(ci, cj )

cj

lcm(τi, τj )

τj
gj ,
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so that B(i, j) =S(b(i, j)). Also for each j , denote by aj ∈ R the annihilator of
I(ci). Then

Proposition 2 (Möller 1988) The set {b(i, j) : 1≤ i < j ≤ s, eli = elj } ∪ {ajej } ⊂
Qs is a homogeneous basis of the syzygy module of M(G).

Lemma 1 (Buchberger’s First Criterion) If M is an ideal of Q, there holds

M(i)M(j)=M(i, j)=⇒NF(B(i, j),G)= 0.

Definition 3 Let B := {{i, j} : 1≤ i < j ≤ s,B(i, j) exists} and let

B1 :=
{
{{i, j} :M(i)M(j)=M(i, j)} if M is an ideal,

{∅} otherwise.

A subset GM⊂B \B1 is called a Gebauer–Möller set for G if the set

{b(i, j) : {i, j} ∈GM∪B1} ∪ {ajej , j ≤ s}
is a homogeneous basis of the syzygy module of M{G}.

Lemma 2 (Möller) For each i, j, k : 1≤ i, j, k ≤ s, eli = elj = elk , there holds

M(i, j, k)

M(i, k)
B(i, k)− M(i, j, k)

M(i, j)
B(i, j)+ M(i, j, k)

M(k, j)
B(k, j)= 0.

Proposition 3 (Möller 1988) Let GM∗ ⊂ {b(i, j),1 ≤ i < j < s} be a Gebauer–
Möller set for {g1, . . . , gs−1}, let

B2 := {b(i, j) ∈GM∗ :M(i, j, s)=M(i, j),M(i, s) �=M(i, j) �=M(j, s)} ,
let M := {M(j, s) : 1≤ j < s} and M

′ ⊂M be the set of the elements σ ∈M such
that either

• exists σ ′ ∈M : σ ′ | σ �= σ ′ or
• (in the case that M is an ideal) exists iσ : 1≤ iσ < s,M(iσ )M(s)=M(iσ , s)= σ ;

for each σ ∈M \M ′
choose iσ ,1≤ iσ < s, such that M(iσ , s)= σ and define

B3(G) := {b(iσ , s) : σ ∈M \M ′}.
Then (GM∗ \B2)∪B3(G) is a Gebauer–Möller set for G.

The reader has thus being exposed to the esoteric revelation of Möller (1988), that
the exoteric version of Buchberger’s Algorithm proposed in Fig. 5 of Mora (2009)
applies nearly verbatim also to polynomial rings over a principal ideal domain, pro-
vided that each T(·) is substituted with the corresponding M(·), and indeed over a
principal ideal ring if in addition annihilators of leading coefficients are properly
disposed of.



Gröbner Bases over Commutative Rings and Applications to Coding Theory 247

2.4 Spear’s Theorem

Local rings are now easily dealt with by a folklore result, probably due to Spear
(1977), which was well-known to the computer algebra community already in the
Eighties and which, as Möller’s result, has been removed from the exoteric lore of
Gröbner bases.

Let I ⊂ Q be an ideal, let A := Q/I and Π : Q �→ A the canonical projection;
let J⊂ Am be a submodule and let J′ :=Π−1(J)⊂ Qm.

Theorem 2 (Spear) With the present notation, let {e1, . . . , em} be the canonical
basis of both Qm and Am we have

1. If B = {g1, . . . , gs} is a Gröbner basis of J′, then

{Π(g) : g ∈ B,T(g) /∈ T(I)}
is a Gröbner basis of J.

2. If C is a Gröbner basis of I and D ⊂ J′ is a set such that

• for each g ∈D, Π(g) �= 0, and Π(T(g))= T(Π(g)),
• {Π(g) : g ∈D} is a Gröbner basis of J,

then {f ej , f ∈ C,1≤ j ≤ s} ∪D is a Gröbner basis of J′.

2.5 Szekeres Ideals

Mainly in connection with special PIR’s, it is worthwhile to recall and extend an in-
teresting pre-Gröbner concept introduced by Szekeres (Lauer 1976; Szekeres 1952)
that has already proved fruitful in studying the structure of Gröbner bases over rings
(Apel 2000; Assi 1991) and which will be useful for interpreting the algorithms we
describe later. Let M be a Q-submodule of Qm. For each τ ∈ T (m) we define the
ideal Iτ := {lc(f ) : f ∈M,T(f )= τ } ∪ {0} ⊂ R and for each ideal a /R we define
the semigroup ideal Ta := {τ ∈ T(M) : Iτ ⊃ a} ⊂ T (m).

Clearly we have, for terms τ,ω ∈ T (m) and ideals a,b /R, the relations

τ | ω=⇒ Iτ ⊂ Iω and a⊃ b=⇒ Ta ⊂ Tb.

Now suppose that R is a PIR. For each τ ∈ T (m), let cτ ∈R denote an arbitrary fixed
generator of Iτ and let fτ ∈M be an arbitrary fixed element satisfying M(f )= cτ τ .6

Definition 4 Let R be a PIR. For each ideal a /R let Ga denote the minimal basis
of Ta. We define a Szekeres-like basis of M to be a set of the form

S(M) := {fτ : τ ∈Ga,a /R} .

6With a slight abuse of notation we define cτ := fτ := 0 iff τ ∈N(M).
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The Szekeres-like basis S(M) is not a minimal strong Gröbner basis of M itself
but a minimal strong Gröbner basis of M can be easily deduced from it by removing
from it all elements f for which there is a g ∈ S(M) such that M(g) |M(f ).

3 Finite Chain Rings

We now give a brief description of the notions and properties of commutative finite
chain rings (cf. Gilmer 1972; McDonald 1974; Zariski and Samuel 1958). A finite
chain ring R is a unital ring whose ideals can be linearly ordered to form a finite
chain with respect to inclusion. Thus a finite chain ring is a local ring, and is a
principal ideal ring.

Examples of finite chain rings include the integer modular rings Zpn , the Ga-
lois rings GR(pn, r) of pnr elements and characteristic pn and the quotient rings
T [x]/〈xs + p,pn−1xt 〉 where p is a prime, T = GR(pn, r), and n, r, s, t are inte-
gers such that (p, s)= 1.

For the remainder, unless stated otherwise, the symbol R will denote a (commu-
tative) finite chain ring, p its unique maximal ideal and π a generator of p. Then p

is nilpotent in R, say with nilpotency n and the finite chain takes the form

{0} = p
n / p

n−1 / · · · / p
2 / p /R.

The set R∗ := R\p will denote the group of units of R, kR its residue field and μ
the natural epimorphism from R onto kR . We also use the symbol μ to denote the
obvious extension of this map to any R-module.

Given any θ ∈R, there exist u ∈R∗, and a unique non-negative integer ν(θ) such
that θ = uπν(θ). With respect to this notation θ has nilpotency n− ν(θ).

For computational purposes, we will assume that a Gröbner basis G =
{g1, . . . , gs} over R is minimal, so that M(gi) does not divide M(gj ) for i �= j and
that lc(gi)= ci = π�i ,1≤ �i = ν(lc(gi)) < n (for the finite field case, this reduces
to the assumption that lc(gi)= 1 for each i).

Möller’s result gives for R verbatim the version of Buchberger’s Algorithm de-
scribed in Mora (2009, Fig. 5). In the case of a finite chain ring, in each loop, it
computes the normal forms of

• the (useful!) S-pairs B(i, j) := πtj−ti lcm(τi ,τj )
τi

gi − lcm(τi ,τj )
τj

gj with ti ≤ tj and

• the annihilator-pairs πti gi .

We now restrict to arbitrary submodules of R[x] and R[x]2. The Szekeres-like bases
that we describe shortly in general are not minimal, each carrying redundant poly-
nomials. However, it is trivial to obtain a minimal Gröbner basis from such a basis,
and any Szekeres-like basis can be obtained from a Gröbner basis G , for example
by augmenting appropriate πu-multiples of the elements of G .

Gröbner bases of ideals inR[x] are easy to describe: each has the form {gi : i ∈ I }
where I ⊂ {0, . . . , n− 1}, M(gi)= πixsi and si > sj for i < j . On the other hand,
any Szekeres-like basis has the form {gι, gι+1, . . . , gn−1} with M(gi) = πixsi and
sι ≤ sι+1 ≤ · · · ≤ sn−1.
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Lemma 3 Let B be an R[x]-submodule of R[x]2 generated by a set of monomials.
Then there exist nonnegative integers ι and κ such that B has a Szekeres-like basis
which takes exactly one of the following forms

I {(πixsi ,0) : i ∈ {ι, . . . , n− 1}}
II {(0,πjxtj ) : j ∈ {κ, . . . , n− 1}}
III {(πixsi ,0), (0,πj xtj ) : i ∈ {ι, . . . , n− 1}, j ∈ {κ, . . . , n− 1}}
where si ≤ sj for all i, j ∈ {ι, . . . , n − 1} with j ≤ i, and ti ≤ tj for all i, j ∈
{κ, . . . , n − 1} with j ≤ i. Moreover, any Szekeres-like basis of B in the form I,
II or III is unique.

The extension to arbitrary R[x]-submodules of R[x]2 is immediate:

Theorem 3 Let A be an R[x]-submodule of R[x]2. Then there exist nonnegative
integers ι and κ such that A has a Szekeres-like basis that takes exactly one of the
following forms

I {(aι, bι), . . . , (an−1, bn−1)}
II {(cκ , dκ), . . . , (cn−1, dn−1)}
III {(aι, bι), . . . , (an−1, bn−1), (cκ , dκ), . . . , (cn−1, dn−1)}
where

(i) for all i ∈ {ι, . . . , n − 1} and j ∈ {κ, . . . , n − 1}, M(ai, bi) = (πixsi ,0) and
M(cj , dj )= (0,πj xtj ) for some nonnegative integers si and tj ,

(ii) si ≤ sj for all i, j ∈ {ι, . . . , n − 1} with j ≤ i, and ti ≤ tj for all i, j ∈
{κ, . . . , n− 1} with j ≤ i.

Definition 5 Let A be an R[x]-submodule of R[x]2 of type III, and let M(A) have
Szekeres-like basis

{(πιxsι ,0), . . . , (πn−1xsn−1 ,0), (0,πκxtκ ), . . . , (0,πn−1xtn−1)}
for some integers ι, κ ∈ {0, . . . , n − 1} where sι ≥ s1 ≥ · · · ≥ sn−1 and tκ ≥ t1 ≥
· · · ≥ tn−1. The vector of minimal exponents of A, denoted by vme(A), is the vector
of length 2n− (ι+ κ) defined by

(sι, . . . , sn−1, tκ , . . . , tn−1).

4 Solving a Key Equation

We consider here how to extend to the case of a finite commutative chain ring the
FGLM-like algorithms of Guerrini and Rimoldi (2009), which may be used to solve
the polynomial congruence

aS ≡ b mod xr ,
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for some a, b ∈ R[x], subject to certain degree constraints, given S in R[x] and a
positive integer r . Such an equation is called a key equation. One approach towards
its solution is to compute a Gröbner or Szekeres-like basis for the so-called solution
module

M = {(a, b) : aS ≡ b mod xr}.
This may also be viewed as a linear recurrence problem, in which case a modified
Berlekamp–Massey algorithm may be applied (Interlando et al. 1997; Norton 1999;
Norton and Sălăgean 2000).

Definition 6 For each integer � consider the valuation v : R[x]2 → T defined by
v(e1) := x�, v(e2) := 1 and define the term order <� on R[x]2 as

xieli <� x
j elj ⇐⇒ v(xieli ) < v(x

j elj ) or v(xieli )= v(xj elj )
and lj > li

so that, in particular

(i) (xi,0) <� (xj ,0) and (0, xi) <� (0, xj ) for i < j
(ii) (0, xj ) <� (xi,0) if and only if v((0, xj ))= xj ≤ xi+� = v((xi,0)), if and only

if j ≤ i + �.

It is easy to see that solution module M is generated by the set {(1, S), (0, xr )}.
Then of course the Zacharias–Möller algorithm adapting (Mora 2009, Fig. 5) could
be used to compute a Gröbner basis from the generating set {(1, S), (0, xr )} with
respect to the term order <�, but the complexity associated with this procedure is
exponential in r .

Instead we propose the following algorithm, which we present below. This is an
instance of an FGLM-like algorithm and is an adaptation of Fitzpatrick’s algorithm
(Fitzpatrick 1995, Sect. IV) where the coefficient ring is assumed to be a finite field,
to the case of finite commutative chain ring. The complexity of the algorithm, like
its Berlekamp–Massey equivalents, is quadratic in r (Byrne and Fitzpatrick 2002,
Sect. VII).

We introduce some more notation. Let M(k) denote the module of solutions to
the key equation modulo xk , i.e.

M(k) = {(a, b) : aS ≡ b mod xk}.
We get a sequence of modules

R[x]2 =M(0) ⊃M(1) ⊃ · · · ⊃M(r) =M,
and since (0, xk) ∈M(k)\M(k+1), we observe that the chain above is strictly de-
creasing.

The algorithm proceeds by constructing a Szekeres-like basis of M(k+1) from a
Szekeres-like basis ofM(k) until after r iterations a basis of the solution moduleM
is arrived at. To do this, we need the notion of a kth discrepancy.



Gröbner Bases over Commutative Rings and Applications to Coding Theory 251

Given a polynomial h ∈ R[x], we use the symbol [h]k to denote the coefficient
attached to the term xk in h.Given an element (f, g) ∈R[x]2, the kth discrepancy of
(f, g) is given by [f S− g]k. If (f, g) and (f ′, g′) inM(k) have kth discrepancies α
and α′, respectively, such that α+ θα′ = 0 for some θ ∈R then (f, g)+ θ(f ′, g′) is
contained inM(k+1), having kth discrepancy zero. In other words, we can construct
an element ofM(k+1) given a pair of suitable elements ofM(k).

Note that since (xk,0) and (0, xk) are contained in M(k) for each k, M(k) is a
type III module with ι = κ = 0 and its vector of minimal exponents has the form
vme(M(k))= (s0, . . . , sn−1, t0, . . . , tn−1).

Definition 7 Let k ∈ {0, . . . , r} and let M(k) have Szekeres-like basis Bk . For each
(f, g) ∈ Bk we denote by Zk(f, g) the set of kth discrepancies of elements of Bk
with leading terms less than T(f, g), that is,

Zk(f, g)=
{[f ′S − g′]k : (f ′, g′) ∈ Bk,T(f ′, g′) < T(f, g)

}
.

We also define

Bk(f, g) :=
{
(f ′, g′) ∈ Bk : T(f ′, g′) < T(f, g)

}
.

The rules for updating each basis Bk are based on the following result.

Theorem 4 Let ι, κ ∈ {0, . . . , n − 1}, let vme(M(k)) = (sι, . . . , sn−1, tκ , . . . , tn−1)

and letM(k) have Szekeres-like basis Bk = {(aι, bι), . . . , (an−1, bn−1), (cκ , dκ), . . . ,

(cn−1, dn−1)}, where, for each ι ≤ i ≤ n− 1, κ ≤ j ≤ n− 1 we have M(ai, bi) =
(πixsi ,0),M(cj , dj )= (0,πjxtj ). Then

1. vme(M(k+1)) = (s′ι , . . . , s′n−1, t
′
κ , . . . , t

′
n−1) for some nonnegative integers s′i , t ′j

satisfying si ≤ s′i ≤ si + 1 and tj ≤ t ′j ≤ tj + 1.
2. For each i, j , let αi = [aiS−bi]k , βj = [cjS−dj ]k . Let � ∈ {ι, . . . , n−1} (resp.
{κ, . . . , n−1}). There exist θ ∈R and ζ ∈ Zk(a�, b�) (resp. Zk(c�, d�)) satisfying
α� + θζ = 0 (resp. β� + θζ = 0) if and only if s′� = s� (resp. t ′� = t�).

Given a Szekeres-like basis Bk = {(aι, bι), . . . , (an−1, bn−1), (cκ , dκ), . . . ,

(cn−1, dn−1)} for M(k), we compute a Szekeres-like basis Bk+1 = {(a′ι, b′ι), . . . ,
(a′n−1, b

′
n−1), (c

′
κ , d

′
κ ), . . . , (c

′
n−1, d

′
n−1)} for M(k+1) as follows. For simplicity we

let (fi, gi) denote either (ai, bi) or (ci, di).

1. For each i, compute the kth discrepancies ζi = πν(ζi )εi = [fiS − gi]k .
2. For each �, we obtain exactly one element of Bk+1 from (f�, g�) as follows.

(a) If ζ� = 0 then (f ′�, g′�) := (f�, g�).
(b) If ζ� �= 0 and there is some (fj , bj ) ∈ Bk(f, g) satisfying ν(ζj )≤ ν(ζ�) then

(f ′�, g′�) := (f�, g�)+ πν(ζ�)−ν(ζj )ε−1
j ε�(fj , gj ).

(c) Otherwise, (f ′�, g′�) := (xf�, xg�).
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Let vme(M(k+1))= (s′ι , . . . , s′n−1, t
′
κ , . . . , t

′
n−1). If (f ′�, g′�) is defined by 2 (a) or

(b) and M(f ′�, g′�) is on the left (resp. right) then Theorem 4 implies that s′� = s�,
(resp. t ′� = t�,) so (f ′�, g′�) is contained in a Szekeres-like basis for M(k+1). Oth-
erwise (f ′�, g′�) is defined by 2 (c) and s′� = s� + 1, (resp. t ′� = t� + 1), so that
(f ′�, g′�) = (xf�, xg�) is contained in a Szekeres-like basis for M(k+1). Thus the
elements of the new set Bk+1 form a Szekeres-like basis forM(k+1).We summarize
the above as follows.

Theorem 5 Let k ∈ {0, . . . , r − 1}, let vme(M(k+1)) = (s′ι , . . . , s′n−1,

t ′κ , . . . , t ′n−1), and let M(k) have Szekeres-like basis Bk as in Theorem 4. Then the
set

Bk+1 = {(a′ι, b′ι), . . . , (a′n−1, b
′
n−1), (c

′
κ , d

′
κ), . . . , (c

′
n−1, d

′
n−1)}

with elements (a′i , b′i ) and (c′i , d ′i ) constructed as above, is a Szekeres-like basis

of M(k+1) satisfying M(a′i , b′i ) = (πixs
′
i ,0) and M(c′j , d ′j ) = (0,πjxt

′
j ) for each

i ∈ {ι, . . . , n− 1}, j ∈ {κ, . . . , n− 1}.

We remark that one advantage of this approach over direct generalizations of the
BM method is that it is easy to see that each update is well-defined; even if there is
no solution to the discrepancy equation that arises in 2 (b) we can still determine a
valid update.

The required solution (a, b) for the key equation generally must satisfy certain
degree constraints. If we can choose a term order <� such that T(a, b) is minimal in
T(M), then (a, b) must be contained in a Gröbner (and hence Szekeres-like) basis
ofM .

For each k ∈ {0, . . . , n}, let Mk := M ∩ pk and let Lk := M\Mk be the set-
theoretic complement of Mk in M . Let Gk be a reduced Gröbner basis of Mk .
Clearly M/Mk = {Can((a, b),Gk) +Mk : (a, b) ∈ R[x]2}. If an element has the
same canonical form as an element in some set then we say that it is contained up
to equivalence in that set. Therefore, if (a, b) ∈M with T(a, b) minimal for some
term order, then (a, b) is contained up to equivalence in a Gröbner basis of M .
Moreover, if T(a, b) = T(a′, b′) is minimal in T{Lk} then (a, b) and (a′, b′) both
have the same canonical form with respect to Gk . Of course any element (a, b) in a
Szekeres-like basis of M with T(a, b) minimal in T{Lk} must also be contained in
a Gröbner basis ofM .

5 Alternant Codes

Since the important work of Nechaev (1991) and Hammons et al. (1994) the theory
of codes over rings has been well-studied and there are now many papers describing
the structure and properties of such codes. We give an incomplete list here: Byrne
et al. (2007, 2008), Greferath et al. (2004), Greferath and Schmidt (2000), Greferath
and O’Sullivan (2004), Kurakin et al. (1999), Norton and Sălăgean (2003), Udaya
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and Bonnecaze (1999), Voloch and Walker (1999), Wood (1999), but see Greferath
(2009).

There has been considerably less work done on decoding algorithms for families
of codes over rings, and very little for distance functions other than the Hamming
weight. This is a significant gap given the fact that the homogeneous weight has
emerged as important in the theory of codes over rings.

Decoding algorithms that correct up to half the minimum Hamming distance for
BCH and alternant codes over rings can be found in Byrne and Fitzpatrick (2000,
2001, 2002) and Interlando et al. (1997). For alternant codes as defined below, the
Sudan-Guruswami list decoding algorithm can be applied. This has been looked at
in detail in Armand (2005b), which extends work done in O’Keeffe and Fitzpatrick
(2002).

We give a brief account of alternant codes over a finite commutative chain rings
and outline algorithms for their decoding that use Gröbner bases.

Let T be a subring of R. Let H be the matrix

⎡

⎢
⎢
⎢
⎣

γ0 γ1 . . . γN−1
γ0α0 γ1α1 . . . γN−1αN−1
...

...
...

...

γ0α
r−1
0 γ1α

r−1
1 . . . γN−1α

r−1
N−1

⎤

⎥
⎥
⎥
⎦

where r ≤ N ≤ |kR| − 1, γ = (γ0, . . . , γN−1), α = (α0, . . . , αN−1) ∈ (R∗)N , and
αi − αj is a unit for i �= j . Let C be the T−submodule of R determined as the
nullspace in T N of the parity check matrix H. C is called an alternant code. A stan-
dard determinant argument shows that the minimum Hamming distance of this code
is greater than r , and hence C corrects up to t = # r2$ Hamming errors in any trans-
mission.

For the case T = Zpn , γ = (1,1, . . . ,1), it has been shown that with certain
restrictions on r , the minimum Lee distance of the code C is at least 2r + 1. Hence
up to r Lee errors may be corrected in any transmission (Byrne 2002, Theorem V.4).

In the next two sections we describe the use of Gröbner bases in correcting up
to r Hamming or Lee errors. We emphasize that these algorithms are entirely de-
terministic, require no searching, and have complexity quadratic in the number of
errors.

5.1 Unique Decoding C for the Hamming Distance

Let v = c + e be a received word, where c is a codeword and the error vector e
has Hamming weight at most t . Let S = Hv = He be the syndrome vector. Let
J ⊆ {0, . . . ,N − 1} be the set of indices of nonzero coefficients of e. The first task
of the decoder is to determine the set J of error locations. We define the error
polynomial e =∑j∈J ej x

j and syndrome polynomial S =∑r−1
i=0
∑
j∈J ej γjα

i
j x
i
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in the usual way. The error locator polynomial is

Σ =
∏

j∈J
(1− αjx)

and the error evaluator polynomial is

Ω =
∑

j∈J
ejγj

∏

k �=j,k∈J
(1− αkx).

These polynomials are related by the well known key equation,

ΣS ≡Ω mod xr

and the decoding problem involves solving this congruence for Σ,Ω satisfying
∂Σ ≤ t, ∂Ω ≤ t − 1 where t = #r/2$.

Theorem 6 Let t = #r/2$, and let (a, b) ∈M satisfy the following: for some integer
k ∈ {0, . . . , n− 1}
(i) ∂b < ∂a = ∂(μa)≤ t ,

(ii) pk ⊆ I(a, b) /R[x].
Then T(a, b) is minimal in T{Ln−k} with respect to the term order <−1.

If (a, b) satisfies the conditions of Theorem 6 then the (<−1)-minimality of
T(a, b) in some T{Ln−k} implies that (a, b) is contained up to equivalence in a
Szekeres-like basis S(M).

We express the error vector e as a sum of vectors with disjoint support. For each
i ∈ {0, . . . , n− 1}, j ∈ {0, . . . ,N − 1}, write ej = e〈i〉j πi for some e〈i〉j ∈ R∗ ∪ {0}
and let e〈i〉 be the length N vector with j th component e〈i〉j . We now obtain the
decomposition

e= e〈0〉 + πe〈1〉 + · · · + πn−1e〈n−1〉.

Associated with each error vector e〈i〉 are the polynomials e〈i〉 =∑j∈Ji e
〈i〉
j x

j ,

Σ 〈i〉 =
∏

j∈Ji
(1− αjx), S〈i〉 =

r−1∑

k=0

∑

j∈Ji
e
〈i〉
j γjα

k+1
j xk,

Ω〈i〉 =
∑

j∈Ji
e
〈i〉
j γj

∏

k �=j,k∈Ji
(1− αkx).

The following result shows that pn−1 ⊂ I(Σ,Ω), and hence Σ,Ω satisfy the hy-
pothesis of Theorem 6 with k = n−1. Therefore, (Σ,Ω) can be uniquely identified
(up to equivalence) as the element of S(M) with minimal leading term among those
with leading coefficient 1.
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Theorem 7 LetΣ andΩ be a pair of error locator and error evaluator polynomials
for an error vector e. With the same notation as the above, I(Σ,Ω) has a Szekeres-
like basis of the form

{Ψ 〈0〉,πΣ 〈2〉 · · ·Σ 〈n−1〉,π2Σ 〈3〉 · · ·Σ 〈n−1〉, . . . , πn−2Σ 〈n−1〉,πn−1}.

Corollary 4 The solution (Σ,Ω) of the key equation is (up to equivalence) the
element with minimal leading term among those with leading coefficient 1 in a
Szekeres-like basis for the solution moduleM , under the term order <−1 .

Given an element (a, b) ∈ L1 with leading term minimal in T{L1}, we compute
the roots of Σ as follows. Since μ(a, b)= μ(Σ,Ω) for all (a, b) with leading term
minimal in T{L1} then in particular

μa = μΣ =
∏

j∈J
(1−μαjx).

The roots αj are then determined uniquely from the roots μ(αj ) and location vector
α = [α0, . . . , αN−1], whose components comprise a set of distinct coset represen-
tatives for the cosets of M in R. Once the error locations have been identified, a
modified Forney procedure (Forney 1965; Interlando and Palazzo 1995) may be
applied to compute the error magnitudes.

5.2 Unique Decoding of C for the Lee Distance

We describe a decoding algorithm for a subclass of alternant codes over T = Zpn

with respect to the Lee metric. This extends the results of Roth and Siegel (1994)
(for codes over Zp) taking an approach using Gröbner bases. A comparison of the
performance of the codes over Zpn and their counterparts is given in Byrne (2002,
Sect. VI) The algorithm presented here again has complexity quadratic in the num-
ber of errors, and many computations are carried out over a finite field.

For any θ ∈ Zpn , we denote by |θ |L the Lee value of θ which is the least integer
magnitude of θ modulo pn. The Lee weight of a vector is then the sum of the Lee
values of its components. Following Roth and Siegel (1994), given v ∈ Z

N
pn , we

define the vectors v+ = [v+1 , . . . , v+N ] and v− = [v−1 , . . . , v−N ] as follows

v+j =
{
vj if vj = |vj |L,
0 otherwise,

v−j =
{
pn − vj if pn − vj = |vj |L,
0 otherwise,

which gives the decomposition v= v+ − v−.
As usual, the error vector is e= v− c. The positive and negative error vectors

are given by e+ and e−. The syndrome values are defined in the usual way as S� =∑N−1
j=0 ejα

�
j for 0≤ � <∞. The positive and negative syndrome values are defined
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by the sums S+� =
∑N−1
j=0 e

+
j α

�
j and S−� =

∑N−1
j=0 e

−
j α

�
j , respectively, for 0 ≤ � and

the positive and negative error locator polynomials are given by Σ+ =∏N−1
j=0 (1−

αjx)
e+j and Σ− =∏N−1

j=0 (1 − αjx)e
−
j where for ease of notation we identify the

exponents e±j with their Lee values |e±j |. The error locator ratio is ρ =Σ+/Σ− ∈
R[[x]]. Let Φ be the unique polynomial of degree less than r such that Φ ≡ ρ
mod xr . Then clearly

Σ−Φ ≡Σ+ mod xr (1)

giving a key equation, and

Sj +
j−1∑

i=1

ΦiSj−i + jΦj = 0 (2)

for 1 ≤ j ≤ r − 1. The decoding problem amounts to solving (1) subject to cer-

tain conditions. Since the polynomials μΣ+ =∏N−1
j=0 (1 − μαjx)e

+
j and μΣ− =

∏N−1
j=0 (1− μαjx)e

−
j give the same error locations as the original positive and neg-

ative error locator polynomials Σ+ and Σ−, we only need to solve (1), over the
residue field Zp.

Computing the polynomial μΦ is done by recursive computation of the coef-
ficients determined by (2) modulo pn,pn−1, . . . , p, (Byrne 2002, Theorem V.3).
We then consider the solution module M = {(a, b) ∈ kR[x]2 : aμΦ ≡ b mod xr}.
Again, computing a basis of the solution module M (say, implementing any of the
algorithms of Fitzpatrick 1995) returns the required error locator polynomials. Once
these have been found, adopting a procedure such as a modified Chien search returns
the error vector.

5.3 List Decoding of C for the Hamming Distance

In Guruswami and Sudan (1999), improving results of Sudan (1997), the authors
propose a list decoding algorithm that corrects up to N −√N(N − δ) Hamming er-
rors in an RS code of length N and designed distance δ. In O’Keeffe and Fitzpatrick
(2002), the authors present an FGLM-like algorithm that may be applied to a range
of problems in systems theory and coding, including list decoding. The authors also
observe that both Sudan (1997) and Guruswami and Sudan (1999) may be viewed
as instances of the methods used in Kötter and Vardy (2003), and demonstrate that
these methods translate to the Gröbner basis setting in a very natural way. In Armand
(2005b) it is explicitly shown that Algorithm 6.3 of O’Keeffe and Fitzpatrick (2002)
for the list decoding of generalized RS codes is valid over commutative rings. We
give a brief outline of that work here.

We assume now that T = R is a finite unital commutative ring for the code C
and weaken the constraints on the αi as follows: for each i �= j , neither αi nor
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Fig. 3 Poly-Reconstruct algorithm

αi − αj is a zero divisor in R (some authors describe such a set of elements of R
as subtractive). The code C can be viewed as an algebraic geometry code, having
words of the form

C = {(γ ′0f (α0), . . . , γ
′
N−1f (αN−1)) | f ∈R[x], ∂f < N − r + 1

}
,

where the γ ′i ’s satisfy the equations
∑N−1
i=0 γiγ

′
i α
j
i , for each j ∈ {0,1, . . . ,N − 2}.

In fact, the γ ′i ’s play the role of the γi ’s in C⊥.
Given a received word (y0, . . . , yN−1), a list decoder seeks to return a list of all

polynomials f ∈ R[x] of degree at most N − r satisfying f (αi) = yi for some �
indices i, where N − � is the chosen list decoding radius. The Poly-Reconstruct
algorithm of Guruswami and Sudan (1999, Sect. II B) does this in two stages. First
it computes a polynomial Q(x,y) satisfying certain weighted degree constraints
such that (αi, yi) is a singularity of Q(x,y) of multiplicity at least v, where v is
an integer determined by the parameters of C and � (see Fig. 3) in order that V :=
#{xayb : a + b < v} satisfies

NV < #
{
xayb :w(xayb) := a + kb ≤ v�}.

In other words, the constraints on Q(x,y) are set such that the corresponding ho-
mogeneous system is solvable over R, i.e. such that the McCoy rank of the system
is less than the number of unknowns.

In the second part of the algorithm, Poly-Reconstruct finds all polynomials f of
degree at most N − r such that y − f (x) is a factor of Q(x,y). The soundness of
this algorithm over R for the code C as defined follows since the differences αi−αj
are non zero-divisors for distinct pairs i, j (compare Armand 2005b, Lemmas 2, 3,
4, 5 with Guruswami and Sudan 1999, Lemmas 4, 5, 6, 7). If Q(x,f (x))= 0 then
y−f (x) dividesQ(x,y) in R[x, y], so appropriate polynomials f can be found by
finding factors of Q(x,y). The algorithm is outlined in Fig. 3.

We now describe an FGLM-like solution (O’Keeffe and Fitzpatrick 2002;
Armand 2005b) of Part 1 of the algorithm. The expansion of Q(x,y) ∈ R[x, y]
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about αi, yi gives

Q(x + αi, y + yi)=
∑

ab

qiabx
ayb

for some coefficients qiab . For the points (αi, yi) with multiplicitiesmi , the polyno-
mial sought is minimal with respect to a given term order and satisfies qiab = 0 for
0≤ i ≤N − 1 and a + b <mi .

For a Gröbner basis perspective, define on the terms of R[x, y] the weight func-
tionw(xiyj ) := i+kj and consider the term-ordering<(1,k) which is the refinement
of w with the lex-ordering indexed by y < x, so

(i) w(xiyj )= i + kj < s + kt =w(xsyt )=⇒ xiyj <(1,k) x
syt ;

(ii) w(xiyj )= i + kj = s + kt =w(xsyt )=⇒ (xiyj <(1,k) x
syt ⇐⇒ j > t).

The required polynomial Q(x,y) can be found by computing a Gröbner basis for
the ideal M̂ of all solutions to the system of congruences

Q̂(x + αi, y + yi)≡ 0 mod 〈xayb : a + b=mi〉,
for i ∈ 0, . . . ,N − 1 and exponentsmi . More precisely, for any given term δ, setting
q :=min{b ∈N : δ <(1,k) yb} we identify the set

R[x, y]δ =
{
P(x, y) ∈R[x, y] : T(P ) <(1,k) δ

}

with the R[x]-module R[x]q by using the map

φ :R[x, y]δ −→R[x]q : φ
(
q−1∑

b=0

hb(X)Y
b

)

�→ (h0, . . . , hq−1)=
q−1∑

b=0

hbeb+1.

We define a module M ⊂R[x]q by

{h ∈R[x]q : h= φ(Q̂(x, y),T(Q̂) <(1,k) δ, Q̂(x, y) ∈ M̂}.
In the decoding application,Q(x,y) corresponds to the minimal element of M with
respect to the term order in R[x]q induced by the order <(1,k) in R[x, y], namely

xiej+1 < x
set+1 ⇐⇒ xiyj <(1,k) x

syt .

The details of an algorithm to compute a Gröbner basis of M from a standard
basis can be read in O’Keeffe and Fitzpatrick (2002, Algorithm 6.3), and the general
procedure has been extended for the ring case (Armand 2005b, Algorithm 2).
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Overview of Cryptanalysis Techniques
in Multivariate Public Key Cryptography

Olivier Billet and Jintai Ding

Abstract This paper summarizes most of the main developments in the cryptanaly-
sis of multivariate cryptosystems and discuss some problems that remain open.
A strong emphasis is put on the symbolic computation tools that have been used
to achieve these advances.

1 Introduction

The most widely deployed public key cryptosystem nowadays is without any doubt
the RSA cryptosystem. Its security is somewhat related to the fact that no reasonably
fast algorithm for the factorization of large integers is known up to now. Due to fast
developments in the field of integer factorization, a secure public key cryptosystem
relying on the assumption that factoring integers is a hard problem must use integers
N = pq where p and q are prime numbers of size at least 1024 bits and preferably
2048 bits. This implies heavy computations during the encryption process, which
makes it inefficient and costly. Moreover, a new threat has recently appeared that
would break the RSA cryptosystem: quantum computers. Under the assumption that
quantum computers can be built, Shor (1997) discovered an algorithm that could
factor an integer in polynomial time in terms of its size in bits, thus rendering the
RSA cryptosystem useless. Shor’s algorithm can also break essentially all number
theoretic based public key cryptosystem as well as the elliptic curve cryptosystems
or the Diffie–Hellman key exchange. There have been great efforts dedicated to the
construction of quantum computers and although nobody has built such computers
able to attack the RSA or the discrete logarithm based cryptosystems, definitely
there is a need for other efficient and secure cryptosystems.

There are currently a few families of cryptosystems that could potentially resist
future quantum computers: these are the cryptosystems based on error-correcting
codes (McEliece 1978; Niederreiter 1986), the public key cryptosystems based on
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lattices (Regev 2006; Nguyen and Stern 2001), and the multivariate public key cryp-
tosystems.

The class of multivariate cryptosystems is a special class of schemes whose se-
curity is related to the hardness of solving sets of multivariate equations. The obvi-
ous way of solving them is to compute a Gröbner basis (Buchberger 1965, 1970,
1985, 1998, 2006). Solving sets of multivariate equations is a well known hard
problem that is not only hard on the average but already for sets of equations that
are practical to evaluate, like for instance a hundred of randomly chosen quadratic
equations in a hundred of unknowns defined over the binary field (Bardet 2004;
Fraenkel and Yesha 1980). For obvious efficiency reasons, the multivariate polyno-
mials that constitute the system are generally chosen to be quadratic polynomials
defined over a small finite field—that is ranging from F2 to F28 —though there exist
rare exceptions (Billet and Gilbert 2003; Wang et al. 2006).

In the particular case of symmetric cryptographic primitives, it is often possible
to randomly draw the multivariate polynomials with carefully selected parameters
in order to obtain a security reduction to a generic instance of the underlying NP-
hard problem: this is for instance the case for the stream-cipher QUAD proposed
in Berbain et al. (2006), Berbain and Gilbert (2007), but also for the hash function
MQ-HASH proposed in Billet et al. (2007). However in the case of asymmetric mul-
tivariate schemes, the designer has to embed a trapdoor in order to enable the owner
of the secret key to solve the system of equation derived from the public key and
the cipher text or the message to be signed. The side effect of embedding such a
trapdoor in the public set of polynomials is that there is usually no reduction to a
generic instance of the underlying hard problem anymore, since the corresponding
systems are not randomly chosen. The security of the scheme has to be assessed by
other means, usually by conducting experiments with the best system solvers or by
mounting a specially crafted algebraic attack that exploits the underlying algebraic
structure.

The current proposals for multivariate asymmetric cryptosystems might be clas-
sified into three main categories, some of which combine features from several cate-
gories: Matsumoto-Imai like schemes, Oil and Vinegar like schemes, stepwise trian-
gular schemes, and an additional fourth category called Polly Cracker schemes. In
this survey however, we focus on the first three categories; the reader can find more
information on Polly Cracker schemes in Fellows and Koblitz (1994), Caboara et al.
(2008) and especially in Levy-dit-Vehel et al. (2009). All of the schemes from the
first three categories rely on the hardness of system solving, but some of them ad-
ditionally rely on other hard problems such as finding rational mappings between
polynomial maps or finding a linear combination of small rank of a given set of
matrices.

2 Inversion Attacks

Although there exist several multivariate authentication schemes, we hereafter focus
on multivariate asymmetric encryption schemes and multivariate signature schemes.
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We tried to unify the notations as much as possible with the problem of system solv-
ing in mind: We denote the base field by K, and use x and y to respectively denote
the input and the output of a public key function. The input of the public key be-
ing an element of the vector space K

n, we sometimes make use of the standard
underlying coordinate system and write x = (x1, . . . , xn). Finally, we denote a mul-
tivariate public key by a polynomial mapping from the vector space K

n to the vector
space K

m:

f : Kn −→K
m,

x = (x1, . . . , xn) �−→ y = (p1(x), . . . , pm(x)),
(1)

where p1, . . . , pm are multivariate polynomials defined over K[x1, . . . , xn]. In the
case of encryption schemes, x and y respectively denote the plain text and the cipher
text. In the case of signature schemes, x and y respectively denote the signature and
the hashed value to be signed.

This part describes several attacks against the underlying system solving problem
of several multivariate cryptosystems, that is, it reports successful methods to invert
the public key of some asymmetric cryptosystems. We first review the linearization
attack of Patarin (1995) against Matsumoto–Imai scheme A, and then describe dif-
ferent attacks against a generalisation of it named Hidden Field Equations (HFE),
that was proposed in Patarin (1996).

2.1 Matsumoto–Imai Scheme A and Its Variations

Starting from 1983, Matsumoto and Imai proposed a series of public key cryptosys-
tems relying on the hardness of system solving. In Imai and Matsumoto (1985),
they proposed a scheme “based on obscure representation of polynomials” often
called C∗ and hereafter called Matsumoto–Imai scheme A. This scheme uses expo-
nentiation over an extension E of degree n of a base finite field K of size q . (We
denote by ϕ the canonical embedding of K

n into E and x= ϕ(x).) The exponent is
chosen of the form 1+ qθ and prime to qn − 1 so as to allow efficient inversion.
This exponentiation is then concealed by two change of variables S and T of K

n.
The public key is therefore given by the n-tuple (p1, . . . , pn) of polynomials in
n unknowns x1, . . . , xn defined over K via:

K
n −→K

n,

x = (x1, . . . , xn) �−→ (
p1(x), . . . , pn(x)

)= T ◦ ϕ−1((ϕ ◦ S(x))1+qθ ).
(2)

One key fact allowing an efficient representation of the public key as the n-tuple of
polynomials (p1, . . . , pn) is that the mapping x �→ xq (which is often also called the
Frobenius endomorphism) is a K-linear mapping and thus elevating to the power
of 1+ qθ is K-quadratic. Another mandatory property is the ability for the owner
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of the secret key to efficiently compute a solution to the system:

⎧
⎪⎨

⎪⎩

p1(x1, . . . , xn)= y1,
...

pn(x1, . . . , xn)= yn,
(3)

for every n-tuple y = (y1, . . . , yn), which should ideally correspond to the ability of
performing decryption or signature. In order to solve (3), the secret key owner uses
his knowledge of the secret linear mappings S and T and of an exponent e such that
e(1+ qθ ) ≡ 1 (mod qn − 1) to invert each component of the public map in turn,
which amounts to the following computation: x = S−1 ◦ ϕ−1((ϕ ◦ T −1(y))e). The
name “obscure representation” comes from the assumption that the input and output
coordinate systems are unknown to anyone but the secret key owner. Hence, the
security of the cryptosystem not only relies on the hardness of solving (3), but also
on the hardness of recovering any pair of mappings S0 and T0 such that: ∀x ∈K

n,
T0 ◦ ϕ−1((ϕ ◦ S0(x))

1+qθ ) = T ◦ ϕ−1((ϕ ◦ S(x))1+qθ ). A more general version of
this problem of crucial importance to the security of multivariate public schemes is
discussed later on in this paper.

This construction can obviously be extended to accommodate several other inter-
nal transformations instead of the original exponentiation. However, there must be
an efficient way to invert this internal transformation, and the public key should have
an efficient representation. With these constraints in mind, Patarin (1996) proposed
to use an internal transformation of type:

f : E−→ E, x �−→
∑

1≤i≤j≤n
qi+qj≤D

ai,jxq
i+qj +

∑

1≤k≤n
qk≤D

bkxq
k + c. (4)

This internal transformation f of E has the special property that its overall degree is
bounded by some reasonable constant D: this trick enables the owner of the secret
key to solve the equation f (x)= y in the unknown x for any value y of E, since there
exist algorithms polynomial in D and n for this task (von zur Gathen and Shoup
1992; Knuth 1997). The resulting cryptosystem is called Hidden Field Equations
(HFE).

Another generalization of the Matsumoto–Imai scheme A is the use of a projec-
tion instead of a bijection for the change of coordinates T , and the public key then
becomes a mapping from K

n to K
m with m < n. This can be seen as a modifica-

tion of the original scheme where some of the polynomials in the public key have
been removed. Patarin et al. (1998a, 2000) applied this idea to the Matsumoto–Imai
scheme A to create the SFLASH signature scheme, and proposed a very similar
variation around the HFE cryptosystem (Patarin 1996). We however note that this
construction is mainly of interest in the setting of signature schemes since the public
key mapping is not a bijection anymore.

Finally, we note that the secret changes of coordinate system can be taken as
linear mappings or affine mappings. However, as shown by Geiselmann et al. (2001),
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the constant parts of the secret affine mappings can often be deduced by an attacker
(i.e. with the knowledge of the public key alone) and sometimes even leaks some
information about the secret mappings themselves.

2.2 Direct Inversion Attacks

The essence of public key encryption (resp. signature) schemes is to give public ac-
cess to a mechanism allowing the computation of a cipher text y from a plain text x
(resp. verifying a signature x from a hashed value y). In the special case of multi-
variate schemes, we have seen in the previous section that this mechanism is a poly-
nomial mapping having a low degree in the input variables because of efficiency rea-
sons. This mapping p constitutes the public key and an attacker can directly search
for a value x verifying p(x)= y in order to decrypt y or to forge a signature x. Such
attacks consist in solving a system of polynomial equations of low degree (quadratic
in the case of Matsumoto–Imai and HFE), and there have been several algorithms
designed to solve this task. The most famous are Buchberger’s algorithm (Buch-
berger 1965, 1970, 1985, 1998, 2006; Mora 2009), Faugère’s algorithms F4 and F5
(Faugére 1999, 2002), and basic algorithms such as the linearization tool XL sug-
gested in Courtois et al. (2000) which is a particular case of F4 (Ars et al. 2004).
The rationale behind the design of multivariate asymmetric cryptosystems is that the
complexity of solving systems of randomly generated quadratic multivariate equa-
tions defined over a finite field is exponential in the number of unknowns on the
average. At the same time, the trapdoor introduced in the public key of asymmet-
ric multivariate cryptosystems makes the resulting system of equations specific and
sometimes distinguishable from randomly generated ones.

The set of equations derived from the public key of Matsumoto–Imai scheme A
instances can be solved by computing Gröbner bases: Dobbertin reported to have
successfully solved such systems with Gebauer and Möller’s version of Buch-
berger’s algorithm while working at the BSI.1 However, the first public cryptanalysis
of Matsumoto–Imai scheme A was published by Patarin (1995): it is very instructive
in that it explains why solving the system of equation through the computation of a
Gröbner basis is possible. The key remark is that there exist bilinear equations relat-
ing the input and the output of the system. Indeed, recall that the internal transforma-
tion maps any element x of the extension field E to y= x1+qθ , so that y xq

2θ = x yq
θ
.

This last bilinear equation still holds between the input and output variables x and y
since they are K-linear transformations of ϕ−1(x) and ϕ−1(y) respectively, so that
the following holds for some set of coefficients ai,j , bi , and cj :

∑

1≤i,j≤n
ai,j yixj +

∑

1≤i≤n
biyi +

∑

1≤j≤n
cj xj + d = 0. (5)

1Bundesamt für Sicherheit in der Informationstechnik which is the German Federal Office for
Information Security.
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Recall that yi = pi(x). A common way to represent the set Iδ of polynomials of
degree δ that belongs to the ideal generated by (p1, . . . , pn) is to construct a matrix
whose columns are indexed by the monomials of Iδ and whose lines are obtained
by multiplying each pi with every possible monomial u such that deg(upi) = δ.
This matrix is called a Macaulay matrix of degree δ, see Macaulay (1916). In the
case of Matsumoto–Imai scheme A, we see that the Macaulay matrix of degree 3
already contains the polynomials from (5)—remember that the yi are polynomials
of degree 2 in the xi—and this explains why a direct Gröbner basis computation
is efficient against this cryptosystem. The attack described by Patarin reads as fol-
lows Patarin (1995), Koblitz (1999): although the bilinear equations (5) are a priori
unknown to the attacker, they can be easily interpolated by generating matching
plain text/cipher text pairs from the public key. After that, finding an x correspond-
ing to a given y is easy: just replace y in the interpolated equations (5) and solve the
resulting linear system in x.

A number of multivariate cryptosystems are actually susceptible to attacks rely-
ing on low degree relations between input variables and output variables. This is for
instance the case with the weak proposal (Wang et al. 2006) where a cryptanaly-
sis directly stems from the above remarks (Ding et al. 2007a). Variants of another
proposal called Tame Transformation Method (TTM) and published in Moh (1999)
were also shown to be susceptible in Ding and Schmidt (2003, 2004).

A much less obvious behavior is exhibited by the HFE cryptosystem described
above. Here again, the attacker can take advantage of the specific structure of the
internal transformation to invert the public key with Gröbner basis methods effi-
ciently. A simple counting argument briefly sketched in Faugère and Joux (2003)
shows that the biggest Macaulay matrix constructed during a Gröbner basis compu-
tation with F4 has a much lower degree than that of a randomly drawn system of
the same size. To see why, first remember that the internal transformation of HFE
defined over E of characteristic 2 has a degree bounded by D. Let us denote the
public key of HFE by g. Then consider a constantH such thatD ≤H < 2n, and the
number of pairs of integers (di, k) for which di is a sum of at mostw−2 powers of 2
such that ϕ(x)di (ϕ ◦g(x))2k has its degree bounded byH . It can be shown that there
exists a value of H such that the number of monomials appearing in the set of equa-
tions generated this way is lower than the number of equations. Since x �→ x2k is a
K-linear mapping, the number w exactly corresponds to the degree of the biggest
Macaulay matrix constructed during the Gröbner basis computation. This degree is
smaller than the one encountered in the Gröbner basis computation for a randomly
chosen system of equivalent size. This theoretical explanation is supported by var-
ious experiments. Indeed, with his own optimized implementation of F5, Faugère
solved the HFE challenge posted on Courtois’ web page (Patarin 1998). This chal-
lenge is an HFE public key with 80 equations in 80 unknowns defined over F2
corresponding to an internal transformation of total degree 96. It was first solved
by Faugère in about 52 hours on an HP workstation with an alpha EV68 processor
running at 1000 MHz and 233 bytes of memory, and later on by Steel with Magma
in about 22 hours on a 750 MHz Sunfire v880 using about 234 bytes of memory.
As suggested by the above explanation, the degree of the biggest Macaulay matrix
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encountered was especially low and always bounded by w. And indeed, the data
from Faugère and Joux (2003) obtained from several runs on various HFE parame-
ters confirmed the fact that this value w is way too small for the cryptosystem to be
secure:

5≤D ≤ 12→w = 4, 128≤D ≤ 1280→w = 6,
16≤D ≤ 96→w = 5, 1536≤D ≤ 4096→w = 7.

An interesting fact is that these values are independent of the number n of un-
knowns, at least for n < 160, which corresponds to public keys of practical sizes.

Along with the first challenge that was originally broken by Faugère, a second
challenge was proposed that is still not broken. It consists in an HFE public key with
36 variables defined over the finite field F24 of which four quadratic polynomials
have been removed.

One might wonder if it is not possible to escape Gröbner basis attacks by tweak-
ing the internal transformation so that its degree is not bounded anymore. Obvi-
ously, since the internal transformation has to be invertible by the legitimate user,
this means that something must be relaxed somewhere. There has been some pro-
posals along those lines in Ding et al. (2007b), Wang et al. (2006), all of which have
been broken (Fouque et al. 2008a; Ding et al. 2007a). While these proposals were
very specific, one might consider a broadest class that encompass such schemes and
that we call Intermediate Field Systems: it comprises the schemes that have as inter-
nal transformation a set of multivariate polynomials in a small number of variables
and defined over an intermediate extension field L. Such an internal transformation
might be inverted through the computation of Gröbner bases. In Billet et al. (2008),
this class of schemes has been analyzed from the point of view of Gröbner basis
attacks and it has been shown that the security achieved is asymptotically the same
as that of the HFE cryptosystem.

2.3 MinRank

We just reviewed attacks against Matsumoto–Imai like cryptosystems aiming at di-
rectly solving the system arising from the public key. These “direct inversion” at-
tacks do not try to recover a hidden specific structure implied by the presence of
a trapdoor, though they rely on the existence of low degree relations between the
value of the polynomials and their input variables. We describe here another family
of attacks that first recover the hidden structure so that the attacker is in a position
similar to that of the secret key’s owner. More precisely, we focus on multivariate
asymmetric cryptosystems whose public key consist of quadratic polynomials hav-
ing rank peculiarities, like Fell and Diffie (1985), Shamir (1993), Moh (1999). The
general structure of such cryptosystems is based on the family of triangular (or “de
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Jonquière”) mappings x �→ y = J (x) defined as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1 = x1,

y2 = x2 + p2(x1),

y3 = x3 + p3(x1, x2),
...

yn = xn + pn(x1, x2, . . . , xn−1),

(6)

where the pi are polynomial mappings, and for efficiency reasons usually restricted
to quadratic polynomial mappings. It can be easily checked that inverting such an
application is easy since it amounts to incrementally solve linear equations in a sin-
gle variable. The first cryptanalysis against such cryptosystems is given by Copper-
smith et al. (1997) and uses the rank in order to break the bi-rational permutations
scheme proposed by Shamir (1993).

Before describing the underlying rank problem, we recall basic properties of
multivariate quadratic polynomials. The first fact is that every quadratic form p

has a canonical form that can be computed in polynomial time, that is there exists
a change of coordinates S : (x1, . . . , xn) �→ (z1, . . . , zm) which can be efficiently
found so that m≤ n is minimal and there exists another quadratic form p̃ such that
for all x, p(x)= p̃(S(x)). This minimal m is called the rank of p. The other fact is
that a unique symmetric matrix of size n can be associated to any quadratic form in
n unknowns the usual way: entry (i, j) of the matrix is half the coefficient of mono-
mial xixj in the quadratic form and the diagonal coefficients are the ones of the
monomials x2

i . There are some difficulties in the case of a field of characteristic two
that can be resolved by defining both entry (i, j) and entry (j, i) as the coefficient
of monomial xixj in the quadratic form when i �= j and by defining entry (i, i) to
be zero. Then, the rank of the symmetric matrix is equal to the rank of the quadratic
form.

Thus, in the process of cancelling the effect of the linear mixing of the polynomi-
als in the triangular form (aimed at hiding this specific structure), or alternatively in
the process of recovering an equivalent version of the secret change of coordinates,
the following problem naturally arises:

Definition 1 (Minimun Rank) Given a set {A1, . . . ,Am} of n× n matrices defined
over a finite field K and an integer r < n, find a non-trivial linear combination
over K of rank less than or equal to r .

The complexity of the general MinRank problem over various fields has been
studied by Buss et al. (1999), where it has been shown to be NP-complete when r
varies with n. However, for a fixed r , there are polynomial algorithms to solve this
problem. Several of them are described in Goubin (2003). One of it was devised
and used in Goubin and Courtois (2000) by Goubin and Courtois to break the TTM
scheme proposed in Moh (1999), and was later on extended in Billet and Gilbert
(2006) by Billet and Gilbert to take advantage of particular settings. The exhaustive
search was also extended in a similar way in Yang and Chen (2005). Most of these
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algorithms merely use linear system solving combined with some form of exhaus-
tive search.

Another point of view has been given by the authors of Coppersmith et al. (1993):
the solutions of a MinRank instance with a set of m matrices of size n× n are also
the solutions of the system encoding the fact that every sub-matrix of size (r +
1) × (r + 1) of the sought linear combination has determinant zero. The overall
complexity2 of solving such a system of equations is O

( 1
(r+1)!m

ω(r+1)
)

provided
there are enough equations to apply the linearization technique. Hence, this strategy
works well if the rank is small and enough linearly independent equations can be
derived.

An attack against HFE suggested by Kipnis and Shamir (1999) uses matrices over
the extension field E of degree n over K of size q , and can be reduced to solving a
huge system of equations. We briefly describe now this attack aiming at recovering
HFE’s private key. First of all, notice that the equation relating the public key and
the private key can be rewritten as: t−1 ◦ g = f ◦ s, where s and t are the secret
one-to-one linear mappings defined over E, f is a K-quadratic mapping defined
over E, and g is the public mapping resulting from their composition. Since any
linear mapping can be written in the form of x �→∑

1≤i≤n αixq
i
, the homogeneous

component of degree two of the public mapping can be described as:

g(2)(x)=
∑

1≤i,j≤n
γi,j x

qi+qj .

Hence, a symmetric matrix G can be associated to g such that tXGX = g(2)(x)
where X = (xq, . . . , xqn). (Again, some care has to be taken in the case of char-
acteristic 2.) If s(x) = ∑1≤i≤n sixq

i
and t−1(x) = ∑1≤i≤n tixq

i
, then the au-

thors of Kipnis and Shamir (1999) show that G̃ = tWFW where F is the sym-
metric matrix associated to f as described above, W is defined by Wi,j = sq

j

i−j ,
G

�k

i,j = Gi+k,j+k with indices taken modulo n, and G̃=∑1≤k≤n tkG�k . The au-
thors of Kipnis and Shamir (1999) then tried to solve a huge system of equations
derived from this property, the complexity of which remained unclear. However,
the equation G̃= tWFW can be re-interpreted from a rank point of view when re-
membering that F has rank r = logq D—because the degree of f has been bounded
byD so as to allow efficient inversion of f . This remark was formulated by Courtois
in Courtois (2001) who showed that the problem of recovering the right tk basically
amounts to solve a MinRank problem with r about logq D given the set of ma-
trices G�k that are directly derived from the public key and suggested to use the
sub-matrices strategy to solve it, the complexity of which would be:

1

(α logq n)!
exp
[
O
(
ωα(logq n)

2)], (7)

2Where the constant ω depends on the method for solving linear systems; for instance ω is
about 2.807 when using Strassen’s algorithm.
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if enough linearly independent equations can be derived, since D = O(nα) for
some α ≥ 1. An interesting point is that the resulting complexity estimate is slightly
better than the one given in Granboulan et al. (2006) and gives an even stronger
result: HFE’s secret key can be recovered in quasi-polynomial time. However, the
authors of Jiang et al. (2007) expressed some doubts about the ability to solve the
MinRank problem by these means: they indeed proved that the algebraic system
constructed as explained above has a lot of solutions, which shows that the com-
plexity estimate (7) is too optimistic.

Obviously, being able to solve systems of equations arising from MinRank prob-
lems more efficiently than via linearization attacks would advance the state of the
art in the cryptanalysis of many multivariate cryptosystems, such as schemes from
the TTM family (Moh 1999; Yang and Chen 2005), Rainbow (Ding and Schmidt
2005a), or even HFEv (Ding and Schmidt 2005b). A new approach has just been
proposed for special MinRank instances (Faugère and Perret 2008a).

2.4 Unbalanced Oil and Vinegar

The Oil and Vinegar signature scheme has been designed by Patarin and was first
exposed in Patarin (1997). This design with a radically different trapdoor might
have been inspired to Patarin by the linearization attack against Matsumoto–Imai
like cryptosystems. In Oil and Vinegar schemes indeed, the secret transformation is
made of o multivariate quadratic polynomials whose homogeneous part of degree
two have the following specific form:

∑

1≤i≤o
1≤j≤v

ai,j xiyj +
∑

1≤i,j≤v
bi,j yiyj . (8)

That is, two sets of variables O = {xi}1≤i≤o and V = {yj }1≤j≤v are used, but only
monomials from {zy}(z,y)∈(O∪V )×V are allowed to appear in the polynomials. It is
easy to find a pre-image for a tuple of o such polynomials: after random values
have been assigned to the variables from V , only a linear system in the variables
from O remains. Finding a pre-image is then reduced to solving a linear system in
these o variables. (Assuming these systems are uniformly distributed in the set of
randomly drawn systems and there are o polynomials defined over a finite field of
size q , the probability that such a system is invertible is given by (1− 1

q
) · · · (1−

1
qo
).) Hence, after a few trials with others randoms choices for the variables from V ,

a pre-image of the original system will be found.) This is why variables from O

and V are respectively called oil and vinegar variables: assigning values to vinegar
variables makes oil variables appear. As usual, this specific structure of the secret
polynomials is hidden by a change of coordinates.

The balanced version of this Oil and Vinegar scheme, that is with o = v, was
broken by Kipnis and Shamir (1998). The security of the unbalanced case as ex-
posed by Kipnis et al. (1999) is still not well understood, although it is definitely
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not secure when the number of vinegar variables is much bigger than the number of
oil variables. A system of m randomly chosen multivariate quadratic equations in
n unknowns can be easily solved when n≥m2, see Kipnis et al. (1999). Kipnis and
Shamir (1998) also show that the attack against the balanced case, which is heav-
ily relying on the fact that o = v, can actually be used in the case where v is only
slightly bigger than o with the help of exhaustive search—the overall complexity
then becomes O(o4qv−o−1). The experiments from Braeken et al. (2005) show that
if direct Gröbner basis attacks can be efficient against the balanced Oil and Vinegar
scheme, it is of exponential complexity in the unbalanced case. Faugère and Perret
(2008b) also showed than it is possible to attack some set of parameters by comput-
ing Gröbner basis of several modified versions of the original system. It is however
possible to select the parameters of the system so as to escape this signature forgery
attack.

Several other asymmetric multivariate schemes are closely related to the Oil and
Vinegar construction like for instance the signatures schemes Rainbow (Ding and
Schmidt 2005a) and TTS (Yang et al. 2004). It is not difficult to see that the balanced
and unbalanced Oil and Vinegar constructions are broken as soon as an attacker is
able to recover an isomorphic version of the secret oil vector space. Up to now, no
such structural attack is known against the unbalanced schemes.

2.5 Defense Mechanisms

In the previous paragraph, we reviewed several attacks using system solving tech-
niques against asymmetric multivariate cryptosystems. Several extensions have con-
sequently been proposed to slow down these attacks by making inefficient the sys-
tem solving algorithms. We now briefly describe the most widespread of these and
discuss their effects. These experiments might be classified into two families: the re-
moval of some information in the published mappings and the addition of randomly
chosen quadratic polynomials.

2.5.1 Removing Equations

The idea of discarding some of the polynomials from the public key was originally
introduced by Shamir (1993). Patarin later suggested to use it to strengthen HFE in
the context of signature and called the resulting scheme HFE−−. Patarin et al. (2000)
designed a signature scheme by applying this idea to the original Matsumoto–Imai
scheme A that they submitted to the NESSIE project. It seems that the effect of
the removal of polynomials from the public key is quite efficient against the system
solving threat: the second challenge on HFE is still unbroken and the NESSIE pro-
posal SFLASH withstood all system solving attacks. Yet this is not enough for these
schemes to be secure and an attack taking advantage of the underlying monomial
structure of SFLASH has recently been found by Dubois et al. (2007a). This at-
tack uses the associated bilinear form to regenerate the missing polynomials, and
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thus allows for the application of the attack originally found by Patarin against
Matsumoto–Imai scheme A. The applicability of analogous techniques to HFE−−
remains an open question. Furthermore, a rigorous analysis of the impact of remov-
ing equations from the public key of such schemes on the system solving techniques
is still an open problem.

2.5.2 Perturbations

Another strategy devised to thwart system solving techniques is to perturb the pub-
lic key by mixing additional randomly chosen multivariate quadratic polynomials to
the public key. This strategy is quite natural since the problem of solving randomly
chosen systems of multivariate quadratic equations is a hard problem. Let us denote
by g = (g1, . . . , gn) the n-tuple of polynomials corresponding to the original public
key and g̃ = (g1 + q1, . . . , gn + qn) the public key after the introduction of m ran-
domly chosen polynomials ρ1, . . . , ρm. The introduction of the random polynomials
should obviously not disallow the legitimate user to invert the resulting public key.
To this end, it is limited in one of the two following ways: either m = n and there
exists some linear mapping λ :Kn→K

r of rank r such that

qi(x1, . . . , xn)= ρi ◦ λ(x1, . . . , xn), 1≤ i ≤ n,
or m= r and there is a linear mapping λ :Kr→K

n of rank r such that
(
q1(x1, . . . , xn), . . . , qn(x1, . . . , xn)

)= λ(ρ1(x1, . . . , xn), . . . , ρr(x1, . . . , xn)
)
.

In the first type of perturbation, called internal perturbation, the random polynomi-
als ρi only depend on a small number r of variables. Then given some cipher text c
and knowing the polynomials ρi , it is enough for the legitimate user to compute the
value z = ρ(w) for all the possible inputs w and try to invert the original public
key g on the corresponding value c + z. In the second type of perturbation, often
denoted by ‘+’, the random polynomials depend on all the variables x1, . . . , xn but
there are only r of them and so their value can be guessed as well by the legitimate
user.

The second strategy has been proposed by Patarin et al. (1998a) while the first
one was later on suggested by Ding and Gower (2005). Once again, the effect of
these perturbations against system solving techniques is not well understood and
waits for a rigorous analysis. However, it is interesting to see that the proposal
of Ding and Gower (2005) was again defeated by Fouque et al. (2005) by analyzing
a distinguisher based on the kernel of the differential of the public key and extended
their attack to the perturbed HFE in Dubois et al. (2007b).

3 Structural Attacks

In the previous part, we have reviewed several direct inversion attacks against var-
ious multivariate asymmetric cryptosystems. We now describe algebraic attacks
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against the trapdoor’s structure of some of these cryptosystems. The two basic
mechanisms we focus on are the problem of finding isomorphisms between two
sets of polynomials, and the problem of polynomials decomposition. The first prob-
lem is related to the problem of recovering the key of UOV cryptosystems and
Matsumoto–Imai like cryptosystems such as HFE and SFLASH. This problem is
also related to the study of substitution and permutation networks in symmetric
cryptography (Biryukov et al. 2003). The second problem is a natural problem aris-
ing in multivariate cryptography. It has been used to design an interesting public
encryption scheme (Patarin and Goubin 1997) mixing techniques from symmetric
cryptography and multivariate polynomials to turn it into an asymmetric scheme.

3.1 Isomorphism of Polynomials

There is a natural equivalence class on the set of tuples of multivariate polynomials
in n variables. For two m-tuples f = (f1, . . . , fm) and g = (g1, . . . , gm) of multi-
variate polynomials in n variables we say that f and g are equivalent if and only
if there exists an invertible change of coordinates S such that f (x) = g ◦ S(x).
This equivalence relation in the special case m = 1 and with f1 and g1 multivari-
ate quadratic polynomials exactly corresponds to the classification of multivariate
quadratic forms, which has been completed by Dickson (1971); the problem of
isomorphism between polynomials of degree d is studied in Thierauf (2000). The
equivalence can be further generalized as follows: two m-tuples f and g are IP-
equivalent if and only if there exist two invertible changes of coordinates S and T
such that T ◦ f (x)= g ◦ S(x). This second equivalence relation has been formally
introduced by Patarin (1996) in cryptography and further studied by Patarin et al.
(1998b). (However, Matsumoto and Imai already made the implicit assumption that
this problem is hard when they designed their scheme A.) Thus, the computational
problem associated to deciding the IP-equivalence can be stated as follows:

Definition 2 (IP Problem) Given f and g, twom-tuples of multivariate polynomials
in n variables, find two invertible linear mappings S ∈ GLn(K) and T ∈ GLm(K)
such that:

g(x1, . . . , xn)= T ◦ f ◦ S(x1, . . . , xn). (9)

One might wonder why not keep the map f secret and only publish g. The rea-
son is that in multivariate asymmetric cryptosystems, the existence of a trapdoor
considerably reduces the number of possible mappings f . For instance, only a few
monomial can be used as the internal transformation in Matsumoto–Imai scheme A.
It is therefore safer to assume that map f is also publicly known.

It has been proved in Patarin et al. (1998b) that deciding IP-equivalence is
not NP-complete. It was also shown in the same paper that deciding another
equivalence—which has been called MP-equivalence for it does not require the lin-
ear mappings S and T to be invertible—is NP-hard. Finally, the authors of Patarin
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et al. (1998b) reduced the problem of deciding graphs isomorphism to the problem
of deciding for two m-tuples of quadratic multivariate polynomials f and g the ex-
istence of a linear mapping S (not necessarily invertible) such that g(x)= f ◦ S(x).
The problem of deciding graphs isomorphism is a well known problem in complex-
ity theory and it is used to define a whole complexity class which is thought to be
disjoint both from P and NP-complete although this has not yet been proven. How-
ever, while most practical instances of the graph isomorphism problem are easy to
solve, most practical instances of IP seem to be difficult to solve.

Thus, the IP-equivalence seems to be a good candidate to be used as a hard prob-
lem in cryptology. We already mentioned that the security of Matsumoto–Imai like
cryptosystems rely on this problem, but other types of cryptosystems can be built
based on the hardness of the IP problem like for instance the authentication scheme
proposed by Patarin (1996), or the traitor tracing scheme proposed by Billet and
Gilbert (2003). The IP problem is also of interest in symmetric cryptography where
it was studied as a means to derive equivalent descriptions of block ciphers, and as a
way of describing big S-boxes by substitution and permutation networks with much
smaller S-boxes in order to ease their analysis (Biryukov et al. 2003).

There have been several algorithms designed to solve the IP problem, most of
which are described in Patarin et al. (1998b), Biryukov et al. (2003), Perret (2005),
Faugère and Perret (2006a). The best algorithm from Patarin et al. (1998b) to solve
instances of the IP problem is based on a “to and fro” algorithm and has a com-
plexity of nO(1)q

n
2 both in time and memory; However, this algorithm only work

for (almost) one-to-one mappings and the above mentioned complexity relates to
the case of quadratic polynomials. In the case of non bijective mappings, another
algorithm proposed in Patarin et al. (1998b) has polynomial complexity in memory
and nO(1)qn in time. The algorithm designed by Biryukov et al. (2003) share some
features with the “to and fro” strategy and basically has the same time complexity.
Biryukov et al. (2003) also contains a generalization to the affine setting. Perret also
presented in Perret (2005) an algorithm for the simple equivalence of polynomials
with has a time complexity lower bounded by n6qn. We focus here on an algo-
rithm presented in Faugère and Perret (2006a) since it amounts to solve a system
of equations; unfortunately, its complexity is not well understood. First of all, let us
summarize the basic solving problem one is faced with the IP problem: assuming
an internal transformation that consists of an m-tuple of multivariate polynomials
of degree d in n variables and using additional variables to describe the unknown
changes of coordinates, (9) gives a set of equations in the variables representing the
change of coordinates. A quick counting of these equations shows that the system is
over-defined with m

(
n+d
d

)
equations in m2 + n2 variables when m is about n as is

the case with several multivariate asymmetric cryptosystems. However, as the over-
all degree d increases, the number of equations and terms the attacker has to deal
with increases at fast pace. This basic way to put the IP problem into equations can
actually be much improved in the case where the internal transformation f contains
monomials of low degree—constant, linear, or quadratic—so as to be independent
of the overall degree d . Such a strategy has been proposed in Faugère and Perret
(2006a) in the case of non homogeneous systems and is described hereafter. First of
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all, notice that (9) arising from the IP problem can be rewritten as:

T −1 ◦ g(x1, . . . , xn)= f ◦ S(x1, . . . , xn), (10)

so that using variables for the unknown entries of the matrices corresponding to S
and T −1 gives a lower total degree in the resulting equations. Let us denote these
variables by s1,1, . . . , sn,n and t1,1, . . . , tm,m respectively. Then taking advantage of
the fact that the internal transformation is not homogeneous, the above equation
also holds for the homogeneous parts alone: ∀k ≤ d, T −1 ◦ g(k)(x)= f (k) ◦ S(x),
where g(k) and f (k) denotes the homogeneous part of degree k of g and f . Thus,
when the internal transformation has both a constant component and a degree one
component, a lot more linear constraints in the variables si,j and ti,j can be derived.
But this set ofm(n+1) linear equations in the n2+m2 variables is not big enough to
be over-defined. One has to adjunct another set of equations derived from a compo-
nent of higher degree, usually a component of homogeneous degree two: these addi-
tional equations then suffice to render the system over-defined, in most cases of in-
terest. (This is for instance the case with an internal transformation consisting of an
n-tuple of quadratic multivariate polynomials in n variables which is quite represen-
tative in asymmetric multivariate cryptography.) This is the reason why the IP prob-
lem with internal transformations composed of low degree monomials is insensitive
to the value of the overall degree d . However, this is not true at all for IP problems
with homogeneous internal transformations of degree d , which explains the discrep-
ancies between experiments with Matsumoto–Imai scheme A of degree four and ex-
periments with randomly generated polynomials (with components of every degree)
of overall degree four in the results of Faugère and Perret (2006a). It is not straight-
forward to derive the complexity of the strategy just described. However, experimen-
tal results from Faugère and Perret (2006a) show that the complexity of the IP prob-
lem for cryptographic purposes has sometimes been over-estimated (Patarin 1996;
Billet and Gilbert 2003; Patarin et al. 1998b).

A powerful attack against the IP problem in the special case of the Matsumoto
and Imai scheme A has also been proposed in Fouque et al. (2008b) and allows to
recover the secret key of the Matsumoto and Imai scheme A, not only to invert it.
This attack builds on a previous attack against SFLASH (Dubois et al. 2007a) and
only uses efficient linear algebra. Finally, there has been no success up to now in
attacking the IP problem underlying the HFE cryptosystem.

3.2 Two Rounds

We have seen in the previous sections that embedding a trapdoor in a tuple of
quadratic multivariate polynomials is not an easy task. A natural way to try circum-
venting the difficulty is to rely on the composition of two multivariate mappings f
and g. The first proposal based on such a strategy can be found in Patarin and Goubin
(1997). In order to ease the exposition, we only describe a restricted version of it.
It makes use of three mappings f = (f1, f2, . . . , fn), U , and g = (g1, g2, . . . , gn)
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where the fi and gi are k-tuples of multivariate quadratic polynomials in k variables
and U is a change of coordinates over K

kn. Thus, the published mapping is the
composition T ◦ g ◦U ◦ f ◦ S where S ans T are additional changes of coordinates
over K

kn. This proposal, called two rounds by their designers, can be thought of
as an asymmetric version of the substitution and permutation network construction
classical in symmetric cryptography where the fi and gi play the role of S-boxes.
(Note that these mappings fi and gi are not required to be one-to-one.) Obviously,
those S-boxes can be easily inverted when considered alone. Thus, the security of
the proposed scheme heavily relies on the hardness of the problem of decomposition
of the public mapping:

Definition 3 (Decomposition Problem) Given a set of n+1 multivariate polynomi-
als f , h1, . . . , hn, in n variables defined over some finite field K, find (provided it
exists) a polynomial g of degree r such that:

f (x1, . . . , xn)= g(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)).

For multivariate polynomials of arbitrary degree, this problem is often assumed to
be difficult to solve Dickerson (1989), von zur Gathen et al. (2003), as expected by
the authors of two rounds. The decisional version of the decomposition problem is
also sometimes referred to as the ring membership problem since it amounts to de-
ciding the membership of f to the ring K[h1, . . . , hn] restricted to polynomials of
degree r . However for efficiency reasons, the degree r of g is assumed to be two in
the two round scheme, and in this case, the corresponding decomposition problem
becomes easy. Ye, Lam, and Dai indeed proposed in Ye et al. (1999, 2001) an effi-
cient strategy to solve it based on the following simple remark: when the degree of g
is two, the partial derivatives of f are nothing but elements lihj where li is a lin-
ear form and thus span an ideal Δf contained in 〈x1h1, . . . , xnh1, x1h2, . . . , xnhn〉.
Hence, computing (Δf : 〈x1, . . . , xn〉) (that is, the set of polynomials p such that
Lp lies in Δf for every linear form L) reveals 〈h1, . . . , hn〉. This fact was verified
by experiments by the authors of Ye et al. (1999). To complete the attack, a basis
of this last ideal gives an n-tuple h̃= (h̃1, . . . , h̃n) where the h̃i are linear combina-
tions of the original polynomials hi , which is enough to recover—by interpolation
for instance—the remaining mapping g̃ such that g̃ ◦ h̃= f .

The authors of Patarin and Goubin (1997) tweaked their original construction
so as to thwart this new threat and proposed to remove several public equations of
two rounds, so that f = g ◦ h and h are mappings in n variables, but f and g are
m-tuples of multivariate polynomials in n variables with m < n. But Faugère and
Perret (2006b) refined the ideas of Ye et al. (1999) and showed that the scheme
can still be cryptanalysed. Let us briefly describe their strategy: the basic idea is to
compute (Δf : xδn) for some well chosen δ > 0. Indeed, the relations:

∂fi

∂xj
=

∑

1≤k,l≤n
g
(i)
k,l

(
∂hk

∂xj
hl + ∂hl

∂xj
hk

)

(11)
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show that any linear combination of polynomials of the form z[δ−1] ∂fi
∂xj

, where z[δ−1]
stands for any monomial of degree δ − 1 in the variables xi , is also a linear combi-
nation of polynomials of the form z[δ]hi . If V denotes the vector space spanned by
the polynomials of the form z[δ]hi and Ṽ denotes the vector space spanned by the
polynomials of the form z[δ−1] ∂fi

∂xj
, then xδnhi belongs to Ṽ for all i as soon as the

dimension of Ṽ as a vector space over V is at least n(n+δ−1
δ
). Thus, the computation

of a Gröbner basis of (Δf : xδn) provides the n-tuple (h̃1, . . . , h̃n) we were seeking.
Faugère and Perret (2006b) also give an upper bound for the degree δ which helps
evaluate the complexity of the Gröbner basis computation: the attack succeeds as
soon as δ ≥ m

n
. Thus, the results of Ye et al. (1999) come as the special case m= n.

4 Discussion

This overview of the state of the art in the cryptanalysis of multivariate asymmetric
cryptosystems shows that system solving techniques brought a lot to the understand-
ing of multivariate cryptosystems. It helped uncover structural properties of those
schemes and pushed the limits of our knowledge with respect to some difficult prob-
lems such as the functional decomposition problem or the problem of finding iso-
morphisms between tuple of polynomials. The extensive experiments with the com-
putation of Gröbner basis of randomly generated systems of polynomials together
with the mathematical insights brought by the complexity analyzes from Bardet
(2004) yield useful tools for dimensioning symmetric multivariate cryptosystems
such as Berbain et al. (2006, 2007).

While several multivariate asymmetric schemes have been shown to be suscep-
tible to some extent to Gröbner basis techniques, a lot of these attacks still lack
rigorous complexity analysis. Several of them remain slow and progresses in the
understanding of system solving techniques as applied to multivariate asymmetric
cryptosystems would be of interest to the cryptographers’ community. It also has
to be emphasized that the cryptanalytic work performed against asymmetric mul-
tivariate cryptosystems has already benefited other areas of cryptography such as
the cryptanalysis of stream ciphers which as witness a new range of attacks called
algebraic attacks (Faugère and Ars 2003; Courtois and Meier 2003).

Apart from obtaining a better understanding of existing attacks, there are sev-
eral other challenges for the cryptanalists. Concerning the multivariate schemes, the
unbalanced Oil & Vinegar scheme remains unbroken. Furthermore, the effect of re-
moving equations from the public key was shown to be inefficient in the case of
the SFLASH cryptosystem and the natural following step is to settle the case of
HFE−−. On the side of the underlying hard problems, the functional decomposi-
tion problem has been shown to be useless to design cryptosystems but the problem
of finding isomorphisms between tuples of polynomials needs a lot more study. In
particular, cryptographers need a better understanding of the mechanisms behind
the attack from Faugère and Perret (2006a) and a natural question is the possibility
of mounting a key recovery attack against the HFE cryptosystem, at least with a
rigorous complexity analysis.
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A Survey on Polly Cracker Systems
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Maria Grazia Marinari, Ludovic Perret and
Carlo Traverso

Abstract In 1993 Boo Barkee and others have written a paper “Why you cannot
even hope to use Gröbner Bases in Public Key Cryptography: an open letter to a
scientist who failed and a challenge to those who have not yet failed.” Since 1994,
further attempts have been made, that gave rise to several cryptosystems now known
as Polly Cracker systems. None of these proposals have been successful, and while
Gröbner Bases are now an established tool for cryptanalysis, the challenge of Boo
Barkee still stands w.r.t. the design point of view. We outline a description of how
all these attempts have failed.

Keywords Polly Cracker systems · Combinatorial-algebraic cryptosystems

1 Introduction

Multivariate algebra plays a central role in today’s cryptography. The most popular
public key cryptosystems based on multivariate polynomials are more or less related
to the Matsumoto–Imai (1985) scheme, dating back to late eighties (see Billet and
Ding 2009).

The Polly Cracker-like family, arising in the early nineties, proposed an alterna-
tive use of multivariate algebra in cryptography. Surprisingly enough, this concept
became quite popular in the cryptographic community. In this paper, we survey the
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constructions and results having appeared so far on Polly Craker-like schemes. Our
goal is to reevaluate the provocative assertion made more than ten years ago by Bar-
kee et al. in their seminal paper (Mora 2003), namely that one “cannot even hope
to use Gröbner Bases in Public-key Cryptography”. Note that, because of recent
uses of Gröbner bases (Buchberger 1965, 1970, 1985, 1998, 2006) in cryptanaly-
sis, it should rather be replaced by “Why one cannot hope to use Polly Cracker-like
systems in cryptography”. We will try here to explain why this assertion is fun-
damentally valid today. In other words, why one cannot use such schemes for the
design of secure and efficient cryptosystems.

In order to introduce Polly Cracker systems properly, let us first fix some no-
tation (see Mora 2009a). We will denote by F a field, frequently (but not always)
finite of characteristic 2, and often F2. P will be a polynomial ring, T the monoid
of its terms (power products), and we will assume that there is a term-ordering
defined in P , so that we can define the leading term T(f ) of a polynomial f
and Gröbner bases; I(G) denotes the ideal generated by a set G of polynomi-
als; T(I) and N(I) will be respectively the sets of leading and normal terms of an
ideal I.

By a Polly Cracker-like system, we mean a system in which the secret key is a
Gröbner basis of a multivariate ideal J ⊂ P , together with a subset S of the set of
normal terms N(J). Let T be a set of terms mapping bijectively to S through the nor-
mal form map. The public key is composed of a set of polynomials of an ideal I⊆ J
and the set T ; the plaintext space is the vector space SpanF(T ) generated by T , and
encryption of M ∈ SpanF(T ) is done by adding to M an element of I chosen with
a randomized procedure. Decryption of a ciphertext C consists in computing the
canonical form of C w.r.t. I using the Gröbner basis, and mapping back to Span(T ).
The term-ordering is not public, but the security of the cryptosystem does not rely
on the privacy of the term-ordering.

This family of systems includes the initial scheme of Barkee et al. (Sect. 2.1),
the CA-style1 systems of Fellows and Koblitz (Sect. 3), and several others, as well
as the recently proposed non-commutative versions of Barkee et al.’s cryptosys-
tem (Sect. 6.1). Remark that in several cases, including the systems of Fellows and
Koblitz, for which the “Polly Cracker” name was first used, the private ideal is a
maximal ideal, and the knowledge of a root is equivalent to the knowledge of a
Gröbner basis of a maximal ideal.

To support our claim, we shall show that all the schemes proposed so far are
vulnerable to attacks which are either of a cryptographic nature—oracle attacks,
more precisely chosen ciphertext attacks—or of a structural one, i.e. exploiting the
structure of the public-key to recover the plaintext or an equivalent secret key. It is
to be noted that the oracle attacks also permit to recover a secret key, and it is not
always clear how to design a padding scheme in order to prevent those.

The paper first presents the scheme of Barkee et al. (Sect. 2), which is the
most general setting, as well as some generic attacks on it (Gröbner basis com-
putation, linear algebra attack, chosen ciphertext attack). We then focus (Sect. 3)

1CA stands for Combinatorial-Algebraic.
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on a family of schemes that are pretty close in design, namely the CA-style cryp-
tosystems of Fellows and Koblitz (1994). Schemes in this class essentially differ
from one another by their underlying hard problem: they mainly include graph
theory problems, solving sparse multivariate systems over a finite field, as well
as 3-SAT; each of those schemes was designed to patch an attack made on pre-
vious proposals, a chronology we adopt in our presentation. In that section, we
also quote a somehow different scheme, namely Polly-two, which elegantly coun-
ters all previously known attacks on Polly Craker-like cryptosystems. Unfortu-
nately, we will see that this scheme is very sensitive to an enhanced structural at-
tack.

Our last section is concerned with the extension of Polly Cracker schemes to
algebras different from commutative polynomial algebras, yet allowing a Gröbner
Basis theory; these include non-commutative free algebras. While sharing the weak-
nesses of the commutative schemes, they introduce new ones.

2 The Seminal Paper

In 1993, B. Barkee et al. wrote a paper (Barkee et al. 1994) whose aim was to dispel
the urban legend that “Gröbner bases are hard to compute”. Another goal was to
orient research on applications of Gröbner bases to cryptosystems towards the use
of sparse multivariate schemes. To do so, they proposed the most obvious dense
Gröbner-based cryptosystem.

2.1 Barkee’s Cryptosystem

Their pseudo-system consisted in first writing down an easy-to-produce Gröbner
basis F = {f1, . . . , fs} generating an ideal I := I(F ) ⊂ P . This can be efficiently
performed via Macaulay’s trick (Mora 2003, 2005). The public key is then a set
G := {g1, . . . , g�} ⊂ I(F ) of dense polynomials of degree at most d in P and a set

T := {τ1, . . . , τs} ⊂N(I(F ))= T \T(I(F ))

of normal terms belonging to the Gröbner escalier of I(F ) either the whole of it, or,
for added security, a subset of it (Barkee et al. 1994).

In order to encrypt a messageM :=∑s
i=1 ciτi ∈ SpanF(T ), the sender produces

random dense polynomials pj ∈ P,1≤ j ≤ �,deg(pj )= r and encryptsM as

C :=M +
�∑

j=1

pjgj .
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The legitimate receiver—possessing the Gröbner basis of I(F )—applies Buch-
berger’s reduction to obtain

Can
(
C, I(F )

)=M =
s∑

i=1

ciτi .

It is easy to realize that denoting, for each δ ∈N

T (δ) := {τ ∈ T : deg(τ )≤ δ} and T(δ) := #T (δ)=
(
δ + n
n

)

,

both encoding and decoding costs between O(T(d + r)) (the time needed to scan a
dense message) and O(T2(d + r)) (the cost of Buchberger’s reduction algorithm in
the generic case). The point of the paper was that an enemy would have been able
to read the message without even attempting to perform the hard2 Gröbner basis
computation but with a more elementary linear-algebra based approach. Namely
they proposed the following two attacks.

2.2 The Fantomas Attack

The Fantomas attack is based on the following result of the TERA community
(Dickenstein et al. 1991). Let G := {g1, . . . , g�},deg(gi) ≤ d and C be a polyno-
mial, of degree deg(C) smaller than or equal to d+r, for whichC−Can(C, I(F ))=∑�
j=1 pjgj satisfies deg(pj ) ≤ r . It is then possible to compute Can(C, I(F )) by

a modified version of Buchberger’s algorithm (each reduction of S-polynomials of
degree higher than d + r being not performed).

The attacker does not know the exact value r since there could be highest-degree
cancellation so that r > deg(C) − d but this is not a problem: computations in-
volving S-polynomials of degree higher than D := deg(C) are postponed instead
of not being performed; if the first round fails to return an element in SpanF(T ),
the algorithm sets D := D + 1 and performs row reductions of S-polynomials of
degree bounded by D. Repeating this procedure after r + d − deg(C) rounds, the
attacker founds both r and M . The Fantomas attack costs O(T4(d + r)), using a
Buchberger’s algorithm truncated at degree d + r .

2.3 The Moriarty Attack

The method is based on the following observation. By the very construction of the
ciphertext C it holds that

2 O(T4(δ)) where δ :=max{deg(τ ) : τ ∈G≺(I)} = O(dn2n ).
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C =
�∑

j=1

pjgj +
∑

τ∈T
cτ τ

We can solve this equation by regarding the coefficients of gj s as unknowns and get
linear equations by identifying the coefficients of the terms ofC with the coefficients
of the terms of

∑�
j=1 pjgj . More precisely, starting with D = degC and increasing

it at every iteration, consider the pj as polynomials of degree D − deg(gj ), pj =∑
σ∈T (D−deg(gj )) bjσ σ and solve the equation with respect to the unknowns cτ , bjσ ,

that appear linearly. If the system is not solvable, increaseD and repeat. The system
will be solvable when we reach the level r that was used in the encoding procedure.
Being a dense linear algebra problem, the Moriarty Attack costs O(T3(d + r)) with
Gaussian algebra, O(T2.4...(d + r)) with fast linear algebra.

2.4 Bulygin’s Attack

We describe in this part a chosen ciphertext attack against Barkee’s system. In this
context, an attacker has access to a decryption oracle O permitting to obtain the
plaintext m corresponding to a ciphertext C, i.e. O(C) = m. This attack is due
to Bulygin (2005), and was originally described against a non-commutative ver-
sion of Barkee’s scheme (Sect. 6.1). In this attack, we suppose that the whole set
T(I(F )) is known. Note that this assumption is verified for the particular (non-
commutative) scheme studied by Bulygin, but cannot be longer true in a more gen-
eral context, i.e. Barkee’s scheme. However, Alonso and Marinari (2008) recently
proved that this assumption is somehow irrelevant, rendering then Bulygin’s attack
much more powerful. The basic idea of this attack is to remark that for each fi ∈ F ,
Can(T(fi), I(F ))= fi −T(fi). He then builds fake ciphertexts

C̃i :=
�∑

j=1

pjgj +T(fi).

The decrypted version of this message is Can(C̃i , I(F ))= fi−T(fi), allowing then
to obtain the polynomials fi = Can(C̃i , I(F ))+T(fi) of the secret key.

2.4.1 Rai–Bulygin: Protecting Barkee’s Scheme Against Bulygin’s Attack

Bulygin and Rai (2006) remarked that it is not difficult to detect the fake ciphertexts
C̃i . They suggest to publish a subset T ⊂N(I(F )) such that:

(N(I(F )) \ T )∩ supp(fi) �= ∅, ∀i,1≤ i ≤ s.
The decryption procedure will be then modified such that an error message is re-
turned as soon as the decrypted messageM does not satisfy supp(M)⊂ T .
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This defense is very partial, since either T is considerably reduced with respect to
N(I(F )) or there is a non-negligible probability that a crafted message is accepted,
thus revealing some private information.

3 CA-Style Cryptosystems

3.1 Generic Design

At about the same time, and independently (Mora 1994) from the work of Barkee et
al., Fellows and Koblitz (1994) proposed a framework for the design of public-key
cryptosystems, the ideas of which are very similar to Barkee’s cryptosystem, but
which differ on two essential aspects: first, the polynomials generating the public
ideal are derived from combinatorial or algebraic NP-complete problems; such sys-
tems were thus naturally named CA-systems—for “combinatorial-algebraic” sys-
tems. Second, these schemes are bound to be sparse: the main reason is to render
the linear algebra attack (2.3) exponential time (Koblitz 1998), another reason is to
allow for a reasonable-size public key. Additionally, the secret key is not a Gröbner
basis of the public ideal, but more simply a root of it, i.e. a Gröbner basis of a maxi-
mal ideal containing the public ideal. The main illustration of such systems was the
Polly Cracker cryptosystem.

In this system, the public-key is a set G= {g1, . . . , g�} ⊂ P , and the secret-key
is a zero α of the ideal I= I(G). To encrypt a message m ∈ F, one chooses random
polynomials pi ∈ P , 1≤ i ≤ n, computes C =∑�

i=1 pigi +m and sends C. Know-
ing α then allows the legitimate receiver to decrypt the ciphertext just by evaluating
C(α).

The set G is an encoding of an instance of an NP-complete (combinatorial or
algebraic) problem in such a way that knowing G is equivalent to knowing the
considered instance, and that finding a secret-key from G is equivalent to finding a
solution for this particular instance. M. Fellows and N. Koblitz suggest several NP-
complete problems for use in this context, mainly based on graph theory, though
not investigating the way of generating “hard” (random) solved instances of these
problems.

3.1.1 Effective Proposals and Basic Attacks

The first instantiation of CA-style cryptosystems use combinatorial problems on
graphs. To implement such a system, one needs to choose a graph Γ having a
combinatorial property, and define a basis G ⊂ P such that the roots of the ideal
I := I(G) are exactly all solutions to the problem.
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3.2 Graph 3-Coloring

To set up the system, one needs to choose a graph Γ = (V ,E), V = {1, . . . , n},
E ⊂ {{i, j},1 ≤ i < j ≤ n}, for which a proper 3-coloring is known. A 3-coloring
is a map Φ : V →{1,2,3} such that {i, j} ∈E =⇒Φ(i) �=Φ(j). A 3-coloring can
be given by assigning {0,1} values to a set of 3n variables Xij , 1≤ i ≤ n, 1≤ j ≤ 3
such that Xi,j = 1⇔ Φ(i) = j . Set G := G0 ∪G1 ∪G2 ∪G3 ⊂ F2[Xic,1 ≤ i ≤
n,1≤ c ≤ 3], where

• G0 = {Xi1Xi2,Xi1Xi3,Xi2Xi3 : 1 ≤ i ≤ n}—each vertex cannot be colored in
two different ways;

• G1 = {gi :=Xi1+Xi2+Xi3−1 : 1≤ i ≤ n}—each vertex has at least one color;
thus, in connection with G0, a single color;

• G2 = {Xi1Xj1,Xi2Xj2,Xi3Xj3, {i, j} ∈ E}—two connected vertices have dif-
ferent colors;

• G3 = {X2
ic −Xic,1 ≤ i ≤ n,1 ≤ c ≤ 3}—the root components are either 0 or 1.

Remark that this last set of equations can be derived from G0 and G1.

The public key is G, while the secret key is a 3-coloring of Γ . In order to encrypt
a message m ∈ F2, one randomly chooses a polynomial p in the ideal generated
by the polynomials of G, and sets the ciphertext to be C = p +m. The recipient,
who knows a 3-coloring of Γ and hence an F2-point α of V (G), simply computes
C(α)= p(α)+m=m.

3.3 Graph Perfect Code

This time, one chooses a graph Γ = (V ,E) (notation as above) which owns a perfect
code. A perfect code is a subset V ′ of V such that for each u ∈ V the neighborhood
N [u] of u, N [u] := {u} ∪ {v ∈ V : {u,v} ∈ E}, contains exactly one element in V ′.
A subset of V can be identified by the characteristic function, that in turn is a {0,1}
assignment to a set of variables Xu, u ∈ V . Set G :=G0 ∪G1 ∪G2 ⊂ F2[Xu,1 ≤
u≤ n] where

• G0 = {XvXw,v �=w,v,w ∈N [u], u ∈ V }—for each u ∈ V , #(N [u] ∩ V ′)≤ 1;
• G1 = {gu := 1−∑v∈N [u]Xv : 1≤ u≤ n};— in connection withG0 andG2 there

is a single element in N [u] ∩ V ′;
• G2 = {X2

ic −Xic,1 ≤ i ≤ n,1 ≤ c ≤ 3}—the root components are either 0 or 1.
Remark that these equations can be deduced from the previous ones.

The public key is G, the secret key is V ′; encryption and decryption are the same as
for 3-coloring.

As shown in Endsuleit et al. (2002), the graph perfect code-based scheme with
random chosen graphs is vulnerable to a Gröbner basis attack, where one computes
a Gröbner basis G′ of I(G) and recovers m as Can(C,G′).

In both graph coloring and perfect code, elaborate randomized procedures are
described, that might allow to reduce the sensitivity to the following linear algebra
attack.
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3.4 Intelligent Linear Algebra Attack

Soon after Fellows and Koblitz proposed their CA-systems, H.W. Lenstra (Koblitz
1998) noticed that the basic linear algebra attack (attack 2.3) could be improved by
decreasing the number of unknowns in the following way: let

T (C)=
{

t ∈ T : ∃tg ∈
�⋃

j=1

supp(gj ),∃tC ∈ supp(C) such that tC = t tg
}

.

Roughly speaking, T (C) denotes the set of terms that Bob can potentially use to
construct the given ciphertext C. If:

�⋃

j=1

supp(pj )⊆ T (C), (1)

i.e. for each j , 1≤ j ≤ �, every term of pj divides at least one term of the ciphertext
C, then we can set, for each j ,

Tj := {τ ∈ T (D − deg(gj )) : ∃ω ∈ supp(gj ), υ ∈ supp(C) : υ = τω},
where D := deg(C). It is then possible to reconstruct the polynomials pj used to
produce the ciphertext by solving the (smaller) system of linear equations which are
the coefficients of each term in T in the following polynomial equation

∑

τ∈T (D)
aτ τ −

�∑

j=1

(
∑

τ∈Tj
bjτ τ

)

gj −m= 0

(where
∑
τ∈T (D) aτ τ = C, the known received message), with unknowns

{
bjτ : τ ∈ Tj ,1≤ j ≤ �

}
.

The graph 3-coloring scheme was not designed to resist this attack; on the other
hand, the graph perfect code-based scheme was Koblitz (1998): indeed, due to the
form of its public key, it is always possible to construct a ciphertext for which condi-
tion (1) is not achieved—i.e. there exists at least one term t ∈⋃�i=1 supp(pj ) which
does not divide any of the terms of the ciphertext.

3.5 EnRoot

Grant et al. (2000) proposed an encryption scheme based on the difficulty of finding
a solution to a given system of sparse polynomial equations over a large finite field.

The system parameters are a large finite field Fq , and (small) positive integers
k, si, ti , 1≤ i ≤ k. The legitimate recipient randomly chooses:
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• k polynomials hi ∈ Fq [X1, . . . ,Xn], 1 ≤ i ≤ k, each hi being of degree at most
q − 1, with # supp(hi) < ti ,

• non-zero elements a1, . . . , an ∈ Fq .

The public key consists of the polynomials fi(X) = hi(X) − hi(a1, . . . , an), 1 ≤
i ≤ k, while the secret key is a = (a1, . . . , an).

To encrypt m ∈ Fq , Bob randomly chooses k polynomials gi ∈ Fq [X1, . . . ,Xn],
each gi being of degree at most q − 1, with # supp(gi) < si , such that gi(0) �= 0. He
computes Φ = Can(

∑k
i=1 gifi, I), where I = (Xq1 − X1, . . . ,X

q
n − Xn), and sends

C =Φ +m. The recipient, knowing a, decrypts C by evaluating it at a.
Soon after its publication, it has been shown in Bao et al. (2001) that the system is

vulnerable to a 0-evaluation attack, the success of which is enhanced by the sparsity
of the polynomials involved. In the paper of Banks et al. (2001) a variant of EnRoot
is discussed, on which the same attacks are successful.

3.6 0-Evaluation Attack

The idea of the 0-evaluation attack is to reconstruct the polynomials pi used by the
sender to produce the ciphertext. In the case of a regular Polly Cracker system, we
observe that, as the plaintext m is a constant, we have:

m= C(0)−
�∑

i=1

pi(0)gi(0). (2)

Thus, to revealm, it is sufficient to retrieve the constant terms of the polynomials pi
for those i for which gi(0) �= 0. As there are

(
n+d
d

)
terms of total degree less than d

in n variables, one can assume3 that the public polynomials gi are not dense. Thus,
one can suppose that each gi contains a term ti that does not occur in supp(gj ), for
j �= i (such a term is called “characteristic term”). It is also probable that more than
one characteristic term exists in every gi .

A characteristic term τ will probably appear in
∑
pjgj and it is also likely that

the only contribution to the sum will be the product of the monomial with term τ in
gi times the constant term pi(0) of pi . So from any characteristic term of gi we will
obtain a guess for pi(0). If there are several characteristic terms in gi it is likely that
most of them will propose the same guess for pi(0) while a few others will propose
different values4.

For the graph 3-coloring instance of Polly Cracker, the polynomials of the public-
key having non-zero constant terms are the gi(X)=Xi1+Xi2+Xi3+1, 1≤ i ≤ n

3Otherwise this would result in a huge public key.
4Note that the above condition is likely to be satisfied if the polynomials pi are sparse, a realistic
assumption for efficient encryption. This is particularly the case for the EnRoot encryption scheme,
where the polynomials are required to be very sparse and chosen at random.
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(the other ones have total degree two and no non-constant term). Thus, it is sufficient
to recover the pi(0) for those i only. The terms Xij , 1 ≤ j ≤ 3, can thus serve as
characteristic terms of gi . This scheme is therefore prone to this attack.

Note that the perfect code-based scheme is not, since, for any two vertices u and
v, d(u, v) ≤ 2, we have supp(gu) ∩ supp(gv) �= ∅. This attack can sometimes be
defeated by modifying the choice of the pj ’s, making the assumptions on which it
relies false.

3.7 3-SAT

Having in mind to design a scheme resistant to the 0-evaluation attack, as well as to
the intelligent linear algebra one, whilst respecting the building upon hard problems-
spirit of CA-style systems, Levy-dit-Vehel and Perret (2004) proposed a scheme
which relies on the satisfiability problem.

In this system, a finite field Fq with q ≥ 3, and positive integers m and n are
chosen, as well as a random vector y of {T ,F }n, T ,F ∈ Fq . The public key5 is a
formula, i.e. a conjunction of m clauses in n variables C =∧mi=1Ci , admitting y
as model (i.e. truth assignment making all Ci true); C belongs to the class of so-
called doubly-balanced 3-SAT formulae. Instances from this class are much more
difficult to solve in general than random 3-SAT instances, as they are designed to
have structural regularities, thus confusing variable selection heuristics that are used
by most solvers (see Hirsch 2009 for a precise description of such formulae, and a
generating method for those.) The parameters q , n andm are also public. The private
key is y.

The encryption phase follows the idea of a regular Polly Cracker scheme. But the
practical realization is quite different from Fellows and Koblitz (1994). Denote by
{g1, . . . , gm}, the polynomials constructed from the clauses {C1, . . . ,Cm}—clause
C =Xj ∨ X̄k∨X� yielding polynomial gC(X)= (Xj −T )(Xk−F)(X�−T )—and
by I, the ideal generated by these polynomials. It is then clear that a satisfying truth
assignment of X for C corresponds to a zero of the polynomial gC(X).

Let k ∈ {1, . . . ,m}, {i1, . . . , ik} ⊂ {1, . . . ,m} and {Cij }1≤j≤k be a set of clauses.
Denote by {Var(Cij )}, the variables occurring in clause Cij . {Var(Cij )}1≤j≤k is a
disjoint set if for all a, b ∈ {i1, . . . , ik}, a �= b,Var(Ca) ∩ Var(Cb) = ∅. Note that,
if {Var(Cij )}1≤j≤k is a disjoint set, then {gij }1≤j≤k is a reduced Gröbner basis of
〈gij 〉1≤j≤k for the degree lexicographical (deglex) order. To perform encryption, one
needs and element from I; it is constructed with the following algorithm:

5It would have been equivalent—from an information theoretic viewpoint—to publish the m poly-
nomials corresponding to these m clauses, but the “clause-representation” allows for a more com-
pact form.



A Survey on Polly Cracker Systems 295

Algorithm 1
Input: f ∈ Fq [X], �≥ 2, {λ1, . . . , λ�}, λi ∈ Fq with

∑�
i=1 λi ≡ 0[q] and

D= {d1, . . . ,d�} a set of indices subsets such that ∀1≤ i ≤ l,
{Var(Cij )}j∈di is a disjoint set.
Output: an element of the ideal I.
For i from 1 to � do

1. compute Ni(f )= Can(f, Ji ), where Ji = 〈gj : j ∈ di〉
End For
Return eI =∑l

i=1 λiNi(f ).

To encrypt M ∈ Fq , choose β = (β1, . . . , βn) ∈ supp(eI ), β �= 0, compute the ci-

phertext defined by C = eI +MXβ1
1 · · ·Xβnn , and send (C,β).

Decryption

Upon receiving (C,β), the legitimate recipient evaluates C(y)
yβ
= eI(y)+Myβ

yβ
=M and

recovers6 the plaintext.
The polynomial f used to generate eI(X) for encryption is of the form f =

aXα+g(X) ∈ Fq [X] with (a,α) ∈ F
∗
q ×N

n. It is shown in Levy-dit-Vehel and Per-
ret (2004) that if Xα is a term of total degree d and is a multiple of

∏n
i=1Xi , and the

terms of g(X) are of total degree strictly smaller than d − 3, then the scheme is re-
sistant to the intelligent linear algebra attack, though not withstanding a differential
attack (see next section).

4 Further Attacks

4.1 Basic CCA (Steinwandt and Geiselmann 2002)

Assume that instead of the ciphertext polynomial C =∑�
i=1 pigi + m, m ∈ Fq ,

an attacker sends C̃i =∑�
i=1 pigi +Xi . Such a fake ciphertext cannot in principle

be distinguished from a correct one (i.e both are considered valid). The plaintext
corresponding to c̃i is yi , the i-th coordinate of the private key y ∈ F

n
q . Thus, by

n queries C̃1, . . . , C̃n to a decryption oracle, the attacker learns the entire private
key y.

Note that, in a restricted context, this CCA is similar to Bulygin’s attack. Suppose
that y is the only zero of the ideal I(F ). In this case, we know that its reduced
Gröbner basis has the following form {X1 − y1, . . . ,Xn − yn}. In this setting:

Can
(
Xi, I(F )

)= yi, for all i,1≤ i ≤ n.
Thus, the two attacks coincide in this particular context.

6T and F being two non-zero field elements, it follows that yβ �= 0 for any choice of β .



296 F. Levy-dit-Vehel et al.

4.2 Differential Attack

Hofheinz and Steinwandt propose in Hofheinz and Steinwandt (2002) a method to
enhance the feasibility of the intelligent linear algebra attack previously described.
In particular, their attack permits to recover “hidden monomials” in the Koblitz’s
graph perfect code instance of Polly-Cracker (Koblitz 1998) (Chap. 5). We detail
here the ideas of this attack. For f =∑μ∈Nn

aμX
μ, we set:

Δ(f )=
{
aμ

aν
Xμ−ν :Xν <Xμ,aμ · aν �= 0

}

.

Suppose that for some i,1≤ i ≤m, there exists a “characteristic difference” δi , i.e.
δi = aμi

aνi
Xμi−νi , with aμiX

μi , aνiX
νi monomials in gi and such that:

δi ∈Δ(gi) \
(⋃

j �=i
Δ(gj )

)

.

Suppose in addition that there exists a monomial aηiX
ηi in pi such that XηiXμi and

XηiXνi do not occur among the monomials of C−aηiXηi gi . If for this characteristic
difference, an adversary can find monomials m1,m2 in the ciphertext with Xμi |m1
and m1/m2 being equal to δi , then we can identify a potential monomial mp of pi
as:

mp = m1

aμiX
μi
= m2

aνiX
νi
.

The adversary cannot be sure about the correctness of his guess (i.e. if mp is really
a monomial of pi ). But he can check it by computing the number of monomials in
the simplified ciphertext C′ = C −mpgi . Indeed, if the number of monomials in C′
is smaller than in C, it is then very likely that mp is a monomial of pi . Notice that
C and C′ encrypt the same plaintext.

An adversary repeats this simplification process of the ciphertext for each char-
acteristic difference in the set Δ(gi) \ (⋃j �=i Δ(gj )) and for all i,1 ≤ i ≤ �. If at
some point of this simplification process C′ is a constant, then the encrypted plain-
text has been recovered successfully. Otherwise, he can try to perform an intelligent
linear algebra attack on the simplified ciphertext. Subtracting a polynomial from
the ciphertext can reveal hidden monomials. Indeed, the fact that a monomial mpj
in pj is hidden in the ciphertext C implies that for all i,1 ≤ i ≤ � there exist two
monomials mpi in pi and mgi in gi such that:

mpj gj +
�∑

i=1

mpimgi = 0.

Therefore, if one can find a monomialmpi ∈ {mp1 , . . . ,mp�}, then we know that the
simplified polynomial C′ = C −mpigi contains a monomial of the form mpjmgj ,
mgj being a monomial of gj . Therefore, the monomial which was hidden in the



A Survey on Polly Cracker Systems 297

ciphertext C is no longer hidden in the simplified ciphertext C′. We also would
like to emphasize that it is not clear that the sets {Δ(gi) \ (⋃j �=i Δ(gj ))}1≤i≤� al-
ways contain enough characteristic differences to recover all the hidden monomi-
als.

Following these remarks, Levy-dit-Vehel and Perret (2004) propose an improve-
ment of the differential attack. In particular, they no longer consider characteristic
differences. Given a ciphertext C, they first compute (for a monomial mi occurring
in a decomposition of the form mC =mimgi ) the polynomial C′ = C −migi . This
polynomial can validate the choice of the guess (we don’t know if mi is really a
monomial of gi ). Indeed, if #supp(C′) = #supp(C) − #supp(migi), then this can
be taken as evidence that mi is a monomial of gi . If this equality on the number
of monomials does not hold, the polynomial C′ can also be useful to reveal hidden
monomials: if there exists a monomial m′j in C′ which is not a monomial of C,
and which occurs in a decomposition of the form mC′ = m′jmGj , for some mono-
mial mgj of gj (indeed, we then have mC′ =m′jmgj =mimgi ) then, in addition to
the fact that mi is probably a monomial of gi , it is also very likely that m′j was a
monomial of gj that was hidden in the ciphertext C. In all other cases, mi is not a
monomial of gi , and we then set C′ = C.

At the second step, we select a monomial mk �= mi in a decomposition of the
form mC′ =mkmgk , with mc′ a monomial of C′ and for some monomial mgk of gk .
We compute C′′ = C′ −mkgk and we verify as previously whether mk is a correct
guess. We iterate this process while the simplified ciphertext is not a constant. Notice
that even if there are hidden monomials in the ciphertext, it is very likely that these
monomials can be guessed by considering simplified ciphertexts. As presented here,
the attack of Hofheinz and Steinwandt (2002) and the improvement described above
appear to be quite generic, and thus apply to the SAT based system too.

4.3 The 2-Nomial Attack

Endsuleit et al. (2002) suggests an “astonishingly simple” improvement of the trivial
attack against the graph based CA systems consisting in computing the Gröbner
basis ofG, which takes strong advantage of the shape of the basisG. If n is a natural
number, an n-nomial is a polynomial having at most nmonomials. Hence a 2-nomial
is either a monomial or a sum of 2 monomials. The public basisG of the graph-based
CA-style cryptosystems discussed earlier are composed of degree 1 polynomials
(G1) and 2-nomials (G0, G2 and G3). It is well known that Buchberger’s algorithm
applied to a 2-nomial set returns a 2-nomial Gröbner basis and a very effective
specialized version of Buchberger’s algorithm for 2-nomials exists. The 2-nomial
attack consists in iteratively performing linear algebra on the degree 1 part of G
with the aim of finding degree 1 2-nomial elements to add to G, and Buchberger’s
algorithm on the 2-nomial part of G with the aim of finding new degree 1 elements.
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4.4 Further Linear Algebra Attacks

The differential attack and the 2-nomial attack can be combined and generalized in
the following way. In the encoding procedure of a message, the set of monomials of
all the polynomials used is quite limited, since the encoding procedure has to be per-
formed in very short time. Hence all the computation takes place in a vector space
spanned by a small set of monomials. If we can guess a small vector space contain-
ing this space, we can perform dense linear algebra in this space to reconstruct the
message. Explicit relations between the generators simplify the linear algebra in this
vector space.

Every operation performed consists in elementary steps, each one being the ad-
dition of a monomial multiple of an element of the public key, or possibly a simple
combination of such polynomials. We call such polynomials, in the public key or
easily derived from the public key, elementary polynomials. These elementary poly-
nomials are usually of different categories:

− Monomials, that are usually clear from the problem description.
− Binomials involving just one variable, expressing the fact that a coordinate can

take only some values in the ground field (e.g. the x2
i − xi equations express the

fact that coordinates have (0,1) values)
− Other binomials (polynomials with two monomials).
− Polynomials with at least three monomials.

The first two types of polynomials allow the immediate reduction of the vector space
under consideration: monomials can be removed from every polynomial under con-
sideration, and binomials express an equivalence of a monomial with another, thus
one of the two can be replaced with the other one, hence removed from every sup-
port.

We assume for a moment that the ideal generated by the 2-nomials is easy to
study; ideally, we might be able to compute the Gröbner basis generated by the first
three types of polynomials.

Because of the sparsity, every operation involving polynomials with at least three
monomials can cancel usually just one monomial of the polynomial under construc-
tion, and sometimes can cancel more than one, but usually leaves more than one
monomial: one or more monomials of the current polynomial are erased, but at least
two are added. If this is true, one can find the support of the computation as follows:

− Start with the support of the cryptogram;
− Add to it the support of the monomial multiples of the elementary polynomials

whose support is partly contained in the current support.
− Attempt a linear algebra decryption. If it fails, repeat with the enlarged support.

This might fail only if the binomial part of the ideal cannot be explicitly described.
In particular, it will fail for hard toric ideals. The fact that toric ideals can model
hard combinatorial problems, like integer programming (Conti and Traverso 1992;
Bigatti et al. 1999) might give some faint hope of using ideals generated by binomi-
als for a variant of Polly Cracker (Caboara et al. 2008).
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5 Polly-Two

Recently (Ly 2006) a cryptosystem has been proposed, that fits our definition of
Polly Cracker, but that has a different specification, that apparently makes some
attacks more difficult.

The setting is the following: let F be a finite field, m> n non-negative integers,

φ,ψ maps F[y1, . . . , ym] φ−→F[x1, . . . , xn] ψ−→F, and L⊆ F[Y ] an ideal contained
in ker(ψ ◦ φ) given through a set of generators f1, . . . fn. The public ideal is I =
ker(φ)+ L (specified by giving φ and L) and the private ideal J= ker(ψ ◦ φ) is the
private key. A technical condition is that ψ(φ(yi)) �= 0.

Remark that ψ is nothing else than a point P ∈ F
n, φ is a vector G =

(g1, . . . , gm) ∈ F[X]m, the condition on L is that P is a root of I. The condition
ψ(φ(yi)) �= 0 means that no gi(P ) vanishes, and this is necessary for decoding the
cryptograms.

The fi are chosen as polynomials with few monomials of high degree, and φ is
defined through gi = φ(yi) of low degree, such that a Gröbner basis of ker(φ) can
be easily computed. This combination should ensure that a Gröbner basis of φ(L),
or anyway a root of L+ ker(φ) is hard to compute.

A message is an element c ∈ F, and a cryptogram is a pair (p = p′ +myα,α),
p′ = p1 + p2, p1 ∈ L, p2 ∈ ker(φ). The choice of p1 and p2 is made in such a way
that the support of p1 does not meet the support of p1+p2, and yα is chosen in the
support of p1 + p2. This should make intelligent linear algebra impossible.

The standard attacks are difficult, since the public key is not a list of polynomials,
but a recipe to produce them, and many different variants can be used. There are
however other attacks that can be used.

The first attack (Steinwandt 2006) works as follows. The encoding method com-
putes first p1, then every monomial of p1 is erased by a monomial of one element
of ker(φ). The other monomials usually do not cancel, and one can usually partition
the support in “clouds” of monomials, recognizable by their GCD. Each cloud c is
an element of ker(φ) with one monomial removed (and possibly another one modi-
fied); hence φ(c) behaves like a monomial (the opposite of the missing monomial)
and it can be easily identified.

The second attack is more complex, but independent of any concealing strategy
that could be designed to mix the “clouds” making them unidentifiable. One cannot
compute in φ(I) if one uses a representation of polynomials as sparse multivariate
polynomials. This would mean replacing, in the polynomials fi defining L, the yi
with f (yi), i.e. variables with polynomials in monomials of very large degree, hence
φ(fi) would be a polynomial with thousands of monomials. But one can instead use
a different representation. Evaluating φ(p(y1, . . . , ym))= p(φ(y1), . . . , φ(ym)) at a
point of Q ∈ F

n is easy, it is just the evaluation of the monomials of p in the φ(yi),
i.e. compute the value vi ∈ F at Q of each φ(yi) and replace yi in p with vi ; this is
the evaluation of a very sparse polynomial, and can be made by simply evaluating
the monomials as power products and summing them. This shows that working
on polynomials as black boxes or straight line programs is easy. Since φ(p2) = 0,
we have φ(p) = φ(p1 +myα), that has a small number of monomials, and sparse
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interpolation can recover it. Since yα by assumption is not in the support of p1,
recovering m is immediate.

In both attacks the key ingredient is discovering a polynomial with few monomi-
als through its value at some points. This is known as Sparse interpolation. Algo-
rithms of the type of Ben-Or and Tiwari (1988) may be used to solve efficiently the
problem. See also Grigoriev et al. (1990), Kaltofen and Trager (1990).

6 Non-commutative Gröbner Cryptosystems? No Thanks!

Another urban legend to dispel is that “Gröbner bases are impossible to compute
being infinite”.

Polly Cracker cryptosystems can obviously be proposed on structures different
from polynomial rings and their ideals, provided that a concept of Gröbner basis
exists. So, for example, free P -modules and their submodules can be used instead
of polynomials and ideals. This is of little interest, since this can be modeled with
suitable polynomial rings and orderings, see Caboara and Silvestri (1999).

Straightforward extensions can be made with other structures: reduction rings,
subalgebras, non-commutative algebras, etc; everything is extended naturally, with
increased difficulties for the legitimate users, because of the difficulties of the gen-
eralization of Gröbner bases, but with unchanged power of the attacks, since linear
algebra always remains the same.

Some of these extensions have been proposed; we will first analyze the weak-
nesses that they share with the other Polly Cracker systems, and their own weak-
nesses, derived from the difficulty of computing a private key, the Gröbner basis
being often infinite; then we will show, through Pritchard’s (1996) algorithm that
these difficulties do not extend to the simpler attacks.

6.1 Non-commutative Polly Cracker

Rai (2004) proposes to use two-sided ideals in free non-commutative algebras for
a generalization of Barkee’s cryptosystem. The theory of Gröbner bases and Buch-
berger’s algorithm generalizes to two-sided ideals in non-commutative polynomial
rings, (Green et al. 1998; Reinert 2003) but the Gröbner bases are usually infinite.
This fact is quoted as a factor of security in the obvious generalization of Barkee’s
Polly Cracker to non-commutative polynomials. While it is true, as pointed in Rai
(2004), that Ufnarowski’s Ideal (xx − xy) ∈ k〈x, y〉 has an infinite Gröbner basis,
Rai (2004) carefully avoids to remark that such infinite basis is {gi, i ∈ N} where
gi := xyix − xyi+1 and that ‘proving’ this statement simply requires (Green et al.
1998) to verify that the S-polynomials among gi and gj

S(gi, gj )= xyigj − giyj x = xyi+j+1x − xyixyj+1
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has the Gröbner representation S(gi, gj ) = −giyj+1 + gi+j+1. Of course, all the
attacks to Polly Cracker schemes that do not rely on the knowledge of a Gröbner
basis remain unchanged. But the fact that the Gröbner basis of an ideal is infinite
does not mean that it is not computable; indeed, the system BERGMAN (Backelin
et al. 2005) is able to compute such infinite Gröbner bases representing finite state
automata (Cojocaru and Ufnarovski 1995). Moreover, even without this, to solve
any normal form problem, a partial Gröbner basis is sufficient.

Coming to explicit examples, the fact that Gröbner bases of non-commutative
polynomials are usually infinite is instead a serious obstacle to the construction of
explicit Polly Cracker schemes. In particular, the only explicit systems that have
been proposed are systems in which the private ideal has one generator (Gröbner
bases of principal non-commutative ideals can be infinite, but it is easy to compute,
describe and show that are Gröbner bases).

6.1.1 Factoring Attacks

In this part, we will discuss of some ideas that might allow to attack such a scheme.
Principal ideals however allow easy recovery of the private key from the public
key through a factoring attack. If f is the generator of the private ideal J, then the
polynomials of the public key are two-sided multiples of f , gi = hif �i . It is hence
easy to recover f through a factorization, via one of the following methods:

− Map the non-commutative polynomials gi to the corresponding commutative
polynomial ring, compute the GCD, factor it and lift to the non-commutative
ring. This procedure might not work if all the gi reduce to 0 in the commutative
polynomial ring, but this is not the case in the examples described in Rai (2004).

− If the gi are 0 when made commutative, find maps to skew-commutative poly-
nomial rings such that the gi do not vanish when mapped, and factor the im-
ages through a “brute force” approach using linear algebra, then lift to the non-
commutative polynomials.

Direct factorization of non-commutative polynomials: algorithms for this factoriza-
tion exist (Davenport 1991), and, although it is not unique (and in general quite
expensive), the fact that in this case one seeks a common divisor of a set of polyno-
mials can be exploited in the algorithm.

6.2 Monoid Algebras

In Ackermann and Kreuzer (2006) Barkee’s cryptosystem in monoid algebras are
discussed. The basis is the extension of Gröbner bases to monoid rings described in
Madlener and Reinert (1993), Reinert (1995). It is interesting that any cryptosystem
can be described in terms of this extension of Polly Cracker, since every map on
a set can be extended to a free monoid generated by the same set (although the
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complexity increases considerably), in particular this is shown for RSA and Diffie-
Hellmann. The proposal however does not include concrete cryptosystems, except
Polly2 and Rai systems, that can be seen as special cases of monoid algebra Polly
Cracker, hence can be safely ignored.

6.3 Pritchard’s Decryption Algorithm

Generalizing Gröbner bases to non-commutative settings is simple, but lacking a
generalization of Noetherianity, they may be infinite. The status of such infinite non-
commutative Gröbner bases is not so obvious; the existence of such infinite bases
implies that Buchberger’s algorithm becomes a semi-decision procedure which ter-
minates returning a finite Gröbner basis if and only if such basis is finite.

More relevant, Pritchard (1996) adapted such version of Buchberger’s algorithm
into a semi-decision procedure which, given a basisG⊂ k〈X1, . . . ,Xn〉 and a poly-
nomial f ∈ k〈X1, . . . ,Xn〉 terminates if and only if f ∈ I(G).

It is a trivial exercise to adapt Pritchard’s Procedure in order to produce a pro-
cedure which, given a basis G⊂ F〈X1, . . . ,Xn〉, a polynomial C ∈ F〈X1, . . . ,Xn〉
and a finite set of terms

T ⊂N(I(F ))⊂ 〈X1, . . . ,Xn〉,
terminates if and only if M := Can(C, I(G)) ⊂ SpanF(T ), in which case it returns
such a canonical form, thus reading the message M := Can(C, I(F )) encrypted
as C.

There are today two wide generalizations of the notion of non-commutative
Gröbner bases which cover all specific instances discussed in literature (in par-
ticular Gröbner bases in the free monoid ring (Rai 2004) and over monoid rings
(Ackermann and Kreuzer 2006)): Reinert’s function rings (Reinert 2003) and Apel’s
pseudovaluation rings (Apel 2000). It has been proved (Mora 2009b):

Theorem 1 Let R := F[T ] be a Reinert function ring, F ⊂ R a finite set, f ∈ R an
element, T ⊂ N(I(F ))⊂ T a finite set of terms; there is a semi-decision procedure
which terminates if and only if there exists g ∈ SpanF(T ) such that f − g ∈ I(F )

and which, in case of termination, returns such a g.

We moreover conjecture that the same statement holds even if R is just a
pseudovaluation ring. Therefore, on the basis of these results, we consider that a
claim of solidity on the basis of the (false) urban legend that “non-commutative
Gröbner bases are impossible to be computed being infinite” is not acceptable: it
must be up to the claimers to prove that their instantiation of a Polly-Cracker sys-
tem is solid against a Gröbner basis computing, convincingly showing that a mock-
version of the proposed scheme resists against a good non-commutative implemen-
tation of Pritchard’s Procedure.
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7 Conclusion

From a cryptanalytic point of view, the study of Polly Cracker-type systems gives
rise to interesting mathematical and algorithmic problems. But the structural—as
well as oracle—attacks that we have presented show evidence that those schemes
are not suited for the design of secure cryptosystems. Moreover, they suffer from
efficiency problems, namely a bad encryption rate and an often large public key
size. Therefore, we do not think they deserve further investigation with respect to
design concerns. However, very recently, another Polly Cracker system based on
binomial ideals has been proposed (Caboara et al. 2008). Considering the fact that
those ideals are very special inside Gröbner bases theory, it might be the case that
this late proposal is more secure than its predecessors. Thus, the hope in secure Polly
Cracker design might now lie in here.
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Block Ciphers: Algebraic Cryptanalysis
and Gröbner Bases

Carlos Cid and Ralf-Philipp Weinmann

Abstract Block ciphers are one of the most important classes of cryptographic al-
gorithms in current use. Commonly used to provide confidentiality for transmission
and storage of information, they encrypt and decrypt blocks of data according to a
secret key. Several recently proposed block ciphers (in particular the AES (Daemen
and Rijmen in The Design of Rijndael, Springer, Berlin, 2002)) exhibit a highly
algebraic structure: their round transformations are based on simple algebraic oper-
ations over a finite field of characteristic 2. This has caused an increasing amount
of cryptanalytic attention to be directed to the algebraic properties of these ciphers.
Of particular interest is the proposal of the so-called algebraic attacks against block
ciphers. In these attacks, a cryptanalyst describes the encryption operation as a large
set of multivariate polynomial equations, which—once solved—can be used to re-
cover the secret key. Thus the difficulty of solving these systems of equations is
directly related to the cipher’s security. As a result computational algebra is becom-
ing an important tool for the cryptanalysis of block ciphers. In this paper we give an
overview of block ciphers design and recall some of the work that has been devel-
oped in the area of algebraic cryptanalysis. We also consider a few computational
and algebraic techniques that could be used in the analysis of block ciphers and
discuss possible directions for future work.

1 Introduction

Confidentiality is the traditional goal of cryptography. For centuries encryption algo-
rithms have been used by parties wishing to communicate securely. The traditional1

way to use an encryption algorithm is to share a secret key, which is used together
with the message as input to the algorithm. Accordingly, these algorithms are called
symmetric-key encryption algorithms. The two main types of symmetric-key en-
cryption algorithms are block ciphers and stream ciphers (Menezes et al. 1997).

1See Billet and Ding (2009) for public key cryptography.
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With block ciphers, data is broken up into blocks of fixed length, and each block
is encrypted according to the secret key. With stream ciphers, individual elements
of the message alphabet (e.g. characters or bits) are individually encrypted, using
an encryption transformation that varies with time. In practice, most stream ciphers
produce a keystream, and encryption is achieved by XORing the keystream with the
message (Armknecht and Ars 2009).

While in cryptography one studies the design and construction of algorithms to
secure the transmission and storage of information, cryptanalysis focuses on break-
ing cryptographic algorithms. Block cipher design and analysis have been very ac-
tive areas of research since the 1970’s, culminating in the selection of Rijndael (Dae-
men and Rijmen 2002) as the new Advanced Encryption Standard (AES) in 2000.
The AES represents the state of art in block cipher design and provides an unparal-
leled level of assurance against most standard cryptanalytic techniques, such as dif-
ferential and linear cryptanalysis. However the AES, as well as some related block
ciphers, exhibit a highly algebraic structure. This has motivated researchers to inves-
tigate whether algebraic properties of ciphers can be exploited in their cryptanalysis.
Of particular interest is the proposal of so-called algebraic attacks against block ci-
phers. The main idea behind an algebraic attack is to write the encryption operation
as a large system of low degree, often sparse, multivariate polynomial equations.
Solving this system leads to a recovery of the secret key. This is a reasonably recent
area for symmetric-key cryptanalysis, where recognising statistical patterns of bits
has usually been the most effective form of cryptanalysis, and potentially opens the
possibility of applying well-known techniques from computational algebra, such as
Gröbner basis algorithms, in symmetric-key cryptanalysis. In this paper we further
explore this subject.

Section 2 gives a brief overview of block cipher design principles. Section 3 re-
views some scenarios and techniques in conventional cryptanalysis of block ciphers.
In Sect. 4 we discuss the principles of algebraic cryptanalysis. Section 5 gives an
overview of experimental ciphers that have been proposed to investigate algebraic
attacks in practice. Section 6 provides a summary of experimental results obtained
for these ciphers. In Sect. 7 we give examples of attack strategies that make use of
the structure of the systems in the attempt to reduce the complexity of computations.
Finally, in Sect. 8 we give pointers to alternative approaches that have recently been
proposed for solving the systems of equations that appear in the context of block
ciphers. Section 9 concludes this paper.

2 Design of Block Ciphers

Mathematically, a block cipher can be described as a function

E :K × P → C

(k,p) �→ c,
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such that the mapping E(k, ·) : P → C is invertible. We say that p ∈ P is the plain-
text (message), k ∈ K is the secret key, and c = E(k,p) ∈ C is the resulting ci-
phertext (encrypted message). The sets P , C and K are called the plaintext space,
the ciphertext space and the key space, respectively. In practice, for modern ciphers
we usually have C = P and 264 ≤ |P |, |K| ≤ 2256. The best known examples of
block ciphers are the Data Encryption Standard (DES) (National Bureau of Stan-
dards 1977) and its successor, the Advanced Encryption Standard (AES) (National
Institute of Standards and Technology 2001).

When C = P , we can also consider a block cipher as an indexed set of permuta-
tions

E :K→ Sym(P )

k �→ εk,

where εk(p) = E(k,p) = c. The theoretically ideal way to define a block cipher
would be to construct such a set by randomly a selecting permutation from Sym(P )
for every key k ∈ K . This process is of course impractical; instead, block cipher
designers attempt to construct algorithms that mimic the behaviour of random per-
mutations.

The roots of modern block cipher design can be traced to Claude Shannon. In his
seminal article (Shannon 1949), Shannon discusses the design of block ciphers
based on simple operations, which are iterated a number of times to achieve the
desired security. With this goal in mind, he introduces the concepts of diffusion and
confusion. The aim of diffusion is to spread the influence of all parts of the inputs
of a block cipher, namely the plaintext and the key, to all parts of the output, the
ciphertext. Diffusion is often provided by the use of (bit or byte) permutations or
linear transformations. The aim of confusion is to make the relationship between
plaintext, ciphertext, and key complicated. In most ciphers, confusion is provided
by carefully chosen substitution or S-boxes. These make local substitutions of small
sub-blocks of data which are then spread by the diffusion transformations (Cid et al.
2007).

A number of design structures have been proposed to implement the ideas of
Shannon in practice. Most modern ciphers are designed as substitution–permutation
(SP-)networks (Shannon 1949). In SP-networks, invertible layers of carefully chosen
non-linear substitution (providing confusion) and linear/affine transformations (pro-
viding diffusion) are iterated a number of times. To make the encryption operation
key dependent, secret key material is introduced at every iteration

Notably, the AES employs this design, with the basic version AES-128 employ-
ing 10 encryption rounds.

Another very common design is the Feistel network (Feistel 1973). In its basic
form, Feistel ciphers modify only one half of the cipher state in each round.Although
these ciphers restrict the speed of diffusion compared to SP-network ciphers, this
particular structure allows the designer to select a transformation F that does not
need to be a permutation. The most well-known example of a Feistel cipher is the
DES (National Bureau of Standards 1977).
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Besides its general structure, the security of a block cipher is obviously highly
dependent on the properties of the different components used. Usually substitution
layers consist of a number of highly non-linear Boolean functions. A particularly
popular choice are transformations based on power functions over a finite field. For
example, the AES S-Box is based on the inversion over a field of order 28 (Daemen
and Rijmen 2002). For a discussion of the properties Boolean functions used in
block ciphers, see Carlet (2009).

For the diffusion layer, linear (or affine) transformations are used in the attempt
to maximise the level of mixing within each round. The AES diffusion layer has
been designed in accordance to the wide trail strategy (Daemen and Rijmen 2002).
This provides fast diffusion and, as a consequence, ensures the security of the AES
against common cryptanalytic methods, such as differential and linear cryptanaly-
sis (Daemen and Rijmen 2002).

3 Block Cipher Cryptanalysis

Cryptanalysis focuses on breaking ciphers. The exact notion of a “break” can how-
ever vary depending on the context. Traditionally, the goal of a cryptanalyst has
been to recover an encrypted message. A much more ambitious attack is to recover
the encryption key. Likewise, the adversary’s capabilities can vary. It may have ac-
cess to only a single ciphertext, or to a large number of plaintext/ciphertext pairs.
In either situation, one should always assume an adversary to have full knowledge
of the algorithm details; the only secret piece of information is the encryption key2

Below we present an overview of the most common cryptanalytic attack models
(adapted from Biryukov 1999). We provide a taxonomy of cryptanalytic attacks,
ranging from the most practical to the most hypothetical.

− ciphertext-only: The adversary only has access to encrypted messages (and
some information about the distribution of plaintexts). A cipher susceptible to
ciphertext-only attacks cannot protect against passive eavesdropping. Although
many of the classical ciphers could be broken by ciphertext-only attacks, this is
a very unlikely scenario for modern block ciphers.

− known plaintext: This is a common form of attack, in which we assume the ad-
versary has full or partial knowledge of messages being encrypted and of the
corresponding ciphertexts. This is a very realistic scenario, where an adversary
could assume the use of common words in the plaintext or exploit the fact that
messages often have a lot of redundancy (e.g. common headers, etc).

− chosen plaintext or ciphertext: In the chosen plaintext scenario, the adversary can
choose messages to be encrypted and sees the corresponding ciphertext. This is
a less common scenario, although still quite realistic. A modern cipher is only

2This is known as Kerckhoffs’ principle, named after 19th century cryptographer Auguste Kerck-
hoffs, who stated that a cryptosystem should remain secure if all the details of the system, except
the key, are of public knowledge (Kerckhoffs 1883a, 1883b).
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considered secure if it can withstand chosen plaintext attacks. Likewise, in cho-
sen ciphertext attacks, the adversary can select the ciphertext to be decrypted
and has access to the corresponding plaintext. This also is a realistic scenario,
especially with the growing number of network applications that automatically
decrypt received messages.

− adaptive chosen plaintext or ciphertext: In these variants of the previous two
attack scenarios, the adversary is able to adapt its choices of texts to be encrypted
and decrypted, based on information learned during the attack. Although much
less common, this is also a reasonable realistic scenario.

− related key: In this case, the adversary exploits the fact that different keys used
fulfill a known relation (e.g. they may differ on a certain number of bits). This is
usually employed in conjunction with some of the scenarios above.

By working on one of the modes of attack described above, the overall goal of a
cryptanalyst could be classified in the following way.

− distinguishing: Modern block ciphers are designed to model a random permu-
tation. If it is possible to design an algorithm that can efficiently distinguish an
instantiation of the cipher with a fixed but unknown key from a random permu-
tation, we say that the cipher is susceptible to distinguishing attacks. This is the
most basic type of attack, and often indicates some structural weaknesses in the
cipher. It may however allow more sophisticated forms of attacks.

− decryption: In this attack the adversary algorithmically obtains full (or partial)
knowledge about the plaintext of an encrypted message. This is achieved without
knowledge of the secret key, and thus it may not compromise other messages
encrypted under the same key.

− encryption: This is also known as a forgery attack, where the adversary is able
to successfully encrypt a message without knowledge of the secret key. Ciphers
vulnerable to this type of attack are not suitable to authentication purposes.

− partial key recovery: In this attack the adversary is able to learn some information
about the secret key (e.g. a number of key bits). The existence of an efficient par-
tial key recovery attack is very undesirable and indicates some structural weak-
nesses in the cipher. In practical terms, the adversary could then simply try to
guess the remaining bits (such that the overall attack complexity of the attack is
still lower than full exhaustive search). More commonly, such an attack could be
used as a first step in an elaborate full key recovery attack.

− full key recovery: This is the most ambitious and devastating attack. The adver-
sary is able to fully recover the secret key, and can therefore decrypt all messages
(past and future) encrypted under the key.

A cipher’s security against the types of attacks described above is ultimately
measured by the complexity of mounting such attack in practice. In a known plain-
text scenario, an adversary could always mount a key recovery attack against the
cipher by decrypting a small number of ciphertexts using all the possible keys. If
the size of the key space K is 2n, the adversary is expected to succeed on average
after 2n−1 decryption operations. This type of attack is called exhaustive key search.
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Modern ciphers are designed with n large enough so that exhaustive key search is
infeasible in practice (e.g. n= 128). Beside time complexity (i.e. the number of op-
erations required), the complexity of attacks can also be measured by the number of
plaintext/ciphertext pairs or memory required (data complexity). In such scenarios,
adversaries are given (sometimes unrealistic) extensive capabilities, in the attempt
to show some weakness in the design.

Modern ciphers are expected to withstand most of these attack scenarios; ulti-
mately the goal of a block cipher designer is that exhaustive key search is in practice
the most efficient attack against the cipher.

4 Algebraic Cryptanalysis

In contrast to conventional block cipher cryptanalysis, algebraic cryptanalysis ex-
ploits the intrinsic algebraic structure of a cipher. In its most common form, the
attacker expresses the encryption transformation as a large set of multivariate poly-
nomial equations, and subsequently attempts to solve the system to recover infor-
mation about the encryption key. Algebraic attacks represent an exciting new devel-
opment in cryptology, as they open new perspectives in block cipher cryptanalysis.
For example, only a handful of plaintext–ciphertext pairs is usually required in al-
gebraic cryptanalysis. Furthermore, it is expected that if an algebraic attack proves
to be successful against a particular cipher, it might not be easily avoided by simply
increasing the number of rounds.

Although different forms of algebraic methods used in cryptology may be consid-
ered as algebraic cryptanalysis, we will largely restrict ourselves to attacks in which
(systems of) polynomial equations arising from the cipher are solved. Specifically,
we will deal with attacks that make use of computational algebra techniques, such
as Gröbner basis algorithms (Buchberger 1965, 1985, 2006), to compute solutions
of polynomial systems.

The first documented use of Gröbner bases in symmetric-key cryptography was
in fact not in a direct attack on a block cipher, but rather used for an improvement
of the linear cryptanalysis of DES (Shimoyama and Kaneko 1998).

In 2002 Courtois and Pieprzyk proposed an algebraic attack on the block ci-
phers Rijndael (AES) and Serpent by solving large systems of quadratic polyno-
mial equations with a method of their own invention (Courtois and Pieprzyk 2002a,
2002b): Extended Sparse Linearization (XSL). This method is based on the XL al-
gorithm (Courtois et al. 2000) and attempts to exploit the structure and sparsity of
the polynomial system. The XL algorithm in turn has been later shown to be a de-
generated version of the F4 algorithm (Ars et al. 2004). These works gave rise to
much speculation on the potential for algebraic attacks against block ciphers (in par-
ticular the AES). Cid and Leurent showed in 2005 that the XSL method as proposed
in Courtois and Pieprzyk (2002b) does not work and a natural modification to fix
the algorithm will turn it into an equivalent of XL (Cid and Leurent 2005). Further-
more, Lim and Khoo have shown that the XSL version proposed in Courtois and
Pieprzyk (2002a) has a much higher complexity than expected and raised questions
on whether the algorithm can work at all (Lim and Khoo 2007).
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Although the XSL method itself is now widely recognized to be incorrect, its
publication can be considered as a key event that fueled the interest of the cryp-
tographic community in algebraic methods in symmetric-key cryptology. This led
other researchers to the investigation of computational algebra techniques, in par-
ticular Gröbner bases, as a cryptanalytic tool (Ars 2005; Buchmann et al. 2006b;
Cid et al. 2005b; Faugère 2007).

4.1 Polynomial Descriptions of Block Ciphers

In theory, most block ciphers afford a polynomial representation of the encryption
process: by representing the encryption function as a vector of high-degree polyno-
mials. The evaluation of such a vector with a fixed plaintext and key then yields the
ciphertext.

In this case, the structure (i.e. the terms occurring) of the polynomials is known;
merely the coefficients are unknown. This leads to interpolation attacks (Jakobsen
and Knudsen 1997). This is a method for the cryptanalysis of a block cipher whose
encryption function can be expressed in terms of a univariate polynomial function of
moderate degree. The attacker is presented with a set of (d + 1) plaintext/ciphertext
pairs (pi, ci) that are encrypted under one single key. If we consider pi, ci as el-
ements of a field F (e.g. F = F2n ), then the Lagrange Interpolation Formula states
that the unique polynomial function f : F→ F mapping pi to ci is given by

f (x)=
d∑

i=0

ci

d∏

j=0
j �=i

(
x − pj
pi − pj

)

.

If the block cipher encryption can be expressed as a polynomial function of degree
d , then the encryption operation is given by the above polynomial function f . This
function can then be used to encrypt any plaintext, or to decrypt any ciphertext,
without knowledge of the secret key. However, we see this attack as effective only if
the number of coefficients to be interpolated is substantially smaller than the number
of entries in the code book (usually implying d being reasonably small).

Thus instead of attempting to describe the cipher as a single polynomial, per-
haps a more promising approach is to express the encryption operation as a system
of polynomial equations. Modelling the encryption process of a block cipher as a
polynomial system presents us with several obvious questions. Should we have a
system in few variables but with polynomials of high degree or should we rather
have more variables but equations of lower degree? Since block ciphers can al-
ways be seen as vectorial Boolean functions, they can be described as a polyno-
mial system over F2. Certain components are hard or almost impossible to express
as “compact” polynomials, however. For instance, key-dependent S-Boxes such as
those used in Blowfish (Schneier 1994) do not lend themselves to easy polynomial
descriptions. In this particular case, the S-Boxes are generated algorithmically in a
way that is most disadvantageous for compact polynomial descriptions. Similarly,
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mixing operations over fields with different characteristics or—to a lesser extent—
mixing modular arithmetic with bitwise operations can also be an effective measure
against simple polynomial representations over a common field or ring.

In practice, systems of equations for block ciphers are either written over F2 or—
if all S-Boxes have both s input and s output bits—over F2s . To keep the degree of
the polynomials low, the encryption process is modelled by considering each layer
(i.e. the linear and non-linear steps of each encryption round) separately.

In the following, let Fq be the alphabet andN� the number of layers of the cipher,
n the block size of the cipher and m the cipher key size.3 For each layer � of a block
cipher, a set of so-called state variables X� := {x�,1, . . . , x�,n} is introduced. These
variables represent the internal state of the cipher after the execution of the �-th
layer. For the �-th layer these variables are also called output variables; correspond-
ingly the state variables of the (�− 1)-th layer are called input variables of the �-th
layer. The input and the output of the cipher are either fixed, or modelled by plain-
text variables P := {x0,1, . . . , x0,n} and ciphertext variables C := {xN�,1, . . . , xN�,n},
respectively. For the encryption key, a set of cipher key variables K := {k1, . . . , km}
is used. The set of all variables will from now on be denoted by X .

The system of equations for a block cipher can typically be separated into three
parts: linear equations describing the diffusion layer and key additions of the ci-
pher, polynomial equations for the substitution layers of the cipher, and a set of
key-schedule equations.

In some cases where key-schedule equations can be omitted, e.g. if round keys
are generated by a selection of bits of the cipher. More commonly the key sched-
ule has a similar structure to the encryption. In this case, we denote as K� :=
{k�,1, . . . , k�,j } the j key state variables for the layer �.

Note that linear layers can often be merged with neighbouring substitution layers
without changing the degree of the system. In this case, the sparsity of the resulting
equations will be reduced unless the linear layer simply permutes the elements of
the internal state.

Let then I ⊂ Fq [X ] be the ideal associated with the encryption process of a block
cipher. The hope is thus that one can compute the Gröbner basis G of I to recover
the encryption secret key (see however Sect. 4.7).

4.2 Field Equations

For cryptographic purposes, only solutions over the ground field are of importance;
solutions in the algebraic closure are irrelevant. For a polynomial ring R = Fq [X ]
we can write the set of field equations of the form xq − x = 0 for all x ∈ X . These
equations in effect force all assignments of variables to be fixed under the automor-
phism x �→ xq . We note that the left-hand side of the equations, the field polyno-
mials form a universal Gröbner basis, and as a consequence, regardless of the term

3Note that n and m only denote bit sizes if q = 2.
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ordering, the exponents of all polynomials can be reduced modulo q during Gröbner
basis computations. Of particular interest is the case where q = 2, where we have
the following simple proposition.

Proposition 1 The maximal degree of polynomials occurring in the computation of
a Gröbner basis of a polynomial ideal in R = F2[X ] with n variables containing
the field polynomials is at most n.

Adding the field polynomials to a set P ⊂ R is equivalent to working over the
quotient ring R′ = R/J , where J = 〈xq0 − x0, . . . , x

q
n − xn〉. For F2, this quotient

ring is called the ring of Boolean functions. Computer algebra systems such as recent
versions of MAGMA et al. (2008) (v2.11 onward) are able to detect the presence
of field polynomials in the input and work with an exponent-reduced representation
internally for the case of F2.

4.3 Polynomial Systems over F2

Modern block ciphers are designed to be either implemented in hardware or to be
executed on computers. Henceforth choosing F2 as ground field comes as a natural
choice. Essentially the polynomial system is a decomposition of a Boolean circuit
implementing the block cipher. For ciphers using S-Boxes over different fields of
characteristic two, such as the MISTY family of ciphers, or ciphers with contracting
or expanding S-Boxes, e.g. DES, writing equations over F2 is the only obvious
choice to obtain a polynomial system describing the complete cipher.

For a number of widely-used block ciphers, polynomial systems over F2 have
appeared in the literature. Courtois and Pieprzyk (2002b) initially presented systems
of quadratic equations for Rijndael and Serpent (for a more thorough analysis of the
systems arising from the AES, see Cid et al. 2007). Biryukov and de Cannière (2003)
constructed systems of quadratic equations over F2 for other block ciphers, such as
Khazad, MISTY1, Kasumi and Camellia-128 together with explicit counts of the
number of variables, equations and terms. These are usually very large, often sparse
systems, with over a thousand of variables and equations (for example, the AES with
128-bit keys can be expressed as a system of 9600 quadratic and linear equations,
of which 1600 are field equations Cid et al. 2007).

In all of these cases it makes sense to perform all computation directly in the
ring of Boolean functions. Recently, Brickenstein and Dreyer have proposed novel
strategies and polynomial representations dedicated to exactly this problem (Brick-
enstein and Dreyer 2007). These are described in further detail in Sect. 8.

4.4 Equations for Non-linear Components

A crucial part of generating a polynomial system for a block cipher is finding a suit-
able polynomial representation of the S-Boxes. Usually S-Boxes are given in the
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form of look-up tables. These can be interpolated to obtain the corresponding poly-
nomials. Equations over F2 can be easily calculated by trace maps if a polynomial
representations of an S-Box over an extensions field of F2 is given. More generally,
a linearly independent set of polynomials of maximum degree d for a s-bit S-Box
can be found by triangulating a 2s × td× matrix where td =∑d

i=0

(2s
i

)
is the total

number of terms (Biryukov and De Cannière 2003, Appendix A).

4.5 Equations for Inversion over F2n

To thwart differential and linear cryptanalysis, certain classes of power functions
over extension fields of F2 have been proposed as S-Boxes (Nyberg 1994). These
allow the designer to give upper bounds on the probabilities of the best linear ap-
proximations and the best differential characteristics. One of the functions proposed
is the so-called patched inversion, which maps every element x �= 0 to x−1. The
zero element is mapped to itself. For a field Fq with q > 2, this is equivalent to the
power mapping x �→ xq−2.

Due to its strong properties against conventional cryptanalysis, the patched inver-
sion has become a popular choice for providing non-linearity to block ciphers and
stream ciphers. To avoid easy algebraic descriptions when using the patched inverse
function as S-Box, cipher designers often use functions that are affinely equivalent
to Inv, i.e. a function I = A1 ◦ Inv ◦ A2, where A1,A2 are affine transformations
over F2; we call these inversion-based S-Boxes.

Boolean polynomials emanating from the Rijndael S-Box were considered
in Courtois and Pieprzyk (2002a). When modelling inversion-based S-Boxes, one
must consider whether the chosen representation holds for all input/output pairs of
the S-Box, or whether it contains a defect for the zero element. For real-world ci-
phers consisting of many S-Box applications, such as the AES-128, the accumulated
defect is considerable: one of the 24 equations listed for the S-Box in Courtois and
Pieprzyk (2002b) is not valid when the input of the S-Box is zero. When including
this equation for all 200 S-Boxes, the probability of the polynomial system holding
for a random plaintext/ciphertext pair decreases to ( 255

256 )
200 ≈ 45.7%.

Inversion-based S-Boxes may also allow us to express the encryption process as a
system of polynomial equations over the extension field F2s . In this case, one could
either consider the function x �→ x2s−2 or x �→ x−1. The latter representation again
makes the attack probabilistic, but may give much simpler equations.

4.6 Block Cipher Embeddings

Expressing the encryption process as a system of polynomial equations over a larger
field F2s may offer advantages, such as reducing the number of variables or increas-
ing the sparseness of the polynomial system. For the particular example of the AES,
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the main problem of obtaining such a “simple” polynomial description over F28 lies
in the affine transformation of the S-Box. Murphy and Robshaw proposed a sim-
plified description of the AES by embedding the cipher into a larger cipher called
BES (Murphy and Robshaw 2002). This embedding is achieved by applying a vec-
tor conjugate mapping φ to each byte a ∈ F= F28 handled by the cipher, resulting
in a vector conjugate ã ∈ F

8

φ : F �→ F
8, a→ ã = (a20

, a21
, . . . , a27)

.

The result from the embedding of the AES-128 is a cipher that takes a 128-byte key
and a 128-byte plaintext as input, has an 128-byte internal state and outputs a 128-
byte ciphertext. The most striking effect of this embedding is that the affine transfor-
mation of the S-Box is moved into the diffusion layer of BES. Hence the non-linear
layer consists of simple (patched) inversions. An advantage of this representation
is that the overall number of terms occurring in the corresponding polynomial sys-
tem is reduced, therefore making it considerably more sparse when compared to the
usual description over F2. To make sure that all solutions to a BES system can be
mapped back to solutions for the AES, equations to enforce the vector conjugate
property for each variable can be added (this also ensures that all solutions of the
system are in F28 ). The real effectiveness of BES has however been questioned in
Toli and Zanoni (2005).

We note that the embedding technique is not generally applicable to block ci-
phers but rather takes advantage of the AES rich algebraic structure (block cipher
embeddings were considered in Cid et al. 2005a).

4.7 Direct Construction of Gröbner Bases

Surprisingly, for some block ciphers, a zero-dimensional Gröbner basis for the key-
recovery ideal can be constructed with minimal computational effort—without per-
forming a single polynomial reduction. Examples are AES–128 (Buchmann et al.
2006a) as well as ciphers of the Flurry and Curry families (Buchmann et al. 2006b).

This is achieved by constructing a polynomial system in which all leading terms
are pairwise prime, allowing the first Buchberger criterion to be used to show that the
resulting set of polynomials forms a Gröbner basis. The Gröbner basis is constructed
from a direct description of the block cipher and its key schedule over F2n merely by
linearly combining polynomials and choosing an appropriate graded term ordering.

Observe that for an ideal I ⊂ Fq [x1, . . . , xn] to be zero-dimensional, any set P of
polynomials generating this ideal must have at least n elements; the number of so-
lutions in the algebraic closure Fq otherwise is not finite. If the number of elements
of P is exactly n and all leading terms of P are of the form xei and pairwise prime,
P is a zero-dimensional Gröbner basis of I . For the non-linear equations we avoid
inversion-based representations of the S-Boxes by writing the inversion operation
as a power polynomial.



318 C. Cid, R.-P. Weinmann

The Gröbner basis of the key-recovery ideal for AES-128 IAES ∈ RAES given
in Buchmann et al. (2006b) consists of 200 polynomials of degree 254 and
152 linear polynomials in a ring of 352 variables. The vector space dimension
dim(RAES/IAES) unfortunately is 254200, which makes the Gröbner basis unsuit-
able for cryptanalysis. This is due to the field equations not being captured by the
Gröbner basis.

5 Small Scale and Experimental Ciphers

Algebraic attacks have received a lot of attention of the cryptographic community in
the last few years. However there has not been much progress in assessing whether
they can be effective against block ciphers in general. The main reason seems to be
that the size of systems arising from block ciphers are completely out of reach for
the current computational power. For most other methods of cryptanalysis it is quite
straightforward to perform experiments on reduced-round versions of the cipher to
understand how the attack might perform. This has not been the case for algebraic
attacks on block ciphers.

One possible approach is to work on small scale variants of block ciphers, in
order to test the effectiveness of the main algorithms in solving the systems of al-
gebraic equations. While it is clearly not an easy task to design small versions that
can replicate the main cryptographic and algebraic properties of a particular cipher,
the hope is however that experiments on small versions can provide a preliminary
insight into the behaviour of algebraic cryptanalysis on block ciphers.

With this goal in mind, a number of small scale ciphers have been proposed in re-
cent years. Below we briefly describe the most relevant ones. Results of experiments
using these ciphers are discussed in Sect. 6.

5.1 Small Scale Variants of the AES

A family of small scale variants of the AES aiming to provide a fully parameterised
framework for detailed analysis of the cipher was proposed in Cid et al. (2005b).

The ciphers, denoted as SR(r, nR,nC, e) and SR∗(r, nR,nC, e), are parameterised
in the following way:4

• r is the number of rounds,
• nR is the number of rows in the rectangular grid of the state,
• nC is the number of columns in the rectangular grid of the state,
• e is the word size (in bits).

4The two variants differ insofar as the SR family uses the MixColumns operation in the last
round, whereas the SR∗ family omits it.
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Both SR(r, nR,nC, e) and SR∗(r, nR,nC, e) have a block size of nRnCe bits and
the full AES is modelled by SR∗(10,4,4,8). The data block is viewed as an nR×nC
array of words of e bits. Useful small scale variants exist when both nR and nC are
restricted to 1, 2 and 4. The word sizes e= 4 and e= 8 are the most relevant and are
defined with respect to the fields F24 and F28 . The field F24 is defined by a primitive
polynomial over F2, while small scale variants over F28 use the same field as the
AES (Daemen and Rijmen 2002).

A round of the small scale variants over a finite field is defined using small scale
versions of the AES round operations (namely, SubBytes, ShiftRows, Mix-
Columns and AddRoundKey) (Cid et al. 2005b). Furthermore, the corresponding
key schedules is also defined.

These small scale variants seem to retain, as far as possible, the algebraic features
of the AES. We note that they often have a small key space and can therefore be
easily analysed by exhaustive key search or equivalent techniques. However, the
main purpose of these small scale variants is to assist in the algebraic analysis of
the AES. Experimental results based on these small scale variants are discussed in
Sect. 6. A generator for SR and SR∗ equation systems written by Martin Albrecht is
contained in the SAGE computer algebra system (Stein 2008) since version 2.8.5.

5.2 Flurry and Curry

FLURRY and CURRY are two families of experimental block ciphers specifically
designed to investigate algebraic attacks. The FLURRY family consists of Feistel
networks while the ciphers in the CURRY family are SP-Networks.

An instance of the FLURRY family is denoted as FLURRY(k,m, r, f,D), a
CURRY instance as CURRY(k,m, r, f,D). The parameters of these ciphers are as
follows:

• k: the extension degree for the base field F := F2k .
• m: for Flurry, the block size consists of 2m elements; for Curry, the internal state

is a m×m matrix.
• r : number of rounds.
• f : non-linear mapping (S-Box), which has to be bijective for CURRY.
• D: diffusion matrix D ∈ F

m×m .

One of the underlying design goals of these cipher families is immunity against
classical linear and differential cryptanalysis. In order to achieve this goal the S-Box
and the diffusion matrix have obviously to be chosen accordingly. In Buchmann
et al. (2006b) the designers propose MDS matrices for the diffusion and several
low-degree power polynomials as well as the patched inversion function as choices
for the S-Boxes. These parameters give very clean representations over F2k .
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5.3 Other Examples

Other small scale variants of the AES have also been proposed, though usually as
an educational, rather than an experimental, tool (Musa et al. 2003; Phan 2002).
For the particular purpose of experiments with algebraic cryptanalysis, a toy cipher
CTC has also been proposed (Courtois 2006). This is a simple cipher with a minimal
3-bit S-Box which was claimed to be broken using algebraic techniques with the
attack not being described in detail. CTC has been shown to be broken by linear and
differential cryptanalysis (Dunkelman and Keller 2006), resulting in CTC2 being
proposed (Courtois 2007). More experiments with CTC were presented in Albrecht
(2007).

6 Experimental Results

Some of the small scale ciphers introduced in Sect. 5 have been used in experiments
to evaluate the effectiveness of algebraic attacks against block ciphers. Although
most of these simple experiments were performed using off-the-shelf software with
limited computing resources, they are helpful as a preliminary assessment of alge-
braic attacks as a cryptanalytic technique against block ciphers. In particular, they
may help understand how the various components of a cipher contribute to the com-
plexity of algebraic attacks, and how the use of dedicated algebraic methods can
improve the effectiveness of algebraic attacks.

6.1 Small Versions of the AES

Regarding the small scale variants of the AES (Sect. 5.1), experimental results on
using Gröbner basis methods for solving the equation systems arising from these ci-
phers were presented in Cid et al. (2005b, 2007). The experiments were performed
using an efficient implementation of the F4 algorithm (Faugére 1999), and the Gröb-
ner bases were computed with respect to the degrevlex term ordering.

In general, the results showed that the computations became intractable quite
early, and comparative tests performed indicated that some specific AES features
appear to make algebraic attacks quite hard. In particular, it seems that the inter-
word diffusion (which is highly efficient in the AES) plays an important role in the
complexity of the computations.

Overall, despite the use of limited computer power, the experiments seem to indi-
cate that general purpose Gröbner basis methods are unlikely to solve a full equation
system emanating from the AES. However, systems arising from ciphers are very
structured and with special properties. These may be explored in designing dedi-
cated algebraic methods against block ciphers. We discuss some of these in Sect. 7.

Brickenstein and Dreyer later presented impressive results against small-scale
variants of the AES using their PolyBoRi suite (Brickenstein and Dreyer 2007),
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using significantly less memory than Magma while at the same time being orders
of magnitude faster. It should be noted however that these equation systems were
preprocessed before the actual basis computation.5

Other experiments on equation systems with a similar structure to the AES equa-
tion systems were presented in Ars (2005). These results on very small systems
seem to indicate that the maximum degree of polynomials obtained during the run-
ning of the F5 (Faugére 1999) algorithm is bounded by a reasonably small value
for any number of rounds. This would suggest that the complexity of solving such
a system is not what we would expect from a comparable generic system. However
the connection between the equation systems in Ars (2005) and the AES equation
system is not sufficiently strong to conclude that an AES equation system would
behave in a similar manner.

6.2 Flurry and Curry

In contrast to the small-scale AES variants, experiments for 128-bit instantiations
of Flurry and Curry were carried out over fields of large order in Buchmann et al.
(2006a). Henceforth the field polynomials were not taken into account. The equa-
tions considered described a key recovery scenario from a single plaintext/ciphertext
pair. Again, Magma was used for conducting the experiments. For efficiency rea-
sons, Magma first computes a degrevlex Gröbner basis which is then converted to
a lexicographical Gröbner basis using either the FGLM algorithm (Faugère et al.
1993) or the Gröbner Walk (Stéphane Collart et al. 1997) algorithm. The degrevlex
Gröbner basis was computed using the F4 algorithm. For ciphers with S-Boxes de-
scribed by power polynomials, the bulk of the computational work for the key re-
covery to happened in the Gröbner basis conversion step. Benchmarking the two
Gröbner basis conversion algorithms against each other gave inconclusive results.
The method described in Sect. 4.7 allowed to reduce the key-recovery problem to
a Gröbner basis conversion problem. Hence an upper bound on the space and time
complexity of this step was derived, making use of FGLM.

In the experiments presented in Buchmann et al. (2006a), the inversion S-Box—
in Flurry and Curry used without affine linear transforms on the input and output
bits—offered less resistance against the algebraic attacks over large finite fields than
a power polynomial. Theoretical results for this case were not obtained.

Faugère investigated different attack scenarios on Faugère (2007). In the follow-
ing we summarize the results achieved with F5. One approach investigated were
computations on overdefined systems of equations that result from fixing a single
variable to a guessed value. In this case, a speed-up over a direct attack only oc-
curred for fields of small size. Systems of equations for an attack with multiple

5In Brickenstein and Dreyer (2007) the authors state that “we made some optimizations on the
formulations of the equations on it [sic]”, without however going into further detail.
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known plaintext/ciphertext pairs were found to be harder to solve than systems for
a single plaintext/ciphertext pair.

For chosen plaintexts the situation looked different. Plaintext/ciphertext pairs
were generated by adding unit vectors of the canonical basis to a random plain-
text and encrypting them. In this case, the resulting systems of equations sometimes
became much easier to solve than equations from a single pair. Up to 6 rounds were
attacked for a Flurry cipher with the inversion S-Box in this scenario. For 7 rounds
this attack works for S-Boxes represented by power functions, but not by the inverse
function. Faugère claims the degree of polynomials in the Gröbner basis computa-
tions in the multiple chosen-plaintext scenario for Flurry with x �→ x3 to be bounded
and conjectures an attack complexity polynomial in the number of rounds.

6.3 Other Experiments

For the experimental cipher CTC, its author claims that algebraic key-recovery at-
tacks up to 6 rounds are practical for a 255-bit version (Courtois 2006). Multiple
plaintext/ciphertext pairs were used for breaking the 6 round version. No further
details are given on the method employed.

7 Attack Strategies

As remarked in Sect. 6, it seems very unlikely that general methods from computer
algebra can be used in a straightforward manner to solve the systems of equations
arising from modern block ciphers. We note however that these systems are highly
structured (see below) and sparse. Thus a more promising approach may be to apply
some dedicated method, based on techniques from computer algebra, but aiming to
exploit the special properties of a target system. Below we discuss some of the
methods proposed.

7.1 Meet-in-the-Middle and Incremental Techniques

The iterative nature of modern block ciphers means that the associated systems of
equations are typically structured in blocks, with each block containing the equa-
tions for one round. Variables in one block only occur in neighbouring blocks or
within the relevant part of the key schedule.

A promising technique to find the solution for systems with such structure is to
employ a meet-in-the-middle approach (Cid et al. 2005b, 2007). The system con-
sisting of r blocks (i.e. rounds) is divided into two subsystems for r2 rounds.6 We

6We assume without loss of generality that r is even.
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regard the output variables of the first equation subsystem as the input variables
of the second equation subsystem. We can then compute the Gröbner bases of the
two corresponding subsystems, using an appropriate elimination ordering. We then
eliminate variables that do not appear in rounds r2 and r

2 + 1. This gives two small
systems of equations in variables from the two systems that are simply related by the
round keys. These two equation systems can then be combined with some additional
equations from the key schedule and solved to obtain the key. Experimental results
using this approach on AES variants were presented in Cid et al. (2005b) and seem
to confirm that a meet-in-the-middle technique may be more efficient than directly
solving the full system of equations arising from a block cipher.

One possible drawback to this approach is that computations using elimination
orderings are known to be less efficient than those with degree orderings, and we
might expect that using an elimination ordering in both subsystems would give only
limited advantages over using the degree reverse lexicographical ordering for the
full system. An alternative approach would be to simply compute the Gröbner bases
for the two subsystems using the most efficient ordering and then to combine both
results to compute the solution of the full set equations. Some experimental results
on this approach presented in Cid et al. (2005b) indicate that this approach can in
fact be more efficient for larger examples of the small scale variants of the AES.
This suggests the applicability of a more general divide-and-conquer approach to
the problem of solving the equation system deriving from iterated block ciphers.

An incremental method named Gröbner Surfing related to this idea was proposed
in Albrecht (2007). Here, a Gröbner basis of the key-recovery ideal is computed
round by round: let Pr be the equations for the r-th round of the cipher and GB the
Gröbner basis algorithm with the plaintext variables fixed in the first round and the
ciphertext variables fixed in the last, the Nr -th round. The idea then is to decompose
the Gröbner basis computation as follows:

GB

(
Nr⋃

r=1

Pr

)

= GB(PNr ∪ GB(PNr−1 ∪ (. . .∪ GB(P1))).

Alternatively this method may be expressed as a selection strategy for the critical
pairs in the Gröbner basis algorithm. For this method to succeed more efficiently
than a direct computation of a Gröbner basis, a suitable term ordering is crucial.
Block orderings with graded term orderings inside the blocks and block splits at
the round or layer boundaries seem to be a suitable choice. Experimental results
on the Gröbner Surfing technique applied to small instances of CTC are presented
in Albrecht (2007). It was found that a Gröbner Surfing strategy on CTC performed
better than a straightforward degrevlex Gröbner basis computation.

7.2 Differential-Algebraic Cryptanalysis

A recent trend in block cipher cryptanalysis is to combine algebraic approaches with
traditional methods of cryptanalysis. In Albrecht and Cid (2008) an attack is pro-
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posed that combines algebraic techniques with differential cryptanalysis. In differ-
ential cryptanalysis, given a differential characteristic covering r out of Nr rounds
of a given block cipher, the cryptanalyst usually guesses subkey bits to overcome the
last rd =Nr − r rounds. This quickly becomes impractical as the number of rounds
rd grows. Albrecht and Cid (2008) investigate the block cipher PRESENT (Bog-
danov et al. 2007), and are able to increase rd from 2 to 4 rounds by using algebraic
techniques. Specifically, the authors construct a system of polynomial equations for
rd rounds for pairs of plaintexts and use Gröbner basis algorithms to perform a
consistency check. This allows them to determine whether a given pair satisfies the
considered differential characteristic. Based on this observation, information about
the encryption key could be recovered. The technique is in theory generally applica-
ble to improve differential cryptanalysis although no experimental evidence of the
feasibility of the attack against reduced versions of ciphers other than PRESENT are
provided.

8 Alternative Methods for Solving Polynomial Systems

As stated in Sect. 4.3, representation of block ciphers in the ring of Boolean func-
tions are of significant relevance for algebraic cryptanalysis. It therefore makes
sense to optimize algorithms to perform computations over such rings. For these
systems, alternative representations are possible. Brickenstein and Dreyer have re-
cently proposed using a variant of binary decision diagrams (Lee 1959; Akers 1978),
called zero-suppressed binary decision diagrams (ZDD) for representing Boolean
functions in Gröbner basis computations (Brickenstein and Dreyer 2007). These
make use of the fact that the Boolean functions dealt with have a sparse polynomial
representation. One of the main ideas behind PolyBoRi is to preserve the sparsity
of the representation throughout the computation, which keeps the memory con-
sumption low. This is achieved by using an adapted version of the SlimGB algo-
rithm (Brickenstein 2005), which was originally designed for a similar task.

Combinatorial methods have been investigated on reduced versions of the DES:
Raddum and Semaev proposed a method using message-passing on a graph for
solving multivariate equations from a reduced version of DES (Raddum and Se-
maev 2006). Up to 4 rounds of DES were successfully attacked using this approach.
In Raddum and Semaev (2007), they studied the application of related techniques
against some of the small scale variants of AES introduced in Sect. 5. Their results
seem to be substantially better than the ones obtained in Cid et al. (2005b).

Courtois and Bard demonstrated the applicability of a state-of-the-art SAT-solver
for cryptanalysing reduced round versions of DES. This was done by first setting up
a F2 polynomial system, converting it to CNF (Courtois and Bard 2007), assigning
a number of variables to fixed values and then checking the satisfiability of the CNF
clauses using the MiniSat solver (Een and Sorensson 2006). This allowed them to
attack 6 rounds of DES with a single plaintext/ciphertext pair. The advantage of
these methods lies in a significantly lower memory consumption than Gröbner basis
algorithms based on linear algebra such as F4 and F5.
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Subsequently, Courtois, Bard and Wagner presented a combination of slide at-
tacks and SAT-solver cryptanalysis against the KeeLoq cipher (Courtois et al. 2008).

9 Conclusions

In this paper we have presented an overview of the latest developments in the area
of algebraic cryptanalysis against block ciphers. This is an area that has recently
received a lot of attention from the cryptographic community. Many different meth-
ods have been considered, with however limited success so far in targeting modern
block ciphers. In particular, to the authors’ best knowledge, no modern block cipher
with practical relevance has been successfully attacked using algebraic cryptanaly-
sis faster than with other techniques. Nonetheless, algebraic cryptanalysis is a very
active field of research, and should remain so in the coming years. We expect that al-
gebraic techniques will continue to be used and become established as an important
tool in the cryptanalysis of block ciphers.
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Algebraic Attacks on Stream Ciphers
with Gröbner Bases

Frederik Armknecht and Gwenolé Ars

Abstract Stream ciphers efficiently encrypt data streams of arbitrary length and are
widely deployed in practice, e.g., in mobile phones. Consequently, the development
of new mechanisms to design and analyze stream ciphers is one of the major topics
in modern cryptography. Algebraic attacks evaluate the security of certain stream
ciphers by exploring the question how an attack could be performed by generating
and solving appropriate systems of equations. In this text, we give an introduction
to algebraic attacks and provide an overview on how and to what extent Gröbner
bases are useful in this context.

1 Introduction

Nowadays, it has become more and more common to exchange digital data over pos-
sibly long distances. As the involved communication channels are usually not within
the control of the user, the risk of being eavesdropped by malicious third parties can-
not be excluded. A usual countermeasure is to encrypt the data. Encryption is the
process of obscuring information to make it unreadable without special knowledge.
This means that the original data, the plaintext P , is modified before submission
in such a way that the transmission, the ciphertext C, reveals no obvious informa-
tion about the underlying message. Only a legitimate receiver should be able to
undo the modification of the data, i.e., to decrypt it, to recover the original meaning.
To prevent an outsider to decrypt the ciphertext, the actual encryption/decryption
transformation require some additional information, a key K , which is kept secret
from non-legitimate parties and has been exchanged previously between sender and
receiver.

For certain practical applications, e.g. encryption in mobile phones, there is the
need to encrypt data of arbitrary length as fast as possible. One widely approach
is the use of stream ciphers based on keystream generators. Examples are the
keystream generator E0 from the Bluetooth standard for wireless communication
(Bluetooth specification v1.1 1999), A5/1 used in the GSM-encryption (Briceno
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et al. 1998; Zenner et al. 2000), and RC4 used in SSH, HTTPS, and WLAN (Fluhrer
et al. 2001).

The cryptanalysis of encryption mechanisms is one of the major goals in modern
cryptography. This means the evaluation of possible risks and attacks from mali-
cious third parties. By and by, numerous possible attacks against keystream gener-
ators have been found and analyzed. In 2003, algebraic attacks against keystream
generators were considered publicly for the first time, e.g. see Courtois and Meier
(2003), Armknecht and Krause (2003), Ars (2005). As they outmatched for sev-
eral keystream generators, e.g. for E0, all previously published attacks, they gained
more and more attention. Today, algebraic attacks are an established tool for the
cryptanalysis of keystream generators.

Algebraic attacks are based on generating and solving a system of non-linear
equations over a finite field. Thus, it is not surprising that the application of Gröbner
bases (see Buchberger 1965, 1970, 1985, 1998, 2006) for algebraic attacks has been
and still is subject of ongoing research, e.g., see Ars and Faugère (2003, 2005), Ars
(2005) . This text provides a survey on the topics for which Gröbner bases proved
to be useful for algebraic attacks (see Mora 2009 for a basic explanation of Gröbner
basis theory).

The text is structured as follows. After giving in Sect. 2 an introduction into the
type of keystream generators considered in algebraic attacks, the attacks themselves
are explained in Sect. 3. As we will see, the two most important questions in the
context of algebraic attacks are the search for useful equations and the task of solv-
ing the system of equations. Consequently, Sect. 4 will show how Gröbner bases
can be used for finding equations and Sect. 5 how they can be used for computing
the solution. Section 6 gives a final conclusion.

2 Keystream Generators

Keystream generators are mechanisms that generate arbitrary long sequences, called
the keystream, depending on an initial value which is equal to or derived from the
secret key. Therefore, only parties which know the key are (or at least should be)
able to generate the keystream. The keystream is then used to encrypt the plaintext
stream.

Keystream generators comprise an internal state, an update function, and an out-
put function. At the beginning, the internal state is set to an initial state S0. The
internal state is modified in regular time intervals, called clocks, according to the
update function. The state at clock t is denoted by St . At the beginning of a clock t ,
the current keystream element zt is generated by evaluating the output function f
on the actual state St , that is zt = f (St ).

To encrypt a plaintext stream P = (p0,p1, . . .), one generates a keystream
Z = (z0, z1, . . .) determined by S0 and encrypts P to a ciphertext stream C =
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Fig. 1 Schematic picture of
an LFSR

(c0, c1, c2, . . .) via ct :=Ezt (pt ).1 A legitimate receiver can initialize the keystream
generator with the same initial state S0 as well and generate the same keystream
Z to decrypt C via pt = Dzt (ct ). The most common case in practice is that pt ,
ct , and zt are bit vectors and that encryption and decryption is simply the bitwise
XOR-operation.

In practice, linear feedback shift registers (LFSRs) turned out to be good building
blocks for keystream generators. In the following, we recapitulate some basic facts
on LFSRs. For further reading, we recommend Lidl and Niederreiter (1986).

Definition 1 Let Fq denote the finite field of size q , with q being a prime power.
A linear feedback shift register of length n is a finite state machine with an internal
state, being an element from the vector space F

n
q = (Fq)n, and a linear feedback

function
∑n
i=1 λi−1 · xi ∈ F[x1, . . . , xn] with λ0 �= 0.

An LFSR is regularly clocked. At each clock, one field element is given out and
the internal state is changed. Let St = (st , . . . , st+n−1) ∈ F

n
q be the internal state at

clock t . The output at clock t is defined to be st , that is the left-most entry of St .
The internal state is updated according to

St = (st , . . . , st+n−1) �→ St+1 :=
(

st+1, . . . , st+n−1,

n−1∑

i=0

λi · st+i
)

. (1)

We call the sequence (st )t≥0 the LFSR sequence. As the update function (1) is linear,
there exists a matrix L such that St := S0 · Lt . The matrix L is called the feedback
matrix. Observe that λ0 �= 0 implies that the change of the internal state is reversible.

Figure 1 displays a schematic figure of an LFSR. LFSRs can be used to produce
streams (st )t≥0 of arbitrary length. The advantage of LFSRs is that they can be im-
plemented efficiently in hardware (at least for the case F2), making them particularly
interesting for restricted devices as mobile phones. Another advantage is that LF-
SRs and their sequences are mathematically well understood. Unfortunately, from
a cryptographic point of view, LFSRs alone are extremely weak as they the initial
state can be reconstructed from the outputs by solving a system of linear equations.

1According to the established notation, we write EK(.) for the encryption using a key K and
similarly DK(.) for the decryption.
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Thus, to strengthen LFSR-based keystream generators, one has to incorporate some
kind of non-linearity.

The most popular approach is to apply a non-linear function to the outputs of
several LFSRs (or several outputs of one LFSR) or to include a second finite state
machine with a non-linear update function and to combine the contents of both to
compute the keystream. These approaches can be described by a general kind of
keystream generator, which we call (m, �)-combiners. A formal definition is the
following:

Definition 2 A (m, �)-combiner consists of the following components:

• an internal state S ∈ F
m
q × F

n
q with

– the first part of S, being from F
m
q , is the content of the memory register of

length m and
– the second part of S, being from F

n
q , is the internal state of s LFSRs of lengths

n1, . . . , ns with n= n1 + · · · + ns ,
• a (projection) matrix P over Fq of size n× �, used to select some elements from

the LFSRs internal state for further computation,
• a non-linear next memory state function Ψ : Fmq × F

�
q → F

m
q , used to update the

memory register, and
• an output function f : Fmq × F

�
q→ F

o
q , used to compute the keystream.

If m≥ 1, then we speak of a combiner with memory, else of a simple combiner.

Let L1, . . . ,Ls be the LFSR feedback matrices and L := diag(L1, . . . ,Ls). The
generation of the keystream works as follows. At the beginning, the memory and
the LFSRs are initialized with some value S0 ∈ F

m
q × F

n
q . The first part is the initial

state of the memory and the second part the (concatenation of) the internal states of
the LFRSs. The goal of an algebraic attack, as we will explain in the next section,
is to recover the LFSRs’ initial state.2 Therefore, this value is usually treated as the
secret key and denoted byK . Thus, if we assignM0 ∈ F

m
q to be the memory’s initial

setting, it holds that S0 = (M0,K).
At each clock t , the actual states of the LFSRs and of the memory register are

used to compute the next keystream element zt and to update the LFSRs and the
memory register. In many cases, only a fraction of the LFSRs’ internal states are
used for the computation of zt and the next state of the memory register. This
means that only the values in K · Lt · P are involved in the computations at clock
t with P ∈ F

n×�
q being an appropriate projection matrix. We abbreviate K · Lt · P

to Kt and call it the input of the (m, �)-combiner at clock t . The memory is up-
dated via Mt+1 := Ψ (Mt ,Kt ), whereas the keystream element zt is computed by
zt = f (Mt ,Kt ). Summing up, the state is updated as follows:

St �→ St+1 = (Ψ (Mt ,Kt ),K ·Lt+1). (2)

2Often, the memory is initialized with some public value or can be easily reconstructed, once the
initializations of the LFSRs are known.
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Fig. 2 A (m, �)-combiner

For cryptographic reasons, we will assume that the state update transformation is
bijective. This means that L is regular and Ψ (.,X) : Fmq → F

m
q is bijective for all

X ∈ F
�
q . A schematic picture of a (m, �)-combiner is given in Fig. 2.

As the outputs zt , . . . , zt+r depend only on Mt and Kt, . . . ,Kt+r , we define the
extended output function fΨ (Mt ,Kt , . . . ,Kt+r ) = (zt , . . . , zt+r ). For the sake of
simplicity, we use the same notation fΨ for different values of r .

Observe that the key size of a given (m, �)-combiner can be easily altered by
changing L and P but keeping the same update and output functions Ψ and f .
Hence, it is natural to treat the production of the internal stream K0,K1, . . . and
the computation of the keystream z0, z1, . . . separately. In particular, one could use
other mechanisms to produce the internal stream as for example cellular automata
e.g., see Wolfram (1986).

3 Algebraic Attacks

The goal of cryptanalysis is the evaluation of cryptographic schemes against sev-
eral kinds of possible attackers. The first step is to define a concise attacker model
which specifies the knowledge, capabilities, and goals of an attacker. An algorithm
deployed by an attacker to reach her goal is called an attack. In this section, we give
a brief description of the work principles of algebraic attacks against stream ciphers.
A more comprehensive treatment can be found in Armknecht (2006).

Regarding the knowledge, the usual assumptions follow Kerckhoffs’ principle
(Kerckhoffs 1883). This means for (m, �)-combiners that an attacker knows both the
structure of the combiner itself, including the definitions of the LFSRs, the output
function f , etc., as well as parts of the keystream.

Different definitions of attacker models exist, e.g. Rueppel (1989, 1992), and
(Zenner 2004, Chap. 2). For algebraic attacks, one considers attackers that are able
to operate on a uniform computational model, like a Turing machine, whose compu-
tational behavior is similar to that of a programmable microprocessor. Or, less for-
mally, the attacker has access to a personal computer to perform the computations
of his attack. One single operation will be called a basic operation. The efficiency
of an attack is measured by (at least) the minimum necessary number of keystream
outputs, the number of basic operations, and the amount of memory required for the
attack.

A variety of different attacker goals are imaginable. One possibility is, given
some keystream elements z0, . . . , zt , to predict the next keystream elements
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zt+1, . . . . This would allow the decryption of the whole ciphertext. Another pos-
sibility is a distinguishing attack, where the attacker’s task is to distinguish the
keystream from a truly random stream. In algebraic attacks, one tries to derive the
initial states from the known information. Observe that this covers the goals men-
tioned above.

It has to be pointed out that the initial states and the secret key, shared between
sender and receiver, are not necessarily equal. In practice, there exists a separate
mechanism which derives the internal states from the common secret key. How-
ever, the design and analysis of good derivation mechanisms is a topic on its own.
Therefore, we focus on the recovery of the initial state S0 = (M0,K) of the mem-
ory and the LFSRs. Usually, the size of the memory register is small compared
to the lengths of the LFSR registers. Hence, once K has been found out, M0 can
easily be reconstructed either by exploiting the structure of the keystream gener-
ators or by exhaustively trying all values. Therefore, we concentrate on attacks
where the primal goal is to find out the value of K and refer to K as the secret
key.

Observe that each known keystream part zt , . . . , zt+r−1 reveals some information
on the corresponding inputs Kt, . . . ,Kt+r−1 and hence on K . The basic idea of al-
gebraic attacks is to encode this information into equations. This eventually leads to
a system of equations with its solution being exactly the value of K = (k1, . . . , kn).
From now on we will assume, if not otherwise stated, that each function is expressed
in its algebraic normal form with the degrees reduced to its minimum. This means
the computations are done in the ring Fq [k1, . . . , kn]/〈kq1 − k1, . . . , k

q
n − kn〉. Fur-

thermore we will use the abbreviation Kq −K for kq1 − k1, . . . , k
q
n − kn. That is the

ring mentioned above could be equally expressed by Fq [K]/〈Kq −K〉.
Actually, the approach to express a cipher by a system of equations is not new.

Already Shannon mentioned in his seminal paper (Shannon 1949) that breaking
a good cipher should require “as much work as solving a system of simultaneous
equations in a large number of unknowns of a complex type.” The reason for this rec-
ommendation is that solving systems of nonlinear equations is difficult in general.
For example, it has been proven that finding a solution of a system of n quadratic
equations in n variables is an NP-hard problem (Håstad et al. 1993). This means
that probably no polynomial time algorithm exists for solving general systems of
non-linear equations over finite fields.

However, in Courtois and Meier (2003), Ars and Faugère (2003) it was pointed
out for the first time that in the case of simple combiners, the secret key can be
encoded into a system of equations which can be efficiently solved under certain
properties. The generation of the system of equation depends on the knowledge
of some kind of “local” equation. This idea has been later extended to combiners
with memory in Armknecht and Krause (2003). The idea can be described in gen-
eral as follows. Let a (m, �)-combiner be given with output function f , memory
update function Ψ , and extended output function fΨ . Furthermore, assume for a
fixed value r ≥ 1 that a function F : Fr·�+rq → Fq is known such that it holds for all
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X1, . . . ,Xr ∈ F
�
q and y1, . . . , yr ∈ F

o
q :

∃M ∈ F
m
q : fΨ (M,X1, . . . ,Xr)= (y1, . . . , yr ) ⇒

F(X1, . . . ,Xr, y1, . . . , yr )= 0.
(3)

Informally said, whenever there exists an assignment to the memory register such
that the “LFSR-outputs”X1, . . . ,Xr lead to the “keystream outputs” y1, . . . , yr then
F gives zero on (X1, . . . ,Xr, y1, . . . , yr ). In the case of simple combiners where no
memory register is present, a candidate for F is F(X,y) := f (X) − y. However,
observe that due to other cryptographic design criteria, e.g., to achieve high linear
complexity, the degree of f will be probably high. This makes this choice rather
unsuitable for algebraic attacks, but we will discuss in Sect. 4 different methods for
finding better equations.

Once such functions are known, they can be used to setup a system of equations
in the key. More precisely, whenever some keystream outputs zt , . . . , zt+r−1 are
known, one can insert the following equation to the system of equations:

0= F(Kt , . . . ,Kt+r−1, zt , . . . , zt+r−1). (4)

It is important to stress that the more keystream outputs are known, the more equa-
tions can be set up using the “local” function F .

An important property of this kind of system of equations is that the degrees of
the equations are bounded by some constant. Recall that Kt =K ·Lt ·P , that is the
entries of Kt depend linearly on the key K . Hence, all equations of the form of (4)
have a degree in K which is upper bound by

d :=max{degX1,...,Xr
(F (X1, . . . ,Xr, y1, . . . , yr )︸ ︷︷ ︸

∈Fq [X1,...,Xr ]
) | (y1, . . . , yr ) ∈ F

r·o
q }. (5)

In particular, only monomials of degree d or less can occur in the system of equa-
tions. Hence, if d is small, only a fraction of all possible monomials can be part of
the system of equations. Let μ denote this number where the constant term is not
counted. Next assume that the generated system of equations contains μ linearly in-
dependent equations. Then, the idea of the linearization approach is to replace each
of the μ monomials by a new identifier. By doing so, we transform a non-linear sys-
tem of equations in n unknowns of degree ≤ d into a linear system of equations in
μ unknowns where μ linearly independent equations are given. This allows to solve
the (newly created) system of linear equations with the usual methods from linear
algebra, e.g., Gaussian elimination. Once this is done, the solution of the original
system of equations can be easily extracted. In the case that Gaussian elimination
is used, the time and memory effort for this approach are in O(μ3) and O(μ2), re-
spectively. The effort can be further reduced by using improved algorithms as for
example the one from Strassen (1969). The interesting fact is that if F= F2, being
the most important case for practical applications, it holds that μ ∈ O(nd) which
implies that the attack effort is polynomial in n, i.e. the key size. Observe that (4)
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is independent on how the values Kt are generated. This means that even if one
increases the key size n (= the size of the LFSRs), (4) remains valid. Hence, d is in-
dependent of n and an increase of the key size results only in a polynomial increase
in the attack effort. This is quite astonishing as the security should increase expo-
nentially with the key size. For this reason, algebraic attacks outmatched, at least in
theory, for several stream ciphers all other previously known attacks, e.g., Courtois
and Meier (2003), Armknecht and Krause (2003), Cho and Pieprzyk (2004).

However, when it comes to the practicability of algebraic attacks, things are dif-
ferent. First of all, it might be difficult to find appropriate functions F as given in
(3). Even if one such function is found, it might not necessarily be the best choice.
For example, as the efforts for algebraic attacks (data, memory, computation) are
all exponential in the value d specified in (5), an attacker is interested in finding
equations with the lowest possible degree.

Another issue is the impractical huge amount of known keystream outputs re-
quired for an attack. For example, it was estimated in Armknecht and Krause (2003)
that about 223 known keystream bits are necessary for a successful attack againstE0,
being certainly unrealistic. This is even worse if one considers that only about 132
known keystream bits should be enough to determine the secret key from a infor-
mation theoretical point of view.

In the following sections, we describe how and to what extent Gröbner bases are
helpful to tackle these problems.

4 Finding Equations

As mentioned in the previous section, the effort of algebraic attacks depends both
on the number of unknowns in the system of equations and on the degree of the
equations. We discuss for different scenarios how Gröbner bases can be used to
determine optimal equations in terms of degree and/or variables over few clocks.

4.1 Simple Combiners

First, we focus on simpler combiners, that is (0, �)-combiners with no memory
register. Let f : F�q → F

o
q be the output function with input variables x1, . . . , x�

and outputs y1, . . . , yo. W.l.o.g., we can rewrite f as f = (f1, . . . , fo) with yi =
fi(x1, . . . , x�). A theoretical analysis of the existence of low degree equations has
first been conducted in Meier et al. (2004) for the case of Fq = F2 and o = 1. The
authors introduced the notion of the algebraic immunity AI(f ) of a Boolean func-
tion f and showed that it is equal to the lowest possible degree of equations that
can be used for an algebraic attack. That is, the value AI(f ) indicates the resistance
of the simple combiner against algebraic attacks. AI(f ) is defined as follows where
h≡ 0 means that a function h is the constant, all-zero function:

AI(f ) :=min{deg(g) | g �≡ 0, g · f ≡ 0 or g · (f − 1)≡ 0}. (6)
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This notion has later been extended to combiners with memory and block ciphers in
Armknecht (2005). Several methods have been developed to compute AI(f ), e.g.,
in Meier et al. (2004), Armknecht (2004b), Armknecht et al. (2006), Didier and
Tillich (2006). Before we proceed, we give a generalized definition of the algebraic
immunity:

Definition 3 Consider a function f : F�q→ F
o
q,X = (x1, . . . , x�) �→ Y = (y1, . . . , yo)

and the associated ideal of relations:

I = 〈y1 − f1(X), . . . , yo − fo(X),Xq −X,Yq − Y 〉. (7)

Observe that I contains all relations between the inputs and outputs of f . The alge-
braic immunity of f is defined by

AI(f ) :=min{degX(g) | g ∈ I \ {0}}. (8)

The following proposition shows that this definition is indeed an extension of the
original notion of algebraic immunity:

Proposition 1 (Ars 2005) For the case of o = 1 and Fq = F2, the definition of
algebraic immunity from Definition 3 equals the original definition (6) of Meier
et al. (2004).

Proof First, we recall that any ideal over a finite field that contains the field equa-
tions is radical (Seidenberg 1974). Now let

AI1(f ) :=min{deg(g) | g �≡ 0, g · f ≡ 0 or g · (f − 1)≡ 0} and (9)

AI2(f ) :=min{degX(g) | g ∈ I \ {0}}, (10)

with I := 〈f − y, y2 − y,X2 −X〉. We will show that AI1(f )= AI2(f ).
Let g1 = g1(X) be a Boolean function such that f ·g1 ≡ 0. Hence, (f −1) ·g1 ≡

g1 and g1 ∈ I1 := 〈f − 1,X2 − X〉 as I1 is a radical ideal. In particular, one can
express g1 by g1 = P · (f − 1)+∑n

i=1Qi · (x2
i − xi) where P and Qi are some

polynomials. From this, it follows that

y · g1 = y · P · (f − y)+ P · (y2 − y)+ y ·
n∑

i=1

Qi · (x2
i − xi) ∈ I.

In a similar manner, one can show for any g′1 with g′1 · (f − 1) ≡ 0 that (y − 1) ·
g′1 ∈ I . This implies that AI1(f )≥ AI2(f ).

Let g2 ∈ I . We can write g2 as g2(X,y)= P · (f −y)+Q · (y2−y)+∑n
i=1Qi ·

(x2
i − xi) for some polynomials P , Q, and Qi . It follows that

g2(X,0) · (f − 1)= P̃ · (f 2 − f )+
n∑

i=1

Q̃i · (f − 1) · (x2
i − xi).
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Using the Frobenius relation (h2 ≡ h on F2), one has f 2 − f ≡ 0 and x2
i − xi ≡ 0,

what implies g2(X,0) · (f − 1) ≡ 0. Similarly, one can prove that g2(X,1) ·
f ≡ 0. Because of degX(g2(X,y)) ≥ degX(g2(X,0)) and degX(g2(X,y)) ≥
degX(g2(X,1)), one concludes that AI2(f )≥ AI1(f ). �

This extended definition allows to determine the algebraic immunity by com-
puting a Gröbner basis of I for an appropriate block ordering. Recall that for two
ordered sets X and Y of variables and two orderings<X and<Y on F[X] and F[Y ],
respectively, the block ordering <X,Y on F[X,Y ] is defined by

XαYβ <X,Y X
α′Yβ

′ ⇐⇒ Xα <X X
α′ or (Xα =Xα′ and Yβ <Y Y

β ′).

Theorem 1 (Ars and Faugère 2005) Consider an output function f : F�→ F
o. A

reduced Gröbner basis of I for an elimination order on [X], [Y ] contains a linear
basis of polynomials g ∈ I such that AI(f )= degX(g).

Next, we recall several bounds on the algebraic immunity. For f : F�2 → F2,
it holds that AI(f ) ≤ 1 �22 (Courtois and Meier 2003; Meier et al. 2004). For more
general statements, let f and I be as defined in Definition 3 and let R be the ring
Fq [x1, . . . , x�, y1, . . . , yo]/I . As I is a zero dimensional ideal, the ring R is a linear
vector space with a finite dimension. If choosing the lexicographic order y1 � · · · �
yo � x1 � · · · � x� for I , the set {Xα | α ∈ F

�
q} forms a basis of R. This shows

that R has the dimension q�. We deduce that the images of any q� + 1 monomials
in R are linearly dependent. In particular, there exists a linear relation between the
first q� + 1 monomials and this relation corresponds to a polynomial in I . Let Md

�

denote the number of monomials in � unknowns over Fq which have a degree of
d . Then, the number of monomials in Fq [X,Y ]/〈Xq −X,Yq − Y 〉 with degree d
in x1, . . . , x� is qoMd

� where qo is the number of all possible monomials in the
unknowns Y . Thus the algebraic immunity is upper bounded by the minimum value
d such that the following holds:

d∑

k=0

qoMk
� ≥ q� ⇐⇒ 0≥ q�−o −

d∑

k=0

Mk
� . (11)

For determining the smallest d which fulfills this inequation, one can make use of
the fact that

q�−o

1− t −
(1− tq)�
(1− t)�+1

=
∑

d≥0

(

q�−o −
d∑

k=0

Mk
�

)

td .

Hence, an upper bound for the algebraic immunity can be derived by developing
the expression on the left hand side by t and determining the first negative or zero
coefficient of this series.

Another question is the distribution of the algebraic immunity in the set of all
possible functions, especially the percentage of functions that have the maximum
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Table 1 Distribution of
AI(f ) over all functions
f : F5

2 → F2

AI(f ) 1 2 3

Balanced f 2.9× 10−4% 67.1% 32.9%

Unbalanced f 0.3% 99.7% 0%

Total 0.2% 90.6% 9.2%

algebraic immunity. Table 1 displays the distribution of AI(f ) over all Boolean
functions from F

5
2 to F2. Recall that 1 ≤ AI(f ) ≤ 1 �22 = 3. The table shows that

almost a third of all balanced functions have the maximum algebraic immunity
of 3. Moreover, only balanced functions reach the maximum algebraic immu-
nity.

An asymptotic bound for the algebraic immunity has been proven in Meier et al.
(2004):

Proposition 2 Let f : F�2 → F2 be a balanced Boolean function. Then it holds that

Pr(AI(f )≤ d)≤ 2
21+�+···+( �d−1)(2(

�
d) − 1)

( 2�−2�−d
2�−1−2�−d

)

( 2�
2�−1

) (12)

where Pr(AI(f )≤ d) is the probability that AI(f )≤ d .

This yields the following theorem:

Theorem 2 (Meier et al. 2004) Let f : F�2 → F2 and (d�) be a sequence that sat-

isfies d� ≤ μ� where μ= 1
2 (1+ ln 2

2 −
√
(1+ ln 2

2 )
2 − 1) ≈ 0.22, then it holds that

lim�→+∞ Pr(AI(f )≤ d�)= 0.

According to this theorem, almost all functions f : F�2 �→ F2 have asymptotically
an algebraic immunity that is higher than 0.22�. The theorem confirms the observa-
tions displayed in Table 1.

4.2 Combiners with Memory

Observe that the results stated so far concern only simple combiners. For a com-
biner with memory, that is, with a memory register of length m> 0, the keystream
is computed from both the outputs of the LFSRs and from (parts of) the memory
register. Hence, the degree of the equations depend both on the output function f
and the next memory state function Ψ .

Before we consider the question on the minimum possible degree, we have to
explain what type of equations are advantageous for algebraic attacks. A straightfor-
ward approach to generate equations would be to express equations in the inputsKt ,
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the keystream zt , and some memory variables. In principle there are two different
possibilities how to integrate the memory contents into the equations: either intro-
ducing new variables for each clock or expressing them by other variables. In the
first case, the system of equations will be most likely unsolvable as the number
of unknowns increases with the number of equations. Regarding the second case,
observe that as opposed to the inputs Kt , which are linearly derived from K , the
relation between the initial memory state M0 and the memory state Mt at clock t
is non-linear. Hence, the degree of the equations would no longer be bounded by a
constant d so that a polynomial effort for computing the solution is not guaranteed
anymore. Therefore, the usual approach is to find equations which are indepen-
dent of the memory variables in the system of equations. In Armknecht and Krause
(2003), the authors proved for F = F2 and o = 1 that if one considers m+ 1 suc-
cessive outputs, there always exists a non trivial relation between the keystream
outputs and the LFSR inputs Kt . An extension to general combiners with memory
is the following:

Theorem 3 (Ars and Faugère 2005) Consider a combiner with memory as de-
scribed in Definition 2 with output function f = (f1, . . . , fo) and a next memory
state function Ψ = (Ψ1, . . . ,Ψm). For r ≥ 1, we define the ideal Ir generated by all
equations between the unknowns involved in generating r outputs. More precisely,
let at clock t denoteXt = (xt,1, . . . , xt,�) the inputs,Mt = (Mt,1, . . . ,Mt,m) the con-
tent of the memory register, and Yt = (yt,1, . . . , yt,o) the keystream output. Then Ir
is generated by

{
yt,j − fj (Xt ,Mt), j = 1, . . . , o, t = 1, . . . , r,

Mt+1,i −Ψi(Xt ,Mt), i = 1, . . . ,m, t = 1, . . . , r − 1

and the field equations Xqt − Xt , etc. over all variables. If r ≥ 1m+1
o
2, then there

exists a non-zero polynomial F ∈ Ir which is independent of the memory values.

Summing up, a relation between the inputs Kt and keystream outputs zt exists
for sure if one considers sufficiently many successive clocks. From these, one can
generate system of equations as described in Sect. 3. Notice that the degree of these
equations are likewise bounded by some constant, making the linearization approach
still possible. Moreover like in the previous section, there is a Gröbner basis method
to compute equations with minimal degree:

Proposition 3 (Ars 2005) Consider a combiner with memory and the ideal Ir as
defined in Theorem 3. A reduced Gröbner basis of Ir for an elimination order on
[Mi][Xj ], [Yk] contains a linear basis of polynomials g ∈ Ir with minimal degree
in X1, . . . ,Xr and without any memory variablesMt,i .

Actually, this result shows that the notion of algebraic immunity can be easily
extended to combiners with memory. In particular, some results on the algebraic
immunity of simple combiners can be transferred to the case of combiners with
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memory by a simple change of variables. For example, similarly to the approach
described in Sect. 4.2, one can derive an upper bound on the minimal degree of the
equations by determining the first degree of a series which has a negative or zero

coefficient. This series is q
(�−o)r+m

1−t − (1−tq )� r
(1−t)� r+1 .

A problem with this approach is that for a large number of variables, the com-
putation of a Gröbner basis can be elaborate. The following theorem (Ars 2005)
shows that this effort can be reduced in some cases if generators of the ideal
Jr := Ir ∩ F[X1, . . . ,Xr,Y1, . . . , Yr ] are known:

Theorem 4 (Ars 2005) Consider a combiner with memory with output function
f : F�q→ Fq and with memory of size m. If

Jm = Ir ∩ F[X1, . . . ,Xm,y1, . . . , ym] = {0},
then there exists a non-trivial polynomial F ∈ Fq [X1, . . . ,Xm+1, y1, . . . , ym+1] so
that

ym+1 = F(X1, . . . ,Xm+1, y1, . . . , ym). (13)

The ideals Jr , r ≥m, are generated by

{yt+m − F(Xt , . . . ,Xt+m−1, yt , . . . , yt+m−1) | t ∈ {1, . . . , r −m}}
and the field equations in these variables.

As an example, this theorem can be applied to the summation generator (Rueppel
1985). In Lee et al. (2004), the authors found a polynomial F as described in (13).
Using this polynomial, one can compute the minimal degree of relations indepen-
dent of any memory variables. Below, we give a comparison (in dependence of the
key size n) of the minimal degree and the bounds derived in Lee et al. (2004):

n 2 3 4 5 6 7 8 9

Bound of Lee et al. (2004) 2 3 4 6 6 7 8 12

Minimal degree d 2 3 4 5 6 7 8 9

4.3 Considering Several Equations Simultaneously

So far, the focus was on directly deriving optimum equations over few clocks. In
the following, we show how the combination of several equations can lead to even
better results.
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Table 2 The average minimum degree when combining s appropriate functions Ft (1000 tests)

s 8 7 6 5 4 3

Few monomials 1.35 2 2.08 2.72 2.9 3

Small corr. coeff. 1.37 2 2.05 2.75 2.9 3

Random 1.45 2 2.13 2.74 2.9 3

Boolean functions with �= 5 variables

s 10 9 8 7 6

Few monomials 1.8 2.68 2.8 3 3

Small corr. coeff. 1.8 2.72 2.8 3 3

1-resilient 1.8 2.56 2.78 3 3

Random 1.8 2.39 2.77 3 3

Boolean functions with �= 6 variables

4.3.1 Reducing the Degree

Although the algebraic immunity gives the lowest possible degree of equations over
some successive keystream elements, it is sometimes possible to find valid equa-
tions with a degree below this bound by combining many equations to form a new
equation. This idea has been used the first time to mount fast algebraic attacks, in-
troduced in Courtois (2003) and further improved in Armknecht (2004a), Hawkes
and Rose (2004), Armknecht and Ars (2005). The idea is to reduce the degree of the
equations by computing appropriate linear combinations of many successive equa-
tions. Successive equations means equations as defined in (4) for successive clocks
t, t + 1, . . . . However, an enormous number of successive equations is required
for a successful attack,3 making this approach rather interesting from a theoretical
point of view. One possibility to extend the idea is to consider non-linear combi-
nations of successive equations. Another possible extension is to look for a set of
non-successive equations which share the same (preferably small) set of variables.
Observe that this idea has been studied before for correlation attacks (Canteaut and
Filiol 2002).

In Ars (2005), this approach has been explored for algebraic attacks on simple
combiners and the minimum possible degree has been analyzed. More precisely,
experiments have been conducted on output functions which were taken from the
four following categories: (i) polynomials with only few monomials, (ii) polyno-
mials with a small correlation coefficient, (iii) polynomials which are 1-resilient
functions, and (iv) purely random polynomials. All considered functions have been
chosen such that they have maximum algebraic immunity, that is 1 �22. The results
are shown in Table 2. Somewhat surprising, the results were about the same for
all categories. This indicates that the resistance against such approaches does not
directly depend on the other criteria.

4.3.2 Reducing the Number of Variables

Another approach to improve algebraic attacks is to reduce the number of un-
knowns. In Armknecht and Ars (2005), it was described how fast algebraic attacks

3In Armknecht and Ars (2005), it was shown how to reduce this value to the minimum.
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can be modified to achieve this. However, this likewise requires a huge amount of
successive equations.

Alternatively, one could try to find “local” equations, that is over few clocks,
which reduce the number of unknowns n to some smaller value n′ < n. We illustrate
this idea on the Geffe generator, a simple combiner over F2 introduced in Geffe
(1973). It uses three LFSRs LA, LB , LC of lengths na , nb, and nc, respectively. Let
at , bt , and ct be the outputs of each LFSR at time t . The output zt is defined by zt =
at + ct · (at + bt ). Thus, an algebraic attacks based on this equation would need to
consider na +nb+nc variables. But multiplying the mentioned equation by ct (and
recalling that we are computing over the characteristic 2) gives a new relation 0=
ct zt + ctbt which is independent of LFSR LA. Thus, the second equation could be
used to set up a system of equation for an algebraic attacks that aims for recovering
the initial states from LB and LC . This would reduce the number of variables from
na + nb + nc to nb + nc. Observe that any of the other LFSRs can be eliminated as
well by multiplying with ct + 1 and at + bt + 1, respectively.

The following theorem describes for general simple combiners if “local” equa-
tions exist which are independent of certain variables:

Theorem 5 (Ars 2005) Let f ∈ F2[x1, . . . , x�] and consider a simple combiner with
output function f . Then, for any i ∈ {1, . . . , �}, there is a non-trivial relation g in
I = 〈f (X)− y,X2−X,y2− y〉 which is independent of xi if and only if the output
function f cannot be written as f (X)= f̂ (x1, . . . , xi−1, xi+1, . . . , x�)+ xi .

Such functions g can be determined by computing an appropriate Gröbner basis
with elimination order [xi], [x1, . . . , xi−1, xi+1, . . . , x�], [y1, . . . , yo]. This approach
has some connections to the method for computing the algebraic immunity. Using
the theory of Gröbner bases, one can prove that the restriction of a Gröbner basis to
polynomials without the variable xi gives a Gröbner basis in respect to the elimina-
tion order [x1, . . . , xi−1, xi+1, . . . , x�], [y1, . . . , yo], which in turn is the order used
for computing the algebraic immunity. Hence, one has the same properties as in the
case of the algebraic immunity. For example, this Gröbner basis contains a linear
basis of relations with the lowest possible degree.

5 Computing Solutions

In this section, we resume some results on the minimum number of keystream out-
puts that are required to be known to have a unique solution and some results on the
time effort for computing the solutions of the system of equations. We suppose in
the following that an attacker has N linearly independent equations of degree d in
n variables over F2 at her disposal.
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5.1 Minimum Number of Outputs

For a successful algebraic attack, it is necessary to know the minimum number of
keystream outputs that is required to find a unique solution to the generated system
of equations. A very rough upper bound is given by the following proposition:

Proposition 4 (Ars 2005) Let a simple combiner over Fq be given which is com-
posed of one LFSR of length n and a balanced output function f . For any keystream
sequence (zi)

qn−2
i=0 there exists at most one initial state which yields this keystream.

For example, any system of equations over F2 with at least N ≥ 2n−1 equations
has one unique solution. Obviously, one is rather interested in a lower bound. In-
deed, one can construct pathologic examples with balanced functions f : Fn2 �→ F2

such that at least 2n−1−1 keystream elements need to be known to be able to distin-
guish the key stream from the all-zero-sequence. However, in most cases one would
expect that if the number of equations is close to the number of variables, only one
unique solution should be possible.

Figure 3 represents the results of some computer simulations on how many out-
puts are needed to be known such that the solution is unique. On the horizontal axis,
the ratio of the number of given outputs N by the length of the secret key n is given
whereas the vertical axis shows the percentage of examples where the solution was
uniquely determined. According to this graph, it seems that in the majority of the
cases, already a little bit more than n equations provide enough information to de-
termine the initial state. That is, the number of outputs has to be proportional to the
length of the initial state to find a unique solution. Note that even ifN is smaller than
n, one can compute the Gröbner basis to get all possible solutions (this is similar to
the list decoding concept in error correcting codes). However, when N is small the

Fig. 3 Experimental analysis of the minimal number of output bits
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Table 3 Gröbner basis
computation for N ≈ n using
the F5 algorithm

Example Size L Number N Gröbner

of register of outputs computation

f5 40 44 22.3 s

f5 50 54 46.0 s

f5 60 66 89.0 s

f5 70 77 221.0 s

computation of the Gröbner basis is much more difficult and it is not even clear if it
can be done in polynomial time.

Very surprisingly, examples have been found, based on output functions given
in Canteaut and Filiol (2000), for which the simple combiners can be efficiently
attacked even if the number of outputs is small (see Table 3). It is an open issue
to understand and to predict such a behavior from the Boolean function and the
underlying LFSRs.

5.2 Time Effort

Observe that in the worst case, the time effort to compute a Gröbner basis can be
double-exponential. However, we will see in this section that the time effort is better
predictable if significantly more than n equations are available. All statements refer
to the case that the F5 algorithm (Faugère 2002) is used. If N is large enough and
Fq = F2, one can show that during the Gröbner basis computation, none of the
computed polynomials will have a degree that exceeds a certain constant d . From
this, one can derive a time effort which is polynomial in the number of variables.

Theorem 6 (Ars 2005) If F = F2 and N ≥∑d
i=0

(
n
i

)
, where d is the value speci-

fied in (5), then the time effort for the Gröbner basis computation is in O(
(
n
d

)ω
)=

O(ndω), where ω ≤ 3 is the effort for Gaussian elimination.

This shows that Gröbner basis computation behaves like linearization in the con-
sidered cases. The experimental results presented in Table 4 confirm these estima-
tions. The functions fi are taken from Canteaut and Filiol (2002).

However, if N is smaller than the mentioned value, then the degree during the
Gröbner basis computation can be higher. In Ars (2005) it was expected to have an

effort of about n(d+1)ω if the number of outputs N satisfies the inequation
( nd+1)
(n+1) ≤

N ≤ (n
d

)
.

An important point is the comparison between the number of equations that are
required for algebraic attacks and fast correlation attacks. For fast correlation at-
tacks, the number of outputs needed is exponential in the key size (Canteaut and
Filiol 2000) whereas only polynomial for algebraic attacks as discussed before.
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Table 4 Simulations performed on an Alpha DS25 1000 MHz with n being the number of vari-
ables, N being the number of outputs used, and d being the degree of the equations

Example n N d Effort Time

f1 40 1071 3 n3ω 18 s

f1 80 8541 3 n3ω 1 h 32 m

f1 89 11758 3 n3ω 4 h 28 m

f3 80 6342 2 n2ω 1.1 s

f3 128 12384 2 n2ω 10.2 s

Example n N d Effort Time

f2 40 3568 3 n3ω 19.3 s

f2 70 19076 3 n3ω 32 m 12 s

f2 80 28468 3 n3ω 1 h 44 s

f2 89 39190 3 n3ω 4 h 32 m

f4 80 6342 2 n2ω 1.1 s

f4 128 12384 2 n2ω 10.3 s

We illustrate this on some concrete functions over n = 40 variables, taken from
Canteaut and Filiol (2000) (these functions respect several design criteria for stream
cipher). In the considered cases, the number of expected outputs for an algebraic
attack is significantly less compared to a fast correlation attack. The exact results
are below:

Example n= 40 f1, f2, f3 f4, f5, f6 f7 f8, f9, f10

Gröbner basis 821 412 274 1071

Correlation att. 7625 7625 7625 2725

Despite the results presented so far, it is very difficult in general to bound the
effort of solving a system of equations generated for an algebraic attack on a com-
biner with memory. In Bardet et al. (2005), the authors derived some complexity re-
sults for solving “typical” overdetermined algebraic systems over F2 using Gröbner
bases. Interestingly, the complexity is sub-exponential if the number of equations N
is higher than n ln(n).

6 Conclusions

Algebraic attacks consist in generating and solving systems of nonlinear equations
over some finite field. While computing solutions is generally a hard problem, the
specific structure of the system of equations makes attacks possible with an effort
that is polynomial in the key size.

In this paper, we gave an overview on how Gröbner bases can be useful for al-
gebraic attacks. Besides of finding the solutions, Gröbner bases can be helpful for
reducing the amount of data and/or for looking for better equations. Therefore, it
is a promising direction to further explore the usage of Gröbner bases and to find
additional applications. Another open question is to analyze the efficiency of meth-
ods based on Gröbner bases to other approaches. For example, besides the methods
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discussed in Sects. 4 and 5, alternative approaches exist. Although it is hard to pre-
dict the effort for computing a Gröbner basis, it turned out that these methods are
often more efficient for practical applications. However, further analysis is required
to understand this issue better.
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Canonical Representation of Quasicyclic Codes
Using Gröbner Bases Theory

Kristine Lally

Abstract The tools and techniques of Gröbner bases theory have proved useful in
characterising quasicyclic codes and analysing their algebraic structure. A canoni-
cal generating set can be obtained from the reduced Gröbner basis of an associated
module structure. The very particular form of this generating set allows straightfor-
ward determination of properties such as dimension, in manner directly analogous
to the theory developed for cyclic codes.

1 Introduction

Quasicyclic (QC) codes of index � and length m� over a finite field F, defined by
the property that a cyclic shift of a codeword by � places is another codeword,
are a natural generalization (Augot et al. 2009) of cyclic codes (� = 1), and have
closely linked algebraic structure. By a coordinate permutation, they are conven-
tionally constructed as the rowspace of a block matrix consisting of some t rows of
m×m circulant submatrices. By the usual association of a circulant matrix with the
polynomial formed by its top row, they can, in this setting, be regarded as F[x]/I -
submodules of (F[x]/I)�, where I = 〈xm − 1〉 (Séguin and Drolet 1990).

Most of the literature on QC codes is largely concerned with the 1-generator (that
is, cyclic submodule) case, when only t = 1 row of circulants is present in this gener-
ator matrix. In this case, dimension can be read from the generating polynomials by
the formulae given in Séguin and Drolet (1990), van Tilborg (1978). A large num-
ber of QC codes have been found, for example see Gulliver and Bhargava (1991),
which achieve the highest known minimum distance of any linear code of the same
length and dimension, and many in fact reach the maximum possible value. QC
codes are known to be asymptotically good codes, moreover, it was recently showed
that double-circulant QC codes meet an improved version of the Gilbert–Varshamov
bound (Gaborit and Zemor 2008). Due to their compact representation and efficient
encoding algorithm, QC codes are of on-going interest, and have more recently been
used to construct good low density parity check (LDPC) codes (Fossorier 2004;
Giorgetti et al. 2005).

The theory of Gröbner bases of modules (Mora 2009) has been applied in Lally
and Fitzpatrick (1999, 2001), to provide insight into the algebraic structure of an
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arbitrary QC code, where the code is initially specified by any number t of module
generators. A canonical generating set is obtained, and used to determine dimension
and also to construct a generator matrix for the code and its dual. Conversely all such
canonical generating sets can be specified, allowing the classification and enumera-
tion of all QC codes of index � and length m�, for all dimensions permissible by the
degrees of the irreducible factors of xm − 1.

2 Characterisation Using Gröbner Bases Theory

Let C be a QC code of length �m and index �, generated as an F[x]/I -submodule of
(F[x]/I)�, by some arbitrary set of vectors {a1,a2, . . . ,at } in (F[x]/I)�. The code
C is the image of an F[x]-submodule C̃ of F[x]� containing K̃ = 〈(xm − 1)ei , i =
1, . . . , �〉 (where ei is the standard basis vector with 1 in i-th position and 0 else-
where), under the natural homomorphism

ϕ: F[x]�→ (F[x]/I)� , (c1, . . . , c�) �→ (c1 + I, . . . , c� + I ).
Since C̃ is a submodule of the finitely generated free module over the principal
ideal domain F[x] and contains K̃, it is finitely generated by the set M̃ = {ai , i =
1, . . . , t, (xm − 1)ej , j = 1, . . . , �} in F[x]�. Using the position-over-term (POT)
order in F[x]�, where e1 > e2 > · · · > e�, and the terms xi are ordered naturally
in each component, the reduced Gröbner basis (RGB) of C̃ can be easily found
(in this 1-variable module setting, by simply performing successive elementary row
operations on the matrix with rows consisting of the set M̃) to be an upper triangular
generating set G̃ = {g1, . . . ,g�} containing exactly � vectors.

Theorem 1 A submodule C̃ of F[x]� containing K̃ (and thus corresponding to a QC
code) has a reduced Gröbner basis (with respect to POT monomial ordering) of the
form

G̃ = {gi = (gi1, gi2, . . . , gi�), i = 1, . . . , �} (1)

where

(i) gij = 0 for all j < i
(ii) the diagonal components gii is a non-zero monic polynomial

(iii) ∂gki < ∂gii for k < i
(iv) if the left-most non-zero component of an element of C̃ lies in the i-th place

then it is divisible by gii ; in particular, gii divides xm − 1
(v) if gii = xm − 1 then gi = (xm − 1)ei

(vi) the F-dimension of F[x]�/C̃ is
∑�
i=1 ∂gii , that is, the number of monomials

xsei in F[x]� in normal form modulo G̃ .

Conversely any such upper triangular set of vectors G̃ = {gi , i = 1, . . . , �}, sat-
isfying the monic and degree restrictions of (i)–(iii) above, is the unique RGB of
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a submodule C̃ containing K̃ (and thus corresponds to a QC code) if there exists
a matrix Ã ∈M�(F[x]) satisfying ÃG̃ = G̃Ã = (xm − 1)I, where G̃ is the upper
triangular matrix with rows gi , and I is the identity matrix. It is immediate that Ã
is also upper triangular, and the non-zero entries of Ã can be computed recursively
from those of G̃. The entries of G̃ satisfy an analogous system of equations in terms
of those of Ã. This leads to a complete characterisation of all possible RGB for
submodules of F[x]� corresponding to QC codes.

Theorem 2 The upper triangular set G̃ is a Gröbner basis of a submodule in F[x]�
containing K̃ if and only if there exist aij for 1≤ i, j ≤ � satisfying

aij =

⎧
⎪⎨

⎪⎩

0 if j < i
xm−1
gii

if j = i
−1
gjj

(∑j−1
k=i aikgkj

)
if j > i.

(2)

The Gröbner basis is reduced if and only if ∂gii > ∂gji for all j < i, if and only if
∂aii > ∂aij for all j > i.

The QC code C is the image of C̃ under ϕ. Dropping the coset notation, it follows
that the set G consisting of the elements of G̃ not mapped to zero under ϕ forms a
F[x]/I -generating set for the code C . This image set G is unique (with respect to the
chosen monomial ordering) and is referred to as the RGB generating set of C . The
dimension of the code C can be obtained directly from the diagonal elements of this
canonical generating set.

Theorem 3 The dimension of the code C ∼= C̃/K̃ with RGB generating set G =
{ϕ(gi ), i = 1, . . . , �} is given by

�m−
�∑

i=1

∂gii =
�∑

i=1

(m− ∂gii).

The possible dimensions of QC codes can now be enumerated straightfor-
wardly. Fixing the notation xm − 1 = ∏sn=1 f

ε
n , where m = (char F)tm′ with

gcd(m′, charF) = 1 and ε = (char F)t , for the decomposition of xm − 1 into irre-
ducible factors fn over F.

Corollary 1 The QC codes of length �m and index � have dimensions∑�
i=1
∑s
n=1 tni∂fn where 0 ≤ tni ≤ ε. Every such dimension arises in some code

(for instance, in a code with block diagonal generator matrix).

A generator matrix for the code C , with linearly independent rows, can be con-
structed from the RGB generating set G = {ϕ(gi ), i = 1, . . . , �}, as an �× � block
upper triangular matrix consisting of rows of truncated m×m circulants; the circu-
lants in the ith row are formed from components of the vector ϕ(gi ), and truncated
after the (m− deg(gii)− 1)th cyclic shift in each component.
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3 Parity Check Matrix and Dual Code

The rows of the matrix Ã ∈ M�(F[x]) determined in Theorem 2 can be used to
form a parity check matrix for the code C , and moreover, a minimal GB generating
set for the dual code C⊥ . The structure of ÃT implies that its rows form a reduced
Gröbner basis for the module they generate, with respect to the reverse POT term
order (rPOT), that is, where e1 < e2 < · · · < e�, and that this module contains K̃.
Let f̂ denote the transpose of the polynomial f, that is, the top row polynomial of
the transpose of the circulant matrix specified by f . It is easily seen that f̂ (x) =
xmf (x−1) mod xm − 1 = xm−∂f f ∗ mod xm − 1, where f ∗ is the conventional
reciprocal of f .

Theorem 4 The rows H̃ = {h1,h2, . . . ,h�} ⊆ (F[x])� of the matrix

H̃ =

⎛

⎜
⎜
⎜
⎜
⎝

a∗11 0 · · · 0

x∂a22 â12 a∗22 · · · 0
...

...
. . .

...

x∂a�� â1� x∂a�� â2� · · · a∗��

⎞

⎟
⎟
⎟
⎟
⎠

form an rPOT minimal Gröbner basis (usually not reduced) for the preimage C̃⊥ of
the dual code C⊥ in F[x]�.

The image set H = {ϕ(hi ), i = 1, . . . , �} forms a minimal GB generating set for
the dual code C⊥ . A block lower triangular matrix generator matrix for C⊥ , and thus
parity check matrix for C, is formed by replacing each component of ϕ(hi ) by the
m×m circulant it generates. Redundant rows can be removed by truncating all but
the first m− ∂aii rows in each block row.

A change of monomial ordering, to form the POT RGB for the preimage module

C̃⊥ in F[x]�, can be achieved by appropriate F[x]-elementary row operations on H̃ .
Comparison of the resulting generators, to the elements of G̃ , have lead, in the �= 2
case, to a complete characterisation of all self-dual QC code of index 2 (Lally and
Fitzpatrick 2001).

4 Recent Application to QC LDPC Codes

Parity check matrices comprising of low-weight circulant submatrices have been
employed by many authors to define LDPC codes. For example, in Fossorier (2004)
circulant permutation (1-weight) matrices are strategically arranged to achieve high
girth. It is known that such matrices (and more generally those with a uniform
circulant-weight configuration) cannot reach fullrank, and moreover, their actual
rank is difficult to determine. A class of regular QC parity check matrices consisting
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of 0-, 1- and 2-weight circulants, arranged in a predefined pattern, has been pro-
posed more recently in Giorgetti et al. (2005). It was shown that the POT RGB of
the dual code could be easily constructed by formula from the polynomial para-
meters, and hence the dimension determined straightforwardly as described earlier.
Parity check matrices in this class were shown by this method to be fullrank, leading
to the construction of a class of QC LDPC codes of rate (�− 1)/�.

Remark The “module approach” is used for some convolutional codes (Gluesing-
Luerssen et al. 2009).
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About the nth-Root Codes: a Gröbner Basis
Approach to the Weight Computation

Marta Giorgetti

Abstract Recently some methods have been proposed to find the distance and
weight distribution of cyclic codes using Gröbner bases (Sala in Appl. Algebra En-
grg. Comm. Comput. 13(2):137–162, 2002; Mora and Sala in J. Symbolic Comput.
35(2):177–194, 2003). We identify a class of codes for which these methods can be
generalized. We show that this class contains all interesting linear codes (i.e., with
d ≥ 2) and we provide variants and improvements.

1 General nth-Root Codes

We denote by Fq the finite field with q elements, q is a power of a prime, and by n
a natural number such that (q,n)= 1. Let k,N ∈ N such that 1 ≤ k ≤ N ≤ n+ 1.
We refer to the vector space of dimension N over Fq as to (Fq)N . The zeros of
polynomial xn− 1, which are called n-th roots of unity, lie in an extension field Fqm

and in no smaller field. We denote the set of all these roots by Rn. From now on,
q ,n, k, N and m are understood. Our notation on linear and cyclic codes follows
(Augot et al. 2009). All the following statements and definitions can be found in
Giorgetti and Sala (2006), Giorgetti (2006), Giorgetti and Sala (2009).

Definition 1 Let L be a subset of Rn ∪ {0}, L= {l1, . . . , lN } and P = {g1(x), . . . ,

gr (x)} in Fqm [x] such that ∀i = 1, . . . ,N there is at least one j = 1, . . . , r such that
gj (li) �= 0. We denote by C = Ω(q,n, qm,L,P) the linear code defined over Fq

having

H =

⎛

⎜
⎜
⎜
⎝

g1(l1) . . . g1(lN )

g2(l1) . . . g2(lN )
...

...

gr (l1) . . . gr (lN )

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

g1(L)

g2(L)
...

gr (L)

⎞

⎟
⎟
⎟
⎠

as its parity-check matrix. We say that C is an nth-root code.

Remark 1 Code C =Ω(q,n, qm,L,P) is linear over Fq , its length is N = |L| and
its distance d is greater than or equal to 2, because there are no columns in H
composed only of zeros.
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Definition 2 Let C =Ω(q,n, qm,L,P) be an nth-root code.
If L̄=Rn \L= ∅, we say that C is maximal.
If 0 /∈ L, we say that C is zerofree, non-zerofree otherwise.

We can accept in P also rational functions of type f/g, f,g ∈ Fqm , such that
g(x̄) �= 0 for any x̄ ∈ Fqm . We do so from now on.

Example 1 Let q = 2, n = 7, qm = 8, L = F23 = 〈β〉 ∪ {0} and P = {g1(x) =
1

x2+x+1
, g2(x) = x

x2+x+1
}. The seven 7th roots of unity are all the elements of F

∗
8,

R7 = F
∗
8. The nth-root code C = Ω(2,7,8,F8, {g1, g2}) is non-zerofree (0 ∈ L),

maximal and its parity-check matrix is the following:

H =
(
g1(1) g1(β) g1(β

2) g1(β
3) g1(β

4) g1(β
5) g1(β

6) g1(0)
g2(1) g2(β) g2(β

2) g2(β
3) g2(β

4) g2(β
5) g2(β

6) g2(0)

)

,

It is easy to see that C is an [8,2,5] code.

Remark 2 In order to define the same nth-root code, it is possible to use different n.
For example to define a linear code with length N = 5, we can use the five 5th roots
of unity or five 7th roots of unity.

Proposition 1 Let C be a linear code over Fq of length N and d ≥ 2. Then C is an
nth-root code for any n≥N − 1 such that (n, q)= 1. In particular:

1. if n=N , then C can be maximal zerofree,
2. if n=N − 1, then C is maximal non-zerofree.

Corollary 1 Let C be a linear code. Then C is an nth-root code if and only if d ≥ 2.

1.1 Computing Distance and Weight Distribution for an nth-Root
Code

We provide a method to compute the distance and the weight distribution of a
code C, given a representation of C as an nth-root code.

Definition 3 Let C =Ω(q,n, qm,L,P) be an nth-root code, w and ŵ be natural
numbers such that 2 ≤ w ≤ N = |L|, 1 ≤ ŵ ≤ N − 1. We denote by Jw(C) and
Ĵŵ(C) the following two ideals:

Jw = Jw(C)= Jw(q,n, qm,L,P)⊂ Fqm [z1, . . . , zw, y1, . . . , yw],
Ĵŵ = Ĵŵ(C)= Ĵŵ(q, n, qm,L,P)⊂ Fqm [z1, . . . , zŵ, y1, . . . , yŵ, ν],

Jw =
〈{

w∑

h=1

yhgs(zh)

}

1≤s≤r
, {yq−1

j − 1}1≤j≤w,
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{pij (zi, zj )}1≤i<j≤w,
{

znj − 1
∏
l∈L̄(zj − l)

}

1≤j≤w

〉

, (1)

Ĵŵ =
〈{

ŵ∑

h=1

yhgs(zh)+ νgs(0)
}

1≤s≤r
, {yq−1

j − 1}1≤j≤ŵ

νq−1 − 1, {pij (zi, zj )}1≤i<j≤ŵ,
{

znj − 1
∏
l∈L̄(zj − l)

}

1≤j≤ŵ

〉

(2)

where pij =∑n−1
h=0 z

h
i z
n−1−h
j = zni −znj

zi−zj are in Fq [zi, zj ]. We denote by η(Jw) and

η̂(Ĵŵ) the integers η(Jw)= |V(Jw)|, η̂(Ĵŵ)= |V(Ĵŵ)|.

Remark 3 If we are in the binary case (q = 2), variables yj , j = 1, . . . ,w, and
ν are 1, and so we can omit them and the ideals Jw and Ĵŵ can be written in
F2m [z1, . . . , zw] and F2m [z1, . . . , zŵ], respectively.

Proposition 2 Let C =Ω(q,n, qm,L,P) be an nth-root code. In the zerofree case,
there is at least one codeword of weight w in C if and only if there exists at least one
solution of Jw(C). In the non-zerofree case, there is at least one codeword of weight
w in C if and only if there exists at least one solution of Jw(C) or of Ĵw−1(C).
Moreover, the number of codewords of weight w is

Aw = η(Jw)
w! in the zerofree case and

Aw = η(Jw)
w! + η̂(Ĵw−1)

(w− 1)! in the non-zerofree case

Since the number of solutions of an ideal J is directly computed from any Gröb-
ner basis of J (Mora 2009), we can compute the weight distribution (and the dis-
tance) of an nth-root code, by applying Proposition 2.

Example 2 Consider the nth-root code C as in Example 1. We compute its weight
distribution by applying Proposition 2. Setting w = 2 we construct ideals J2(C)⊆
F2[z1, z2] and Ĵ1(C)⊆ F2[z1]:

J2(C) = 〈g1(z1)+ g1(z2), g2(z1)+ g2(z2), z
7
1 − 1, z7

2 − 1,p(z1, z2)〉
Ĵ1(C) = 〈g1(z1)+ g1(0), g2(z1)+ g2(0), z

7
1 − 1〉

Their Gröbner bases G2 and Ĝ1 are trivial and hence there are no words of
weight 2 in this nth-root code. The same happens for w = 3 and w = 4, so that
A3 = A4 = 0. Setting w = 5 we construct the ideals J5 and Ĵ4. Basis G5 is trivial,
but basis Ĝ4 has the following leading terms

{
z1z2, z

2
1, z1z

2
3, z

3
2, z1z

3
4, z

4
3, z

2
2z

2
3, z

5
4, z

2
2z

3
4, z

3
3z

3
4

}
.
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These monomials permit us to compute the number η̂(Ĵ4) = 48. We get A5 =
η(J5)

5! + η̂(Ĵ4)
4! = 48

4! = 2 (note that the two words of weight 5 in C have the last com-
ponent non-zero). Computing G6 we have a non-trivial result, η(J6)= 720, and for

Ĵ5 we get an empty variety. The words of weight 6 are then A6 = η(J6)
6! + η̂(Ĵ5)

5! =
720
6! = 1. Summarizing, we have: A0 = 1, Aw = 0 for w = 1,2,3,4,7,8, A5 = 2

and A6 = 1.

Remark 4 A similar approach permits to compute the weight distribution and the
distance for the cosets.

2 Conclusions and Further Research

The nth-root codes allows an extension to linear codes of some computational al-
gebra techniques and some argument, that have been previously applied to cyclic
codes (see also Mora and Orsini 2009). This translates in new tools, in particular
algorithms to compute the weight distribution (and the distance), but also in new
challenges, because it is not clear which nth root presentation fits better a given
code.
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Decoding Linear Error-Correcting Codes
up to Half the Minimum Distance with Gröbner
Bases

Stanislav Bulygin and Ruud Pellikaan

Abstract In this short note we show how one can decode linear error-correcting
codes up to half the minimum distance via solving a system of polynomial equa-
tions over a finite field. We also explicitly present the reduced Gröbner basis for the
system considered.

1 Introduction

In recent years a lot of attention was paid to the question of decoding and finding
the minimum distance using Gröbner bases in particular in the case of cyclic codes,
which form a particular subclass of linear codes. We mention just a few references
in this field (Augot 1996; Augot et al. 2009; Chen et al. 1994a, 1994b; Orsini and
Sala 2005) (but see also Mora and Orsini 2009). In this short note we give a method
for decoding and finding the minimum distance for arbitrary linear codes.

2 Matrix in MDS Form

Let F be a field. Let F̄ be the algebraic closure of F. Let b1, . . . ,bn be a basis of F
n.

Now B is the n× n matrix with b1, . . . ,bn as rows.

Definition 2.1 The (unknown) syndrome u(B, e) of a word e with respect to B is
the column vector u(B, e)= BeT . It has entries ui(B, e)= bi · e for i = 1, . . . , n.

Remark 2.2 The matrix B is invertible, since its rank is n. The syndrome u(B, e)
determines the error vector e uniquely, since

B−1u(B, e)= B−1BeT = eT .
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Definition 2.3 Define the coordinatewise star product of two vectors x,y ∈ F
n

by x ∗ y = (x1y1, . . . , xnyn). Then bi ∗ bj is a linear combination of the basis
b1, . . . ,bn, that is, there are constants μijl ∈ F such that

bi ∗ bj =
n∑

l=1

μijlbl .

The elements μijl ∈ F are called the structure constants of the basis b1, . . . ,bn.

Definition 2.4 Let b1, . . . ,bn be a basis of F
n. Let Br be the r × n matrix with

b1, . . . ,br as rows. Let B = Bn. We say that b1, . . . ,bn is an ordered MDS basis and
B an MDS matrix if all the t × t submatrices of Bt have rank t for all t = 1, . . . , n.
Let Ct be the code with Bt as parity check matrix.

Remark 2.5 Let B be an MDS matrix. Then Ct is an MDS code for all t .

Definition 2.6 Suppose n≤ q . Let x= (x1, . . . , xn) be an n-tuple of mutually dis-
tinct elements in F. Define

bi = (xi−1
1 , . . . , xi−1

n ).

Then b1, . . . ,bn is called an ordered Vandermonde basis and the corresponding
matrix is denoted by B(x) and called a Vandermonde matrix.

3 Decoding up to Half the Minimum Distance

It can be shown that if we have a linear [n, k, d] code C over the field Fq , then a
code C′ = CFqm has the same parameters. So without loss of generality we may
assume, after a finite extension of the finite field Fq , that n ≤ q . Let b1, . . . ,bn be
a basis of F

n
q . From now on we assume that the corresponding matrix B is an MDS

matrix.
Let C be an Fq -linear code with parameters [n, k, d]. Choose a parity check

matrix H of C. The redundancy is r = n− k. Let h1, . . . ,hr be the rows of H . The
row hi is a linear combination of the basis b1, . . . ,bn, that is, there are constants
aij ∈ Fq such that

hi =
n∑

j=1

aijbj .

In other words H =AB where A is the r × n matrix with entries aij .

Remark 3.1 Let r = c + e be a received word with c ∈ C a codeword and e an
error vector. The syndromes of r and e with respect to H are equal and known:
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si(r) := hi · r= hi · e= si(e) and they can be expressed in the unknown syndromes
of e with respect to B:

si(r)=
n∑

j=1

aijuj (e),

since hi =∑n
j=1 aijbj and bj · e= uj (e).

Definition 3.2 Let B be an MDS matrix with structure constants μijl . Define the
linear functions Uij in the variables U1, . . . ,Ul by

Uij =
n∑

l=1

μijlUl.

Let U be the n×n matrix with entries Uij . Let Uu,v be the u× v matrix with entries
Uij with 1≤ i ≤ u and 1≤ j ≤ v.

Definition 3.3 The ideal J (r) in the ring Fq [U1, . . . ,Un] is generated by the ele-
ments

n∑

l=1

ajlUl − sj (r) for j = 1, . . . , r

The ideal I (t,U ,V ) in the ring F[U1, . . . ,Un,V1, . . . , Vt ] is generated by the ele-
ments

t∑

j=1

UijVj −Uit+1 for i = 1, . . . , n

Let J (t, r) be the ideal in Fq [U1, . . . ,Un,V1, . . . , Vt ] generated by J (r) and
I (t,U ,V ).

Remark 3.4 The ideal J (t, r) is generated by n− k linear functions and n quadratic
polynomials.

Theorem 3.5 Let B be an MDS matrix with structure constants μijl and linear
functions Uij . Let H be a parity check matrix of the code C such that H = AB .
Let r = c + e be a received word with c in C the codeword sent and e the error
vector. Suppose that the weight of e is not zero and at most (d(C)− 1)/2. Let t be
the smallest positive integer such that J (t, r) has a solution (u,v) over F̄q . Then
wt(e)= t and the solution is unique satisfying u= u(e).

Corollary 3.6 Let r= c+ e be a received word with c in C the codeword sent and
e the error vector. Suppose that the weight of e is not zero and at most (d(C) −
1)/2. Let t be the smallest positive integer such that J (t, r) has a solution. Then
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the solution is unique and the reduced Gröbner basis G for the ideal J (t, r) with
respect to any monomial ordering is

Ui − ui(e), i = 1, . . . , n,

Vj − vj , j = 1, . . . , t,

where (u(e),v) is the unique solution.

4 Conclusion and Future Work

In this short note we briefly described how the problem of decoding up to half the
minimum distance can be translated to solving a system of polynomial equations
over a finite field. Moreover, due to the uniqueness of the solution of such a system
(and because the multiplicity of such a solution is one) we were able to explicitly
write down the reduced Gröbner basis for the system. As a future work we would
like to elaborate more on possible methods for solving such system and also estimate
the complexity of the corresponding Gröbner basis computations. The full version
of this short note is Bulygin and Pellikaan (2009). The ideas of the note stem from
Høholdt et al. (1998). One can try some computations with the above system with
the use of decodegb.lib,1 which is the library for SINGULAR Computer Algebra
System for polynomial computations (Greuel et al. 2007).
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Gröbner Bases for the Distance Distribution
of Systematic Codes

Eleonora Guerrini, Emmanuela Orsini and
Ilaria Simonetti

Abstract Coding theorists have been studying only linear codes, with a few ex-
ceptions (Preparata in Inform. Control 13(13):378–400, 1968; Baker et al. in IEEE
Trans. on Inf. Th. 29(3):342–345, 1983). This is not surprising, since linear codes
have a nice structure, easy to study and leading to efficient implementations. How-
ever, it is well-known that some non-linear codes have a higher distance (or a better
distance distribution) that any linear code with the same parameters (Preparata in
Inform. Control 13(13):378–400, 1968; Pless et al. (eds.) in Handbook of Coding
Theory, vols. I, II, North-Holland, Amsterdam, 1998). This translates into a superior
decoding performance (Litsyn in Handbook of Coding Theory, vols. I, II, North-
Holland, Amsterdam, pp. 463–498, 1998).

Systematic non-linear codes are the most studied non-linear codes. We describe
a Gröbner bases technique to compute the distance distribution for these codes.

1 Preliminaries

Throughout this paper m,k,n, q,p, r are integers such that m≥ 1, 1≤ k ≤ n, q =
pr , r ≥ 1 and p is a prime.

Let Fq be the finite field with q elements and (Fq)m be the naturalm-dimensional
vector space over Fq . Let Fq be the algebraic closure of Fq . Given an ideal I in
Fq [Y ] = Fq [y1, . . . , ym], we denote by V(I )⊂ (Fq)m the set of all zeros of I . Let
S ⊆ (Fq)m, the set of all polynomials f ∈ Fq [Y ], such that f (s)= 0 for any points
s ∈ S, is an ideal I(S) in the polynomial ring Fq [Y ], which is called the vanishing
ideal of S. We denote by Eq [Y ] the following set of polynomials in Fq [Y ], Eq [Y ] =
{yq1 − y1, . . . , y

q
m − ym}.
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Definition 1 Let 1≤ t ≤m and m ∈ Fq [y1, y2, . . . , ym]. We say that m is a square-
free t-monomial if m = yh1 · · ·yht , where h1, . . . , ht ∈ {1, . . . ,m} and hl �= hj ,
∀l �= j , i.e. m is a monomial in Fq [Y ] such that degyhi

(m) = 1 for any 1 ≤ i ≤ t .
We denote by Mm,t,q the set of square-free t-monomials in Fq [Y ].

We assume the reader familiar with Gröbner basis theory, as in the book chapter
(Mora 2009).

We keep the reference to q implicit, so we use Mm,l instead of Mm,l,q .

Definition 2 Let φ : (Fq)k→ (Fq)
n be an injective function and let C = Im(φ). We

say that C is an (n, k, q) code. Any c ∈ C is called a word of C.

Let π be the projection π : (Fq)n → (Fq)
k such that π(a1, . . . , an) =

(a1, . . . , ak). We say that C is systematic if (π ◦ φ)(v) = v, for any v ∈ (Fq)k .
We denote by C(n, k, q) the class of all systematic (n, k, q) codes.

For any C ∈ C(n, k, q) and any 0 ≤ i ≤ n, we denote by Bi(C) the number of
words in C with weight i and by Ai(C) the number of word pairs in C with dis-
tance i.

2 Theoretical Results

All definitions and results of this section can be found in Guerrini et al. (2006) and
Guerrini (2005).

If C ∈ C(n, k, q), then we can view C as a set of points in (Fq)n ⊂ (Fq)n and
hence as a 0-dimensional variety, so that I(C) is its vanishing ideal in Fq [X,Z] =
Fq [x1, . . . , xk, z1, . . . , zn−k]. We describe a Gröbner basis of I(C).

Theorem 1 Let G be the reduced Gröbner basis for I(C), w.r.t. the lex order with
x1 < · · ·< xk < z1 < · · ·< zn−k . Then G has the following structure:

G= {Eq [X], z1 − f1, . . . , zn−k − fn−k}
for some fj ∈ Fq [X], 1≤ j ≤ n− k.

From now on, we consider C and G(C) to be understood.

Definition 3 Let t ∈ N, 1 ≤ t ≤ n. We define the ideal W t
C ⊆ Fq [x1, . . . , xk] as

generated by:

Eq [X] ∪ {m
(
x1, . . . , xk, f1(X), . . . , fn−k(X)

) |m ∈ Mn,t }.

A point in V(W t
C) matches a codeword c in C with w(c)≤ t − 1, so that we can

compute the weight distribution {B0(C), . . . ,Bn(C)} of C as follows.
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Proposition 1 Let t ∈N such that 2≤ t ≤ n. Then

{
Bt−1(C)= |V(W t

C)| \ |V(W t−1
C )|

B0 = |V(W 1
C)|.

Definition 4 Let Fq [X,X̃] = Fq [x1, x2, . . . , xk, x̃1, x̃2, . . . , x̃k]. We denote by
Ln,k,t ⊂ Fq [X,X̃] the following subset

Ln,k,t = {x1 − x̃1, . . . , xk − x̃k} ∪ {f1(X)− f1(X̃), . . . , fn−k(X)− fn−k(X̃)}.
We denote by I tC the ideal in Fq [X,X̃] generated by:

{xqi − xi, x̃iq − x̃i | 1≤ i ≤ k} ∪ {m(Ln,k,t ) |m ∈ Mn,t }.

Definition 5 In (Fq)k × (Fq)k we denote by Tk the trivial variety, i.e. the set of
points a = (a1, . . . , ak, ã1, . . . , ãk) such that ai = ãi , 1≤ i ≤ k.

Theorem 2 Let t ∈N such that 2≤ t ≤ n. Then

V(I tC) �= Tk ⇐⇒ ∃c1, c2 ∈ C such that d(c1, c2)≤ t − 1.

From Theorem 2, an algorithm is directly designed to compute the distance of
any C ∈ C(n, k, q).

j = 1
While V(IjC)= Tk do
j := j + 1;
Output j

Theorem 2 can be improved to give the distance distribution {A1(C), . . . ,An(C)}
of C, as follows.

Theorem 3 Let 2≤ t ≤ n. Then

V(I tC)= {(c1, c2) | c1, c2 ∈ C, d(c1, c2)≤ t − 1},

A1 +A2 + · · · +At−1 = |V(I tC)| \ |Tk|
2

,

and

At−1 = |V(I tC)| \ |V(I t−1
C )|

2
.

Example 1 Let C = {[0,0,0,0], [0,1,0,0], [0,2,0,0], [1,0,0,0], [1,1,0,2],
[1,2,0,2], [2,0,0,2], [2,1,0,0], [2,2,0,0]}. Clearly, C is a code in C(4,2,3).
We want to compute all pairs of words (c1, c2) with d(c1, c2)≤ 2.
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To do this, we start from the input basis of ideal I 3
C ⊂ F3[x1, x2, x̃1, x̃2]:

I 3
C = 〈x2

2 x̃
2
1 x̃2 − x2

1 x̃
2
1 x̃2 − x1x̃

2
1 x̃2 − x̃2

1 x̃2 − x2
1x

2
2 x̃1x̃2 + x2

2 x̃1x̃2 + x2
1 x̃1x̃2 − x̃1x̃2

− x2
1x

2
2 x̃2 − x2

1 x̃2 + x1x̃2 + x2
1x2x̃

2
1 + x1x2x̃

2
1 − x2

1x2 − x1x2, x
2
1x2x̃

2
1 x̃2

+ x1x2x̃
2
1 x̃2 − x2

1x2x̃2 − x1x2x̃2 − x2
1x

2
2 x̃

2
1 − x1x

2
2 x̃

2
1 + x2

1x
2
2 + x1x

2
2 , x̃

3
2

− x̃2, x
3
2 − x2, x̃

3
1 − x̃1, x

3
1 − x1, x2x̃

2
1 x̃

2
2 + x2x̃1x̃

2
2 − x2

1x2x̃
2
2 − x1x2x̃

2
2

− x2
1 x̃

2
1 x̃2 − x1x̃

2
1 x̃2 − x̃2

1 x̃2 − x2
1x

2
2 x̃1x̃2 + x2

1 x̃1x̃2 − x̃1x̃2 + x1x
2
2 x̃2

− x2
1 x̃2 + x1x̃2 + x2

1x2x̃
2
1 + x1x2x̃

2
1 − x2

1x2 − x1x2, x1x̃
2
1 x̃

2
2 − x̃2

1 x̃
2
2 + x2

2 x̃1x̃
2
2

+ x2
1 x̃1x̃

2
2 − x̃1x̃

2
2 − x1x

2
2 x̃

2
2 + x2

1 x̃
2
2 − x1x̃

2
2 − x2x̃

2
1 x̃2 − x2x̃1x̃2 + x2

1x2x̃2

+ x1x2x̃2 − x1x
2
2 x̃

2
1 − x2

2 x̃
2
1 − x2

1x
2
2 x̃1 + x2

2 x̃1 + x2
1x

2
2 + x1x

2
2 , x1x2x̃1x̃

2
2

+ x2x̃1x̃
2
2 − x2

1x2x̃
2
2 − x1x2x̃

2
2 − x2

1 x̃
2
1 x̃2 + x̃2

1 x̃2 − x2
1x

2
2 x̃1x̃2 − x1x

2
2 x̃1x̃2

− x2
1 x̃1x̃2 + x̃1x̃2 + x2

1x
2
2 x̃2 + x1x

2
2 x̃2 + x2

1x2x̃
2
1 − x2x̃

2
1 − x2

1x2x̃1 + x2x̃1〉.
From the Gröbner basis we find that |V(I 3

C)| = 65. Since |T2| = 9, we have
A1 +A2 = (65− 9)/2= 28.

3 Numerical Computations

We provide some numerical computations with time comparisons.
We have collected our results in three consecutive tables. In all tables, we con-

sider codes with n= 2k and d ∼ (n− k), which is the hardest case due to the Sin-
gleton’s bound. In the first table we consider random codes with deg(fi )= k; in the
second table we consider random quadratic codes (deg(fi ) = 2); in the third table
we consider random linear codes (deg(fi )= 1).

These tests have been done with MAGMA on a dual AMD Opteron 2 GHz,
equipped with 8 Gb of RAM memory, at the computational centre MEDICIS.

n k Time

4 2 <.001 s
6 3 <.001 s
8 4 <.001 s

10 5 ∼2.20 s
12 6 ∼264.64 s

n k Time

4 2 <.001 s
6 3 <.001 s
8 4 <.001 s

10 5 ∼1.49 s
12 6 ∼22.73 s

n k Time

4 2 <.001 s
6 3 <.001 s
8 4 <.001 s

10 5 <.001 s
12 6 ∼3.04 s

We tested our problem using different computer algebra systems (Magma 2.10.13,
Polybori 0.3.1,1 Singular 2.0.6, Singular 3.0.4). We say that for any system the time

1Polybori is a new software package, still in experimental phase, which is specialized to computing
Gröbner bases over F2.
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needed had a behavior of kind 2αk , with α depending on the system. In particu-
lar, we report the graph where x = k and y = log( time in k

time in k−1 ), so that the y values
represent the expected exponent.

That suggests us the following values for the computational costs:

• 27k for Magma 2.10.13,
• 24.5k for Singular 2.0.6,
• 23.5k for Singular 3.0.4,
• 23k for Polybori 0.3.1.

We note that a brute-force check of the distance has an asymptotic behaviour like
22k . Admittingly, this looks much better then our estimate 23k . However if we exam-
ine the drastic improvement obtained by the evolution of computer algebra systems
(from 27k to 23k in few years), we can reasonably assume that our estimates are still
pessimistic and that further improvements in software development will allow our
method to run like 2αk , with 2< α < 3.
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A Prize Problem in Coding Theory

Jon-Lark Kim

Abstract In this short note, we describe one of the long-standing open problems
in algebraic coding theory, i.e., whether there exists a binary self-dual [72,36,16]
code.

1 Introduction

Binary self-dual codes or self-dual codes over finite fields in general have been of
great interest partly because many good linear block codes are either self-orthogonal
or self-dual. It turns out that they satisfy a nonconstructive lower bound, analogous
to the Gilbert-Varshamov bound in linear codes. Furthermore, they have nice al-
gebraic properties; in particular, the weight enumerator of a self-dual code over a
finite field is invariant under a certain finite matrix group, which restricts the mini-
mum distance of a self-dual code over F2, F3, or F4. We refer to Rains and Sloane
(1998), Nebe et al. (2006) for a full discussion of self-dual codes.

A binary self-dual code C under the usual inner product is called a Type II
(or doubly-even) code if all codewords have weight ≡ 0 (mod 4), and a Type I
(or singly-even) code if there is a codeword whose weight ≡ 2 (mod 4). Given
a binary Type I code C, one can obtain the doubly-even subcode C0 of C (con-
sisting of all codewords whose weight ≡ 0 (mod 4)). The shadow S of C is de-
fined by S := C⊥0 \C (Conway and Sloane 1990). The weight enumerator S(x, y)
of the shadow of C is determined by the weight enumerator C(x, y) of C as
S(x, y)= 1

|C|C(x + y, i(x − y)), where i =√−1. This additional relation gives a
further restriction on a possible weight enumerator of a binary self-dual code, often
proving the nonexistence of a putative binary self-dual code (Conway and Sloane
1990).

Using C(x, y) and S(x, y) in a sophisticated way, Rains (1998) derived a tight
upper bound on the minimum distance of a binary self-dual code. More pre-
cisely, if C is a binary self-dual code of length n with minimum distance d then
d ≤ 4#n/24$ + 4 except when n ≡ 22 (mod 24), in which case d ≤ 4#n/24$ + 6
(see Rains 1998). Further if C is a Type I code of length n ≡ 0 (mod 24), then
d ≤ 4#n/24$ + 2. A Type I self-dual code whose minimum distance d attains
this bound is called extremal. A Type II code of length n with minimum distance
d = 4#n/24$ + 4 is called extremal.
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It has been one of important problems in coding theory to find (binary) extremal
self-dual codes (see Huffman 2005 for recent results on extremal self-dual codes
over F2, F3, F4, Z4, F2 + uF2, and F2 + vF2), due to their connection with other
mathematical areas including designs, lattices, and modular forms (Pless et al. 1998;
Nebe et al. 2006).

In particular, one of the most famous open problems is the following.

Problem: Does there exist a Type II [24k,12k,4k + 4] code C(k) for k ≥ 3?

We note the following results.

1. If k = 1, then C(1) is the Type II [24,12,8] code (the binary extended Golay
code). In fact, any binary linear code with parameters [24,12,8] is equivalent to
C(1) (Pless 1968).

2. If k = 2, then C(2) is the extended quadratic residue code XQ47 of length
48. This is unique up to equivalence among self-dual codes with parameters
[48,24,12] (Houghten et al. 2003). It is not known whether there is a linear
binary [48,24,12] code other than XQ47.

3. The existence of a Type II [72,36,16] code C(3) is one of the long-standing
open problems in coding theory. This was officially suggested by Sloane
(1973). If it exists, then the codewords of weight 16 form a 5-(72,16,78) de-
sign whose existence is unknown.

4. If k ≥ 154, then C(k) does not exist since A4k+8 (the number of codewords of
weight 4k+ 8) is negative (Zhang 1999).

2 Related Facts about a Putative Type II [72,36,16] Code

The weight enumerator of a putative Type II [72,36,16] code C(3) is:

W = 1+ 249,849y16 + 18,106,704y20 + 462,962,955y24 + 4,397,342,400y28

+ 16,602,715,899y32 + 25,756,721,120y36 + · · · .
One possible attack to prove or disprove the existence of C(3) is to investigate

the order of the automorphism group of C(3). The only possible prime orders of
an automorphism of C(3) are 2,3,5, and 7. It is remarked (Huffman 2005) that
Yorgov recently proved that the automorphism group has order a divisor of 72 or
order 504,252,56,14,7,360,180,60,30,10, or 5.

Another attack is to construct codes related to C(3). The existence of C(3) is
equivalent to that of a Type I [70,35,14] code (Rains 1998). The weight enumerator
of a Type I [70,35,14] code is corrected in Huffman (2005) as follows:

W = 1+ 11,730y14 + 150,535y16 + 1,345,960y18 + · · · .
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Gulliver et al. (2003) showed that the existence of C(k) implies the existence
of a Type I [24k,12k,4k + 2] code for k ≥ 1. Hence if there is C(3), then there
is a Type I [72,36,14] code. Equivalently, if there is no Type I [72,36,14] code,
there is no C(3). No self-dual codes with parameters [72,36,14] are known to exist.
There are exactly three possible weight enumerators for a Type I [72,36,14] code
as follows.

W1 = 1+ 7616y14 + 134,521y16 + 1,151,040y18 + · · · ,
W2 = 1+ 8576y14 + 124,665y16 + 1,206,912y18 + · · · ,
W3 = 1+ 8640y14 + 124,281y16 + 1,207,360y18 + · · · .

3 Future Work

There is a hope that C(3) might exist. For example, although it is not known yet
whether there exists a binary linear [72,36,16] code, there is a [72,36,15] code by
puncturing a [73,36,16] cyclic code and any [72,36, d] code satisfies d ≤ 17 from
Brouwer’s Table.

A recent attempt to construct C(3) was made by Dougherty et al. (2007) by
considering double circulant codes based on strongly regular graphs and doubly
regular tournaments. In particular, SRG (Strongly Regular Graphs) with parame-
ters (36,15,6,6) produce a lot of Type II [72,36,12] codes. Similarly DRT (Dou-
bly Regular Tournaments) of order 36 produce Type II [72,36,8 or 12] codes. It is
hoped that d = 16 is possible if there is enough data for DRT of the above parame-
ters.

We have also shown Kim and Solé (2008) that skew Hadamard matrices of or-
der 4m where a prime p divides m produce self-dual codes over Fp . In particular,
if m = 18, then we have plenty of Type II [72,36,12] codes with various weight
enumerators from the 990 skew Hadamard matrices of order 72 in Kotsireas (2006).
This motivates an active search for more skew Hadamard matrices of order 72.

From the viewpoint of Gröbner bases, it is shown in Guerrini and Sala (2007)
how to construct the input basis of a zero-dimensional polynomial ideal, whose so-
lutions correspond to binary systematic non-linear codes with fixed parameters It
is obvious how to specialize it to classify binary linear codes. By computing the
Gröbner basis G of Guerrini-Sala’s ideal B for parameters [72,36,16], we would
immediately have a complete classification for such codes, if they exist. In particu-
lar, if G is trivial (G= {1}), then there are no such codes. Otherwise, its solutions
can be tested whether they are self-dual. However, it is likely that the computation
is infeasible, since I has 362 = 1296 variables.
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4 Monetary Prizes

As far as we know, the existence of C(3) is the only coding problem with monetary
prizes. The detail can be found from

http://academic.scranton.edu/faculty/doughertys1/

• N.J.A. Sloane offers $10 (1973)—still valid (confirmed in 2006).
• F.J. MacWilliams offered $10 (1977)—invalid now.

The following monetary prizes were announced in the Yamagata conference, Oc-
tober, 2000, and at WCC2001 in Paris.

• S.T. Dougherty offers $100 for the existence of C(3).
• M. Harada offers $200 for the nonexistence of C(3).

The prize is awarded only once and the result must be published in a refereed
reputable mathematics journal. All decisions about the prize are decided by those
offering the prize.

Acknowledgements The author would like to thank the Editorial Board of the book and, in
particular, Massimiliano Sala.
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An Application of Möller’s Algorithm to Coding
Theory

M. Borges-Quintana, M.A. Borges-Trenard and
E. Martínez-Moro

Abstract We show the use of Möller’s Algorithm and related techniques for de-
coding and studying some combinatorial properties of linear codes. It is a concise
summary of our previous results, with emphasis in illustrating the applications and
comparing the developed method for computing the Gröbner basis associated with
the code with the classical way to solve the same problem.

1 Introduction

The connection between Gröbner bases and linear algebra comes from the very
beginning, i.e. from Buchberger’s (1965, 2006) PhD thesis. In Faugère et al. (1993),
Marinari et al. (1993) these techniques were generalized to different settings (change
of orderings, ideal defined by functionals). In Borges-Quintana et al. (2006b, 2007)
the algorithm for monoid and group algebras was specialized for the case of algebras
associated to linear codes. This work is a concise presentation of some results in
Borges-Quintana et al. (2008, 2006b, 2007).

2 An Ideal Associated with a Linear Code

A polynomial having the shape τ1 − τ2, τi terms, is called binomial. A binomial
ideal is an ideal generated by binomials. If an ideal I is binomial, then for each
τ ∈ T ,Can(τ, I) ∈N(I); in particular Gröbner and border bases consist of binomials.
Therefore, if I ⊂ P is a binomial 0-dimensional ideal, denoting N(I) = {τ0 = 1,
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τ1, . . . , τs}, we have

1. ∀�,1≤ �≤ s,∃!h, l,1≤ h≤ n,0≤ l < s : h=min{i :Xi | τ�}, τ� =Xhτl .
2. ∀h, l,1≤ h≤ n,1≤ l ≤ s,∃!� : Can(Xhτl, I)= τ�.

Such data have been applied to correct binary linear codes in Borges-Quintana
et al. (2008, 2006b, 2007), where a linear [n, k]-code is encoded by expressing its
generator matrix (aij ) by the binomial ideal I= 〈{∏nj=1X

aij
j −1, 1≤ i ≤ k}∪{x2

j −
1, 1 ≤ j ≤ n}〉 and each codeword (a1, . . . , an) ∈ F

n
2 as

∏n
j=1X

aj
j ; hence for any

codeword τ ∈ T , the maximum likelihood decoding error is Can(τ, I,≺), where ≺
is a total degree compatible term ordering. Thus we do three things, as follows. We
use an improved version of Möller’s (2009) algorithm for binomial ideals to deduce
a reduced Gröbner basis, a border basis or a Gröbner representation for I w.r.t. a
total degree compatible ordering. We decode codewords using such data to compute
the maximum likelihood decoding error. We use the data structure to solve other
problems related with the combinatorics of a linear code.

2.1 A Second Way of Getting the Data for I

A pattern algorithm was presented in Borges-Trenard et al. (2000) for the free
monoid algebra, we will restrict here to the commutative case. Let M be a fi-
nite commutative monoid generated by g1, . . . , gn; ξ : [X] → M , the canonical
morphism that sends Xi to gi ; σ ⊂ [X] × [X], a presentation of M defined by ξ
(σ = {(w,v) | ξ(w)= ξ(v)}). Then, it is known that the monoid ring k[M] is iso-
morphic to P/I (σ ), where I (σ ) is the ideal generated by {w − v | (w,v) ∈ σ };
moreover, any Gröbner basis G of I (σ ) is also formed by binomials of the above
form. In addition, it can be proved that {(w,v) | w− v ∈G} is another presentation
ofM . Note thatM is finite if and only if I (σ ) is zero-dimensional.

For a binary code defined by a parity check matrix H , the monoid M is set to
(F2)

n−k (the syndromes space) and gi := ξ(Xi) = eiH (ei is the i-th coordinate
vector in F

n
2). Note that M = F

n−k
2 = 〈g1, . . . , gn〉 and I (σ )= I. Starting from this

setting, we can compute a reduced Gröbner basis, a border basis or a Gröbner rep-
resentation for a total degree compatible ordering (Borges-Quintana et al. 2006b).

For a general linear code over Fq (q = pm), where α is a root of an irreducible
polynomial of degree m over Fp , H a parity check matrix of the code, each vector

y = (∑m
j=1 β1jα

j−1, . . . ,
∑m
j=1 βnjα

j−1) ∈ F
n
q is encoded as w =∏ni=1

∏m
j=1 x

βij
ij

(note that ψ(w)= y defines a surjective morphism ψ : [X]→ F
n
q ). Now by extend-

ing the analysis of the binary case, let the monoidM = F
n−k
q and let gij = ξ(Xij )=

ψ(Xij )H , note that M = F
n−k
q = 〈g11, . . . , gnm〉 and the ideal I (σ ) coincides with

the binomial ideal constructed from a generator matrix. In fact, the binomial ideal
associated with the code is well defined despite the way it is constructed.

I= 〈{τ1 − τ2 |ψ(τ1)H =ψ(τ2)H, τ1, τ2 ∈ T }〉 ⊂ P .
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To get the data structure that enables to solve the decoding problem we intro-
duce the error vector ordering ≺e , which is not a semigroup ordering. The set of
canonical forms for ≺e associated to the code need to be redefined as N = {1 =
τ1, . . . , τqn−k } ⊂ T such that

1. If τ1, τ2 ∈N and τ1 �= τ2 then ξ(τ1) �= ξ(τ2).
2. For all τ ∈N \ {1} there exists Xi such that τ =Xiτ ′ and τ ′ ∈N .

In this case we can compute a Gröbner representation that can be used for canonical
form computation. For this setting of general linear codes see Borges-Quintana et al.
(2007).

We provide now some examples. All these applications are implemented in The
GAP Group (2008) as a collection of functions that we have called GBLA_ LC
(Borges-Quintana et al. 2006a).

3 Examples

3.1 Working out with a Gröbner Representation

For the binary code whose parity check matrix is

HT :=
∣
∣
∣
∣
∣
∣

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

∣
∣
∣
∣
∣
∣

Since the code is binary, ≺e is a degree compatible term ordering and we have
N =N(I)= {1,X1,X2,X3,X4,X5,X6,X1X6}, we encode this set as τ� =Xhτl in
the table

� 1 2 3 4 5 6 7
h 0 0 0 0 0 0 1
l 1 2 3 4 5 6 6

and whose corresponding FGLM-matrix is Can(Xhτl, I)= τ�
0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1

For example, when the message X2X3X6 arrives
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• read it and run on the second matrix we get the encoded error:

0
2�−→ 2

3�−→ 1
6�−→ 7.

Note that the position 0 is always the starting point of the encoded process of the
error. Then the canonical form of the received message is X1X6 (the last element
of N(I)). Note that the error capability of this code is 1 and in this case we got an
error with weight 2.

• The maximum likelihood codeword is ψ(X2X3X6) − ψ(X1X6) = (1,1,1,0,
0,0).

3.2 Combinatorial Properties of a Binary Code

Let us defined a [10,4]-code over F2, with 16 codewords and 64 canonical forms
by the parity check matrix

H :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Starting fromH we compute G the reduced Gröbner basis of I for the degree reverse
lexicographic ordering (≺Drl). We show in the examples below some information
about a binary code that one can get from the associated reduced Gröbner basis, in
addition of another way of decoding.1

1. After the subset B := {X2
i − 1|1 ≤ i ≤ 10} the binomials of less degree D are

those of degree D = 2, i.e.:

{X2X5 −X1X6, X2X6 −X1X5, X3X5 −X1X7, X3X6 −X2X7,

X3X7 −X1X5, X4X5 −X1X8, X4X6 −X2X8, X4X7 −X3X8,

X4X8 −X1X5, X5X6 −X1X2, X5X7 −X1X3, X5X8 −X1X4,

X6X7 −X2X3, X6X8 −X2X4, X7X8 −X3X4}.

Since Borges-Quintana et al. (2007) the error-correcting capability t of the code
is D − 1 we deduce t = 1. Moreover the minimal distance of the code is d :=
min{deg(u) + deg(v) : u − v ∈ G \ B} = 4 and these binomials are associated

1Although for this purpose the Gröbner representation is more efficient.
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with codewords of minimal distance (Borges-Quintana et al. 2008), the vectors
{ψ(u)−ψ(v) : u− v ∈ G \B,deg(u)+ deg(v)= d}, namely:

{(1,1,0,0,1,1,0,0,0,0), (1,0,1,0,1,0,1,0,0,0),
(0,1,1,0,0,1,1,0,0,0), (1,0,0,1,1,0,0,1,0,0),

(0,1,0,1,0,1,0,1,0,0), (0,0,1,1,0,0,1,1,0,0) }.
The basis has 46 binomials.

2. Decoding (see Borges-Quintana et al. 2007): let us take now as a received vector
v = (1,1,1,1, 0,0,0,0,1,1), encoding w = X1X2X3X4X9X10. Let us reduce

now w using the reduced Gröbner basis, by w1
g−→ w2 we mean w1 is reduced

to w2 modulo the polynomial g of G .

w = x1x2x3x4x9x10
x2x3x4−x9x10−→ x1x

2
9x

2
10

x2
9−1−→ x1x

2
10

x2
10−1−→ x1

weight(ψ(x1))= 1, then the codeword is (0,1,1,1,0,0, 0,0,1,1).
3. Decomposition of a codeword (see Borges-Quintana et al. 2008): let c =
(1,0,0,0,1,1,1,1,1,1), encoding wc =X1X5X6X7X8X9X10. Reducing mod-
ulo G and removing all occurrences of X2

i in the reductions:

wc
g1−→X1X2X5X6

g2−→ 1, where g1 = x7x9x10−x2x8, g2 = x2x5−x1x6. These
sequence implies that c can be expressed as c= cg1 + cg2 , where cg1 and cg2 are
the codewords associated to these binomials.

3.3 Example: the Golay Code

We use the GAP package GUAVA to construct a generator matrix of the Golay
[23,12] code.

First we try our Möller’s Algorithm approach to linear codes that is implemented
in GAP Borges-Quintana et al. (2006a). We have got the reduced Gröbner basis of
the ideal I for the ordering ≺Drl in less than 15 minutes (with a Pentium 1.5 GHz).

From a generator matrix of the code, we use the first method for obtaining the
ideal I, having this generating set and using the ordering ≺Drl we have tried to com-
pute the reduced Gröbner basis for I in Mathematica, Maple, and GAP and the
computing process was interrupted after 4 hours. On the other hand, Singular suc-
ceeded in 2 hours.

3.4 GAP Computing Section

We write the sequence of commands used to get the reduced Gröbner basis.

gap> n:=23;;k:=12;;m:=1;;p:=2;;F:=GF(2);;
gap> alpha_prim:=RootOfDefiningPolynomial(GF(2));;
gap> alpha_ext:=RootOfDefiningPolynomial(F);;
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gap> R:=PolynomialRing(Rationals,n*m);;
x:=IndeterminatesOfPolynomialRing(R);;

gap> Read("D://gbla_lc.txt");;
gap> LoadPackage( "guava", "2.4" );
gap> H:=CheckMat(BinaryGolayCode());
gap> Gr:=Greduce1(H,m,n,k,p);;

There are 253 codewords associated to the binomials of Gr, but the Golay code
have 2048 syndromes and 4096 codewords.

Acknowledgement The authors acknowledge support from the Austrian Academy of Science
during the Semester on Gröbner bases (Linz, 2006).
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Mattson Solomon Transform and Algebra Codes

Edgar Martínez-Moro and Diego Ruano

Abstract In this note we review some results of the first author on the structure of
codes defined as subalgebras of a commutative semisimple algebra over a finite field
(see Martínez-Moro in Algebra Discrete Math. 3:99–112, 2007). Generator theory
and those aspects related to the theory of Gröbner bases are emphasized.

Introduction

Some classical code constructions can be seen as ideals in a finite-dimensional
commutative semisimple algebra A (from now on, we denote it briefly by alge-
bra) over a finite field Fq with q = pr elements and p prime (note that since
Fq is a perfect field A is a separable algebra). Our notation on linear and cyclic
codes follows (Augot et al. 2009). Consider a basis of A as a Fq -vector space
given by B= {b1 = 1, . . . , bn}, A is equipped with a multiplication defined by the
convolutional-like product given by
(
n∑

i=1

αibi

)(
n∑

i=1

α′ibi

)

=
(
n∑

i=1

αiα
′
ibij

)

, αi, α
′
i ∈ Fq, for i = 1, . . . , n (1)

where the bij correspond to the multiplication table of A for the basis B, i.e.
bij = bibj =∑n

k=1mi,kbk, for 1 ≤ i, j, k ≤ n, mi ∈ Fq . For example, if G is a
commutative finite group of order n with identity element 1 and gcd(q,n) = 1
(condition for semisimplicity) the group algebra Fq [G] consists of elements of the
form

∑
g∈G αgg (i.e. G is the basis) with αg ∈ Fq , and the convolutional prod-

uct is
∑
g∈G αgg

∑
g∈G α′gg =

∑
g∈G(

∑
h∈G αhαgh−1)g. For instance, for the cyclic
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group of order n, i.e. G = Cn, one has the cyclic codes. We finally show how the
well-known polynomial generator theory for cyclic codes can be extended to any
finite-dimensional commutative semisimple algebra, following the main ideas in
Martínez-Moro (2007).

1 Mattson–Solomon Transform

We consider structure polynomials of the algebra A as the set of polynomials in
Fq [x1, . . . , xn] given by (mi as before)

F =
{

xixj −
[

mi,1 +
n∑

k=2

mi,kxk

]}

2≤i≤j≤n
∪ {x1 − 1}. (2)

Note that F is a Gröbner basis with respect to a monomial ordering compatible
with the total-degree and it turns out (see Martínez-Moro 2004 for further de-
tails) that A ∼= Fq [x1, . . . , xn]/〈F 〉, where bi �→ xi is an algebra isomorphism. Let
V(F ) = (P1,P2, . . . ,Pn) be the points in the variety defined by F , i.e. the roots
of the system of the equations in F in some field extension F (large enough)
of Fq . Denote the Pi by Pi = (pi1, . . . , pin) as row vectors. We consider the
Mattson–Solomon matrix MA defined as (MA)ij = pij which is non-singular and
for a(x) ∈ F[x1, . . . , xn]/〈F 〉 the map

Θ : F[x1, . . . , xn]/ 〈F 〉→ F[x1, . . . , xn]/ 〈F 〉 , [Θ(a)](x)=
n∑

i=1

a(Pi)xi

(3)

is the Mattson–Solomon transform. Let ◦ be the multiplication of polynomials
modulo the ideal 〈F 〉 and � the component wise product (

∑
aixi) � (

∑
bixi) =

(
∑
aibixi) then one has that the map

Θ : (F[x1, . . . , xn]/ 〈F 〉 ,+,◦)→ (F[x1, . . . , xn]/ 〈F 〉 ,+, �), xi �→ xi

is a ring isomorphism (see, for example, Chillag 1995 for a proof) corresponding
to the diagonalization by MA of the regular representation of a ∈ A, i.e. if abi =∑m
k=1 aikbk then the product (aij ) ·MA is a diagonal matrix. (Note that for the

cyclic case A = Fq [Cn] andMA = (ξ ij )1≤i,j≤n, where ξ is a primitive n-th root of
unity.)

2 Generator Theory

The purpose of Martínez-Moro (2007) is to devise a root-free theory (therefore there
is no need to compute MA) by generalizing the generator polynomial or parity-
check polynomial construction of cyclic codes. Fix a field extension F of Fq and
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consider the set

F ′ = F ∪ {g1(x1), . . . , gn(xn)} (4)

where F is the Gröbner basis in equation (2) associated to the algebra A and g(xi)
is a factor gi(xi)|mF(xi), where mF(xi) is the minimal polynomial of the element
in A corresponding to xi , i.e. mF(xi) is the generator of the elimination ideal 〈F 〉 ∩
F[xi], 1≤ i ≤ n. Note that possibly some or even every gi(xi) could be mF(xi) and
indeed, the factorization of this polynomial depends on the splitting field between
Fq and F considered. A linear algebra procedure for computing mF(xi) from the
Gröbner basis in (2) can be found in (Martínez-Moro 2004). We call the ideal 〈F ′〉
the generator ideal of the code C = Fq [x1, . . . , xn]/〈F ′〉 ⊆ Fq [x1, . . . , xn]/〈F 〉 ∼=
F
n
q (where ⊆ is as Fq -vector spaces) and the ideal (F ′)⊥ = F ∪ {hi(xi)}ni=1, with
hi(xi) = mFq

(xi)/gi(xi) the parity-check ideal of the code C . The points of the
variety V((F ′)⊥) considered as row vectors form a pseudo-parity-check matrix of
the code (we say pseudo since the values of these points may not lie in Fq ). Note
that, as in the classical theory of cyclic codes, what we are considering as codes is
the preimage by Θ of the subalgebra given by the elements with some fixed zero
positions in the Mattson–Solomon codomain.

The footprint (also called the Hilbert escalier) of 〈F ′〉 w.r.t. the ordering < is
the set of monomials Δ<(〈F ′〉) in Fq [x1, . . . , xn] that are not leading monomials
in 〈F ′〉. Since F ′ is a radical ideal (see Martínez-Moro 2004), |Δ<(〈F ′〉)| gives
us the size of the variety V (〈F ′〉) in the algebraic closure of Fq and therefore the
dimension k of Fq [x1, . . . , xn]/〈F ′〉 as vector space.

Note that if there exists an element xi such that the degree of mF(xi) is n then
Fq [xi]/〈mF(xi)〉 and Fq [x1, . . . , xn]/〈F 〉 are isomorphic as vector spaces, in other
words, the rest of the variables can be seen as polynomials in the variable xi of de-
gree less than or equal to n (one has this for cyclic codes). We call this element xi (if
it exists) separating element. The following table summarizes the above discussion
and its comparison to cyclic codes

Cyclic codes Semisimple codes

Fq [x]/〈xn − 1〉 A ∼= Fq [x1, . . . , xn]/〈F 〉
g(x)|(xn − 1) F ′ = F ∪ {gi(xi)}ni=1, gi(xi )|mFq

(xi )

h(x)= (xn − 1)/g(x) F ′⊥ = F ∪ {hi(xi)}ni=1, hi(xi)=mFq
(xi )/gi(xi )

k = degg(x) k = |Δ(〈F ′〉)|

Bounds of BCH-type and Hartmann-Tzeng-Roos type can be established in terms
of the roots of the polynomials gi for i = 1, . . . , n, see Martínez-Moro (2007).
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3 A Note on the Syndrome Variety

Given a semisimple code C defined by a generator ideal 〈F 〉 one has that if r =∑n
i=1 rixi is a received word then the syndromes of r are sj =∑n

i=1 riPji where
j ranges in some of the rows of the Mattson–Solomon matrix of the algebra that
corresponds to the pseudo-parity-check matrix of the code. If all the syndromes are
zero then r belongs to the code. Suppose that t errors have occurred and let G be a
Gröbner basis of 〈F 〉, we consider the equations fj =∑t

l=1 ylxl−zj , σj = zq
m

j −zj
and λi = yq−1

i − 1, with indices depending on the field extension considered, where
the zi ’s represent the syndromes and the yi ’s the error values. The variety generated
by the polynomials

{fj , σj , λi}i,j ∪ G (5)

is the Chen-Reed-Helleseth-Truong syndrome variety of the code used in the cyclic
case for decoding (Loustaunau and York 1997) and for finding the minimum dis-
tance (Sala 2002). This variety is analyzed in the book chapter (Mora and Orsini
2009), where also a modified syndrome variety (for cyclic codes) can be found (see
both Mora and Orsini 2009 and the references therein for a detailed study). A future
line of research includes the study of this variety for semisimple algebra codes and
the structure of its general error locator ideal.

Acknowledgement The authors acknowledge support from the Austrian Academy of Sciences
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Decoding Folded Reed–Solomon Codes Using
Hensel-Lifting

Peter Beelen and Kristian Brander

Abstract A standard problem in coding theory is to construct good codes together
with an efficient decoder. This paper addresses the construction of a class of codes
(folded RS codes) for which one can give an efficient and (in a certain sense) optimal
decoder, by adapting a list decoding algorithm.

1 Introduction

A standard problem in coding theory is to construct good codes together with an
efficient decoder. This paper addresses the construction of a class of codes for which
one can give an efficient and in a certain sense optimal decoder. A Reed–Solomon
code of rate R can be list decoded up to a relative distance of 1 −√R using the
Guruswami–Sudan algorithm (Guruswami and Sudan 1999; Guerrini and Rimoldi
2009) (GS). On the other hand it is known that a code of rate R cannot be list
decoded beyond a relative distance of 1−R, and an immediate question is whether
one can construct decoders with performances in the gap between 1−√R and 1−R.
In Guruswami and Rudra (2008) and Parvaresh and Vardy (2005) it was shown that
using a folding construction on Reed–Solomon codes, similarly to the one used in
Krachkovsky (2003), one can obtain codes with a list decoder, able to correct errors
up to a relative distance of approximately

1−R s
s+1 , (1)

where s ≥ 1 is an integer parameter of the construction.
In this paper we sketch this construction and in more detail we show how to

decode them up to the bound in (1). The resulting decoder is faster experimen-
tally than the decoder in Guruswami and Rudra (2008). First of all, we outline
how our decoder works. The overall approach is the same as in the GS algorithm:
first we find an interpolation polynomial Q (as in Definition 2) and next we com-
pute a certain type of roots of Q (similarly to Guruswami and Rudra 2008). Each
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such root corresponds to a codeword and the transmitted word is guaranteed to
be among those. The main difference from the GS algorithm is that the interpo-
lation polynomial is allowed to be multivariate, or more specifically of the form
Q(x, z1, . . . , zs) (the s here is the same as in (1)). Due to the way the interpo-
lation polynomial is chosen, it holds that if not too many errors occur, the trans-
mitted word will be among the roots f (x) of the interpolation polynomial, of the
form Q(x,f (x), f (γ x), . . . , f (γ s−1x)) = 0, where γ is a primitive element (Gu-
ruswami and Rudra 2008). These roots are computed efficiently via Hensel-lifting
(Beelen and Brander 2007).

2 Folded Reed–Solomon Codes

Informally, a folded Reed–Solomon (RS) code is a RS code over some Fq , but
viewed as a code over a larger alphabet by identifying consecutive m positions in
the RS code as elements in Fqm .

Definition 1 (Folded RS code) Given q,m,N,k s. t. mN ≤ q − 1. Let γ be a
primitive element of Fq and let f (x) ∈ Fq [x] with degree at most k − 1, then the
folded RS code consists of all m×N arrays of type

⎛

⎜
⎜
⎜
⎝

f (1) f (γ m) · · · f (γ m(N−1))

f (γ ) f (γ m+1) · · · f (γ m(N−1)+1)
...

...
. . .

...

f (γ m−1) f (γ 2m−1) · · · f (γ mN−1)

⎞

⎟
⎟
⎟
⎠
.

Using any fixed identification of (Fq)m with Fqm , we can consider the columns of
the above array as elements of Fqm , and therefore we can consider the folded RS
code as a code of length N over Fqm .

At this stage, it is not clear why it is an advantage to fold the RS codes, but as we
shall see, this is exactly what makes the multivariate extension of the GS algorithm
(Guruswami and Sudan 1999) work. We record some properties of the folded code.

Proposition 1 The folded RS code, with parameters as in Definition 1, is a (non-
linear) code over Fqm of length N , rate R = k

Nm
and minimum distance d = N −

1 k
m
2 + 1.

3 Decoding of Folded Reed–Solomon Codes

In this section we describe a list decoder for the folded RS codes. As mentioned in
the introduction, the decoder proceeds by first computing an interpolation polyno-
mial, and next to compute certain roots of this. We first introduce the interpolation
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polynomial. This will depend on an interpolation parameter s satisfying s ≤m, and
the interpolation polynomial will be an element in Fq [x, z1, . . . , zs]. We will need a
special weighted degree on polynomials in this ring, namely the one defined by

wdeg

(
xiz

j1
1 · · · zjss

)
= i + (k − 1)

s∑

l=1

jl.

With these notions we can now describe the interpolation polynomial. Similarly to
the GS algorithm the first variable x plays a special role and interpolates through
the powers of γ (the primitive element in Fq ), while the remaining variables in-
terpolate through the positions in the received word. In the folded RS code each
position consists of m subpositions from an ordinary RS code, and now we let the
variables z1, . . . , zs interpolate through s consecutive subpositions for each position
in the folded code. The definition of the interpolation polynomial depends on a mul-
tiplicity parameter r , which determines the multiplicity with which the polynomial
is required to have zeroes at the interpolation points.

Definition 2 (Interpolation polynomial) Let w be the received word

w =

⎛

⎜
⎜
⎜
⎝

w0 wm · · · wm(N−1)
w1 wm+1 · · · wm(N−1)+1
...

...
. . .

...

wm−1 w2m−1 · · · wmN−1

⎞

⎟
⎟
⎟
⎠
, (2)

then a non-zero polynomial Q(x, z1, . . . , zs) ∈ Fq [x, z1, . . . , zs] is an interpola-
tion polynomial for w if Q has a zero of multiplicity at least r for all points
(γ mi+j ,wmi+j ,wmi+j+1, . . . ,wmi+j+s−1), with 0≤ i < N and 0≤ j ≤m− s.

By translating the requirements on an interpolation polynomial in the above def-
inition into linear equations, one can prove (see Beelen and Brander 2007)

Proposition 2 Let w be as in (2). Let Δ ∈N and let λ= # Δ
k−1$, then if

(
r + s
s + 1

)

N(m− s + 1) < (Δ− λ(k− 1)+ 1) ·
(
s + λ
s

)

+ (k − 1) ·
(
s + λ
s + 1

)

, (3)

there exists an interpolation polynomial for w of weighted degree at most Δ.

For the error-correcting radius of a folded RS code we now obtain (Beelen and
Brander 2007):

Proposition 3 Let w ∈ (Fqm)N be a code word of a folded RS code generated by the
polynomial f (x), possibly corrupted by at most t errors. Let Q be an interpolation
polynomial for w of weighted degree Δ, then if

t < N − Δ

r(m− s + 1)
(4)



392 P. Beelen, K. Brander

it holds that

Q(x,f (x), f (γ x), . . . , f (γ s−1x))= 0. (5)

Using Propositions 2 and 3 together, one can show that the decoder corrects
errors up to a relative distance of at least

1−R s
s+1

(
m

m− s + 1

) s
s+1

s+1

√
√
√
√

s∏

i=1

(

1+ i
r

)

− 1

N
.

By choosing the parameters of the code appropriately, this expression essentially re-
duces to (1). Also, letting s be large this quantity tends to 1−R, which as mentioned
in the introduction, is the best possible relative decoding radius for any decoder (Gu-
ruswami and Rudra 2008). Proposition 3 shows that if t satisfies (4) and if no more
than t errors occur during the transmission of w ∈ (Fqm)N then the polynomial gen-
erating w, will be among the solutions of (5) with f (x) of degree at most k − 1.
In the following we will refer to such solutions as z-roots of Q, and we now give
a method for computing these, using a variation of the Hensel-lifting technique in
Roth and Ruckenstein (2000). With such a root-finding method at hand, we have a
way to compute a list known to contain the transmitted code word, and hence to list
decode the folded RS code. Let w be some received word and let Q be an interpo-
lation polynomial for it. The word w corresponds to a code word in the folded RS
code generated by some polynomial, say f (x)=∑k−1

l=0 flx
l . Now define the follow-

ing shifted versions of this polynomial ψ(σ)i (x) =∑l≥i fl(γ σ x)l−i , for 0 ≤ i and

0≤ σ ≤ s−1. By definition the polynomials ψ(σ)i (x) satisfy the following relations

γ σ x ·ψ(σ)i+1(x)+ fi =ψ(σ)i (x). (6)

Note that the constant term of ψ(σ)i (x) is fi , and that f (γ σ x)= ψ(σ)0 (x). Hence if
Q(x, z1, . . . , zs) is an interpolation polynomial for a word generated by the polyno-
mial f (x), then

Q(x,ψ
(0)
0 (x),ψ

(1)
0 (x), . . . ,ψ

(s−1)
0 (x))= 0, (7)

which, when evaluated at x = 0, implies that Q(0, f0, f0, . . . , f0) = 0. Thus f0 is
a root of the univariate polynomial Q(0, z, . . . , z) and this fact restricts the possi-
ble values of f0. Furthermore, if we also define shifted versions of the interpola-
tion polynomial mirroring the relations satisfied by the ψ(σ)i (x)’s, we obtain poly-
nomials having the different fi ’s as roots. More specifically we let Q0 = Q and
Qi+1(x, z1, . . . , zs) = Qi(x, xz1 + fi, . . . , γ s−1xzs + fi), for i ≥ 0. Then we get
the following result

Proposition 4 For i ≥ 0 it holds that

Qi(x,ψ
(0)
i (x), . . . ,ψ

(s−1)
i (x))= 0. (8)
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Reconstruct(Q(x, z1, . . . , zs ), i, f (x), result)
LetM(x, z1, . . . , zs )= x−rQ(x, z1, . . . , zs ), with r largest possible s. t.
x dividesMi(x, z1, . . . , zs ).
for each distinct root β ofM(0, z, . . . , z) do

if i = k − 1 then
result := result ∪ {f (x)+ βxi }

else
call Reconstruct(Q(x,xz1 + β, . . . , γ s−1xzs + β), i + 1, f (x)+ βxi , result)

end if
end for

Fig. 1 Procedure for computing the z-roots of Q(x, z1, . . . , zs)

Since the constant term of ψ(σ)i (x) is fi we get by evaluating the expression in
(8) at x = 0, that Qi(0, fi, . . . , fi)= 0, and thus fi must be among the roots of the
univariate polynomial Qi(0, z, . . . , z). Thus by recursively computing the polyno-
mialsQi(0, z, . . . , z) and their roots, we obtain restrictions on the possible values of
fi , and this allows us to compute a set of polynomials guaranteed to contain all the
polynomials satisfying (5). There are certain points of this approach to consider. If
the polynomial Qi(x, z1, . . . , zs) is divisible by x we get that Qi(0, z, . . . , z) is the
zero polynomial, in which case no information about fi can be inferred. To remedy
this we introduce Mi(x, z1, . . . , zs)= x−riQi(x, z1, . . . , zs), where xri is the high-
est power of x dividing Qi(x, z1, . . . , zs). Then Mi has the same property as Qi ,
namely Mi(0, fi, . . . , fi) = 0. Thus the polynomial Mi can be used instead of Qi
to obtain restrictions on the possible values of fi , and the power of x removed from
Qi(x, z1, . . . , zs) might prevent Mi(0, z, . . . , z) from being the zero polynomial,
in cases where Qi(0, z, . . . , z) is. It is however, still possible that the substitution
z= z1 = · · · = zs and x = 0 makes Mi(0, z, . . . , z) the zero polynomial, and if this
happens we only have the trivial restriction that fi must be an element in Fq .

Putting all this together, we design a recursive procedure for computing a set
containing the z-roots of a polynomial in Fq [x, z1, . . . , zs]. The procedure is stated
in Fig. 1 as pseudo-code. Parameter i determines the current level of the recursion,
i.e. the power of x whose coefficient fi is currently being computed. At level i the
partial result fixi + · · · + f1x + f0 is stored in f (x), and when the recursion depth
reached k − 1, f (x) is added to the list result of potential z-roots of Q. Initially
the procedure is called with i = 0, f (x)= 0 and result the empty list. At the end,
the z-roots of Q lie in result.
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A Note on the Generalisation
of the Guruswami–Sudan List Decoding
Algorithm to Reed–Muller Codes

Daniel Augot and Michael Stepanov

Abstract We revisit the generalisation of the Guruswami–Sudan list decoding al-
gorithm to Reed–Muller codes. Although the generalisation is straightforward, the
analysis is more difficult than in the Reed–Solomon case. A previous analysis
has been done by Pellikaan and Wu (List decoding of q-ary Reed–Muller codes,
Tech. report, from the authors, 2004a; IEEE Trans. on Inf. Th. 50(4): 679–682,
2004b), relying on the theory of Gröbner bases We give a stronger form of the well-
known Schwartz–Zippel Lemma (Schwartz in J. Assoc. Comput. Mach. 27(4): 701–
717, 1980; Zippel in Proc. of EUROSAM 1979, LNCS, vol. 72, Springer, Berlin,
pp. 216–226, 1979), taking multiplicities into account. Using this Lemma, we get
an improved decoding radius.

1 Definitions and Notation

We consider S = {x1, . . . , xn} a set of n distinct elements of Fq . Let N,r be in-
tegers greater than or equal to one, we consider the evaluation map, defined on
Fq [X1, . . . ,Xn]:

evN : f (X1, . . . ,XN) �→
(
f (xi1, . . . , xiN )

)
(xi1 ...,xiN )∈SN .

We fix the following space of polynomials: L= {f (X1, . . . ,XN), degf ≤ r}. Then
the code evN(L) is the Reed–Muller code of order r with N variables.

We say that a polynomial Q(X1, . . . ,XN) has multiplicity s at the point
(0, . . . ,0) if it does not contain any monomial of degree strictly less than s. We say
that a polynomial Q(X1, . . . ,XN) has multiplicity s at (xi1, . . . , xiN ) if the poly-
nomial Q(X1 + xi1, . . . ,XN + xiN ) has multiplicity s at (0, . . . ,0). The weighted
degree wdega1,...,aN

of a monomial Xi11 · · ·XiNN is a1i1 + · · · + aN iN . The weighted
degree of a polynomial is the maximum weighted degree of its monomials.

For a discussion on Sudan’s algorithm and its variants, see Guerrini and Rimoldi
(2009).
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2 The Algorithm

The algorithm is as follows. Let τ be the number of errors that will be corrected.
The received word is a N -dimensional array y = (yi1,...,iN )(i1,...,iN )∈{1,...,n}N .

input (x1, . . . , xn) ∈ F
n
q , r, τ ∈ N, y = (yi1,...,iN ) the received word; auxiliary para-

meters: a degree d and s an order of multiplicity.
interpolation find a polynomial Q=Q(X1, . . . ,XN,Z) such that

1. Q(X1, . . . ,XN,Z) �= 0,
2. wdeg1,...,1,rQ(X1, . . . ,XN,Z)≤ d ,
3. mult(Q; (xi1, . . . , xiN , yi1,...,iN ))= s, (i1 . . . , iN ) ∈ {1, . . . , n}N .

factorisation Compute L= {f = f (X1, . . . ,XN) |Q(X1, . . . ,XN,f )= 0}.
verification return all f ∈ L such that degf ≤ r , and d(f, y) < τ .

The analysis of this family of interpolation based decoding algorithms is in two
steps. First we must find conditions such that the polynomialQ(X1, . . . ,XN,Z) al-
ways exists, and secondly analyze the conditions under whichQ(X1, . . . ,XN,f )=
0. For the existence of the polynomial Q, we will require that the number of un-
knowns is greater than the number of equations. Each condition mult(Q; (xi1, . . . ,
xiN , yi1,...,iN )) = s implies

(
s+N
N+1

)
linear equations on Q. On the other hand, the

number of unknowns in the Q polynomial is roughly dN+1

(N+1)!r , and a condition for
the existence of Q is

dN+1

(N + 1)!r >
(
s +N
N + 1

)

nN,

Let Qf be the polynomial Q(X1, . . . ,Xm,f ). We note that, since the condition
wdeg1,...,1,rQ(X1, . . . ,XN,Z)≤ d holds, we have that degQf ≤ d . We need a The-
orem to conclude that the polynomial degQ(X1, . . . ,XN,f ) has “more zeros than
allowed”. In the univariate case, it is enough to state the a polynomial can not have
more zeros than its degree. In the multivariate case, things are harder. Pellikaan and
Wu have overcome this difficulty by relying on the theory of Gröbner bases and
footprints (Gröbner escalier, see Mora 2009). They eventually get the following
relative decoding radius:

τ

nN
≤
(

1− N+1

√
r

n

)N

. (1)

3 The Analysis

Lemma 1 Let Q(X1, . . . ,XN) be of total degree less than d . Let x1, . . . , xn be n
distinct points in Fq . The sum of multiplicities ofQ(X1, . . . ,XN) over the nN points
(xi1, . . . , xiN ) ∈ F

N
q = (Fq)N is less than or equal to dnN−1.
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Proof By induction. The statement is true for N = 1. Let us consider the set
I of points xi1, . . . , xil , such that Q(X1, . . . ,XN−1, xij ) is identically zero, j =
1, . . . , l. Also let I ′ be {1, . . . , n} \ I . Then, for xij �∈ I , let Qij be the polyno-
mial Q(X1, . . . ,XN−1, xij ). Then the number of zeros, counted with multiplicities
of Qij , over the points whose last coordinates is xij is by induction bounded by
dnN−2. Now, for xij ∈ I , we can write

Q(X1, . . . ,XN)= (Xn − xij )tij Q̃ij (X1, . . . ,XN)

for some tij > 0, and where Q̃ij (X1, . . . ,XN) is such that Q̃ij (X1, . . . ,XN−1, xij )

is not identically zero. The degree of Q̃ij (X1, . . . ,XN) is d − tij . Now the number

of multiplicities of Q̃ij (X1, . . . ,XN) over the points whose last coordinate is xij
is bounded by (d − tij )nN−2, using the induction hypothesis. Let Σ be the sum of
multiplicities. Let Sij be the set of points whose last coordinates is xij . Then

Σ =
∑

xij ∈I ′

∑

p∈Sij
mult(Q,p)+

∑

xij ∈I

∑

p∈Sij
mult(Q,p)

≤ |I ′|dnN−2 +
∑

xij ∈I

∑

p∈Sij

(
tij +mult(Q̃ij , p)

)

≤ |I ′|dnN−2 +
∑

xij ∈I

(
tij n

N−2 + (d − tij )nN−2
)

≤ |I ′|dnN−2 + |I |dnN−2 = dnN−1. �

To ensure that the polynomial Qf is identically zero, we must have that Qf has
more than dnN−1 zeros counted with multiplicities. If s(nN − τ) > dnN−1, Qf is
identically zero. Working out the formulas leads to:

τ ≤ nN − N+1

√

rnN(1+ 1

s
) . . . (1+ N

s
)≤ nN

(

1− N+1

√
r

n

)

. (2)

This compares favourably to the Pellikaan–Wu radius. In conclusion, we note that,
over the binary field, the Reed–Muller codes can be considered as subfield subcodes
of classical Reed–Solomon codes (Kasami et al. 1968), and one can get a better
decoding radius, using the univariate Guruswami–Sudan algorithm.
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Viewing Multipoint Codes as Subcodes
of One-Point Codes

Gretchen L. Matthews

Abstract We consider ways in which multipoint algebraic geometry codes may be
viewed as subcodes of the more traditionally studied one-point codes. Examples are
provided to illustrate the impact of choices made on this embedding.

1 Introduction

An m-point algebraic geometry (AG) code is constructed by evaluating functions
which are allowed to have poles atm specified points on a curveX over a finite field.
While Goppa’s construction (Goppa 1981; Leonard 2009) certainly encompasses
multipoint codes, most subsequent work has focused on the one-point case. While
multipoint codes can have better parameters than comparable one-point codes on
the same curve (Matthews 2001), one-point codes are certainly better understood.
Recently, there has been more work on multipoint codes (Beelen 2007; Carvalho
and Torres 2005; Homma and Kim 2001, 2005, 2006a, 2006b). Here, we see that
multipoint codes may be viewed as subcodes of the more traditionally studied one-
point codes and illustrate the impact of choices made on this embedding.

Notation Let X be a smooth, projective, absolutely irreducible curve of genus g
over a finite field F. The divisor of a rational function f on X will be denoted by
(f ). Given a divisor A on X defined over F, let L(A) be the set of rational functions
f on X defined over F with divisor (f )≥−A together with the zero function. The
dimension of L(A) as an F-vector space is denoted by �(A). Clearly, if A ≤ B for
divisors A and B on X, then L(A)⊆ L(B).

Given distinct F-rational points P1, . . . ,Pn,Q1, . . . ,Qm on X, define divisors
D := P1 + · · · + Pn and G := a1Q1 + · · · + amQm where ai ≥ 0. Then

CL(D,G)= {(f (P1), f (P2), . . . , f (Pn)) : f ∈ L(G)}
is sometimes called an m-point code. We do not require the divisor D to be sup-
ported by all F-rational points that are not in the support of G. Excellent refer-
ences for algebraic geometry codes include (Høholdt et al. 1998; Stichtenoth 1993;
Tsfasman and Vlăduţ 1991).
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2 Embedding a Multipoint Code in a One-Point Code

Consider the multipoint code CL(D,G) from above. Since F is finite, the group of
divisor classes of degree zero is finite. Hence, there is a rational function f with
divisor (f )= b2Q2 + · · · + bmQm − b1Q1, where bi ≥ ai for all 2 ≤ i ≤ m and
b1 =∑m

i=2 bi . Multiplication by f induces an isomorphism of L spaces

L
(
m∑

i=1

aiQi

)

→ L
(

(a1 + b1)Q1 −
(
m∑

i=2

(bi − ai)Qi
))

h �→ f h

which gives rise to an isometry of codes

CL

(

D,

m∑

i=1

aiQi

)

∼= CL

(

D,(a1 + b1)Q1 −
(
m∑

i=2

(bi − ai)Qi
))

.

As a consequence, the m-point code CL(D,G) is isometric to a subcode of the
one-point code CL(D, (a1 + b1)P1).

3 Examples

While the existence of the function f above is guaranteed by the fact that the class
number of X is finite, this may not be that helpful in finding the most appropriate
function. To illustrate the effect of the choice of f , we give the two examples on the
Hermitian curve X defined by yq + y = xq+1 over Fq2 .

Example 1 Set G := 2(q + 1)P∞ +∑βq+β=0P0β , and let D be the sum of all

other Fq2 -rational points on X. Since the class number of X is (q + 1)(q2 − q),
there exists a function f such that

(f )= (q + 1)(q2 − q)
∑

βq+β=0

P0β − q(q + 1)(q2 − q)P∞.

Multiplication by f gives

fL(G) = L
(
(
q4 − q2 − 2q − 2

)
P∞ −

(
q3 − q − 1

) ∑

βq+β=0

P0β

)

⊆ L
((
q4 − q2 − 2q − 2

)
P∞
)
.

Therefore, the (q + 1)-point code CL(D,G) is isometric to a subcode of the one-
point code CL(D, (q4− q2− 2q− 2)P∞). The dimension of superspace is �((q4−
q2 − 2q − 2)P∞)= q4 − 3q2

2 − 3q
2 − 1 while the dimension of the original vector
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space is �(G)= 9. Therefore, while CL(D,G)⊆ CL(D, (q4 − q2 − 2q − 2)P∞),
it is not easy to glean information about CL(D,G) by studying the larger code.

It may be possible to find a more appropriate function f . Given any Fq2 -rational
point Pab on X, the rational function τab := y − b− aq(x − a) has divisor (τab)=
(q + 1)Pab − (q + 1)P∞ (Maharaj et al. 2005). Hence, a natural choice for the
function f would be f =∏βq+β=0 τ0β . This gives

fL(G)= L
(
(
q2 + 3q + 2

)
P∞ − q

∑

βq+β=0

P0β

)

⊆ L
((
q2 + 3q + 2

)
P∞
)
.

Here, the difference in dimensions of the Riemann–Roch spaces is much smaller

as �((q2 + 3q + 2)P∞)= q2

2 + 7q
2 + 3.

Taking f = x gives xL(G) = L((3q + 2)P∞). Now, we see that CL(D,G) ∼=
CL(D, (3q + 2)P∞) and so the (q + 1)-point code CL(D,G) is isometric to the
one-point code CL(D, (3q + 2)P∞). Hence, the parameters of CL(D,G) can be
determined (Yang and Kumar 1992) and there is no need to consider the (q + 1)-
point code. Not all multipoint codes are isometric to one-point codes (Matthews
2001).

Example 2 Let c be a positive integer, and fix an Fq2 -rational point Pab on X with
a �=0. Set G=cP∞+(q+2)Pab+∑βq+β=0, β �=0 P0β+∑βq+β=aq+1, β �=b Paβ , and
take D to be the sum of all other Fq2 -rational points.

Taking f = τ 2
ab

∏
βq+β=0,β �=0(y − β)

∏
βq+β=aq+1,β �=b(y − β) yields

fL(G)= L
((

2q2 + 2q + c)P∞ − qPab −A
)⊆ L

((
2q2 + 2q + c)P∞

)

where A := q∑βq+β=0, β �=0 P0β +∑βq+β=aq+1, β �=b, α �=a Pαβ . This is a bit trou-
bling as the subcode we are interested in is defined by the Riemann–Roch space of a
divisor supported by many points. In particular, bases for this Riemann–Roch space
are not known for arbitrary q . Moreover, the supports of A and D have points in
common. While this could corrected by redefining D, it changes the code length. In
effect, this would require that one consider in advance the supports of the principal
divisors in question to even know the code length. Thus, we instead multiply by
x(x − a)τab to obtain

x(x − a)τabL(G)= L((3q + c+ 1)P∞ − P00).

Bases for the Riemann–Roch space and code may be determined as in Maharaj et al.
(2005).

As pointed out by a referee, the group structure of the Jacobian of the Hermitian
curve (Rück and Stichtenoth 1994) may be useful here.
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4 Conclusion

The idea of studying subcodes of one-point codes is not new (see Feng and Rao
1993, 1994, 1995; Høholdt et al. 1998). The thrust of our approach is that improved
bounds on the parameters are known for certain multipoint codes, enabling one to
identify subcodes with good parameters. Then, viewing a multipoint code C as a
subcode of a one-point code C′ may provide additional insight into C. Moreover, it
may yield a simplified decoding algorithm for C, a topic to be addressed in another
paper.
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A Short Introduction to Cyclic Convolutional
Codes

Heide Gluesing-Luerssen, Barbara Langfeld and
Wiland Schmale

Abstract We introduce the notion of cyclic convolutional codes and briefly survey
some recent results that were derived with the aid of Gröbner-type theory.

1 Introduction and Preliminaries

Throughout this text, F denotes a finite field, n and k are natural numbers and k ≤ n.
As a standard assumption in the theory of cyclic block codes we will always assume
that n and the characteristic of F are coprime.

An (n, k)-block code is a k-dimensional subspace of the F-vector space F
n.

Equivalently, an (n, k)-block code can be written as {uG : u ∈ F
k} for some ma-

trix G ∈ F
k×n of rank k. For some polynomial matrix G ∈ F[z]k×n with rank k over

F(z) the set

C := {uG : u ∈ F
k[z]} ⊆ F

n[z]
is called an (n, k)-submodule of the F[z]-module F

n[z] and G is called generator
matrix of C . If, in addition, G is right invertible over F[z], then C is called a con-
volutional code or CC, for short.

Taking a closer look at the encoding process u �→ uG, the zi -term of the code
word uG uses certain zj -terms of the message word u, where 0 ≤ j ≤ i. In this
sense, a CC has some kind of ‘memory’ which can be exploited to improve code
properties. To be able to judge this potential we recall that deg(G), the degree of a
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generator matrix G, is defined as the sum of the z-degrees of the rows of G (which
are viewed as polynomials in F

n[z]). For example, consider

S :=
{

u

[
1 0 0
0 1 1

]

: u ∈ F
k[z]
}

=
{

u

[
1 z2 z2

z z3 + 1 z3 + 1

]

: u ∈ F
k[z]
}

.

The left generator matrix has degree 0, the right one has degree 5. We see that S
has a generator matrix with constant entries and thus it does not have ‘memory’. It
is not better than a block code! We put this down more formally. For C being an
(n, k)-submodule, the number

δ := δ(C ) :=min{degG : G is a generator matrix of C }
is called complexity of C . The set C is also called an (n, k, δ)-submodule or, if C is
a CC, an (n, k, δ)-CC.

Submodules of complexity 0 are in a sense block codes because they have a
generator matrix with constant entries. A nonzero complexity is therefore desirable
or even necessary if we want to make use of the ‘memory’ of an (n, k)-submodule.
For more information on CC’s consult, e.g., McEliece (1998).

2 How to Define Cyclic Convolutional Codes?

The following diagram briefly recalls the well known definition of cyclic block
codes and the characterization of cyclicity in the ‘vector world’ and in the ‘polyno-
mial world’. For more information and details see, e.g., Huffman and Pless (2003).

F
n

‘vectorize’
v←−−→
p

‘polynomialize’

F[x]/〈xn − 1〉 =:A

v = (v0, . . . , vn−1)
�→�→ p(v)=

n−1∑

i=0
vix

i

cyclic shift: ⇔ multiplication with x:
v �→ (vn−1, v0, . . . , vn−2) p(v) �→ x · p(v)

C is cyclic i.e., invariant ⇔ p(C ) is an ideal in A
under the cyclic shift

Since each ideal in A is principal, there exists some g ∈ p(C ) such that p(C )= 〈g〉.
If g is chosen as a divisor of xn − 1, which is always possible, then g contains
all information about C (dimension, generator matrix etc.) and is called generator
polynomial. Again, see Huffman and Pless (2003) for details.
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The first, naïve idea to generalize cyclicity to CC’s is to use exactly the same
definition as in the block code case, i.e., invariance under the cyclic shift. Here, of
course, “cyclic shift” of a polynomial vector means shifting all coefficient vectors
simultaneously once. In the polynomial world this reads as

g ∈ p(C ) ⇒ x · g ∈ p(C ),

where the ‘polynomialize’-function p was extended canonically to A[z] via

p

(
t∑

i=0

ziui

)

=
t∑

i=0

zip(ui) for ui ∈A, 1≤ i ≤ t.

But this definition is not fruitful, because it provides no new structure. Indeed, a CC
invariant under the cyclic shift has complexity 0; see Piret (1976), Roos (1979).

Piret suggested to generalize the notion of “cyclic shift” of a polynomial vector v.
His idea was to shift the coefficient vectors of v several times and differently often,
but in a way that preserves a ‘nice’ structure; see Piret (1976). Roos generalized this
approach as follows: He proposed to “shift” a polynomial vector v not only by shift-
ing the coefficient vectors of v several times and differently often, but also to allow
linear combinations of the shifted coefficient vectors. This generalized shift should
again preserve a ‘nice’ structure; see Roos (1979). We adopt Roos’s definition. Let
C be an (n, k)-submodule and σ ∈ AutF(A), where AutF(A) denotes the group of
all F-algebra automorphisms on A. Define σ -cyclicity of C via the condition

g =
∑

ν≥0

zνgν ∈ p(C ) ⇒ x ∗σ g :=
∑

ν≥0

zνσ ν(x)gν ∈ p(C ).

The operation “∗σ ” can be canonically extended to a multiplication on A[z] and
the set A[z;σ ] := (A[z],+,∗σ ) is an F-Algebra, called the Piret-Algebra, which is
in general non-commutative. Observe that we put the coefficients on the right-hand
side of z. This agrees with the definition of the map p defined above, where it is
needed in order to make p an isomorphism of left F[z]-modules. With this setting
σ -cyclicity can be characterized as follows:

C is σ -cyclic ⇐⇒ p(C ) is a left ideal in A[z;σ ],
see Roos (1979), Gluesing-Luerssen and Schmale (2004). Therefore, σ -cyclicity
appears as a natural generalization of block code cyclicity. We give a small example.

Example Let n = 3, F = F4 = {0,1, α,α2}, and let σ ∈ AutF(A) be defined via
σ(x)= α2x. Consider

G := [1+z+z2, α+z+α2z2, α2+z+αz2] = [1, α,α2]+z[1,1,1]+z2[1, α2, α].
We will use G both as matrix and as code word. The (3,1)-submodule C := {uG :
u ∈ F[z]} has complexity δ = 2. Moreover, G is right invertible over F[z]. The
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submodule C is even a σ -cyclic CC. To prove this, one can show

x ∗σ p(G) ∈ p(C ) and x2 ∗σ p(G) ∈ p(C ), since

g := p(G)= 1+ αx + α2x2 + z(1+ x + x2)+ z2(1+ α2x + αx2),

x ∗σ g = α2 + x + αx2 + zα2(1+ x + x2)+ z2(α2 + αx + x2)= α2g ∈ p(C ),

x2 ∗σ g = αg ∈ p(C ).

Therefore C is σ -cyclic. One can show that C is an MDS convolutional code with
free distance 9; for these notions see McEliece (1998) and Rosenthal and Smaran-
dache (1999).

Remark In Solomon and van Tilborg (1979) a link between quasicyclic block codes
and convolutional codes was established with the main purpose of applying con-
volutional decoding techniques to certain block codes. It turns out that there is no
apparent reason why a convolutional code associated with a given quasicyclic block
code should be σ -cyclic for some automorphism σ . (In general, quasicyclicity for
convolutional codes is not an instance of σ -cyclicity. The only exception is classical
cyclicity, which does not lead to any convolutional code of positive complexity.)
However, in Solomon and van Tilborg (1979) some quasicyclic block codes might
give rise to a σ -cyclic convolutional code. But this is open to further investigation.

3 Analyzing Cyclic CC’s with Gröbner-type Theory

We can represent A= F[x]/〈xn− 1〉 as a product of fields in the following way. Let
xn−1= π1 · · ·πr be the decomposition of xn−1 into pairwise different normalized
prime factors. This decomposition is unique up to permutation of the πi . Due to the
Chinese Remainder Theorem we get the following isomorphism of rings:

ρ : A→ F[x]/〈π1〉 × · · · × F[x]/〈πr 〉
a �→ [a mod π1, . . . , a mod πr ] (∗)

The element ε(�) := ρ−1([. . . ,0,1,0, . . .]), where the 1 is at the �-th position, is
called the �th primitive idempotent element of A. Note that σ ∈ AutF(A) permutes
ε(1), . . . , ε(r). For a polynomial h ∈ A[z;σ ] we call h(�) := ε(�) ∗σ h the �-th com-
ponent of h.

The order of the fields as chosen in (∗) and thus the order of the components
induces a ‘term order’ on the elements of A[z;σ ]. Since C is a σ -cyclic CC if and
only if p(C ) is a left ideal inA[z;σ ], we can ask how to find a ‘nice’ generator set of
a left ideal in A[z;σ ]. It is standard to show that A[z;σ ] is left Noetherian i.e., each
left ideal is finitely generated. The ‘term order’ together with a Buchberger-type
algorithm can be used to generate a ‘reduced’ set of generators with ‘nice’ proper-
ties. For details see Gluesing-Luerssen and Schmale (2004). The following list gives
several results obtained by further developing this approach. See Gluesing-Luerssen
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and Schmale (2004, 2006), Gluesing-Luerssen and Langfeld (2006a, 2006b) for
more results and Lally (2009), Lally and Fitzpatrick (2001), Giorgetti et al. (2005)
for two examples, where Gröbner-type techniques are used to analyze quasicyclic
codes.

– If C is a σ -cyclic CC, then p(C ) is a left principal ideal. The converse is only
true under additional assumptions.

– If C is a σ -cyclic CC, then there exists a ‘reduced’ generator polynomial g ∈
A[z;σ ] for p(C ) i.e., the left ideal generated by g is p(C ). This g is generated via
a Buchberger-type reduction process and it is unique up to left-multiplication with
units in A[z;σ ] (Gluesing-Luerssen and Schmale 2004). One can easily retrieve
all algebraic parameters of C from g.

– The dual C⊥ of a σ -cyclic CC C is σ̂ -cyclic for a suitable σ̂ ∈AutF(A).
– A minimal σ -cyclic CC C is defined to be a σ -cyclic CC that has no non-trivial
σ -cyclic sub-CC. Each σ -cyclic CC C can be decomposed into a direct sum
C =⊕s

i=1 Ci , where the Ci are minimal σ -cyclic CC’s.
– C is a minimal σ -cyclic CC if and only if its generator polynomial g satisfies
g = g(�) for some 1≤ �≤ r .

– For a minimal σ -cyclic CC C with g = g(�) and k = degx π�, the complexity of C
is δ = k ·d for some d ∈N. Moreover, we have the following equivalence: For any
d ∈ N0 there exists a minimal σ -cyclic (n, k, kd)-CC with generator polynomial
g satisfying g = g(�) if and only if σ(ε(�)) �= ε(�).

– Within the class of cyclic CC’s, Reed-Solomon (RS) and BCH convolutional
codes can be defined. They contain (near) optimal codes w.r.t. distance and per-
formance (Gluesing-Luerssen and Schmale 2006). In particular, one can construct
cyclic one-dimensional MDS convolutional codes with a RS structure (Gluesing-
Luerssen and Langfeld 2006a).
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On the Non-linearity of Boolean Functions

Ilaria Simonetti

Abstract We compute the non-linearity of Boolean functions with Gröbner bases.

1 Introduction

Any function from (F2)
n to F2 is called a Boolean function (Bf). Boolean functions

are important in symmetric cryptography, since they are used in the confusion layer
of ciphers. An affine Bf does not provide an effective confusion. To overcome this,
we need functions which are as far as possible from being an affine function. The
effectiveness of these functions is measured by a parameter called “non-linearity”
(Carlet 2009). Usually, to compute the non-linearity of a Bf f , we have to compute
the discrete Fourier transform f̂χ of the function fχ(x)= (−1)f (x). Then the non-
linearity of f is N(f )= 2n−1 − 1

2 maxa∈(F2)
n |f̂χ (a)| .

In this paper, we compute the non-linearity of Bf’s with Gröbner bases (Sala and
Simonetti 2007).

2 Preliminaries and Notation

Let F2 be the field with 2 elements. Let n≥ 1 be an integer. From now on, n and an
ordering on vectors in (F2)

n = {v1, . . . , v2n} are understood.
We denote by Bn the set of all Bf’s. It is well-known that f can be expressed as

a polynomial in F2[X] = F2[x1, . . . , xn], as follows

f =
∑

S⊂{1,...,n}
bSXS, where XS = xi1 · · ·xi|S| , S = {i1, . . . , i|S|}.

Definition 1 Let f,g ∈ Bn. The distance d(f, g) between f and g is the number of
v ∈ (F2)

n such that f (v) �= g(v).

We denote by An the set of all affine Bf’s: An = {a0 +∑n
i=1 aixi | ai ∈ F2},

where ai = a{i} and a0 = a∅.
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Let A and B be the following variable sets: A = {ai}0≤i≤n,B = {bS}S⊂{1,...,n}.
We denote by gn ∈ F2[A,X] ⊂ F2[A,B,X], fn ∈ F2[B,X] ⊂ F2[A,B,X] the fol-
lowing polynomials:

gn = a0 +
n∑

i=1

aixi , fn =
∑

S⊂{1,...,n}
bSXS .

Definition 2 (Carlet 2009) Let f ∈ Bn. The non-linearity N(f ) of f is the mini-
mum of the distances between f and any affine function:

N(f )= min
α∈An

d(f,α).

An upper bound on the non-linearity for a Boolean function f is (Carlet 2009):

N(f )≤ 2n−1 − 2
n
2−1.

This upper bound can only be met if n is even (bent functions).
We consider a map from Bn to (F2)

2n , which sends a Bf f into a vector f =
(f (v1), . . . , f (v2n)), obtained by evaluating f .

We denote by SAn
(f ) the set

SAn
(f )= {f + g | g ∈ An} ⊂ (F2)

2n .

The following lemma is obvious:

Lemma 1 Let f,g be two Boolean functions. Then

d(f, g)= d(f , g)=w(f + g),

where d (w) is the Hamming distance (weight) in (F2)
2n .

Therefore, computing the non-linearity of f ∈ Bn is the same as finding the min-
imum weight of vectors in set SAn

(f ).
We can extend the evaluation to polynomials gn and fn as follows:

gn = (gn(A,v1), . . . ,gn(A,v2n)) ∈ (F2[A])2n ,
fn = (fn(B, v1), . . . , fn(B, v2n)) ∈ (F2[B])2n .

For the remainder of this section, we recall some definitions and results about the
weight of vectors in (F2)

n, taken from Guerrini et al. (2006).
Let 1≤ t ≤m be integers. We denote by E[Y ] the following set of polynomials

in F2[Y ] = F2[y1, . . . , ym]: E[Y ] = {y2
1 + y1, . . . , y

2
m + ym}.

Definition 3 For m ∈ F2[Y ], m is a square-free t-monomial if:

m= yh1 · · ·yht , where h1, . . . , ht ∈ {1, . . . ,m} and hl �= hj ,∀l �= j,
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i.e. a monomial in F2[Y ] such that degyhi
(m)= 1 for any 1 ≤ i ≤ t . We denote by

Mm,t the set of all square-free t-monomials in F2[Y ].

Let Im,t ⊂ F2[Y ] be the following ideal

Im,t = 〈{σt , . . . , σm} ∪E[Y ]〉,
where σi are the elementary symmetric functions in variables Y .

For any 1≤ i ≤m, let Pi = {v ∈ (F2)
m |w(v)= i} and Qi =⋃0≤j≤i Pj .

Theorem 1 (Guerrini et al. 2006) The vanishing ideal I(Qt ) of Qt is

I(Qt )= Im,t+1,

and its reduced Gröbner basis G (w.r.t. any ordering) is

G = E[Y ] ∪Mm,t , for t ≥ 2,

G = {y1, . . . , ym}, for t = 1.

3 Computing the Non-linearity

In this section we show how to use Theorem 1 to compute the non-linearity for a
Boolean function f . We define an ideal where gn plays the role of a generic affine
function. A point in its variety corresponds to an affine function with distance from
f at most t − 1.

Definition 4 Let f ∈ Bn. We denote by Jnt (f ) the ideal in F2[A]:
Jnt (f ) = 〈{m(gn(A,v1)+ f (v1), . . . ,gn(A,v2n)+ f (v2n)) |m ∈ M2n,t } ∪E[A]〉

= 〈{m(gn + f ) |m ∈ M2n,t } ∪E[A]〉 .

Remark 1 Since E[A] ⊂ J nt (f ), Jnt (f ) is zero-dimensional and radical.

Lemma 2 Let f ∈ Bn. Let t ∈N such that 1≤ t ≤ 2n. Then the following statements
are equivalent:

1. V(J nt (f )) �= ∅
2. ∃u ∈ SAn

(f ) such that w(u)≤ t − 1
3. ∃α ∈ An such that d(f,α)≤ t − 1 .

From Lemma 2 we immediately have the following theorem.

Theorem 2 Let f ∈ Bn. The non-linearity N(f ) is the minimum t such that
V(J nt+1(f )) �= ∅.
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From this theorem we can derive an algorithm to compute the non-linearity for a
function f ∈ Bn, by computing any Gröbner basis of Jnt (f ).

j = 1
While V(J nj (f ))= ∅ do
j := j + 1;

Output j − 1

Remark 2 If f is not affine, we can start our check from Jn2 (f ).

Example 1 Let f : (F2)
3 → F2 be the Boolean function:

f (x1, x2, x3)= x1x2 + x1x3 + x2 + 1.

We want to compute N(f ) and clearly f is not affine. We compute vector f and we
take a generic affine function g3, so that: f = (1,1,0,1,1,0,0,0), g3 = (a0, a0 +
a1, a0 + a2, a0 + a1 + a2, a0 + a3, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3).

So f + g3 = (a0+ 1, a0+ a1+ 1, a0+ a2, a0+ a1+ a2+ 1, a0+ a3+ 1, a0+ a1+
a3, a0 + a2 + a3, a0 + a1 + a2 + a3) = (p1,p2, . . . , p8) . Ideal J 3

2 (f ) is the ideal
generated by

J 3
2 (f )= 〈{p1p2,p1p3, . . . , p7p8} ∪ {a2

0 + a0, a
2
1 + a1, a

2
2 + a2, a

2
3 + a3}〉 .

We compute any Gröbner basis of this ideal and we obtain that it is trivial, so
V(J 3

2 (f ))= ∅ and N(f ) > 1. Now we have to compute a Gröbner basis for J 3
3 (f ).

We obtain, using degrevlex ordering with a3 < a2 < a1 < a0, that G(J 3
3 (f )) =

{a2 + a3 + 1, a2
3 + a3, a1a3 + a0 + 1, a0a3 + a0 + a3 + 1, a2

1 + a1, a0a1 + a0 +
a1 + 1, a2

0 + a0}. So, N(f ) = 2 by Theorem 2. By inspecting G(J 3
3 (f )), we also

obtain all affine functions having distance 2 from f :

α1 = 1+ x1 + x2, α2 = 1+ x2, α3 = 1+ x3, α4 = x1 + x3.

Remark 3 Our method for computing the non-linearity is equivalent to decoding t
errors with respect to the Reed–Muller code RM(1,m), with t increasing until there
is at least a solution.
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Quasigroups as Boolean Functions,
Their Equation Systems and Gröbner Bases

D. Gligoroski, V. Dimitrova and S. Markovski

Abstract In this short note we represent quasigroups of order 2n as vector valued
Boolean functions f : {0,1}2n→ {0,1}n. The representation of finite quasigroups
as vector valued Boolean functions allows us systems of quasigroup equations to be
solved by using Gröbner bases.

Keywords Quasigroups · Boolean functions · Classifications

1 Introduction

The quasigroup structures, their properties and especially their large number, enable
them to be applied in many theories, like experimental designs, telecommunications,
cryptography, coding theory and many more.

In this short note we will give a novel representation of quasigroups of order 2n as
vector valued Boolean functions f : {0,1}2n→ {0,1}n. We use this representation
to classify the finite quasigroups according to the degree of polynomials involved
in their representation. We will give the summary of a classification on linear and
nonlinear quasigroups of order 4. The techniques presented here, in general, can be
applied on quasigroups of any finite order 2n. For n ≥ 3 the classification can be
more profound, one can consider linear quasigroups, quadratic quasigroups, third
degree quasigroups, and so on.

We start by a brief introduction to the notion of quasigroup. Then we introduce
the novel representation of quasigroups as Boolean functions. Next, we give a list
of linear and nonlinear quasigroups of order 4. Finally, we show how Gröbner bases
techniques (Mora 2009) can be naturally applied to solving equation systems in

D. Gligoroski
Centre for Quantifiable Quality of Service in Communication Systems—Q2S, Norwegian
University of Science and Technology, Trondheim, Norway
e-mail: danilog@q2s.ntnu.no

V. Dimitrova · S. Markovski
Institute of Informatics, Faculty of Natural Sciences and Mathematics, Ss Cyril and
Methodius University, Skopje, Macedonia

V. Dimitrova
e-mail: vesnap@ii.edu.mk

S. Markovski
e-mail: smile@ii.edu.mk

M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography,
DOI 10.1007/978-3-540-93806-4_31, © Springer-Verlag Berlin Heidelberg 2009

415

mailto:danilog@q2s.ntnu.no
mailto:vesnap@ii.edu.mk
mailto:smile@ii.edu.mk
http://dx.doi.org/10.1007/978-3-540-93806-4_31


416 D. Gligoroski et al.

quasigroup modulo our representation. We are aware of alternative techniques con-
ceptually different from a brute-force check.

2 Quasigroups as Vector Valued Boolean Functions

A quasigroup is a groupoid (Q,∗), i.e., a set Q endowed with a binary operation
∗ :Q2 →Q, such that the equations x ∗ a = b, a ∗ y = b have unique solutions
x, y, for each given a, b ∈Q. The uniqueness of the solutions of the above equations
implies that the cancellation laws x ∗y = x ∗ z=⇒ y = z, y ∗x = z∗x =⇒ y = z
are satisfied in (Q,∗) and vice versa.

Equivalent combinatorial structure to quasigroups are the Latin squares. To any
finite quasigroup (Q,∗), given by its multiplication table, a Latin square consisting
of the matrix formed by the main body of the table can be associated, since each
row and column of the matrix is a permutation of Q.

2.1 Lexicographic Ordering of Finite Quasigroups

We need an ordering of the set of quasigroups of given order, and we use the lexico-
graphic ordering as follows. Given the set of all quasigroups of order n, we represent
each quasigroup as one string of n2 letters that is concatenation of the rows of its
corresponding Latin square. Then the ordering of the quasigroups is given by the
lex ordering of their representations.

Example 1 There are 576 quasigroups of order 4. For quasigroups shown below, the
corresponding indexes in the lex ordering are: 1, 168, 576.

∗ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

∗ 0 1 2 3
0 1 0 2 3
1 3 2 1 0
2 2 3 0 1
3 0 1 3 2

∗ 0 1 2 3
0 3 2 1 0
1 2 1 0 3
2 1 0 3 2
3 0 3 2 1

2.2 Vector Valued Boolean Functions

Quasigroups have many equivalent representations (see for example Colbourn and
Dinitz 1996; White paper 2009). However, so far we have not found in the literature
their representation and exploitation as vector valued Boolean functions.

The idea is straightforward and we present it for quasigroups of order 2n. Let
F2 = {0,1} be the two-element field.
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(1) A Boolean function of n variables is a function f : (F2)
n = F

n
2 → F2.

(2) A vector valued Boolean function is a map f : Fn2 → F
m
2 , where m≥ 2.

(3) Every Boolean function can be uniquely given in its algebraic normal form, i.e.,
as a polynomial in n variables over the field F2 that has degree≤1 in each single
variable:

f (x1, x2, . . . , xn)=
∑

I⊆{1,...,n}
aI x

I (1)

where the monomial xI is the product xI =∏i∈I xi, x∅ = 1 and aI ∈ {0,1}.
Now, using the definitions (1) and (2) and the property (3), we can represent every

quasigroup (Q,∗) of order 2n by a vector valued Boolean function f : {0,1}2n→
{0,1}n. Namely, we (may) suppose that the elements x of the quasigroup are given
as binary vectors x = (x1, x2, . . . , xn) ∈ {0,1}n. Then for each x, y ∈ Q we have
that

x ∗ y ≡ f (x1, . . . , x2n)= (f1(x1, . . . , x2n), . . . , fn(x1, . . . , x2n))

where x = (x1, x2, . . . , xn), y = (xn+1, xn+2, . . . , x2n) and fi : {0,1}2n→{0,1} are
the corresponding components of f .

Example 2 Let us take the second quasigroup given in Example 1. This quasigroup
can be represented by the following vector valued Boolean function, i.e., as a pair
of polynomials in F2[X1,X2,X3,X4]:

f (x1, x2, x3, x4)= (x1 + x2 + x3, 1+ x1 + x3 + x1x3 + x2x3 + x4).

2.3 Classification of Quasigroups

There are several classifications of quasigroups. By the algebraic properties of the
quasigroups two main classifications are obtained: classes of isotopic and classes
of isomorphic quasigroups (known only for quasigroups of order n≤ 11 Dénes and
Keedwell 1974; McKay 2009). Also, there are some other classifications such as
by random walk on torus or by graphical presentation of sequences obtained by
quasigroup transformations (Markovski et al. 2005; Dimitrova 2005).

The following novel classification of quasigroups follows immediately from their
representation as vector valued Boolean functions. Let (Q,∗) be a quasigroup of
order 2n and let

f (x1, . . . , x2n)= (f1(x1, . . . , x2n), . . . , fn(x1, . . . , x2n))

be its corresponding representation as vector valued Boolean function.

1. If all functions fi for i = 1,2, . . . , n are linear polynomials, then this quasigroup
is called linear quasigroup.
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2. Otherwise, if there exist function fi for some i = 1,2, . . . , n which is not linear,
this quasigroup is called nonlinear quasigroup.

Considering the class of quasigroups of order 4, it can be checked that there
are 144 linear and 432 non-linear quasigroups, i.e., there are three times more non-
linear quasigroups of order 4. By several experiments we have made on quasigroups
of order 2n, it can be concluded that the quotient #(linear quasigroups)/#(non-
linear quasigroups) is going to 0 when n is going to infinity.

3 Systems of Quasigroup Equations and Gröbner Bases

Let us take again the quasigroup with the lexicographic index 168 (from Example 2)
and let us consider the following system of quasigroup equations:

⎧
⎪⎪⎨

⎪⎪⎩

(y4 ∗ (y2 ∗ ((y2 ∗ ((y2 ∗ (((y3 ∗ (y2 ∗ y4)) ∗ y4) ∗ y4)) ∗ y1)) ∗ y1)))= 3
(y1 ∗ (y3 ∗ (y2 ∗ (y1 ∗ (y3 ∗ (y2 ∗ ((y1 ∗ (y2 ∗ y2)) ∗ y2)))))))= 0
((y4 ∗ (y3 ∗ (y1 ∗ (y4 ∗ (((y1 ∗ (y2 ∗ y4)) ∗ y3) ∗ y3))))) ∗ y1)= 2
(y2 ∗ (y1 ∗ ((y2 ∗ ((y4 ∗ (y4 ∗ (y2 ∗ (y3 ∗ y2)))) ∗ y3)) ∗ y2)))= 3

(2)

where y1, y2, y3, y4 ∈ {0,1,2,3}.
Neither we can get rid of the parentheses because the quasigroup is non-

commutative nor we can change the order of the parentheses, because the quasi-
group is non-associative. So, it seems that if we stay with the original ∗ representa-
tion of the quasigroup—we would have to apply exhaustive search in the set of all
44 possibilities. This may be still feasible for this small example, but for some big-
ger systems that exhaustive search approach soon would become infeasible. How-
ever, if we represent the variables as y1 = (x1, x2), y2 = (x3, x4), y3 = (x5, x6), y4 =
(x7, x8) and if we use the Boolean representation of the quasigroup, we will obtain
the system of quasigroup (3).

If we try to solve the system (3) by Gröbner bases in F2 it will take a fraction of
a second to solve it.

We have tested this approach in numerous cases for solving systems of qua-
sigroup equations with up to 40 variables (equivalent to 80 binary variables) and
Gröbner bases approach was able to solve it every time. Better results were ob-
tained by using the software package PolyBoRi (Brickenstein and Dreyer 2007),
when systems of quasigroups equations of up to 50 variables could be solved.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+ x2 + x1x3 + x4 + x3x4 + x1x3x4 + x5 + x1x3x5 + x1x4x5 + x1x6 + x7
+ x1x7 + x3x7 + x1x3x7 + x4x7 + x3x4x7 + x1x3x4x7 + x1x3x5x7
+ x1x4x5x7 + x6x7 + x3x6x7 + x4x6x7 + x8 + x7x8 + x1x7x8
+ x1x3x7x8 + x1x4x7x8 = 1

1+ x2 + x1x2 + x3 + x1x3 + x2x3 + x2x4 + x1x3x4 + x1x5 + x6 + x1x6
+ x1x3x6 + x1x4x6 + x7 + x2x7 + x3x7 + x4x7 + x3x4x7 + x1x3x4x7
+ x5x7 + x3x5x7 + x4x5x7 + x6x7 + x3x6x7 + x1x3x6x7 + x4x6x7
+ x1x4x6x7 + x8 + x2x8 + x1x3x8 + x4x8 + x3x4x8 + x1x3x4x8 + x5x8
+ x1x3x5x8 + x1x4x5x8 + x1x6x8 + x7x8 + x1x7x8 + x3x7x8
+ x4x7x8 + x1x4x7x8 + x3x4x7x8 + x1x3x4x7x8 + x1x3x5x7x8 + x1x4x5x7x8
+ x6x7x8 + x3x6x7x8 + x4x6x7x8 = 1

x2 + x4 + x1x4 + x2x4 + x3x4 = 0

1+ x1 + x2 + x2x3 + x1x3x4 + x2x3x4 = 0

x2 + x1x2 + x3 + x1x3 + x2x3 + x4 + x5 + x1x2x5 + x3x5 + x1x3x5
+ x2x3x5 + x1x6 + x1x3x6 + x2x3x6 + x4x6 + x1x4x6 + x2x4x6
+ x5x6 + x2x5x6 + x3x5x6 + x1x3x5x6 + x2x3x5x6 + x1x4x5x6 + x2x4x5x6
+ x7 + x1x7 + x2x7 + x1x3x7 + x2x3x7 + x1x4x7 + x2x4x7 + x5x7 + x1x5x7
+ x2x5x7 + x3x5x7 + x1x3x5x7 + x2x3x5x7 + x4x5x7 + x1x4x5x7 + x2x4x5x7
+ x1x6x7 + x2x6x7 + x3x6x7 + x4x6x7 + x5x6x7 + x1x5x6x7 + x2x5x6x7
+ x3x5x6x7 + x4x5x6x7 + x1x8 + x2x8 + x5x8 + x1x5x8 + x2x5x8
+ x6x8 + x5x6x8 = 1

x1x3 + x2x3 + x1x2x3 + x4 + x2x4 + x1x5 + x2x5 + x1x2x5 + x3x5 + x1x3x5
+ x2x3x5 + x1x2x3x5 + x1x4x5 + x2x4x5 + x1x6 + x1x3x6 + x1x2x3x6
+ x1x2x4x6 + x1x5x6 + x1x2x5x6 + x1x2x3x5x6 + x1x4x5x6 + x1x2x4x5x6
+ x1x7 + x2x7 + x1x2x7 + x3x7 + x1x3x7 + x1x2x3x7 + x4x7 + x1x4x7
+ x1x2x4x7 + x5x7 + x1x5x7 + x2x5x7 + x1x2x5x7 + x3x5x7 + x1x2x3x5x7
+ x4x5x7 + x1x2x4x5x7 + x1x6x7 + x1x2x6x7 + x1x3x6x7 + x1x4x6x7
+ x1x2x5x6x7 + x1x3x5x6x7 + x1x4x5x6x7 + x8 + x1x8 + x1x2x8 + x5x8
+ x1x2x5x8 + x1x6x8 + x1x5x6x8 = 0

x1 + x2 + x4 + x5 + x4x6 + x3x4x6 + x4x5x6 = 1

1+ x2 + x1x4 + x2x4 + x1x5 + x2x5 + x1x4x6 + x2x4x6 + x3x4x6 + x1x3x4x6
+ x2x3x4x6 + x4x5x6 + x1x4x5x6 + x2x4x5x6 = 1

(3)

For other applications of Gröbner bases to Boolean functions, see Sala and Si-
monetti (2007), Simonetti (2009), Gligoroski et al. (2009).
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A New Measure to Estimate
Pseudo-Randomness of Boolean Functions
and Relations with Gröbner Bases

Danilo Gligoroski, Smile Markovski and
Svein Johan Knapskog

Abstract In this short note we will introduce a generic measure of the algebraic
complexity of vector valued Boolean functions: Normalized Average Number of
Terms (NANT). NANT can be considered as a tool that extracts those vector valued
Boolean functions that are suitable for effective application of Gröbner bases. As
an example, we use NANT to show clear differences between two popular crypto-
graphic hash functions: SHA-1 and SHA-2. The obtained results show that SHA-1 is
susceptible to attacks based on Gröbner bases, which lead us to believe that SHA-1
is much weaker than SHA-2 from a design point of view.

Keywords NANT · Hash · SHA-1 · SHA-2

1 Introduction

The complexity of Boolean functions has been a subject of cryptographic scrutiny
for a long time and a lot of different types of Boolean functions and different mea-
sures have been introduced so far. An excellent review article covering recent devel-
opments in this field is the paper of Qu et al. (2001). The complexity of the Boolean
functions is not strongly connected with their algebraic degree (see e.g. Simonetti
2009), and our measure proposed here does not depend on the degree of the func-
tion.

D. Gligoroski · S.J. Knapskog
Centre for Quantifiable Quality of Service in Communication Systems, Norwegian
University of Science and Technology, O.S. Bragstads plass 2E, 7491 Trondheim,
Norway

D. Gligoroski
e-mail: Danilo.Gligoroski@q2s.ntnu.no

S.J. Knapskog
e-mail: Svein.J.Knapskog@q2s.ntnu.no

S. Markovski
Faculty of Natural Sciences and Mathematics, Institute of Informatics, “Ss Cyril and
Methodius” University, P.O. Box 162, 1000 Skopje, Macedonia
e-mail: smile@ii.edu.mk

M. Sala et al. (eds.), Gröbner Bases, Coding, and Cryptography,
DOI 10.1007/978-3-540-93806-4_32, © Springer-Verlag Berlin Heidelberg 2009

421

mailto:Danilo.Gligoroski@q2s.ntnu.no
mailto:Svein.J.Knapskog@q2s.ntnu.no
mailto:smile@ii.edu.mk
http://dx.doi.org/10.1007/978-3-540-93806-4_32


422 D. Gligoroski et al.

We can say that there is very close analogy between our introduced measure
NANT—Lf (k) for a specific value k and the propagation criterion of degree l and
order k (PC(l) of order k) introduced by Preneel et al. (1991). Stronger mathemati-
cal relations between NANT and PC(l) of order k form an interesting research topic
in itself.

2 Normalized Average Number of Terms—NANT

Let n ≥ r ≥ 1 be integers and let f : {0,1}n→ {0,1}r be a vector valued Boolean
function. The vector valued function f can be represented as an r-tuple of Boolean
functions f = (f (1), f (2), . . . , f (r)), where f (s) : {0,1}n→{0,1} (s = 1,2, . . . , r),
and the value of f (s)(x1, . . . , xn) equals the value of the s-th component of
f (x1, . . . , xn). In finite field theory, Boolean functions are considered as maps
g : (F2)

n → F2 and so the Boolean functions f (s)(x1, . . . , xn) can be expressed
in the Algebraic Normal Form (ANF) as polynomials in F2[x1, . . . , xn], that is, as
polynomials with n variables x1, . . . , xn of kind a0⊕a1x1⊕· · ·⊕anxn⊕a1,2x1x2⊕
· · ·⊕ an−1,nxn−1xn⊕· · ·⊕ a1,2,...,nx1x2 . . . xn, where aλ ∈ {0,1}. Each ANF has up
to 2n terms (i.e., monomials), depending on the values of the coefficients aλ. Denote
by Lf (s) the number of terms in the ANF of the function f (s) and define the number
of terms of the vector valued function f by Lf =∑r

s=1Lf (s) .

Definition 1 Let f : {0,1}n → {0,1}r be a vector valued Boolean function and
k ∈ {1, . . . , n}. Let the naturally ordered sets σj = {i1, i2, . . . , ik} ⊂ {1, . . . , n}, 1≤
j ≤ S, be chosen uniformly at random and let fσj denote the restriction of f de-
fined by fσj (x1, x2, . . . , xn) = f (0, . . . ,0, xi1,0, . . . ,0, xi2,0, . . . ,0, xik ,0, . . . ,0).
We define the random variable Lf (k)—the Normalized Average Number of Terms
(NANT), by

Lf (k)= 1

r
· 1

2k−1
· lim
S→∞

1

S

S∑

j=1

Lfσj .

Since the subsets σj are chosen uniformly at random, the average values of
L
f
(s)
σj

(s = 1,2, . . . , r) are 2k−1 and the average value of Lfσj is r2k−1. Also,

0<L
f
(s)
σj

≤ 2k . So, the following theorem is true:

Theorem 1 For any function f : {0,1}n→{0,1}r chosen uniformly at random from
the set of all such functions, and for any k ∈ {1, . . . , n}, it is true that

0<Lf (k)≤ 2

and that the expected value is

EX(Lf (k))= 1.
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We quote here a statement given by Faugère and Joux (2003) for effectiveness of
computing Gröbner bases: “A crucial point in the cryptanalysis of HFE is the ability
to distinguish a ‘random’ (or generic) algebraic system from an algebraic system
coming from HFE.” Now, the role of our measure Lf (k) is just the measurement
of the non-randomness of Boolean functions. It is enough to compute the values of
EX(Lf (k)) for several relatively small values of k (k = 3,4,5,6,7,8, . . . ). Then,
if EX(Lf (k))3 1 or EX(Lf (k))' 1, we say that the crypt-system represented by
f is weak, and a Gröbner bases attack on a weak crypt-system represented by f is
likely successful. The price of computing EX(Lf (k)) is quite small compared to the
possible values of n : n= 2256, n= 2512, . . .

Considering a weak hash function represented by a vector valued Boolean func-
tion f = (f (1), f (2), . . . , f (r)), one Gröbner bases attack for finding a collision can
be the following. Let σj = {i1, i2, . . . , ik} ⊂ {1, . . . , n} be given, for some enough
small value of k. Denote x = 0, . . . ,0, xi1,0, . . . ,0, xi2,0, . . . ,0, xik ,0, . . . ,0 and
y= 0, . . . ,0, yi1,0, . . . ,0, yi2,0, . . . , 0, yik ,0, . . . ,0, where xλ and yλ are variables.
Let I be the ideal in the ring F2[x1, . . . , xn, y1, . . . , yn] generated by the func-
tions f (1)σj (x)−f (1)σj (y), f (2)σj (x)−f (2)σj (y), . . . , f (r)σj (x)−f (r)σj (y), x2

1 − x1, . . . , x
2
n−

xn, y
2
1 − y1, . . . , y

2
n − yn. The computation of the Gröbner bases G(I) for the ideal

I can be effectively done, since k is chosen small enough. Finally, we have to find
the vanishing set V(G(I)), and if |V(G(I))|> 1, a collision is found.

3 NANT and SHA-Family of Hash Functions

Having a completely linear message expansion part, SHA-1 reaches the level of
complexity of a random nonlinear multivariate Boolean function over the field F2 in
about 20 steps in the iterative part of its compression function. Basically, all known
methods for finding collisions on SHA-0 and SHA-1 exploit heavily that weak part
of the design (Biham and Chen 2004; Biham et al. 2005; Wang et al. 2005a, 2005b).

Here we take n= 512 and we consider functions f : {0,1}512 → {0,1}r , where
r ∈ {32,160,256} depending on whether we measure the complexity in the message
expansion part (32-bit variables), the iterative part of SHA-1 (the hash is 160 bits),
or the iterative part of SHA-2 (the hash is 256 bits).

The reason why we chose to apply averaging in the definition of NANT was that
we wanted to have a tool that will give us a quantitative measure how close to a ran-
dom Boolean function some iteratively defined hash function is. We think that this
measure is more suitable for hash functions than measures that are giving Yes/No
answers in the analysis of iteratively defined hash functions. Moreover, having con-
cretely defined compression functions (such as those of SHA-1 and SHA-2) with
several hundreds of input bits it would be practically impossible to apply the defini-
tions for the balanced Boolean function in particular for a high order of resiliency or
for a high propagation degree (Preneel et al. 1991). Still, we want to stress that we
do not consider the value of Lf (k) as an ultimate measure that will unconditionally
prove security claims for the hash functions. We see NANT as a tool to conjecture
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Fig. 1 Measuring the Complexity of SHA-1 in the message expansion part and in the iterative part
of its compression function

Fig. 2 Measuring the Complexity of SHA-2 in the message expansion part and in the iterative part
of its compression function

how closely and how fast some iterated Boolean functions obtain a property that is
true for a random Boolean function.

For small values of k, i.e., k = 3,4, . . . ,8 the values Lf (k) are easily computable
and in Figs. 1 and 2 we give graphs for SHA-1 and SHA-2 for their message ex-
pansion part and for their iterative part for the value k = 5. Similar graphs can be
obtained for other values of k.

In Fig. 1a. it can be seen that the message expansion part of SHA-1, being com-
pletely linear, never reaches the complexity of a random Boolean function. Further
in Fig. 1b we can see that SHA-1 reaches the complexity of a random Boolean
function after 20 steps in its iterative part.

The situation with SHA-2 is significantly different. From Fig. 2a we see that the
message expansion part of SHA-2 is much better designed and it reaches the same
complexity as a random Boolean function after 16 steps, which reflects afterwards in
the iterative part of SHA-2 that achieves the complexity level of a random Boolean
function after 13 steps (Fig. 2b).

By our observation of SHA-2 we deduce the following remark. The design of
SHA-2 may be further improved by starting the computations in its iterative part (of
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the compression function) only on the variables produced in the message expansion
part having the complexity level of a random Boolean function.
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Radical Computation for Small Characteristics

Ryutaroh Matsumoto

Abstract In applications to coding theory and cryptography, the characteristic of
the coefficient field is often small or 2. We will briefly review an algorithm comput-
ing the radical of a polynomial ideal specialized for small characteristics.

1 Introduction

When we need ideal theoretic symbolic computations of polynomials, the character-
istic of the coefficient field is often zero or a small positive number. In applications to
coding theory and cryptography, the characteristic is often very small, especially 2.
One of important problems is the computation of the radical of an ideal, where
the radical of an ideal I is defined by

√
I = {x | xn ∈ I , for some positive integer

n}. In addition to the radical being important by itself, the radical computation is
often the first step for computing the primary decomposition (Gianni et al. 1988;
Krick and Logar 1991) and the integral closure of an affine ring (de Jong 1998).
There was some difficulty in radical computation of positive-dimensional ideals in
small positive characteristic, as described below.

The frequently used method of radical computation includes the following steps
(Gianni et al. 1988; Krick and Logar 1991): Given a positive-dimensional ideal I
of a polynomial ring K[X1, . . . , Xn], find the set {Xi1 , . . . , Xid } of variables such
that I generates a zero-dimensional proper ideal of the polynomial ring over the
coefficient field K(Xi1 , . . . , Xid ). The problem of radical computation of a general
ideal over K is reduced to that of a zero-dimensional ideal over K(Xi1 , . . . , Xid ).

For zero-dimensional ideals over finite fields, their radicals can be computed by
well-known Seidenberg’s (1974) method combined with the computation of square-
free part of a univariate polynomial (Berlekamp 1970; Davenport 1981; Gianni and
Trager 1996; Knuth 1997). However, Seidenberg’s method does not work when the
coefficient field is imperfect (Becker and Weispfenning 1993, Example 8.16), and
in particular cannot be used over K(Xi1 , . . . , Xid ).

When the coefficient field has positive characteristic and the ideal has positive di-
mension, there seemed to be no algorithm that can be executed in reasonable time,
before the algorithm by Kemper (2002). The difficulty in the zero-dimensional rad-
ical computation in positive characteristic was that we have to factorize univariate
polynomials over a finitely generated field over a field of positive characteristic,
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which is computationally hard (see Kemper 2002 for a more detailed description).
Kemper (2002) showed how to avoid this difficulty, which enabled the working im-
plementation in the computer algebra system Singular (Greuel et al. 2007).

The author proposed an entirely different method for radical computation (Mat-
sumoto 2001), which is suitable for small positive characteristic slightly before
Kemper (2002). The purpose of this short note is to briefly review the author’s
method, and compare its computational time with the methods implemented in Sin-
gular (Greuel et al. 2007). The comparison shows that the computational time of the
author’s method is much smaller in some cases. Therefore, when the computation of
radical does not end in reasonable time with a method based on Kemper’s findings,
it is worth trying the author’s method.

2 Another Radical Computation Method for Positive
Characteristic

Let I be an ideal of a polynomial ring R over a field K of characteristic p. For any
given a ∈ K, we assume that we can efficiently compute b ∈ K such that bp = a.
This condition implies that K is perfect, and it is satisfied if K is a finite field of
characteristic p. Let ϕ be the map from R to itself ϕ(f )= f p . Since ϕ(f + g)=
(f +g)p = f p+gp = ϕ(f )+ϕ(g), the map ϕ is a ring homomorphism. Let I0 = I
and Ii+1 = ϕ−1(Ii). Then Ii is an ideal of R and Ii ⊆ Ii+1 ⊆

√
I holds. Ii � Ii+1

if and only if Ii �=
√
I . Since R is a Noetherian ring, there exists an integer j such

that Ij−1 �= Ij =
√
I . The integer j is the number of computations of ϕ−1 required

for the radical computation. We can upper bound j by 1n logp d2, where n is the
number of variables in R and d is the maximum of total degrees of generators of I .

The inverse image ϕ−1 cannot be computed by Buchberger’s algorithm (Buch-
berger 1965, 2006; Mora 2009), because ϕ moves elements in K, which means that
ϕ is not a homomorphism of K-algebras. Define maps

ϕv

(∑
αk,�X

�
k

)
=
∑
αk,�X

�p
k , ϕc

(∑
αk,�X

�
k

)
=
∑
α
p

k,�X
�
k.

Then we have ϕ = ϕc ◦ϕv = ϕv ◦ϕc, and ϕ−1(Ii)= ϕ−1
c (ϕ−1

v (Ii)). It is well-known
that the generators of ϕ−1

v (Ii) can be computed by Buchberger’s algorithm from
those of Ii . We note that the computation of ϕ−1

v becomes hard as p increases. By
the assumption on K, ϕ−1

c can be easily computed. In particular, when K is the finite
field Fpm with pm elements,

ϕ−1
c

(∑
αk,�X

�
k

)

=
∑
α
pm−1

k,� X�k.

3 Comparison of Computational Time and Discussion

In Table 1, we compare the computational time used by the author’s method and the
“radical” function provided in the computer algebra system Singular (Greuel et al.
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2007). Examples are taken from Decker et al. (1999). Characteristic of the field is
always 2. In Table 1, “Ex. #” indicates the example number in Decker et al. (1999)
pp. 212–217, “Mat” means the time used by the author’s method, “rad” means that
by the “radical” function, and “KL” means that by the “radical” function with op-
tion “KL”, which instructs the original method in Krick and Logar (1991) is used.
The implementation of the author’s method is exactly the same as that listed in Mat-
sumoto (2001). The tests were conducted on Singular version 3.0.3 released on May
2007 running on Linux 2.6.18. The computer had Intel Pentium 4 CPU with 3.2 GHz
clock speed, 1 GB of memory, and 2 GB of disk space used for virtual memory. The
Singular was allowed to use up to 0.5 GB of memory. This limit on memory was
imposed by “ulimit -d” and “ulimit -v” available on the “bash” command interpreter
on Linux. When the computation cannot be done within 0.5 GB of memory, “Out”
is indicated in Table 1. The numbers in Table 1 show the time used by respective
methods in the unit of 1/100 second.

With most examples, the computational times required by the author’s method
and the methods provided by Singular do not differ much. However, with example
30, the author’s method can compute the radical with about 35 seconds, while the
radical functions in Singular say “out of memory” after 25 minutes of computation.
With such examples there is merit to use the author’s algorithm. With example 28,
all three methods fail to compute the radical.

Kemper also compared his method and the author’s method in Kemper (2002).
The comparison results in Table 1 generally agree to those in Kemper (2002).

Table 1 Comparison of the
time complexity Ex. # Mat Rad KL Ex. # Mat Rad KL

1 26 9 7 18 6 5 4

2 3 3 3 19 5 3 3

3 6 6 7 20 21 18 32

4 7 6 12 21 2766 1523 1583

5 2 3 3 22 1 4 3

6 20 11 8 23 12 3 17

7 2 2 1 24 20 14 9

8 8 8 8 25 5 3 1

9 5 4 2 26 2 4 3

10 2 2 1 27 6 3 2

11 3 4 4 28 Out Out Out

12 152 24 9 29 32 7 35

13 15 19 17 30 3535 Out Out

14 8 3 2 31 4 3 3

15 72 67 47 32 63 12 9

16 6 5 11 33 13 9 6

17 14 54 54 34 4 73 52
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