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Preface 
The goal of this book is to present a unified mathematical treatment of 
diverse problems in mathematics, physics, computer science, and engineer­
ing using geometric algebra. Geometric algebra was invented by William 
Kingdon Clifford in 1878 as a unification and generalization of the works 
of Grassmann and Hamilton, which came more than a quarter of a century 
before. Whereas the algebras of Clifford and Grassmann are well known 
in advanced mathematics and physics, they have never made an impact 
in elementary textbooks where the vector algebra of Gibbs-Heaviside still 
predominates. The approach to Clifford algebra adopted in most of the ar­
ticles here was pioneered in the 1960s by David Hestenes. Later, together 
with Garret Sobczyk, he developed it into a unified language for math­
ematics and physics. Sobczyk first learned about the power of geometric 
algebra in classes in electrodynamics and relativity taught by Hestenes at 
Arizona State University from 1966 to 1967. He still vividly remembers a 
feeling of disbelief that the fundamental geometric product of vectors could 
have been left out of his undergraduate mathematics education. Geometric 
algebra provides a rich, general mathematical framework for the develop­
ment of multilinear algebra, projective and affine geometry, calculus on a 
manifold, the representation of Lie groups and Lie algebras, the use of the 
horosphere and many other areas. 

This book is addressed to a broad audience of applied mathematicians, 
physicists, computer scientists, and engineers. Its purpose is to bring to­
gether under a single cover the most recent advances in the applications of 
geometric algebra to diverse areas of science and engineering. Most articles 
in this book were presented at the Special Parallel Session ACACSE'99 of 
the 5th International Conference on Clifford Algebras and their Applica­
tions in Mathematical Physics, held in Ixtapa-Zihuatanejo, Mexico, in July 
1999. ACACSE'99 was organized by the editors of this book in the belief 
that the time is ripe for the general recognition of the powerful tools of 
geometric algebra by the much larger scientific and engineering communi­
ties. Since the First International Conference on Clifford Algebras, held in 
Canterbury, England, in 1985, major advances continue to be made in the 
application of geometric algebra to mathematics and theoretical physics 
and to what has become known as Clifford analysis. The most recent ad­
vances in these more established areas can be found in the Conference 
Proceedings (Birkhauser, Progress in Physics Series 18, 19, Boston 2000) 
Volume I: Algebra and Physics, edited by Rafal Ablamowicz and Bertfried 
Fauser, and Volume II: Clifford Analysis, edited by John Ryan and Wolf-
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gang Sprossig. See also the Special Issue: Volume 39, Number 7, of the 
International Journal of Theoretical Physics, a collection of papers of the 
Ixtapa Conference edited by Zbigniew Oziewicz and David Finkelstein. In­
stead of editing a Volume III of the Proceedings, addressed to specialists 
in Clifford algebra, we decided that the time had come to introduce the 
powerful methods of geometric algebra to the much larger community of 
scientists and engineers who are seeking new mathematical tools to solve 
the ever more complicated problems of the 21th century. The book consists 
of 25 chapters organized into seven parts, each chapter written by experts 
in their field of speciality. 

Part I Advances in geometric algebra presents a series of four chap­
ters on the most up-to-date work that has been done on the horosphere, the 
conformal group, and related topics. The horosphere is a nonlinear model 
of Euclidean and pseudo-Euclidean geometry that captured the interest 
and imagination of many of the participants at the Ixtapa Conference. 
The horosphere offers a host of new computational tools in projective and 
hyperbolic geometries, with potential applications in many different areas. 

Part II Theorem proving offers perhaps one of the most tantalizing 
new applications of geometric algebra and the horosphere. Some of the most 
difficult problems of mathematics have been successfully attacked with the 
help of the computer. The most striking and well-known success was in the 
proof of the 4-color problem. The two chapters in this part present new 
approaches to geometric reasoning and automatic theorem proving using 
geometric algebra, including solutions to problems formulated by Erdos and 
S.S. Chern. Each of the chapters also presents a wealth of bibliographic ma­
terial. The day may come, sooner than most mathematicians realize, when 
computers will successfully attack the most intractable and outstanding 
problems and theorems in mathematics. 

Part III Computer vision researchers still underestimate the impor­
tant role played by geometry in vision. A large amount of accumulated 
evidence shows that animals have some kind of internal geometric repre­
sentation of external reality. The first two chapters in this part formulate 
the principals of computer vision in geometric algebra and address the key 
problems of camera calibration and localization. The third chapter uses 
Bayesian inference, showing how estimation can be done using geometric 
algebra. Felix Klein in his Erlangen program stressed the role of invariant 
theory in characterizing projective geometry. The last chapter in this part 
uses invariant theory for the projective reconstruction of shape and motion. 

Part IV Robotics the first two chapters discuss kinematics and trajec­
tory interpolation in robot design in a rich geometric language of points, 
lines, and planes in dual and double quaternion algebras. The topic of 
robotics is an old theme; however it is only in the last decade that re­
searchers have begun to consider multidimensional representations to solve 
old problems in the field. The last chapter shows how the representation of 
Lie algebras in terms of bivectors can be applied to problems in low-level 
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image processing, using Lie filters in the affine n-plane. It also develops an 
algebra of incidence for application to problems in robotics. 

Part V Quantum and neural computing, and wavelets is de­
voted to the new fields of quantum computers, neurogeometry, and Clif­
ford wavelets, which go beyond Haar wavelets. The concept of a quantum 
computer was first introduced by Richard Feynman in the 1970s. The first 
chapter in this part explores the use of geometric algebra for analyzing 
the quantum states and quantum logic that is necessary to build a quan­
tum computer based on nuclear magnetic resonance. The second chapter 
employs the geometric product in a generalization of neural networks that 
have been constructed using complex, hyperbolic, and dual numbers. The 
third chapter discusses wavelets constructed from multivectors and is a 
generalization of the concept of a quaternion wavelet. 

Part VI Applications to engineering and physics is aimed at ex­
ploring some of the many applications of geometric algebra to the problems 
of engineering and physics. By looking at diverse problems from the per­
spective of a common-language, the problems are often found to be related 
at a deeper level. The first chapter explores some of the mathematical as­
pects of geometric wave propagation as applied to objects in collision. The 
second chapter explores the hidden symmetries of crystallography that are 
only revealed by a geometric analysis in higher dimensions. The third di­
dactic chapter considers optimization problems that commonly arise in en­
gineering using quaternions. The fourth chapter treats the Maxwell-Lorentz 
equations in problems of electrical engineering, and shows how a relativis­
tic point of view can be of practical value. The last chapter of this part 
seeks to find the common ground that exists between the down-to-earth 
problems faced by engineers and the problems of the stars contemplated 
by otherworldly cosmologists. 

Part VII Computational methods in Clifford algebra explores 
some of the new tools made possible by the rich structure of geometric al­
gebra, and the state of the art software that exists today for doing calcula­
tions. The first chapter explores a generalization of fast transform methods 
that takes advantage of the richer algebraic structure of geometric algebra. 
The second, innovative chapter of this part reports the results of an exper­
iment that tests the feasibility of using the Internet as a forum for settling 
disagreements between experts. The last three chapters of this part discuss 
the software available for doing computer-aided calculations in geometric 
algebra. It is hoped that the inclusion of these chapters will spur the fur­
ther development of urgently needed software to do symbolic calculations 
in geometric algebra. 

The editors believe that the contributions in this book will prove invalu­
able to anyone interested in Euclidean and non-Euclidean geometries and to 
scientists and engineers who are seeking more sophisticated mathematical 
tools for solving the ever more complex problems of the 21 st century. 

Eduardo Bayro Corrochano would like to thank the Center for Research 
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this book together. Sandra Cancino helped us enormously in the cover de­
sign and in the drawing of many of the figures. We thank Lauren Lavery 
at Birkhauser, Boston, for her friendly, professional assistance and Louise 
Farkas at Birkhauser, New York, for the excellent proofreading. Garret 
Sobczyk thanks CIMAT for their kind hospitality during his sabbatical in 
the Fall Semester 1999. In addition, he is grateful to INIP of the Universi­
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Eduardo Bayro Corrochano, Guadalajara, Mexico 
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Advances in Geometric 
Algebra 



Chapter 1 

Old Wine in New Bottles: A 
New Algebraic Framework for 
Computational Geometry 
David Hestenes 

1.1 Introduction 

My purpose in this chapter is to introduce you to a powerful new algebraic 
model for Euclidean space with all sorts of applications to computer-aided 
geometry, robotics, computer vision and the like. A detailed description 
and analysis of the model is soon to be published elsewhere [1], so I can 
concentrate on highlights here, although with a slightly different formula­
tion that I find more convenient for applications. Also, I can assume that 
this audience is familiar with Geometric Algebra, so we can proceed rapidly 
without belaboring the basics. 

1.2 Minkowski Algebra 

Let Rp,q = 9(RP,q) denote the Geometric Algebra generated by a vector 
space RP,q with non-degenerate signature (p, q), where p is the dimension 
of its largest subspace of vectors with positive signature. The signature is 
said to be Euclidean if q = 0 and Minkowski if q = 1. We will be con­
cerned with the Minkowski algebra Rn+I,1 and its Euclidean subalgebra 
Rn determined by a designated unit bivector (or blade) E. 

First we consider the Minkowski plane RI,I and the Minkowski algebra 
RI,I = 9(RI ,I) that it generates. It is most convenient to introduce a null 
basis {e, e*} for the plane that satisfies 

(1.1) 

This generates a basis {I, e, e*, E} for R 1, I, where 

(1.2) 

defines a unit pseudoscalar for the plane. It is of some interest to remark 
that the "*" notation has been adopted to indicate that e* is "dual" to 
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E 

e 

1. 1 
R = E - plane 

(for A = 1) 

FIGURE 1.1. Minkowski Plane R1.1. 

e in the sense of linear forms. That simplifies comparison of alternative 
mathematical representations. 

Using the expansion ee* = e· e* + e /\ e*, we can express the basis relations 
in the convenient form 

ee* = 1 + E , (1.3) 

whence 
(1.4) 

We can also derive the "absorption property" for null vectors: 

Ee = -eE = e, (1.5) 

The above relations suffice for all our dealings with the E-plane. However, 
it is of some interest to compare the null basis with an orthonormal basis 
defined by 

(1.6) 

We note that 

e~ = ±1, (1.7) 

The two sets of base vectors are in Fig. 1.1 for ,X = 1. As ,X varies in 
eqn. (1.6), the directions of e± vary, but the orthonormality relations (1.7) 
remain fixed. On the other hand, a rescaling of the of the null vectors: 
{e,e*} -t {'xe, ,X-le*} does not affect any of the relations (1.1) to (1.5). 
Thus, we see that our definition of the null basis fixes directions but not 
scale, whereas the orthonormal basis has fixed scale but arbitrary direction. 
It is this difference that makes the null basis more suitable for our purposes. 
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1.3 Conformal Split 

The conformal split was introduced in [2] to relate a Minkowski algebra to 
a maximal Euclidean subalgebra. The split can be defined in two different 
ways: additively and multiplicatively. 

The additive split is defined as a direct sum: 

(1.8) 

For those who would like to see this expressed in terms of a basis, we 
introduce an orthonormal basis {ekl ej . ek = Ojk; j, k = 1,2, ... ,n} for the 
Euclidean vector space 'Rn and we note that the orthogonality conditions 
e* . ek = e . ek = 0 are equivalent to the condition that the null vectors 
anticommute with the ek, that is, 

(1.9) 

Alternatively, the multiplicative split is defined as a direct product: 

(1.10) 

Here nn is actually a space of trivectors with a common bivector factor E. 
It is related to the vector space 'Rn by 

(1.11) 

and it generates the Euclidean algebra Rn = 9(Rn). It has the basis 

(1.12) 

We still have the orthonormality conditions ej . ek = ej' ek = Ojk. However, 
in contrast to the ek, the ek commute with the null vectors, that is, 

(1.13) 

This is one very good reason for preferring the multiplicative split over the 
additive split. The latter was employed in [1], but we will stick with the 
former. 

The multiplicative split n 4,1 = n3 ® n1,1 has significant applications 
to computational geometry, robotics, computer vision, crytallography and 
molecular geometry. At a more sophisticated level, the split 
n4,2 = n3,1 ® n1,1 defines a conformal split of spacetime with potential 
applications to twist or theory and cosmological models in gauge gravity. 

1.4 Models of Euclidean Space 

We can model En as a set of points with algebraic properties. A standard 
way to do that is to identify each Euclidean point with a vector x in nn, 
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as expressed by the isomorphism 

(1.14) 

We call this the inhomogeneous model of En, because the origin 0 is 
a distinguished point in Rn, although all points in En are supposed to be 
identical. 

To eliminate that drawback, we represent points in En by vectors 
x E Rn+1,l and, to eliminate the extra degrees of freedom, we suppose that 
each point lies in the null cone 

(1.15) 

and on the hyperplane 

(1.16) 

where 
e· (x - e*) = 0 ~ e· x = 1 (1.17) 

tells us that the plane passes through the point e*. The intersection of these 
two surfaces is the horosphere: 

(1.18) 

Thus, we have the isomorphisms 

R n ~ En ~ Nn+l. 
e (1.19) 

We call the horosphere (Fig. 1.2) the homogeneous model of En. It 
was first constructed by F. A. Wachter (1792-1817), but, as will become 
apparent, it is only by formulating it in terms of geometric algebra that 
it becomes a practical tool for computational geometry. To prove the iso­
morphism (1.19), we employ a conformal split to relate each homogeneous 
point x E N::+1 to a unique inhomogeneous point x = x A E E Rn. 

The conformal split proceeds as follows: 

x = XE2 = (x A E + x . E)E, 

and the constraints on x imply 

Whence we obtain an explicit expression for the conformal split: 

x = (x + ~x2e + e*)E = xE - ~ x 2e + e*. 

From this we calculate 

(1.20) 
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FIGURE 1.2. Horosphere. 

Therefore, the inner product 

x· y = -Hx - y)2 = -~(Euclidean distance)2 (1.21) 

specifies an intrinsic relation among points in En. 
Setting x = 0 in (1.20), we see that e. represents the origin in Rn. From 

x -2 2 (1 1 1 ) -- = - x - + -e + - e. E 2 ) e, x . e. x 2 x 2 x 2 x -+00 

we conclude that e represents a point at infinity. 
To facilitate work with the homogenous model, we define I as the unit 

pseudoscalar for Rn+l,l, and note the properties 

1112 = -JIt = 1, (1.22) 

and It = I for n = 2,3. The dual of a multivector A in Rn+l,l is defined 
by 

(1.23) 

Therefore, IE = El- 1 is the pseudoscalar for ~n. 

1.5 Lines and Planes 

Grassmann sought to identify the outer product a II b with the line deter­
mined by two points a and b [3]. However, he succeeded in doing that only 
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in projective geometry [4]. The homogeneous model enables us to see why 
he failed to do it in Euclidean geometry: In the Euclidean case, it takes 
three points to determine a line, and one of them is the point e at infinity. 
Grassmann could not discover that because he did not have null vectors in 
his algebraic system. 

With the conformal split, we can show that a 1\ b 1\ e can be interpreted 
as a line segment in £n or line through points a, b, e. The length of the 
segment is given by its square: 

(a 1\ b 1\ e)2 = (a - b)2 = -2a· b = (length)2. (1.24) 

Similarly, the outer product a 1\ b 1\ c 1\ e represents a plane segment or 
plane in £n, and the area of the segment is given by its square: 

(a 1\ b 1\ c 1\ e)2 = 

o 
1 
1 
1 

1 
0 

b· a 
c·a 

1 1 
a·b a·c 

0 b·c 
(1.25) 

c·b 0 

This is known, in a slightly different form, as the Cayley-Menger determi­
nant. Cayley discovered it in 1841 and nearly a century later Menger [5] 
used it in a formulation of Euclidean geometry with interpoint distance as 
primitive. Dress and Havel [6] recognized its relation to Geometric Algebra. 

Using eqn. (1.20), we can expand the geometric product of points a and 
b: 

ab (aE)(Eb) = (a + ~ a 2e + e*)(b - ~ b 2e - e*) 

-~(a - b)2 + a 1\ b + ~(a2b - b 2a)e + (b - a)e* - ~(a2 - b 2)E. 

In expanding (1.26) we have used the relation ab = a· b + a 1\ b, which 
applies because a and b can be interpreted as vectors in R n , though they 
are trivectors in Rn+1,1. In other words, we have regraded the elements 
of the sub algebra Rn to conform to our interpretation of R n as an inho­
mogeneous model of £n. The use of boldface type should avoid confusion 
between the two different versions of outer product: a 1\ b and a 1\ b. 

The first term on the right side of (1.26) is recognized as the inner product 
a . b, while the remaining terms make up a 1\ b. The profusion of terms 
in (1.26) is indicative of the extensive information inherent in the simple 
product abo It is similar to the complexity of a spacetime split in physics 
[7]. 

From (1.26) we derive the projective split of a line (or line segment) 
through points a, b, e: 

e 1\ a 1\ b = a 1\ be + (b - a). (1.27) 

The coefficients on the right side of (1.27) will be recognized as the Plucker 
coordinates for a line with tangent b - a and moment a 1\ (b - a) = a 1\ b, 
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as depicted in Fig. 1.3. Similarly, the projective split for a plane (or plane 
segment) is given by 

e 1\ a 1\ b 1\ c = -a 1\ b 1\ ce + (b - a) 1\ (c - a)E, (1.28) 

where the coefficients are Plucker coordinates for a plane, as depicted in 
Fig. 1.3. 

b 

b 

a Ab 

o 
FIGURE 1.3. Line and plane. 

1.6 Spheres and Hyperplanes 

A sphere in [n with radius p and center p is represented by a vector s in 
Rn+l,l with positive signature, where 

S 1 2 
p= - - 'iP e. 

s·e 
(1.29) 

It is readily verified that p2 = 0, so p is a homogeneous point. The constraint 
s . e = 1 determines s uniquely and simplifies (1.29) to 

(1.30) 

As depicted in Fig. 1.4, the equation for the sphere is 

X· S = o. (1.31) 

This is the equation for a hyperplane through the origin in R n+1,l, although 
only the vectors satisfying x 2 = 0 count as homogeneous points. 
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The conformal split gives us 

(1.32) 

This helps us ascertain that the equation for a circle can be expressed in 
the alternative forms: 

(1.33) 

FIGURE 1.4. Sphere in En with radius p and center p. 

n 

Ii> 0 

o 

FIGURE 1.5. Hyperplane in En. 

Like a sphere, a hyperplane in £n can be represented by a single vec­
tor n of positive signature. The vector can be normalized to unity, but it 
necessarily satisfies 

n·e = O. (1.34) 

As depicted in Fig. 1.5, its conformal split has the form 

n = nE - be, (1.35) 

where n2 = n 2 = 1. 

The homogeneous model of £n represents all spheres and hyperplanes in 
R n as (n + 1 )-dim subspaces of R n+ 1,1 determined by their normal vectors, 
as expressed 

{ X I x . 8 = 0 8 2 > 0 8' e > 0 x 2 = O· X 8 E Rn+1,1} , , -, " . (1.36) 
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For a sphere the normal s satisfies e· s > 0, but for a hyperplane it satisfies 
e . s = O. Thus, a hyperplane is a sphere through the point e = 00. 

A sphere determined by n + 1 points ao, al, a2, ... an is represented by 
the tangent farm 

(1.37) 

According to (1.30), its radius p and center p are easily obtained from its 
dual normal form 

(1.38) 

It follows that the equation for a sphere can be given in the dual forms: 

x 1\ S = 0 ~ x . s = o. (1.39) 

These equations apply to a hyperplane as a sphere through 00 by taking, 
say ao = e, to get the dual forms: 

(1.40) 

(1.41) 

Example: Consider Simson's construction shown in Fig. 1.6. Given a 
triangle with vertices A, B, 0 and a point D in a Euclidean plane. Perpen­
diculars are dropped from D to the three sides of the triangle, intersecting 
them at points All B l , 0 1 . 

FIGURE 1.6. Simson's construction. 

The circumcircle of triangle e 1\ A 1\ B 1\ 0 is s = A 1\ B 1\ 0, so we can 
obtain its radius from 

p2= (_S_)2 = Sis = (OI\BI\A).(AI\BI\O). 
s·e (tsl\e)2 (eI\AI\BI\O)2 

(1.42) 
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The following identity can be derived: 

AI\BI\CI\D 
e 1\ Al 1\ Bl 1\ Cl = 2 

2p 
(1.43) 

It follows that AI\B I\C I\D = 0 if and only if el\All\Bll\Cl = O. In other 
words, D lies on the circumcircle if and only if AI, B l , C l are collinear. 
This is Simson's Theorem. 

1.7 Conformal and Euclidean Groups 

Orthogonal transformations on Minkowski space are called Lorentz trans­
formations. Any Lorentz Transformation Q can be expressed in the cano­
nical form 

Q(x) = EGXG- l = ax', (1.44) 

where G is a versor with parity E = ±1. G is the versor representation of 
Q, usually called the spin representation if E = + 1. 

Lorentz transformations leave the null cone x 2 = X ,2 = 0 invariant. 
However, the condition e . x' = e· x = 1 is not Lorentz invariant, so a point­
dependent scale factor a has been introduced into (1.44) to compensate for 
that. 

The Lorentz group on Rn+l,l is isomorphic to the conformal group on 
R n, and the two groups are related by the conformal split 

(1.45) 

where 
X' = g(x) (1.46) 

is a conformal transformation on R n . 

The great advantage of the versor representation is that it reduces the 
composition of conformal transformations to versor multiplication, as ex­
pressed by the correspondence 

Every versor G can be expressed as the product of non-null vectors, 
as expressed by G = 8k ... 8281. A vector factor may represent either a 
hyperplane or a sphere in Rn, as explained in the preceding section. 

Reflection in the (hyper ) plane specified by a vector n, has the simple 
form: 

'I} (x) = -nxn- l = x', (1.47) 

with a = 1. Rotations and translations can be generated multiplicatively 
from reflections. Thus, reflections in two planes m and n that intersect at 
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a point c (Fig. 1.7), generate a rotation around the line of intersection, as 
specified by 

G=mn (mE - em . c) (nE - en . c) 

mn - e(m 1\ n) . c 

R-e(Rxc). 

FIGURE 1.7. Generation of a rotation. 

A translation by reflection in parallel planes m, n is specified by 

G=mn (mE - eb)(nE + 0) 

1 + ~ae = Ta , 

where a = 2nb, as shown in Fig. 1.8. 

FIGURE 1.8. Generation of a translation. 

The group of rigid displacements on £3 is called the (special) Euclidean 
group SE(3). Each group element!J can be expressed in the form 

(1.48) 

where the displacement versor D = TaR specifies a rotation around an 
axis with direction n = RnRt through the origin, followed by a translation 
Ta = 1 + ~ea. 
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According to Chasles' Theorem: Any rigid displacement can be ex­
pressed as a screw displacement. This can be proved by finding a point b 
on the screw axis so that 

(1.49) 

where all = (a· n)n, and 

Rb = R+eb x R, (1.50) 

is a rotation that leaves b fixed. Equation (1.49) can be solved directly for 

-2 -1 1 1 - R2 
b = a-L (1 - R ) = 2a -L 1 _ (R2 ) . (1.51 ) 

This illustrates the computational power of geometric algebra. 
The displacement versor can be put in the screw form 

(1.52) 

where 
S = -im+en, (1.53) 

where i = E is the pseudoscalar for E 3 , and S is called a screw. The screws 
compose se(3), the Lie algebra of SE(3). It is a bivector algebra, closed 
under the commutator product: 

(1.54) 

All the elements of screw theory are natural consequences of geometric 
algebra! Each screw has a unique decomposition into a null and a non-null 
part: 

Sk = -imk + enk· (1.55) 

The geometric product of two screws has the decomposition 

(1.56) 

Under a rigid displacement !i, the transformation of a screw is given by 

(1.57) 

This is the "adjoint representation" of SE(3), as indicated by the notation 
on the right. The transformation (1.57) preserves the geometric product: 

The invariants 
!ie = e, !ii = i (1.58) 



1. A New Algebraic Framework for Computational Geometry 15 

imply the invariants: 

(1.59) 

(1.60) 

The latter invariant may be recognized as the Killing Form for se(3). 
It is convenient to introduce the notion of a coscrew (Ball's reciprocal 

screw) defined by 

S'k == (Skie*)z = !(Skie* + ie*Sk) = ink + mke*. 

Then the invariant (57) can be written in the scalar-valued form: 

For a single screw we get the pitch invariant: 

s*·s h=1_-=n·m-1 
2 S. S 

1.8 Screw Mechanics 

(1.61) 

(1.62) 

(1.63) 

Screw theory with geometric algebra enables us to combine the rotational 
and translational equations of motion for a rigid body into a single equation. 
The kinematics of a body point 

(1.64) 

is completely characterized by the displacement spinor D = D(t), which 
obeys the kinematical equation 

. 1 
D= 2VD (1.65) 

with 
v = -iw+ve, (1.66) 

where w is the angular velocity of the body and we can take v to be its 
center-of-mass velocity. It follows that i; = V . x and x = w x x + v. 

A comomentum P is defined for the body by 

P = MV = ilw + mve* = if+ pe*. (1.67) 

This defines a generalized "mass tensor" M in terms of the inertia tensor 
I and the body mass m. According to the transformation equations below, 
the comomentum is a coscrew. 
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The coforce or wrench W acting on a rigid body is defined in terms of 
the torque r and net force f by 

(1.68) 

The dynamical equation for combined rotational and translational motion 
then takes the compact form: 

(1.69) 

where the overdot indicates a time derivative. An immediate consequence 
is the conservation law 

K=v·W=w·r+v·f (1. 70) 

for kinetic energy 

K= ~V.P= ~(w.l+v.p). (1.71) 

A change of reference frame, including a shift of base point, is expressed 
by 

(1.72) 

We consider here only the case when the spinor U is constant. Then (1.72) 
induces the transformations 

v'=gv, 

P=UP'. 

(1.73) 

(1.74) 

Thus, the transformation of V is Covariant, while the transformation of P 
is Contravariant. Their scalar product is the Invariant 

p'·v'=p·v. (1. 75) 

There is much more about all this in [8], [9J and [10], especially applications. 
For more screw theory, see [11J and [12J. 

1.9 Conclusions 

We have seen that the homogeneous model for Euclidean space has at least 
three major advantages. 

I. Intrinsic properties of En are embedded in the algebraic properties of 
homogeneous points. In other words we have 

This was Grassmann's great goal, and he would surely be pleased 
to know that it has finally been achieved, although the path has not been 
straightforward. 
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{ Synthetic } ..... f--_l_·n_te_g-:-r-:-a_te_d_...,~~ {computational} 
geometry with geometry 

II. All spheres and hyperplanes in En are uniquely represented by vec­
tors in Rn+1,1. This unifies and simplifies the treatment of spheres and 
hyperplanes, especially with respect to duality properties. 

III. 
{ Conformal group } 

on En (or Rn) 

2 

{ Lorentz group } 
on Rn+i,i 

{ Ver~or group } 
III Rn+l,I 

This isomorphism linearizes the conformal group and reduces composi­
tion of conformal transformations to versor multiplication. 



Chapter 2 

Universal Geometric Algebra 
Garret Sobczyk 

2 .1 Introduction 

Since Grassmann's original work "Ausdehnungslehre" in 1844, and William 
Kingdom Clifford's later discovery of "geometric algebra" in 1878, the 
mathematical community has been puzzled by exactly how these works 
fit into the main stream of mathematics. Certainly the importance of these 
works in the mathematics at the end of the 20th Century has been recog­
nized, but there has been no general agreement about where and how the 
methods should be utilized. In this chapter, I wish to show how the works 
of Grassmann and Clifford can be integrated into the mainstream of ma­
thematics in such a way as to require as little as possible changes to the 
main body of mathematics as we know it today. As has been often repeated 
by Hestenes and others, geometric algebra should be seen as a great unifier 
of the geometric ideas of mathematics. 

Some of the opposition to the acceptance of geometric algebra into the 
mainstream is without doubt due to the more sophisticated algebraic skills 
and identities that must be mastered. Indeed, I have to admit my own 
frustration in not being able to do more than a line or two of computations 
without making a serious mistake. I believe that what is most needed in 
the area today is an efficient computer software package for carrying out 
symbolic calculations in geometric algebra. Lounesto's CLICAL has proven 
itself to be invaluable to the researcher for making the numeric calculations 
necessary to check theoretical work, and Ablamowicz's CLIFFOR has been 
successfully employed by a number of researchers. But a fully integrated 
symbolic computer software package to do geometric algebra is still waiting 
in the wings. A partial solution to this problem is to develop the basic 
ideas of geometric algebra in such a way that problems can be quickly 
reduced to their matrix equivalents for which computer software is readily 
available. Thus, one of the major objectives of this chapter is to develop 
the main ideas of geometric algebra in such a way that matrix methods can 
be employed almost immediately at any step of a calculation. 

In section 2, we begin with an n-dimensional real vector space N which 
we call the null cone, since we are assuming that all vectors in N are null 
vectors (the square of each vector is zero). Taking all linear combinations of 
sums of products of vectors in N generates the 2n -dimensional associative 
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Grassmann algebra (}(N). This stucture is sufficiently rich to efficiently 
develop many of the basic notions of linear algebra, such as the matrix 
of a linear operator and the theory of determinants and their properties. 
We are careful to define and use notation which is fully compatible with 
traditional matrix theory, but more general in the sense that we are consi­
dering matrices over the Grassmann algebra (}(N). Next, we introduce an 
n-dimensional null cone N which is reciprocal or dual to N, and its associa­
ted reciprocal or dual Grassmann algebra (}(N). By demanding that a few 
simple additional rules be satisfied, which relates the basis elements of the 
reciprocal null cones Nand N, we obtain the 22n-dimensional universal 
geometric algebra (}(N,N). It seems natural to allow a countable infinite 
number of basis elements, and to call the resulting general structure uni­
versal geometric algebra. 

In section 3, we extend the familiar addition and multiplication of matri­
ces over the real and complex numbers to more general matrices of elements 
over (}n,n. This notation is useful for the compact formulation and proofs 
of theorems relating the matrix and geometric algebra formalisms. The 
meet and join in projective geometry are incorporated as new algebraic 
operations on simple k-blades in the geometric algebra. 

In section 4, linear transformations are studied as mappings between 
null cones. The generalized spectral decomposition of a linear operator is 
presented and the principal correlation is discussed. The principal corre­
lation is one step away from the more familiar polar form and singular 
value decompositions of a linear transformation. The principal correlation 
also makes possible a compact treatment of the generalized inverse of a 
linear transformation. The bivector of a linear operator is defined, making 
possible the spinor representation of a general linear transformation. 

In section 5, projection operators are defined allowing us to move from 
the null cone to various subspaces where rotations and translations in can 
be carried out in pseudo-euclidean spaces and affine spaces of arbitrary 
signature. After these operations are completed, we can return to the null 
cone via an inverse projection operator. 

In section 6, basic properties of affine and projective geometries are ex­
plored, including new proofs of Desargues' theorem and Simpson's theorem. 

In section 7, an introduction is given to a non-linear model of euclidean 
space, called the horosphere, and its relationship to the affine plane. Various 
applications of the horosphere are discussed in chapters 4, 3 and 17 of the 
present volume. 

2.2 The Universal Geometric Algebra 

By an n-dimensional null cone N, we mean a real linear n-dimensional 
vector space on which an associative multiplication is defined with the 
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property that for each x EN, x2 = xx = O. It follows that 

(x + y)2 = x 2 + xy + yx + y2 = xy + yx = 0 

or xy = -yx for all x, YEN. Decomposing the geometric product xy into 
symmetric and antisymmetric parts, we find that 

1 1 
xy = 2"(xy + xy) + 2"(xy - yx) = X· Y + x/\y 

where the inner product 

1 
x . y = - (xy + yx) == 0 

2 

vanishes, and the outer product 

1 
x/\y = 2"(xy - yx) = xy 

reduces to the geometric product for all vectors x, YEN. 

(2.1) 

The 2n -dimensional Grassmann algebra ON of the null cone N is defined 
by taking the associative algebra of all geometric sums of products of the 
vectors in N, subject to the one condition that x 2 = 0 for all x E N. We 
write 

ON =gen{N} =gen{el, ... ,en } 

The Grassmann algebra ON of the null cone N is the linear space spanned 
by the 2n -dimensional basis of multivectors, 

{I; el,"" en; eI2,"" en-In;···; el...k,···, en-k+l...n;···; eI2 ... n} 

where {e1...k, ... , en-k+l...n} is the ( ~ )-dimensional basis of k-vectors 

for the ( ~ ) sets of indicies 1 ::::; jl < 12 < ... < jk ::::; n. The Grass­

mann exterior product XIX2 ... Xk of k vectors is antisymmetric over the 
interchange of any two of its vectors; 

Xl· .. Xi· .. Xj ... Xk = -Xl' .. Xj ... Xi· .. Xk 

and has the geometric interpretation of a directed k-vector or k-element of 
volume. Note that the exterior product of null vectors in the null cone N 
is equivalent to the outer product of those vectors, 
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Given the null cone N = span{ e} and its associated Grassmann algebra 
9N, we can always define a reciprocal null cone N = span{e} and its 
associated reciprocal Grassmann algebra 9 N' The reciprocal null cone N 
of the null cone N is defined in such a way as to encapsulate the familiar 
properties of the mathematical dual space of the vector space N. Thus, in 
addition to the basic properties 

we require that 

(2.2) 

for all i, j = 1,2, ... ,n. With this definition, the Grassmann algebra 9N of 
the reciprocal cone N becomes the natural dual of the Grassmann algebra 
9N. 

The neutral pseudoeuclidean space IRn,n is the smallest linear space which 
contains both the null cones Nand N. Thus, 

IRn,n = span{N,N} = {x + yl x E N,y EN}. 

Likewise, the 22n-dimensional associative geometric algebra 9n,n is the 
smallest geometric algebra that contains both the Grassmann algebras 9N 
and 9N, see [6]. We write 

(2.3) 

Whereas the geometric product (2.1) of the vectors x, y, 

xy = x . y + xl\y (2.4) 

reduces to the outer product when both x and y belong either to the null 
cone N, or both belong to the reciprocal null cone N, because of the duality 
relationship (2.2), this is no longer true for arbitrary x, y E IRn,n. Indeed, in 
the context of the pseudo euclidean space IRn,n, the pseudo-inner product 
x·y becomes non-degenerate with neutral signature. A very useful geometric 
identity that we will need is the inner product of a vector with a bivector, 

x· (al\b) = (x· a)b - (x· b)a = -(al\b) . x. (2.5) 

We call 9n,n the universal geometric algebra of order 22n. When n is 
countably infinite, we call 9 = 900,00 the universal geometric algebra, [16]. 
The universal algebra 9 contains all of the algebras 9n,n as proper subal­
gebras. In [6], 9n,n is called the mother algebra. 
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2.2.1 The standard basis 

We have used properties of the Witte basis of null vectors {e, e} to define 
the geometric algebra On,n' From the Witte basis, we now construct the 
standard orthonormal basis {O", 7J} of On,n, 

(2.6) 

for i = 1,2, ... , n. Using the defining relationships (2.2) of the reciprocal 
frames {e} and {e}, we find that these basis vectors satisfy 

(2.7) 

The basis {O"} spans a real Euclidean vector space lRn and generates 
the geometric subalgebra On,O, whereas {7J} spans an antieuclidean space 
lRO,n and generates the geometric subalgebra OO,n' We can now express the 
geometric algebra On,n as the product of these geometric sub algebras 

(2.8) 

2.3 Matrices of Geometric Numbers 

In this section, we extend the familiar addition and multiplication of matri­
ces over the real and complex numbers to more general matrices of elements 
over On,n' This notation is useful for the compact formulation and proof 
of theorems, as well as for relating the matrix and geometric algebra for­
malisms. 

We begin by writing the frame of basis vectors {e} and the corresponding 
reciprocal frame of basis vectors {e} of On,n in row form and in column form, 
respectively, 

We say that the basis {e} spans N and write N = span{ e}. Similarly, 
N = spaniel. 
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In terms of these bases, any vector or point x E N can be written 

(2.9) 

for Xi E JR. The column vector 

consist of the components of x with respect to the basis {e}. Note that in 
the basis representation of x, we are employing the natural matrix multi­
plication between a row and a column, and we will do this for matrices of 
even more general elements. Since vectors in Nn behave like column vec­
tors, and vectors y E ]l!n behave like row vectors, we define the operation 
of transpose of the vector x by 

(2.10) 

The transpose operation allows us to move between the reciprocal null 
cones. The closely related Hermitian transpose will be used later on to 
define an Hermitian inner product. 

Taking advantage of the usual matrix multiplication between a row and 
a column, and the properties of the geometric product listed in (2.1), and 
(2.2), we get 

( 

el!\el 
e2!\el 

{e}{e} = {e}· {e} + {e}!\{e} = id + ::: 

en!\el 

el!\en 1 e2!\en 

en!\en 

where id is the n x n identity matrix, computed by taking all inner products 
ei . ej between the basis vectors of {e} and {e}. Similarly, 

n n n 
{e}{e} = {e}· {e} + {e}!\{e} = Lei' ei + L ei!\ei = n + L ei!\ei, 

i=1 ;=1 i=1 
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giving the useful formulas 

n 

{e} . {e} = Lei' ei = n (2.11) 
i=l 

and 

n 

{e }A{e} = L eiAei (2.12) 
i=l 

2.3.1 Reciprocal basis 

The basis {e} E Nn and {e} E J\r are said to be reciprocal, or dual, because 
they satisfy the relationship {e} . {e} = id, where id is the n x n identity 
matrix. More generally, given a second basis {a} of N, the problem is to 
construct a dual basis {a} of N such that {a}· { a} = id. For the construction 
below, we will need the the pseudoscalar I = elAe2 ... Aen of N and the 
corresponding reciprocal pseudoscalar element I = enA ... Ae2Ael of N 
satisfying I . I = l. 

The new basis {a} of N is related to the standard basis {e} by the 
equation 

(2.13) 

where A is called the matrix of transition from the basis {e} to the basis 
{a}. Taking the outer product /\~=l {a} of the basis vectors {a}, we get 

n 

1\ {a} == al Aa2A ... Aan = det(A)el Ae2A ... en, 
i=l 

(2.14) 

where det A is called the determinant of the matrix A. We see from (2.14) 
that the determinant of the matrix of transition between two bases cannot 
be zero. Dotting both sides of (2.14) by I, we get the explicit expression 

n 

det(A) = 1\ {a}· I 
i=l 

Because the determinant function is so important, we shall also use the 
alternative equivalent bracket notation 

det(A) == det{ a} == [al a2 ... an] (2.15) 

The reciprocal basis {a} is now easily constructed: 

(2.16) 
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Calculating 

a2' al 
{a}·{a}= ( 

al . al 

a~ ~ :al 

proves the construction. We have actually found the inverse of the matrix 
of transition A! Writing {a} = B{e} for the transition matrix of the dual 
basis, we see that 

{a}· {a} = B{e}· {e}A = BA = id 

from which it follows that B = A-I. From the expression {a} = A-l{e}, 
we easily find 

A-I = A-l{e}· {e} = {a}· {e} 

which is equivalent to the well known formula for the inverse of the matrix 
A. 

2.3.2 Generalized inverse of a matrix 

Let Nn and -Kr be n-dimensional reciprocal null cones in IRn,n with the 

dual bases {e} and {e}. Let Nn' c Nn and N n' c N n be n'-dimensional 
reciprocal subspaces with the dual bases {e'} and {e'}. Suppose that an 
n x n' matrix A is given such that n' = rank (A) ::; nand {e'} = {e}A. We 
can now define what is meant by a generalized inverse of the matrix A. 

Definition 1 A matrix Ainv is called a generalized inverse of the matrix 
A if 

{e'} = {e}A and Ainv{e} = {e'}. 

If n' > n for the matrix A, then a generalized inverse is defined to be the 
transpose of a generalized inverse of the matrix AT. 

Whereas the inverse of a matrix exists only for square matrices with 
det i= 0, the generalized inverse as defined above will exist for non-square 
matrices A so long as rank (A) = min{ n, n'}. We will see in a later section 
that a generalized inverse, although not unique, can be defined for any 
nonzero matrix. 

Given any n x n' real matrix A with n' = rank (A) ::; n, the problem of 
finding a generalized inverse of A is equivalent to the problem of construc­
ting a reciprocal dual basis {e'} (not unique!) for the basis {e'} = {e}A 
of the subspace Nn' = span( {e'}) of N. Since the construction is also 
important in the next section, we will present it here. 

Since fA = I\{e'} = l\{e}A i= 0, we can find an n'-vector fA in the 
geometric algebra 9 (Nn) of the reciprocal cone N n, with the property that 
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I A . 1A =I=- O. We then use I A to construct a pseudo-determinant function 
on the subspace Nnl, 

det(A) = det{ e'l = [e~ e~ (2.17) 

The construction of the reciprocal basis {e'l for the subspace now proceeds 
exactly as in the previous section. We define 

( I .* I ) -1 
_I = (_I)i+l e1/\··· /\z /\ ... /\en , . A 
e, [' I I ] e1 e2 ... en' 

(2.18) 

With the reciprocal basis {e'l in hand, a generalized inverse Ainv of A 
can easily be found. It will be the matrix which satisfies 

{e'l = Ainv {e} 

Dotting both sides of this equation on right by {e} gives the generalized 
inverse of A, 

A inv = Ainv{e}. {e} = {e/}· {e}. (2.19) 

2.3.3 The meet and joint operations 

Let Nn+l and Nn+l be (n + 1 )-dimensional reciprocal null cones in 
JRn+l,n+l. It is well known that the directions or rays of non-zero vectors 
in Nn+l can be identified with the points of the n-dimensional projective 
plane rrn, [9]. To express this idea more precisely, we write 

where JR* = JR - {a}. We are thus led to identify points, lines, planes, ... , 
and higher dimensional k-planes in rrn with 1, 2, 3, ... , k + I-dimensional 
subspaces sr of Nn+l, where k s: n. 

The meet and join operations of projective geometry are most easily 
characterized in terms of the intersection and union of the subspaces which 
name the objects in rrn. On the other hand, each r-dimensional subspace 
Ar can be described by a non-zero r-blade Ar E 9Nn+l. We say that an 
r-blade Ar represents, or is a representant of an r-subspace Ar of Nn+l if 
and only if 

A r = {x E Nn+ll x/\Ar = a}. 

With this identification, the problem of finding the meet and join is reduced 
to a problem in geometric algebra of finding the corresponding meet and 
join of the (r + 1)- and (s + I)-blades in the geometric algebra 9(Nn +l) 
which represent these subspaces. 

Let Ar, Bs and Ct be blades representing three subspaces Ar, BS and 
Ct , respectively. We say that 
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Definition 2 The t-blade Ct = Ar nBs is the meet of Ar and Bs if and 
only if Ct is the intersection of the subspaces Ar and 8 s, 

Ct = Ar n 8 s . 

We say that 

Definition 3 The t-blade Ct = Ar U Bs is the join of Ar and Bs if and 
only if Ct is the union of the supspaces Ar and 8 s , 

Ct+1 = A r+1 U 8 s+1 . 

Suppose that an (r - I)-plane in nn is reprented by the r-blade 

and an (s - I)-plane by 

Considering the a's and b's to be the basis elements spanning the respective 
subspaces Ar and 8 8 , they can be sorted in such a way that 

where the ).'s are chosen as small as possible and are ordered to satisfy 
1 :S >'1 < >'2 < ... < >'k :S s, and 

where 

It follows that 

and 
Ar n B 8 = bo;J\ ... Abo;s_k· 

The problem of "meet" and "join" has thus been solved by finding the union 
and intersection of linear subspaces and their equivalent (s + k )-blade and 
(s - k)-blade represent ants. 

It is important to note that it is only in the special case when ArnBs = 0 
that the join reduces to the outer product. That is 

Ar n Bs = 0 {=} Ar U Bs = ArABs 

However, after the join lArUBs == Ar U Bs has been found, it can be used 
to find the meet Ar nBs. The idea is the same as in the previous section. 

If lArUBs is any (r + s)-blade in Q(JJn+1) for which lArUBs . lArUBs =I- 0, 
then 
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2.3.4 Hermitian inner product 

We now come to the delicate subject of complexification. Up until now, 
we have only considered real geometric algebras and their corresponding 
real matrices. Any pseudoscalar of the geometric algebra Qn,n will always 
have a positive square, and will anticommute with the vectors in IRn,n. If 
we insisted on dealing only with real geometric algebras, we might consider 
working in the geometric algebra Qn,n+l where the pseudoscalar element i 
can be chosen to have the desired i 2 = -1. In this algebra, i will commute 
with all the vectors in IRn,n+l, and a complex vector x + iy in Qn,n+l would 
consist of the real vector part x and a pseudovector or (2n)-blade part iy. 

Instead, we choose to choose to directly complexify the geometric algebra 
Qn,n to get the complex geometric algebra Q2n(C) . Whereas this algebra is 
isomorphic to Qn,n+l, it is somewhat easier to work with than the former. A 
complex vector z E C 2n will have the form z = x+iy where x, y E IR2n. The 
imaginary unit i, where i 2 = -1, is defined to commute with all elements 
in the geometric algebra Q2n(C). 

The complexified null cone Nn(c), and reciprocal cone lVn(c), are 
spanned by the complex null vectors 

for j = 1,2, ... , n. A complex null vector x E Nn(c) has the form x = 
{e }X{e}, where in this case Xi E C. For what follows, we shall adopt the con­
vention that x* == x{e} {e}, so Hermitian conjugation is an operation which 

takes us from the complex null cone Nn(c) to the dual null cone lVn(C). 
Notice that applied to the components x{e}, x{e} is the usual Hermitian 
transpose of the column vector X{e}, 

( )

T 
Xl 
X2 

Xn ) = 

Xn 

(2.20) 

We are now ready to define the Hermitian inner product (x, y) onNn(C). 
For all x, y E Nn(c), 

( ) - * * X,y = x . y = x{e}Y{e} 

If the components of x and yare all real, the Hermitian conjuation ope­
ration reduces to the tranpose operation, defined in (2.10). The Hermitian 
inner product has all of the usual properties. 



2. Universal Geometric Algebra 29 

2.4 Linear Transformations 

Let NnuNn' and NnuJ:r' be (n+n')-dimensional reciprocal null cones in 
IRn+n',n+n' with the dual bases {e}U{e'} and {e}U{e'}. Let f: N ---- N' 
be a linear transformation from the null cone N into the null cone N'. In 
light of the previous section, we can consider the null cones Nand N' to 
be over the real or complex numbers. Let 

H om(N, N') = {f : N ---- N'I f is a linear transformation} 

denote the linear space of all homomorphisms from N to N', with the usual 
operation of addition of transformations. Of course, only when N = N' is 
the operation of multiplication (composition) defined. 

Given an operator f E Hom(N,N'), y' = f(x), the matrix:F of f with 
respect to the bases {e} and {e'} is defined by 

Of course, the matrix :F = (Jij) is defined by its n x n' components 
fij = ei . f(ej) E C for i = 1,2, ... , n' and j = 1,2, ... , n. It follows that 

f(ej) == fej = L7~1 edij. By dotting both sides of the above equation on 
the left by {e'}, we find the explicit expression:F = {e'}·{ e'}:F = {e'}· f{ e}. 

We wish to pursue this material only far enough to show that tradi­
tional linear algebra fits very nicely into the far richer geometric algebra 
framework, which brings to bear both new geometric insight and new com­
putational tools. 

The transpose (or Hermitian transpose (2.20)) f*(y'*) of the mapping 

y' = f(x) is defined by the requirement that for all x EN and y'* EN', 

f(x)· y'* = X· j*(y'*) {:} {e'}. f{e} = j*({e'})· {e}. 

2.4.1 Spectral decomposition of a linear operator 

We shall now briefly consider linear operators from the null cone N into 
itself. Let 

End(N) = {f : N ---- NI f is a linear operator} 

denote the algebra of all endomorphisms from N to itself. In this case, the 
operations of addition and composition of linear operators are well defined. 
Let {e} be a basis of N, and {e} be the corresponding reciprocal basis of 
N. Then 

f{e} = {e}:F {:} :F = {e}· {e}:F = {e}· f{e} 

gives the matrix :F of f with respect to the basis {e}. 
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Recall that the characteristic polynomial of f is defined by 

n 

CPf(X) = det(x - f) = {/\ (x - f){e}}· I. 
i=l 

By the well-known Caley-Hamilton theorem, we know that CPf(f) = 0, so 
that every linear operator satisfies its characteristic equation. The minimal 
polynomial 1/Jf(x) of f is the polynomial of least degree that has this pro­
perty. Taken over the complex numbers C, we can express cP f and 1/J f in 
the factored form 

r r 

CPf(x) = II (x - Xi)ni and 1/Jf(x) = II (x - Xi)m i 

i=l i=l 

where 1 :::; mi :::; ni :::; n for i = 1,2, ... , r. 
The minimal polynomial uniquely determines, up to an ordering of the 

idempotents, the following spectral decomposition theorem of the linear ope­
rator f. 

Theorem 1 If f has the minimal polynomial 1/J(x), then a set of commu­
ting mutually annihilating idempotents and corresponding nilpotents 
{(Pi, qi) I i = 1, ... ,r} can be found such that 

r 

f = ~)Xi + qi)Pi, 
i=l 

where rank(Pi) = ni, and the index of nilpotency index(qi) = mi, for 
i = 1,2, ... , r. FUrthermore, when mi = 1, qi = O. 

Various forms of the spectral decomposition theorem are known, but they 
are certainly under-utilized, perhaps because of the clumsey form in which 
in which they are often presented. In [17, 18], the spectral decomposion 
theorem is used to derive the Jordan canonical form, and other basic canon­
ical forms of a linear operator. 

The spectral decomposition theorem has many different uses. Any func­
tion 9 defined on the spectrum {Xl, X2, ••• , xr } of the operator f, can be 
defined on the operator f, 

r 

g(f) == L g(Xi + qi)Pi 
i=l 

where 
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We say that an operator f is diagonalizable if and only if it has the spectral 
form 

r 

If f is diagonalizable, then a generalized inverse of f is defined by 

2.4.2 Principal correlation 
The idea of a principal correlation d of a linear transformation 
f : N --+ N', where n' = dim(N') ~ dim(N) = n, is basic to the 
construction of both the generalized polar decomposition and singular value 
decomposition of the transformation f. The transformation d : N --+ N' 
is a generalization of a unitary operator and becomes a unitary operator 
when N = N' and rank(f) = n. 

Definition 4 A transformation d is said to be a principal correlation of a 
transformation f if rank ( d) = rank(f) and 

f d* = dj* and d* f = j* d, 

where (dd*)2 = dd*, and (d*d)2 = d*d. 

The problem remains to show that given f : N --+ N', where n ::; n', that 
a principal correlation will always exist. Assuming that it does exists with 
the specified properties, we will solve for d based upon the existence of the 
generalized inverse (2.19). 

If it does exists, then 

fj* = dj*dd* fd* = dj* fd* = (dj*)2 

and 
j* f = d* fd*dj*d = d* f j*d = (d* f)2 

It follows that dj* = y' f f* or dj* f = y' f f* f. Multiplying both sides of 
this last equality on right by the generalized inverse (f* f)inv of j* f gives 
the formula for a principal correlation d of f, 

d = v7F f(f* f)inv {::} d* = (f* f)inv j* J f f* 

The fact that d and d* have the desired properties as given in the definition, 
is a simple excercise in linear algebra. 

In terms of the principal correlation d of f, a generalized inverse may be 
defined by pnv = (d* f)invd*. 
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2·4·3 The bivector of a linear operator 

With the help of the geometric algebra identity (2.5), and (2.12), we can 
express the vector x in the form 

x = {e}X{e} = ({e}!\{e})· x, 

where X{e} are the column vector components of x introduced in (2.9), 

(

Xl 1 ( el . x 1 X2 e2 . X 

X{e} =: ~. = {e} . x. 

Xn en x 

(2.22) 

This is the key idea to the bivector representation of a linear operator. 
Let f E End(N} Then, we have 

f(x) = f({e}x{e}) = {e}Fx{e} = [({e}F)!\{e}]· x = F· x (2.23) 

where the bivector F E 9n,n is defined by 

n n 

F = ({e}F)!\{e} = LLf;jei!\ej = {e}!\(F{e}) 
i=l j=l 

Thus, every linear operator f E End(N) can be represented in the bivector 
form f(x) = F· x, where F = ({e}F)!\{e} is a bivector in the universal 
geometric algebra 9n,n. The components of f(x) = F· x can be directly 
recovered from the bivector F, 

fij = ei . f(ej) = F· (ej!\ei). 

Consider now f,g E End(IN) , f(x) = F . x and g(x) = G· x. The 
commutator [I, g] of the linear operators f and 9 is defined by 

[f,g](x) = (fg - gx)(x) = f(g(x)) - g(f(x)). (2.24) 

The linear operators in End(IN), taken together with the commutator pro­
duct, make up the general Lie algebra gl(IN) of the vector space IN. 

Using the bivector representation of f and g, we find that 

[I, g](x) = F· (G· x) - G· (F· x) = (F x G) . x, (2.25) 

where the commutator product of bivectors F x G is defined by 
F x G = ~[FG -GF], [7, p.14]. Thus the Lie bracket ofthe linear operators 
f and 9 becomes the commutator product of their respective bivectors 
F and G. The bivectors of all of the linear operators in End(IN) , taken 
together with the commutator product, make up the Lie algebra spin(IN). 
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The significance of the Lie algebra spin(JN) will be discussed in the next 
section. We can also express the commutator [j, g] directly in terms of the 
matrices of f and g. Writing J{e} = {e}.1', and g{e} = {e}9, we get 

[j,g]{e} = fg{e} - gJ{e} = {e}(.1'9 - 9.1') = {e}[.1', 9], (2.26) 

where [.1',9] is the commutator product of the matrices .1' and 9. 

2.4.4 Spinor representation 

The set of all linear operators f E End(JN) , such that det f 1= 0, make 
up the general linear group GL(JN) with the group operation being the 
usual composition of linear operators. Expressed in terms of the bivector 
representations (2.23) of f and g, 

f 0 g(x) = F· (G· x) = (F : G) . x 

where the group operation of composition of bivectors F : G, the equivalent 
of multiplying matrices, is defined by 

(F: G) == {F· [G· {e}]}A{e}. 

In terms of the bivector of a linear operator, 

det f 1= ° ~ Af==l F = F AF A ... AF 1= 0, 

but we will not prove this fact. 
Each bivector in F E spin(JN) defines a corresponding one parameter 

group element in gl(JN). Recall that for f E End(N) , a one parameter 
group is defined by the exponential mapping gt(x) = etJ x, where the group 
operation is the composition of linear operator [5, p.1l5]. We have 

gs(gt x ) = (e sJ etJ)x = e(s+t)J x = gs+t X 

for all s, t E JR. Using the bivector representation (2.23), f(x) = F· x, we 
have the following important 

Theorem 2 The one parameter group gtX = etJ x of the skew-symmetric 
transformation f(x) = F· x, can be expressed in the spinor form 

(2.27) 

Proof: 
We will prove the theorem by showing that the terms of the Taylor series 

expansion of both sides of the equation (2.27) are identical at t = 0. 
We begin with 

(2.28) 
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Clearly, for t = 0 we have 

Next, taking the first derivative of both sides of (2.28), we get 

(2.29) 

Setting t = 0 gives the identity f(x) = F· x. 
Taking the derivative of both sides of (2.29), gives 

eff f2x~~Fe~F(F' x)e-~F - ~Fe~F(F' x)e-~F 
2 2 

= e~F[F. (F. x)]e-~F, 

and setting t = 0 gives the identity f2(X) = F· (F· x). Continuing to take 
successive derivatives of (2.28), gives 

eff fk(x)~e~F(Fk : x)e-~F 

where Fk : x is defined recursively by Fl : x = F . x and 

Fk : x = F· (Fk- 1 : x). 

Finally, setting t = 0 in (2.30) gives the identity 

fk(x) = Fk : x 

which completes the proof. 

(2.30) 

(2.31 ) 

Q.E.D. 
The expression (2.31) is interesting because it expresses the powers of 

a linear operator in terms of "powers" of its defining bivector. It is clear 
that each bivector defines a unique skew-symmetric linear operator, and 
conversely, each skew-symmetric linear operator defines a unique bivector, 
(2.23). Thus, the study of the structure of a bivector is determined by 
and uniquely determines the corresponding structure of the corresponding 
linear operator. The the proof of the above theorem is due to Marcel Riesz 
[15]. 

2.5 Pseudo-Euclidean Geometries 

By construction, the real null cone N c IRn,n. Slightly more generally, we 
define the complex null cone Ni, 

Ni = {x+iyl X,y EN} C 9n,n+l, 
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where the pseudoscalar i E Qn,n+I commutes with all the elements of Qn,n+l 
and i 2 = -1. It is natural to work in the geometric algebra Qn,n+l when 
working on the null cone over the complex numbers. We have seen in the 
previous section that the bivectors in Q~ n make up the real Lie algebra 
spin( n, n) when taken with the Lie brack~t operation. A complex bivector 
C E Qn,n+l has the form C = A + iB for A, B E Q~,n' The complex 
bivectors make up the complex Lie algebra spini(n) under the Lie bracket 
operation. 

The null cone N should be thought of as a home base. If we wish to do a 
rotation in a pseudo euclidean space IRp,q where p + q = n, then we project 
the null cone N onto IRp,q, perform the rotation using the bivectors of 
spinor algebra spin(p, q), and then project back to the null cone. Suppose 
that x = {e }X{e} = I:~=1 Xiei E N. The projection Pp,q : N -+ IRp,q is 
defined by 

p n 

x' = Pp,q(x) = Ip,q . (Ip,q . x) = 2: XiO"i + 2: XjTJj E IRp,q 
i=l j=p+l 

where the reciprocal elements are specified by 

I p,q = (2 - V2)n(en - TJn) ... (ep+I - TJp+r)(ep + (1p) ... (e1 + (11). 

The inverse projection P~,q : IRp,q -+ N is defined by 

I I I - ) 
X = Pp,q(x ) = Ip,q . (Ip,q . x , 

where I~,q = e1 e2 ... en and 1 p,q is defined as before, as can be verified by 
using CLICAL or by hand. 

Note that an (p, q)-orthogonal transformation can be performed directly 
on x E N using either its matrix representation, or its corresponding bivec­
tor representation B . x. 

2.6 Affine and Projective Geometries 

Let N E IRn,n be the null cone in IRn,n. It is often very desirable to extend 
the theory of linear transformations to include translations. This is most 
easily accomplished by introducing the concept of the neutral affine n-plane 
Ae (N) as a subset of the (n + 1 )-dimensional null cone Nn+ 1 C IRn+ 1, n+ 1 . 

We define 
Ae(N) = {x + el x EN} C Nn+\ 

where 0 "I- e = en+1 E Nn+1. A slightly different, but equivalent definition 
is 



36 Garret Sobczyk 

where e = en+1 E Nn+1 so that e·e = 1. This second definition is interesting 
because it brings us closer to the definition of the n-dimensional projective 
plane. 

It is well known that the projective n-plane TIn can be considered to be 
the set of all points determined by the directions or rays of nonzero vectors 
y E Nn+1. The projective n-plane TIn can also be defined to be the set of 
all points of the affine plane Ae(N), taken together with idealized points 
at infinity. Each point y E Ae (N) is called a homogeneous representant of 
the corresponding point in TIn. To bring these different viewpoints closer 
together, points in the affine plane Ae(N) can be represented by rays in 
the space 

A~ays(N) = {yl y E Nn+1 and y. en+1 =I- 0 } C Nn+1 (2.32) 

The set of rays A~ays (N) is yet another definition of the neutral affine 
plane, because each ray y E A~ays (N) determines the unique point 

y 
_ E Ae(N), 

y. en +1 

and conversely, each point y E Ae (N) determines a unique ray in A~ays (N). 
Thus, the affine plane of points Ae (N) is equivalent to the affine plane of 
rays A~ays (N). Some of these issues will be further discussed in the next 
chapter. 

2.6.1 Pseudo-affine geometries 

Just as we can move from the null cone N (embedded in neutral pseu­
do euclidean space JRn,n) to any of the pseudo-euclidean spaces JRp,q by 
a projection, by using essentially the same reciprocal projection elements, 
we can move from the neutral affine geometry Ae(N) on the null cone 
Nn+1 to the pseudo-affine (p, q)-plane Ae(JRp,q) C JRP+1,q+1. The under­
lying idea is, once again, the same. Certain kinds of transformations can 
be accomplished more easily in the different pseudo-affine planes. Once the 
transformation is performed, we can return to "home base" by using the 
inverse projection. 

The projection from the affine plane Ae(Nn) to the affine plane Ae(JRp,q) 
is specified Pp,q(x) = Ip,q·(Ip,q·x) where the reciprocal elements are defined 
by 

Ip,q = 0'1 ... O'pTJp+1 ... TJnen+1 and 

I p,q = (2 - V2)nen+1(en - TJn) ... (ep+1 - TJp+d(ep + O'p) ... (e1 + O'd· 
We can project the affine plane Ae(JRp,q) back to the affine plane Ae(Nn) 
by replacing the reciprocal element Ip,q by 

I~,q = e1e2 ... en+1 

and using the same element I p ,q defined above. Using these concepts, we 
will explore the affine geometry of motion in detail in a later chapter. 
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2.6.2 Desargues'theorem 

We will present a simple proof of the classical Desargues' configuration, a 
basic result of Projective Geometry. We do so to emphasize the point that 
even though geometric algebra is endowed with a metric, there is no reason 
why we cannot not use the tools of this structure to give a proof of this 
metric independent result. Indeed, as has been emphasized by Hestenes and 
others [1], all the results of linear algebra can be supplied with a projec­
tive interpretation. Another reason for presenting our proof, is to contrast 
it with the much more complicated proof that Hestenes has given in [9]. 
Whereas, it can be argued that Hestenes' proof is more profound, because it 
expresses the relationship as a duality relationship, it also assumes a much 
greater algebraic sophistication in its derivation. Also, Hestenes' proof is 
only valid when both triangles lie in the projective plane rr2, our proof is 
equally valid when the triangles lie in rr3. 

Recall that points a E rr3 can be identified with nonzero rays a E JR4, 
and two rays a and b in JR4 represent the same point if and only if aAb = o. 
Two distinct points a, b E rr3 define the line aAb =1= 0, c E rr3 lies on this line 
(is colinear) if and only if aAbAc = O. Suppose that a, b, c, dE rr3 such that 
no 3 of them are colinear, but that they are coplanar, aAbAcAd = 0, then 
the meet of the projectives lines aAb and cAd is the unique point d E rr3 

defined by 

d = (aAb) n (cAd) = (aAb) . [(aAbAc) . (cAd)]. 

Refering to Figure 2.1, we are now ready to state and prove 

Theorem 3 (Desargues' Configuration:) Let aI, a2, a3 and bl , b2, b3 be the 
verticies of two triangles in rr3 , and suppose that 

Then CIAc2Ac3 = 0 if and only if there is a point p such that 

alAb1Ap = 0 = a2Ab2Ap = a3Ab3Ap. 

Proof: 
alAb1Ap = 0 
a2Ab2Ap = O} +-* 

a3Ab3Ap = 0 

p = alaI + f3l bl 

{ P = a2a2 + f32b2 
p = a3a3 + f33 b3 

but this in turn implies that 

alaI - a2a2 = -(f31 bl - f32b2) = C3 

a2a2 - a3a3 = -(f32b2 - f33b3) = CI 

a3a3 - a1 a1 = - (f33b3 - 131 bI) = C2 

Taking the sum of the last three equalities gives CI + C2 + C3 = 0, which 
implies that CIAc2Ac3 = o. The other half of the proof follows by duality. 

Q.E.D. 
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p 

FIGURE 2.1. Desargue's Configuration. 

2.6.3 Simpson's theorem for the circle 

We have seen in the last section how geometric algebra can be used to prove 
theorems of Projective Geometry which do not depend on a metric. In this 
section, we will prove Simpson's theorem for the circle which depends upon 
the metric. We will prove this theorem in the affine plane of rays A~ays(IR2), 
defined in (2.32). The operations of meet and join are defined in the affine 
plane of rays in almost the same way that they are in the the projective 
plane, with a slight modification to take into account that e2 = O. 

For example, suppose that we are give two non-collinear points 
a, b E A~ays(IR2), then the line Lab passing through the points a, b E 
A~ays(IR2) is uniquely defined by the 2-direction of the bivector a/\b. Su­
ppose that we are given a third point d E A~ays(IR2), as in Figure 2.2, and 
we are asked to find the point p on the line Lab such that Lab is perpendi­
cular to Lpd. The point p we are looking for is of the form p = d + si (a - b) 
for some s E 1R and lies on the line Lpd which is uniquely defined by the 
bivector 

p/\d = [d + si(a - b)]/\d = s[i(a - b)]/\d. 

But the scalar s =I=- 0 is unimportant since the line is uniquely defined by 
the 2-direction of the bivector p/\d and not by its magnitude. The point 
p E A~ays(IR2) is therefore uniquely specified by 

p = (a/\b) n {[i(a - b)]/\d}, 

where i = 0"10"2 is the bivector tangent to A~ays(IR2). 
Evaluating (2.33) for the point p E A~ays(IR2), we find 

p = (a/\b) n {[i(a - b)]/\d} = {[e/\(a - b)] . d} . (a/\b) 

= [e/\(a - b)]· (d/\a) b - [e/\(a - b)]· (d/\b) a 

= (a - b) . (b - d) a - (a - b) . (a - d) b 

(2.33) 
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The normalized point 

Ph = P~ e = - (a ~ b)2 [(a - b) . (b - d) a - (a - b) . (a - d) b] (2.34) 

will be in the affine plane Ae (IR2 ). 

.....01 

..... r.. c .... 
~--r--.: .... :' 

d 

o b 

FIGURE 2.2. a) Perpendicular Point on the Line b) Simpson's Theo­
rem for the Circle. 

Refering to the Figure 2.2, we are now ready to state and prove 

Theorem 4 (Simpson's theorem for the circle.) Three non-conlinear points 
a, b, c E A~ defines a unique circle. A fourth point d E A~ will lie on this 
circle if and only if all\b1l\cl = 0, where 

al = (Mc) n {[i(b - c)]l\d} 
b1 = (cl\a) n {[i(c - a)]l\d} 
Cl = (al\b) n {[i(a - b)]l\d} 

Proof. Using the above formula above for evaluating the meets, we find that 

al = (b - c) . (d - c) b - (b - c) . (d - b) c 

b1 = (c - a) . (d - a) c - (c - a) . (d - c) a 

and 
Cl = (a - b) . (d - b) a - (a - b) . (d - a) b. 

These points will be collinear if and only if all\b1l\cl = 0, but 

all\b1l\cl = {[(b - c) . (d - c)][(c - a) . (d - a)][(a - b) . (d - b)] 

-[(c - a) . (d - c)][(a - b) . (d - a)][(b - c) . (d - b)]}al\bl\C (2.35) 
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Note that the right-hand side of the last equation only involves differences 
of the points a, b, c, d, and that these differences lies in the tangent plane of 
A~ which is JR2 . Without loss of generality, we can assume that the center 
of the circle is the point e and that the circle has radius p. Using normalized 
points (2.34), it is not difficult to show that 

P2 d2 
ah I\bh I\ch = - (ah I\bh I\ch ) 

1 1 1 4p2 (2.36) 

p2 _ d2 
{:} (b1 - al)l\(cl - bd = 4p2 (b - a)l\(c - a) (2.37) 

Since the points ah , bh , ch are not colinear, ah I\bh I\ch #- 0; it follows that 
a~l\b~l\c~ = 0 if and only if (dh )2 = p2. 

Q.E.D. 
Whereas the identity (2.37) in the affine plane A~ is not trivial, it is 

much easier to prove than the corresponding identity used by (1) in his 
proof of Simpson's theorem in the non-linear horosphere H2 . The issue of 
distance geometry has also been addressed by [4]. It appears correct to say 
that it is always easier to carry out calculations in the affine plane, except 
when conformal transformations are involved. 

2.7 Conformal Transformations 

1 
1 -

0.8 

0.7 

-1 

0.' 

0'6 1~_~ 0.' 
-1 -o.S 

0.' 

FIGURE 2.3. The affine plane A~ and horosphere 7-l~. 

We have already noted that translations can be easily effected in any of 
the affine planes. There is still another transformation of basic interest, the 
conformal transformation which preserves angles between tangent vectors 
[12, 14]. The most familiar example of a conformal transformation is that 
defined by any analytic function in the complex number plane. There are 
also conformal transformations which preserve angles of mappings in the 
pseudo euclidean space JRp,q. In the same way that we linearized a transla­
tion in JRp,q by moving up to the affine plane Ae (N), we can linearize a 
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conformal transformation in IRp,q by moving up still further from the affine 
plane Ae(N) to the (p, q)-horosphere 1t~,q in IRP+l,q+1, (see, Chapter 3). 
The (p, q)-horosphere is most easily defined by 

where e = en+l and e = en+l. 
Let us call the point Xc E 1t~,q, 

(2.38) 

the conformal representant of both the point Xh = X + e E Ae(IRp,q) and 
x E IRp,q. Note that given xc, it is easy to get back Xh by the simple 
projection, 

or to x E IRp,q, 
x = (xc!\e!\e) . (e!\e). 

The expression of the conformal representant Xc in the form (2.38) is inte­
resting because it shows that all points on 1t~,q can be obtained by a simple 
rotation of e in the plane of xe. The affine plane A~ and horosphere 1t~ are 
pictured in Figure 2.3. The horosphere will be discussed in more detail in 
later chapters. 
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Chapter 3 

Realizations of the Conformal 
Group 
Jose Maria Pozo and Garret Sobczyk 

3.1 Introduction 

Perhaps one of the first to consider the problems of projective geometry 
was Leonardo da Vinci (1452-1519). However, projective geometry as a self­
contained discipline was not developed until the work "Traite des propries 
projectives des figure" of the French mathematician Poncelet (1788-1867), 
published in 1822. The extrordinary generality and simplicity of projective 
geometry led the English mathematician Cayley to exclaim: "Projective 
Geometry is all of geometry" [16]. D. Hestenes in [8] showed how the me­
thods of projective geometry, formulated in geometric algebra, can be effec­
'tively used to study basic properties of the conformal group. The purpose 
of this article is to further explore the deep relationships that exist beween 
projective geometry and the conformal group. 

In section 2, we review some of the basic ideas of projective geometry that 
are needed in this work, and relate the projective plane to the affine plane 
by defining what we mean by a point observer in a higher dimensional space. 
In section 3, we define a line observer and show how it leads to the concept 
of a conformal representant, which is closely related to Hestenes' idea of 
a conformal split [8]. We also give the relationship between the conformal 
representant and the more familiar concept of stereographic projection. The 
non-linear model of a pseudoeuclidean space, called the horosphere is briefly 
discussed. The horosphere has recently attracted the attention of many 
workers, see for example, [4, 15, 6]. 

In section 4, we give a simple proof, using only basic concepts from di­
fferential geometry developed in [7], of the deep result relating conformal 
transformations in a pseudo euclidean space to isometries in a pseudoeu­
clidean space of two higher dimensions. The original proof of this striking 
relationship was given by [5]. In section 5, we show that for any dimension 
greater than two, that any isometry on the null cone can be extended to 
all of the pseudoeuclidean space. In section 6, we discuss the interesting 
issue of the conformal compactijication of the horosphere for the various 
signatures of the underlying pseudo euclidean space IRp,q, [15]. 

In the final section of the paper, we show the beautiful relationship that 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering
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exists between Mobius transformations (linear fractional transformations) 
and their 2 x 2 matrix representation over a suitable geometric algebra. 

3.2 Projective Geometry 

Let JRp,q be a real n-dimensional pseudo euclidean vector space over the 
real numbers JR, and suppose that the sums of geometric products of the 
vectors in JRp,q generate the geometric algebra 9p,q == gen{ JRp,q}, where 
n = p + q. A point x E JRp,q is named by the vector x from the origin 
o E JRp,q. Now let A E 9;,q be any nonzero simple k-vector, or k-blade. By 
the k-direction of A in JRp,q, we mean the k-dimensional subspace of JRp,q 
defined by 

When k = 1, we also say that Sa is a line or ray through the origin with 
the direction of a E JRp,q. The notation and geometric algebra identities 
used in this paper are from [1, p.37-43] and [7]. 

It is well-known that points in the projective space rrn - 1 can be identified 
with rays in JRp,q; thus we can write Sa E rrn-l. Likewise, the 2-blade 
A = al\b E 9;,q determines the projective line SA C rrn - 1 which passes 
through the projective points Sa, Sb E rrn-l. In general, each k-direction 
in 9;,q determines a unique (k -I)-plane in rrn-l. Note that two nonzero 
k-blades A, BE 9;,q determine the same k-direction in JRp,q, 

SA = SB iff A = sB for some s E JR*, 

where JR* == JR - {O}. We say that A and Bare representants of the 
same k-direction in 9;,q. This is the strict meaning of the word represen­
tant which will be used throughout this article. Hestenes and Ziegler in [9] 
have shown how the basic definitions and theorems of projective geometry 
can be efficiently formulated and proved in geometric algebra by the rein­
terpretation of the elements of geometric algebra given above. More details 
of the projective interpretation of geometric algebra can be found in that 
article, but they will not be needed here. 

Let us now extend the pseudo euclidean space JRp,q to the higher dimen­
sional pseudo euclidean space JRP+l,q = span{ JRp,q, a} by introducing an 
orthonormal unit vector a with the properties that a2 = 1 and a is ortho­
gonal to (anticommutes with) all the vectors x E JRp,q, i.e., xa = -ax. It 
follows that 9p,q is a subalgebra of 9p+1,q = gen(JRp+1,q). 

By a point observer in JRP+l,q, we mean any nonzero fixed point 
a E JRP+l,q from which each point in x E JRp,q is observed by a ray Sx-a 
passing through the points a and x. Choosing a = -a as our fixed point 
observer, the point x is observed by the ray Sx-a = Sx+a. The vector 
Xh = x + a will be called the homogeneous representant of the ray SXh. The 
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homogeneous representant of a ray Sz is the unique representant y E Sz 
which satisfies the condition that y . (5 = 1. Each vector y E lRP+1,q is a 
representant of some point Xh = x + (5 E lRP+1,q if and only if y . (5 -I- O. 
Conversely, given any representant y E SXh' the homogeneous represen­
tant is obtained from the equation Xh = ...1L. The set of all homogeneous y.(j 
representants 

A~,q = {Xh = X + (51 x E lRp,q} 

is the p + q-dimensional affine hyperplane in lRP+ l ,q which is orthogonal to 
(5 and passes through the point (5. 

In the Figure 3.1, it is visually evident that each point x E lRp,q deter­
mines and is determined by a unique ray SXh in lRP+1,q. Similarly, each 
2-direction SXh!\Yh determines and is determined by a unique line passing 
through the points x and y in lRp,q. In the same way, the plane defined by 
three points x, y and z in lRp,q determines and is determined by the unique 
3-direction SXh!\Yh!\Zh in lRP+1,q, and so on. 

FIGURE 3.1. Points and lines in projective geometry. 

3.3 The Conformal Representant and 
Stereographic Projection 

In the previous section, we have seen how the methods of projective and 
affine geometry can be used in the study of lRp,q by choosing a point 
observer a = -(5 in a larger space lRP+1,q which contains lRp,q as a proper 
subspace. We now introduce the concept of double projective geometry, by 
choosing a second point observer b = -v in a still larger space lRP+1,q+l. 
The signature of the new orthonormal vector v is chosen according to the 
requirements of the application. The appropriate signature for the study of 
conformal transformations is v 2 = -1. Thus, two point observers a = -(5 
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and b = -v in lRP+l,q+l are chosen to satisfy 

a 2 = 1, v 2 = -1, a· v = a· x = v· x = 0, 

for all x E lRp,q. It follows that lRp+l,q+l = span{ lRp,q, a, v}. 
The first observer a sees the second observer b as the unique line deter­

mined by the null direction e = b - a = a - v. Recall that for a simple 
projection, the point observer a sees each point x E lRp,q as the ray Sx-a. 
The double projective line observer e = b - a "sees" each point x E lRp,q as 
the 2-direction 

S(b-a)l\(x-a) = Sel\(x+a). 

Thus the line observer makes each point x E lRp ,q correspond to the unique 
2-direction containing the line observer and intersecting lRp,q at the point 
x. See Figure 3.2. 

FIGURE 3.2. The double projective 2-direction of a point x E 1Rp,q. 

Let 9p+l,q+l = gen(lRp+l,q+l) be the geometric algebra of lRP+1,q+l. 
We will also need the hyperbolic unit bivector u = av, u2 = 1, and the null 
vectors e = ~(a + v) and e = a-v. We have the following simple but 
important relationships 

e2 = e2 = 0, e· e = 1, u = el\e = al\v, u 2 = 1 (3.1) 

The bivector Kx = el\(x + a) of the 2-direction Sel\(x+a) determined by 
x is a unit hyperbolic bivector, 



46 Jose Maria Pozo and Garret Sobczyk 

so it uniquely determines two null directions, one of which is Se;. The second 
null vector Xc of the null direction SXc can be found by factoring the bivector 
Kx into Kx = el\xc. This second null vector is easily found to be 

and is called the conformal representant of the point X E IRp,q. 
The conformal representant of the null ray Sz is characterized as the 

representant y E Sz which satisfies y . e = 1. The set of all null vectors 
o =I- y E IRP+1,q+l make up the null cone IN = {y E IRP+1,q+11 y2 = O}. 
The subset of IN containing all the represent ants y E SXc for any x E IRp,q 
is defined to be the set 

INo = {y E IN I y . e =I- O} = UxElRp,q SXc 

Let us summarize what we have accomplished. Each point x E IRp,q, 
when viewed from the point observer -a, uniquely determines the ray SXh 
of the homogeneous representant Xh = x + a in IRP+l,q. When a second 
point observer -1/ is chosen in the still larger space IRP+l,q+l, then each 
point x E IRp,q determines a unique hyperbolic plane with the direction 
of the hyperbolic unit bivector Kx = el\xh. Factoring Kx into the outer 
product of two null vectors, Kx = el\xc gives the conformal representant 
Xc E INo of the unique null ray SXc E INo/ IR* corresponding to the point 
x E IRp,q. 

The conformal representant Xc = x- !x2e+e E IRP+1,q+l has many nice 
properties. First, it is easily obtained from any other representant; for any 
y E SXc' 

y 
Xc = ----=. y·e 

Second, we can easily recover X from Xc by projecting Xc into IRp,q, 

X = (xcl\u)u. 

Third, the mapping xc: IRp,q Co......+ INo C IRP+1,q+l is continuous and 
infinitely differentiable (indeed, it's third differential vanishes), and it is 
also an isometric embedding. 

Finally, the points X E IRp,q are represented by null rays SXc in 
INo C IRP+l,q+1, that is by the points of INo/ IR*. 

(3.2) 

The set of all conformal representants 1lp,q = c(IRp,q) make up a non­
linear model of the pseudoeuclidean space IRp,q called the pseudo-horosphere. 
The pseudoscalar Ixc of the tangent space to 1lp,q at the point Xc, deter­
mined by (3.2), is given by 

(3.3) 
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where I = al ... ap+1111 ... lIq+1 is the unit pseudoscalar of IRP+1,q+l. The 
horosphere Hn for the Euclidean space IRn was first introduced by F.A. 
Wachter, a student of Gauss, [4], [6] and in chapter 1. The pseudohoros­
phere HP,q is pictured in the Figure 3.3 crossing the circles and is a subset 
of the null cone No. 

-v 

FIGURE 3.3. Conformal representant and stereographic projection. 

The conformal representant Xc can be written in the form 

1 2 1 1 
Xc = X - 2"x e + e = 2" (x + a)e(x + a) = 2"xhexh, (3.4) 

which shows explicitly that Xc is null because it is obtained by a reflection 
and a dilation of the null vector e. Since a dilation does not change the 
direction SXc ' another representant Xr can be defined by the reflexion, 

xr = (x + a)-le(x + a) = (x + a)-la(x + a) + 1I , 

The first term Xs = (x + a)-la(x + a) of the last expression is the usual 
stereographic projection and is defined for the space IRp,q of any signature. 
The representant Xr is the image of the stereographic projection Xs as 
observed by the second point observer -1I, Xr = Xs - (-1I), so clearly 

Evidently, both this representant and the stereographic projection, are not 
defined and are discontinuous when (x + a) does not have an inverse, in 
the hypersurface defined by x 2 = -1. Therefore, they have discontinuities 
only for non-euclidian spaces. 
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3.4 Conformal Transformations and Isometries 

In this section we will show that every conformal transformation in IRp,q 
corresponds to two isometries on the null cone INo in IRP+l,q+1. 

Definition 1 A conformal transformation in IRp,q is any twicely differen­
tiable mapping between two connected open subsets U and V, 

f: U ----+ V, X f-----+ x' = f(x) 

such that the metric changes by only a conformal factor 

>.(x) =I- o. 
If p =I- q then >.(x) > O. In the case p q, there exists the posibility 
that >.(x) < 0, when the conformal transformations belong to two disjoint 
subsets. We will only consider the case when >.(x) > O. 

Recall that INo == {y E IN I y·e =I- O} is the subset of IN that contains all 
of the nonzero points on each of the rays SXc of the conformal represent ants 
xc. Thus, each point y E INo can be coordinized by the parameter t E IR* 
and x E IRp,q, by writing 

1 
Y = y(x, t) = txc = t(x - 2x2e + e). 

Taking differentials, we immediately find 

dy = dtxc + tdxc = dt'JL + t(dx - X· dx e). 
t 

Note that x~ = 0 implies that dxc ' Xc = 0, from which it easily follows with 
the help of (3.2) that 

(dy)2 = t 2(dxc)2 = t 2(dx)2. (3.5) 

Definition 1.1 An isometry F on INo is any twicely differentiable ma­
pping between two connected open subsets Uo and Vo in the relative topology 
of INo, 

F: Uo ----+ VO, y f-----+ y' = F(y) 

which satisfies (dF(y))2 = (dy)2 . 

Using the "coordinates" y(x, t) = txe, any mapping in INo can be ex­
pressed in the form 

y' = F(y) = t'x~ = ¢(x, t)f(x, t)c 

where t' = ¢(x, t) and x~ = f(x, t)e are defined implicitly by F. Using 
(3.5), we obtain the result that y' = F(y) is an isometry if and only if 

t2 
(dy')2 = (dy)2 +-+ t,2(dx')2 = t 2(dx)2 or (df(x, t))2 = ¢(x, t)2 (dx)2. 
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Since f(x, t), x E IRp,q (non degenerate metric), and the right hand side 
of this equation does not contain dt, it follows that f(x, t) = f(x) is inde­
pendent of t. It then follows that ¢(x) = <I>(~,t) is also indendent of t. Thus, 
we can express any isometry y' = F(y) in the form y' = t¢(x)f(x)c, where 
f(x)c E INa is the conformal representant of f(x) E IRp,q. This implies that 
y' = F(y) is an isometry iff 

y' = t¢(x)f(x)c and (df(x))2 = (¢(x))-2(dx)2. 

Therefore, f(x) is a conformal transformation with 

1 A(X) = ¢(x)-2 > 0 ...... ¢(x) = ± ~. 
yA(X) 

Since the functions ¢(x) and f(x) are independent of t and F(y) is li­
near in t, we can always extend the open subsets Uo and Va of INa to t 
independent open subsets 

The domain U is defined by U~ as the preimage of the mapping Sxc' 

U = { x E IRp,q I Sx c u'o'} = {YA~uIY E Uo}. 
c y.e 

To sum up, we have obtained the following results: 

• Any isometry in INa defines a unique conformal transformation in 
IRp,q. 

• Any conformal transformation x' = f (x) in IRp,q defines two unique 
isometries in INa given by 

t 
F(y) = ± ~f(x)c 

yA(X) 

3.5 Isometries in INo 

In this section we will show that, for dimension greater than 2, any isometry 
in INa is the restriction of an isometry in IRP+1,q+1. The inverse of the 
statement is obvious. From the definition of an isometry, (dF( x))2 = (dy)2. 
Since dF(y) and dy are vectors in IRp+1,q+1, dF(y) can be obtained as the 
result of applying a field of orthogonal transformations to dy, 

dF(y) = R(y)dyR(y)* 
-1 

where R(y) E Pinp+1,q+1 = {X = a1a2'" an E gp+1,q+1 I aT = ±1}. 



50 Jose Maria Pozo and Garret Sobczyk 

Since y2 = 0 for y E INo, it follows that 

0= y. dy = txc' (dtxc + tdxc) = t2xc.dxc. 

This implies that Xc . v = 0 for all vectors v in the tangent space of INo 
at the point y. The (n + l)-pseudoscalar Iy of the tangent space to INo 
at the point y can be defined by Iy = I Xc where I is the pseudoscalar of 
lRP+1,q+1, given after equation (3.3). We have 

xc' v = 0 {:} 0 = I(xc . v) = (Ixc)Av = IyAv (3.6) 

The fact that the tangent space has dimension n + 1 and a metrically de­
generate null direction Xc is sufficient to guarantee that the image of dF(y) 
defines a unique orthogonal transformation in lRP+1,q+1, which determines 

(up to a sign) the versor R(y) . Note that R(y)*-1 = ±R(y)t, where R* 
and Rt denote the main involution and the reversion respectively. 

To better manipulate the vectors in the tangent space of the null cone 
INo, let us define the vector eo, with e~ = 1, as the direction of lR orthogonal 
to lRp,q in the chart lRp,q EBlR . In doing so, we have transformed lRp,q EBlR 
into lRP+1,q so that dy(lRP+1,q) becomes the tangent space of No. We will 
also use the notation 

g = a + o:eo with a E lRp,q and g E lRP+1,q. 

Also, let 
a == ax + eOat so that g·a = a·ax + o:at 

With this notation, 

dy(g) = g. a txc = (o:at + a· ax) txc = O:Xc + t(a - a· X e) 

and the expression dF = RdyR*-1 takes the form 

-1 -1 
g·aF == dF(g) = Rdy(g)R* == Rg·ayR* 

Previously, we found that any isometry F(y) = t¢(x)f(x)c in INo is linear 
in the scalar coordinate t. Taking the exterior derivative, we get 

dF(y) = <If-F(y) + td (¢(x)f(x)c) 

or 

R(y)dyR(y) *-1 <If- R (y)yR(y)*-1 *-1 + tR(y )dxcR(y) , 

from which it follows that F(y) = R(y)yR(y)*-1 and R(y) is independent 
of t. Our aim now is to show that R(y) = R(x) = R is also independent 
of X so that F(y) = RyR*-1 will be a global orthogonal transformation in 
INo C lRP+1,q+1. 
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Let us first impose the integrability condition that the second exterior 
differential ddF must vanish. 

0= ddF(g/\!J.) = ~ (g.&(RdY(!J.)R*-l) - !J..&(Rdy(g)R*-l)) 

= ~ (dR(g)dY(!J.)R*-l + Rdy(!J.)dR*-\g) 

-dR(Q)dy(g)R*-l - Rdy(g)dR*-l (Q)) 

= ~R( R-1dR(g)dy(!J.) - dy(!J.)R- 1dR(g) 

- R-1dR(Q)dy(g) + dy(g.)R- 1dR(!J.)) R*-l 

We define f!(g) == 2R-1 dR(g), which is a linear function of just a E IRp,q, 
since R = R(x) is independent of t. It follows that 

f!(eo) = 0, and f!(g) = f!(a). 

Thus, we get 

~R(f!(g) x dy(!J.) - f!(!J.) X dy(g))R*-l = 

~R( f!(g) ·dy(!J.) - f!(!J.) .dy(g)) R*-l 

-1 
Rf!·dyR* (g/\!J.) = 0 =? f!·dy(g/\!J.) = O. (3.7) 

Equation (3.7) can then be separated into two parts, 

f!.d (a/\b) = 0 =? { 2f!·dy(a/\b) = f!(a)·dy(b) - f!(b).dy(a) = 0 
y - - 2f!·dy(a/\eo) = f!(a)·dy(eo) = f!(a)·x c = 0 

(3.8) 

Secondly, we take take the exterior derivative of f! = 2R( x) -1 dR( x), to 
find the integrability condition, 

or 

1 
=? df!(x) + 2f!(a) x f!(b) = O. (3.9) 

Since f!(x, a) . Xc = 0, it follows by (3.6) that it is a bivector in the 
tangent space of INo at the point y = txc. Thus, it can be written in the 
form 
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!l(x, a) = v(x, a)l\xc + B(x, a) 

where v(x, a) is a vector in the tangent space of the horosphere c(JRp,q) , 
v(x,a) E dxc(JRp,q), and B(x,a) is a bivector over the same tangent space 
B(x, a) E dXc(Q;,q) = dxc (JRp,q)l\dxc (JRp,q). From now on, we will not 
write the dependence on the position x: !l(a) == !l(x, a). We will also 
write h(a) == dxc(a). 

Imposing the first equation (3.8) we get 

{ v(a)·h(b) - v(b)·h(a) = 0 
!l(a)·dxc(b) - !l(b)·dxc(a) = 0 '* B(a).h(b) _ B(b).h(a) = 0 '* 

'* B(a)· (h(b)l\h(c)) = B(b)· (h(a)l\h(c)) '* B(a) = 0 Va E JRp,q 

'* !l(a) = v(a)l\xc 
Imposing the second equation (3.9) we get 

1 { dv(al\b)l\xc = 0 
0= d!l + "2!l!l = d!l '* v(a)l\h(b) = v(b)l\h(a) 

This last equation differentiates between the cases when dimension p+q 2: 3 
or when p + q < 3. Wedging both sides of this equation with h( a) gives 

'* v(a)l\h(a)l\h(b) = 0 Va, bE JRp,q} ( ) h() 0 () h() 
>3 ,*val\ a = ,*va =p a 

p+q-

It follows that 

ph(a)l\h(b) = ph(b)l\h(a) '* p = 0 '* v(a) = 0 Va E JRp,q 

Therefore, R(y) is constant 

!l(y) = 0 '* dR(y) = 0 '* R(y) = R = constant 

Thus, F(y) is a global orthogonal transformation in JRP+l,q+l. 

F(y) = RyR* -1 

Since group of isometries in INa is a double covering of the group of 
Conformal transformations Conp,q in JRp,q, and the group Pinp+l,q+l is a 
double covering of the group of orthogonal transformations O(p+ 1, q+ 1), 
it follows that Pinp+l,q+l is a four-fold covering of Conp,q. 

For dimension p + q=2, the equations can also be solved. The resulting 
expressions for F(y) and !l(y) can be found explicitly in terms of analytic 
and antianalytic functions in the case of complex numbers (with ~2 = -1 
for JR2,O and JRO,2, or ~2 = 1 for JRl,l). The expression of !l(y) involves 
the Schwarzian derivative [3, p.47],[10], and its geometric interpretation is 
currently under investigation. 
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3.6 Compactification 

We have seen how the space JRp,q can be isometrically embedded as the 
hypersurface c(JRp,q) in the higher dimensional space JRP+l,q+1 by taking 
the conformal representant c( x) = Xc of each of its points x E JRp,q. 
However, projective geometry is involved since we are identifying points 
x E JRp,q with the corresponding rays SXc (or points) of the projective 
space INo/ JR* c IIp+q+l. Whereas the limit 

1 
lim Xc = lim (x - -x2e + e) 

x---*oo x---+oo 2 

always diverges in JRP+1,q+l, as a limit of directions limx--->oo SXc may well 
exist in IIp+q. The issue of conformal compactification has been discussed 
in [15]. 

Given 0 -j. v E JRp,q, a reasonable condition for a sequence {xn } E JRp,q 
to have a defined direction Voo at infinity is that 

1. 'ff { limn--->oo IX n . bl = 00 for some b E JRp,q } 
1m xn = Voo 1 l' S S 

n---+oo Iffin---+oo Xn == v 

For any function f : JRp,q ----* A, where A is a Haussdorf space, we write 

lim f(x) = wE A 
x---* v (X) 

if limn--->oo f(x n ) = w for any sequence {xn } in JRp,q such that 
limn--->oo Xn = Voo' 

We will now study limx--->voo SXc where Xc = c(x) E JRp+l,q+l is the 
conformal representant. Note that 

X 1--4 Sc(x) == S(xc) and Sc: JRp,q ----* INo/ JR* c IN / JR* C IIP+q+l, 

Our objective is to compactify c(JRp,q) in IN, getting 

S(c(JRp,q)) = INo/JR* = IN/JR* 

by adding all null directions in IN which are not in INo. There are two cases 
to consider, when v2 -j. 0, and when v2 = O. 

Let v, x E JRp,q, and v2 -j. O. We have the two identities 

x . v xl\v x . v xl\v 
x = --v + -v = --(1 + --)v, 

v2 v2 v2 X· V 

and 
2 1 (x.v)2 xl\v 2 

x = -(x· v + xl\v) (x . v - xl\v) = --[1- (-) ]. 
v2 v2 X· v 

It follows from the first identity that limx--->voo x = Voo if and only if 

x· v ----* 00, and xAv ----* 0 x·v 
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These two conditions imply, with the help of the second identity, that 

x 2 1 
lim ---

X---+Voo (x· V)2 v2· 

We now easily find that 

lim Xc = lim (x - ~x2e + e) 
x~v~ X~V~ 2 

. (x· v)2 [x. V + x/\v 1 x2v2 _ v2 ] _ 
= hm --- v-----e+---e =eoo X---+Voo v2 (x·v)2 2(x·v)2 (x·v)2 ' 

so SXc -t Se whenever x -t Voo and v2 =I- o. 
The analysis of the case x -t Voo for nonzero v E JRp,q with v2 = 0 

is more difficult. For such a v, since the pseudoeuclidean space JRp,q is 
nondegenerate, we can always find an v E JRp,q with the property that 
v2 = 0 and v . v = 1. Then, for any x E JRp,q, we have 

[ (x/\v) . V] 
x = (x· v)v + (x/\v) . v = (x· v) v + (x. v) , 

and 
2 ( -)2 [2(X/\V) . (v/\v) [(x/\v) . v]2] X = X·V + . 

X· V (x· v)2 

From the first of these identities, it follows that limx---+voo x = Voo if and 
only if 

x· V -t 00, and (XA':!.jJ -t 0 . 
X·V 

These two conditions imply, with the help of the second identity, that 

x 2 
lim --- =0. 

X---+Voo (x . v)2 

However, 

lim 
X-+Voo x· V 

is indeterminant, as follows by considering the sequence {xn } for 
Xn = nv + ~Pv, where {3 E JR. For this sequence, we find that 

2 
1· xn {3 Im--= . 

n---+oo xn · V 

Indeed, the three possibilities for this limit are 

lim x~ = { !!~' } . 
X---+Voo X·V doesn't exist 



3. Realizations of the Conformal Group 55 

We will now evaluate limx ...... voo SXc for each of the three possibilities 
above. We find 

lim SXc = lim S(x - ~x2e + e) 
X---+VCXl X---+Voo 2 

= hm S X·V v+ _ - ---=e+--= . (_ [ (x!\v)·v 1 x 2 _ e]) 
x ...... v oo x·v 2 x·v X·V 

= lim S v - - x _e = Se respectively. ( 1 2) {SV-!3e } 
X->Voo 2 x·v . 

doesn't eXIt 

Since each point y E IN, such that y ¢:. INo, is of the form y = v + (3e we 
have succeeded in showing that each point in IN which is not in INo is the 
limit point of a sequence {c(xn )} in INo, so 

S(c(JRp,q)) = INo/JR* = IN/JR* 

3.7 Mobius Transformations 

The conformal split of y E JRP+I,q+l is made with respect to the bivector 
U=(J"V, 

y = (yu)u = (y. u + y!\u)u = (y. u + y)u, 

where y == y!\u. It was introduced by Hestenes in [8] in his study of confor­
mal transformations and has the nice property that the relative components 
of y with respect to u commute, that is 

(y. u)(y!\u) = (y!\u)(y· u), 

for all y E JRP+l,q+l as is easily verified. 
The conformal split has the disadvantage that in dealing with the relative 

geometric algebra Gp,q of the relative pseudoeuclidean space 

RP,q = {y = y!\ul y E JRp+l,q+l}, 

new inner and outer products must be introduced in Gp,q that differ from 
the inner and outer products in Gp+l,q+l' For this reason, we choose ins­
tead to deal directly with the sub algebra JRp,q of JRP+l,q+l as discussed in 
Section 2. Recall from Section 2 that 

where JRI,1 

defined by 

JRP+I,q+l = span { JRp,q, (J", v} = JRp,q EB JRI,1 

span{ (J", v}. The geometric algebras of JRp,q and JRI,1 are 
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We now show how any element y E JRp+l,q+l can be represented by a 
2 x 2 matrix over the module Qp,q' To do so, we define the idempotents 
u± = ~ (1 ± u) satisfying u~ = u±, and note the additional defining alge­
braic relationships 

and 
ue = e = -eu, eu = e = -ue, o'u+ = e, 2O'u_ = e. 

Since any y E JRP+l,q+l can be expressed in the form y = x + o:e + Pe for 
0:, f3 E JR, it follows by using these relationships that 

(3.10) 

The 2 x 2 matrix form of y follows directly from (3.10). We have 

(3.11) 

as can be easily verified by employing ordinary matrix multiplication of 
non-commutative elements, and the algebraic relationships given above. 
We define the matrix [y] of y to be the matrix 

[y] = (: ~). 
By the isomorphism proved below, it follows that any element G E Qp+l,q+l, 
being a product and linear combination of vectors in JRP+l,q+l, can be wri­
tten in the form 

for A, B, C, D E Qp,q, and where Z* == a Z a is the main involution in the 
algebra Qp,q. 

The matrix form of G is specified by 

For 

( A- DB:.) ( 0'1 ), Gi = (1 a) u+ C: . 

we calculate the product G1 G2 as follows 
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= ( 1 (T ) ( ~~ ) u+ (! ~) u+ (~~ ~~) ( ~ ) , 

= ( 1 ~~ ~~) ( ~ ), 
which proves the isomorphism [Gl G2] = [Gl ][G2]. Note in the steps above 
that the idempotent u+ commutes with the elements in the algebra 9p ,q' 

This shows that the geometric algebra Gp+l,q+l = Gp,q ® Gl,l can be 
represented by 2 x 2 matrices over the geometric algebra 9p ,q, even through 
the elements in the algebras 91,1 and 9p ,q don't commute. Whereas all 
the rules of matrix multiplication remain valid over the relative algebra 
9p ,q, it must be rememebered that multiplication in 9p ,q is generally non­
commutative. 

We will show how the matrix form, defined above, can be used to define 
the most general conformal transformation in IRp,q as a linear fractional 
transformation of elements of the geometric algebra Gp,q. This beautiful 
result is based on the isomorphism between Pinp+l,q+l and Conf(p, q), 
established in the Section 3. Using the matrix form (3.11) ofthe conformal 
representant Xc given in (3.4), we get 

1 2- ( Xc = X - "2x e + e = 1 ) ( ~ ) 
from which it follows that 

The last equality on the right gives the factored spinor form of Xc and is 
very interesting because we can write any other spinor factorization in the 
form 

[Xc] = ( ~ ) (1 -x) = ( ~ ) H- l H (1 -x) 

= ( ~~~l ) (H -Hx), 

where H is any invertible element in 9p ,q. 

Each element R in the versor group Pin(p+ 1, q+ 1) defines an orthogonal 
transformation y' = Ry(R*)-l for y E IRP+l,q+\ where R = VlV2" 'Vr is 
a product of invertible vectors in IRP+l,q+l, and R* == (-1 Y R is the main 
involution of the element R. We will also need to define Rt by reversing the 
order of the products of vectors in R. Thus, Rt = VrVr-l ... V2Vl. When the 
orthogonal transformation, defined by R, is applied to the conformal re­
presentant Xc of the point X E IRp,q, it induces a conformal transformation 
in IRp,q. Since (3R == RRt = ±1 is a scalar, we can write this induced 
transformation in the form x~ = O!RRxcRt, where the scalar O!R == O!R(X) =f=. 
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o is chosen so that x~ E IRp+1,q+1 is the conformal representant of a co­
rresponding point x' E IRp,q, i. e., x~ . e = 1. 

Taking the matrix representation, we can express this transformation in 
the relative space IRp,q as x' = g(x) in 

Now suppose for R E Pin{p + 1, q + I}, that [R] = (~ ~), so that 

R=(l a)u+(~ ~)(~)=Au++Bu+a+c*u_a+D*u_, 

from which it follows that 

Rt u+D*t + u+a Bt + u_aC*t + u_A t 
D*tu+ + B*tu+a + (C*t)*u_a + (A*t)*u_ 

(1 a) u+ (g:; !:;) ( ~ ). 
This leads us to define the transpose-like operation 

( A B) t = (D*t B*t) 
C D C*t A*t . 

Note that t is the operation of reversal in gp+l,q+l, as well as in the sub­
algebra gP,q. 

Taking advantage of the factored spinor form of xc, we now calculate 

( Xl' ) ( [x~] = 1 -x') 

We can nOW choose H = Cx + D to give the relationships 

and the desired linear fractional form 

x' = g(x) = (Ax + B)(Cx + D)-l, 
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of the conformal transformation x' = g(x) in Qp,q' The linear fraction form, 
or Mobius transformation has been studied by many authors, [13, 11, 12], 
[8], [14],[2], and [15], to name only a few. 

From the factored spinor form [xc] = ( ~ ) (1 -x), we easily cal­

culate 

and 

[xcdxcJ = (~) (1 -x) ( ~x ) (1 -x) 

+ (~) (1 -x) ( ~ ) (0 -dx) 

( ~ ) dx (1 -x). (3.12) 

We will use this last relationship to verify that x' = g(x) is conformal. 
Since [x~] = a:R[R][xc][Rt] , we find that 

[dx~] = da:g[R][xc][Rt] + a:R [R][dxc][Rt], 

and 
[x~dx~] = a:~,BR[R][xcdxc][Rt]. 

We can now easily calculate 

[x~dx~] = a:~,BR[R] ( ~ ) dx (1 -x) [Rt] 

= a:~,BR ( ~~ ~ ~ ) dx ( Dt - xCt Bt - xAt ) 

= a:~,BR ( ~' ) (Cx + D)dx ( Dt - xCt ) ( 1 - xt ) 

A little more work, using (3.12), gives the desired relationship 

dx' = a:~,BR(CX + D)dx(Dt - xCt ) = ,BR(Dt - xCt)-ldx(Cx + D)-I. 

Squaring this last identity gives (dX')2 = a:~ (dX)2, which shows that 
x' = g(x) is conformal. 
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Chapter 4 

Hyperbolic Geometry 

Hongbo Li 

4.1 Introduction 

Hyperbolic geometry is an important branch of mathematics and physics. 
For hyperbolic n-space, there are five important analytic models: the Poincare 
ball model, the Poinca 
re half-space model, the Klein ball model, the hemisphere model and the 
hyperboloid model. The hyperboloid model is defined to be one branch 'Hn 

of the set 
{x E Rn,llx· x = -I}. 

Every model has its advantages and disadvantages. In hyperbolic geome­
try, some typical geometric entities are points, tangent directions, straight 
lines (geodesics), planes, circles, spheres, the distance between two points, 
and the angle between two intersecting lines. Lorentz transformations are 
typical geometric transformations. Compared with other models, the hy­
perboloid model has the following features in representing these geometric 
entities and transformations: 

• The model is isotropic in that at every point of 'Hn the metric of the 
tangent space is the same . 

• A straight line AB is the intersection of 'Hn with the plane determined 
by vectors A, B and the origin of Rn,l. When viewed from the origin, 
it can be identified with a projective line in pn. 
Similarly, an r-plane in 'Hn can be identified with a projective r-plane 
in pn, where 0 ::; r ::; n - l. 

These identifications enable us to study r-planes in the framework of 
linear subspaces of Rn,l. 
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• The tangent direction of a line l at a point A is a vector orthogonal 
to the vector A in the plane determined by l and the origin of nn,l. 

The angle between two intersecting lines is the Euclidean angle bet­
ween their tangent directions at the intersection. This is the conformal 
property of the model. 

• Let A, B be two points, and let d(A, B) be their hyperbolic distance. 
Then A· B = - coshd(A, B). 
This reduces a geometric problem of distances to an algebraic problem 
involving the inner product. 

• A generalized circle is either a hyperbolic circle, or a horocycle, or a 
hypercycle (equidistant curve). A generalized circle is the intersection 
of 'lin with an affine plane in nn,l. 

Similarly, a generalized r-sphere is the intersection of 'lin with an 
affine (r + I)-plane. 

This enables us to study generalized r-spheres in the framework of 
affine (r + I)-planes in nn,l. 

• Hyperbolic isometries are orthogonal transformations in nn,l which 
leave 'lin invariant. In particular, they are all linear transformations. 

• The model is closely related to the model of an n-sphere in nn+l. 

These features make it natural to apply Clifford algebra in hyperbolic 
geometry, just as Clifford algebra was applied to projective geometry (Heste­
nes and Ziegler, 1991) and spherical geometry (Hestenes, 1987). Some ap­
plications of Clifford algebra in hyperbolic 3-space can be found in (Iversen, 
1992). 

In this chapter, we present some of the results of our research on hyper­
bolic geometry with Clifford algebra. In the first section, we discuss our 
work on hyperbolic plane geometry with Clifford algebra (Li, 1997). In the 
second section we deal with hyperbolic conformal geometry with Clifford 
algebra (Li, Hestenes and Rockwood, 1999c). In the third section we dis­
cuss a universal model for conformal geometries of Euclidean, spherical 
and double-hyperbolic spaces (Li, Hestenes and Rockwood, 1999a, b, c). 
We show that with Clifford algebra we can not only reformulate old results 
with improvements and generalizations, but also discover new theorems. 

4.2 Hyperbolic Plane Geometry with Clifford 
Algebra 

We are concerned here with generalized triangles and convex polygons. 
The concept of a generalized triangle is a natural extension of the concept 
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of a hyperbolic triangle. It naturally includes right-angled pentagons and 
right-angled hexagons (Fenchel, 1989). This extension is possible because 
algebraically these geometric objects have the same representation. Convex 
polygons correspond to polygons in Euclidean geometry. Using the spinor 
representation, we are able to extend the classical result on representing 
the area of a triangle in terms of the lengths of its three sides (Greenberg, 
1980), to a nice formula which represents the area of a convex n-polygon 
in terms of the lengths of its sides. 

4.2.1 Generalized triangles 

Definition 4.1. A generalized point is either a point, or a point at infinity 
(end), or an imaginary point (tangent direction). A point at infinity is a one­
dimensional null subspace of nn,l; an imaginary point is a one-dimensional Eu­
clidean subspace of nn,l. 

Algebraically, a point at infinity can be represented by a null vector 
(vector of zero square); an imaginary point can be represented by a unit 
vector (vector of square one), see Figure 4.1. 

e 

o 

FIGURE 4.1. Generalized points: A is a point, e is a point at infinity 
and a is an imaginary point. a~ represents the straight line of 1{2 

normal to a. 

Definition 4.2. A generalized triangle is composed of three non-collinear 
generalized points and the three lines connecting them, assuming that the lines 
exist. 

There are all together 16 different kinds of generalized triangles, as shown 
in Figure 4.2 and Figure 4.3. 

Below we assume that the dimension of the hyperbolic space is 2. 
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Corollary 4.1. Let A, B, C be three generalized points. Then they form a 
generalized triangle if and only if A II B II C =1= 0, (A· B)(B . C)(C . A) =1= 0 and 
the three blades A liB, B II C, A II C are all Minkowski. 

We can easily recognize that (A /\ B II C)~ is the magnitude (Greenberg, 
1980) of triangle ABC, when A, B, C are points. What is the geometric 
meaning of (A· B)(B . C)(C· A)? We shall see that its sign characterizes 
the convexity of generalized triangle ABC. 

Definition 4.3. A generalized triangle is said to be convex if any two of its 
three sides are on the same side of the third side. 

A A A A 

B C B C B C B C 

rj d 
B 

A~ 

D 
C C C 

C C C 

FIGURE 4.2. Convex generalized triangles. 

Theorem 4.1. Let ABC be a generalized triangle. Then it is convex if and 
only if (A . B)(B . C)(C . A) < O. 

In Euclidean plane geometry, we have right-angled triangles. In hyper­
bolic plane geometry we have a similar concept. 

Definition 4.4. A generalized triangle is said to be right-angled if at least 
one of its vertices is a point and the inner angle at a vertex which is a point is 
900 , see Figure 4.4. 
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B B B 

~~~ 
C C C 

FIGURE 4.3. Non-convex generalized triangles. 

A A 

L~~ 
B c B c B c 

A[J d 6 
c c c 

FIGURE 4.4. Right-angled generalized triangles. 

Proposition 4.1. Let ABC be a generalized triangle. Then it is right-angled 
if and only if((A A B) . (B A C)) ((B A C) . (C A A)) ((C A A) . (A A B)) = o. 

The sign of ((A /\ B) . (B /\ C)) ((B /\ C) . (C /\ A)) ((C /\ A) . (A /\ B)) 
characterizes another geometric invariant described below. 

Definition 4.5. A generalized triangle is said to be acute-angled if it is convex 
and its inner angle at every vertex which is a point is acute. 

Theorem 4.2. Let ABC be a generalized triangle. Then it is acute-angled if 
and only if ((A A B) . (B A C)) ((B A C) . (C A A)) ((C A A) . (A A B)) < O. 
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4.2.2 The area and perimeter of a convex n-polygon 

For a convex n-polygon of vertices Al , ... , An, let K A, ... An be its area and 
LA, ... A n be its perimeter. When n = 3 a convex 3-polygon is just a triangle. 

A classical result on representing the area of a triangle in terms of the 
lengths of its three sides is the following (Greenberg, 1980) 

Proposition 4.2. Let ABC be a triangle. Then 

{ 

KABC cos--

. KA

2
BC 

Slll--
2 

l-A-B-B·C-C·A 
2 IA+BIIB+CIIC+AI ' 

IAABACI 

The dual of this result represents the perimeter of a triangle in terms of 
its three inner angles (Fenchel, 1989) 

Proposition 4.3. For a triangle ABC, let 

Then 

(AAB)~ (BAC)~ (CAA)~ 

al = IA A BI ' a2 = IB A CI ' a3 = IC A AI 

{ 

h LABC cos -2-

. h LABC 
SIn -2-

1 + al . a2 + a2 . a3 + a3 . al 
2 lal+a21Ia2+ a31Ia3+ all ' 

lal Aa2Aa31 
= 2 . 

lal + a211 a2 + a311 a3 + all 

We explain (2.1) and (2.2) in terms of hyperbolic trigonometry. From 

we get 

-(A + B) . (A + B) 

2(1 + coshd(A, B)) 

2(1- A· B) 

= 4 cosh2 d(A, B) , 
2 

IA + BI = 2 cosh d(A~ B). 

On the other hand, IA 1\ B 1\ CI is the non-negative square root of 

IA 1\ B 1\ 01 2 = 1- (A· B)2 - (B· 0)2 - (0· A)2 - 2(A· B) (B· 0) (0· A). 

The vectors al, a2, a3 are unit vectors normal to oriented lines A 1\ B, 
B 1\ 0, 01\ A respectively. We have 

where B denotes the inner angle of the triangle at vertex B. So 



4. Hyperbolic Geometry 67 

and la1 /I. a2 /I. a31 is the non-negative square root of 

-1 + (a1 . a2)2 + (a2 . a3)2 + (a3 . ad2 

2(a1 . a2) (a2 . a3) (a3 . a1). 

(2.1) and (2.2) can be generalized to the case of convex n-polygons in?-i2, 
by means of spinor representations of Lorentz transformations (Li, 1997c). 
For example for n = 4, 

KAIA2AaA4 
cos ----;2.---

_ 2 1- L:i<j Ai·A j+(A 1 ·A2) (Aa· A 4)-(Al·Aa) (A2·A4)+(A,·A4 ) (A2·Aa) 
- IA1+A21IA2+AaIIAa+A41IA4+All ' 

l+L:i<j ai·aj+(al·a2) (aa·a4)-(al·aa) (a2·a4)+(al·a4) (a2· aa) 

= 2 la,+a21Ia2+aalla3+a41Ia4+all ' 

sinh LAIA2A3A4 
2 

4.3 Hyperbolic Conformal Geometry with Clifford 
Algebra 

For hyperbolic conformal geometry, we need the double-hyperbolic space, 
which is a double covering of the hyperbolic space. In the Minkowski space 
nn,l, the set 

vn = {x E nn,llx· x = -I} 

is called an n-dimensional double-hyperbolic space. It has two connected 
components, ?-in and _1{n. 

In Euclidean conformal geometry, spheres and planes are conformally 
invariant geometric objects. Similarly, in hyperbolic conformal geometry, 
generalized spheres, and planes and spheres at infinity are conformally in­
variant objects which are called total spheres. A Clifford algebraic model 
for the double-hyperbolic n-space, called the homogeneous model, is intro­
duced to simplify the algebraic representations and manipulations of total 
spheres and hyperbolic conformal transformations. The model in coordi­
nate form can be found in Cecil (1992). 
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Bunches of total spheres, which extend and generalize the concept of 
pencils of spheres and hyperplanes in Euclidean geometry, are classified 
and studied within the homogeneous model. The model also makes possi­
ble the spinor representation of hyperbolic conformal transformations. A 
typical conformal transformation, called a tidal transformation, is given as 
an example of the spinor approach. 

4.3.1 Double-hyperbolic space 

The following concepts will be needed: oriented generalized point, plane, 
sphere at infinity, generalized sphere, total sphere and double-sphere. 

Definition 4.6. An oriented generalized point in vn is either a point, or an 
oriented point at infinity, or an oriented imaginary point. A point is an element 
in V n. An oriented point at infinity is a one-dimensional null half-space of nn,l . 
An oriented imaginary point is a one-dimensional Euclidean half-space of nn,l. 

Definition 4.7. An r-plane of vn is the intersection of vn with an (r + 1)­
space of nn,l. 

In Yn,l, an r-plane is represented by an (r + I)-blade corresponding to 
the (r + I)-space of nn,l. When r = 0, a O-plane is a pair of antipodal 
points; when r = n - 1, an (n - I)-plane is called a hyperplane. 

Definition 4.8. The sphere at infinity of V n is a set of points at infinity. An 
r-sphere at infinity in vn is the intersection of the sphere at infinity with an 
(r + I)-plane of V n . 

Any r-sphere at infinity is the sphere at infinity on an (r + I)-plane in 
V n . When r = 0, a O-sphere at infinity is a pair of points at infinity. 

Definition 4.9. A generalized sphere is either a sphere, or a horosphere, or 
a hypersphere. It is determined by a pair (c,p), where c is a vector in nn,l 
representing an oriented generalized point, called the center of the generalized 
sphere, and p > 0 is called the generalized radius. 

1. When c is a point, the set {p E Vnlp' c = -(1 + pH is the sphere with 
center c and generalized radius p. 

2. When c is an oriented point at infinity, the set {p E V n Ip . c = - p} is the 
horosphere with center c and generalized radius p. 

3. When c is an oriented imaginary point, the set {p E Vnlp· c = -p} is the 
hypersphere with center c and generalized radius p. The hyperplane of vn 
represented by c~ is called the axis of the hypersphere. 
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Definition 4.10. A generalized r-sphere is a generalized sphere in an 
(r+2)-plane, by considering the (r+2)-plane to be an (r+ I)-dimensional double­
hyperbolic space. 

When r = 0, a O-sphere is a pair of points on the same branch, a 
O-horosphere is a point and a point at infinity, and a O-hypersphere is a 
pair of non-antipodal points on different branches. 

Definition 4.11. A total sphere in '[)n refers to a generalized sphere, or a 
hyperplane, or the sphere at infinity. A total r-sphere is an r-dimensional gene­
ralized sphere, plane, or sphere at infinity. 

Definition 4.12. A double-sphere of '[)n is a hypersphere together with its re­
flection with respect to the axis. An r-double-sphere is an r-hypersphere together 
with its reflection with respect to the axis, see Figure 4.5. 

sphere at infinity 

hypersphere hyperplane a 

sphere doublesphere 

FIGURE 4.5. Total spheres and a doublesphere. 

4.3.2 The homogeneous model of a 
double-hyperbolic space 

The set vn is in the Minkowski space nn,l. We now embed nn,l into 
nn+l,l, and embed '[)n into the null cone of nn+l,l to obtain the homoge­
neous model of the double-hyperbolic space. This model makes possible a 
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useful algebraic representation of total spheres and conformal transforma­
tions. 

Let ao be a fixed unit vector in nn+l,l. The space represented by ai) is 
a Minkowski (n + I)-space which we denote by nn,l. The mapping 

X f-> X - ao, for x E V n , (3.3) 

maps the set vn in a one-to-one manner onto the set N::o = {x E nn+l,llx' 
x = 0, x . ao = -I}. Conversely, from the orthogonal decomposition 

(3.4) 

of a vector x E N:a, we get a unique point Pao(x) E V n . (3.4) is called the 
projective split of x with respect to ao. The sphere at infinity of vn is the 
set 

{x E nn+l,llx· x = O,X, ao = O}. (3.5) 

Definition 4.13. The set N::o' together with the decomposition (3.4), defines 
the homogeneous model of the double-hyperbolic space V n . 

Proposition 4.4. Let p, q be two points (null vectors) on the same branch 
of vn in the homogeneous model. Let d(p, q) be the hyperbolic distance between 
the two points. Then 

p. q = 1 - coshd(p, q). 

Corollary 4.2. A point p is on the sphere with center c and generalized radius 
p, if and only if p. c = -po 

In the homogeneous model, the oriented points at infinity of vn are 
represented by the null vectors of ai); the oriented imaginary points of vn 
are represented by the vectors of ai) with positive signature. 

Corollary 4.3. A point p is on the horosphere (or hypersphere) with center c 
and generalized radius p, when p is understood to be the null vector representing 
the point, if and only if p' c = -po 

Comparing the above two corollaries with the definition (4.9), we can see 
clearly the advantage of the unified algebraic representation of thegenera­
Ii zed spheres in the homogeneous model. 

We have the following fundamental theorem for the homogeneous model. 

Theorem 4.3. Let Br-1,1 be a Minkowski r-blade in 9n+l,1, 2:::: r :::: n + 1. 
Then Br-1,1 represents a total (r - 2)-sphere. We have the following cases. 

1. If ao . Br-l,l = 0, then Br-1,1 represents an (r - 2)-sphere at infinity. 
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2. If ao . Br-l,l is Euclidean, then Br-1,1 represents an (r - 2)-sphere. 

3. If ao . Br-1,1 is degenerate, then Br-l,l represents an (r - 2)-horosphere. 

4. If ao . Br-l,l is Minkowski, but ao 1\ Br-l,l i= 0, then Br-l,l represents an 
(r - 2)-hypersphere. 

5. If ao 1\ Br-l,l = 0, then Br-l,l represents an (r - 2)-plane. 

The dual form of the above theorem for r = n + 1 is 

Theorem 4.4. Let s be a vector of positive square in nn+l,l. Then s~ repre­
sents a total sphere. We have the following cases. 

1. If aol\s = 0, then s~ represents the sphere at infinity. The sphere at infinity 
is represented by ao. 

2. If ao 1\ s is Minkowski, then s~ represents a sphere. The sphere with center 
c and generalized radius p is represented by (c - pao)~, where c is the null 
vector representing the center. 

3. If ao 1\ s is degenerate, then s~ represents a horosphere. The horosphere 
with center c and generalized radius p is represented by (c - pao) ~ . 

4. If ao 1\ s is Euclidean, but ao . s i= 0, then s~ represents a hypersphere. 
The hypersphere with center c and generalized radius p is represented by 
(c - pao)~. 

5. If ao . s = 0, then s~ represents a hyperplane. A hyperplane with normal 
direction c is represented by C. 

4·3.3 Bunches of total spheres 

Various collections of total spheres are important geometric objects in hy­
perbolic conformal geometry. 

Definition 4.14. A bunch of total spheres is determined by B I , ... , Br is the 
set of total spheres given by AIBI + ... + ArBr , where the A's are scalars. When 
the meet BI V· .. V Br i= 0, the integer r - 1 is called the dimension of the bunch. 
A pencil is a one-dimensional bunch. 

The dimension of a bunch in Dn is between 1 and n - 1. When 
Bl V ... V Br -:j:. 0, we can use Bl V ... V Br to represent the bunch. 

The concept and classification of bunches are fundamental in the study 
of hyperbolic conformal geometry, because total spheres are invariants of 
conformal transformations. 
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Theorem 4.5. [Classification of bunches] Let B 1 , ... ,Br be total spheres. Let 
An- r+2 = Bl V ... V Br =1= O. 

1. When ao . An - r+2 = 0, the bunch is called a concentric bunch. It is com­
posed of the sphere at infinity and the generalized spheres whose centers 
are in the subspace (ao 1\ An-r+2)~ of nn,l. 

For example when r = 2, if An is Euclidean, it represents the pencil of 
spheres centered at ±(aoI\An)~ IIAnl; if An is null, it represents the pencil 
of horospheres centered at ±(ao 1\ An)~; if An is Minkowski, it represents 
the pencil of hyperspheres centered at ±(ao 1\ An)~, see Figure 4.6. 

concentric spheres 

IIIII 
IIIII 

~ 
~ 

",--/TT\I/ 
~-n\~ 

- / I I \ _ 
I I \ 

I I 

concentric horospheres concentric hyperspheres 

FIGURE 4.6. Concentric pencil on one branch of vn (r = 2). 

2. When ao 1\ An - r +2 = 0, the bunch is called a hyperplane bunch, since it is 
composed of hyperplanes only. There are three cases (see Figure 4.7): 

• When A n - r +2 is Euclidean, the bunch is composed of hyperplanes 
perpendicular to the (r - I)-plane ao 1\ A~-r+2' 

For example, when r = 2, hyperplanes in the bunch are ultra-parallel 
to each other. 

• When An - r +2 is degenerate, the bunch is composed of hyperplanes 
whose representations in the homogeneous model pass through the 
subspace A n - r +2 of nn+l,l. 

For example when r = 2, hyperplanes in the bunch are parallel to 
each other. 

• When An - r +2 is Minkowski, the bunch is composed of hyperplanes 
passing through the (n - r)-plane An - r +2 . 

For example, when r = 2, hyperplanes in the bunch have a common 
(n - 2)-plane. 

3. When An - r +2 is Minkowski, the bunch is called a concurrent bunch, since 
every total sphere in the bunch includes the generalized (n - r )-sphere 
An - r +2 . There are three cases (see Figure 4.8): 
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concurrent parallel ultra-parallel 

FIGURE 4.7. Hyperplane pencil (r = 2). 

• When ao . An - r +2 is Euclidean, An - r +2 represents an (n - r )-sphere. 

• When ao . An - r +2 is degenerate, An - r +2 represents an (n - r)-horo­
sphere. 

• When ao· An - r +2 is Minkowski, A n - r +2 represents an (n - r)-hyper­
sphere, and the bunch is composed only of hyperspheres. In this case, 
ao /\ (ao' An - r +2 ) represents an (n - r)-plane, which is the axis of the 
(n - r)-hypersphere An - r +2 and is the intersection of all axes of the 
hyperspheres in the bunch. 

O-sphere concurrency O-horosphere concurrency 
O-hypersphere concurrency 

on one branch of ql 

FIGURE 4.8. Concurrent pencil (r = 2). 

4. When An-r+2 is degenerate, the bunch is called a tangent bunch. Any two 
non-intersecting total spheres in the bunch are tangent to each other. The 
tangency occurs at a point or a point at infinity, which corresponds to the 
unique one-dimensional null subspace in the space An - r +2 . There are two 
cases (see Figure 4.9): 

• When ao /\ An - r +2 is degenerate, the tangency occurs at a point at 
infinity. 

• When ao /\ A n - r +2 is Minkowski, the tangency occurs at a point. 
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tangency at a point tangency at a point at infinity 

FIGURE 4.9. Tangent pencil (r = 2). 

5. When A n- r+2 is Euclidean, the bunch is called a Poncelet bunch. A;:;'-r+2 
represents a generalized (r - 2)-sphere, called a Poncelet sphere. There are 
three cases (see Figure 4.10): 

• When ao /\ A n- r+2 is Minkowski, A;:;'-r+2 is an (r - 2)-sphere. 

• When ao /\ A n- r+2 is degenerate, A;:;'-r+2 is an (r - 2)-horosphere. 

• When ao /\ A n- r+2 is Euclidean, A;:;'-r+2 is an (r - 2)-hypersphere. 

Poncele! O-sphere Poncele! O-horosphere 
Poncele! O-hypersphere 

on one branch of 'f)n 

FIGURE 4.10. Ponce let pencil (r = 2). 

4.3.4 Conformal transformations 

The following theorem is fundamental in the study of conformal transfor­
mations in the homogeneous model. 

Theorem 4.6. Any conformal transformation in vn can be realized in the 
homogeneous model of vn through the conjugation of a versor in Yn+l,l, and 
vice versa. Two versors realize the same conformal transformation if and only 
they are the same up to a nonzero scalar or pseudoscalar factor. 
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We now use the versor representation to study a conformal transforma­
tion which is similar to dilation in Euclidean space. The tidal transfor­
mation is defined by the versor 1 + Aaoc, where A E R, c E Rn+l,l and 
c· aD = O. 

This transformation leaves the concentric pencil (aoAc)~ invariant. When 
c is a point or an oriented point at infinity, the set {c, -c} is invariant; when 
c is an oriented imaginary point, the hyperplane c~ is not invariant, but 
its sphere at infinity is. 

Assume that p is a fixed point in V n , and is transformed to a point or 
point at infinity q. It can be proved that the parameter A is a function of 
q on line cAp. Below we give some of the properties of this function. 

1. When c is a point (see Figure 4.11), 

(a) and q is any point or point at infinity q on the line cAp, then 
1 

for Cc(q) = -c-1qc, A(-Cc(q)) = A(q)" 

(b) d · . t l' h '() (q - P )2 an q IS any pom on me cAp, t en 1\ q = ( )2 ( )2 . q-c - p-c 

(c) then A(p - e±d(p,c) c) = e±d(p,c). 

FIGURE 4.11. Tidal transformation when c is a point. 

2. When c is an oriented point at infinity (see Figures 4.12 and 4.13), 

(a) 

(b) 

1 1 1 
then for any point q on the line cAp, A(q) = -(- - -). 

2 q·c p·c 
1 

and if q i- c is a point at infinity on line cAp, then A(q) = ---. 
2p· c 

3. When c is an oriented imaginary point (see Figures 4.14, 4.15, and 
Figure 4.16), 
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FIGURE 4.12. >. = >.(q) for Figure 4.11. The arrows indicate the in­
creasing direction. 

FIGURE 4.13. Tidal transformation when c is an oriented point at 
infinity. 

e 

~ 
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2 p.e 

FIGURE 4.14. >. = >.(q) for Figure 4.13. 
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(a) and q any point or point at infinity on the line c 1\ p, then 
1 

'\(-Cc(q)) = - ,\(q)' 

(b) and q any point on the line cl\p, then '\(q) = ( \q2 - ~)2 )2' q-c - p-c 

(c) and p. c < 0, then for d(p, c) the hyperbolic distance from p to 
the intersection t of the line c 1\ p with the hyperplane c~ on the 
branch of vn containing p, we have 

'\(Cc(p)) = - sinhd(p, c), '\(t) = _ tanh d(~ c), 
'\(p + ed(p,c)c) = _ed(p,c) , '\(p + e-d(p,c)c) = e-d(p,c). 

(d) and p . c = 0 and q is on the branch of vn containing p, then 

'\(q) = -Etanh d(~ q), where E is the sign of q. c. 

FIGURE 4.15. Tidal transformation when c is an oriented imaginary 
point. 

4.4 A Universal Model for the Conformal 
Geometries of the Euclidean, Spherical, 
and Double-Hyperbolic Spaces 

Here we introduce the homogeneous models for Euclidean and spherical 
spaces, and talk about the connections among these three homogeneous 
models. Hyperbolic, Euclidean and spherical geometries can be unified in 
such a way that we need only one Minkowski space, where null vectors 
represent points or points at infinity in any of the three geometric spaces, 
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FIGURE 4.16 . .>. = .>.(q) for Figure 4.15. The arrows indicate its increase 
direction. 

and where Minkowski subs paces represent spheres and planes. Further­
more, any theorem in one of the three geometries, when represented in the 
homogeneous model, is also a theorem in each of the other two geometries. 

4.4.1 The homogeneous model of the Euclidean space 

Let Po be a fixed point in V n. Then in nn+l,l, the blade (Po A ao)~ repre­
sents a Euclidean n-space which we denote by nn. Let 

Po - ao 
e = Po + ao, eo = 2 . (4.6) 

Both e and eo are null vectors and e . eo = -1. 
The mapping 

x·x 
X f-+ X + eo + -2-e, for x E nn, (4.7) 

maps nn in a one-to-one manner onto the set 
N:: = {x E nn+l,llx, x = O,x· e = -I}. Conversely, from the orthogonal 
decomposition 

(4.8) 

of the vector x E N::, we get the unique point p(poAao)- (x) E nn. Equation 
(4.8) is the conformal split of x with respect to Po A ao = eo A e. 

Definition 4.15. The set N:, together with the decomposition (4.8), defines 
the homogeneous model of the Euclidean space nn. 

In the homogeneous model, e represents a point at infinity which is the 
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one-point compactification of the Euclidean space. The point eo represents 
the zero vector in Rn, and is called the origin. 

Proposition 4.5. Let u, v be two points in nn represented by null vectors in 
the homogeneous model. Let d( u, v) be the Euclidean distance between the two 
points. Then 

d2 (u, v) 
u·v=----. 

2 

Theorem 4.7. Let Br-1,1 be a Minkowski r-blade in 9n+l,1, 2 :::; r :::; n + 1. 
Then Br-1,1 represents an (r - 2)-dimensional sphere or plane. If e /\ Br-1,1 = 0, 
Br-1,1 represents an (r - 2)-plane, otherwise it represents an (r - 2)-sphere. 

When r = n + I, the dual form of the above theorem is 

Theorem 4.8. Let s be a vector of positive square in nn+l,l . Then s~ 
represents a sphere or a hyperplane. 

1. If e . s = 0, then s~ represents a hyperplane. The hyperplane normal to 
unit vector n and has the signed distance 8 from the origin in the direction 
of n, and is represented by (n + 8e)~. 

2. If e . solO, then s~ represents a sphere. The sphere with center c and 
radius p is represented by (c - ep2 /2)~. 

The stereographic projection FDR of V n , with pole at -Po, to R n maps 
vn together with its sphere at infinity to Rn together with its point at 
infinity. It changes the hyperboloid model 1-{n into the Poincare ball model. 
In the homogeneous models of vn and R n, FDR is just a rescaling of null 
vectors, taking -x/(x· ao) into -x/(x· e). 

Note that we could have chosen e and eo such that eo . e = A for any 
fixed real number, and define N;:;' by the condition that X· e = A. It is only 
a matter of convention that we choose A = -1. 

4.4.2 The homogeneous model of the spherical space 

Let Po be a fixed point in V n . Then Po represents a Euclidean 
(n+ I)-space which we denote by Rn+l. The unit sphere of the space Rn+l 
is the spherical n-space sn. 

The mapping 
X f-+ X + Po, for x E sn, (4.9) 

maps the set sn in a one-to-one manner onto the set N;:;' = {x E Rn+l,llx. 
x = 0, x . Po = -I}. Conversely, from the orthogonal decomposition 

(4.10) 
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of the vector x E N!:o, we get the unique point Ppo (x) E sn. Equations 
(4.10) gives the projective split of x with respect to Po. 

Definition 4.16. The set N:a, together with the decomposition (4.10), defines 
the homogeneous model of the spherical space sn. 

Proposition 4.6. Let a, b be two points in sn represented by null vectors in 
the homogeneous model. Let d( a, b) be the spherical distance between the two 
points. Then 

a· b = cosd(a,b) - 1. 

Theorem 4.9. Let Br-1,1 be a Minkowski r-blade in 9n+l,1, 2 ::; r ::; n + 1. 
Then Br-1,1 represents an (r - 2)-dimensional sphere or plane. If po 1\ Br-1,1 = 0, 
Br-1,1 represents an (r - 2)-plane, otherwise it represents an (r - 2)-sphere. 

When r = n + 1, the dual form of the above theorem is 

Theorem 4.10. Let s be a vector of positive square in nn+l,l . Then s~ 

represents a sphere or hyperplane. 

1. If Po . s = 0, then s~ represents a hyperplane. The hyperplane normal to 
the vector c is represented by c~. 

2. If Po . s i= 0, then s~ represents a sphere. The sphere with center c and 
radius p is represented by (c + po cos p) ~ . 

The stereographic projection PSR of sn, with the pole ao, to nn maps 
sn to nn together with its point at infinity. Let 

Po - ao 
e = Po + aD, eo = 2 (4.11) 

In the homogeneous models of sn and nn, stereographic projection is just 
a rescaling of null vectors taking -x/(x . Po) to -x/(x· e). 

The composition of the inverse of the mapping PSR with the mapping 
PDR is denoted by PDS . It changes the hyperboloid model of Hn into the 
hemisphere model. In the homogeneous model this is just a rescaling of null 
vectors. 

Let PSR denote the stereographic projection of sn, with the pole ao, 
to nn where bo is a point in sn normal to aD. This projection changes 
the hemisphere model of Hn into the Poincare half-space model. In the 
homogeneous model, this is just another rescaling of null vectors. 

From the above discussion, we see that the hyperboloid, Poincare ball, 
Poincare half-space and hemisphere models are all unified in the homoge­
neous model. Changing from one model to another is just a rescaling of 
null vectors. 
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The derivation of the Poincare ball model of 1-{n from the hyperboloid 
model, is realized by the diagram 

inverse of Pa~ rescaling p( Aa)~ 
1-{n - - - - - ~ N'/:o - - - ~ N: -p~ ~ Poincare ball model. 

If we go from N'/:o to Rn by p(pol\ao)~ directly, we get the Klein ball model: 

inverse of Pa~ P(poAao)~ 
1-{n - - - - - ~ Nn - - ~ Klein ball model. ao 

Since N::a is not a homogeneous model of Rn, the Klein ball model fails to 
be conformal. 

4·4·3 A universal model for three geometries 

As was mentioned before, there are five important analytic models for hy­
perbolic n-space. The relations between these models (with the exception 
of the Klein ball model), together with Euclidean and spherical n-spaces, 
are realized by stereographic projections. Since the three geometric spaces 
correspond to the same null cone of Rn+1,1 and the stereographic projec­
tions are just rescalings of null vectors, the three geometric spaces, together 
with four of the five models of hyperbolic geometry, can be unified in one 
Minkowski space, where null vectors represent points or points at infinity, 
and where Minkowski subspaces represent spheres and planes in any of the 
three geometries. 

If a theorem in one of the three geometries is represented in the homo­
geneous model, it will be just as valid in all the three other geometries, 
because the three geometries are just different geometric interpretations of 
the same null vectors and the same Minkowski subspaces. Thus, a single 
theorem in one geometry generates many "new" theorems in the other geo­
metries. We will see below that the homogeneous model also gives many 
new interpretations of a given theorem in the same geometry. 

We illustrate this with Simson's Theorem in plane geometry (see Figure 
4.17). 

Theorem 4.11. [Simson's Theorem] Let ABG be a triangle, D be a point on 
the circumscribed circle of the triangle. Draw perpendicular lines from D to the 
three sides AB, BG, GA of triangle ABG. Let G l , AI, Bl be intersections of the 
perpendicular lines with the corresponding sides. Then AI, B l , Gl are collinear. 

When A,B,C,D,Al,Bl,C1 are understood to be null vectors represen-
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Al 

/ HI 

A CI 

FIGURE 4.17. Simson's Theorem. 

ting points in the plane, the hypothesis can be expressed as 

A/\B/\C/\D=O 
e/\A/\B/\C-/=O 
e /\ Al /\ B /\ C = 0 
(e /\ D /\ Ad· (e /\ B /\ C) = 0 
e /\ A /\ Bl /\ C = 0 
(e /\ D /\ B l ) . (e /\ C /\ A) = 0 
e /\ A /\ B /\ C l = 0 
(e /\ D /\ Cd· (e /\ A /\ B) = 0 

A, B, C, D are on the same circle 
ABC is a triangle 
Al is on line BC 
Lines DAI and BC are perpendicular 
Bl is on line CA 
Lines DBI and CA are perpendicular 
C l is on line AB 
Lines DCl and AB are perpendicular 

The conclusion can be expressed as 

Both the hypothesis and the conclusion are invariant under the rescaling 
of null vectors, so this theorem is valid for all three geometries, and is 
free of the requirement that A,B,C,D,Al,Bl,Cl represent points and 
e represents the point at infinity of nn. Various "new" theorems can be 
produced simply by interpreting the algebraic equalities and inequalities in 
the hypothesis and conclusion of the theorem differently. 

For example, let us interchange the roles played by D and e in Euclidean 
geometry. The new constraints become 

e/\A/\B/\C=O 
A/\B/\C/\D-/=O 

Al /\ B /\ C /\ D = 0 
(e /\ D /\ AI) . (D /\ B /\ C) = 0 
A /\ Bl /\ C /\ D = 0 
(e /\ D /\ Bd . (D /\ C /\ A) = 0 
A /\ B /\ C l /\ D = 0 
(e /\ D /\ Cd· (D /\ A /\ B) = 0 

The conclusion becomes 

A, B, C are collinear 
A, B, C, D are neither collinear 
nor on the same circle 
AI, B, C, D are on the same circle 
line DAl , circle DBC are perpendicular 
A, B l , C, D are on the same circle 
line DB 1, circle DC A are perpendicular 
A, B, C 1, D are on the same circle 
line DC 1, circle DAB are perpendicular 
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Using the facts that a line is "perpendicular" to a circle if and only if 
it passes through the center of the circle, and that any circular angle on 
a diameter is a right angle, we can restate the above "new" theorem as 
follows: 

Theorem 4.12. Let DAB be a triangle, C be a point on line AB (see Figure 
4.18). Let AlB be perpendicular to DB, A1C be perpendicular to CD, and AB1 
be perpendicular to AD. Let C 1 be the intersection of lines AB1, and A1 B. Then 
D, A 1 , B 1 , C 1 are on the same circle. 

FIGURE 4.18. Theorem 4.12. 

We can get another theorem by interchanging the roles of A, e. The new 
constraints become 

eI\BI\CI\D=O 
eI\AI\BI\C-=!-O 
A 1\ Al 1\ B 1\ C = 0 
(A 1\ D 1\ AI) . (A 1\ B 1\ C) = 0 
e 1\ A 1\ Bl 1\ C = 0 
(A 1\ D 1\ B 1 ) . (e 1\ C 1\ A) = 0 
e 1\ A 1\ B 1\ C1 = 0 
(A 1\ D 1\ C1 ) . (e 1\ A 1\ B) = 0 

B, C, D are collinear 
A, B, C is a triangle 
AI, A, B, C are collinear 
circles ADA1 , ABC are perpendicular 
A, B 1 , C are collinear 
line CA, circle ADBI are perpendicular 
A, B, C1 are collinear 
line AB, circle ADC1 are perpendicular 

For these constraints the conclusion becomes 

Using the fact that two circles are "perpendicular" if and only if the 
tangent lines to either one of circles at the points of intersection meet at 
the center of the other circle, we can restate the above "new" theorem as 
follows: 

Theorem 4.13. Let ABC be a triangle, D be a point on line BC (see Figure 
4.19). Let EF be the perpendicular bisector ofline segment AD, which intersects 
lines AB and AC at points E and F respectively. Let C1, B1 be the symmetric 
points of A with respect to the points E, F respectively. Let AG be the tangent 
line of the circle ABC at A, which intersects EF at G. Let A1G be the other 
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tangent line of circle ABC passing through G, and Al the point of tangency. 
Then A, AI, B I , CI are on the same circle. 

A 

B 

FIGURE 4.19. Theorem 4.13. 

There are many new corresponding theorems in spherical geometry as 
well. We consider only one of them here. Let e = -D. The "new" theorem 
is the following: 

Theorem 4.14. Let A, B, C, D be points on the same circle in the sphere 
(see Figure 4.20). Let AI, B I , CI be the symmetric points of the point -D with 
respect to the centers of circles (-D)BC, (-D)CA, (-D)AB respectively. Then 
- D, AI, B I , CI are on the same circle. 

D 

-D 

FIGURE 4.20. Theorem 4.14. 

There are also various theorems in hyperbolic geometry that are equi­
valent to Simson's theorem. We present one of them here. Let A, B, C, D 
be points on the same branch of 1)2, e = - D. In the hyperbolic plane, a 
generalized sphere is usually called a generalized circle, and a hypersphere 
is usually called a hypercycle. 
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Theorem 4.15. Let A, B, C, D be points in the hyperbolic plane Te, and 
let them be on the same generalized circle. Let LA, LB, Lc be the axes of the 
hypercycles (-D)BC, (-D)CA, (-D)AB respectively. Let AI, Bl, C l be the 
symmetric points of D with respect to LA, LB, Lc respectively. Then the points 
- D, AI, B l , C l are on the same hypercycle. 

4.5 Conclusion 

Clifford algebra appears to play an important role in the study of hyperbolic 
geometry. It not only simplifies represention and computation, but also 
contributes to discovering and proving new theorems. 
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Chapter 5 

Geometric Reasoning With 
Geometric Algebra 
Dongming Wang 

5.1 Introduction 

Geometric (Clifford) algebra was motivated by geometric considerations 
and provides a comprehensive algebraic formalism for the expression of 
geometric ideas [11). Recent research has shown that this formalism may 
be effectively used in algebraic approaches for automated geometric reason­
ing [7, 12, 14, 20, 24). Starting with an introduction to Clifford algebra for 
n-dimensional Euclidean geometry, this chapter is mainly concerned with 
the automatic proving of theorems in geometry and identities in Clifford 
algebra. We explain how to express geometric concepts and relations and 
how to formulate geometric problems in the language of Clifford algebra. 
Several examples are given to illustrate a simple mechanism for deriving 
Clifford algebraic representations of constructed points, or other geometric 
objects, and how the representations may be used for proving theorems au­
tomatically. With explicit representations of geometric objects and simple 
substitutions, proving a theorem is reduced finally to verifying whether a 
Clifford algebraic expression is equal to 0. The latter is accomplished in 
our case by the techniques of term-rewriting for any fixed n. 

We provide a short review of several coordinate-free approaches for auto­
mated theorem proving in geometry, including the work of White, Richter­
Gebert, and Crapo at the level of bracket algebra [22, 17, 4), Mourrain's 
technique of deriving rewrite rules in Grassmann-Cayley algebra [15, 16], 
Li and Cheng's general approach of combining Clifford algebraic triangu­
larization and reduction with Wu's coordinate-based method [14, 12), our 
study on proving theorems of constructive type using Clifford algebra and 
term-rewriting [20, 7, 1), and Havel's work [10) with Gibbs' vector algebra. 

The above-mentioned approaches have been successful in proving a num­
ber of non-trivial geometric theorems. Clifford algebra approaches have the 
advantage of performing symbolic computations directly with geometric 
objects, so geometric meanings of the involved algebraic expressions may 
be easily interpreted. Geometric interpretation of bracket polynomials is 
possible by means of the Cayley factorization [22], but it is much more 
difficult to find the geometric interpretations of polynomials using coordi-
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nates. On the other hand, coordinate-based methods such as Wu's [23] are 
computationally more powerful and complete. To evaluate expressions in 
Clifford algebra, one cannot avoid the confluence problem and thus coor­
dinates or pseudo-coordinates [1] may still have to be used. Therefore, 
coordinate-free techniques, though meriting attention for their geometric 
aspect, are unlikely to replace coordinate-based approaches for geometric 
problem solving. 

The rewrite system that we have developed is independent of geometry 
and can be used or extended to prove all identities involving a definite 
number of (multi)vectors in any Clifford algebra of fixed dimension. We 
would also like to prove identities which involve an arbitrary number of 
(multi)vectors in a Clifford algebra of arbitrary dimension. By arbitrary we 
mean, for example, the outer product of r vectors and the Clifford algebra 
over an n-dimensional vector space, where rand n are arbitrary. We shall 
call such identities indefinite identities. This chapter initiates our investi­
gation on proving indefinite identities in Clifford algebra automatically. We 
report an experiment in Maple V, which demonstrates the feasibility and 
effectiveness of proving indefinite identities on a computer. The program 
the author has written is based on the induction principle with heuristic 
simplification and was able to produce machine proofs for several non­
trivial examples. The second part of this chapter is devoted to describing 
this work. 

5.2 Clifford Algebra for Euclidean Geometry 

Consider an n-dimensional Euclidean geometry IE n over the field R of real 
numbers. By taking a point 0 in IE n as the zero vector 0, any other point 
P in IE n may be represented by the vector P from 0 to P. We shall also 
call the vector P a point and make no distinction between P and P unless 
necessary. 

For any two points P and Q, the line PQ connecting P and Q may be 
represented by the vector Q - P. In this way, PQ and Q - P represent the 
same oriented line. 

Let a and b be any two vectors. The geometric meaning of a + band 
a - b is clear as in vector algebra. The outer product a 1\ b is a simple 
bivector, which represents the oriented parallelogram spanned by a and b. 
The outer product is anti-commutative: al\ b = -bl\a. Similarly, the outer 
product 

r 

1\ ai = al 1\ ... 1\ a r 

i=l 

of r vectors is a simple r-vector representing the r-dimensional oriented 
simplex spanned by al, ... , a r for 3 :::; r :::; n. For any scalar>' and simple 
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r-vector A, 
,\ 1\ A = A 1\ ,\ = '\A. 

An r-vector is a linear combination of simple r-vectors (with coefficients in 
R) for 0 :S r :S n. The outer product of an r-vector A and an s-vector B 

is an (r + s)-vector if r + s :S n, and 0 otherwise. 
A multivector is a linear combination of finitely many vectors, bivec­

tors, ... , n-vectors, with coefficients in R. Thus any multivector v may be 
written in the form 

n 

where {VIi is an i-vector, called the i-vector part of v. The multivector v is 
said to be homogeneous of grade r if it has only the r-vector part for some 
o :S r :S n. The magnitude of v is defined by 

n 

Ivl := l(vIol + L JI{V/i . {vIii· 
i=l 

The inner product of two vectors a and b is a scalar: 

a· b = lallbl cosO, 

where () denotes the angle formed by a and b. The inner product can be 
extended to any simple r-vector A and s-vector B as follows: 

._ { ~A. B) 1\ b - (-I)S(A· b)B 
A· B .- A. (a. B) 

(_I)(r-l)sB. A 

if r = 0, 
if 1 = r < s, 

ifl<r:Ss, 

if r > s, 

(2.1) 

where a and b are vectors, A is a simple (r - 1 )-vector such that A 1\ a = A 
for r > 1, and B is a simple (s - I)-vector such that B 1\ b = B for s > l. 
This recursive definition will be applied extensively in the inductive proof 
of indefinite identities (see Sections 5.4.1 and 5.4.2). 

The geometric product Av of a simple r-vector A and a multivector v is 
defined as 

Al\v+A·v if r :S 1, 

Av:= A{[a- (~~1A] v} if r = 2, (2.2) 

A{[a- (a~~~.A] v} if r > 2, 
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where a is a vector and A a simple (r - I)-vector such that A 1\ a = A for 
r> l. 

Moreover, for any scalars a, (3 and multivectors u, v, w, x, one has the 
following associativity, distributivity and linearity rules: 

u 1\ (v 1\ w) = (u 1\ v) 1\ w, u(vw) = (uv)w; 
w 1\ (au + (3v) = aw 1\ u + (3w 1\ v, 
W· (au + (3v) = aw· u + (3w· v. 

w(au + (3v)x = awux + (3wvx, 

Hence, the definitions of the outer, inner, and geometric products can be 
extended by using these rules to any multivectors. 

The inner product is not associative, but for any r-vector A, s-vector B, 
and t-vector C, we have 

{
(A, B) . C 

A· (B· C) = (A 1\ B) . C 
if r + t ::; s, 

if r, s -=J. 0 and r + s ::; t. 
(2.3) 

The above rules are not independent, and from them other rules may be 
derived. 

All the multivectors under the addition and geometric multiplication 
form an associative algebra of dimension 2n. It is called a Clifford algebra 
or geometric algebra (of positive-definite signature) [11] and may be used to 
model n-dimensional Euclidean geometry. There are other Clifford algebra 
models for Euclidean and other geometries, but this paper is concerned 
only with Euclidean geometry and this Clifford algebra model. 

Two (multi)vectors are said to be orthogonal if their inner product is O. 
Let II denote the outer product of n pairwise orthogonal unit vectors in 
JE n; II is called a pseudoscalar. 

For any r-vector V, we define V~, the dual of V, as follows: 

{ 

n(n-l) 
~ (-I)-2-VII ifr=O, 

V .-
.- (-1) n(n2-') V·II otherwise. 

This definition extends naturally to an arbitrary multivector v: 

n 

v~ := 2:(v)i. 
i=O 

We shall prove that II~ = l. 
Let us complete our introduction to Clifford algebra by making a few 

remarks on the soundness of the recursive definitions (2.1) and (2.2). In 
(2.1), the case 1 = r < s may be derived from the identity (1.41a) in [11] 
and the relation 

bB = b 1\ B + b . B, 
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and the case 1 < r S s follows from the second rule in (2.3). The other two 
cases in (2.1) and the cases for r S 2 in (2.2) may be easily verified. For 
the non-trivial case r > 2 in (2.2), we note that 

[(a· A) . A] A A = 0 and (A· A) . A = 0, 

because A is a simple r-vector, a· A is an (r - 2)-vector, and both (a· A) . A 
and A . A are vectors (see [11, p. 20]). Moreover, it follows from (1.43) in 
[11] that 

A· A = (A. A)a - (a· A) . A for r > 2. 

The equality in (2.2) for r > 2 is thus established by (1.41c) and (1.41d) 
from [11]. In fact, our definition of the geometric product in this case pro­
vides a recursive treatment of the orthogonalization process. 

We write Clifford operators, identities, expressions, ... for operators, 
identities, expressions, etc. in Clifford algebra. The reader is referred to the 
fundamental text [11] by Hestenes and Sobczyk for other important Clifford 
operators and a variety of Clifford identities relating these operators. 

The Clifford algebra introduced above, together with its operators, pro­
vides a rich language for expressing concepts and relations in Euclidean 
geometry, and for automated theorem proving. For example: 

• The distance between two points A and B is equal to IA - BI; the 
area of a triangle ABC is I(A - B) A (A - C)I/2. 

• The midpoint of A and B is (A + B)/2; the centroid of a triangle 
ABC is (A + B + C)/3. 

• Two lines AB and CD are parallel iff (A - B) A (C - D) = 0; they 
are perpendicular iff (A - B) . (C - D) = O. 

• Three points A, B, C are collinear iff (A - B) A (A - C) = 0, iff there 
exists a scalar >. such that C = >'A + (1 - >.)B. 

• Point P lies on a circle centered at 0 with radius r iff 

(P - 0) . (P - 0) = r2. 

5.3 Geometric Theorem Proving 

5.3.1 Deriving representations of geometric objects 

One contribution of Li and Cheng [14, 12] to Clifford-algebra-based geo­
metric reasoning is a set of solution formulas for systems of multi(vector) 
equations. These formulas are independent of any geometric knowledge and 
may be used to triangularize Clifford expressions and to establish certain 
representations of geometric objects. Here we present a different principle 
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to derive formulas representing geometric objects. This simple principle 
makes use of geometric knowledge, and may be applied whenever a repre­
sentation needs to be derived. 

The idea is to take some basic Clifford representations of geometric rela­
tions in which parameters may be used. For any geometric object (typically 
a point) that may be constrained by several such relations, we proceed to 
eliminate the parameters in order to obtain an explicit representation for 
the object. We illustrate this idea by the following examples. 

Example 5.1. 

Let A, B, C, D be any four points in the plane. Represent the intersection 
point X of AB and CD in terms of A, B, C, D. 

Since X is the intersection of AB and CD, X lies on AB. Thus there 
exists a scalar A such that 

X = AA + (1 - A)B. (3.4) 

On the other hand, X also lies on line CD, so 

(D - C) 1\ [AA + (1- A)B - C] = (D - C) 1\ (X - C) = o. 
The expression on the left-hand side may be simplified to gA + f with 

9 = D 1\ A - D 1\ B - C 1\ A + C 1\ B = (D - C) 1\ (A - B), 
f = (D - C) 1\ B - D 1\ C. 

Therefore, A may be formally solved, A = - f /g. However, the meaning of 
the formal expression f / 9 is not clear because one does not know what a 
fraction of two bivectors means. For this reason, we take the dual of 

gA + f: g~ A + f~ = o. 

It follows that A = - f~ / g~. By substituting this solution into (3.4), with 
simplification and arrangement, we find 

X = A (C - B) . D~ + A B . C~ + B (A - C) . D~ - B A . C~ 
g~ 

which is equivalent to int(A, B, C, D) given in [20, 21]. 

Example 5.2. 

Let C be the center of a circle, A a point on the circle and B any other 
point in the plane. Find the intersection point X of AB and the circle in 
terms of A, B, C. 

Since X lies on AB, there exists a scalar A such that 

X = AA + (1 - A)B. (3.5) 



5. Geometric Reasoning With Geometric Algebra 95 

Since X also lies on the circle centered at C and passing through A, we 
have 

(A - C) . (A - C) = (X - C) . (X - C). (3.6) 

It follows that 

(A -l)[(A - B)· (A - B)A + A· A - B· B - 2C· (A - B)] = o. 

The solution A = 1 corresponds to the trivial case X = A. The other 
intersection point X is obtained by substituting the non-trivial solution of 
A into (3.5): 

X inLcir( C, A, B) (3.7) 

[2C· (A-B) -A.A+B·B]A+2(A-B)· (A-C)B 
(A - B) . (A - B) 

provided that A and B do not coincide. 

Example 5.3. 

Find the intersection point X of a circle centered at C and the line passing 
through a point A on the circle and perpendicular to a given vector a in 
the plane. 

Since the line X - A is perpendicular to a, there exists a scalar A such 
that X = A + Aa~. Substituting this expression into (3.6) and solving for 
A, gives the two solutions A = 0 and 

A = _2(,---C_-_A---,),--._a_~ 
a·a 

The case A = 0 corresponds to X = A. The other intersection point of 
interest is 

. . (C-A)·a~ 
X = per _mLm(C, A, a) = A + 2 B, (3.8) 

a·a 

provided that the vector a is non-zero. 
Using the simple methods given in the above examples, expressions for 

many constructed geometric objects can be found. See [20, 7, 21] for more 
examples of such geometric constructions. 

5.3.2 Examples of theorem proving 

The following examples serve to illustrate how geometric theorems may be 
proved in the Clifford algebra formalism and how the above representations 
are used. They also demonstrate how to linearize geometric statements 
involving circles. 
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Example 5.4. 

Let AB be the diameter of an arbitrary circle and C be any point on the 
circle. Then C A is perpendicular to C B. 

___ -~c u 

A B 

To simplify calculations, let the circle be centered at the origin. Then 
we have B = -A. Take a free point U on the plane and let the line AU 
intersect the circle at point C. According to (3.7), we have 

C - . . (0 A U) _ (-A· A + U . U) A + 2 (A· A - A . U) U 
- mLm ,,- A . A - 2 A . U + U . U . 

The conclusion of the theorem is 

9 = (C - A)· (C - B) = C· C - A· A = O. 

This is easily proved by substituting the expression of C into 9 with sim­
plification. The non-degeneracy condition for the theorem is A -=I- U. 

The proof of the above theorem is so simple that little algebraic computa­
tion and simplification need be performed. In most theorems in Euclidean 
geometry involving circles, the resulting expression cannot be easily re­
duced to 0 without using systematic means. Let us consider a couple of 
more examples. 

From any point D on the circumcircle of an arbitrary triangle bo, one 
may draw three perpendiculars to the three sides of bo. Simson's theorem 
asserts that the intersections of the three perpendiculars are collinear (see, 
e.g., [20, 21]). Let the line determined by the intersections be called the 
Simson line of D for bo. We have the following theorem. 

Example 5.5. 

The Simson line of any point D for a triangle ABC passes through the 
midpoint of D and the orthocenter of 6ABC. 

Let cir _ctr( A, B, C) and orLctr( A, B, C) denote the circumcenter and or­
thocenter of 6ABC, respectively, and per _ft(A, B, D) the intersection of 
the perpendicular from point D to the line AB. Their explicit expressions 
in terms of A, B, C, D may be found in [20, 21]. 

To simplify calculations, let A be located at the origin (i.e., A = 0). Then 
the hypothesis of the theorem can be stated constructively as follows: 
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A 

0= ciLctr(A, B, C) 

B . B B . C~ B + [B. B B . C - (B· C)2 - (B . C~)2]B~ 
2B·BB·C~ 

20·U 
D = inLcir(O, A, U) = U. U U, 

B· C[B· C~B+B· (C - B)B~] 
H=orLctr(A,B,C) = B.BB.C~ , 

M = midp(D, H) = D; H, 

B·D 
P=pedt(A,B,D) = B.BB, 

C·D 
Q = pedt( C, A, D) = C. C C, 

where U is a free point. The conclusion of the theorem to be proved is 

9 = (P - Q) 1\ (P - M) = O. 

Substituting the expressions of Q, P, M, H, D, 0 successively into g, one 
obtains an expression in B, C, U only. The numerator of this expression is 

h = {[B· B B· C - (B· C)2 - (B· C~)2] B· U~ - B· B B· C~ B· U}2 
{ [B· C (B . U~)3 - B . C~ B . U (B . U~)2 + B . C (B· U)2 B . U~ 

- B· C~ (B· U)3] B 1\ U 
+ [B· C~ (B· U~)3 + B· C B· U (B· U~)2 + B· C~ (B· U)2 B· U~ 

+ B· C (B· U)3] B 1\ U~ 
+ [B· C(B· U~)2-2B. C~ B· U B· U~ 

-B· C (B· U)2] U· U B 1\ B~}. 

The expression h does not automatically evaluate to 0, so it remains to 
show that h is identically equal to O. For proving identities of this kind, 
we have developed a term-rewriting system by taking some of the laws for 
Clifford operators as rewrite rules. Using this system, the second factor of 
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the expression h may be easily rewritten to O. Therefore, the theorem is 
proved to be true provided that B· B C· C B . C~ U· U i- 0, i.e., the triangle 
ABC does not degenerate to a line and U i- A. 

Example 5.6. 

From a point D on the circumcircle of an arbitrary triangle ABC, draw 
three perpendiculars to the three sides BC, C A, AB of 6ABC to meet the 
circle at points AI, B l , C l respectively. Then the lines AA1 , BB1 , CCl are 
parallel. 

A B 

The constructions for the hypothesis of the theorem are 

0= cir_ctr(A, B, C), D = inLcir(O, A, U), 

Bl = perjnLcir(O, D, C - A), Cl = perjnLcir(O, D, A - B), 

where U is again a free point. One of the conclusions to be proved is 
BBI II CCl, which may be expressed as 

9 = (B - B l ) A (C - Cd = O. 

Without loss of generality, let A = O. Substitution of the expressions for 
Cl , Bll D, 0 into 9 results in an expression involving only B, C and U. The 
numerator of this expression may then be rewritten to 0 by our system. 
Similarly, one may prove that AAl II BBl' 

The above examples explicate a simple and efficient approach for proving 
geometric theorems automatically using Clifford algebra. The approach 
consists roughly of three steps: 

(1) Formulate the hypothesis of the theorem in question constructively 
so that every introduced dependent point may be expressed in terms 
of the previously introduced points. 

(2) Substitute the expressions for the dependent points into the Clifford 
equation to obtain an equality involving only the free points. 

(3) Prove that the equality is an identity by term-rewriting. 

A number of other well-known geometric theorems have been proved by 
using this approach (see [20, 7, 21]). 
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5.3.3 Approaches to geometric reasoning 

Now we briefly summarize some of the available methods and techniques 
developed for automated geometric reasoning based on Clifford algebra. 
The reader may consult [13J for a more comprehensive review. 

The use of geometric invariants in Clifford algebra may be seen in the 
early work of White [22J and Richter-Gebert [17J. The former gave a Cay­
ley factorization algorithm for multilinear bracket polynomials that permits 
one to prove geometric theorems at the level of bracket algebra, and the 
latter developed a method that has proved a number of incidence theorems 
in projective geometry. The method of Richter-Gebert, based on bracket 
algebra, works by representing incidence relations using biquadratic equa­
tions. This method was extended later in [4J to prove theorems about circles 
in Euclidean geometry. 

Under the operations of addition and the outer product, the multivec­
tors form a Grassmann algebra of dimension 2n. This Grassmann algebra, 
equipped with the meet operator, is what we call the Grassmann-Cayley 
algebra. Mourrain and Stolfi [15, 16J introduced a method that can gene­
rate a set of substitution rules from a set of constructions for points in 
projective geometry with the Grassmann-Cayley algebra formalism. 

The Clifford algebra formalism has long been used to solve geometric 
problems in mathematics, physics, chemistry, and other areas. In the con­
text of automated reasoning, Li and Cheng [14, 12J first proposed a general 
principle for proving geometric theorems and deriving geometric relations. 
The principle follows the paradigm of triangularization and reduction de­
veloped in Wu's coordinate-based method [23J. In order to make triangu­
larization possible for Clifford expressions, Li and Cheng worked out a set 
of solution formulas for Clifford equations. 

The author in [20J considered a class of constructive geometric theorems 
and devised a simple and effective method for their proof. This method 
avoids some redundant reductions that may occur in the method of Li 
and Cheng. The proof of a concrete theorem is simply to substitute the 
explicit expressions of the dependent geometric objects into the conclusion 
expression of the theorem and to evaluate the resulting expression h to 0 
as shown by the examples in Section 5.3.2. Nevertheless, in Clifford algebra 
an expression that is identically equal to 0 does not necessarily evaluate 
to 0 automatically; it does when coordinates are used. An open question 
is how to prove identities in Clifford algebra automatically without using 
coordinates. 

An approach suggested in [20J and developed in [7, 1J is based on term­
rewriting. The basic idea is to use various fundamental relations and iden­
tities among different Clifford operators to rewrite Clifford expressions to 
normal forms systematically. The current version of the rewrite system 
for 2D and 3D as described in [lJ consists of four major steps: basic sim­
plification, reduction to normal forms, further simplification, and pseudo-
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coordinate expansion. The investigated issues include selection and grou­
ping of rewrite rules, grading, normalization, termination, confluence, and 
completion, as well as strategic system design and combination to achieve 
efficiency. 

The application of Clifford algebra to prove geometric theorems involving 
lines, circles, ellipses, parabolas, and hyperbolas has been studied by Yang 
et ai. [24]. They also considered the normalization problem and presented 
several groups of rules to normalize and simplify Clifford expressions. 

A Maple package called Gibbs was developed by Havel [10] and a co­
worker for the elementary expansion and simplification of expressions in 
Gibbs' vector algebra. The package was implemented during Havel's study 
of the local deformation problem in chemistry and is applicable to other 
reasoning problems in Euclidean geometry. The reader is referred to [10] as 
well as [22, 17]. 

An experiment with Maple V and Objective Caml on combining Clifford 
term-rewriting and algebraic computing for geometric theorem proving has 
been reported in [8]. Other related work on geometric reasoning using Cli­
fford or vector algebra include the use of distances as coordinates [9], the 
application of non-commutative Grabner bases in Grassmann algebra [20], 
the study of area in Grassmann geometry [6], the modeling of behavior 
of geometric objects using Euclidean ring [5], and the methods based on 
vector calculus described in [3, 19]. 

5.4 Proving Identities in Clifford Algebra 

5.4.1 Introduction by examples 

The rewrite system [1, 7, 8] we have developed is capable of proving iden­
tities in Clifford algebra of fixed dimension, for example, with n = 2 or 3. 
It is independent of geometry and can be used for automated reasoning in 
Clifford algebra. However, the system cannot be used to prove any Clifford 
identity for an indefinite n, nor any identity involving an indefinite number 
of vectors. There is a large number of such identities connecting different 
Clifford operators (see, for example, [11]). Our question is how to prove 
them automatically or semi-automatically on a computer. This is not an 
easy task. We propose to use the induction principle in combination with 
algebraic simplification, rewriting, heuristics, and other techniques. In this 
section, we present several examples to illustrate how the approach works. 
The machine proofs for the identities in these examples are produced au­
tomatically by a computer program that the author has written in Maple 
V. 

Let us start with the following simple example. The proof is readable 
without need of an explanation. 
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Example 5.7. 

Let e1, ... ,en be n pairwise orthogonal unit vectors, i.e., 

Show that 
r 

em . /\ ei = 0 for 1:::; r < m :::; n. 
i=l 

Proof by induction on r. 
Base case r = 1 : 

0=0 

reduces to True. 
Assume that 1 j r and the following induction hypothesis holds: 

r-1 

em· (/\ ek) = 0 
k=l 

Proof of the induction case r : 

r 

The left-hand side of (*) reduces (by definition of . and/or 
simplification) to 

r-1 

(-It er 1\ (em· (/\ ej)) 
j=l 

By the induction hypothesis, one gets 

This reduces to 
o 

The above expression is equal to the right-hand side of (*) : 

o 

Q.E.D. 
One sees that in the above example and in what follows, that the recursive 

definition (2.1) of the inner product makes induction possible. 

Example 5.8. 
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Let a and b j all be vectors. Prove that 

r r i-l r 

a./\ b i = ~)_1)i+la. b i (/\ b j ) 1\ ( /\ b j ) for 1 < r:::; n. 
i=1 i=l j=1 j=i+l 

This identity is numbered (1.38) in [11]. Our program proves it as follows. 
Proof by induction on r. 

Base case r = 1 : 
b1 ·a=h·a 

reduces to True. 
Assume that 1 i r and the following induction hypothesis holds: 

r-l r-l i-I r-l 
a.(/\bi)=-L)-1)ibi·a(/\bj)l\( /\ bj ) 

i=1 i=1 j=1 j=i+l 

Proof of the induction case r : 

r r i-I r 

i=l i=1 j=1 j=i+l 

The left-hand side of (*) reduces (by definition of. and/or 
simplification) to 

r-1 r-l 

j=1 j=1 

By the induction hypothesis, one gets 

r-l i-I r-l r-l 
(-"L(-1)i bi · a(/\bj )l\( /\ bj))l\br-(-1ta.br/\bj 

i=l j=1 j=i+l j=1 

This reduces to 

r-l i-I r r-l 
"L - (-1t bi · a(-1t+i (/\ bj ) 1\ ( /\ bj ) - (-1t a· br /\ bj 
i=l j=1 j=i+l j=1 

which simplifies to 

r i-I r 

-"L(-1)i bi · a(/\bj )l\( /\ bj ) 
i=1 j=1 j=i+l 

The above expression is equal to the right-hand side of (*) : 

r i-I r 

- "L ( -1 r bi . a( /\ bj ) 1\ ( /\ bj ) 
i=1 j=1 j=i+l 
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Q.E.D. 

Example 5.9. 

Let a be a vector, B an r-vector, and C an s-vector. Prove that 

a!\(B·C)=(a·B)·C+(-IrB·(a!\C) for I<rSsSn. (4.9) 

This is the identity (1.43) given in [11] and mentioned before. Our machine 
proof proceeds by letting 

r 

be a simple r-vector and making induction on r, where the b i are vectors. 
The case in which B is an arbitrary r-vector follows from multilinearity. 

Proof by induction on r. 
Base case r = 2 : 

The difference of the two sides reduces (by definition of . and/or 
simplification) to 

reduces (again by definition of . and/or simplification) to 

reduces (again by definition of . and/or simplification) to 

reduces (again by definition of . and/or simplification) to 

o 

The base case is proved. Assume that 2 < r and the following induction 
hypothesis holds : 

r-l r-l r-l 

a !\ (( /\ bi ) . C) = (a . (/\ bi )) . C + ( -1 f- 1 (/\ bi ) . (a !\ C) 
i=l i=l i=l 

Proof of the induction case r : 

r r r 

a!\ ((/\ bi ) . C) = (a· (/\ bi )) . C + (-If (/\ bi ) . (a!\ C) (*) 
i=l i=l i=l 
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The left-hand side of (*) reduces (by definition of . and/or 
simplification) to 

r-1 

a 1\ (( /\ bi ) . (br . C)) 
i=l 

By the induction hypothesis, one gets 

r-1 r-1 

(a . (/\ bi)) . (br . C) + (-1 r- 1 (/\ bi ) . (a 1\ (br . C)) 
i=l i=l 

This reduces to 

r-l r-l 

(a . (/\ bi)) . (br . C) - ( -1 ) r (/\ bi ) . (a 1\ (br . C)) 
i=l i=l 

The difference of the above expression and the right-hand side of (*) reduces 
(by definition of .) to 

r-l r-l r-l 

(a· (/\ bi )) . (b r . C) - (-1 r (/\ bi ) . (a 1\ (b r . C)) - ((a· (/\ bj )) 1\ br ) . C 
i=l i=l j=l 

r-1 r-l 

+ ( -1 ) r a . br (/\ b j) . C - (-1) r (/\ bi ) . (br . (a 1\ C)) 
j=l i=l 

The above expression is reduced (by definition of . and/or 
simplification) to 

o 
Q.E.D. 

Example 5.10. 

Let el, ... , en be as in Example 5.7. Prove that 

r r 

/\ ei·/\ ei = (-1) r(r;l) for 1:S r :S n. 
i=l i=l 

(4.10) 

The following proof of (4.10) makes use of the identity shown in Exam­
ple 5.7 as a lemma. 

Proof by induction on r. 
Base case r = 1 : 

1 = 1 
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reduces to True. 
Assume that 1 < r and the following induction hypothesis holds: 

Proof of the induction case r : 

r r 
/\ /\ 

r(r-l) 

( ei)·( ei)=(-I)-2-
i=l i=l 

The left-hand side of (*) reduces (by definition of . and/or 
simplification) to 

r-1 r 

i=l i=l 

It reduces (again by definition of .) to 

r-1 r-1 r-1 r-1 

(-If (/\ ei)· (er 1\ (er · (/\ ej))) - (-If (/\ ei)· (/\ ej) 
i=l j=l i=l j=l 

By the following lemma 

r 

em· (/\ ek) = 0, r < m 
k=l 

the expression is redued to 

r-1 r-1 

- (-If (/\ ei)· (/\ ej) 
i=l j=l 

By the induction hypothesis, one gets 

(r-l)(r-2) 

-(-If(-I) 2 

This reduces to 
r(r-l) 

(-1) 2 

The above expression is equal to the right-hand side of (*) : 

r(r-l) 
(-1)-2-

Q.E.D. 
n(n-l) 

With r = n in (4.10), we have II· II = (-1)-2-. It follows, from the 
definition of the dual operator, that II~ = 1, which we have promised to 
prove. 
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Taking II for C in (4.9), we get 

a 1\ (B . II) = (a· B) . II, 

that is, 
aI\B~=(a·B)~. 

This is one of the duality rules; the other duality rule is 

a· B~ = (a 1\ B)~. 

The machine proofs in the above examples are formatted directly from 
files automatically generated by our program. The following window dump 
shows part of a proof session in Maple V.3. 

[!] ~Iaple 'Ii Release 3 ����������������������������������������������������������������������������������������������������������������������������������������������������������1111:.11 

[lie ~dit y'iew Qptions !:!.elp I 
Output ...J I Interropt Pause 

..I 

educes to True. 

ssume that 1 < r--- and the following induction hypothesis holds' 

roof of the induction case 

a &. f\( hi' i ~ 1 .. rN) m -(~ ( -l)i (a &. h,) (f\( hj, i-I .. i - 1) &A f\( hj, i - i + 1 .. rN )) ) 

(* ) 
he left-hand side of (*) reduces (by definition of . and/or simplification) to 

((a&.f\(hj'i-1.rN -l))&Ahr-) -(-lY-(a&hr-)f\(hj,i-1.rN -1) 
y the induction hypothesis, one gets 

(( {~1 (-1)i(a&.hi)(f\(hj'i- 1 .. i -1)&Af\(hj'i-i+1.rN -l))))&Ahr_) 

- ( _1)r- (a &. hr_) f\( hj' j - 1 .. rN - 1 ) 

!Maple Memory: 1727KI I Maple CPU Time: 310.9 secllinterface Memory: 55.sKI 

5.4.2 Principles and techniques 

The problem is to build an effective prover that can produce machine proofs 
for sufficiently many Clifford algebra identities. We propose using mathe­
matical induction because of the nature of identities in Clifford algebra, and 
the general applicability of the induction technique. Although induction is 
a standard in mathematical reasoning, its computer implementation for 
proving non-trivial theorems effectively and automatically is not a trivial 
task. In order to make inductive proofs possible, recursive definitions have 
to be introduced for Clifford operators and heuristics have to be imple­
mented and used. Moreover, powerful routines of algebraic simplification 
and computation need to be incorporated. In what follows, we discuss some 
of these issues on the basis of our preliminary experiments. 
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The induction principle 

Let F(r) = 0 be an identity that we want to prove. The induction scheme 
has the following form: 

If F(ro) = 0, r > ro, and F(r - 1) = 0 implies that F(r) = 0 
for all r, then F(r) = 0 holds for all r 2: roo 

The base case r = ro is determined for the smallest value ro of the induction 
variable r satisfying the given conditions, and is proved by expanding defi­
nitions, simplification, and the application of lemmas. Note that the rewrite 
system described in [7, 1] may be used in this case when the rewrite rules 
are dimension-independent. 

For the induction case r, definitions are expanded and simplified or 
rewritten in order to search for possibilities to use the induction hypothe­
sis. The program then looks for expressions on the two sides of the identity 
that match. 

It is possible to use well-developed, general induction theorem provers, 
such as the Boyer-Moore prover Nqthm [2], for our special purposes. We 
decided to experiment with Maple because of its capability for advanced 
algebraic computation and simplification and because of our previous ex­
perience with it. 

Expanding definitions 

One of the key points to the success of the proofs in Examples 5.7-5.10 is 
the recursive definition (2.1) of the inner product, which has been intro­
duced to facilitate the application of induction. Expanding or opening up 
the definition of a function/operator is to replace the function call by its 
definition. Heuristics must be implemented to determine whether, when, 
and where a definition should be opened up. For example, in proving the 
induction case of (4.9), a· /\~=l bi is expanded to 

r-l r-l 

(a· 1\ bi ) /\ br - (-It(a· br ) 1\ bi 

i=l i=l 

and br . (a /\ C) to 

but a . /\~::{ bi is not expanded to 

r-2 r-2 

(a· 1\ bi ) /\ br- 1 - (-It- 1(a. br-d 1\ bi · 

i=l i=l 

An inappropriate expansion of a definition may lead to a failure in searching 
for a proof. 



108 Dongming Wang 

Simplification 

This is one of the most complex and crucial processes in the proof of iden­
tities and other kinds of symbolic reasoning. The purpose of simplification 
is to replace terms and expressions by other equivalent and simpler ones. 
In our experiment, we take advantage of the powerful simplification mecha­
nisms already available in Maple V. Additional rules are introduced to deal 
with some of the special properties of Clifford algebra. Pattern matching 
is needed for applying rewrite rules, induction hypotheses, and lemmas. 

Manipulating indefinite objects 

Although current computer algebra systems are powerful in dealing with 
definite symbolic objects, their ability to manipulate indefinite objects is 
quite limited. It is thus necessary to amend the computer algebra system in 
use for effective and correct manipulation of indefinite objects. Our imple­
mentation of new routines have benefited from our previous work [18] on 
the manipulation of indefinite sums and products. However, the enhanced 
capabilities of manipulating indefinite objects are still built on the top of 
the existing computer algebra systems. 

Using lemmas 

In order to maintain readability and structure, the proof of an identity 
may be shortened by applying lemmas. There is the general question of 
how many lemmas should be kept in the database. Using a large database 
of lemmas would not only increase the search time and space but also make 
proofs less interesting. Our program tests whether the lemmas can be used 
in the inductive proof. 

The examples given in the preceding section do not involve the geometric 
product for multivectors of non-zero grade, nor the dual or other operators. 
However, the principles we have explained apply equally to proving identi­
ties involving other operators. Of course, an implementation covering more 
general cases will be very sophisticated involving recursive definitions. The 
recursive definition of the geometric product introduced in Section 5.2 is 
quite complicated. It may help to start with the definition of the geometric 
product for a special case, such as 

B a := B 1\ a + B . a 

for any vector a and r-vector B with r > 1. This should make it possible 
to prove a good number of other identities. An ideal prover would include 
adequate definitions for the most popular Clifford algebra operators. 

The induction approach is by no means complete. It is even difficult to 
describe precisely which class of identities such a prover can always su­
cceed in proving. In the case of proving definite identities using our rewrite 



5. Geometric Reasoning With Geometric Algebra 109 

system, any identity can be proved when the use of coordinates or pseudo­
coordinates are allowed. Nevertheless, for proving indefinite identities it is 
not even clear how coordinates can be applied. 

Our induction based approach uses artificial intelligence to imitate hu­
man proofs, by incorporating powerful tools of computer algebra and sim­
plification. Despite its limitations, it would be a success if one could use it 
to prove a large number of Clifford algebra identities automatically. 

Acknowledgments. This work has been supported by CEC under Reac­
tive LTR Project 21914 (CUMULI). 



Chapter 6 

Automated Theorem Proving 

Hongbo Li 

6.1 Introduction 

In modern algebraic methods for automated geometry theorem proving, 
Wu's characteristic set method (Wu, 1978, 1994; Chou, 1988) and the 
Grabner basis method (Buchberger, Collins and Kutzler, 1988; Kutzler 
and Stifter, 1986; Kapur, 1986) are two basic ones. In these methods, the 
first step is to set up a coordinate system, and represent the geometric 
entities and constraints in the hypothesis of a theorem by coordinates and 
polynomial equations. The second step is to compute a characteristic set 
or Grabner basis by algebraic manipulations among the polynomials. The 
third step is to verify the conclusion of the theorem by using the charac­
teristic set or Grabner basis. 

Coordinate representations do not keep geometric meaning and the alge­
braic manipulations of polynomials of coordinates are sometimes too com­
plicated to be carried out on modern computers. For this reason, in recent 
years there has been a trend to use geometric invariants for algebraic repre­
sentations, combining Wu's method or the Grabner basis method with an 
algebra of geometric invariants for algebraic manipulations. Among these 
methods are those of Crapo and Richter-Gebert (1995) which integrate 
Grassmann-Cayley algebra with the Grabner basis method, the method 
of Mourrain (1999) which combine Grassmann-Cayley algebra with Wu's 
method, and the area method (Chou, Gao and Zhang, 1994; Yang, Gao, 
Chou and Zhang, 1996) which combine a set of high-level geometric inva­
riants with Wu's method. Proofs based on these methods are often shorter, 
more readable and have better geometric meaning. 

Because of the general applicability of Clifford algebra to geometry, it is 
natural to consider combining Clifford algebra with Wu's method or the 
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jing 100080, P. R. China. This paper is written during the author's visit to the Institut 
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Grabner basis method. In Li (1994, 1996), a general framework is proposed 
for combining Clifford algebra with Wu's method. Various applications that 
belong to this framework are carried out in automated theorem proving 
in Euclidean, non-Euclidean and differential geometries (Li, 1995, 1997a, 
1997b, 1999; Li and Cheng, 1997, 1998a, 1998b; Li and Shi, 1997). Research 
and applications have also been carried out by Wang (1996, 1998) and his 
group in combining Clifford algebra with the Grabner basis method and 
term rewriting techniques. 

This chapter is composed of three sections. In the first section, we talk 
about a general framework of combining Clifford algebra with Wu's method. 
In the second and third sections, we present examples of automated theo­
rem proving in Euclidean and differential geometries. 

6.2 A general Framework for Clifford algebra and 
Wu's Method 

Given a geometric problem, there are different levels of algebraic repre­
sentations for it. There are corresponding algebraic manipulations for each 
level of representation. When changing a high-level representation to a low­
level one, substitutions, expansions and simplifications are usually enough. 
However, there is in general no way to reverse this procedure. 

For example, given a problem in projective geometry, we can represent it 
in the Grassmann-Cayley algebra, and use the algebraic operations of "A" 
and "v" for geometric computations. We can also use the projective space 
of one-dimensional subspaces of a Euclidean space, and use the inner pro­
ducts for algebraic manipulations, although they do not have a projective 
interpretation. Finally, we can use homogeneous coordinates to represent 
geometric entities, matrices to represent projective transformations, and 
homogeneous polynomials for algebraic manipulations. Among these three 
representations, the first is on the highest level, the third is on the lowest 
level. From the first representation to the third, there are fewer and fewer 
geometric invariance, but more and more abundant algebraic manipulations 
to work with. 

In automated theorem proving, if we use a low-level representation at 
the beginning, for example coordinate representation, then in many cases 
the polynomials we need to deal with are of tens of variables and thousands 
of terms. Symbolic computations of such polynomials often fail on present­
day computers. On the other hand, if we use a high-level representation at 
the beginning, then we have only limited algebraic manipulations, and for 
many theorems we cannot derive the conclusions from the hypotheses. 

To improve this situation, it should be possible to represent a geome­
tric problem at a suitably high level at the beginning, and carry out the 
algebraic manipulations to the hypotheses of the theorem in order to es-
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tablish the conclusion. If the conclusion fails to be proved at this level, 
then the level of representation is lowered mechanically for more algebraic 
manipulations. At the bottom is the coordinate representation. After every 
change of representation, new algebraic manipulations are carried out to 
the result of the previous manipulations, so even though the conclusion can­
not be proved after algebraic manipulations of a high-level representation, 
simplification of the hypotheses can often be achieved for later algebraic 
manipulations. 

A general framework realizing the above idea by combining Clifford al­
gebra with Wu's method is proposed by Li (1994, 1996), Li and Cheng 
(1997). For triangulation in Clifford algebra formalism, a new technique 
called vectorial equation-solving is proposed. For mechanically changing 
Clifford algebra representations by introducing new geometric parameters, 
a technique called parametric equation-solving is proposed. The method is 
complete because Wu's method is resorted to at the level of coordinate 
representation. The method can be described as follows: 

Stage 1. Triangulate the hypothesis using substitutions, pseudo-divisions 
and vectorial equation-solving. The result is called a triangular se­
quence. Prove the conclusion with the triangular sequence, and con­
tinue if the proof fails. 

By triangulation, we mean obtaining a set of equations AS from 
a given set of equations P S such that the leading elements of the 
equations in AS follow a strictly ascending order with respect to a 
prescribed order of variables. The equations in AS must satisfy the 
relation 

zero(AS/I) ~ zero(PS) ~ zero(AS), (2.1) 

where zero(AS) denotes all complex solutions of AS, I is a set of 
equations, and 

zero(AS/I) = zero(AS) - U zero(i). 
iEI 

The set {i -=I Qli E I} is called nondegeneracy conditions. 

Stage 2. Triangulate the triangular sequence with vectorial the equation­
solving method, the parametric equation-solving method, substitu­
tions and pseudo-divisions. The result is called a parametric trian­
gular sequence. Prove the conclusion with the parametric triangular 
sequence, and continue if the proof fails. 

By the parametric equation-solving method, we mean solving equa­
tions by allowing the solutions to be in parametric form, the parame­
ters can be either free or constrained. 
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Stage 3. Select a coordinate system and translate all expressions in the 
parametric triangular sequence into polynomials of coordinates. Use 
Wu's method to compute a characteristic set and prove the conclusion 
with the characteristic set. 

A characteristic set AS of a set of polynomials PSis another set of 
polynomials such that each element of AS is reduced by every other 
element of AS with respect to a prescribed order of variables, and 
the relation (2.1) is satisfied. 

We illustrate the method with a theorem in solid geometry: 

Theorem 6.1. Let ABCD be a tetrahedron. Let the plane M, N, E, F be 
defined by the the respective points on the lines AB, AC, DC, DB. If the plane 
moves in such a way that M N EF is always a parallelogram, then the center 0 
of the parallelogram is always on a fixed straight line. 

A 

D 
B 

c 
FIGURE 6.1. A theorem in solid geometry. 

We embed the space in R4 as a hyperplane away from the origin. In the 
Clifford algebra ~h, the hypothesis can be represented by 

M -N=F-E, 
A 1\ B 1\ M = 0, 
AI\C I\N = 0, 
C 1\ D 1\ E = 0, 
B 1\ D 1\ F = 0, 

O=M+E 
2 ' 

A 1\ B 1\ C 1\ D -=f=. 0, 

MNEF is a parallelogram 
A, B, M are collinear 
A, C, N are collinear 
C, D, E are collinear 
B, D, F are collinear 

o is the midpoint of ME 

A, B, C, D are not coplanar 

(2.2) 
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The conclusion cannot be algebraized. 
The order of the variables for triangulation is: A -< B -< C -< D -< M -< 

N -< E -< F -< o. 
After triangulation, we get the following triangular sequence: 

20-M-E=0, 
F-E-M+N=O, 
E(A 1\ B 1\ G 1\ D)~ - D(A 1\ B 1\ C 1\ D)~ 

-D(A 1\ B 1\ D 1\ N)~ + G(A 1\ B 1\ D 1\ N)~ = 0, 
N(A 1\ B 1\ C 1\ D)~ - C(A 1\ B 1\ C 1\ D)~ 

-C(B 1\ C 1\ D 1\ M)~ + A(B 1\ G 1\ D 1\ M)~ = 0, 
AI\B I\M = 0. 

The nondegeneracy condition is A 1\ B 1\ C 1\ D I- 0, which is in the 
original hypothesis. The conclusion cannot be obtained from the triangular 
sequence, as M does not have an explicit expression. 

After parametric triangulation, we obtain the following parametric trian­
gular sequence: 

20 -A- D+ AA+AD - AB - AG = 0, 
F - D + AD - AB = 0, 
E - D + AD - AC = 0, 
N - A + AA - AG = 0, 
M - A + AA - AB = 0, 

(2.3) 

where A is a parameter generated by the parametric equation-solving pro­
ceedure. 

The nondegeneracy conditions are: 

A 1\ B 1\ C 1\ D, B - A I- 0, 

which are all guaranteed by the original hypothesis. 
The conclusion is obvious from the first equality in (2.3): 

o = (1 _ A) A + D + A B + G 
2 2' 

i. e., 0 is on the line passing through the midpoint of the line segment AD 
and the midpoint of the line segment BG. 

6.3 Automated Theorem Proving in Euclidean 
Geometry and Other Classical Geometries 

The method can be used to prove theorems in Euclidean, affine, projective, 
non-Euclidean, and differential, geometries, and can be used in mechanics 



6. Automated Theorem Proving 115 

and robotics. The proofs produced are often readable because they are 
short and have geometric interpretations. 

We have successfully applied this method to study a conjecture by Erdos 
et al. around 1994. The original problem is from Erdos, Jackson and Mauld­
lin: 

Let Aij , 1 :s: i < j :s: 5 be 10 points in the plane. If there are five points 
A k , 1 :s: k :s: 5 in this plane, including points at infinity, such that at least 
two are distinct and such that Ai, A j , Aij are collinear for 1 :s: i < j :s: 5, 
we say that the five points form a consistent 5-tuple. Now assuming that no 
three of the Ai/s are collinear, is it true that there are only finitely many 
consistent 5-tuples? 

A~--------+---~~~--~ 
2 

A 
34 

FIGURE 6.2. A conjecture by Erdos et al. around 1994. 

Erdos et al. proved that if there are only finitely many solutions, then 
there are at most 49. They ask Boyer if their theorem prover could solve 
it. Boyer in turn sent the problem to Chou and Gao, and Chou and Gao 
sent it to us. Chou and Gao proved that generically there are only finitely 
many solutions. We proved in Li and Shi (1997), using our method and 
techniques from algebraic geometry, that 

Theorem 6.2. For 10 generic points Aij on the plane, there are at most 6 
solutions. 

We further proved that 

Theorem 6.3. If no three of the 10 points Aij are collinear, and no three of 
the lines connecting two points are concurrent, except those lines meeting at one 
of the points, then there are at most 6 solutions. 
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6.4 Automated Theorem Proving in Differential 
Geometry 

In differential geometry, the local theory of space curves and space surfaces 
are of fundamental importance. E. Cartan's moving frame method and cal­
culus of exterior differential forms are two important techniques for dealing 
with these theories. In our method, we integrate both techniques with Wu's 
method. When applied to theorems in space curve theory, our method can 
produce proofs that are similar to those given in textbooks. When applied 
to theorems in space surface theory, our method can often produce proofs 
that are simpler than those found in textbooks. 

Moreover, the method can be used to prove complicated theorems. Below 
we give an example of a theorem first proposed by E. Cartan and later 
proved by S. S. Chern (1985). 

First, we set up the notation that we will use in the local theory of space 
surfaces. Consider a sufficiently small piece of the smooth surface M in 
E3. Over M, there is a frame of orthonormal fields {x; el, e2, e3} such that 
for each x E M, e3 is the unit normal vector at x, and el, e2 are tangent 
vectors. These fields make up a first-order frame field. If, moreover, el and 
e2 are along the principal directions, the fields make up a second-order 
frame field. 

The equations of motion of the first-order frame field are 

{~~ Wlel +W2e2 
del = Wl2 e2 +W13e3 
de2 = -W12 e l +W23e3 
de3 = -W13 e l -W23e2 

The Gauss-Codazzi equations of a second-order frame field are 

dwl = Wl2 1\ W2, 

dwl2 = -KWI 1\ W2; 

da = (a - C)(UWI + *WI2), 

Here u, v are two scalars, and "*" is the Hodge dual operator: 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Theorem 6.4. [Chern's Theorem] A non-trivial family of isometric surfaces 
having the same principal curvatures is either a family of surfaces of constant 
mean curvature, or a family of Weingarten surfaces of non-constant mean curva­
ture, assuming that they do not contain umbilics and are c5 . 

Let a, C be the principal curvatures at a point of a surface in the family. 
The non-umbilic assumption is equivalent to a i= c. A Weingarten surface 
is a surface satisfying da 1\ dc = 0 at every point. 
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% c 
da 

x dc 

Weingarten surface 

FIGURE 6.3. Chern's Theorem. 

Suppose that M* is a surface which is isometric to M. We shall denote 
the quantities and equation numbers pertaining to M* by the same symbols 
with asterisks. Suppose that T is the angle between the principal directions 
of M and M* at their corresponding points with the same parameters, then 

cos TWI - sin TW2 
sin TWI + cos TW2 ' 

and their principal curvatures are preserved, 

a* = a, e* = e. 

(4.8) 

(4.9) 

The non-triviality assumption for the family of isometric surfaces is 
equivalent to the requirement that (4.8) holds for T over an interval on 
the T-axis. We do not have an algebraic representation of this assumption 
at present. 

The hypotheses are (4.8), (4.9) and the above requirement on T. The 
conclusion is 

da 1\ de = 0, (4.10) 

since surfaces of constant mean curvature are also Weingarten surfaces. 
Now we do triangulation. The input for the triangulation is: 

(4.5), (4.6), (4.7), (4.5*), (4.6*), (4.7*), (4.8), (4.9). 

The order of variables for the triangulation is 

a, c -< u, v -< WI, W2 -< W12, *W12 -< du, dv -< d * WI2 -< T -< dT -< 
a*, e* -< u*, v* -< wi, w2 -< wi2' *wi2 -< du*, dv* -< d * wi2 -< (4.11) 
da, dc, dw l , dw2, dw12 , da* , de* , dwi, dW2' dwi2' 

After triangulation, we get the following triangular sequence: 
triseq = (4.5), (4.6), (4.7), (4.8), (4.9), and 

{ 
wi2 = WI2 - dT 
u* = COSTU - sin TV 
v* = sin TU + cos TV 
dT = (VWI + uW2)sin2T + (-UWI + VW2) sin T cos T 

(4.12) 
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{ du 1\ WI + d * wI2 - VW2 1\ *W12 + UVWI 1\ W2 = 0 , (4.13) 
dv 1\ W2 - d * WI2 - UWI 1\ *W12 + UVWI 1\ W2 = 0 

sin T{ sin T( du 1\ W2 + dv 1\ WI + (UW2 + VWI) 1\ *W12 

_(u2 + V2)WI 1\ W2) (4.14) 
- cos T(du 1\ WI - dv 1\ W2 + (UWI - VW2) 1\ *WI2)} = 0. 

The conclusion cannot be proved by the above triangular sequence. The 
hypothesis of the non-triviality of family does not have an appropriate alge­
braic representation, and therefore cannot participate in the triangulation. 

The first key to the automatic proof is the algebraization of this hypo­
thesis, based on the triangular sequence obtained so far. Since (4.14) holds 
for T over an interval on the T-axis, the coefficients before sin T and cos T 
must be zeroes, 

{ du 1\ W2 + dv 1\ WI + (UW2 + VWI) 1\ *W12 - (u2 + v2 )WI 1\ W2 = ° 
du 1\ WI - dv 1\ W2 + (UWI - VW2) 1\ *W12 = 0 . 

(4.15) 
Thus, we have obtained an algebraic representation of the non-triviality 
hypothesis. 

Now we do triangulation for set of equations 

(4.5), (4.6), (4.7), (4.8), (4.9), (4.12), (4.13), (4.15). 

The order of variables is the same as before. 
We get the new triangular sequence: new-triseq = (4.5), (4.6), (4.7), 

(4.8), (4.9), (4.12), and 

d*W12 0, (4.16) 

du 1\ WI - VW2 1\ *W12 + UVWI 1\ W2 0, ( 4.17) 

dv 1\ W2 - UWI 1\ *W12 + UVWI 1\ W2 0, (4.18) 

(uvdu + v2dv) 1\ W2 + (uvdv + u 2du) 1\ WI 0. (4.19) 

The conclusion still cannot be proved by the new triangular sequence. 
We have reached the stage of parametric triangulation. The following 

lemma provides a powerful technique for parametric equation-solving, and 
is the second key point of our proof: 

Lemma 6.1. [Cartan's Lemma] Suppose Wl,W2, ... ,Wr ;(Jl,(h, ... ,(Jr are 1-
forms in the n-dimensional vector space V, and Wl 1\ W2 1\ ... 1\ Wr =1= o. If 

r 

L Wi 1\ (Ji = 0, then there exist scalars aij = aji, i, j = 1,2, ... , r, such that 
i=l 

(Ji = L aijWj. 

j=l 
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Applying this lemma to (4.17), (4.18), (4.19) we get that there exist 
scalars p, q, B such that 

WI2 

udu+ vdv 
PWI + qW2, 
B(UWI + VW2)' 

This is the procedure of parameterization. 

(4.20) 

(4.21) 

We are ready to do triangulation again. This time the triangulation is 
on the set 

(4.5), (4.6), (4.7), (4.8), (4.9), (4.12), 
(4.16), (4.17), (4.18), (4.19), (4.20), (4.21). 

The variables p, q -< B -< dp, dq -< dB are inserted before W12, *W12 -< du, dv 
in the order of the sequence (4.11). 

We get the following parametric triangular sequence: par-triseq = (4.5), 
(4.7), (4.8), (4.9), (4.12), (4.20), 

{ du = (B + v2 - Vp)WI + (uv - vq)W2 
dv = (up - UV)WI + (B + uq - U2)W2 ' 

{
dB = ((u - 2q)B + u(u2 + v2 + ac)) WI, 

+ ((2p - v)B + v(u2 + v2 + ac)) W2 , 

(u2 + v2)dp = hWI + fzW2 

where h, fz are polynomials of a, c, u, v, B, p, q, and 

pu + qv - uv = o. 

(4.22) 

(4.23) 

(4.24) 

The conclusion is proved using the parametric triangular sequence by 
simple substitution. This finishes the proof. 

6.5 Conclusion 

Using Clifford algebra, we are able to design and realize fast computer al­
gorithms which challenge geometric experts by the capability of producing 
readable computer-generated proofs, discovering new theorems and solving 
open problems. Clifford algebra proves to be important and efficient in 
doing scientific research for geometers of various groups. 
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Chapter 7 

The Geometry Algebra of 
Computer Vision 
Eduardo Bayro Corrochano and Joan Lasenby 

7.1 Introduction 

In this chapter we present a mathematical approach for the computation 
of problems in computer vision which is based on geometric algebra. We 
will show that geometric algebra is a well-founded and elegant language for 
expressing and implementing those aspects of linear algebra and projective 
geometry that are useful for computer vision. Since geometric algebra offers 
both geometric insight and algebraic computational power, it is useful for 
tasks such as the computation of projective invariants, camera calibration 
and recovery of shape and motion. We will mainly focus on the geometry 
of multiple uncalibrated cameras 

Geometric algebra [15] is a coordinate-free approach to geometry based 
on the algebras of Grassmann [10] and Clifford [7]. The algebra is defined on 
a space spanned with a multivector basis. A multivector is a linear combi­
nation of basic geometric objects of different order, e.g. scalars, vectors and 
bivectors. The system has an associative and fully invertible product called 
the geometric product or Clifford product. The existence of such a product 
gives the system tremendous representational and computational power. 
For some preliminary applications of geometric algebra in the field of com­
puter vision see [2, 3, 4, 18]. We will show that geometric algebra provides 
a very natural language for projective geometry and has all the necessary 
equipment for the tasks which the Grassmann-Cayley algebra is currently 
used for. The Grassmann-Cayley or double algebra [6] is a mathematical 
system for computations with subspaces of finite-dimensional vector spaces. 
While this algebra expresses the ideas of projective geometry, such as the 
meet and join, very elegantly, it lacks an inner (regressive) product and 
some other key concepts which are useful both analytically and in reducing 
the computational cost in calculations. 

The next section will give a brief introduction to the 3-D and 4-D geo­
metric algebras. This section is also devoted to the formulation, in the geo­
metric algebra framework, of those aspects of projective geometry relevant 
for computer vision. The reader can consult [13] for a more complete intro­
duction and for other brief summaries see [3, 5]. Given this background, we 
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will look at the concepts of projective split and projective transformations. 
Section three presents the algebra of incidence and section four the algebra 
in projective space of points, lines and planes. The analysis of monocular, 
binocular and trinocular geometries is given in section five. Conclusions are 
presented in the final section. 

In this chapter vectors will be bold quantities (except for basis vectors) 
and multivectors will not be slant bold. Lower case is used to denote vectors 
in 3-D Euclidean space and upper case to denote vectors in 4-D projective 
space. We will denote a geometric algebra gp,q,r referring to an n-D geo­
metric algebra in which p basis vectors square to +1, q to -1 and r to 0, 
so that p + q + r = n. 

7.2 The Geometric Algebras of 3-D and 4-D Spaces 

The need for a mathematical framework to understand and process digital 
camera images of the 3-D world, prompted researchers in the late seventies 
to use projective geometry. Using homogeneous coordinates, we embed the 
3-D Euclidean visual space in the projective space p3 or R4 and the 2-D 
Euclidean space of the image plane in the projective space p2 or R3. As a 
result, the inherently non-linear projective transformations from 3-D space 
to the 2-D image space become linear. In addition, points and directions are 
now differentiated instead of being represented by the same quantity. The 
choice of projective geometry was indeed a step forward; however, there is 
still the need, [14], for a mathematical system which reconciles projective 
geometry and multilinear algebra. In most of the computer vision litera­
ture we can indeed see that they are considered as divorced mathematical 
systems. When required, it is also common to resort to other systems; for 
example, the dual algebra [6] for incidence algebra and the Hamiltonian for­
mulation for motion estimation [23]. Here we suggest the use of a system 
which offers all of these mathematical facilities. Unlike matrix and tensor 
algebra, geometric algebra does not obscure the underlying geometry of the 
problem. We will therefore formulate the main aspects of such problems in 
geometric algebra, starting with the modelling of 3-D visual space and the 
2-D image plane. 

7.2.1 3-D space and the 2-D image plane 

To introduce the basic geometric models in computer vision, we consider 
the imaging of a point X E R4 into a point x E R3 assuming that the 
reader is familiar with the basic concepts of using homogeneous coordinates 
- these will also be discussed in later sections. The optical centre, C, of the 
camera may be different from the origin of the world coordinate system, 
0, as depicted in figure (7.1). 



7. The Geometry Algebra of Computer Vision 125 

x 

FIGURE 7.1. Pinhole camera model. 

In the standard matrix representation, the mapping P 
expressed by the homogeneous transformation matrix 

[ 
PII Pl2 Pl3 P14] 

P = P21 P22 P23 P14 
P31 P32 P33 P34 

which may be decomposed into a product of three matrices 

P= KPoMo. 

x ---> x is 

(2.1) 

(2.2) 

where Po, K and Mfj will now be defined. Po is the 3 x 4 matrix 

[
1000] o 1 0 0 
o 0 1 0 

(2.3) 

which simply projects down from 4-D to 3-D, representing a projection 
from homogeneous coordinates of space to homogeneous coordinates of the 
image plane. 

Mfj represents the 4 x 4 matrix containing the rotation and translation 
which takes the world frame, :Fo, to the camera frame :Fe and is given 
explicitly by 

(2.4) 
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This Euclidean transformation is described by the extrinsic parameters of 
rotation (3 x 3 matrix R) and translation (3 x 1 vector t). Finally, the 3 x 3 
matrix K, expresses the assumed camera model as an affine transformation 
between the camera plane and the image coordinate system, so that K is an 
upper triangular matrix. In the case of the perspective (or pinhole) camera 
the matrix K, which we now call Kp, is given by 

(2.5) 

The five parameters in Kp represent the camera parameters of scaling, shift 
and rotation in the camera plane. In this case the distance from the optical 
centre to the image plane is finite. In later sections we will formulate the 
perspective camera in the geometric algebra framework. 

One important task in computer vision is to estimate the matrix of in­
trinsic camera parameters, Kp, and the rigid motion given in M8, in order 
to be able to reconstruct 3-D data from image sequences. 

7.2.2 The geometric algebra of 3-D Euclidean space 

The 3-D space is spanned by three basis vectors { aI, a2, a3} (with ar = + 1 
for all i = 1,2,3) and the 3-D geometric algebra generated by these basis 
vectors has 23 = 8 elements given by: 

1 ,{al,a2,a3},{aW2,a2a3,a3al},{ala2a3} =1. (2.6) 
'-v-' ~' , '----v------' 
scalar vectors bive~tors trivector 

Bivectors can be interpreted as oriented areas, trivectors as oriented volu­
mes. Note that we will not use bold for these basis vectors. The highest 
grade element is a trivector called the unit pseudoscalar. It can easily be 
verified that the pseudoscalar al a2a3 squares to -1 and commutes with 
all multivectors (a multivector is a general linear combination of any of 
the elements in the algebra) in the 3-D space. The unit pseudoscalar I is 
crucial when discussing duality. In a space of 3 dimensions we can construct 
a trivector al\bl\c, but no 4-vectors exists since there is no possibility of 
sweeping the volume element al\bl\c over a 4th dimension. 

The three basis vectors {ad multiplied by I give the following basis 
bivectors; 

(2.7) 

If we identify the i, j, k of the quaternion algebra with a2a3, -a3al and 
ala2, we can recover the famous Hamilton relations 

(2.8) 
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In geometric algebra a rotor, R, is an even-grade element of the algebra 
which satisfies RR = 1. The relation between quaternions and rotors is as 
follows, if Q = {qo, q1, Q2, Q3} represents a quaternion, then the rotor which 
performs the same rotation is simply given by 

(2.9) 

The quaternion algebra is therefore seen to be a subset of the geometric 
algebra of 3-space. 

7. 2. 3 A 4-D geometric algebra for projective space 

For the modelling of the image plane we use g3,0,0 which has the standard 
Euclidean signature. We will show that if we choose to map between pro­
jective space and 3-D Euclidean space via the projective split (see later), 
we are then forced to use the 4-D geometric algebra gl,3,0 for p3. The 
Lorentzian metric we are using here has no adverse effects in the opera­
tions we outline in this chapter, however we will briefly discuss in a later 
section how a {+ + ++} metric for our 4-D space and a different split is 
being favoured in recent research. 

The Lorentzian 4-D algebra has as its vector basis /'1, /'2, /'3, /'4, where 
/'1 = + 1, /'~ = -1 for k = 1,2,3. This then generates the following multi­
vector basis 

1 , /'k ,/'2/'3,/'3/'1,/'1/'2,/'4/'1,/'4/'2,/'4/'3, l/'k I (2.10) 
~~, .... '~ ~ 
scalar 4 vectors 6 bivectors 4 trivectors pseudoscalar 

The pseudoscalar is I = /'1/'2/'3/'4 with 

(2.11) 

The fourth basis vector, /'4, can also be seen as a selected direction for the 
projective split [3J operation in 4-D. We will see shortly that by taking the 
geometric product with /'4 we can associate bivectors of our 4-D space with 
vectors of our 3-D space. The role and use of the projective split operation 
will be treated in more detail in a later section. 

7.2.4 Projective transformations 

Historically, the success of homogeneous coordinates has partly been due to 
their ability to represent a general displacement as a single 4 x 4 matrix 
and to linearize non-linear transformations [9J. 

The following indicates how a projective transformation is linearized by 
going up one dimension in the GA framework. In general a point (x, y, z) 
in the 3-D space is projected onto the image via a transformation of the 
form: 
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(2.12) 

This transformation, which is expressed as the ratio of two linear trans­
formations, is indeed non-linear. In order to convert this non-linear trans­
formation in [3 into a linear transformation in R4 we define a linear func­
tion I mapping vectors onto vectors in R4 such that the action of I on 

-p -p 
the basis vectors hi} is given by 

i.phd 01 '11 + 02'12 + 03'13 + a'l4 

i.p(2) 131 '11 + 132'12 + 133'13 + ~'14 
i.p(3) 81 '11 + 82'12 + 83'/3 + 8'14 

i.p (4) El '11 + E2'/2 + E3'/3 + E-y4 (2.13) 

When we use homogeneous coordinates a general point P in [3 given by 
x = XO"I + Y0"2 + Z0"3 becomes the point X = (X '11 + Y'I2 + Z'I3 + W'I4) in 
R4, where x = X/W, y = Y/W, z = Z/W. Now using I the linear map of 

-p 
X onto X' is given by 

3 

X' = 2:)(OiX + f3iY + 8iZ + EiWh} + (aX + ~Y + 8Z + EWh4(2.14) 
i=1 

The coordinates of the vector x' = x' 0"1 + Y'0"2 + Zl0"3 in [3 which corre­
spond to X' are given by 

0I X + f31Y + 81z + El 

ax + ~y + 8z + E ' 
(2.15) 

and similarly 

(2.16) 

If the above represents projection from the world onto a camera image 
plane, we should take into account the focal length of the camera. This 
would require 03 = la, 133 = I~ etc., thus we can define Zl = I (focal 
length) independent of the point chosen. The non-linear transformation in 
[3 then becomes a linear transformation, I , in R4. The linear function 

-p 
I can be used to prove the invariant nature of various quantities under 
-p 
projective transformations, [5J. 
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7. 2. 5 The projective split 

The idea of the projective split was introduced by Hestenes [14] in order 
to connect projective geometry and metric geometry. This is done by asso­
ciating the even subalgebra of 9n+1 with the geometric algebra of one di­
mension less, 9n. One can define a mapping between the spaces by choosing 
a preferred direction in 9n+l, /'n+1. If we then take the geometric product 
of a vector X E 9n+1 and /'n+l 

X!\/'n+1 
X/'n+l = X'/'n+l + X!\/'n+l = X'/'n+l(1 + X ) (2.17) 

'/'n+1 

we can associate the vector x E 9n with the bivector M"X n+l E 9n+1. 
"Yn+l 

This result can be projectively interpreted as the pencil of all lines passing 
though the point /'n+l' In physics the projective split is called the space 
time split which relates the spacetime system 94 with Minkowski metric, 
to the observable system 93 with Euclidean metric. 

In computer vision, we are interested in relating elements of projective 
space with their associated elements in the Euclidean space of the ima­
ge plane. Optical rays (bivectors) are mapped to points (vectors), optical 
planes (tricectors) are mapped to lines (bivectors) and optical volumes (4-
vectors) to planes (trivector or pseudoscalar). 

Suppose we choose /'4 as a selected direction in R4 , we can then define 
a mapping which associates the bivectors /';')'4, i = 1,2,3, in R4 with the 
vectors (Ti, i = 1,2,3, in £3; 

(2.18) 

Note that in order to preserve the Euclidean structure of the spatial vectors 
{(Ti} (i.e. (T; = +1) we are forced to choose a non-Euclidean metric for 
the basis vectors in R4. That is why we select the basis /'l = +1, /'i = 
-1, i = 1,2,3 for 91,3,0. This is precisely the metric structure of Lorentzian 
spacetime used in studies of relativistic physics. We note here that although 
we have chosen here to relate our spaces via the projective split, it is possible 
to use a Euclidean metric {+ + ++} for our 4D space and define the 
split using reciprocal vectors [20]. It is becoming apparent that this is the 
preferred procedure and generalizes nicely to splits from higher dimensional 
spaces. However, for the areas discussed in this chapter, we encounter no 
problems by using the projective split. 

Let us now see how we associate points via the projective split. For a 
vector X = X11'l +X2/'2+X3/'3+X4/'4 in R4 the projective split is obtained 
by taking the geometric product of X and /,4; 

( X!\/,4) X/'4 = X'/'4 + X!\/'4 = X 4 1 + ~ == X 4 (1 + x). (2.19) 

According to equation (2.18) we can associate X!\/'4/X4 in R4 with the 
vector x in £3. Similarly, if we start with a vector x = Xl (T1 + X2(T2 + X3(T3 
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in £3, we represent it in R4 by the vector X = X 11'1 +X21'2 +X3I'3 +X41'4 
such that 

XAI'4 Xl X2 X3 
-- = -I'n4 + -1'21'4 + -1'31'4 X4 X4 X4 X4 

x 

Xl X2 X3 
-a1 + -a2 + -a3, 
X4 X4 X4 

(2.20) 

which implies Xi = ~:, for i = 1,2,3. The approach of representing x in 
a higher dimensional space can therefore be seen to be equivalent to using 
homogeneous coordinates, X, for x. 

Let us now look at the representation of a line L in R4; a line is given 
by the outer product of two vectors: 

L AAB 

(L 141'n4 + L241'21'4 + L 341'31'4) + (L231'2I'3 + L311'3I'1 + L 121'n2) 

(L 141'n4 + L241'21'4 + L 341'31'4) - I(L231'n4 + L 31 1'21'4 + L 121'31'4) 
n - 1m, (2.21) 

the six quantities {ni' md i 1,2,3 are precisely the Plucker coordi­
nates of the line. {L14, L 24 , L34} are the coefficients of the spatial part 
of the bivector which represents the line direction n. {L23 , L31, L12} are 
the coefficients of the non-spatial part of the bivector which represents the 
moment of the line m. 

Let us now see how we can related this line representation to an £3 
representation via the projective split. We take a line, L, joining points A 
and B 

(2.22) 

here, the notation (M) k, tells us to take the grade k part of the multivector 
M. Now, using our previous expansions of XI'4 in the projective split for 
vectors, we can write 

(2.23) 

where a = AkrA 4 and b = ~1Yy4 are the £3 representations of A and B. 
"14 .LY)'4 

Writing A4 = A'I'4 and B4 = B'I'4 then gives us 

L A4B4(1 + (a - b) - ab)2 

A4B4{(a - b) + aAb}. (2.24) 

Let us now 'normalize' the spatial and non-spacial parts of above bivector 

L' L 
'7'"'( a_----,b:-7-) + _( a_A_b_) 
la - bl la - bl 

(2.25) 
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= (nxO'1 + nyO'2 + n z O'3) + (mx O'2O'3 + my 0'3 0'1 + m z O'1O'2) 

(nxO'1 + nyO'2 + n z O'3) + h(mx O'1 + myO'2 + m z O'3) 

(2.26) 

Here h = 0'10'20'3 == 14 , Note that in £3 the line has two components, 
a vector representing the direction of the line and the dual of a vector 
(bivector) representing the moment of the line. This completely encodes 
the position of the line in 3~D space by specifying the plane in which the 
line lies and the perpendicular distance of the line from the origin. 

7.3 The Algebra of Incidence 

This section will discuss the use of geometric algebra for the algebra of 
incidence [16J. Firstly we will define the bracket and consider the duality 
principle. We will define the important concept of the bracket, discuss dua­
lity and then show that the basic projective geometry operations of meet 
and join can be expressed easily in terms of standard operations within the 
geometric algebra. We also briefly discuss the linear algebra framework in 
GA indicating how one will be able to use this within projective geome­
try. One of the main reasons for moving to a projective space is so that 
lines, planes etc have representations as real geometric objects and so that 
operations of intersection etc., can be performed by simple manipulations 
(instead of via solutions of sets of equations, as in £3). 

7.3.1 The bracket 

In a nD space any pseudoscalar will span a hypervolume of dimension 
n. Since, up to scale, there can only be one such hypervolume, all pseu­
doscalars, P, are multiples of the unit pseudoscalar, I, P = aI, with a a 
scalar. We compute this scalar multiple by multiplying the pseudoscalar, 
P, with the inverse of I 

pr1 = aII~1 = a == [PJ. (3.27) 

Thus, the bracket of the pseudoscalar P, [P]' is its magnitude, arrived at 
by multiplication on the right by I~l. This bracket is precisely the bracket 
of the Grassmann-Cayley algebra. The sign of the bracket does not depend 
on the signature of the space and as such it has been a useful quantity for 
the non-metrical applications of projective geometry. 

The bracket of n vectors {Xi} is 

[Xl !\X2 !\X3!\ .,. !\XnJ 

(Xl !\X2 !\X3!\ ... !\Xn)I~1 
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It can also be shown that this is equivalent to the definition of the deter­
minant of the matrix whose row vectors are the vectors Xi. 

To understand how we can express a bracket in projective space in terms 
of vectors in Euclidean space we can expand a pseudoscalar P using the 
projective split for vectors: 

P X I AX2AX3AX4 = (X1l'4'Y4X2X3'Y4'Y4X4)4 

WI W2W3W4((1 + xd(l- x2)(1 + x3)(1- X4))4 

where Wi = Xi"/'4 from equation (2.19). A pseudoscalar part is produced by 
taking the product of three spatial vectors (there are no (spatial bivector) 
x (spatial vector) terms), i.e. 

P WI W2W3W4(-XIX2X3 - XIX3X4 + XIX2X4 + X2X3X4)4 
WI W2W3W4((X2 - Xd(X3 - Xd(X4 - Xd)4 (3.28) 
WI W2W3W4{(X2 - xdA(X3 - xdA(X4 - Xl)}. 

If the Wi = 1, we can summarize the above relationships between the 
brackets of 4 points in R4 and [,3 as follows 

(XIAX2AX3AX4)I4 -1 

{(X2 - xdA(X3 - xdA(X4 - xI)}h -1. (3.29) 

7.3.2 The duality principle and the meet and 

join operations 

In order to introduce the concepts of duality which are so important in 
projective geometry, we should firstly define the dual A* of an r-vector A 
as 

A* = AI-I. (3.30) 

This notation A* relates the ideas of duality to the notion of a Hodge 
dual in differential geometry. Note that in general I-I may not necessarily 
commute with A. 

We see therefore that the dual of an r-vector is an (n - r)-vector, for 
example in 3-D space the dual of a vector (r = 1) is a plane or bivector 
(n-r=3-1=2). 

Using the ideas of duality we are able to relate the inner product to, 
incidence operators and we will see this in what follows. In an n-D space 
suppose we have an r-vector A and an s-vector B, where B has dual B* = 
BI-1 == B·I- I. Here, since BI-1 = B·I-1 + BAI-1 we can replace the 
geometric product by the inner product as the outer product gives zero 
(there can be no (n + l)-D vector). Now, using the identity 

(3.31 ) 
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we can write 

(3.32) 

This expression can be rewritten using the definition of the dual as follows 

A·B* = (AIIBr. (3.33) 

This equation shows the relationship between the inner and outer products 
in terms of the duality operator. Now, if r + s = n, then AIIB is of grade 
n and is therefore a pseudoscalar. Using equation (3.27) it follows that 

A·B* (AIIBr = (AIIB)r 1 = ([AIIB]I)rl 

[AIIB]. (3.34) 

We see therefore that the bracket relates the inner and outer products to 
non-metric quantities. It is via this route that the inner product, normally 
associated with a metric, can be used in a non-metric theory such as pro­
jective geometry. It is also interesting to note that since duality is expressed 
as a simple multiplication by an element of the algebra, there is no need to 
introduce any special operators or any concept of a different space. 

Now, when we work with lines and planes, it will clearly be necessary to 
have operations for computing the intersections or joins of such geometric 
objects. We require a means of performing the set- theory operations of 
intersection, n, and union, U. 

If in an n-dimensional geometric algebra the r-vector A and the s-vector 
B have no common subspace, one can define the join of both vectors as 
follows 

J = AIIB. (3.35) 

So that the join is simply the outer product (an r + s vector) of the 
two vectors. However, if A and B have no common subspace, the join 
would not simply be given by the wedge but by the subspace they span. 
The operation join J can be interpreted as a common dividend of lowest 
grade and is defined up to a scale factor. The join gives the pseudoscalar 
if (r + s) 2': n. We will use 1\ for the join only when the blades A and B 
have a common subspace, otherwise the ordinary exterior product II will 
be used. 

If there exists a k-vector C such that for A and B, we can write A = A' C 
and B = B' C for some A' and B', then we can define the intersection or 
meet using the duality principle as follows 

(A V B)* = A* IIB*. (3.36) 

A beautiful result telling us that the dual of the meet is given by the join 
of the duals. Since the dual of A V B will be taken with respect to the join 
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of A and B, we must be careful to specify what space we use for the dual 
in equation (3.36). However, in most cases of practical interest this join 
will indeed be the whole space and the meet and we are therefore able to 
obtain a more useful expression for the meet using equation (3.33) 

A V B = ((A V B)*)* = (A* AB*)J = (A* AB*)(rl I)J = (A* ·B) (3.37) 

The above concepts are discussed further in [16]. 

7.3.3 Linear algebra 

This section presents the geometric algebra approach to the basic concepts 
of linear algebra - it is presented here for completeness. Although it will 
not be discussed in this chapter, the treatment of invariants [5] uses li­
near algebra and projective geometry to create geometric entities which 
are invariant under projective transformations. 

A linear function f maps vectors to vectors in the same space, the ex­
tension of f to act linearly on multivectors is possible via the so called 
outermorphism, L defining the action of [ on r-blades by 

(3.38) 

f is called an outermorphism, because f preserves the grade of any r-vector 
it acts on. The action of f on general multivectors is then defined through 
linearity. [ must therefore satisfy the following conditions 

[(al Aa2) 
[(Ar) 

[(alaI + a2a2) 

[(ad A[(a2) 
([(Ar))r 
al[(ad + a2[(a2). 

(3.39) 

Accordingly, the outermorphism of a product of two linear functions is the 
product of the outermorphisms, i.e. if f (a) = h (II (a)) we write [ = [2[1' 
The adjoint f of a linear function f acting on the vectors a and b can be 
defined by the property -

[(a)·b = a.J(b). (3.40) 

If [ = f, the function is self-adjoint and can be represented by a symmetric 
matrix, F (F = F T ). 

Since the outer morphism preserves grade, the unit pseudoscalar must be 
mapped onto some multiple of itself - this multiple is the determinant of 

L 
[(I) = det([)J. (3.41) 

This is a particularly simple definition of the determinant from which many 
properties determinants follow straightforwardly. 
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7.4 Algebra in Projective Space 

Having introduced duality, defined the operations of meet and join and 
given the geometric approach to linear algebra, we are now ready to carry 
out geometric computations using the algebra of incidence. 

Consider three non-collinear points, PI, P2 , P3 , represented by vectors 
Xl, X2, X3 in [.3 and by vectors Xl, X 2 , X3 in R4. The line L12 joining 
points PI and P2 can be expressed in R4 by the bivector 

(4.42) 

Any point P, represented in R4 by X, on the line through PI and P2 , will 
satisfy 

(4.43) 

This is therefore the equation of the line in R4. In general such an equation 
is telling us that X belongs to the subspace spanned by Xl and X2 , i.e. 
that 

(4.44) 

for some (\:1, (\:2' In computer vision we can use this as a geometric cons­
traint to test whether a point X lies on L 12 . 

The plane <P123 passing through points PI, P2 , P3 is expressed by the 
following trivector in R4 

( 4.45) 

In 3-D space there are generally three types of intersections we wish to 
consider; the intersection of a line and a plane, a plane and a plane, and 
a line and a line. To compute these intersections we will make use of the 
following general formula [15], giving the inner product of an r-blade, Ar = 
all\a21\ ..... l\ar , and an s-blade, Bs = bl l\b21\ ..... l\bs (for s:::; r) 

( 4.46) 

.. I>(jd2 .... jr )Bs ' (ajl 1\ aj, 1\ ... 1\ ajJ ajs+1 1\ ... 1\ ajr 

j 

where we sum over all combinations j = (jl,j2, .... 'jr) such that no two jk's 
are the same. E(jd2 ... jr) = +1 if j is an even permutation of (1,2,3, ... , r) 
and -1 if it is an odd permutation. 

7.4.1 Intersection of a line and a plane 

In the space R4 consider the line A = Xl 1\ X 2 intersecting the plane 
<P = Y 11\ Y 21\ Y 3. We can compute the intersection point using the meet 
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operation as follows 

A V <P = (XlI\X2) V (Y1 A Y2A Y3) = A V <P = A* .<p. (4.47) 

where we have used equation (3.37) and the fact that in this case the join 
is the whole space. 

Note that the pseudoscalar, 14 in ~h3,O for R4 , squares to -1, commutes 
with bivectors but anticommutes with vectors and trivectors and has in­
verse 14 - 1 = - 14 . This therefore leads to 

A*·<p = (A1- 1).<p = -(A1)·<p. ( 4.48) 

Now using the equation (4.47) we can then expand the meet as 

A V <P = - (AI) . (Y 1 A Y 2 A Y 3) = - { (AI) . (Y 2 A Y 3 n Y 1 + 

+{(AI)· (Y3 A YIn Y2 + {(AI) ·(Y1A y2nY3 (4.49) 

Noting that (AI)'(YiAYj) is a scalar, we can evaluate the above by taking 
scalar parts. For example, (AI)· (Y2AY3) = (I(X1 AX2)(Y2AY3)) = 
I(X1 AX2 A Y2 A Y3). From the definition of the bracket given earlier, we 
can see that if P = X 1AX2AY2AY3, then [P] = (X1AX2AY2AY3)14 -1. If 
we therefore write [A1A2A3A4] as a shorthand for the magnitude of the 
pseudoscalar formed from the four vectors, then we can readily see that the 
meet reduces to 

A V <P = [XIX2 Y2 Y3]Y1 + [X1X2 Y3 Y1]Y2 + [X1X2 Y 1 Y2]Y3 (4.50) 

giving the intersection point (vector in R4 ). 

7.4·2 Intersection of two planes 

The line of intersection of two planes, <PI = Xl AX2 AX3 and <P2 = Y 1 A 
Y2A Y3, can be computed via the meet of <PI and <P2 

(4.51) 

As in previous section, this can be expanded as 

<PI V<P2 <Pl*·(Y1 AY2AY3) 

= -{(<P1I)·Yr}(Y2A Y3) + {(<PII)·Y2}(Y3A Yr) + 
+{(<P1I)·Y3}(Y1 A Y2). (4.52) 

Again, the join is the whole space and so the dual is easily formed. Follow­
ing the arguments of the previous section we can show that (<p 1 I) . Y i == 
-[X1X2X3 Yi], so that the meet is 

<PI V <P2 = [X1X2X3 Y1](Y2A Y3) + [X1X2X3 Y 2](Y3A Y 1) + 
+[X1X2X3 Y3](Y1A Y2), (4.53) 

producing a line of intersection or bivector in R4. 
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7.4·3 Intersection of two lines 

Two lines will intersect only if they are coplanar. This means that their 
representations in R4 , A = Xl /I. X2 , and B = Y 1/1. Y 2 will satisfy 

A/l.B=O. (4.54) 

This fact suggests that the computation of the intersection should be ca­
rried out in the 2-D Euclidean space which has an associated 3-D projective 
counterpart, R3. In this plane the intersection point is given by 

AVE A * . B = - (Ah) . (Y 1 /I. Y 2) 

- {( (AI3)' Y dY 2 - ((Ah)' Y 2)Y I} (4.55) 

where h is the pseudoscalar for R3. Once again we evaluate ((AI3)·Yi ) by 
taking scalar parts 

(4.56) 

The meet can therefore be written as 

(4.57) 

where the bracket [AIA2A3] in R3 is understood to mean (A1MM3)I3 -1. 
The above is often an impractical means of performing the intersection of 
two lines - see [20] for a method which creates a plane and intersects one of 
the lines with this plane. See also [8] for a discussion of what information 
can be gained when the lines do not intersect. See also Chapter 13 for 
a complete treatment of the incidence relations between points, lines and 
planes in the n-affine plane. 

7.4.4 Implementation of the algebra 

In order to implement the expressions and procedures outlined so far in this 
chapter we have used a computer algebra package written for MAPLE. The 
program originates from [17] which works with geometric algebras of ~h,3,O 
and ~ho,o; a more general version of this program, which works with a user­
defined metric on an n-D algebra is available on [1]. Using these packages we 
are easily able to simulate the situation of several cameras (or one moving 
camera) looking at a world scene and to do so entirely in projective (4D) 
space. Much of the work described in subsequent sections has been tested 
in MAPLE. 

7.5 Visual Geometry of n Uncalibrated Cameras 

This section will give an analysis of the constraints relating the geometry 
of n uncalibrated cameras. Firstly the pinhole camera model for one view 
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will be defined in terms of lines and planes. In two and three views the 
epipolar geometry is defined in terms of bilinear and trilinear constraints. 
Since the constraints are based on the coplanarity of lines, we can only find 
relationships expressed by a single tensor for up to four cameras. For more 
than four cameras the constraints are linear combinations of bilinearities, 
trilinearities and quadrilinearities. 

7.5.1 Geometry of one view 

We begin with the monocular case depicted in Figure 7.2. Here the image 
plane is defined by a vector basis of three arbitrary non-collinear points 
A l , A2 and A3 with the optical center given by Ao (all vectors in R4 ). 

Thus, {Ai} can be used as a coordinate basis for the image plane <I> A = 
A1AA2AA3, so that any point A'lying in <I>A can be written as 

x 

......... "A V n;A 
'. '1') '1'2 

FIGURE 7.2. Sketch of projection into a single camera - the monocular 

case. 

(5.58) 

We are also able to define a bivector basis of the image plane, {Lf}, spa­
nning the lines in <I> A; 
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The bivectors {Lf} together with the optical center allow us to define 
three planes, ¢f, as follows; 

AoAA2AA3 = AoALt 

AoAA3AAl = AoALt 

AoAAlAA2 = AoALt· 

(5.60) 

We will call the planes, ¢t, optical planes. Clearly each is a trivector and 
can be written as 

(5.61) 

since there are 4 basis trivectors in our 4-D space. These optical planes 
clearly intersect the image plane in the lines {Lt}. Furthermore, the in­
tersections of the optical planes also define a bivector basis which spans 
the pencil of optical rays (rays passing through the optical centre of the 
camera) in R4; 

¢3 V ¢l == AoAA2 

¢l V ¢2 == AoAA3, 

(5.62) 

so that any optical ray resulting from projecting a world point X onto the 
image plane can be written as 

We can now interpret the camera matrices, used so widely in computer 
vision applications, in terms of the quantities defined in this section. 

The projection of any world point, X, onto the image plane is x and is 
given by the intersection of line Ao AX with the plane <I> A 

where J.l is summed over 1 to 4. We can now expand the above meet to give 

x = Xj{[AoA')'jAA2AA3JAl + [AoA')'jAA3AAlJA2 + 

+[AoA')'j AAI AA2JA3}. (5.63) 

Since x = xkAkl the above implies x = XjPjkAk and therefore that 

xk = PjkXj 

where 

(5.64) 
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since I "(j 1\ "(k = - I8 j k. The matrix P takes X to x and is therefore the 
standard camera projection matrix. If we define a set of vectors {¢~}, 
j = 1,2,3, which are the duals of the planes {¢1}, i.e. ¢~ = ¢1 I-I, it is 
then simple to see that 

(5.65) 

Thus, we see that the projected point x = x j Aj is then given by 

or (5.66) 

i.e. the coefficients in the image plane are formed by projecting X onto the 
vectors formed by taking the duals of the optical planes. This is, of course, 
equivalent to the matrix formulation 

x 

PX. (5.67) 

The elements of the camera matrix are therefore simply the coefficients of 
each optical plane in the coordinate frame of the world point. They encode 
the intrinsic and extrinsic camera parameters as given in equation (2.2). 

Next we consider the projection of world lines in R4 onto the image plane. 
Suppose we have a world line L = X l l\X2 joining the points Xl and X2. 
If Xl = (Aol\Xd V <I>A and X2 = (AOI\X2) V <I>A (i.e. the intersections of 
the optical rays with the image plane) then the projected line in the image 
plane is clearly given by 

l = Xll\X2 

As we can express l in the bivector basis for the plane, we have 

where Lt = A2 1\ A3 etc. as before. From our previous expressions for 
projections given in equation (5.66), we see that we can also write l as 
follows 

which tells us that the line coefficients, {lj}, are 

(Xl·¢~)(X2'¢~) - (Xl·¢~)(X2'¢~) 
(Xl·¢~)(X2'¢~) - (Xl·¢~)(X2'¢~) 
(Xl·¢~)(X2'¢~) - (Xl·¢~)(X2'¢~)' 

(5.68) 

(5.69) 
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Using the identity in equation (3.36) we are then able to deduce identities 
of the following form for each of the lj 

II = (Xl!\X2)·(<P~!\<P~) = (Xl !\X2)-(<Pt V <Pt)* = L.L( 

using the fact that the join of the duals is the dual of the meet. We therefore 
have the general result 

lj = L.L1* == L·L~ (5.70) 

where we have defined L~ to be the dual of L1. Thus, we have again 
expressed the projection of a line L onto the image plane by contracting L 
with the set of lines dual to those formed by intersecting the optical planes. 

Below we summarize the two results derived here for the projections of 
points (Xl and X2) and lines (L = Xl !\X2) onto the image plane: 

Xl (Xl·<p~)Aj X2 = (X2·<p~)Aj 
(5.71) 

(5.72) 

Having formed the sets of dual planes, {<p~}, and dual lines, L~}, for a 
given image plane, it is then conceptually very straightforward to project 
any point or line onto that plane. 

If we express the world and image lines as bivectors, L = Ctjaj + ajI aj 
and L~ = !3jaj + {JjI aj, we can write equation (5.72) as a matrix equation: 

Ctl 

I ~ [1: 1 [ Un 
U12 U13 

1 
Ct2 

U14 U15 U16 
Ct3 == PLl (5.73) U21 U22 U23 U24 U25 U26 
al 

U31 U32 U33 U34 U35 U36 
a2 

a3 

where lis the vector of PlUcker coordinates, [Ctl,Ct2,Ct3,al,a2,ci:3] and the 
matrix PL contains the !3 and bita's - i.e. information about the camera 
configuration. 

When we back-project a point, X, or line, I, in the image plane we produce 
their duals, i.e. a line, lx, or a plane, <PI, respectively. These back- projected 
lines and planes are given by the following expressions 

. . A 
Ao!\x = (X·<p~)Ao!\Aj = (X.<p~)Lj 

. A . A 
Ao!\l = (L.L~)Ao!\Lj = (L.L~)<pj . 

7.5.2 Geometry of two views 

(5.74) 

(5.75) 

In this and following sections we will work in projective space, R 4 , although 
returning to 3-D Euclidean space will be necessary when discussing inva­
riants in terms of image coordinates; this will be done via the projective 
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split. Figure 7.3.a shows a world point X projecting onto points A' and B' 
in the two image planes ¢ A and ¢ B respectively. 

The so called epipoles E AB and E BA correspond to the intersections of 
the line joining the optical centres with the image planes. Since the points 
Ao, Bo, A', B' are coplanar, we can formulate the bilinear constraint using 
the fact that the outer product of these four vectors must vanish: 

Aol\Bol\A'I\B' = O. (5.76) 

Now, if we let A' = O!iAi and B' = ,6jBj , then equation (5.76) can be 
written as 

O!i,6j{AoI\BoI\AiI\Bj} = O. (5.77) 

Defining Fij = {AoI\BoI\AiI\Bj}J-1 == [AoBoAiBj] gives us 

(5.78) 

which corresponds in R4 to the well-known relationship between the com­
ponents of the fundamental matrix or bilinear constraint in E 3 , F, and 
the image coordinates [19]. This suggests that F can be seen as a linear 
function mapping two vectors onto a scalar: 

- 1 F(A,B) = {AoI\BoI\AI\B}J- (5.79) 

So that Fij = F(Ai,Bj ). Note that viewing the fundamental matrix as a 
linear function means that we have a coordinate-independent description. 
Now, if we use the projective split to associate our point A' = O!iAi in the 

image plane with its £3 representation a' = 8iai, where ai = i a4 , it is 
i'Y4 

not difficult to see that the coefficients are related by 

(5.80) 

Thus, we are able to relate our 4-D fundamental matrix, F to an observed 
fundamental matrix F by 

(5.81) 

so that 

(5.82) 

where b' = Eibi, with bi = ~. F is the standard fundamental matrix 
Bi')'4 

that we would form from observations. 
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EBA E 
AB 

x 

Eo 

FIGURE 7.3. Sketch of a) binocular projection of a world point, b) 

trinocular projection. 
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7.5.3 Geometry of three views 

The so called trilinear constraint captures the geometric relationships exis­
ting between points and lines in three camera views. Figure 7.3.b shows 
three image planes ¢A, ¢B and ¢c with bases {Ai}, {B;} and {Ci} and 
optical centres A o, B o, Co. Intersections of two world points Xi with the 
planes occur at points A~, B~, C~, i = 1,2. The line joining the world points 
is Ll2 = X l AX2 , and the projected lines are denoted by L~, L~ and L'c. 

We first define three planes 

It is clear that Ll2 can be formed by intersecting <l?~ and <l?'c, 

Ll2 = <l?~ V <l?'c = (BoAL~) V (CoAL'c). (5.84) 

If LAl = AoAA~ and LA2 = AoAA;, then we can easily see that Ll and 
L2 intersect with Ll2 at Xl and X 2 respectively. We therefore have 

(5.85) 

which can then be written as 

(AoAA~)A{(BoAL~) V (CoAL'cn = 0 for i = 1,2. (5.86) 

This therefore suggests that we should define a linear function T which 
maps a point and two lines onto a scalar: 

T(A', L~, L'c) = (AoAA')A {(BoAL~) V (CoAL'c n. (5.87) 

Now, using the line bases of the planes Band C similar as the ones of the 
plane A in equation (5.59), we can write 

(5.88) 

If we define the components of a tensor as Tijk = T(Ai' L?, Lr), then if 
A', L~, L'c are all derived from projections of the same two world points, 
equation (5.86) tells us that we can write 

(5.89) 

T is the trifocal tensor and equation (5.89) is the trilinear constraint. In 
in [11, 21] this was arrived at by consideration of camera matrices, here, 
however, equation (5.89) is arrived at from purely geometric considerations, 
namely that two planes intersect in a line which in turn intersects with 
another line. To see how we relate the three projected lines, we express the 
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line in image plane 1> A joining A~ and A; as the intersection of the plane 
joining Ao to the world line LI2 with the image plane IP A = Al AA2 AA3 

(5.90) 

Considering LI2 as the meet of the planes IP~ VlPa and using the expansions 
of L'.A, L~, La given in equation (5.88), we can rewrite this equation as 

(5.91 ) 

Using the expansion of the meet given in equation (4.53) we have 

(5.92) 

which, when we equate coefficients, gives 

If = Tijdflf· (5.93) 

Thus we obtain the familiar equation which relates the projected lines in 
the three views. 

7.5·4 Geometry of n-views 

If we have n-views, let us choose 4 of these views and denote them by A, 
B, C and N. As before, we assume that {Aj }, {Bj } etc .... j = 1,2,3 define 
the image planes. 

Let IP Ai = Ao A Ai A A', IP Bi = Bo A Bi A B' etc. where A', B' etc are 
the projections of a world point P onto the image planes. IP Aj V IP Bk gives 
a line passing through the world point P as does IPCI V IPNm. Since these 
two lines intersect we have the condition 

(5.94) 

Consider also the world line L = X I AX2 which projects down to la, lb' le, In 
in the four image planes. We know from the previous sections that it is 
possible to write L in terms of these image lines as the meet of two planes 
in several ways 

L 

L 

(AoAla) V (BoAlb) 

(COAle) V (NoAln) 

Now, since LAL = 0 and taking la = e~Lf etc, we can write 

which can be written as 

oiojokomQ -0 {.a{.b{.e{.n ijkm - . 

(5.95) 

(5.96) 

(5.98) 
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Here, Q is the so-called quadrifocal tensor recently discussed in [12]. The 
above constraint in terms of lines is straightforward but it is also possible to 
find a relationship between point coordinates and Q. To do this we expand 
equation (5.94) as follows 

where we have used the notation Ltr = Aj 1\ Ar == EijrLf. Thus we can 
also write the above equation as 

(5.100) 

for any {i,j,k,m}. 

7.6 Conclusions 

This chapter has outlined the use of geometric algebra as a framework for 
analysis and computation in computer vision. In particular, the framework 
for projective geometry was described and the analysis of tensorial relations 
between multiple camera views was presented in a wholly geometric fashion. 
The projective geometry operations of meet and join are easily expressed 
analytically and easily computed in geometric algebra. Indeed it is the 
ease with which we can perform the algebra of incidence (intersections of 
lines planes etc.) that simplifies many of the otherwise complex tensorial 
relations. The concept of duality has been discussed and used specifically 
in projecting down from the world to image planes - in geometric algebra, 
duality is a particularly simple concept and one in which the non-metric 
properties of the inner product becomes apparent. 
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Chapter 8 

U sing Geometric Algebra for 
Optical Motion Capture 

Joan Lasenby and Adam Stevenson 

8.1 Introduction 

Optical motion capture refers to the process by which accurate 3D data 
from a moving subject is reconstructed from the images in two or more 
cameras. In order to achieve this reconstruction it is necessary to know how 
the cameras are placed relative to each other, the internal characteristics 
of each camera and the matching points in each image. The goal is to 
carry out this process as automatically as possible. In this paper we will 
outline a series of calibration techniques which use all of the available data 
simultaneously and produce accurate reconstructions with no complicated 
calibration equipment or procedures. These techniques rely on the use of 
geometric algebra and the ability therein to differentiate with respect to 
multivectors and linear functions. 

Optical motion capture involves the use of multiple cameras to observe 
a moving subject. From the 2D data in each camera the goal is to obtain 
a moving 3D reconstruction of our subject. This process has applications 
in medicine, biomechanics, sports training and animation. The whole mo­
tion capture process starts by calibrating the cameras - i.e. determining 
their relative positions and orientations and the internal camera charac­
teristics. In any practical system, we require this process to be easy to 
accomplish and the results to be accurate. This paper will look in detail 
at this initial stage of the motion capture process, in particular the de­
termination of the relative orientations and positions of any number of 
cameras given no special calibration object. The algorithms developed for 
this purpose involve the use of geometric algebra and result in an iterative 
scheme which does not require any non-linear minimization stage. There 
are already many examples of the use of geometric algebra in other com­
puter vision applications a few of which are given in [1, 8, 9]. During the 
m-camera calibration process we shall see that two very useful algorithms 
emerge: firstly, a straightforward, analytic means of estimating the rela­
tive translations between cameras (not simply their directions) given that 
the relative rotations are known, is presented. Secondly, given any number 
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of cameras and their relative rotations and translations, we show how to 
produce a robust, optimal (in a least squares sense) estimate of the world 
coordinates. Both techniques could be useful in a variety of applications 
and are each programmed in just a few lines of code. 

The setup we use consists of three 50Hz monochrome CCD cameras 
each connected to the inputs of a framegrabber card located in a PC ~ a 
synch signal is fed into the cameras so that the digitised data comes from 
simultaneous frames, see figure 8.1. The system will shortly be extended to 
6 cameras. 

FIGURE 8.1. 3-camera motion capture system. 

Retroreflective markers are placed on the moving subject and these are 
illuminated with IR radiation directed from each of the cameras. Image 
sequences of bright blobs are then captured ~ one for each camera. Storing 
only the locations of the bright blobs dispenses with the need for expen­
sive frame-stores. In the subsequent processing, the bright blobs in each 
frame are reduced to single points by an algorithm which attempts to find 
the 'centre of mass' of each blob. We are therefore left with a list of the 
pixel coordinates for the points seen in each frame for each image. Assu­
ming we are able to reconstruct 3D data from matched image points, it is 
essential that we are able to track and match the points through the se­
quences. For complicated motions, tracking can be the hardest part of the 
whole process; points crossing, being occluded, performing abrupt changes 
of direction, all add to the difficulties. Experience has shown that one re­
liable means of tracking is to track the points in space, i.e. to track the 
3D motion ~ this enables one to use rigidity and length constraints (i.e. 
information from a model) in a simple fashion to improve the prediction 
process. Therefore, for reliable tracking it is very important that we have 
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a good initial calibration of the system, otherwise the reconstructions will 
be poor and the tracking may experience problems. This is one of the main 
incentives for developing an accurate user-friendly means of obtaining the 
system calibration parameters. The following section will explain what the 
calibration parameters are and how we can estimate these using geometric 
algebra (GA) techniques. This will be followed by some results showing 
the accuracy of the calibrations via simulations and tests on real data. 
Throughout the paper we will assume that the readers are familiar with 
basic GA manipulations ~ for simple introductions to GA see [4, 7, 3, 5J. 
In this paper we will use the convention that where indices are repeated in 
the contravariant and covariant positions, i.e. aibi , they are summed over 
unless explicitly stated otherwise. 

8.2 External and Internal Calibration 

In this section we will explain what is meant by external and internal 
calibration and show how we can use GA techniques to determine the 
unknown calibration parameters. 

8.2.1 External calibration 

Suppose that we have m cameras which we label 1 to m ~ these cameras 
are placed about the field of view. The aim is to place the cameras such 
that at any point in the image sequence, any given world point will always 
be visible in at least two of the cameras ~ this may not always be possible, 
but the tracking software can often make sensible predictions based on the 
rest of the tracked sequence when no prediction from the data is possible. 
Let us take the first camera, 1, as our reference camera. Then the position 
and orientation of camera j will be completely specified by a rotor R j and 
a translation tj as shown in figure 8.2. 

Part of the calibration process will therefore be to determine, as accu­
rately as possible, the m - 1 rotors and the m - 1 translations. 

8.2.2 Internal calibration 

A world point X = (X, Y, Z) is projected onto an image plane to give an 
image point x = (x, y, f) where f is the focal length of the camera (pinhole 
camera model), see figure 8.3 

However, from the image we will measure pixel coordinates u = (u, v, 1). 
In order to move between pixel and image coordinates it is easy to show 
that there exists a 3 x 3 matrix, C which takes x to u : 

u = C(x/ f), 
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FIGURE 8.2. Rotations and translations of cameras relative to refe­

rence, chosen as camera 1. 
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FIGURE 8.3. Factors determining the internal calibration parameters. 
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where C is of the form 

C=(~ ~ ~~) 
o 0 1 

(Ua, va) is known as the principal point - it is where the optical axis of 
the camera cuts the image plane. a, (3",8 depend upon the possible scaling 
and skewing of the pixel axes and f is the focal length (distance along the 
optical axis from the optical centre to the image plane). 

The remainder of the calibration process will therefore be to determine 
the internal camera parameters. The internal parameters can be found via 
a variety of techniques and, once found, are unlikely to vary over reasonable 
timescales. In this paper we will mainly focus on how to accurately estimate 
the external parameters given knowledge of the internal parameters (in this 
case we say we are working with calibrated cameras, although a later section 
will indicate how we can include estimation of the internal parameters in 
the estimation procedure.) 

8.3 Estimating the External Parameters 

Suppose first that we know internal calibration matrices C j for each camera, 
j = 1, '" m. Let the N world points that we observe with our cameras be 
Xi, i = 1, '" N, and define an occlusion field Oij such that Oij = 1 if Xi 
is visible in camera j and 0 if it is not visible in camera j. In practice, we 
would like to be able to do this external calibration without having to track 
points (recall the tracking uses the calibration information). This is done 
by waving a single marker or light source over the viewing area (usually 
a volume of around 2m3 should be covered for adequate calibration). In 
this way each camera will see no points or only one point and there is no 
tracking or matching problem. It is of course possible that some cameras 
will see more than one point due to the presence of spurious sources - if 
this occurs the frame is not used in the calibration process. 

Let Uij be the observed pixel coordinates (of the form (u, v, 1)) of the 
projection of world point Xi in camera j. Since we know the internal cali­
bration parameters of each camera, we can recover the image coordinates, 
Xij, for this point via Xij = Cj-lUij (from hereon we will take it that 
Xij == Xij / f to reduce the complication). If R j and tj are the rotor and 
translation which relate the frame and position of camera j to the reference 
frame of camera 1 then the following relation holds 

(3.1) 

where X ij is world point i in the coordinate frame of camera j, see [7J. 
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FIGURE 8.4. Geometric depiction of the meaning of cost function 82 • 

If the noise occurs in the image planes, we might expect that our es­
timates of the Rs and ts would best be found via minimization of the 
following cost function 

S - ~~ [ .. _ Rj(Xi - tj)Rj ]20 .. 
1 - ~~ X,) - 'J 

j=l i=l [Rj(Xi - t j )Rj J·e3 
(3.2) 

This is effectively minimizing the sum of the squared distances in the 
image planes between the observed image points and the projected points. 
We should note here that R1 == I (the identity), t1 == 0, and the presence of 
the Oij ensures that if the point Xi is not visible in camera j then there is 
no contribution from this term. However, we can see immediately that the 
presence of the parameters we are trying to estimate in the denominator of 
the right-hand term makes this equation a difficult one - we would certainly 
have to find the minimum via some non-linear optimization technique. 

Now, suppose that instead we consider the following cost function: 

m N 2 

S2 = L L [Xij3X ij - Rj(Xi - tj)Rj ] Oij 
j=li=l 

(3.3) 

Here X ij3 is the distance we have to move out along the ray joining the 
optical centre of camera j to image point Xij in order to minimize the 
distance between the world point Xi and the point X ij3 Xij. The above 
cost function is therefore the sum of squared distances between the world 
points and their closest points on the camera rays projecting out from the 
observed image points. Thus, while Sl represents a cost function in the 
image planes, S2 represents a cost function in the world, see figure (8.4). 
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Our observations are the image points in the m cameras, therefore the noise 
on our observations occurs in these image planes - if one assumes Gaussian 
noise one might therefore want to minimize the cost function 8 1 , However, 
it is also true that minimizing 8 1 does not ensure that the reconstructed 
world points are in some way 'as close as possible to the observed rays -
which one might also deem desirable. In fact, both cost functions are likely 
to give good results and we choose to optimize 8 2 in order to obtain avoid 
a non-linear minimization. 

Now, let us try to optimize 8 2 over our parameters Rj,tj,Xij3,Xi. 
Although for external calibration purposes we are only interested in the 
relative rotations and translations of the cameras, here we shall adopt a 
maximum likelihood approach and differentiate with respect to all of our 
unknown parameters. We shall show in the following sections that it is po­
ssible to obtain an iterative solution to this minimization problem and that 
this procedure converges reliably provided the data is not very poor. This 
differentiation will involve differentiation with respect to scalars, vectors 
and rotors. 

In the following sections we will frequently use the quantities defined 
below: 

N 

nj = 2:0ij for j = 1,2, .. ,m (3.4) 
i=l 
m 

mi = 2:0ij for i = 1,2, .. ,N (3.5) 
j=l 

Here, nj is the number of points visible in camera j and mi is the number 
of cameras that can see world point i. 

8.3.1 Differentiation w. r. t. tk 

When we take the derivative, aa, with respect to (w.r.t.) a vector quantity 
a we use the fact that the differential operator aa can be written (in terms 
of a basis {eJ) as 

·0 aa = et -;::;-" uat 
where (3.6) 

Here {ei } is the reciprocal frame to {ei}, and is defined by ei·ej = 8{, for 
i,j = 1,2,3. Note that we do not write vectors in bold when they appear as 
subscripts in the vector derivative. We now want to differentiate 8 2 w.r.t. 
tk, where k can take values 2,3, ... , m. Consider first differentiating a vector 
squared, x 2 , w.r.t. t = t j ej. Taking out a factor of e j on the left and using 
the fact that uv + vu is equivalent to the inner product of the two vectors, 
we have that 
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·ax . ax el-.x+elx-. 
atl ail 

2el -.·x . {ax } 
ail 

N . a _ 
2Lel -. {RktkRd·YikOik 

i=l ott 
N 

2 L ej[(RkejRk)· Yik]Oik 
i=l 

N 

2L ej (ej.RkYikRk) 
i=l 

2t,RkYikRk = 2Rk [t,Yik] Rk = 0 

N 

LYik = 0 
i=l 

(3.7) 

(3.8) 

- - N 
where we have used the fact that (RaR)·b = a·(RbR). Since L:i=l Y ik is 
linear in tk, it is straightforward to solve equation (3.8) for tk to give 

(3.9) 

We have m - 1 such equations as k goes from 2 to m. Thus, if we have 
the data and have estimates for the world points, the rotors and the X ik3 
values, we can solve for each of the translations. 

8.3.2 Differentiation w. r. t. Rk 

In geometric algebra we can differentiate w.r.t. any element of the algebra 
(for more details on multivector differentiation see [7, 6, 3]) and therefore 
w.r.t. rotors. Let us write 

(3.10) 
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where Vik = Xik3Xik and Uik = Xi - tk' The RHS has now been put in a 
standard form for which the solution (see [7] for details) is as follows 

N 

ORkS2 = 4Rk L Vik/\(RkUikRk)Oik (3.11) 
i=l 

For a minimum we require ORkS2 = 0, and therefore the Rk must satisfy 

N N 

L Vik/\(RkUikRk)Oik = L {Xik3Xik/\Rk(Xi - tk)RdOik = 0 (3.12) 
i=l i=l 

or, substituting for tk from equation (3.9) 

N 

LHS L {Xik3 Xik/\Rk 
i=l 

[X, - ~k ~ [X j - X jk3RkX jkRk 1 Ojk 1 Rk }O" 

t,{X"3X <k ARk (X, - ~k ~XjOj') R,jO" 

N 

L(Vik/\RkUikRk) = 0 (3.13) 
i=l 

where we now have Vik = Xik3XikOik and Uik = Xi - ';k L:f=l XjOjk . 
The second line in the set of equations (3.13) is obtained by noting that 

We can now solve for Rk via SVD as outlined in [7] ~ i.e. 

where Fk = USVT 

N 

with L( ea 'Uik)( e!3'vik) (3.14) 
i=l 

This can be done for each k. Thus, we see from the above that provided 
we have the data, the world points and the X ij3 values, we can make an 
estimate of the rotations using the maximum likelihood estimator for the 
translations. 
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8.3.3 Differentiation w. r. t. the Xpq3 

Next we would like to differentiate w.r.t. the scalars Xpq3 ~ recall these 
represent the distance along the ray we have to move to bring us 'as close 
as possible' to the world point. 

For each Xpq3 we have 

OXpQ3 {Xpq3Xpq - Rq(Xp - tq)Rq} 2 Opq 

2 {Xpq3Xpq - Rq(Xp - tq)Rq} ·XpqOpq = 0 

(3.15) 

For Opq =I- 0 we therefore have 

(3.16) 

This equation tells us how to estimate the values of the {Xij3 } given we 
know the data, world points, rotations and translations. 

8.3.4 Differentiation w.r.t. the X k 

If we expand S2 it is easy to see that the derivative w.r.t. X k (for k from 
1 to N) is given by 

m 

OXk L {-2Xkj3(Rj XkjR j ).Xk + (Xk - t j )2} Okj 
j=l 

m 

2 L [-Xkj3RjXkjRj + (Xk - t j )] Okj = 0 
j=l 

(3.17) 

where we have used the fact that oa (a· b) = b. The above expression can 
then be rearranged to give 

(3.18) 

if mk =I- o. k can take the values 1 to N. Thus, we are able to estimate the 
world points given values of the rotations, translations and the {Xij3 }. 

8.3.5 Refining the estimates oft j and X k 

From our data (consisting of one point in many frames viewed by each 
camera) it is relatively straightforward to obtain an initial guess at the R j 
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- this can be done by taking two cameras at a time and applying some 
standard algorithm (e.g. decomposing the Essential matrix [10J, Weng et 
aI's algorithm [12], etc.). Of course, this will not give a consistent set of 
rotations (e.g. R23R2 1= R 3 , where R 23 is the rotor which takes the frame 
at camera 2 to the frame at camera 3), but it will give a reasonable star­
ting point for the algorithm. Now, it would then be nice if we were able to 
estimate a consistent set of translations from these rotations and the data 
- but currently equation (3.9) gives t in terms of the other unknown pa­
rameters as well as the rotations. In addition, for reconstruction purposes, 
we would like to have an expression for the world points, {X d, in terms of 
just the rotations and translations. This is clearly also going to be essential 
when we have calibrated our cameras and we are wanting to reconstruct in 
an optimal fashion, points in the world from all of our m-camera data. We 
will deal with the case of reconstruction first. 

8.3.6 Optimal reconstruction from calibrated data 

If we substitute equation (3.16) into equation (3.18) to eliminate the {Xpq3 } 

values, we have 

(3.19) 

To simplify the notation we write Wij = RjxijRj . If we take the inner 
product of the above equation with ei, i = 1,2,3, we can rearrange to give 

(3.20) 

We have 3 x N such equations (k = 1, .. , Nand i = 1,2,3). For each k 
we can construct a matrix equation for X k 

(3.21 ) 

where the matrix Ak and vector bk are given by 

(3.22) 

(3.23) 
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Thus, if we have a knowledge of the calibration (Rs and ts), we see that 
via equation (3.21) we can very quickly reconstruct the 3D world points 
with a method that uses all of the available data at once in a sensible way. 
More generally the SVD can be used to solve AkXk = b k to avoid possible 
degeneracy. 

8.3.7 An initial estimate for the translations 

Suppose we substitute for X ik3 from equation (3.16) into equation (3.9) 
(still using Wij = RjxijRj ) 

(3.24) 

for nk -I- O. If we now take the inner product of the above equation with ej 

we have 

(3.25) 

with Yijk = fr(Wik·ej)Wik. Now, writing aijk = [ej - YiJklOik and 
ik 

Pjk = ej - ';k 2:~1 YijkOik the above equation can be written more con­
ciselyas 

1 N 
tk·Pjk = - LXi·aijk 

nk i=l 

(3.26) 

Recall from the previous section that we can write Xi = Ailbi where Ai 

is a matrix which is a function of the Rs only and bi is a vector which is 
a function of both the Rs and the ts. Let us therefore write Xi = !(bi ), 

-t 

where L is the linear function corresponding to Ail. Using the fact that 

1(c)·d = c·Y(d), we can now rewrite equation (3.26) as 

(3.27) 

The next step is to note that we can write equation (3.23) as 

(3.28) 

(3.29) 
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From this equation we can see that it will now be possible to use equa­
tion (3.27) in order to form a linear equation in the ts. With some mani­
pulation is it possible to obtain, for given j and k, the following expression 

(3.30) 

This can be written as a matrix equation of the form QT = 0 where 
T = [t21 , t22, t 23, t 31 , ..... , tm3]T (since tl = 0) and can therefore be solved 
by assigning to T the eigenvector corresponding to the smallest eigenvalue 
of the matrix QTQ (alternatively use SVD). Thus, given only an estimate 
of the Rs we have been able to formulate an estimate of the ts - again, 
using all of the available data simultaneously. 

8.3.8 The iterative calibration scheme 

Having worked out all of the necessary steps in the previous sections, we 
are now in a position to outline the iterative scheme by which the external 
calibration is carried out. 

1. Guess an initial set of Rs given only the data (use standard 2-camera 
algorithms) 

2. Estimate a set of ts given these Rs 

3. Estimate the world points {Xi} given these Rs and ts 

4. Estimate the {Xpq3}S given all of the above 

5. Obtain a new estimate of the Rs using values from (2),(3),(4) and 
start the next iteration by returning to step (2). 

In practice each step of the procedure can be performed quickly and 
convergence is achieved within a few tens of iterations. In estimating the 
ts we should note that we are only able to do this up to scale. One may 
therefore set a value to unity (say t 2 · e3) and evaluate the other values 
relative to this - when doing this however, checks must be made that the 
signs of the estimated ts do not produce negative depths (if they do, we 
will need to take t2·e3 = -1). 

The above external calibration routine requires a very simple initial data 
gathering stage (waving a single point over a volume representative of where 
the world points will be) and utilises all of the image data simultaneously 
in order to produce optimal estimates of the relative rotations and trans­
lations of the cameras. In addition the formula for reconstruction given in 
equation (3.18) is very simple and gives accurate and robust 3D reconstruc­
tions. The value of the cost function (S2) can also be monitored throughout 
the iterations; a final value of S2 which is too large is usually indicative of 
poor data and a new calibration should be performed. 
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FIGURE 8.5. Wireframe house (26 points) viewed from 5 cameras -

the optical centre and 4 defining points of the image planes are shown. 

The position and orientation of the cameras are such that the house 

is in view in each camera. 

8.4 Examples and Results 

In order to illustrate this calibration procedure we will present some results 
on both simulated and real data. While the procedure is routinely used in 
the tracking and subsequent reconstruction of real motion capture data, a 
quantitative evaluation of its behaviour is more easily obtained from simu­
lations. The real data presented attempts to evaluate the performance of 
the calibration by checking that rays from the image planes, from which we 
reconstruct the world point, do indeed cross approximately at a single point 
in space. Real multiple camera data together with example reconstructions 
can be downloaded from http://www.sig-proc.eng.cam.ac . uk/vision. 

We use 5 cameras, the first camera placed with its optical centre at the 
origin [0,0, 0] and with its optical axis along the z-direction, viewing a 
wireframe house which is placed about 50 units in z away from the origin. 
Cameras 2 to 4 are rotated and translated from camera 1 as shown in 
figure 8.5. 

R j is the rotor which takes the frame at camera 1 to the frame at camera 
j, and the axes, itj , and angles, ej , which characterise Rj (since Rj = 

rne ) exp -~ are given in table 1. 
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Rotor () t 

R2 [0.7071, -0.7071,0] 51.498° [40,40,5] 
R3 [0.7593, -0.6508,0] 83.810° [60,70,40] 
R4 [-0.7071,0.7071,0] 96.721° [-60, -60,60] 
R5 [-1,0,0] 180° [0,0,100] 

Table 1 Table showing true values of the rotations and translations of 
the cameras. 

In order to calibrate the cameras we used 30 points generated at random 
from a cube centred at [0,0,50] with side length 30 - these points simulated 
the calibration process whereby one bright marker is moved around the 
scene over a number of frames. Here we will assume that each of the 30 
points is visible in all cameras. The 30 points were projected into the 5 
cameras and the image points from each image plane were the only data 
given to the calibration routines. In the image planes Gaussian noise was 
added. Three different levels of noise were tested having standard deviation, 
(Y = 0.001,0.005,0.01 - with the image plane coordinates ranging roughly 
from -0.45 to +0.45, at a resolution of 1000 x 1000 this would correspond 
to standard deviations ranging from 1 pixel to 10 pixels. To initialise the 
algorithm, an initial set of Rs and ts were found by taking two cameras at 
a time and performing some simple method to determine the parameters, 
e.g. the algorithm of Weng et al. [12] - call these Rg and tg. 20 iterations 
of the algorithm were allowed in each case, although generally fewer were 
needed to achieve adequate convergence. Let the final estimated values be 
R£ and t£. 

Using R£ and t£ we can then reconstruct the wireframe house. We use 
a realistic set of data which consists of the image points in each camera 
of those points from the house that were visible in that camera (i.e. we 
include the relevant occlusion field). For the case depicted in figure (8.5), 
we can see, for example, that the uppermost camera will not see any of 
the vertices on the lower side of the house. For these simulations it was the 
case that every vertex was visible in at least two cameras. Also the same 
data and occlusion field were used to perform the 3D reconstruction using 
the initial guesses Rg and tg. The 3D reconstruction was carried out using 
equation (3.21) in both cases. 

Figure (8.6) shows 6 different 3D views of the true wireframe house - the 
azimuth and elevation ([az,el], in degrees) of the viewpoint for each of the 
views is as follows (from top left to bottom right) 

[-38,30]' [-15, 5], [-110, 20], [80, - 25], [-90,90]' [-90,0] 

Figure (8.7) shows the reconstructions obtained for the case of added 
noise, 
(Y = 0.001 - the left column shows the results from the iterative scheme 
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FIGURE 8.6. Six views of the true vertices of the simulated house. 

(20 iterations), while the right column shows the results for reconstruction 
from the two-camera estimates. The top, middle and bottom views have 
azimuth and elevation as for the left column of figure (8.6). Figures (8.8) 
and (8.9) show similar plots for a = 0.005 and a = 0.01. We see that with 
little noise the reconstruction is very good for both cases. However, as the 
noise gets more severe, we see that the iterative scheme tends to give better 
reconstructions. Even under higher noise levels the reconstruction remains 
acceptable. 

As well as comparing the reconstructions it is also instructive to see how 
the estimated rotors compare with the true rotors in each of the above cases. 
If a rotor R, is written as R = exp( - Ifd) /2), then the bivector describing 
the rotation is I nB /2, so that a good way of comparing rotors is to compare 
the bivector components: i.e. nIB, n2B, n3B, with ni = n·ei. Figure (8.10) 
compares these components for the true rotors, and the two sets of rotors 
described above for four noise values, a = 0.001,0.005,0.007,0.01. Similar 
comparisons for the translations are shown in figure (8.11). 

In order to show the performance of the calibration algorithms on real 
data we used three cameras to take a sequence of 300 frames of a person per­
forming a golf swing, with markers placed on shoulders, elbows and wrists. 
The cameras were calibrated prior to taking the data by waving a single 
bright marker over a representative volume and applying the algorithms 
outlined in section 1.3. Figure 8.12 shows an example of the reconstruction 
by showing the linked points for frame 3 of the sequence. Although this 
plot does not tell us much without detailed information of the real subject, 
figure 8.13 gives some idea of the accuracy of the calibration by plotting 
the rays from the matching image points (four such points were taken) 
through the optical centres of the cameras. The positions of the cameras 
are obtained from the calibration. If the calibration is good, we would ex-
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FIGURE 8.9. Results of the reconstruction with cr = 0.01. The left 

column shows results of iterative algorithm; right column shows results 

from taking two-camera estimates. 

pect all matching image points to intersect more or less at a single point 
in space. From figure 8.12 we can see that this is indeed the case for the 
particular frame chosen, and is also the case throughout the rest of the 
sequence. 

We can see that on the whole, the iterative algorithm described in this 
paper produces good estimates of the bivectors and of the translations 
over a wide range of noise cases. The two-camera estimates that we have 
compared the algorithm with are, of course, not something that would be 
routinely used in practice. However, most calibration schemes would start 
with some such estimate and generally proceed via non-linear minimiza­
tion. Such minimizations use gradient descent methods and as such are 
crucially dependent On the initial guess as they will tend to find the local 
minimum in the vicinity of this initial guess. Other methods of calibration 
involve building up the external calibration parameters camera by camera; 
such methods have to ensure that the final estimates are independent of the 
particular order of estimation and form a self-consistent set. Some calibra­
tion schemes in the literature are given in [11, 2], however, code is generally 
not available to compare such algorithms with those discussed here. 

8.5 Extending to Include Internal Calibration 

The discussion in this paper has assumed that we have the internal cali­
bration of the cameras. Typically, for the motion capture system, this is 
done every few weeks or so, and the values are assumed not to change sig-
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FIGURE 8.10. Moving left to right in columns shows results for nl(J, 

n2(J, n3(J, while moving down rows from top to bottom shows results 

for R2, R3 , R4 , R5. In each plot the dashed line gives the true value of 

the bivector component, the solid line gives the bivector component 

from the iterative algorithm and the dotted line gives that from the 

two-camera estimate. The x-axis in each case gives the standard de­

viation of the Gaussian noise added. 
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FIGURE 8.11. Moving left to right in columns shows results for the 

first, second and third components of the translation vectors, while 

moving down rows from top to bottom shows results for cameras 2 to 

4. In each plot the dashed line gives the true value of the translation 

component, the solid line gives the component from the iterative al­

gorithm and the dotted line gives that from the two-camera estimate. 

The x-axis in each case gives the standard deviation of the Gaussian 

noise added. Note that the translations are normalised so that t2-€3 = 1, 

hence the graph in the upper right. 
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FIGURE 8.12. 3D snapshot at frame 3 of the shoulders, elbows and 

wrists of the golfer. 

nificantly on this timescale. However, it is possible to adjust the algorithm 
presented here to include determination of the internal parameters. If we 
return to equation 3.3, but replace Xij by Uij, 

(5.31 ) 

where the linear function fJ represents the 3 x 3 camera matrix OJ, our 
cost function 8 2 in terms of the observations U and the internal calibration, 
becomes 

m N 2 

82 = L L [Xij 3 fej (Uij) - Rj(Xi - tj)Rj ] Oij 
j=l i=l 

(5.32) 

where fej == f j- 1 . We can now minimize over the {tej} as well as the other 
parameters using the ability in GA to carry out functional differentiation. 
One must note, however, that the fes take a particular form (which can be 
made equivalent to an upper triangular matrix), so this constraint must be 
allowed for. A detailed description of this self-calibration procedure will be 
presented elsewhere. 

8.6 Conclusions 

A means of determining the external calibration parameters (relative ro­
tations and translations) for any number of cameras observing a scene has 
been presented. Using geometric algebra to differentiate with respect to 
the the unknowns in the problem, we are able to build up an iterative 
estimation scheme. In the process, we also produce an efficient and ro­
bust reconstruction algorithm which can be used for estimating the world 
points once the calibration has been achieved. The method is essentially a 
maximum likelihood technique in which we substitute maximum likelihood 
estimators in order to eliminate the parameters we do not want to estimate 
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FIGURE 8.13. Reconstructed rays of 4 points (shoulders, one elbow 

and one wrist) in randomly chosen frames from a 300 frame sequence 

of a golf swing. The reconstruction was carried out using calibration 

data determined by the iterative scheme described in section 1.3. 
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(e.g. the world points and the {Xij3 }S). Another technique which can be 
employed is a Bayesian approach, which marginalises over these parame­
ters (nuisance parameters) prior to estimating the Rs and ts - a review of 
the geometric algebra approach to this procedure is given in this volume 9. 
Indeed, if the parameters in question have a multivariate Gaussian distri­
bution then the two techniques should give the same results. Preliminary 
tests indicate that, even though the noise is unlikely to be multivariate 
Gaussian in real data, the two approaches produce very similar results on 
good data. 

The calibration scheme presented here is currently used On an optical 
motion capture system. The algorithms are used with data from a sin­
gle moving marker to produce the external calibration. This calibration 
is then used in the tracking and reconstruction of subsequent data taken 
from the subject. The algorithm is relatively quick, robust and is easily 
effected, meaning that the cameras can be moved and the system speedily 
recalibrated. 

In summary, we have presented a technique for external camera cali­
bration which used the ease of expressing geometric entities in geometric 
algebra and the ability to differentiate with respect to any element of the 
algebra. Using rotors provides a very efficient way of optimizing over a 
rotation manifold; it is a minimally parameterized system, does not have 
the singularities associated with Euler angles and is less cumbersome and 
more easily extendable than quaternions (in the sense that rotors can ro­
tate any geometric object, not just vectors and have the same form in any 
dimension). The results presented here can be used alone or used to ini­
tialize algorithms which employ minimization techniques and different cost 
functions. The intermediate steps of determining the best estimate of the 
world points from known data points and given calibration, and of deter­
mining the relative translations between cameras given the rotations and 
data points, are also useful in many reconstruction and tracking scenarios. 
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Chapter 9 

Bayesian Inference and 
Geometric Algebra: An 
Application to Camera 
Localization 

Chris Doran 

9 .1 Introduction 

Geometric algebra is an extremely powerful language for solving complex 
geometric problems in engineering [4, 8]. Its advantages are particularly 
clear in the treatment of rotations. Rotations of a vector are performed by 
the double-sided application of a rotor, which is formed from the geometric 
product of an even number of unit vectors. In three dimensions a rotor is 
simply a normalised element of the even sub algebra of 03, the geometric 
algebra of three dimensional space. In this paper we are solely interested 
in rotations in space, and henceforth all reference to rotors can be assumed 
to refer to the 3-d case. Rotors have a number of useful features. They can 
be easily parameterised in terms of the bivector representing the plane of 
rotation. Their product is a very efficient way of computing the effect of 
compound rotations, and is numerically very stable. 

Rotors are normalised elements in a 4-d algebra (the even sub algebra 
of 03), so they can be represented by points on the unit sphere in 4-d. 
This is called a 3-sphere, and is the rotor group manifold [2, 5]. The simple 
structure of this manifold makes it very easy to extrapolate between rota­
tions, which is useful in many fields including finite element analysis and 
rigid body dynamics. The extrapolation method can be easily understood 
in terms of relaxing the normalisation constraint and working with unnor­
malised rotors, and normalising the result at the end of a computation. This 
is also the key to simplifying the problem of differentiating with respect to 
rotations. Ordinarily, a function of a rotation is viewed as taking its value 
on the group manifold. Derivatives of this function take their values in the 
tangent space to the group manifold. This is mathematically rigorous, but 
rather cumbersome computationally. A better idea is to move off the group 
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manifold and work in the 4-d linear space, where the rules of calculus are 
much simpler [3, 4, 8]. Used properly, this trick can significantly simplify 
optimisation problems involving rotations. 

The main applications considered here are to variations of the camera 
localization problem in computer vision [7, 8, 10, 11, 13, 14]. Suppose that 
a number of cameras are placed in unknown positions and they observe 
the same scene. In order to reconstruct the scene, we need to determine 
the relative positions and orientations of the cameras. Given a sufficient 
number of point matches between the cameras, this information can be 
accurately recovered without any external measurements. For most cases 
this problem can be reduced to a least squares minimisation over a set 
of rotations and translations, and this can be simplified considerably using 
the techniques of rotor calculus. The least squares likelihood functions used 
here are derived from a simple Bayesian probabilistic model, which helps 
to expose some of the underlying assumptions in the choice of likelihood 
function [12]. This is useful in pointing the way to constructing improved 
models. In this paper we assume a projective camera model, and will further 
assume that the internal camera parameters are all known. A preliminary 
discussion of how geometric algebra can be used to estimate these internal 
parameters is contained in [9]. The basic techniques described here can be 
generalised in a number of ways to deal with more complex situations and 
at various points we discuss how one might exploit this. In particular, the 
extension beyond two cameras is straightforward. This is an area where 
more traditional tensor-based approaches run into difficulties. 

9.2 Geometric Algebra in Three Dimensions 

The geometric algebra of three-dimensional space is generated by a right­
handed orthonormal set of vectors {el' e2, e3}. Their geometric product 
satisfies 

(2.1) 

where f is the pseudoscalar 

(2.2) 

The full algebra is spanned by 

1 {ei} {fed f 
1 scalar 3 vectors 3 bivectors 1 trivector. 

(2.3) 

The dot and wedge symbols have their usual meaning as inner and outer 
products, and for vectors 

1 
a· b = 2(ab + ba) 

1 
a 1\ b = 2 (ab - ba). (2.4) 
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The geometric product for general multivectors is denoted simply by jux­
taposition, and throughout inner and outer products take precedence over 
geometric products. Angled brackets ()n are used for the projection onto 
grade operation, and the scalar part of a multi vector A is denoted simply 
by (A). The scalar part satisfies the cyclic reordering property 

(AB···C) = (B···CA). (2.5) 

The reverse of a multi vector is formed by reversing the order of geometric 
products of vectors in the multivector and is denoted with a tilde. An 
arbitrary multivector M can be decomposed as 

M = a + a + B + (31, (2.6) 

where a and (3 are scalars, a is a vector and B is a bivector. The reverse 
of Mis 

M = a + a - B - (31. (2.7) 

9.3 Rotors and Rotations 

A rotor is a normalised element of the even subalgebra, 

R=a+B, (3.8) 

where a is a scalar and B is a bivector. The normalisation condition is that 

(3.9) 

Rotors generate rotations of vectors via the double-sided transformation 
law 

a l--+ a' = Rail. 

This same law holds for bivectors, since 

(RaR)/\(RbR) ~ (RaRRbR - RbRRaR) 

~R(ab - ba)R 

Ra/\bR. 

It is also simple to check that rotors leave inner products invariant, 

a' . b' = (RaRRbR) = (ab) = a . b. 

(3.10) 

(3.11) 

(3.12) 

The rotor transformation law a l--+ RaR also leaves trivectors invariant, so 
has determinant + 1 and must be a rotation. 
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Tangent plane 

FIGURE 9.1. Tangent Space. At each point on the sphere one can 

attach a tangent plane. 

Rotors can be parameterised directly in terms of the plane of rotation 
by writing 

R = exp(-B/2). (3.13) 

The rotor R now generates a rotation through an angle IBI in the plane 
specified by B, with the same orientation as B. In three dimensions we can 
also write 

R = exp( -()Iit/2) (3.14) 

where () = IBI, and it = -IB/IBI is the unit vector representing the rota­
tion axis. The map between a vector n and the bivector In is called a duality 
transformation. Bivectors can only be dualised to vectors in three dimen­
sions, so the concept of an axis of rotation only exists for three-dimensional 
space. 

9.3.1 The group manifold 

Rotors are elements of a four-dimensional space, normalised to 1. They can 
be represented as points on a 3-sphere - the set of unit vectors in four 
dimensions. This is the rotor group manifold. At any point on the manifold, 
the tangent space is three-dimensional. This is the analog of the tangent 
plane to a sphere in three dimensions (see Figure 9.1). 

Rotors require three parameters to specify them uniquely. One common 
parameterisation is in terms of the Euler angles ((), cp, 'l/J), 

(3.15) 

But often it is more convenient to use the set of bivector generators, with 

(3.16) 

The rotors Rand - R generate the same rotation, because of their 
double-sided action. It follows that the rotation group manifold is more 
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complicated than the rotor group manifold - it is a projective 3-sphere 
with points Rand - R identified. This is one reason why it is usually easier 
to work with rotors. 

9.3.2 Extrapolating between rotations 

Suppose we are given two estimates of a rotation, Ro and Rl , how do we 
find the mid-point? With rotors this is remarkably easy! We first make 
sure sure they have smallest angle between them in four dimensions. This 
is done by ensuring that 

(3.17) 

If this inequality is not satisfied, then the sign of one of the rotors should 
be flipped. The 'shortest' path between the rotors on the group manifold 
is defined by 

R(A) = Ro exp(AB), 

where 
R(O) = Ro, R(l) = Rl · 

It follows that we can find B from 

exp(B) = RoRl' 

(3.18) 

(3.19) 

(3.20) 

The path defined by exp(AB) is an invariant construct. If both endpoints 
are transformed, the path transforms in the same way. The midpoint is 

Rl /2 = Roexp(B/2), (3.21 ) 

which therefore generates the midpoint rotation. This is quite general -
it works for any rotor group (or any Lie group). For rotations in three 
dimensions we can do even better. Ro and Rl can be viewed as two unit 
vectors in a four-dimensional space. The path exp( AB) lies in the plane 
specified by these vectors (see Figure 9.2). 

The rotor path between Ro and Rl can be written as 

R(A) = Ro (cos Af) + sin AO B), 

where we have used B = OB. But we know that 

exp(B) = cos 0 + sin 0 B = RoRl' 

It follows that 

R(A) = ~Oll (sinO cOSAO + sin AO(RoRl - cosO)) 
Slllu 

1 
= ----;---n(sin(l- A)eRo +sinAOR1 ), 

slnu 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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e 

\ 

\ 

FIGURE 9.2. The path between two rotors The rotors can be treated as 

unit vectors in four dimensions. The path between them lies entirely 

in the plane of the two rotors, and therefore defines a segment of a 

circle. 

which satisfies R(>")R(>") = 1 for all >... The midpoint rotor is therefore 
simply 

R _sin(()/2)(R R) 
1/2 - . () 0 + 1· sm 

(3.26) 

This gives us a remarkably simple prescription for finding the midpoint: add 
the rotors and normalise the result. By comparison, the equivalent matrix 
is quadratic in R, and so is much more difficult to express in terms of the 
two endpoint rotation matrices. 

Suppose now that we have a number of estimates for a rotation and 
wanted to find the average. Again the answer is simple. First one chooses 
the sign of the rotors so that they are all in the 'closest' configuration. This 
will normally be easy if the rotations are all roughly equal. If some of the 
rotations are quite different then one might have to search around for the 
closest configuration, though in these cases the average of such rotations 
is not a useful concept. Once one has all of the rotors chosen, one simply 
adds them up and normalises the result to obtain the average. This sort 
of calculation can be useful in computer vision problems where one has a 
number of estimates of the relative rotations between cameras, and their 
average is required. 

The lesson here is that problems involving rotations can be simplified by 
working with rotors and relaxing the normalisation criteria. This enables us 
to work in a four-dimensional linear space and is the basis for a simplified 
calculus for rotations. 

9.4 Rotor Calculus 

Any function of a rotation can be viewed as taking its values over the 
group manifold. In most of what follows we are interested in scalar func­
tions, though there is no reason to restrict to this case. The derivative of 
the function with respect to a rotor defines a vector in the tangent space 
at each point on the group manifold. The vector points in the direction of 
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steepest increase of the function. This can all be made mathematically rigo­
rous and is the subject of differential geometry. The problem is that much 
off this is over-complicated for the relatively simple minimisation problems 
encountered in computer vision. Working intrinsically on the group mani­
fold involves introducing local coordinates (such as the Euler angles) and 
differentiating with respect to each of these in turn. The resulting calcula­
tions can be long and messy and often hide the simplicity of the answer. 

Geometric algebra provides us with a more elegant and simpler alterna­
tive. We relax the rotor normalisation constraint and replace R by 'ljJ - a 
general element of the even subalgebra. There is a very simple derivative 
operator associated with 'ljJ. We first decompose 'ljJ in terms of the {ed basis 
as 

3 

'ljJ = 'ljJo + L'ljJk1ek (4.27) 
k=l 

where the {'ljJo, ... ,'ljJ3} are a set of scalar components. We now define the 
multivector derivative 81jJ by 

( 4.28) 

This derivative is independent of the chosen frame. It satisfies the basic 
result 

(4.29) 

where A is a constant, even-grade multi vector. All further results for 81jJ 
are built up from this basic result and Leibniz' rule for the derivative of a 
product. 

The basic trick now is to re-write a rotation as 

(4.30) 

This works because any even multivector 'ljJ can be written as 

(4.31) 

where R is a rotor, p = 'ljJ,(fi and p = 0 if and only if'ljJ = O. The inverse of 
'ljJ is then 

(4.32) 

so that 
(4.33) 

The equality of equation (4.30) follows immediately. If one imagines a func­
tion over a sphere in three dimensions, one can extend this to a function 
over all space by attaching the same value to all points on each line from the 
origin. The extension R ~ 'ljJ does precisely this, but in a four dimensional 
space. 
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We are now able to differentiate functions of the rotation quite simply. 
The typical application is to a scalar of the type 

(4.34) 

We now have 
(4.35) 

where the overdot denotes the scope of the differential operator (i. e. the 
term being differentiated). We next require a formula for the inverse term. 
We start by letting M be a constant multivector, and derive 

(4.36) 

It follows that 
(4.37) 

But in this formula we can now let M become a function of 'ljJ, as only the 
first term, 'ljJ-1, is acted on by the differential operator. We can therefore 
replace M by M'ljJ-l to obtain the useful formula 

(4.38) 

We can now complete the derivation started at (4.35) to find 

(4.39) 

It is convenient to premultiply this expression by 'ljJ to get 

(4.40) 

The fact that the geometric product is formed between 'ljJ and o,p is impor­
tant. This product is invertible, so no information is lost. The fact that a 
bivector is formed here is sensible. Bivectors belong to a three-dimensional 
space - the same number of dimensions as the tangent space to the group 
manifold. The big advantage of the approach used here is that one never 
leaves the geometric algebra of space, and the resultant bivector is evalua­
ted in the same space, rather than in some abstract tangent space on the 
group manifold. The result (4.40) is also sensible if one thinks about varying 
R in (RaR) . b while keeping the vectors a and b constant. This function 
clearly has a maximum when RaR is parallel to b, which is precisely where 
the derivative vanishes. 

This simple derivation turns out to be very useful in a range of applica­
tions, including rigid body dynamics and point-particle models for fermions. 
Here we have chosen to illustrate its use with some applications in computer 
vision. 
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FIGURE 9.3. The basic two camera setup. The same object is viewed 

from two different directions. The cameras are related by a translation 

and a rotation. All vectors are expressed relative to some arbitrary 

origin O. The relative vector between the camera centres, t = t2 - h, is 

independent of the origin. 

9.5 Computer Vision 

The main problem of interest in this paper is that of camera localization. 
Suppose that we have different camera views of the same scene. Given point 
matches with added noise, we want to find the relative translation and rota­
tion between the cameras. Once the camera geometry has been calculated 
like this, it is possible to reconstruct the three-dimensional scene. Applica­
tions of this basic idea include fields such as motion analysis, reaching and 
neurocontrol, and robot control. Before studying the more realistic case 
of a projective camera model (see Section 9.6) we first study a simpler, 
toy problem whose solution is well known. This is the case where the full 
3-d position is measured for the point matches, including the range data. 
This enables us to introduce some of the tools of Bayesian inference in a 
simplified setting. 

g. 5.1 Known range data 

Suppose that we know the full three-dimensional coordinates of each point 
match (which is not very common in practice). The basic solution in this 
case is well known for the two camera case and has been discussed by many 
authors [1, 6, 7, 11]. The derivation presented here is slightly different, ho­
wever, in being based on an underlying probabilistic model for the data, 
with the rotations and translation recovered via a Bayesian argument. Rel-



9. Bayesian Inference and Geometric Algebra 179 

FIGURE 9.4. The camera frame. Each camera has a frame {ei} attached 

to it, with the 3-axis representing the optical axis. The camera frame 

is related to an arbitrary global frame {f;} by a rotor, with a separate 

rotor required for each camera. The rotor taking the camera 1 frame 

onto the camera 2 frame is then R2Rl, and this is what we aim to find. 

ative to an arbitrary origin, 0, the camera centres are located at positions 
tl and t2, and the point matches at positions Xk (see Figure 9.3). Throu­
ghout we use superscript indices to label the point matches, and subscript 
Latin indices to label frame vectors, {ed, or components of a vector, Xi. 

Which of these is intended should be obvious, as we only use ei and Ii for 
frame vectors. At various points, subscript Greek indices are used to label 
the cameras. 

If we write the two camera frames as {eli} and {e2J respectively, then 
the data we assume that we can record are a set of coordinates for the 
point matches, 

eli' (X - td 
e2i . (X - t2)' 

(5.41) 

(5.42) 

We now introduce a third, arbitrary reference frame {fi}, which is related 
to the two camera frames by 

(5.43) 

(See Figure 9.4). The advantage of working with separate rotors for the 
camera frames, instead of the mutual rotation between them, is that it 
keeps all formulae symmetric in the choice of frame, and ensures that the 
equations generalise easily to the n-camera case. This also provides a useful 
check on the formalism - we should only obtain equations for the mutual 
rotation between the camera frames, and not the absolute rotations between 
the camera frames and the {Ii}. In terms of storing and manipulating the 
data, everything is done in terms of the {fd frame, which is usually chosen 
to coincide with the camera 1 frame. We next define the vectors 

(5.44) 
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which should be related by 

(5.45) 

for all point matches k. 
When we measure the position coordinates for a point match the mea­

surements will be subject to various forms of noise due to discretisation 
(from the conversion to digital pixel coordinates), camera wobble, inexact 
point matches and many other effects. We will assume that all of this 
noise can be modeled with a simple Gaussian distribution, centred on the 
exact value. This is an enormous simplification and is almost certainly 
incorrect. The main advantage in assuming Gaussian noise is that the va­
rious marginalisation integrals can be performed analytically and usually 
return simple, least squares functions to minimise. The point of adopting a 
Bayesian framework is that these (often hidden) assumptions are brought 
out clearly. This in turn suggests various improvements which can lead to 
more accurate reconstruction. 

Our assumed probability density function (pdf) is (ignoring the norma­
lisation) 

P(xt) ex: exp(;:"~ (xt - eli· (Xk - tl))2) 

P(xt) ex: exp(;:"~ (xt - e2i· (Xk - t2))2). 

The pdf for the vector x~ is therefore simply 

k (-1 k- k2) P(xd ex: exp 20-2 (R1Xl Rl + h - X) , 

(5.46) 

(5.47) 

(5.48) 

with a similar result holding for x~. The full joint probability distribution 
over all point matches is therefore 

Bayes' theorem [12] states that 

P(XIY I) = P(YIX, I) x P(XII) P(YIX I) P(XII) 
, P(YII) ex: ,x . (5.50) 

This follows immediately from the product rule of probability theory. The 
final term P(XII) is called the prior and is chosen to reflect any knowledge 
we might have about the quantity to be determined prior to any measure­
ments being made. In our case we have no such knowledge, so we assume 
uniform priors for the camera frames and centres, and for the positions of 
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the point matches. We can therefore use Bayes' theorem to invert our pdf 
to obtain 

P( {X~, xnl{Xk}, R I, R2, h, t2) ex P(RI' R2, t l , t2, {Xk}l{x~, x~}), 
(5.51) 

where we continue to ignore normalisation factors. The next step is to 
marginalise over the actual positions Xk to get the pdf for the rotors Ri and 
positions ti in terms of the data. This marginalisation process is performed 
by simply integrating out the unwanted degrees of freedom, 

P(RI' R2, t l , t21{x~, x~}) 

ex J d3X l d3X2 ... d3Xn P(RI' R2, tl, t2, {Xk}l{x~, xn)· (5.52) 

The marginalisation integrals are straightforward once one employs the 
result 

2 2 ( 1 ) 2 1 )2 (X - a) + (X - b) = 2 X - -(a + b) + -(a - b . 
2 2 

(5.53) 

All that remains after the integral is therefore 

P(RI' R2, tl,t21{x~, xn) ex 

exp(;:"~ ~)RIX~RI - R2X~R2 + tl - t2)2). 
k 

(5.54) 

Maximising this function therefore reduces to minimising the least squares 
difference 

'"' k- k- 2 S = L)RlxIRI - R2x2R2 + tl - t2) , (5.55) 
k 

as has been discussed by many authors [1, 6, 7, 11]. 

9.5.2 Solution 

The first point to note is that S of equation (5.55) is a function of tl - t2 
only, and hence is independent of the absolute origin. This is precisely the 
behaviour we expect. It follows that minimisation of S with respect to 
either h or t2 lead to the same equation, which is simply that 

where 
1 n 

- '"' k Xl = - ~XI' n 
k=l 

1 n 
- '"' k X2 =; ~x2· 

k=l 

(5.56) 

(5.57) 

The vector t2 - h is simply the difference in the two centroids of the data, 
and depends on the rotors Ri . 
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Now that we have found t2 - h we can substitute its value back into 8 
to express 8 as a function of the rotors only: 

8 = 2::(RI(X~ - xI)RI - R2(X~ - x2)R2)2. (5.58) 
k 

On squaring this only the cross terms remain with any rotor dependence, 
and we are left to maximise 

8' = 2::((x~ - xI)RIR2(X~ - x2)R2RI ). (5.59) 
k 

This is a function of the relative rotor RIR2 only, again as expected. The 
same equation is obtained if we differentiate 8' with respect to RI or R2· 
Using the result of equation (4.40) we see that the equation to solve is 

2::(RI(X~ - xI)Rd 1\ (R2(X~ - x2)R2) = o. (5.60) 
k 

Taking the inner product with the bivector eli 1\ elj produces the equation 

(5.61) 

where 
Fij = 2:: Ii . (x~ - Xl) fJ . (RIR2(X~ - x2)R2RI ). (5.62) 

k 

This is easily solved with a singular-value decomposition of Fij , as has been 
discussed elsewhere [8]. 

9.5.3 Adding more cameras 

The generalisation to n cameras is quite straightforward. Instead of two 
terms in the pdf of equation (5.49) there are now n of them. The margina­
lisation integral simply involves completing the square as follows: 

(5.63) 

The least squares expression to minimise therefore involves the sum over 
all n(n - 1)/2 combinations of different cameras, 

(5.64) 

where the k sum runs over point matches, and a, (3 run over the camera 
pairs. This result is sensible as it is totally symmetric on the camera labels 
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~I 

Camera 3 

FIGURE 9.5. The three camera setup. The relative vectors between the 

cameras are given by tij = tj - ti. The relative rotations are Rij = RjRi. 

These satisfy t12 + t23 + t31 = 0 and R31R23R12 = 1. 

and does not depend on relating everything back to a preferred reference 
camera. 

Minimising S with respect to each of the tQ vectors gives the simple 
solution for the relative translations 

(5.65) 

Again, the total vector tl + ... + tn is unspecified. Substituting the values 
for the relative vectors into S, we are left with the function 

S = L L(RQ(x~ - xQ)RQ - R{3(x~ - X(3)R{3)2, (5.66) 
Q<{3 k 

which we want to minimise with respect to the n rotors R Q • As before, one 
only obtains equations for the relative rotations between two cameras, and 
not the absolute rotation from the global Ud frame. 

One can get the general feel of this equation structure considering three 
cameras (Figure 9.5). The three equations from the three rotors reduce to 

L(Rl(X~ - XdRl) /\ (R2(X~ - x2)R2 + R3(X~ - x3)R3) = 0 (5.67) 
k 

and 

L(R2(X~ - x2)R2) /\ (R3(X~ - x3)R3 + Rl(X~ - XdRl) = O. (5.68) 
k 

The final equation is just the sum of the first two and contains no further 
information. Again, this is to be expected as there are always n - 1 relative 
rotations to solve for. 

This equation structure is more complicated that the 2-camera case, 
and cannot by solved simply with a singular-value decomposition. Rather 
than removing the anti-symmetric component of a single tensor, one has to 
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x 

FIGURE 9.6. Pixel Coordinates. In most applications in computer vi­

sion one only measures the pixel coordinates of a point in the camera 

plane. Provided the camera is calibrated, these can be converted to 

the image coordinates of x. 

minimise the anti-symmetric components of 3 independent tensors, using 
2 independent rotors. This problem should be numerically quite straight­
forward to solve, either at the level of the equations, or through direct 
numerical minimisation of the S of equation (5.66). This latter approach 
is simplified by the fact that the individual pairwise mini misers for two of 
the pairs provide good starting points for any minimisation routine. 

9.6 Unknown range data 

In most computer vision applications we do not have access to the third 
coordinate giving the direction to a point. Instead what we measure are 
pixel coordinates in the camera plane (see Figure 9.6). Placing the origin at 
the camera centre, a world point X has coordinates (Xl, X 2 , X 3 ) expressed 
in the camera frame. Adopting the projective pinhole camera model, the 
image point x has coordinates (Xl, X2, f), where f is the focal length. The 
pixel coordinates u = (UI' u2, 1) are related to the image coordinates by a 
3 x 3 camera matrix C , 

U = C(xl f), xl f = C-Iu. (6.69) 

(See [9] for more details). Provided the matrix C is known, we can recover 
the vector X If. For a projective pinhole camera, the components of this are 
simply the homogeneous coordinates (XI! X 3 , X21 X 3 , 1) of the world point 
X. 

For the 2-camera setup of Figure 9.3, the two coordinates we measure in 
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the Camera 1 system are 

k eli' (Xk - td 
Xli = e13 . (Xk - h)' i = 1,2. (6.70) 

A simple model would be to assume is that the observed data is taken 
from a Gaussian distribution centred on these values. The problem with 
this is that the resulting marginalisation integral over the Xk cannot be 
performed analytically. Instead we will use a different model in which the 
marginalisation integrals can be performed. The result is a likelihood func­
tion which can be minimised very quickly and efficiently. The results of this 
turn out to be reasonable, and geometrically quite sensible. 

Our choice of a simplified model, including modeling the combined effects 
of the various sources of noise with a simple Gaussian distribution, is one 
of a number of simplifying assumptions we will make in order to find a sim­
ple function to minimise. Each of these assumptions can be challenged and 
modified to construct more realistic models and give better reconstruction. 
This approach is quite different from the standard alternative, based on the 
epipolar geometry and the fundamental matrix [10,14]. In this approach an 
assortment of least-squares optimisers are considered, none with any under­
lying justification from a probabilistic model, and an assortment of linear 
algebra techniques are used to find the mutual translation and rotation. 
Many of these do not properly account for the structure of the rotation 
group, which limits their accuracy. They do have some value, however, 
in providing some fast algorithms to give initial points for the nonlinear 
schemes developed here. 

Our starting point is the pdf of equation (5.49). That is, we start by 
treating all three coordinates in the same way. Again, we marginalise over 
the positions Xk to get the 2-camera joint pdf, but this time we view the 
range data as an unknown parameter and assign it a uniform prior. We 
therefore arrive at the distribution 

(6.71) 

where i runs over the two coordinates in the camera plane, z~ is the un­
known range (0: denotes the camera), and the vectors x~, x~ are formed 
directly from the measured data by 

2 

X~ = L>~Ji+h (6.72) 
i=l 

The next step is to marginalise over the unknown ranges Zl and Z2. Here 
we make one final simplification by taking the range of the integrals from 
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-00 ... 00. This allows for points behind the camera to be considered, so 
is clearly unjustified, but has the advantage that the integrals can be per­
formed analytically. The integral we require has the form 

I = I: dZl dZ2 exp( -(Zlal - Z2a2 + t)2) (6.73) 

where al = RlX~Rl' etc. and t = h -t2. To carry out this integral we need 
the result that 

J dnxexp ( - XiXj Tij + 2Xibi) = N exp(bibj Ti:/) (6.74) 

where Tij is an n x n symmetric matrix, bi is an n-component vector and N 
is a normalisation constant. For the integral (6.73) the matrix Tij is given 
by 

(6.75) 

and the vector bi is . _ (-a l . t) b, - t. a2· 
(6.76) 

It follows that 

(6.77) 

and 

(6.78) 

Hence 

bibj Tijl = - ( 1 )2 (a1 2(a2 . t)2 + a22(al . t)2 - 2al . a2 al . t a2 . t) 
al /\ a2 

1 2 
( )2(al ·ta2 -a2 ·tad 
al /\ a2 

= (t. (al/\ a2))2 (6.79) 
lal/\a21 ' 

which assembles into a simple geometric function. Applying these results 
to the pdf of equation (6.71), and remembering the final (h - t2)2 term, 
we arrive at the log-likelihood function 

n ((h - t2) /\ ((RlX~ Rd /\ (R2X~R2)) ) 2 

S=L k- k-
k=l I(Rlxl Rd /\ (R2x 2R2)12 

(6.80) 

This is now a simple function of the vectors ta and the rotors Ra. Again, 
only the relative translation (t l - t2) enters the problem, and the freedom 
to choose the Ji reference frame means that one of the rotors is arbitrary. 
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Camera 2 

Line Distance 

Camera 1 

FIGURE 9.7. Line Distance. Given a point match in the two camera 

planes, the vectors are extended out to three-dimensional space, and 

the distance between the lines is found. The sum of the squares of 

these is minimised to find the best fit translation and rotation. 

The function (6.80) has a simple geometric interpretation in terms of the 
distance between the projective lines for a given point match (see Figu­
re 9.7). Given a point match, the projective lines from the two cameras are 
extended into space. The function then records the square of the distance 
between the lines (in units on IfI - t21), and sums these over all point 
matches. This is certainly a sensible error measure for this problem, and it 
is instructive to see how it arises from a probabilistic model. 

The function (6.80) is scale invariant, since no scale has yet been imposed 
on the problem. As it stands, therefore, the function is minimised by setting 
tl - t2 = O. To avoid this we need to impose a scale, which is most simply 
achieved by setting 

(6.81 ) 

This condition is imposed by including a Lagrange multiplier, so the func­
tion to minimise becomes 

n 

S = I:((tl - t2) . n k)2 - A((tl - t2)2 - 1), (6.82) 
k=l 

where 

(6.83) 

Our final S (6.82) is still quadratic in the relative vector t = tl - t2, and 
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minimising gives the simple equation 

n 

Lt. nk nk = At. 
k=1 

We next construct the symmetric, positive definite function 

n 

F(a) = La.nknk, 
k=1 

(6.84) 

(6.85) 

which is a function of the data and the rotation only. The translation t is 
an eigenvector of this function, with the eigenvalue 

n 

A = t· F(t) = L(t. nk)2 = 8. (6.86) 
k=1 

So to minimise the error function 8 we need to choose t to be the eigenvec­
tor with smallest eigenvalue. All we need do, then, is minimise the lowest 
eigenvalue of F with respect to the rotor R. This is a fairly simple optimi­
sation problem, as we only need to search in the 3-parameter rotor space. 
Numerical studies of this function reveal that it contains some local mini­
ma, but the global minimum lies in a fairly deep valley and it is not hard 
to find this numerically. 

9.7 Extension to three cameras 

The Bayesian analysis presented here extends easily to the 3 camera case. 
A simpler alternative, however, is to take the log-likelihood function of 
equation (6.80) and sum this function over each of the camera pairs. Incor­
porating a Lagrange multiplier to impose a suitable constraint, the function 
we need to minimise is 

n 

83 = L((h - t2) . n~2)2 + ((t2 - t3) . n~3)2 + ((t3 - tl) . n~I)2 
k=1 

(7.87) 

where 

etc. (7.88) 

We only get independent equations from minimising with respect to two 
of the three translation vectors. Taking these to be tl and t2 the equations 
we arrive at are 

n 

L(tl - t2) . n~2 n~2 - (t3 - tl) . n~1 n~1 = A(2tl - t2 - t3) (7.89) 
k=1 
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n 

:~:)t2 - h) . n~3 n~3 - (tl - t2) . n~2 n~2 = oX(2t2 - t3 - tl)' 
k=l 

If we now set 
a=2h-t2-t3, b= 2t2- t3- t l, 

then we recover a 6 x 6 eigenvalue problem of the form 

F31 - F12) (a b) = 30X (a b) 
2F23 + F12 

where 
n 

F12(a) = La. n~2 n~2' etc. 
k=l 

(7.90) 

(7.91 ) 

(7.92) 

(7.93) 

As in the 2 camera case, the eigenvalue oX returns the value of 83 that we are 
trying to minimise. The minimisation problem therefore reduces to finding 
a pair of rotors which minimises the lowest eigenvalue of a 6 x 6 matrix. 
Numerical implementation of this algorithm will be presented elsewhere. 

9.8 Conclusions 

Geometric Algebra is an extremely powerful tool for handling rotations in 
three dimensions. Vectors and the quantities which act on them are united 
in a single algebra, which has a number of computational advantages. Re­
laxing the normalisation condition for rotors provides a simplified calculus 
for rotations which avoids having to work in the tangent space to the group 
manifold. As a result, many extremisation problems involving rotations can 
be studied and solved without ever leaving the geometric algebra of 3-d. 

The applications to the camera localization problem given here illustrate 
the various advantages that geometric algebra can provide. This is parti­
cularly so when combined with Bayesian inference techniques. The models 
considered here are highly simplified, though still quite useful. Much work 
remains in order to construct robust, accurate algorithms to use with real 
cameras. The effects of the camera matrix must be included, particularly as 
the cameras often require re-calibrating after they are moved significantly. 
Similarly, more realistic noise models are required. Discretisation errors, for 
example, are certainly not well modeled as Gaussian process. In addition, 
we need to be able to work with arbitrary numbers of cameras, allowing for 
occlusion effects where point matches may only be shared by a subset of 
all of the cameras. When tackling each of these problems, however, there 
seems little doubt that the combination of geometric algebra and Bayesian 
reasoning advocated here will turn out to be the best way to proceed. 
Acknowledgments CD gratefully acknowledges the support of the 
EPSRC. 



Chapter 10 

Projective Reconstruction of 
Shape and Motion Using 
Invariant Theory 

Eduardo Bayro Corrochano and Vladimir Banarer 

10.1 Introduction 

In this chapter we present a geometric approach for the computation of 
shape and motion using projective invariants in the geometric algebra 
framework [6, 7]. 

In the last years researchers have developed diverse methods to compute 
projective invariants using n uncalibrated cameras [I, 2, 4, 8]. Different 
approaches for projective reconstruction have utilized the projective depth 
[13, 14], projective invariants [4] and factorization methods [11, 15, 16]. 
The factorization methods require the projective depth. The contribution 
of this paper is the application of projective invariants depending on the 
fundamental matrix or trifocal tensor to compute the projective depths. 
Using these projective depths we initialize the projective reconstruction 
procedure to compute shape and motion. We also illustrate the application 
of algebra of incidence for the development of geometric inference rules to 
complete the 3D data. The experimental part shows projective reconstruc­
tion of shape and motion using both simulated and real images. 

The organization of the chapter is as follows: section two explains the 
generation and computation of projective invariants using two and three 
uncalibrated cameras. We test their performance using both simulated and 
real images. Section three presents the computation of the projective depth 
using projective invariants in terms of the trifocal tensor. The treatment 
of projective reconstruction and the role of the algebra of incidence to 
complete the 3-D shape is given in section four. The conclusion part follows. 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering

© Birkhäuser Boston 2001
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10.2 3-D Projective Invariants from Multiple Views 

This section presents the point and line projective invariants computable 
by means of n uncalibrated cameras. We begin with the generation of geo­
metric invariants using the Plucker-Grassmann quadratic relation. We give 
a geometric interpretation of the cross-ratio in the 3-D space and in the 
image plane. We compute then projective invariants using two and three 
cameras. 

10.2.1 Generation of geometric projective invariants 

We choose for the visual projective space p3 the geometric algebra 91,3,0 

and for the image or projective plane p2 the geometric algebra 93,0,0. Any 
3D point is written in 91,3,0 as Xn = X n1'l + Yn1'2 + Zn1'3 + W n1'4 and its 
projected image point in 93,0,0 as Xn = XnO"l + Yn 0"2 + Zn0"3, where Xn = 
Xn/Wn , Yn = Yn/Wn , Zn = Zn/Wn. The 3-D projective basis consists of 
four basis points and a fifth one for normalization: Xl = [1,0,0, 0J T , X 2 = 
[O,I,O,OJ T , X3 = [O,O,I,OJ T , X 4 = [O,O,O,lf, X5 = [1,I,I,If and the 
2-D projective basis comprises three basis points and one for normalization: 
Xl = [1,0, Of, X2 = [0,1, Of, X3 = [0,0, If, X4 = [1,1, If. Using them we 
can express in terms of brackets the 3D projective coordinates X n , Yn , Zn 
for any 3D point, as well as its 2D projected coordinates Xn , Yn 

[234n][I235J Yn 

[2345][I23nJ' Wn 

[23nJ [I24J Yn 

[234J [I2nJ ' Wn 

[I34nJ [I235J 
[I345J [I23nJ ' 

[I3nJ[I24J 
[I34][I2nJ· 

[I24nJ [1235J 
[I245][I23nJ. (2.1) 

(2.2) 

These equations are projective invariants relations and they can be used 
for example, to compute the position of a moving camera. 

The projective structure and its projection on the 2-D image is related 
according to the following geometric constraint 

° W5 Y5 -Y5 Z 5 (Y5 - W5)W5 
W5 X 5 ° -X5 Z 5 (X5 - W5)W5 

° W6 Y6 -Y6Z 6 (X5 - W5)W5 

° W6Y6 -Y6 Z 6 (Y6 - W6)W6 

( 
X- 1 

) 
0 

W6 X 6 ° -X6Z 6 (X6 - W6)W6 y-1 
(2.3) 0 =0, 

° W7 Y7 -Y7Z 7 (Y7 - W7)W7 Z-l 
0 

W7 X 7 ° -X7Z 7 (X7 - W7)W7 w:- 1 
0 

where X o, Yo, Zo Wo are the coordinates of the view point. Since the matrix 
is of rank < 4, any determinant of four rows becomes a zero. Considering 
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(X5, Y5, Z5 W 5) = (1,1,1,1) as a normalizing point and taking the deter­
minant formed by the first four rows of equation (2.3) we get the geometric 
constraint equation involving six points pointed out by Quan [12] 

(W5Y6 - X5Y6)X6Z6 + (X5Y6 - X5w6)X6W6 + (X5W6 - Y5 w6)X6Y6 + 

+(Y5X6 - W5x6)Y6Z6 + (Y5W6 - Y5 x6 )Y6W6 + 
(2.4) 

Carlsson [3] showed that the equation (2.4) can be also derived using the 
PlUcker-Grassmann relations. This can be computed as the Laplace ex­
pansion of the 4 x 8 rectangular matrix involving the same six points as 
above 

[Xl,X2,X3,X4,X5,X5,X6,X7] = [XO,Xl ,X2,X3] (2.5) 

[X 4 ,X5 ,X6 ,X7]- [XO,Xl,X2,X4][X3,X5,X6,X7] + 

+[XO,Xl,X2,X5][X3,X4,X6,X7]- [XO,Xl ,X2,X6] 

[X 3 ,X4 ,X5 ,X7 ] + [XO,Xl,X2,X7][X3,X4,X5,X6] = o. 
Using four functions like equation (2.5) in terms of the permutations of six 
points as indicated by their sub-indices in the table below 

X o Xl X 2 X3 X 4 X5 X6 X 7 

0 1 5 1 2 3 4 5 

0 2 6 1 2 3 4 6 

0 3 5 1 2 3 4 5 

0 4 6 1 2 3 4 6 

we get an expression where the brackets that have two identical points 
vanish 

[0152] [1345] - [0153] [1245] + [0154] [1235] = 0, 

[0216] [2346] - [0236] [1246] + [0246] [1236] = 0, 

[0315] [2345] + [0325] [1345] + [0345] [1235] = 0, 

[0416] [2346] + [0426] [1346] - [0436] [1246] = O. (2.6) 

It is easy to show that the brackets of image points can be written in the 
form [XiXjXk] = WiWjWk[K][XOXiXjXk] , where [K] is the matrix of 
the intrinsic parameters [10]. Now if we express in equations (2.6) all the 
brackets which have the point X ° in terms of the brackets of image points 
and organize all the bracket products as a 4x4 matrix we get the singular 
matrix 

( 
[216]f2346] 
[315] [2345] 
[416] [2346] 

[125] [1345] 
o 

[325] [1345] 
[426] [1346] 

[135] [1245] 
[236] [1246] 

o 
[436] [1246] 

[145] [1235] ) 
[246] [1236] 
[345] [1235] 

O. 

(2.7) 
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Here the scalars WiWjWk[K] of each matrix entry cancel each other. Now 
after taking the determinat of this matrix and rearrange the terms conve­
niently, we obtain the following useful bracket polynomial 

[125] [346] [1236] [1246] [1345] [2345] -

[126] [345] [1235] [1245] [1346] [2346] + 

[135] [246] [1236] [1245] [1346] [2345] -

[136][245] [1235] [1246] [1345] [2346] + 

[145][236] [1235] [1246] [1346] [2345] -

[146][235] [1236][1245][1345][2346] = 0, (2.8) 

Surprisingly this bracket expression is exactly the shape constraint for six 
points given by Quan [12] 

where i1 = [125][346]' i2 = [126][345], ... , i6 = [146][235] and 
h = [1236][1246][1345][2345]' Iz = [1235][1245][1346][2346]' ... , 

(2.9) 

16 = [1236] [1245] [1345] [2346] are the the relative linear invariants in p2 and 
p3 respectively. Using the shape constraint we are now ready to generate 
invariants for different purpose. 

Let us illustrate this with an example. As shown in the Figure 10.1 there 
is a configuration of six points which indicates whether or not the end­
effector is grasping properly. 

FIGURE 10.1. Grasping a box. 

To test this situation we can use an invariant generated from the cons­
traint of equation (2.8). In this particular situation we recognize two planes: 
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[1235]=0 and [2346]=0. Substituting these six points in equation (2.8) we 
make some brackets vanish reducing the equation to 

or 

[125] [346] [1236] [1246] [1345] [2345] -

- [135][246] [1236] [1245] [1346] [2345] = 0 

[125] [346] [1246] [1345] - [135] [246] [ 1245] [1346] = 0 

Inv 
(XI AX2AX 4AX5)Iil (X IAX3AX4AX6)Ii l 

(XIAX2AX4AX6)Iil (X lAX 3AX4AX5)Iil 

(XIAx2Ax5)I31 (x3Ax4Ax6)I31 

(xIAx3Ax5)I31 (x2Ax4Ax6)I31 . 

(2.10) 

(2.11) 

(2.12) 

In this equation any bracket of p3 after the projective mapping fulfills 

(XIAX2AX4AX5)Iil == 
WI W 2W 4W 5{(X2 - xdA(X4 - xdA(X5 - xd}I3 1 , (2.13) 

The constraint (2.8) makes always sure that the Wi Wj W k Wz constants are 
canceled. Furthermore, we can interpret the invariant Inv, the equivalent 
of the, in p3 as ratios of volumes and in p2 as rations of triangle areas 

Inv = Vl245 Vl346 = A125A346. 
Vl246 Vl345 Al35A246 

(2.14) 

In other words, we can also see this invariant in p3 as the relation of 4-
vectors or volumes built by points lying on a quadric which projected in 
p2 represents an invariant build by areas of triangles encircled by conics. 

For example utilizing this invariant we can check whether or not the 
grasper is holding the box correctly. Note that using the observed 3-D 
points in the image we can compute this invariant and see if the relation 
of the triangle areas corresponds with the appropriate relation for firm 
grasping, i.e. if the grasper is away the invariant has a different value from 
the required value when the points X I, X 5 of the grasper are near to the 
objects points X 2 , X 3 . 

10.2.2 Projective invariants using two views 

Let us consider a 3-D projective invariant derived from the equation (2.8) 

Inv3 = [XIX2X3X4][X4X5X2X6] 
[XIX 2X 4X 5] [X3X 4X 2X 6]· 

(2.15) 
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The computation of the bracket 

of four points from R4 , mapped to the cameras with the optical centers 
Ao and B o, suggests to use the binocular model based on incidence algebra 
as introduced in chapter 7. Defining the lines 

L12 XU\X2 = (AoALt2) V (BoALf2) 
L34 X 3 AX4 = (AoALt4) V (BoALf4) 

where lines LC and L~ are mappings of the line Lij to the two image 
planes, results in the following expression for the bracket 

(2.16) 

Here AJ234 and B~234 are the points of intersection of the lines Lt2 and 
L:i4 or L12 and L~, respectively. These points, lying in the image planes, 
can be expanded using the mappings of three points Xi, say Xl, X 2 , X 3 , to 
the image planes, i.e. Aj and B j , j = 1,2,3, as projective basis, as follows 

0'1234,l A 1 + 0'1234.2 A 2 + 0'1234,3 A 3 

,81234,l B 1 + ,81234,2B 2 + ,81234,3 B 3. 

Then equation (15.73) from chapter 15 follows 

(2.17) 

where P is the fundamental matrix given in terms of the projective ba­
sis, embedded in R4 and Q1234 = (0'1234,1,0'1234,2,0'1234,3) and /31234 = 
(,81234,1, ,81234,2, ,81234,3) are corresponding points. 

The ratio 

(2.18) 

is therefore seen to be an invariant using two cameras [2]. Note that equa­
tion (2.18) is invariant whatever values of the 1'4 components of the vectors 
Ai, B i, Xi etc. are chosen. A confusion arises if we attempt to express the 
invariant of equation (2.18) in terms of what we actually observe, i.e. the 
homogeneous Cartesian image coordinates a~s, b;s and the fundamental 
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matrix F calculated from these image coordinates. In order to avoid that 
it is necessary to transfer the computations of equation (2.18) carried out 
in R4 to R3. Let us explain now this procedure. 

If we define F by 

(2.19) 

then using the relationships aiJ· = t; . ,. aiJ· and f3 iJ· = ~; . ,. biJ· it follows 
j . ,. j . ,. 

that 

(2.20) 

If F is estimated by some method, then an F defined as in equation (2.19) 
will also act as a fundamental matrix or bilinear constraint in R4. Now let us 
look again at the invariant Inv3F. According to the above considerations, 
we can write the invariant as 

I (aT 1234Fb1234)( aT 4526 Fb4526)<P1234<P4526 nV3F = 7-~~~~~7-~~~~~~~~~ 
(aT 1245 Fb1245) (aT 3426Fb3426)<P1245<P3426 

(2.21) 

where <Ppqrs = (A~qrs ·')'4)(B~qrs ·')'4). Therefore we can see that the ratio 
of the terms aT Fb which resembles the expression for the invariant in 
R4 but uses only the observed coordinates and the estimated fundamental 
matrix will not be an invariant. Instead, we need to include the factors 
<P1234 etc., which do not cancel. It is relatively easy to show [lJ that these 
factors can be formed as follows. Since a;, a~ and ai234 are collinear, we 
can write ai234 = J.t1234a~ + (1 - J.t1234)a;. Then, by expressing A~234 
as the intersection of the line joining A~ and A~ with the plane through 
Ao, A;, A~ we can use the projective split and equate terms so that they 
give 

(A~234·')'4)(A~526·')'4) J.t1245(J.t3426 -1) 
(A;426·')'4)(A~245·')'4) - J.t4526(J.t1234 -1)" 

(2.22) 

Note that the values of J.t are readily obtainable from the images. The 
factors B~qrs·')'4 are found in a similar way so that if b~234 = .A1234b~ + (1-
.A1234)b; etc., the overall expression for the invariant becomes 

Inv3F (ai234 Fb1234 ) (ar526 Fb4526) 

(ai245 Fb1245) (af426Fb3426) 

J.t1245(J.t3426 - 1) .A1245(.A3426 - 1) 
J.t4526(J.t1234 - 1) .A4526(.A1234 - 1)· 

(2.23) 

As conclusion, given the coordinates of a set of 6 corresponding points in 
two image planes, where these 6 points are projections of arbitrary world 
points in general position, we can form 3-D projective invariants provided 
we have some estimate of F. 
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10.2.3 Projective invariant of points using three views 

The technique used to form the 3-D projective invariants for two views can 
be straightforwardly extended to give expressions for invariants of three 
views. Considering four world points, Xl, X 2 , X 3 , X 4 , or two lines X l /\X2 

and X 3 /\X4 , projected into three camera planes, we can write 

(Ao/\Lt2) V (Bo/\Lf2) 
(Ao/\Lf4) V (Co/\Lf4)' 

Once again, we can combine the above expressions so that they give to give 
an equation for the 4-vector X l /\X2 /\X3 /\X4 , 

((Ao/\Lt2) V (Bo/\Lf2))/\((Ao/\Lf4) V (Co/\Lf4)) 
(Ao/\A1234)/\((Bo/\Lf2) V (Co/\Lf4))' (2.24) 

Writing the lines Lf2 and Lf4 in terms of the line coordinates we have 
3 3 

Lf2 = 2: lf2,j Lf and Lf4 = 2: lr4,j Lf. 
j=l j=l 

It has been shown in chapter 15 that the components of the trifocal 
tensor (which plays the role of the fundamental matrix for 3 views), can 
be written in geometric algebra as 

(2.25) 

so that from equation (2.24) it can be derived: 

The invariant I nV3 can then be expressed as 

(2.27) 

Note that the factorization must be done so that the same line factori­
zations occur in both the numerator and denominator. Therefore we have 
an expression for invariants in three views that is a direct extension of the 
invariants for two views. Forming the above invariant from observed quan­
tities we note, as before, that some correction factors will be necessary -
equation (2.27) is given above in terms of R4 quantities. Fortunately, this 
is quite straightforward. Regarding the results of previous section, we can 
simply consider the ex's terms in equation (2.27) as not observable quanti­
ties, conversely the line terms like Lf2' Lf4 are indeed observed quantities. 
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As a result, the expression has to be modified using partially the coeffi­
cients computed in previous section and for the unique four combinations 
of three cameras their invariant equations read 

(2.28) 

10.2·4 Comparison of the projective invariants 

Invariants using F Invariants using T 

0.000 0.590 0.670 0.460 0.000 0.590 0.310 0.630 

0 0.515 0.68 0 0.63 0.338 

0.59 0 0.134 0.67 

0.69 0.29 

0.063 0.650 0.750 0.643 0.044 0.590 0.326 0.640 

0.67 0.78 0.687 0 0.63 0.376 

0.86 0.145 0.192 0.67 

0.531 0.389 

0.148 0.600 0.920 0.724 0.031 0.100 0.352 0.660 

0.60 0.96 0.755 0.031 0.337 0.67 

0.71 0.97 0.31 0.67 

0.596 0.518 

0.900 0.838 0.690 0.960 0.000 0.640 0.452 0.700 

0.276 0.693 0.527 0.063 0.77 0.545 

0.98 0.59 0.321 0.63 

0.663 0.643 

FIGURE 10.2. The distance matrices show the performance of the 

invariants by increasing Gaussian noise a: 0.005, 0.015, 0.025 and 0.04. 

This section shows simulations with synthetic data and computations 
using real images. The simulation was implemented in Maple. 

The computation of the bilinearity matrix F and the trilinearity focal 
tensor T was done using a linear method. We believe that for the test 
purposes these are good enough. Four different sets of six points Si = 
{Xil,Xi2,Xi3,Xi4,Xi5,Xi6}, where i = 1, .. ,4, were considered in the 
simulation and the only three possible invariants were computed for each 
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set {h,i,!2,i,h,i}. Then, the invariants of each set were represented as 3-
D vectors (Vi = [h ,i, 12,i , h,iJT). We computed four of these vectors that 
corresponded to four different sets of six points using two images for the F 
case and three images for the T case (first group of images); and for four 
of these vectors corresponding to the same point sets we used another two 
images for the F case or another three images for the T case (second group 
of images). The comparison of the invariants was done using Euclidean 

1 

distances of the vectors d(Vi' Vj) = (1 - Illv:il·ll~jlll) 2; this method was 
used for the same reason by [5J. 

Since in d(Vi' Vj) we normalize the vectors V i and Vj, the distance 
d(Vi' Vj) for any of them does lies between 0 and 1 and it does not vary 
when Vi or Vj is multiplied by a nonzero constant. The figure 10.2 shows 
a comparison table where each (i, j)-th entry represents the distance com­
puted using d( Vi, V j) between the invariants of set 5i of the points extracted 
of the first group of images and the set 5 j of the points yet using the second 
group of images. In the ideal case, the diagonal of the distance matrices 
should be zero, that means that the values of the computed invariants 
remain constant regardless of which group of images they were used for. 
The entries off the diagonal mean that we are comparing vectors composed 
of different coordinates (Vi = [h,i, 12,i, 13 ,i]T), thus they are not parallel 
and should be bigger than zero and if they are very different the value of 
d(Vi' Vj) should be approximately 1. Now looking at the figure 10.2, we can 
clearly see that the performance of the invariants based on trilinearities is 
much better than that of those based on bilinearities, the diagonal values 
in the T case are in general closer to zero than in the F case and its entries 
off the diagonal are in general bigger values than in the F case. 

FIGURE 10.3. Image sequence taken during navigation by the binoc­

ular head of a mobile robot. The upper row shows the left camera 

images and the lower one shows the right camera ones. 
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In the case of real images we use a sequence of images taken by a moving 
robot equipped with a binocular head. The figure 10.3 shows three images 
of the left eye in the upper row and below these of the right eye respectively. 
We took image couples, one from the left and one from the right for the 
invariants using F and two of one eye and one of the other for the invariant 
using T. From the image we took 38 points semi-automatically and we 
selected now six sets of points. In each set the points are in general position. 
Three invariants of each set were computed and the comparison tables were 
obtained similarly to the previous experiment, see figure 10.4. 

using F 

0.04 0.79 0.646 0.130 0.679 0.89 

0.023 0.2535 0.278 0.268 0.89 

0.0167 0.723 0.606 0.862 

0.039 0.808 0.91 

0.039 0.808 

0.039 
usmgT 

0.021 0.779 0.346 0.930 0.759 0.81 

0.016 0.305 0.378 0.780 0.823 

0.003 0.83 0.678 0.97 

0.02 0.908 0.811 

0.008 0.791 

0.01 

FIGURE 10.4. The distance matrices show the performance of the 

computed invariants using bilinearities (top) and trilinearities (bot­

tom) for the image sequence. 

This shows again that the approach to compute the invariants using tri­
linearities is much more robust than the one using bilinearities, as expected 
from the theoretical point of view. 

10.3 Projective Depth 

In a geometric sense the projective depth can be seen as the relation between 
the distance regarding the view center of a 3-D point Xi and the focal 
distance f as depicted in figure 10.5. 

Let us derive the projective depth from a projective mapping. According 
to the pinhole model explained in chapter 15 the coordinates of a point in 
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\ 
\ 

\ 
\ 
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\ 
\ 

\ 
\ 

x~ 

FIGURE 10.5. Geometric interpretation of the projective depth. 

the image plane is the result of the projection of the 3-D point to the three 
optical planes ¢~, ¢~, ¢~. They are spanned by a trivector basis 'Yi, 'Yj, 'Yk 
and the coefficients tij' This projective mapping in a matrix representation 
reads 

[ x 1 [¢~ 1 [ tn 
h2 

t" t" J[ ~ 1 AX Y = ¢} X = t21 t22 t23 t24 Z 
1 ¢ A t31 b2 t33 t34 1 

[ ~ 
0 

o II Tn 
r12 r13 tx 

II ~ 1 
j o r21 r22 r23 ty (3.29) 
0 1 r31 r32 r33 tz 

0 0 0 1 

where the projective scale factor is called A. Note that the projective ma­
pping is further expressed in terms of a j, rotation and translation compo­
nents. Let us attach the world coordinates to the view center of the camera. 
The resultant projective mapping becomes 

AX (3.30) 

We can then compute straightforwardly 

(3.31 ) 



202 Eduardo Bayro Corrochano and Vladimir Banarer 

The way how we compute the projective depth (= A) of a 3-D point 
appears simple using invariant theory, namely using equations (2.1). For 
that we select a basis system taking four 3-D points in general position 
Xl, X 2, X 3, X 5, the optical center of camera at the new position as the 
four point X 4 , and X6 as the 3-D point to be reconstructed. This has been 
depicted in figure 10.6. 

Since we use the mapped points, we consider the epipole (mapping of 
the current view center) as the four point and the mapped sixth point as 
the point with the unknown depth. The other mapped basis points remain 
constant during the procedure. 

FIGURE 10.6. Computing the projective depths of n cameras. 

According to equation (2.1), the tensor based expression for computing 
the third coordinate or projective depth of a point Xj (= X 6 ) reads 

In this way we can successively compute the projective depths Aij of the 
j-points referred to the i-camera. The Aij will be used in next section for 
the 3-D reconstruction using the join image concept and the singular value 
decomposition SVD method. 

Since this kind of invariant can be also expressed in terms of the quadrifo­
cal tensor [9], we can compute the projective depth based on four cameras. 

10.4 Shape and Motion 

The orthographic and paraperspective factorization method for structure 
and motion using the affine camera model was developed by Tomasi, Kanade 
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and Poelman [11, 15]. This method works for cameras viewing small and 
distance scenes, thus all scale factors of projective depth Aij=l. For the 
case of perspective images the scale factors Aij are unknown. According to 
Triggs [16] all Aij satisfy a set of consistency reconstruction equations of 
the so-called join image. One way to compute Aij is by using the epipolar 
constraint. If we use a matrix representation this is given by 

( 4.33) 

which after an inner product gives the relation of projective depths for the 
j-point between camera i and k 

(eik /\Xkj )FikXij 

Ileik/\Xkj W 
(4.34) 

Considering the i-camera as reference we can norm the Akj for all k­
cameras and use A~j instead. If that is not the case we can norm between 
neighbor images in a chained relationship [16]. 

In the previous section we presented a better procedure for the computing 
of Aij involving three cameras. The extension of the equation (4.34) in terms 
of the trifocal or quadrifocal tensor is awkward and unpractical. 

10.4.1 The join image 

The join image 3 is nothing else than the intersections of optical rays and 
planes at the points or lines in the 3-D projective space as depicted in 
figure (10.7). The interrelated geometry can be linearly expressed by the 
fundamental matrix and trifocal and quadrifocal tensors. The reader will 
find more details about these linear constraints in chapter 7. 

In order to take into account the interrelated geometry, the projective 
reconstruction procedure should put together all the data of the indivi­
dual images in a geometrically coherent manner. The way to do that is by 
considering the observations of the points X j regarding each i-camera 

(4.35) 

as the i-row of a matrix of rank 4. For m cameras and n points the 3mxn 
matrix 3 of the join image is given by 

Al1 X l1 A12 X 12 A13 X 13 AlnXln 

A21 X 21 A22 X 22 A23 X 23 A2nX2n 

A31 X 31 A32 X 32 A33 X 33 A3n X 3n 

3= (4.36) 

AmlXml Am2Xm2 A m 3 X m3 AmnXmn 
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FIGURE 10.7. The geometry of the join image. 

For the affine reconstruction procedure the matrix is of rank 3. The matrix 
.:1 of the join image is amenable to a singular value decomposition for 
finding the shape and motion [11, 15]. 

10.4.2 The SVD method 

The application of SVD to .:1 gives 

(4.37) 

where the columns of matrix vIxr and U3mxr constitute the orthonormal 
base for the input (co-kernel) and output (range) spaces of .:1. In order to 
get a decomposition in motion and shape of the projected point structure, 
Srxr can be absorbed into both matrices vIxr and U3mxr as follows 

(X lX2X3 ... Xn)4x~4.38) 

3mx4 

This way to divide Srxr is not unique. Since the rank of .:1 is 4 we should 
take the first four biggest singular values for Srxr. The matrices Pi co­
rrespond to the projective mappings or motion from the projective space 
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to the individual images and the point structure or shape is given by X j. 
We test our approach using a simulations program written in Maple. Using 
the method of section 10.3 firstly we computed the projective depth of the 
points of a wire house observed with 9 cameras and then using the SVD 
projective reconstruction method we gained the shape and motion. The 
reconstructed house after the Euclidean readjustment for the presentation 
is shown in figure 10.8. 

. : 

o , • 

6 8 10 12-2 

o , • 

6 8 10 12-2 

a) b) 

FIGURE 10.8. Reconstructed house using a) noise-free observations 

and b) noisy observations. 

We notice that the reconstruction keeps quite well the original form of 
the model. 

The next section will show how we can improve the shape of the re­
constructed model using geometric expressions in terms of the operators 
of algebra of incidence V (meet) and 1\ (join) and particular tensor based 
invariants. 
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10.4.3 Completion of the 3-D shape using 
geometric invariants 

a) 

c) 

o 
2 -2 

b) 

" 20 

d) 

o 
25 '2 

10 12 

16 18 

" 

FIGURE 10.9. a) One of the three images, b) reconstructed incomplete 

house using 3 images c) extending the join image d) completing in the 

3-D space. 

The projective structure can be improved in two ways: by completing 
points on the images, by expanding the join image and then by calling the 
SVD procedure, or, after the reconstruction, by completing points in the 3-
D space like the occluded ones. Both approaches can use geometric inference 
rules based on symmetries or concrete knowledge about the scene. Using 
three real views of a similar model house with its most right lower corner 
missing, see figure lO.9.b , we compute in each image the virtual image 
point of this 3-D point. Then we reconstruct the scene as shown in figure 
1O.9.c. As opposite, using geometric incidence operations we completed the 
house employing the space points as depicted in figure 1O.9.d. We can see 
that creating points in the images yields a better reconstruction of the 
occluded point. Note that in the reconstructed image we transformed the 
projective shape into an Euclidean one for the presentation of the results. 
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a) 

c) 

" 
" " " 

b) 

d) 

o 
25 -2 

\ 4
1618 

10 12 

14
1618 

10 '2 

FIGURE 10.10. a) One ofthe nine images, b) reconstructed incomplete 

house using 9 images c) extending the join image d) completing in the 

3-D space. 

We used also lines connecting the reconstructed points only to make visible 
the house form. Similarly we proceeded using 9 images, as presented in in 
figure lO.lO.a-d. 

We can see that the resulting reconstructed point is almost similar in 
both procedures. As a result we can draw the following conclusion: when 
we have few views we should extend the join image using virtual image 
points and in case of several images we should extend the point structure 
in the 3- D space. 

10.5 Conclusions 

This chapter focused on the application of projective invariants based on 
the trifocal tensor. We developed a method to compute the projective depth 
using this kind of invariants. The resulting projective depths were then used 
for the initialization of the projective reconstruction of shape and motion. 
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Furthermore using incidence algebra rules we completed the reconstruction 
for the case of occluded points. 

The main contribution of this paper is that in our geometric method 
we relate to and extend current approaches regarding projective invariants 
and their application for reconstruction of shape and motion, as a result 
the procedures gain geometric transparency and elegance. However, the 
authors believe that more work have to be done in order to improve the 
computational algorithms so that the use of projective invariants will be 
more and more attractive for real systems involving noisy data. 
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Chapter 11 

Robot Kinematics and Flags 

J.M. Selig 

11.1 Introduction 

In robotics the group of proper rigid transformations of 3-dimensional space 
is of central importance. The relevant Clifford algebra in this case is a de­
generate one with three generators that square to -1 and a single generator 
that squares to O. The algebra contains a copy of the group's double cover. 

In a previous work [10], it was shown that the algebra also contains 
representations of the points, lines and planes of space. Moreover, incidence 
relations, meets and joins of these linear elements are represented by simple 
formulre in the algebra. Here this work is extended by combining these 
linear elements into flags, that is nested sequences of linear elements. These 
flags can be used to represent some of the basic joints used in robots. In 
particular, a lined plane can be used to represent a prismatic or sliding joint 
and either a pointed line or a pointed plane can represent a hinge or revolute 
joint. This is because the isotropy group of the flag is the group of rigid body 
motions allowed by the joint. This allows us to set up the inverse kinematics 
for a serial manipulator with six revolute joints as a problem in the Clifford 
algebra. A theorem due to Pieper on the the solubility of such problems is 
then fairly straightforward to prove. The theorem states that the inverse 
kinematics problem can be solved if any three consecutive joint axes meet 
at a point or are parallel. In these cases the methods developed give a 
general solution to the inverse kinematics problem. Finally two concrete 
examples are given. 

11.2 The Clifford Algebra 

This work uses a degenerate Clifford algebra, that is the Clifford algebra 
associated with a degenerate bilinear form. The algebra has three genera­
tors which square to -1, ei = e§ = e~ = -1 and a single generator which 
squares to zero e2 = O. The generators anti-commute in the usual way. 

This particular algebra dates back to Clifford himself who concentrated 
on its even sub-algebra which he called the 'biquaternions', see [2]. The 
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reason for looking at this algebra is that is contains the group of rigid body 
transformations as a sub-group of group of units. More precisely it contains 
the double cover of the group of rigid transformations. Moreover, as we will 
see below, it also contains several useful geometric representations of the 
group, this allows us to turn the geometry of points, lines and planes into 
Clifford algebra expressions. 

11.2.1 The group of rigid body motions 

It is well known that the group of rotations in three dimensional space 
SO(3) ,can be represented by elements of a Clifford algebra as, 

¢ . ¢( ) r = cos 2" + sm 2" vxe2e3 + vye3el + Vzele2 

where ¢ is the angle ofrotation and the unit vector (vx , vY' vzf is the axis 
of the rotation. It is straightforward to show that these elements form a 
group under Clifford multiplication with identity 1 and where the inverse 
of an element r is given by the conjugate r*. That is, rr* = 1. The action 
of this group on a point q in 1R3 can be written as, 

q' = rqr* = r(qxel + qye2 + qze3)r* 

Again it is simple to verify that this corresponds to the standard repre­
sentation q' = Rq, where q is the position vector of the point and R is 
the 3 x 3 matrix corresponding to a rotation of ¢ about the axis given by 
v = (vx, vY' vz)T. 

The group product corresponds to the product of rotations. Notice ho­
wever that both rand -r give the same rotation, so the group found above 
is not the rotation group itself but its double cover Spin(3). 

In robotics we are interested in the group of rigid body motions, the 
rotations and translations. We are not interested in reflections since no 
physical machine can reflect an object. So strictly we should refer to the 
group of proper rigid motions in 1R3 . In robotics this group is usually 
denoted SE(3). 

In order to incorporate translations we look at Clifford algebra elements 
of the form, 

1 
9 = r + 2tre 

where r is as above and the translation vector t = txel + t ye2 + tze3. We 
expect the rotations to act on the translation, we know that the group of 
rigid body motions is a semi-direct product of rotations with translations, 
SE(3) = SO(3) ><JIR3 . Combining a pure rotation with a pure translation 
reveals this action, 

r(l + ~te) = (r + ~rte) = (r + ~(rtr*)re) 
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FIGURE 11.1. A line in space. 

So the action of rotations On translations is rtr* as we expect (Rt). 
As before, the group of elements of this form double cover the rigid body 

motions as 9 and -g give the same transformation. Notice that, the group 
elements 9 are all members of the even sub-algebra and that gg* = 1. More 
details can be found in [9, Chap. 9]. 

11.2.2 Points, lines and planes 

In this section we detail the representation of points, lines and planes as 
elements in the Clifford algebra. Also we show how the group of rigid body 
motions acts on these elements. 

The most well know of these representations is the representation of lines. 
This is because they are represented by grade 2 elements of the Clifford 
algebra and hence can be thought of as biquaternions, see for example [5, 
section 8.2]. 

Lines in 1R3 can be specified their Plucker coordinates. Here we think of 
these as a pair of vectors, a unit vector v, in the direction of the line and 
a moment vector u = q x v, where q is the position vector of any point on 
the line, see figure 11.1. These vectors will thus be orthogonal V· u = O. In 
the Clifford algebra we will represent a line by elements of the form, 

£ = (vxe2e3 + vye3el + vzele2) + (uxele + uye2e + u ze3e ) 

but satisfying the relation, 
££* = 1 

This relation combines the requirements that v is a unit vector and that 
v and u are orthogonal. These lines are in fact directed lines since -£ is 
the same line as £ but with the opposite direction. 
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The effect of a rigid body motion on a line is given in terms of the Plucker 
coordinates, 

v' =Rv, u' = Ru +t x Rv 

In the Clifford algebra the effect of a rigid body motion on a line can be 
represented as, 

£' = g£g* 

this can be verified by a simple computation. 
We can find the group elements which correspond to rotations about 

a line £ as follows. First translate the line so that it passes through the 
origin using (1 - (1/2)qe), now rotations about a line through the origin 
are simply rotations about the line's axis (cos(c/J/2) + sin(¢/2)v) , finally we 
put the line back where we found it by translating with (1 + (1/2)qe). The 
result is a one-parameter subgroup of elements, 

g(c/J) (1 + (1/2)qe) (cos(c/J/2) + sin(c/J/2)v)(l- (l/2)qe) 
cos(c/J/2) + sin(c/J/2)v + (1/2) sin(c/J/2)(qv - vq)e 
cos(c/J/2) + sin(c/J/2)£ 

Since qv - vq = 2(qyvz - qzvy)el + 2(qzvx - qxvz)e2 + 2(qxvy - qyvx)e3. 
Next we look at planes in IR3 , these are represented by grade 1 elements 

of the Clifford algebra and hence cannot be thought of as biquaternions. 
A plane can be specified by giving its unit normal vector n and the per­
pendicular distance from the origin, see figure 11.2. As usual, the vector 
equation of the plane is given by, 

n·q=d 

where q is any point on the plane. Notice that these are oriented planes 
since reversing the sign of nand d will invert the orientation of the plane. 

In the Clifford algebra we can represent planes as elements of the form, 

These elements must satisfy the quadratic condition, 

this ensures that the vector n has unit length. Note that, 1f* = -1f, hence 
we could also write the condition as 1f2 = -1. Now if we subject the plane 
to a rigid body motion the normal vector and distance to the origin will 
change as follows, 

n'=Rn, d' = d + (Rn) . t 

This is most easily seen by considering the effect on the vector equation for 
the plane above. In the Clifford algebra this can be represented by, 

1f' = g1fg* 
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FIGURE 11.2. A plane. 

Finally here we look at points in 1R3 , these will be represented by grade 
3 elements of the Clifford algebra of the form, 

p= ele2e3 +xe2e3e+ye3ele+zele2e 

The effect of a rigid body motion is given by, 

pi = gpg* 

Notice that these points satisfy the equation pp* = 1, (or p2 = 1, since 
p* = p) however, they are not the only solutions. There is another 1R3 of 
solutions where the coefficient of ele2e3 is -1 instead of +l. 

This representation is different from the one given in [8] and used in [9]. 
The representation used there has a slightly different group action and is 
not homogeneous. 

11.2.3 Some relations 

One of the most useful results of the Clifford algebra outlined above is 
the fact that many relations between points, lines and planes have simple 
expressions in terms of this algebra. Here we look at a couple of these, a 
fuller account may be found in [10]. 

First we look at the distance from a point to a plane. This is the minimum 
distance, which will lie along the normal to the plane. 

If this distance is l then in the Clifford algebra we have the relation, 

~(-7rP* + P7r*) = lele2 e3e 

This enables us to calculate the distance. Moreover, the sign of l tells us 
which side of the plane the point is. 
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FIGURE 11.3. Distance from a point to a plane. 

We also get an incidence relation: 

as the condition for the point to lie on the plane. 
Next we look at a line and a plane. In general a plane and a line meet at 

a point. In the Clifford algebra the meeting point can be found from the 
expression, 

-(nxvx + nyvy + nzvz)ele2e3 - (nyuz - nzuy + dvx)e2e3e 

-(nzux - nxuz + dVy)e3ele - (nxu y - nyux + dvz)ele2~~U) 

dividing by the coefficient of the term ele2e3 gives the Clifford algebra 
element representing the intersection point. If the coefficient vanishes then 
the line is parallel to the plane and there is no intersection point, unless 
the line lies in the plane. The line lies in the plane if the whole expression 
br* + 7rC* vanishes. So we have the incidence relation, 

which implies that the line lies in the plane. 

11.3 Flags 

In this section we look at how to represent flags in the algebra. A flag is a 
nested sequence of linear spaces, for example a point contained in a line or 



11. Robot Kinematics and Flags 217 

a line lying in a plane. The relevance of these figures is that they can be 
used to represent the joints of a robot. Most industrial robots have revolute 
or prismatic joints, that is hinges or simple sliding joints. Robots and other 
mechanisms can have helical or screw joints but the symmetry groups of 
these joints are not algebraic. 

11.3.1 Pointed lines 

Our first example is the pointed line, that is a point lying on a line. We 
may combine the algebra elements found above to represent the flag as, 

Notice that this element is not homogeneous. Not all such non-homogeneous 
elements represent pointed lines, the line must be a line so we must have 
£C* = 1 and, to be a point, the coefficient of el e2e3 must be 1. Finally for 
the point to lie on the line the point and line must satisfY, p£* + £p* = O. 
Most of these equations can be written in terms of the flag itself, 

Comparing coefficients of the various basis elements gives us all the equa­
tions except that we only have that pp* + ££* = 2. If we include the relation 
that the coefficient of el e2e3 must be 1 then we have that pp* = 1 and hence 
that £C* = 1. Thus, we see that the space of all pointed lines form an affine 
algebraic variety, usually called a flag manifold, in this case the (1, 2)-flag 
manifold. 

The action of the group of rigid motions on these flags is simply, 

Since the action is linear, the point and line transform independently. From 
this we can find the isotropy group of a particular pointed line. Elements 
of the isotropy group must satisfy, 

h2 = gf12g*, or equivalently h2g - gh2 = 0 

That is, elements of the isotropy group must commute with the flag. The 
only even graded elements which commute with both p and £ are linear 
combinations of 1 and £ itself. The result that £ and p commute is, of 
course, a consequence of the fact that p lies on £. The elements of the 
isotropy group form a line which can be parameterised as, 

g(()) = cos ~ + sin ~£ 
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The parameter 0 measures the angle turned about the line f, see sec­
tion 11.2.2. 

Another way of looking at this one-parameter group is as the exponential 
of the line f. That is, 

o 01(0)2 0 0 exp( -f) = 1 + -f + - -f + ... = cos - + sin -f 
2 2 2! 2 2 2 

Recall that f2 = -1. This is the exponential map from the Lie algebra 
of the group to the group itself. In the Clifford algebra the Lie algebra is 
represented by the elements of grade 2, see [9, section 9.3J. 

11.3.2 Pointed planes 

We can treat pointed planes in much the same way as pointed lines. A 
general pointed plane will have the form, 

The condition for the point to lie in the plane is P7f* + 7fP* = 0 and hence 
the equations for the (1,3)-flag manifold are given by, 

and also the coefficient of ele2e3 must be l. 
There is a homeomorphism between the two flag manifolds defined above. 

This can be see by mapping pointed lines to pointed planes and vice versa. 
Given a pointed line 112 = (l/y'2)(P+f) we can find a pointed plane with 
the same point but where the plane is perpendicular to the original line. 
These flags are oriented so the direction of the plane (the direction of its 
normal) will be the same as the direction of the line. In the Clifford algebra 
we can write the plane perpendicular to the line f and passing through the 
point P as, 

see [1OJ. SO the mapping is, 

7f-L = ~(pf* - fp*) 
2 

111 
M(p+f) ~ M(P+ -(pf* -fp*)) 

v2 v2 2 

The inverse of this map is given by mapping the plane to the line per­
pendicular to the plane passing through the point. This can be written 
as, 

1 
f-L = -(7fP* - p7r*) 

2 



11. Robot Kinematics and Flags 219 

It is simple to verify by direct calculation that £.l..l.. = £, if we remember 
that, p2 = -1, £* = -£ and also, since p lies on £, we have p£p* = £* . 

Because of the homeomorphism, the isotropy group of a pointed plane is 
the same as that for the corresponding pointed line. Again a direct calcula­
tion confirms that £ = 11'-1- commutes with 11'. So we can use either a pointed 
line or a pointed plane to represent a revolute joint. The axis of the joint 
is given by the line and the point can be any fixed point on the axis. 

Finally here, we note another application in robotics for pointed planes, 
(or pointed lines). In many robotic applications the end-effector is required 
to trace a path on a smooth surface, an example might be an inspection 
task. Often there is an axis in the tool which must remain perpendicular 
to the surface, perhaps the tool is an ultrasonic probe. Now the surface 
determines a sub-space in the space of all pointed planes, just take each 
point on the surface together with its tangent plane (the surface lies in IR3 
and so is orientable). The desired trajectory of the end-effector must be a 
path in this sub-space. This approach does not seem to have received much 
attention to date, but see [6]. 

11.3.3 Lined planes 

To represent prismatic joints we use lined planes. In the Clifford algebra 
these correspond to elements of the form, 

1 
123 = J2(£ + 11') 

The condition for the line to lie on the plane is, £11'* + 11'£* = O. Hence we 
see that these elements certainly satisfy, 

123/;3 = 1 

There is an involution on the algebra which we can use, this is sometimes 
called the main involution, it simply reverses the sign of basis elements of 
odd grade. So for lines we have £- = £ and 11'- = -11' where the superscript 
- denotes the main involution. This means we can write, 

to ensure that both U* = 1 and 11'11'* = 1. 
The isotropy group of a lined plane is simple to find, once again the 

group elements must commute with the flag, 

gh3 - h3g = 0 

The linear space of elements which commute with the line are spanned 
by linear combinations of the set {1, £, ele2e3e, £ele2e3e}. The only basis 
elements which commute with 11' are 1 and £ele2e3e, 
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since the line lies in the plane. Hence a general element of the isotropy 
group has the form, 

1 
g()..) = 1 + 2)..£e1e2e3e 

Again, as expected, the exponential of a Lie algebra element: 

This time the isotropy group is a one-parameter family of translations, 
along the axis determined by the line. 

11.3.4 Complete flags 

Complete flags here comprise a point on a line in a plane, 

From the discussions above it is not hard to see that the isotropy group 
of a complete flag is just the trivial group 1, just take the intersection of 
the isotropy groups of the pointed line and lined plane contained in the 
complete flag. To each complete flag we can associate a coordinate frame 
in space, take the point in the flag as the origin, the line as the x-axis 
and the plane as the xy-plane. The positive x-direction will be determined 
by the direction of the line and the normal to the plane will determine 
the positive z-direction. Hence the positive y-direction may be found u­
sing the vector cross product. These coordinate frames were studied by 
Study [12], who called them soma. Now there is a 1-to-1 correspondence 
between elements of the group ofrigid body motions SE(3), and the set of 
all possible frames(somas). To see this, fix a standard or home frame say 
fO = (el e2e3 + e2e3 + e3) / J3, then any particular group element is mapped 
to the frame obtained by operating on this home element, 

Remember, the elements 9 are in fact elements of the double covering of 
SE(3), both 9 and -g map to the same frame, but they represent the same 
element of SE(3). 

The inverse of this mapping can be found using linear algebra. Suppose 
we have a frame f, the corresponding group element satisfies, 

or equivalently, gfO - fg = 0 

This system of equations for 9 must be solved with the quadratic relation, 
gg* = 1 and hence we expect two solutions ±g. 
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In much of the current robotics literature the position and orientation 
of a rigid body is specified by giving a frame attached to the body. In the 
following it is more convenient to specify the position and orientation of 
the body by giving an element of the group of rigid body motions. The 
above shows that these two views are equivalent. 

Finally here, note that spherical (ball-and-socket) joints can be repre­
sented by points, since both have an isotropy group which is a copy of 
SO(3). Planar joints can be represented by planes, they both have isotrpy 
group SE(2), the group of planar rigid motions. And finally cylindrical 
joints can be represented by lines, the isotropy group here is SO(2) x JR, 
rotations about the line and translations along it. 

11.4 Robots 

11.4.1 Kinematics 

Most industrial robot arms consist or six rigid links connected by 6 revolute 
joints, that is a 6R robot. One of the central problems in robotics is to relate 
the position and orientation of the robot's last link, end-effector or tool, to 
the positions of its joints. 

The forward or direct kinematic problem is to determine the position 
and orientation of the tool given the angles of the joints. For a serially 
connected robot this is relatively straight forward. We begin by choosing a 
'home' or standard configuration for the robot. In the home configuration 
all joint angles will be zero. Now we record the positions of the joint axes 
in the home configuration, these will be six lines, 1\, £2 ... , £6. For each of 
these lines the one-parameter group of rotations about the line is given by, 

() (). 
a·(()·) = cos.-!:. + sin .-!:.£. 

2 2 2 2 2 

see section 11.3.1. Now suppose that we set the joint angles to some set 
of particular values, ()1, ()2, ... , ()6, what is the rigid body transformation 
undergone by the end-effector? If we move the last joint first then the tool 
undergoes a transformation a6 (()6) but the rest of the joints lower down the 
arm are unchanged. So we can move the 5th joint into position giving an 
overall transformation a5(()5)a6(()6). Continuing in this fashion down the 
arm it is easy to see that the total transformation is a group element, 

This group element represents the transformation relative to the home con­
figuration. That is, the transformation which would take the end-effector 
in its home position to the configuration determined by the joint angles 
()1, ... ,()6. 
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The inverse kinematic problem for a serial robot is much harder. Given 
the desired position and orientation for the end-effector, what should we 
set the joint angles to? Effectively this means solving the above equation 
for the joint angles given a group element g. 

The inverse kinematic problem is often stated in terms of 'tool-frame' 
coordinate. Imagine a coordinate frame rigidly attached to the tool of a 
robot, it is often simplest to specify a desired motion of the tool relative to 
this frame. For instance, if the x-coordinate of this frame is aligned with 
the axis of the end-effector's gripper jaws say, then we might want to tell 
the robot to advance some distance in this direction. Suppose that the 
desired motion is given by a group element h relative to the tool-frame, the 
corresponding element in the 'world-frame' can be found by conjugation in 
the group. Let k be the group element which transforms the world-frame 
to the tool-frame, then in the world-frame the desired motion will be khk*. 
It is useful to write the element k as a product k = bg. Here b is a constant 
group element which transforms the world-frame to the tool-frame when 
the robot is in its home configuration, and g is the group element which 
takes the end-effector from its home position to the current position. So in 
the tool-frame the inverse kinematic problem can be written as, 

That is, the problem is virtually the same as when the desired motion 
was given in the world-frame. In fact the only difference is that g must 
be computed and stored at the current position of the robot. The same 
methods may be used to solve for the joint angles in both cases. 

11.4.2 Pieper's theorem 

In his Ph.D. thesis, Pieper [7] showed that any 6R robot which has 3 
consecutive joint axes meeting at a point has solvable inverse kinematics. 
Later, Duffy showed [3] that this was also true when any 3 consecutive 
joints are parallel. 

The exact meaning of solvability is not too important here since cons­
tructive proofs were given. Clearly if non-solvability results were to be 
considered the precise meaning of the term 'solvable' would be very impor­
tant. It would seem that the intention is to use the same concepts as in 
Galois theory, that is solvable by radicals, but with tan (}i or equivalently 
sin (}i and cos (}i as the variables. 

The demonstration given here roughly follows the work of Pieper, but 
the computations using the Clifford algebra are simpler and hence the un­
derlying geometry is much clearer. We begin with the kinematic relations 
for a 6R robot, 
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where the ais are as in the previous section. Now suppose that 3 consecutive 
joints intersect or are parallel. For the sake of illustration we assume here 
that it is joints 2,3 and 4 which have this property, but it is easy to see 
how to proceed in other cases. 

1. Rearrange the kinematic equation to isolate the 3 intersecting/parallel 
joints, 

a2a3a4 =aiga~a; 

To simplify notation we drop the explicit dependance on the joint 
angles. 

2. If joints 2,3 and 4 are intersecting then their common point p will be 
preservered by a2, a3 and a4, so, 

On the other hand if the joints are parallel there will be a plane 7f 

preservered by the joints, any plane perpendicular to the parallel joint 
axes will do, 

This splits the problem into two pieces, for definiteness we look at 
the parallel case, 

a~a;7fa5a6 

alga~a; = g' 

3. The first of these equations only involves the joint angles (h, ()5 and 
()6' (Once this equation has been solved, we can evaluate g' = alga(;aii 
and solve the second equation for the remaining joint angles, ()2, ()3 

and ()4.) So our first task is to solve the first of these equations. Notice 
that this equation is a relation between planes with the general form, 

If the plane 7f(3 = aii7fa5 is rotated about the final joint, the point 
where this plane meets the axis of the last joint €6 will remain fixed. 
This common point is a scalar multiple of the Clifford algebra expre­
ssion, €67f~ + 7f (3€(;. This allows us to eliminate the last joint angle and 
write the equation as, 

In the case where there are three intersecting joint axes, we will obtain 
a relation between points. In this case we can find an invariant plane 
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to eliminate another joint angle, this plane passes through the point 
p given by the equation and is perpendicular to the axis of the joint 
C. The Clifford algebra expression for such a plane is proportional to 
pC* - Cp*. See [10] for more details on these relations. 

4. Returning to the parallel joints case we observe that since 
ai = cos(Od2) + sin(Od2)Ci , the expressions, al7rai and a57ra:5 are 
linear in cos 01 , sin 01 and cos 05 , sin 05 respectively. There are effec­
tively three linear equations here, the final pair of equations are 
provided by the trigonometric identities COS2 01 + sin201 = 1 and 
cos2 05 + sin2 05 = 1. Thus, in general, we must solve a pencil of 
conics. This is a classical problem which is well know to be solvable 
in terms of radicals and generally has four distinct solutions, see for 
example [4, chapter 16]. 

5. Having found 01 and 05 ,06 is simple to find using the original equation 
g*al7raig = a6a:57ra5a6. This system of equations gives essentially two 
linear equations in the variables cos 06 and sin 06 , Hence, we obtain a 
unique solution for 06 given particular values for 01 and 05 , 

6. Next we must solve the second of our equations a2a3a4 = g', where 
g' = a1ga6a:5. Notice however, that there are four possible values that 
g' can take corresponding to the four solutions for the angles 01 , 05 

and 06 , The above is a relation between group elements, so we can 
eliminate a4 by acting this group element on the 4th joint axis, 

This is now a relation between lines, if the lines C2 , C3 and C4 are 
intersecting then a2 can be eliminated using the fact that for a pair 
of lines Ca, C(3 the expression CaC~ + C(3C~ is an invariant, with respect 
to the group of rigid body motions. This leads us to the expression, 

Again, this is linear in the variables, cos 03 and sin 03 , We expect 2 
equations here from the coefficients of 1 and e1e2e3e but the coe­
fficient of e1 e2e3e will disappear because the lines are intersecting. 
Solving the remaining linear equation with the trigonometric identity 
COS203 + sin2 03 = 1, gives two solutions. 

On the other hand if the three lines are parallel we can eliminate 
a2 using the expression, (1/2)(CaC~ - C(3C~). Because the lines are 

parallel this will give sxe1e + Sye2e + sze3e where s = (sx, Sy, Sz)T is 
a vector from one line to the other, perpendicular to both. The length 
of this vector s2 = S;, + s~ + s; is then invariant under an overall 
rigid motion and will depend only on 03 , In fact the expression we 
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get will be the cosine rule for the triangle formed by the three lines 
meeting a perpendicular plane. Hence we obtain two solutions for 83 
corresponding to the two possible signs for sin 83. 

7. In either case we can now retrace our steps and solve, 

to get a unique answer for 82. 

8. Finally we use, 

to recover 84. 

Notice that we have shown that these robots a maximum of eight distinct 
solutions for their inverse kinematics. For a general 6R robot, where no 
three consecutive joint intersect or are parallel, it can be shown that the 
inverse kinematic problem has 16 solutions. 

In the following two sections a pair of examples is given in order to make 
the procedure more concrete. 

11.4.3 Example-the MA2000 

This table-top robot arm was designed as a 'home-experiment kit' for an 
Open University course in robotics. As can be seen from figure 11.4, joints 
2,3 and 4 are parallel. 

We begin with a list of the joint axes in their home configuration, 

f\ ele2 

£2 e2e3 

£3 e2e3 + l2 e2e 

£4 e2 e3 + (l2 + h)e2e 

£5 ele2 - d4e2e 

£6 e2e3 + (l2 + h + l4)e2 e 

Here the dimensions b, h, l4 and d4 are constants, sometimes called the 
design parameters of the robot. A plane perpendicular to joints 2,3 and 4 
is given by 1f = el. 

The first equation we have to solve is, 

Recall that ai = cos(8d2) + sin(8d2)£i' so after some computation, the 
right-hand side of the equation becomes, 
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FIGURE 11.4. The telequiprnent MA200 robot. 

(4.2) 

The left-hand side requires even more computation since we must include 
a general rigid motion g. Let us write this general motion as a rotation 
followed by a translation, 

1 
9 = r + "2 tre 

where 

and 
t = txe1 + t ye2 + tze3 

see section 11.2.1. It is useful at this stage to write, 

where, 

(cos ¢ + v; (1 - cos ¢)) cos (h + (v z sin ¢ + VxVy (1 - cos ¢)) sin 191 

(vx vy(l- cos¢) - V z sin¢) cos 191 + (cos¢ + v~(l- cos¢)) sinB1 

( Vy sin ¢ + Vx v z (1 - cos ¢ )) cos 19 1 + (vy v z (1 - cos ¢) - Vx sin ¢) sin 19 1 
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Now the left-hand side of the equation can be written as, 

-2Nxe1e2e3 - 2(D - (12 + 13 + 14)Nz)e2e3e 

2(h + 13 + 14)Nxe1e2e (4.3) 

Comparing the coefficients of the basis elements gives us just two equations 
in the first and fifth joint angles, 

and 

So we don't have to solve a pair of quadratic equations here we can eliminate 
cos 85 to get a linear equation in the sine and cosine of 81 , 

Solving this with the trigonometric identity cos2 81 + sin2 01 = 1 gives two 
solutions in general, 

-(xy ± (3 vi 0'.2 + (32 - ""p 
cos 01 = 2 (32 

a. + 
with sin 01 = - (a. cos 01 + 'Y) / (3 

The coefficients a., (3 and 'Yare functions only of the end-effector's position 
and orientation, 

a. = ((1 - v~)(tx - d4) - VxVyty - vxvz(ty -12 -13 -14)) cos¢ + 
(Vy(tz -12 - h -14) - Vzty) sin¢ + Vx(Vx(tx - d4) + 

Vyty - vAtz -12 - h -14)) 

(3 ((1 - v~)ty - vxvy(tx - d4) - vyvz(tz - 12 - h - 14)) cos ¢ + 
(Vz(tx - d4) - Vx(tz - h -13 -14)) sin¢ + Vy(Vx(tx - d4) + 

Vyty + vz(tz - 12 - 13 - 14)) 

For each of the two solutions for 01 we get two solutions for 85 given by, 

cos 05 = N x and 

To find 86 we solve the linear equations, 

That is, 
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= a~(cos05el - sin05e2 + d4(COS05 -1)e)a6 

= cos 05el - cos 06 sin 05e2 + sin 06 sin 05e3 

+(d4(cos 05 - 1) + sin 06 sin 05(l2 + l3 + h))~4.4) 

Comparing coefficients we have that, 

and 

From the results above we can calculate g' = algaf,aS' this must be an 
element of the sub-group generated by a2, a3 and a4 which is the group 
of motions in the yz-plane. Hence we can write g' as a rotation about the 
x-axis followed by a translation in the yz-plane, 

9' 

+ 

Now we must solve the second part of the problem 

Since the lines £2, £3 and £4 are parallel, we eliminate a2 and a4 by com­
puting, 

= -l3 sin 03e3e + (b + l3 cos (3)e3 e 

1 ( , £ ,* £* £ g' £*g'*) "2 9 4g 2 - 2 4 (4.5) 

so 8 2 = l~ + l5 + 2l2h cos 03. From the right-hand side of the equation we 
have, 

The two solutions for 03 are thus, 

and 

Stepping back, we can find O2 from, 

The right-hand side can be written, 
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x = (l2 + h) cos 1/ + t~ 

Y (l2 + l3) sin ¢/ - t~ 

a2a3£4a~a2 e2e3 + (cos 02(b + h cos ( 3) - l3 sin O2 sin (3)e2e + 
+ (sin02(l2+l3cos03)+l3cos02sin03)e3e (4.6) 

So we get a unique solution for O2 , 

(X(l2 + l3 cos ( 3) + Yl3 sin(3))/(l~ + l~ + 2l2l3 cos ( 3) 

(Y(l2 + l3 cos ( 3) - Xl3 sin ( 3)) /(l~ + l~ + 2l2l3 cos ( 3) 

To finish the solution we must find 04 , this can be found from, 

By looking at the rotation part of this we get, 

11.4.4 Example-the Intelledex 660 

The second example we look at is the Intelledex 660 robot, this is another 
small robot intended for use in laboratories, see figure 11.5. The design is 
unusual because the three consecutive intersecting joints are the first three 
rather than the last three as in a robot with a 3R wrist. Moreover, this 
robot also has three consecutive parallel joints, that is joints 3,4 and 5. 
This means that we can choose either method to solve the inverse kine­
matics, we choose to use the fact that the first three joints are intersecting 
since the other method has already be demonstrated. We will see in a 
moment that the fact that three of the joints are also parallel makes the 
problem even easier. As usual we begin by listing the joint axes in their 
home configuration, 

£1 e1 e2 
£2 e2e3 
£3 = e3e1 
£4 e3e1 -l4e1e 

£5 e3e1 - (l4 + l5)e1e 

£6 = e1e2 + d5e1e 
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FIGURE 11.5. The intelledex 660 robot. 

again l4, l5 and d5 represent design parameters. The point fixed by the first 
three joints is the origin, p = ele2e3. So we have, 

a6g*pga~ =a;a:pa4a5 

Next we eliminate (}5 by finding the plane through p perpendicular to the 
fifth joint axis, see section 11.4.2 step 3. In fact, because the fourth and 
fifth joint axes are parallel the expression, aSa4pa4a5.€S - .€5aSa4P*a4a5 will 
be independant of both (}4 and (}5. It is not too difficult to see that the 
expression will be proportional to e2, the xz-plane. Calculation confirms 
that it is 2e2, so the equation reduces to, 

a6g*pga~.€; - .€;a6g*p*ga~ = 2e2 

As usual we write the general rigid motion as 9 = r + (1/2)tre with 
r = cos(¢/2) + Vx sin(¢/2)e2e3 + Vy sin(¢/2)e3el + V z sin(¢/2)ele2 and . 
t = txel + t ye2 + tze3. This group element transforms the position of the 
origin to, 

where 

g*pg = (r* - ~r*te) ele2e3 (r + ~tre) 
ele2e3 + (r*tr)ele2 e3e 

el e2e3 - t~e2e3e - t~e3el e - t~el e2e 



11. Robot Kinematics and Flags 231 

t; (v·t)vy + (ty-(v.t)vy)cos¢>+ (tzvx-txvz)sin¢> 

t~ (v· t)vz + (tz - (v· t)vz) cos¢> + (txVy - tyvx) sin¢> 

This allows us to compute, 

where 

x (ds sin 86 + t; sin 86 - t~ cos 86 ) 

Y (ds(l- cos 86 ) - t; cos 86 - t~ sin 86 ) 

Z -t~ 

Hence, 

Comparing this with the previous calculation gives the linear equation 
Y=O, 

ds(l - cos 86 ) - t; cos 86 - t~ sin 86 = ° 
Solving this with the trigonometric identity cos286 + sin2 86 = 1 gives the 
two solutions, 

Now, for each of the solutions for 86 we compute, pi = a6g*pga'6. So to 
find 84 and 8s we must solve, 

This is simply a two joint planar manipulator. 

el e2e3 + l4 sin 84e2e3e + l4(1 - cos 84 )el e2e = 
= ele2e3 + (X cos 8s + Z sin 8s - (l4 + ls) sin 8s)e2e3e + 

+(Z cos 85 - X sin 85 + (l4 + ls)(l- cos8s))ele2e 

where we have used the fact that Y = 0. We now have two linear equations, 

l4 sin 84 

-l4 cos 84 

X cos 85 + (Z -l4 -ls) sin8s 

ls + (Z -l4 -ls) cos 85 - X sin 85 



232 J.M. Selig 

we can eliminate 84 from these equations by squaring and adding them. A 
little rearrangement using trigonometic identities gives the linear equation, 

Now we can use the standard solution for a linear equation with the trigono­
metric identity, cos2 85 + sin2 85 = 1, 

AC ± BJC2 - B2 - A2 
cos 85 = A 2 + B2 ' 

1 
sin 85 = B (C - A cos 85 ) 

where, 

A 215(Z -14 -15) 

B -215X 

C l~ - l~ - X2 - (Z - l4 - l5)2 

Having found 85 , we can find 84 immedieatly from the relations, 

(X sin 85 - (Z -l4 -15)cos85 -15)/l4 

(X cos 85 + (Z -14 -15) sin85)/l4 

The remaining three joint form a spherical mechanism. For each of the 
four possible solutions found above we compute g' = ga6asa4:, and then 
the equations we must solve are, 

In order that this equation can be solved we must have that g' is a rotation 
about the point p, hence we can write, 

As mentioned above, we isolate 82 using the equation, 

this gives, 
sin 82 = v~ sin 1;' + v~ v~ (1 - cos 1;') 

and hence 

cos82 = ±\h - sin2 82 

To find 81 we use the equation, 

expanding this gives two useful equations, 
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cos(h cos(h cos <// + v'~(l - cos <//) 

In general, when cos ()2 #- 0, this will give a unique solution for ()l' 

Finally we must find ()3, to do this go back to the equation, ala2a3 = g' 
and recast it as, 

a3 = a;aig' 

Comparing coefficients as usual we get, 

()3 
cos-

2 

. ()3 
sm-

2 

<// ()l ()2 ,. <// ()l. ()2 
= cos-cos-cos- +v sm-cos-sm- + 

222 x 222 
, . ¢/ . ()l . ()2 ,. <// . ()l ()2 

v sm-sm-sm- +v sm-sm-cos-
y 222 z 222 

<// . ()l . ()2 ,. <// . ()l ()2 
= -cos-sm-sm- -v sm-sm-cos- + 

222 x 222 
, . <// ()l ()2 ,. ¢/ ()l. ()2 

v sm-cos-cos- +v sm-cos-sm-
y 222 z 222 

l,From here it is an easy matter find ()3' 

11.5 Concluding Remarks 

As mentioned at the beginning of section 11.2 the algebra presented here 
is very closely related to the original biquaternion algebra introduced by 
Clifford and used by Blaschke [1). It is possible to represent points and lines 
by biquaternions. However, the action of the group of rigid transformations 
on points is different from that on lines. Hence, flags cannot be simple 
combinations of the linear elements. Moreover the relations for meets and 
joins will be more complicated, (for the above algebra, these relations are 
derived in [10). So, despite the fact that this algebra has 16 basis elements 
rather than only 8 for biquaternions, it is much simpler to use for practical 
examples. 

An algorithm has been outlined above which derives the inverse kine­
matic relations for any 6R robot with three consecutive intersecting or 
parallel joints. This method may not give the most efficient derivation but 
this is hardly relevant since for any robot the derivation will only be per­
formed once. The computations in this work were done by hand but the 
Clifford algebra is ideally suited to automation using a symbolic algebra 
computer program. For example, it would be a simple matter to write a 
Mathematica notebook to check the results. The solutions given above in­
troduce several sets of intermediate variables. This reduces the size of the 
equations and so makes the problem tractable for hand calculation. From 
the results given above it would not be too difficult to write numerical pro­
grams to find the inverse kinematics for these machines, values would have 
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to be assigned to the design parameters of course. Care should be taken, 
however, because in the above we have not addressed the problem of sin­
gularities. This is not too difficult for these examples since we only need to 
look for divisors vanishing or the discriminant of a quadratic dissappearing. 

Although in general we have to solve a pencil of conics, in the examples 
given above, the problem was in fact simpler in the end, we only had to solve 
quadratic equations. The 'special geometry' for which these simplifications 
happen has been extensively studied by Smith [11]. 

Can the methods outlined above be used for other types of robots? An 
obvious application would be to robots containing prismatic joints. From 
the above it is reasonably clear what to do, we must look for sets of con­
secutive joints which form sub-groups of the group of rigid body motions. 
If these sub-groups fix a point, a line or a plane then we can eliminate the 
corresponding joint angles from the kinematic equation an hence simplify 
it. 

Suppose we have a robot with no three consecutive joints parallel or 
intersecting, it may still be possible to simplify the kinematics and produce 
a 'semi-analytic' solution. Unfortunately there are good reasons why such 
designs do not make good practical robots. 

Finally, the algebra and methods described above are directly applica­
ble to the theory of mechanisms, in particular spatial mechanisms. Like 
robots, mechanisms consist of links and joints. However mechanisms usua­
lly contain kinematic loops, that is, a ring of links each connected to their 
neighbours by a joint. We could characterise the joints by flags as above 
and then write down the relationship between pairs of joints at either end 
of a link using the Clifford algebra. This would be a simple way to find the 
algebraic expressions characterising the configuration space of the mecha­
nism. We could also consider fixing a point, line or more generally a flag in 
the coupler link and then set up equations to determine whether or not this 
flag could be brought into coincidence with a similar flag fixed in space. 



Chapter 12 

The Clifford Algebra and the 
Optimization of Robot Design 

Shawn G. Ahlers and John Michael McCarthy 

12.1 Introduction 

The goal of this chapter is a computer aided design environment that assists 
the inventor to formulate a task and evaluate candidate devices. The task 
trajectory of a robot is specified as a set of homogeneous transforms that 
define key frames for a desired end-effector trajectory. These key frames 
are converted to double quaternions and interpolated by generalizing well 
known techniques for Bezier interpolation of quaternions. The result is an 
efficient interpolation algorithm. 

Our focus here is the design of a five degree of freedom TS robot that 
reaches the given task trajectory. The TS robot is constructed by connec­
ting a pair of revolute joints perpendicular to each other as the base pivot 
to a spherical (S) joint by a fixed distance, see Figure 12.1. The pair of 
revolute joints is also known as a gimbal (T) or universal joint. The set of 
reachable positions and orientations of this device is its workspace which 
may not include the entire specified trajectory. Our goal is to find the 
TS robot minimizes the local error between its workspace and this task 
trajectory. 

12.2 Literature Review 

Bezier interpolation is used in computer drawing systems to generate curves 
through specified points (Farin [5]). Shoemake [13] shows that this tech­
nique can be used to interpolate rotation key frames specified by quaternion 
coordinates (Hamilton [9]); the result is an efficient animation algorithm. 
Ge and Ravani [8] generalize Shoemake's results to spatial displacements 
using double quaternions (Clifford [1]). These results were refined to ensure 
smooth transitions at each key frame by Ge and Kang [7]. 

In this chapter, we apply the results of Ge and Kang to double quaternion 
interpolation. Etzel and McCarthy [4] show how spatial displacements can 
be transformed to 4 x 4 rotations in E 4 , and then to double quaternions. A 
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FIGURE 12.1. TS robot. 

benefit of this approach is that the interpolation algorithm can be applied 
to the quaternion components separately. 

The robot design problem seeks the dimensions of the device that satisfy 
geometric constraints (Suh and Radcliffe [14]). The structure of the TS 
robot requires the wrist w to lie on a sphere about the fixed gimbal joint 
g. Innocenti [10] presents a design algorithm that yields as many as 20 TS 
chains that reach seven arbitrary positions. Our goal is to find the TS robot 
that fits our end-effector trajectory with arbitrarily many positions. 

12.3 Overview of the Design Algorithm 

The design algorithm begins with the specification of the task. The task 
is defined by the N+1 user-specified key frames. These key frames are 
converted from their representation as homogeneous transforms to double 
quaternions. These double quaternions are interpolated to define the task 
trajectory of a desired robot. To compute a TS robot, the frames of this task 
trajectory are converted back to their homogeneous transforms. By using 
four position synthesis, the parameters of a TS robot are computed from 
four frames of the task trajectory. The synthesis procedure is repeated for 
all combinations of four frames of the task trajectory. The optimization pro­
cedure begins by calculating the closest positions and orientations reachable 
by a designed TS robot to the remaining frames of the trajectory. These 
new reachable frames are converted to double quaternions. The local error 
between a frame from task trajectory and the reachable frame is calculated 
as the magnitude of the difference of these double quaternions. This local 
error is summed for each frame on the task trajectory and divided by the 
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total number of frames to obtain the error. The optimization procedure is 
repeated for each TS robot obtained from the synthesis procedure. The TS 
robot with the minimum error is the optimum fit of the robot to the task 
trajectory, see Figure 12.2. If the optimum TS robot is not satisfactory, the 
user may alter the key frames and the design process is repeated to obtain 
another robot candidate. 

12.4 Double Quaternions 

12.4.1 Homogeneous transforms 

The transformation equation for a spatial displacement is not a linear trans­
formation. A spatial displacement consists of a 3 x 3 rotation matrix and 
a 3 x 1 displacement vector. A standard strategy to adjust for this inho­
mogeneity is to add a fourth component to our position vectors that will 
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always equal 1, then we can introduce the 4 x 4 homogeneous transform 

( 4.1) 

which we write as 
y=[H]x. ( 4.2) 

The rotation-translation pairs [H] = [A, d] represent all the spatial posi­
tions of M relative to F, known as the special Euclidean group, SE(3). 

12.4.2 The Clifford algebra on E4 
A set of hypercomplex numbers called double quaternions may be obtained 
from the even Clifford Algebra of four dimensional Euclidean space E4. 
Let ei, i = 1, ... ,4 be the natural coordinate vectors of E 4 , then we can 
construct the multilinear algebra of points in E4. Introduce the Clifford 
product 

(4.3) 

where the dot denotes the usual Euclidean scalar product. The even sub­
algebra C+(E4) is of the rank 8, and a typical element can be written 
as 

Q = G+wH, (4.4) 

where G and H are Hamilton's quaternions and w = ele2e3e4 satisfies the 
identity w2 = 1. 

Clifford shows that depending on the definition of the scalar product in 
equation (4.3) we can also obtain dual quaternions, w2 = 0, and complex 
quat ern ions , w2 = -1. Using the double quaternion algebra, w2 = 1, we 
now introduce the symbols ~ = (1- w)/2 and 'TJ = (1 +w)/2, and construct 
the double quaternion 

Q = (G - H)~ + (G + H)'TJ (4.5) 

Notice that e = ~, 'TJ2 = 'TJ, and ~'TJ = o. These identities provide a complete 
separation of the operations on the quaternions (G - H) and (G + H). For 
e_xample, for any two double quaternions P = Pl~ + P 2'TJ and 
R = Rl~ + R 2'TJ, we have 

(4.6) 

Since operations on the quaternions may be done independently, the inter­
polation technique defined for a single quaternion may be utilized for the 
individual quaternions of the double quaternions. As we will show in a later 
section, this will allow us to interpolate the quaternions independently. 
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12.4.3 Homogeneous transformations as a rotations 
in E4 

The general 4 x 4 homogeneous transform for a spatial displacement can 
be written as 

[ 

c()c'l(.; - s()s¢s'l(.; 

H - Ad _ c¢s'l(.; 
[ 1 - [ , 1 - -s()c'l(.; ~ c()s¢s'l(.; 

-c()s¢ - s()s¢c'l(.; s()c¢ dX ] 

c¢c'l(.; s¢ dy 

s()s'l(.; - c()s¢c'l(.; c()c¢ dz ' 

o 0 1 

(4.7) 

where the angles (), ¢, and 'l(.; are the longitude, latitude, and roll angles 
defining the orientation of the displaced frame, respectively, and c and s 
represent the cosine and sine functions. 

Now define the angles a, (3, and "'( be defined such that 

(3 = dy 
R' 

dz 
and "'( = R' (4.8) 

where R is the radius of the hypersphere to which the translational elements 
are computed. We can compute the 4 x 4 rotation matrix [J] composed of 
successive rotations of a in the W-X plane, (3 in the W-Y plane, and "'( in 
the W-Z plane to obtain 

[ 
ca 0 0 sa] 

J _ -s(3sa c(3 0 s(3ca 
[ ] - -s"'(c(3sa -s"'(s(3 q s"'(c(3ca' 

-c"'(c(3sa -s(3c"'( -s"'( c"'(c(3ca 

(4.9) 

If we let A((), ¢, 'l(.;) be the upper left 3x3 submatrix of the 4x4 matrix 
[K] and keep a 1 in the fourth diagonal location, we may express a general 
rotation in four dimensional space, E4, as the product of two 4 x 4 rotation 
matrices [D]=[J(a,(3,"'()][K((),¢,'l(.;)]. Explicitly written 

r
ca 0 0 sa] 

_ -s(3sa c(3 0 s(3ca 
- -s"'(c(3sa -s"'(s(3 q s"'(c(3ca 

-qc(3sa -s(3q -s"'( qc(3ca 

[ 

c()c'l(.; - s()s¢s'l(.; -c()s¢ - s()s¢c'l(.; 
c¢s'l(.; c¢c'l(.; 

-s()c'l(.; - c()s¢s'l(.; s()s'l(.; - c()s¢c'l(.; 
o 0 

If we assume that the angles a, (3, and"'( are small, 
cos a = cos (3 = cos"'( = 1, and 

. dx 
sma= R' sin (3 = ~, and 

s()c¢ 
s¢ 

c()c¢ 
o 

(4.11) 
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Then the 4 x 4 rotation matrix becomes 

~ [-~ 
0 0 

~1 1 0 ~ 
0 1 t 

R 
_<!Jt. _d z 1 R R 

[ ce,,, - ,O'¢'" -cBs¢ - sBs¢c'ljJ ,Oc¢ 01 
c¢s'ljJ c¢c'ljJ s¢ 0 

-sBc'ljJ ~ cBs¢s'ljJ sBs'ljJ - cBs¢c'ljJ cBc¢ 0 . 

0 o 1 

If we shift the coordinate frame to W = R to cancel the 1/ R terms, the 
result is an approximation to a spatial displacement of order 0(1/ R2). 

The parameter R is identified by specifying a maximum length L for the 
problem, then the error of this approximation is €::; (L/R)2. Specify € and 
solve for R in order to define the rotation in E4 that approximates a given 
spatial displacement. 

12·4·4 Double quaternion for a spatial displacement 

In this subsection, we will reformulate [H] in terms of double quaternions. 
After we have converted a spatial displacement [H] = [A, d] to a 4 x 4 
rotation [D], we may use Cayley's formula (Bottema and Roth, 1979), to 
obtain the skew symmetric matrix 

[B] = [D - I][D + Ir 1 = [~3 -;3 ~~1 ~~ 1 (4.13) 
-U2 Ul 0 V3 . 

-VI -V2 -V3 0 

We now define the matrix [B'] by interchanging the Ui and Vi terms, in 
order to obtain the matrices (Etzel and McCarthy, [4]) 

kl[S] = [B] + [B'] = kl [ ~ 
2 -82 

-81 

82 81 1 
-81 82 

o 83 

-83 0 

(4.14) 

and 

k2[T] = [B] ~ [B'] = k2 [t~ -~3 ~~1 =~~ 1 (4.15) 
-t2 h 0 -t3 
tl t2 t3 0 

where [B] = kdS] + k2[T] and L8; = Lt; = 1. We can then compute J-l 
and v by the equations 

J-l = arctan(k1 + k2 ) + arctan(k1 - k2 ) 

v = arctan(k1 + k2) - arctan(k1 - k2)' ( 4.16) 
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The double quaternion is now given by G = G1~ + G 2T], where 

G 1 = { s~~::} and G 2 = { s~~:: }. (4.17) 

where s = (81,82,83)T and t = (t1,t2,t3)T define the axes to which the 
angles p and v are to be rotated, respectively. Again, notice that each 4 x 4 
rotation matrix defines a double quaternion, that can be separated into a 
pair of quaternions that multiply separately. 

12.4.5 Spatial displacement from a double quaternion 

Assuming we have a double quaternion G of the form of equation (4.17), we 
compute the associated spatial displacement as follows. Note that a 4 x 4 
rotation matrix can be written in exponential form 

[D] =e[M] (4.18) 

where [M] is a 4 x 4 skew symmetric matrix. The matrix [M] has the form 
[M] = p[8] + v[T] (Ge, [6]). Thus 

(4.19) 

The series expansion of eiL[S] and ev[T] and the identities [8]2 = [TF = -[1] 
yield the formulas 

[ 
cosp -83 sinp 82 sin p ",'nM 1 

eiL[S] = 83 sinp cosp -81 sinp 82 S111 P 
-82 sinp 81 sin p cosp 83 sinp , 
-81 sinp -82 sinp -83 sin p cosp 

(4.20) 

and 

e"IT] ~ [ 

cos v -t3 sin v t2 sin v 
-!"m" 1 t3 sin v cos v -h sinv -t2 sin v 

-t2 sin v h sin v cos v -t3 sinv . 
h sin v t2 sinv t3 sin v cos v 

(4.21) 

The result is the 4 x 4 rotation matrix [D] defined by G = G1~ + G2 T]. 

The 4 x 4 homogeneous transform approximating the rotation is 
[H] = [A, d], where A is the upper left 3 x 3 rotation matrix and the 
translation vector d = (dx , dy , dz ) is given by 

(4.22) 

where dij is the ijth element of the [D] matrix. The longitude, latitude, 
and roll angles are 

() = arctan(d13 /d33), 

if; = arctan ( d23 cos () / d33 ) = arctan ( d23 sin () / d13 ), 

'l/J = arctan(d21/d22 ). 

( 4.23) 
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Thus, a homogeneous transformation may be computed from a double 
quaternion. 

12.5 The Task Trajectory 

The task of the robot is defined in terms of the trajectory of the end-effector. 
In order to define this task, we specify a set of key frames and use Bezier 
interpolation to generate the trajectory. Consider N + 1 key frames defined 
by the homogenous transforms [Hk], k = 0, ... , N. The double quaternions 
associated with each key frame are denoted as Pk = Pk,l~ + P k ,27]. We use 
the Bezier interpolation of double quaternions developed by Ge and Kang 
[7] to create the task trajectory. 

Bezier interpolation for double quaternions follows the principles of Bezier 
interpolation for curves, see Farin [5]. There are two main features the ge­
neration of a curve segment between two key frames using the deCasteljau 
[2, 3] algorithm, and the joining of these segments together to maintain G 1 

and G2 continuity. These continuity conditions ensure a smooth movement 
of the body along the trajectory. 

12.5.1 The DeCasteljau algorithm 

In order to generate a trajectory segment between the two key frames Pi 
and Pi+l, we need a Bezier polygon B 3i , B 3i+ 1 , B3i+2' and B 3i+3. The first 
and last double quaternions of the Bezier polygon are identified with the 
two key frames, 

(5.24) 

The intermediate Bezier double quaternions B3i+l and B3i+2 are calculated 
to provide the desired continuity conditions when the complete trajectory 
is assembled. We show in the next section how this is done. 

Here we show how the DeCasteljau algorithm is used to generate po­
sitions along the trajectory between two key frames for a given Bezier 
polygon. The central feature of the algorithm is an interpolation formula 
between two double quaternions Pi and Pi+l, which is a generalization of 
Shoemake's [13] original results. Let V = ~Vl +'I]V2 and W = ~Wl +'I]W2 

be two unit double quaternions, then the great circular arc L(t) between 
them is defined by the formula 

- sin(l - t)p - sin tp -
L(t) = . _ V + -. -_ W 

smp smp 
(5.25) 

where cosp = V· W. 
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Expanding the double quaternions in this equation, we obtain 

L(t)=C(sin(l-t)Pl V sintPlW) (sin(1-t)P2 V sintp2 W ). 
". 1+. 1 +T/. 2+. 2 smpl smpl smp2 smp2 

(5.26) 
Notice that this equation separates to define the interpolation of the quater­
nion components of V and W, individually. Thus our formalism simply 
requires us to apply Shoemake's interpolation formula twice. In fact, all of 
our algorithms handle the components of the double quaternions indepen­
dently. 

For a particular value of the parameter t we now seek the double quater­
nion D(t) along the Bezier curve segment. The DeCasteljau algorithm uses 
equation (5.25) to generate circular arcs between each of the Bezier double 
quaternions B 3i , B 3i+l , B 3H2 , and B 3H3 associated with this ith segment. 
To do this we first compute the double quaternions X o, Xl, and X 2 on each 
of these arcs by the formula 

- sin(l - t)Pm - sin tpm -
Xm(t) = . _ B 3Hm + -. ---B3H(m+l), m = 0, 1,2. 

smpm smpm 
(5.27) 

where m denotes the arc connecting the Bezier double quaternions B 3Hm 
and B 3Hm+l . Next repeat this process in order to define the double quater­
nions Yo and Yl on the arcs joining Xo, Xl and Xl, X 2, defined by the 
formula 

Y () _ sin(l - t)a-n X- sin ta-n X- - 0 
n t - . _ n + -. -_ - n+I, n - ,l. 

sman SIn an 
(5.28) 

Finally, we obtain the frame D(t) as 

D(t) = sin(l- t)i Y sinti Y . 
t . _ 0+. _ 1 

smT smT 
(5.29) 

As the parameter t varies from 0 to 1, D(t) will define the trajectory from 
i\ to PHI. This procedure can be generalized for Bezier polygons with 
more intermediate vertices, see Farin [5]. 

12.5.2 Bezier interpolation 

To define the entire task trajectory, we must compute the Bezier polygon 
for each of the N segments. The intermediate Bezier double quaternions, 
B3i+l and B3H2 are determined to ensure continuity at each junction. 

To ensure G1 continuity, B 3i- l and B3i+l and the key frame Pi must lie 
the same arc, see Figure 12.3. Therefore, Pi is related to B3i+l and B 3i- l 
by 

sin ¢iPi = sin vi¢iB3i-I + sin ui¢iB3i+l. (5.30) 

The parameter ¢i = arccos(B3i-l·B3i+d is the double arclength between 
B 3i- l and B 3i+l. The parameters Ui and Vi locate Pi on this arc, such 



244 Shawn G. Ahlers and John Michael McCarthy 

I 

I 
\ \ \ I 

\ \ I .... -- -. ~ ~ 
~ , 

~ -o 

FIGURE 12.3. Construction of Bezier double quaternions. 

that Ud)i = arccos(:83i_1 . Pi), Vi¢i = arccos(Pi · :83i+1). These parameters 
satisfy the relation 

(5.31) 

To ensure G2 continuity, the five double quaternions :83i- 2 , :83i - 1, Pi, 
:83i+1, and :83i+2 must lie on the same great sphere (see Ge and Kang [7]). 
To do this, we introduce the control double quaternion Q i that is defined to 
be the intersection of the arcs through by :83i- 2, :83i- 1, and :83i+1, :83i+1. 

These Bezier double quaternions lie on arcs through Qi-1 and Qi' and Q i 
and Qi+1. They are located by the parameters Xi, Yi, Zi, so that 

and 

sin ei-1:83i-1 = sin Zi-1 ei - 1 Qi-1 + sin(xi_1 + Yi-1 )ei- 1 Qi' 
for i = 2, ... , N - 1, 

sinei:83i+1 = sin(Yi + Zi)eiQi + SinXieiQi+1, 
for i = 1, ... , N - 2, 

(5.32) 

(5.33) 

where the angle e i = arccos(Qi . Qi+1). Note, the Xi, Yi, Zi are greater than 
zero and satisfy the constraint 

Xi + Yi + Zi = 1 for 1:::; i :::; N - 2. (5.34) 

At the endpoints of the trajectory Xo = 0 and ZN-1 = o. 
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To complete the condition for C 2 continuity, we require the parameters 
Ui and Vi to satisfy the constraint derived in [7], 

Vi sin VJ)i 

Ui sin ui<!>i 

Yi-1ei-1 sinxiei 

Yiei sinzi-lei-1 
(5.35) 

This equation together with equation (5.31) can be solved to determine 
the parameters Ui and Vi in terms of the angles ei and ¢i. These angles 
are computed from the locations of Qi and B3i±1' The control double 
quaternions Qi must be found to fit the user-specified Pi. The parameters 
Ui and Vi are determined by solving equations (5.35) and (5.31) numerically. 

Substitute equations (5.32) and (5.33) into (5.30) to define the key frame 
double quaternions Pi directly in terms of the control quaternions Qi 

where 

sin Zi-lei-1 sin Vi¢i ai = ----::;-----,,;---
sin ei- 1 sin ¢i 

b-. _ sin(xi-1 + Yi-dei- 1 sin Vi¢i sin(Yi + Zi)ei sin Ui¢i ,- - - + - - , 
sin Oi-1 sin q)i sin Oi sin q)i 

sin Xiei sin Ui¢i 
Ci = --=---=---

sin e i sin ¢i 

This relationship can be written in matrix form as 

0, 0, 

0, 
C2, 

0, 

0, 
0, 

0, 
0, 

(5.36) 

= { ~l } , (5.38) 

PN-1 

or 
(5.39) 

where [M] is defined as the coefficient matrix, Q = (Ql"'" QN_l)T, and 
~ - - T -
P = (P 1, ... , P N - d . Note, the coefficients ai, bi, and Ci are dependent on 
the angles ei and ¢i which, in turn, are dependent on the control quater­
nions Qi' 

Given an estimate for the angles ei and ¢i and the variables Ui and Vi, 
. ~j+1 

we can compute [MJ] and solve equation (5.39) for Q such that 

(5.40) 



246 Shawn G. Ahlers and John Michael McCarthy 

~j+1 - -
From Q , we calculate B 3i- 1 and B3i+1 from equations (5.32, 5.33). At 
this point, we correct the estimates for Oi, ¢i' Ui, and Vi and recompute 
Qi. The process stops when equation (5.30) is satisfied. 

The Bezier interpolation procedure is as follows 
Step 1. The special cases of the endpoints are handled by defining 

the control quaternions at the boundaries, that is, Q-1 = 13o = Po and 
QN +1 = 133N = P N· The adjacent Bezier double quaternions are defined 
as 131 = Qo and 133N- 1 = QN· However, the choices for Qo and QN are 
arbitrary. We choose them to lie one-tenth (t = 0.1) of the way from the 
first and last key frames on the arc-segments passing through Po, P 1, and 
PN, PN-1, such that 

Q- _ sin(l- O.I) po p sinO.1pop 
0- . - 0+. - 1 smpo smpo 

(5.41 ) 

and 

Q- = sin(1 - O.I)pN P sinO.lpN P 
N . - N + . - N-1 smpN smpN 

(5.42) 

where Po = arccos(Po · Pd and .oN = arccos(PN · PN - 1 ). 

We also set the variables Xi = Yi = Zi = ~ for i = 1, ... , N - 2; and near 
the ends of the trajectory, we select Yo = YN-1 = 0.6 and Zo = XN-1 = 0.4 
for equation (5.34). Recall, Xo = ZN-1 = o. 

Step 2. Determine the initial [MOl such that j = 0 in equation (5.40). 

• Let the initial Ui and ih be defined by 

• Compute initial values for the matrix components [MOl by 

ai = Zi-1 Vi, 
hi = (Xi-1 + Yi-dVi + (Yi + Zi)Ui, 
Ci = XiUi. for i = 1, ... ,N - 1. 

(5.43) 

(5.44) 

(5.45) 

~j+1 
Step 3. Solve (5.40) to determine the control double quaternions Q . 

Normalize each Qi and compute Oi = arccos(Qi . Qi+1)· 
Step 4. Compute the Bezier quaternions 133i±1 from equations (5.32) 

. - - - -j 
and (5.33). Determme cPi = arccos(B3i_ 1 . B 3i+1), then calculate Pi from 
the equation (5.30). 
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FIGURE 12.4. Double Quaternion Interpolated Path. 

-j 
Step 5. Compare the computed key frames Pi to the actual key frames 

- - j -
Pi by calculating the angle Wi = arccos(Pi . Pi). We define the error E to 
be the sum 

N 

E= LW;' (5.46) 
i=O 

The iterative procedure stops when E ::; 0, where 0 is the tolerance for 
convergence, in our case 0 = 10-5 . 

If E > 0, 

• Calculate parameters Ui and i\ from the G2 continuity equations 
(5.35) and (5.31) . 

• Compute the new components of the matrix [Mjl using equation 
(5.37) for the next iteration, and return to step 3. 

The result of this procedure is the set of Bezier polygons for each segment 
of the entire trajectory. DeCasteljau's algorithm is used to determine the 
frames along each segment. 

12.5.3 Example of double quaternion interpolation 

To illustrate the double quaternion interpolation procedure, we interpolate 
the E3 key frames listed in Table 12.1. The double quaternions associated 
with these key frames is listed in Table 12.2. The resulting interpolated 
trajectory is shown in Figure 12.4 where the white end-effectors correspond 
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x y z (J 

Ml 0.0 0.0 0.0 90° _45° 0° 

M2 2.0 0.0 2.0 0° 0° 0° 

M3 3.5 1.0 4.0 0° 45° 0° 

M4 5.0 3.0 3.0 20° 20° 22.5° 

M5 6.5 3.0 2.0 45° 0° 45° 

M6 8.0 2.0 0.0 90° 30° 0° 

TABLE 12.1. The key frame data for end-effector trajectory. 

Ml 0.271 0.653 -0.271 0.653 0.271 0.653 -0.271 0.653 

M2 0.006 0.000 0.006 0.999 -0.006 0.000 -0.006 0.999 

M3 -0.373 -0.002 0.013 0.928 -0.393 0.002 -0.013 0.920 

M4 -0.119 0.205 0.232 0.943 -0.149 0.197 0.205 0.947 

M5 0.165 0.355 0.364 0.845 0.128 0.352 0.342 0.862 

M6 -0.165 0.683 0.201 0.683 -0.201 0.683 0.165 0.683 

TABLE 12.2. Double quaternion key displacements. 

to the key frames and the black end-effectors are the interpolated frames. 
The interpolation procedure converged in four interations. 

12.6 The Design of the TS Robot 

The TS robot is a five-degree of freedom mechanism that has as its base a 
gimbal joint and is connected to a spherical joint by a rigid link, see Figure 
12.1. 

Let v be the coordinate vector in E3 of the wrist center in a frame M 
attached to a workpiece. The TS chain constrains a the point v to lie on a 
sphere of radius R about the shoulder joint g. The point, v, in the moving 
frame, M, takes the position wi = [Hilv in the fixed frame, F. We have 
the constraint equation 

(w - g) . (w - g) = R2. (6.47) 

For a given wand g, the set of all transformations, [H], that satisfies the 
equation (6.47) defines the workspace of the TS robot. 

We use this constraint equation to define a TS robot for a given trajec­
tory. Choose v = (0,0, O)T to be the origin of the moving frame, M. This 
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reduces the non-linear design problem to a set of linear equations. 
If we choose a reference position Ml and subtract equation 1 from the 

rest of the equations of the form (6.47), we obtain. 

(6.48) 

Because their are six unknown parameters, g = (x, y, z)T and those of 
w 1 = (u, V, w)T, in general, we may obtain exact solutions for up to seven 
arbitrary positions (Innocenti [10] and McCarthy and Liao [11]). 

For this chapter, we specify w 1 and solve for the ground pivot g. This 
yields a system of linear equations that has a unique solution for four 
specified spatial positions (n = 4). Writing the three constraint equations 
in matrix form, we have the system 

(6.49) 

or 
[W]g=c. (6.50) 

The solution g may be obtained by inverting the matrix [W]. This unique 
solution g = (x, y, z)T is the center of the sphere that passes through the 
four points wi, i = 1, 2, 3, 4. The calculation of the armlength R of the TS 
chain can be computed from equation (6.47), 

(6.51) 

By calculating the base location g and the armlength R, the workspace for 
a specific TS chain is defined. Now, we design an optimimal TS chain such 
that the workspace of the chain attempts to satisfy the task trajectory. 

12.7 The Optimum TS Robot 

At this point, we are able to create a task trajectory from user-defined key 
positions and orientations. We also can determine a TS robot from four 
specified positions. The goal now is to find the best fit of a TS robot to our 
task trajectory. 

Select four frames from the task trajectory. These four positions become 
Wi, i = 1,2,3,4 in the design equations (6.49) of the TS chain. The physical 
parameters of the robot g and R are then calculated. The TS robot will 
pass through four positions and orientations of our task trajectory and 
approximate the rest of the task frames. To get the closest point w of the 
robot's workspace to an arbitrary pose a from the task trajectory, we define 
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Best Fixed Pivot g (4.49, 0.44, 0.10) 

Arm Length R 3.84 

Error £lave 0.001 

TABLE 12.3. TS robot design parameters. 

the unit direction vector v from the fixed pivot g = (x, y, z) to the point 
a= (a,b,c) as 

a-g 
v = ,-------=----

I a-g I (7.52) 

The point w = Rv is the closest point of the TS robot workspace to the task 
frame a. The end-effector of the TS robot can attain the exact orientation 
of the task frame. This position and orientation is converted to the double 
quaternion W = ~W 1 + T}W 2. Let the double quaternion A = ~Al + T}A2 

define the task frame. The local error is defined as the magnitude of the 
eight-vector 

(7.53) 

The total number of task frames of a task trajectory is given by 

T = (N)(s + 1) + 1 (7.54) 

where N + 1 is the total number of key frames and s is the number of 
interpolations between any two key frames. The error is defined as the 
summation of the local errors between the TS robot workspace and each 
frame of the task trajectory divided by the total number of task frames for 
specific TS design 

(7.55) 

This error value is one value of the cost function which must be minimized. 
A new set of four task frames is selected and the process is repeated. An 
exhaustive search of all combinations of four task frames in the task tra­
jectory is utilized. The TS robot with minimum error is the optimum fit to 
the task trajectory. 

12.7.1 The optimum TS robot and the task trajectory 

The TS robot synthesized to fit the task trajectory obtained from the pre­
vious example is shown in Figure 12.4. The fixed pivot g and the arm length 
R are listed in Table 12.3. Figure 12.5 shows the sphere reachable by the 
wrist of the TS robot. The grey end-effectors show the closest positions to 
the task frames. The center of the sphere is the location of fixed pivot, g. 
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FIGURE 12.5. The TS robot and the task trajectory. 

12.8 Conclusion 

In this chapter, we present a method to design a TS robot that reaches 
a specified task trajectory. The task trajectory is defined by interpolating 
a set of key frames selected by the designer. The interpolation is done 
using a double quaternion representation of the specified key frames to 
obtain an efficient formulation. The TS robot that best fits this trajectory 
is determined by minimizing local error between the workspace and the 
task frames. An example of this design algorithm is presented. 

This procedure allows a user to design a TS robot to accomplish a desired 
task. If the designed robot is not satisfactory, the user alters the task and 
the procedure is repeated. This interactive process helps to formulate a task 
as a set of spatial positions and orientations, scan and evaluate candidate 
devices, including assessment of range of motion and mechanical advantage, 
and, finally, select a TS robot to achieve the desired performance. 



Chapter 13 

Applications of Lie Algebras 
and the Algebra of Incidence 

Eduardo Bayro Corrochano and Garret Sobczyk 

13.1 Introduction 

We present the fundamentals of Lie algebra and the algebra of incidence in 
the n-dimensional affine plane. The difference between our approach and 
previous contributions, [5, 4, 2] is twofold. First, our approach is easily 
accessible to the reader because there is a direct translation of the fa­
miliar matrix representations to our representation using bivectors from 
the appropriate geometric algebra. Second, our "hands on" approach pro­
vides examples from robotics and image analysis so that the reader can 
become familiar with the computational aspects of the problems involved. 
This chapter is to some extent complimentary to the above mentioned refe­
rences. Lie group theory is the appropriate tool for the study and analysis 
of the action of a group on a manifold. Geometric algebra makes it possible 
to carry out computations in a coordinate-free manner by using a bivector 
representation of the most important Lie algebras [5]. Using the bivector 
representation of a Lie operator, we can easily compute a variety of inva­
riants useful in robotics and image analysis. In our study of rigid motion in 
the n-dimensional affine plane, we use both the structure of the Lie algebra 
alongside the operations of meet and join from incidence algebra. 

The organization of this chapter is as follows. Section two examines the 
basic properties of the general linear group from the perspective of geo­
metric algebra. Section three presents the algebra of incidence in the n­
dimensional affine plane. Section four studies rigid motion in the affine 
plane. Section five carries out computations for three typical problems in 
robotics, using the incidence relations developed in section 3. Section six 
uses the bivector algebra in an experiment involving real and simulated 
images for the recognition of visual invariants. Concluding remarks are 
given in section seven. 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering

© Birkhäuser Boston 2001
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13.2 The General Linear Group 

The General Linear Group G L(N) is defined to be the subset of all f E 
End(N) with the property that f E GL(N) if and only if det(f) =1= 0, [10]. 
The determinant of f is defined in the algebra 9 N by 

where det(F) is just the ordinary determinant of the matrix of f with 
respect to the basis {e}. Choosing the basis {e} makes explicit the isomor­
phism between the general linear group GL(N) and GL(n,C) the general 
linear group of all complex n x n matrices F with det F =1= O. The theory of 
Lie groups and their corresponding Lie algebras can be considered largely 
to be the study of the group-manifold GL(n,C), since any Lie group is 
isomorphic to a subgroup of GL(n, C), [3, pp.501]. 

Since we have referred to G L(N) as a manifold, we must be careful to give 
it the structure of an n2-dimensional topological metric space. We define 
the inner product < f,g > of f,g E GL(N) to be the usual hermitian 
positive definite inner product 

n n 

< f,g >= LLfij9ij, 
j=li=l 

where fij,gij E C are the components of the matrices F and 9 of f and g, 
respectively, with respect to the basis {e}. The positive definite norm If I 
of f E G L(N) is defined by 

n n 

Ifl2 =< f,J >= LLfij!ij; 
j=li=l 

and is clearly zero if and only if f = o. 
The crucial relationship between a Lie group and its corresponding Lie 

algebra is almost an immediate consequence of the properties of the expo­
nential of a linear operator f E End(N). The exponential mapping may be 
directly defined by the usual Taylor series 

00 fi 
ef = '""'­~." t. 

i=O 

where convergence is with respect to the norm If I· Note that fO = 1 is the 
identity operator on N, and fk is the composition of f with itself k times. 

The logarithm of a linear operator, () f = log(f), exists and is well defined 
for any f E GL(N). The logarithm can also be defined in terms of an 
infinite series, or more directly in terms of the spectral form of the f, [20]. 
Since the logarithm is the inverse function of the exponential function, we 
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can write f = eO! for any f E GL(N). The logarithmic form f = eO! 
of f E G L(N) is useful for defining the one parameter group {Jt} of the 
operator f E GL(N), 

ft(x) = eto!x. 

The one parameter group {ft} is continuously connected to the identity in 
the sense that fo(x) = x, and JI(x) = f(x). Note that 

(2.1) 

so Of is tangent to ft at the identity. The reason why {ft} is called a one 
parameter group is because it satisfies the basic additive property that 

f f - eto!eSo! - e(s+t)O! - f S t - - - s+t· 

We can now define the general linear Lie algebra gl(N) of the general 
linear Lie group GL(N). As a set, gl(N) == End(N) , which is just the 
set of all tangent operators Of = log(f) E End(N) to the one parameter 
groups ft = eto! defined for each f E GL(N). To complete the definition 
of gl(N), we must specify the algebraic operations of addition and multi­
plication which makes End(N) into the Lie algebra gl(N). Addition is just 
the ordinary addition of linear operators, and multiplication is defined by 
the Lie bracket [Of, Og] for Of, Og E gl(N). An analytic definition of the Lie 
bracket, which directly ties it to the group structure of GL(N), is given by 

[18, pp.3]. 
Evaluating the Lie bracket, we find that 

1 d 
2t dt (ftgtf-tg-t)lt=o 

1 
2t (°tftgtf-tg-t + ftOggtf-tg-t - ftgt°tf-tg-t-

- ftgtf -tOgg-t) 
1 1 

(2/t(Ofgt - gtOf)f-tg-t)lt=o + (2/tgt (Ogf- t -

- f -tOg)g-t) It=o 
1 1 2 (OfOg - OgOf) + 2( -OgOf + OfOg) 

OfOg - OgOf (2.2) 

where we have used the Taylor series expansions 

gt=l+tOg + ... , and f-t=l-tOf+ .... 
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We have thus shown that the Lie bracket, defined analytically above, re­
duces to the commutator product of the linear operators () f and () 9 in gl (N). 
As such, it is not difficult to show that they satisfy the famous Jacobi iden­
tity, which is equivalent to the distributive law 

When we choose a particular basis {e} of N, the isomorphism between 
the general linear Lie algebra gl (n, C) and gl (N) becomes explicit and the 
Lie bracket of linear operators just becomes the Lie bracket of n x n complex 
matrices (2.26). Alternatively, using the bivector representation (2.23), the 
Lie bracket of linear operators is expressed in terms of the Lie bracket of 
the bivectors of the operators (2.25). 

13.2.1 The orthogonal groups 

The most simple example of an orthogonal group is 80(2), which is a sub­
group of the general linear group GL(N'2). As a matrix group it is generated 
by all 2 x 2 matrices of the form 

X = (COS() -Sin()) 
o sin () cos () . 

The matrix Xo generates a counterclockwise rotation in the xy-plane 
through the angle (). Using (2.23), we get the corresponding bivector repre­
sentation 

x 0 = cos(())ell\el - sin(())ell\e2 + sin(())e2I\el + cos(())e2I\e2 

For matrices Xo1 , X02 E 80(2) the group operation is ordinary matrix mul­
tiplication, X02 X 01 = X01 +02. For the bivector representation X Oll X O2 E 
80(2), the group operation is defined by the generalized dot product, X01 : 

X 02 , that is for x E N2, 

(2.3) 

Note that the bivectors Xo are in Q; n. 

Taking the derivatives of Xo and X 0, with respect to () and evaluating 
at () = 0, gives the corresponding generators of the associated Lie algebra 
80(2). As a matrix Lie algebra, under the bracket operation of matricies, 
we find the generator 

dXo (0 -1) Toio-+o = 1 0 . 

As a bivector Lie algebra, under the bracket operation of bivectors, we find 
the bivector generator 

dXo 
B = "dO io-+o = -ell\e2 + e21\e l = -a12 + T]12· (2.4) 
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The bivector representation of the Lie group 50(2), as a subgroup of 
the larger Lie group 50(2,2), makes possible the spinor representations of 
these groups discussed in chapter 3. The spinor group 5pin(2) is defined 
by taking the exponential of the bivector (2.4), 

1 
5pin(2) = {exp(20B)1 0 E 1R} 

The exponential exp( ~OB) can be calculated by noting that the bivector 
B satisfies the minimal polynomial 

B3 + 4B = B(B - 2i)(B + 2i) = 0, 

which implies the decomposition 

where the mutually annihiliating idempotents are defined by 

Using this decomposition, we find that 

0·0 
exp(-2-)PI + exp(iO)P2 + exp( -iO)P3 

PI + coS(0)(P2 + P3) + sin(0)i(p2 - P3) 
B. 

PI + coS(0)(P2 + P3) + "2 sm(O) (2.5) 

By using Theorem 2.27 from chapter 2, the group action is given by 

X' = exp( ~OB)X exp( - ~OB) 

where x = {e}X{e} = XIeI +X2e2. We say that 5pin(2) is a double covering 
of the orthogonal group 50(2), because the spinors ±exp(~OB) represent 
the same group element. Note that we now have the easy composition rule 
for the composition of two group elements exp(~OIB) and exp(~02B), 

If we are solely interested in the group 50(2), a more natural place to 
carry out the calculations is in the Euclidean space 1R2 . We project the null 
cone N2 down to 1R2 by using the reciprocal elements hand I2, defined 
in chapter 2 by 
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Thus, for x = {e}X{e} = X1e1 + X2e2 E N2, the projection x' = PI(x) 
gives 

As noted in chapter 2, this projection is invertible in the sense that we can 
find PI' such that x = Pdx' ). The projection PI' is specified by 

where I is defined as before and where I' = e1e2. 

In IR2, the generator of rotations is the simple bivector 0"20"1. This bivec­
tor can be obtained from the bivector (2.4) in 8pin(2,2) by the projection 

onto the Lie algebra 80(2). For x' = X10"1 + X20"2 E IR2, the equivalent 
rotation is given by 

The above ideas can be immediately generalized to the general Lie group 
GL(Nn) of null cone Nn, and the orthogonal subgroups SO(p, q), where 
p + q = n. The orthogonal group SO(p, q) acts on the space IRp,q. Thus, 
if we wish to work in this Lie group or the corresponding Lie algebra, we 
first project the null cone Nn onto IRp,q by using the reciprocal elements 
given in chapter 2, carry out the rotation, and then return to the null cone 
by using the inverse projection. 

13.2.2 The Lie group and Lie algebra 

of the affine plane 

The Lie algebra of the neutral affine plane Ae3 (N2) is useful in analysis of 
visual invariants (section 13.6), so we will begin with its treatment here. The 
well-known matrix representation of the Lie group of affine transformations 
in the plane has six independent parameters or degrees of freedom, and 
consists of all matrices of the form 

g(A,v) ~ [:~: :~: ~ 1 (2.6) 

where det g(A, iJ') = det A =I- O. 
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The one-parameter sub-groups are generated by the matrices 

1 0 

~ 1 [ l 0 n Tx = 0 1 Ty = 1 
0 0 0 

eU 0 0 cos(B) -sin(B) 0 
Du = 0 eU 0 Ro= sin (B) cos(B) 0 (2.7) 

0 0 1 0 0 1 

[ e" 
0 0 cosh(4)) sinh( 4» 0 

Sv = ~ e-V 0 , H¢ = sinh( 4» cosh(4)) 0 
0 1 0 0 1 

Using equation (2.1), the matrix representation of the Lie algebra basis 
generators are obtained by taking the derivative of the equation (2.7), and 
evaluating the parameter at zero 

L"~o~n, 
L"~ 0 ~1 n 

o 0) o 1 , 
o 0 

(2.8) 

The above matrix Lie group and matrix Lie algebra can be directly trans­
lated into the corresponding Lie group and Lie algebra of the affine plane 
Ae3 (N2). Each of the matrix generators in (2.7) and (2.8) can be replaced 
by its corresponding bivector representation (2.23). The bivector represen­
tations of the generators of this Lie algebra are 

C x = bivector(.cx ) = elAe3, C y = bivector(.cy) = e2 Ae3· 

C u = bivector(.cu ) = elAel +e2Ae2, Co = bivector(.co) = e2Ael-elAe2· 

C v = bivector(.cv ) = elAel-e2Ae2, C¢ = bivector(.c¢) = elAe2+e2Ael. 

Expanding these bivector generators in the standard basis (2.6), we get 

1 1 1 1 
"20"10"3 - "20"17]3 - "20"37]1 - "27]17]3, 
1 1 1 1 
"20"20"3 - "20"27]3 - "2a37]2 - "27]27]3, 

-0"17]1 - 0"27]2, 

-0"10"2 + 7]17]2, 

-0"17]1 + 0"27]2, 
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(2.9) 

Let us see how the Lie algebra of the affine plane can be represented as 
a Lie algebra of vector fields over the null cone N3. The vector derivative 
or gradient &x = a~ at the point x = xel + ye2 + ze3 E N3 is defined by 

requiring that a . &x is the directional derivative in the direction of a. It 
follows that a . &xx = a and ei . &x == a~i . We also have 

3 

&xx = &x . x + &x/\x = 3 + Lei/\ei, 
i=l 

where {e} and {e} are reciprocal basis for the reciprocal null cones N3 and 
N3. In terms of the reciprocal basis {e}, & x = l:i ei a~ i • 

Now let a = a(x) and b = b(x) be vector fields in N3. The Lie bracket 
[a, b] is defined by 

[a, b] = a . &xb - b . &xa 

Since in N3, &x/\&x = 0, we have the important integrability condition 
that 

where 
[a· &x, b . &x] = a . &xb . &x - b . &xa . &x 

is the Lie bracket or commutator product of the partial derivatives a . &x 
and b . &x. It follows from this identity that 

[a,b]· &x = [a· &x,b. &x] 

relating the Lie bracket of the vector fields [a, b] to the standard Lie bracket 
of the partial derivatives [a· &x, b· &x]. 

Let us consider in detail the translation of the Lie Algebra of the affine 
plane to the null vector formulation in the null cone N2. Recall that the 
two dimensional affine plane Ae(N2) in N3 defined by 

(2.10) 

We have already seen that the Lie algebra of the affine plane can be 
defined by a Lie algebra of matricies, or by an equivalent Lie algebra of 
bivectors. We now define this same Lie algebra as a Lie algebra of partial 
derivatives, and as a Lie algebra of vector fields. We have the following 
correspondence: 
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a a - -
x- + Y- = (x - e3) . ax = Ls . (xl\ax) ax ay 

+-+ LsX = Ls . x = xe1 + ye2 = x - e3 = Ls 

where LB = e11\e2 + e21\e1. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Thus, the Lie algebra of the affine plane is generated by the bivectors 

(2.17) 

or, equivalently, by the vector fields of the form L . x for L EM. The Lie 
bracket [L1 . x, L2 . xl is given by 

where L1 x L2 = ~(L1L2 - L2Ld is the commutator product of the 
bivectors L 1, L2 EM. 

The Lie algebra of the affine plane is useful for the analysis of motion 
in the image plane. The vector fields of this Lie algebra are tangent to 
their flows, or integral curves of their group action on the manifold, and 
are presented in Figure 13.1 as images. 

We have found the generators 

L - a L a a Lb = xJL - yJL x - ax r = -Yax + Xay ax ay 

L - a L a a L a a y - ay s = xax + Yay B = Yax + Xay 
(2.18) 

of the Lie Algebra of the affine plane Ae3 (N2 ) as vector fields along integral 
curves. Taking the commutator products of these infinitesimal differential 
generators, gives the multiplication table 13.2.2 for this Lie algebra. 
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FIGURE 13.1. Lie Algebra basis in the form of images. 

£x 0 0 Lx Ly Lx Ly 

Ly 0 0 Ly -£x -Ly Lx 

£s -Lx -Ly 0 0 0 0 

Lr -Ly Lx 0 0 -2LB 2Lb 

Lb -Lx Ly 0 2LB 0 2£r 

LB -Ly -Lx 0 -2Lb -2Lr 0 

FIGURE 13.2. The Lie algebra of the affine plane. 

Using the table, we can verify the Jacobi identity for Lx , Ls and Lb, 
getting 

[Lx [Ls£b]] + 
[LxO] 

o + 

[Ls[LbLx]] 
[LsLy] 

Ly 

+ 
+ 

[£b[LxLs]] 
[LbLx] 

Ly O. 
(2.19) 

Or, equivalently, using CLICAL and the bivector representation for Lx, Lr 
and Lb, we calculate 
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[Lx [LrLbll + 
2 [LxLB] 

2Lx 

[Lr[LbLxll + 
[LrLy] + 

Lx 

13.3 Algebra of Incidence 

[Lb[LxLrll 
[LbLy] 

Lx 
(2.20) 

o. 

In various applications in robotics, image analysis and computer vision, 
projective geometry and the algebra of incidence are very useful. Fortu­
nately, both of these mathematical systems can be efficiently handled in 
the geometric algebra framework. In this section, we show how to apply 
the algebra of incidence to problems in robotics. 

In Chapter 2, the meet and join operations in rrn were characterized in 
terms of the intersection and union of the subspaces in Nn+1 which name 
the corresponding objects in rrn. Since each k-subspace can be associated 
with a nonzero k-blade of the geometric algebra Q(N), it follows that the 
corresponding (k - I)-plane in rrn can be named by the k-direction of a 
k-blade Ak . 

Suppose that r points aI, a2, ... ,ar E rrn are given in general position 
(linearly independent vectors in Nn+l). Then an (r - I)-plane in rrn is 
specified by the r-blade 

Ar = alAa2A ... Aar -1= O. 

Similarly, an (s - I)-plane in rrn is specified by the s-blade 

determined by the s points bi in general position in rrn. Considering the a's 
and b's to be the basis elements of respective subspaces Ar and Bs, they 
can be sorted in such a way that 

Supposing that 

it follows that 

and 
A r nBs = span{bal , .•• ,bas _ k }' 

The problem of "meet" and "join" of the r-blade Ar and s-blade Bs has 
thus been solved. 
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Defining the reciprocal pseudoscalar element 1 AuB of the join Ar U BS, 

the (s - k)-blade of the meet can be expressed in terms of the r- and s-blades 
Ar and B s, 

(3.21 ) 

A more complete discussion of these ideas can be found in chapters 2 and 
3. 

13.3.1 Incidence relations in the affine n-plane 

In this subsection, we present very useful incidence relations between points, 
lines and planes, and higher dimensional k-planes in the affine n-plane 
A~ = Ae(1Rn) c IRn+I,I. Recall that 

where e = ~(an+l + 1]n+I), and the reciprocal element e = an -1]n. 
Suppose that we are given k-points a~, a~, ... ,a~ E A~ where each a7 = 

ai + e for ai E IRn. Taking the outer product of these points, we get 

= a~A(a~ - a~)A(a~ - a~)A ... A(a~ - aLl) 

= a~ A(a2 - al)Aa3 - a2)A ... A(ak - ak-d 

Projectively speaking, this tells us that the (k - I)-plane Ah in lIn, which 
is the join of the these points, can be expressed in the form 

Ah = a~Aa~A ... Aa~ = aIAa2A ... Aak + 

+eA(a2 - adA(a3 - a2)A ... A(ak - ak-d. (3.22) 

Whereas (3.22) represents a (k - I)-plane in lIn, it also belongs to the 
affine n-plane A~, and thus contains important metrical information. 

Dotting this equation with e, we find that 

This result motivates the following: the directed content of the (k - 1)­
simplex Ah = a~Aa~A ... Aa~ in the affine n-plane is given by 

e· Ah e· (a~Aa~A ... Aa~) 
(k-l)! (k-l)! 

(a2 - adA(a3 - a2)A ... A(ak - ak-l) 
(k - I)! 
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We shall now give a number of useful results in the affine plane that have 
both projective and metrical content. 

d[a~ /\ ... a~, bh] == (3.23) 

[{e· (a~/\ ... /\a~)} (e· bh)]-l[e. (a~/\ ... /\a~/\bh)] 

= [a2 - ad/\·· ./\(ak - ak-dtl[(a2 - ad/\·· ./\(ak - ak-d/\(b - ak)] 

represents the directed distance from the (k - I)-plane a~/\ ... /\a~ to the 
point bh . 

d[a~/\a~,b~/\b~] == [{e. (a~/\a~)}/\{e· (b~/\b~)}]-l[e· (a~/\a~/\b~/\b~)] 

= [(a2 - ad/\(b2 - bd]-1[(a2 - ad/\(b1 - a2)/\(b2 - bd] 

represents the directed distance between the two lines a~ /\a~ and b~ /\b~ in 
the affine n-plane. More generally, 

d[a~ /\ ... /\a~, b~ /\ ... /\b~] == (3.24) 

[{e . (a~ /\ .. . /\a~)}/\{e . (b~ /\ ... /\b~)}]-l [e . (a~ /\ ... /\a~ /\b~ /\ ... /\b~)] 
= [(a2 - al)/\ ... /\(ar - ar-l)/\(b2 - h)/\ .. . /\(bs - bs_d]-l 

[(a2 - ad/\·· ./\(ar - ar_d/\(b1 - ar )/\(b2 - b1)/\ .. . /\(bs - bs-d] 

represents the directed distance between the (r-I)-plane Ah = a~/\ ... /\a~ 
and the (s - I)-plane Bh = b~/\ ... /\bZ in the affine n-plane. 

If Ah/\Bh = 0, the directed distance mayor may not be equal to zero! If 

we can calculate the meet between the (r - I)-plane Ah and (s - I)-plane 
Bh , 

p = (a~ /\ ... /\a~) n (b~ /\ ... /\b~) 
= (a~/\ ... /\a~)· [(b~/\ ... /\b~) ·JAUB] 

where 
J AUB = {e· [(a~/\ ... /\a~)/\(b~/\ ... /\b~_l)]}/\e. 

The point p = AhnBh may not be in the affine n-plane, but the normalized 
point ph = lp will either be in the affine plane or will be undefined. 
Oftentimes in calculations it is not necessary to find the "normalized point" , 
but it is always necessary when the metric is important, or as an indicator 
of parallel hyperplanes. 

13.3.2 Incidence relations in the affine 3-plane 

We give incidence relations for the 3D Euclidean space in the affine 3-plane 
A~, having the pseudoscalar I = 0"123e and the reciprocal pseudoscalar 
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1 = e0"321 which satisfy I . 1 = 1. Similar incidence relations were given 
by Blaschke [11] using dual quaternions, and later by Selig using the 4D 
degenerate geometric algebra 93,0,1 (see chapter 11). Unlike the formulas 
given by these authors, our formulas are generally valid in any dimension 
and are expressed completely in terms of the meet and join operations in 
the affine plane. Blaschke, Selig, and previously Bayro [1], were not able 
to exploit the meet and join operations because they are using a geometric 
algebra with a degenerate metric. We give here the incidence relations for 
the 3D Euclidean space which we will need later. 

The distance of a point bh to the line Lh = a? I\aq is the magnitude or 
norm of their directed distance 

(3.25) 

The distance of a point bh to the plane Ah = a? I\aq I\a~ is 

The incidence relation between the lines L? = a? I\aq and Lq = b? I\bq 
is completely determined by their join hhULh = L? U Lq. If hhULh is a 

1 2 1 2 

bivector, the lines coincide and L? = tLq for some t E JR. If hhULh is a 
1 2 

3-vector, the lines are either parallel or intersect in a common point. In this 
case the meet 

(3.27) 

If e . P = 0 the lines are parallel, otherwise they intersect at the point 
Ph = Y in the affine 3-space A 3e . Finally, if ILhuLh is a 4-vector, the lines e·p 1 2 

are skew. In this case the distance is given by (13.3.1). 
The incidence relation between a line Lh = a? I\aq and a plane Bh = 

b? I\bq I\b~ is also determined by their join Lh U Bh. Clearly, if the join is 
a trivector, the line Lh lies in the plane Bh. The only other possibility is 
that their join is the pseudoscalar 1= 0"123e. In this case, we calculate the 
meet 

(3.28) 

If e . P = 0, the line is parallel to the plane with the directed distance 
determined by (3.25). Otherwise, Ph = ./p is their point of intersection in 
the affine plane. 

Two planes Ah = a? I\aq I\a~ and Bh = b? I\bq I\b~ in the affine plane A~ 
are either parallel, intersect in a line, or coincide. If their join is a trivector, 
i. e., A h = tBh for some t E JR*, they obviously coincide. If they do not 
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coincide, then their join is the pseudoscalar I = 0"123e. In this case, we 
calculate the meet 

(3.29) 

If e· L = 0 the planes are parallel with the directed distance determined by 
(3.25). Otherwise, L represents the line of intersection in the affine plane 
having the direction e . L. 

The equivalent of the above incidence relations were given by Blaschke 
[11] in terms the dual quaternions, and by Selig [17] in a special 4 di­
mensional singular algebra. Whereas Blaschke uses only pure quaternions 
(bivectors) for his representation, Selig uses trivectors for points and vec­
tors for planes. In contrast, in the affine 3-plane points are always repre­
sented by vectors, lines by bivectors, and planes by trivectors. This offers 
a comprehensive and consistent interpretation, which greatly simplifies the 
underlying conceptual framework. 

equation (3.25) 
1 -
1,(pl + lp) (3.30) 

equation (3.26) 
1 2 (pn + 1i"p) (3.31 ) 

equation (3.28) 
1 -2 (In + 1i"l), (3.32) 

The right sides of the equations gives the equivalent expressions used by 
Blaschke and Selig. 

13.3.3 Geometric constraints as indicators 

It is often required to check a geometric configuration during a rigid motion 
in Euclidean space. Simple geometric incidence relations can be used for 
this purpose. For example, a point p is on a line L if and only if 

pAL = O. (3.33) 

Similarly, a point p is on a plane A iff 

pAA = O. (3.34) 

A line L will lie in the plane A iff 

LnA = A. (3.35) 

Alternatively, the line L can meet the plane A in a single point p, in which 
case 

LnA =p, 

or, if the line L is parallel to the plane A, L n A = O. 
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13.4 Rigid Motion in the Affine Plane 

A rotation in the affine n-plane A~ = Ae(lRn), just as in the Euclidean 
space lRn , is the product of two reflections through two intersecting hy­
perplanes. If the normal unit vectors to these hyperplanes are m and n, 
respectively, then the versor of the rotation is given by 

(4.36) 

where B is the unit bivector defining the plane of the rotation. 
A translation of the vector Xh E A~, along the vector t E lRn, to the 

vector xh = Xh + t E A~, is effected by the versor 

when it is followed by the projection P A (X') == (xAe) . e . Thus for x h E A~, 
we get 

1 1 
Xl = TxT- 1 = exp(2te)xh exp( -2te) 

1 1 111 
= (1 + 2te)xh(1 - 2te) = Xh + 2texh - 2xhte - "4texhte 

( 4.37) 

Applying PA to this result, we get the expected translated vector 

(4.38) 

The above calculation shows the close relationship between a translation 
in the affine plane, and its representation in the horosphere as presented 
in other chapters. The advantage of carrying out translations in the affine 
plane rather than in the horosphere, is that the affine plane is still a linear 
model of Euclidean space, whereas the horosphere is a more complicated 
non-linear model. 

Combining the versors for a rotation and a translation, we get the ex­
pression for the versor M = T R of a rigid motion. For Xh E A~, we find 

(4.39) 

Equivalently, we will often write M-1 == M, expressing M- 1 in terms of 
operation of conjugation. Whenever a calculation involves a translation, we 
must always apply the projection PA to guarantee that our end result will 
be in the affine plane. In order to keep our notation as simple as possible, we 
will assume that whenever a translation is carried out, a projection PA back 



268 Eduardo Bayro Corrochano and Garret Sobczyk 

to the affine plane is aways carried out, even if not always explicitly stated. 
The above calculations can be checked with CLICAL 4.0, [8]. Comparisons 
can also be made to the corresponding calculations made by Hestenes and 
Li [13] on the horosphere. 

Note that all of our computations in the affine n-plane are carried out 
in a unified manner, regardless of whether we are calculating incidence 
relations among points and planes, or calculating rigid motions of points 
and planes. In contrast, other authors, using the 4D degenerated algebra 
~hO,l represent points with trivectors and planes with vectors [17], but 
when using the motor algebra 9tO,1 points, lines and planes are represented 
solely in terms of quaternion bivectors, [1]. 

13.5 Application to Robotics 

This section carries out computations in affine 3D space for three problems 
in robotics. The difference between our approach and other approaches used 
in [17, 1] is that all our calculations, including calculations involving the 
meet and join operations, are carried out in the affine plane. Note that we 
will always assume that the projection PA back to the affine plane carried 
out following each translation, even if not explicitly mentioned. 

13.5.1 Inverse kinematic computing 

We illustrate the power of incidence computations in affine 3D space by 
computing the inverse kinematics for a robot manipulator. Robot manipu­
lators are designed to satisfy certain maneuvering constraints. In carrying 
out computations, it is highly desirable to use a mathematical framework 
in which the computations are as simple as possible and clearly reflect 
the underlying geometry. We claim that the affine 3D space meets these 
objectives. 

The transformation M t of a robot manipulator which takes the end­
effector from its home position to a configuration determined by the n­
degrees of freedoms of the joint angles 01 , O2 , ... , On, is given by 

(5.40) 

where the screw versor of a joint Mi = TiRi is dependent on the angle Oi. 
The inverse kinematics problem is the task of calculating the angles Oi 

for a given final configuration of the the end--effector. Robot manipulators 
are equiped with a parallel revoluted axis and with some intersecting ones. 
The latter can be at the end-effector or at the home position. Two typical 
configurations are illustrated in Figure 13.3.a-b. The mechanical characte­
ristics of the robot manipulators can be used to simplify the computations 
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by considering the invariant plane ¢>h, in the case of three parallel revoluted 
line axis Figure 13.3.a , or an invariant point ph in the case of a intersecting 
revoluted line axis Figure 13.3.b. 

c 

/ 
L 

FIGURE 13.3. Manipulators: a) (top) intersect revoluted line axis at 

the end effector, b) and at the home position. 

We can solve the inverse kinematics problem by breaking the problem 
up into a series of separate equations, using the strategy suggested by Selig 
[17] (chapter 11). We will illustrate the procedure for a robot with 6 degrees 
of freedom. First we rearrange the terms of the equation (5.40) 

(5.41) 

In the case of three parallel joints, we can isolate them by considering the 
common perpendicular plane ¢>h, which satisfies 

h h--- - - - h -
¢> = M2M3M4 ¢> M4M3M2 = MIMt(M6(Ms ¢> Ms)M6)MtM l . (5.42) 

If they meet at the point ph, we can isolate the 3 coincident joints by 

(5.43) 

In this way, we have separated the problem into the system of two equations 

(5.44) 
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or 
~ h~ ~~ h 
MtMIP MIMt = M6 M5P M5M6, 

M2M3M4 = M IMtM6M5 = M'. 

(5.45) 

(5.46) 

We can first compute for (h, ()5, ()6, with the help of either equation (5.44) 
(Fig. 13.3.a) or equation (5.45) (Fig. 13.3.b). Then, using these results and 
equation (5.46), we can solve for ()2, ()3, ()4. 

Let us see how the procedure works for the case of the three intersecting 
revoluted joint axes in the common plane at the end-effector in (Figure 
13.3.a). When the plane ¢~ (perpendicular to the line axes l2, l3 and l4) is 
rotated about the end joint, the point pf on the line axis of the revoluted 
end-joint 19 remains invariant. Using the operation of meet and equation 
(5.44), the angle ()6 can be eliminated, 

In the case of the robot manipulator of Figure 13.3.b, the revoluted joint 
axes is the manipulator base. Equation (5.45) shows that the point ph is 
an invariant for the fourth parallel and fifth line axis. Thus, we can use the 
equation 

(5.48) 

to solve for the angles ()4 and ()5. Using the line l5 and ph, we get the 
invariant plane 

(5.49) 

The 3D coordinates of this plane correspond to the x, z-plane e32, and thus 
this equation allows us to solve for the angle ()6. Having determined ()6, and 
using the equations (5.48), we can easily complete the calculations of ()4 

and ()5. 

Consider now the three coincident line axis lr, l~, 19, given in Figure 
13.3.b. We can isolate the angle ()2 by considering the invariant relation 
based on the meet of two of these lines 

(5.50) 

where M' = MIM2M3 and pa is the invariant intersecting point. When the 
lines are parallel, as shown in Figure 13.3.a, we can use the same invariant 
relation by considering the intersecting point to be at infinity, giving M' = 
M2M3M4. 
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13.5.2 Robot manipulation guidance 

Consider a robot arm laser welder, see Figure 13.4.a. The welding distance 
has to be kept constant and the end-effector should follow a line on the 
surface. Again, we will carry out all computations in the affine 3D space. 

Since the laser has to be kept at a constant distance from the surface for 
proper welding, we need to check if a given point p~ at the end of the laser 
cannon is always at the distance d from the welding surface cf;h = a~!\a~!\a~. 
We compute 

Idhl I [{e. (a~ !\a~ !\a~n{(l~· p~n] -1 [e. (a~ !\a~ !\a~ !\P~)] I 
[a2 - a1)!\(a3 - a2)r1[(a2 - ad!\(a3 - a2)!\(p - a3)]·(5.51) 

Note that we use the simple equation (3.24) for computing this distance. 
The point of intersection p~ on the line Zh, aligned with the moving laser 
beam and the work surface cf;h, is given by 

(M Zh M) n cf;h = ((M Zh M !\e)e) n cf;h 

((M Zh M !\e)e) . (cf;h . I). (5.52) 

In order to follow the welding line Zw on the surface, which is parallel to 
the welding curve, the robot arm should fulfill the point constrain 

((M Zh M) n cf;h) n Z~ 

{((M Zh M !\e)e) . (cf;h. In· (Z~· I) = o. (5.53) 

13.5.3 Checking for a critical configuration 

The control of the movement of a robot arm often requires a direct test to 
determine whether it has arrived at a prohibited configuration. This can be 
computed in a straightforward manner by using a determinant function of 
lines. The six lines are operated on by the screw versors Mi = TiRi. After 
the lines have reached their new position, they have in the affine 3D space 
the form 

M ( /h ,h)M h h 
1 X 1 !\X 2 1 = Xl !\X2, 

M ( /h /h)M h h 2Y1!\Y22=Y1!\Y2,···, 
M ( /h ,h)M h h 

6 V 1 !\ v 2 6 = VI !\ V2 . 

We compute the determinant function of these six lines, called the super­
bracket, and get 



272 Eduardo Bayro Corrochano and Garret Sobczyk 

E3 

FIGURE 13.4. a) Laser welding (top) b) guidance using a critical con­

figuration constraint. 

(5.54) 

Details about bracket algebra is given in chapter 2. The decomposition 
of the superbracket, in terms of the bracket polynomial given above, was 
done by McMillan and Withe [16J. 

Let us apply the superbracket to identify a critical configuration of the 
six- revoluted-joint robot arm depicted in Figure 13.4.b, where the revo­
luted joints are represented with cylinders. The axis of each joint is deter­
mined by any two distinct points lying on it. The base line of the stereo 
system should always be parallel to the target line. Another condition that 
must be satisfied is that the plane of the end-effector and the base line 
should not be parallel with the plane spanned by the third and fourth 
axes. Also, the arm should not move below a given minimun height, or the 
end-effector could be damaged. All these conditions can be simultaneously 
tested by using the superbracket. Simplifying the superbracket (5.54) for 
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the Figure 13.4.b, we get the final expression 

This equation is just the meet of the four planes, given by 

1>~ n 1>~ n 1>~ n 1>~ = (5.56) 

(z~ !\ w~ !\z~) n (x~ !\x~ !\y~) n (x~ !\z~ !\ u~) n (u~ !\u~ !\ v~). 

A critical configuration is reached when at least one of the brackets in 
the equation (5.55) is zero. Geometrically, this means that one or more of 
the resulting planes have become degenerated, or that the resulting planes 
have a nonempty intersection. For example, the superbracket becomes zero 
for the Figure 13.4.b, when the third and forth joints and the base line 
and the target line lie in the same plane, or whenever the position of the 
end-effector is below the minimum height. 

13.6 Application II: Image Analysis 

This section carries out the computations in the affine plane Ae3 (N2) for 
two experiments in image analysis. The first experiment utilizes the Lie 
algebra of the affine plane in the design of an image filter. The second 
experiment uses the properties of Lie operators for the recognition of hand 
gestures. The third experiment shows the meet operation applied to image 
filters. 

13.6.1 The design of an image filter 

In the experiment we used simulated images of the optical flow for two 
motions: Figure 13.5.a shows a rotational and a translational motion, and 
Figure 13.6.a shows a dilation and a translational motion. The experiment 
uses only bivector computations to determine the type of motion, the axis 
of rotation, and/or the center of the dilation. 

To study the motions in the affine plane, we used the Lie algebra of 
bivectors in the geometric algebra Ae3 (N2). The computations were carried 
out with the help of a computer program which we wrote in C++. Each 
flow vector at any point x of the image was coded x = xel + ye2 + e3 E N3. 
At each point of the flow image, we applied the commutator product of 
the six bivectors of the equation (2.17). Using the resultant coefficients of 
the vectors, the computer program calculated which type of differential 
invariant or motion was present. 
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FIGURE 13.5. a) Rotation (Lr) and translational flow (Lx) fields. b) 

Convolved with a gaussian kernel c) Shows the magnitudes of the 

convolution. 

FIGURE 13.6. a) Expansion (Ls) and translational flow (Lx) fields. 

b) Convolved with a Gaussian kernel c) Shows the magnitudes of the 

convolution. 

In Figure 13.5.b, we depict the result of convolving, via the geometric 
product, the bivector with a Gaussian kernel of size 5 x 5. Figure 13.5.c 
presents this result using the output of the kernel. The white center of the 
image indicates the lowest magnitude. Figure 13.6 shows the results for the 
case of a flow which is expanding. Comparing the Figure 13.5.c with the 
Figure 13.6.c, we note the duality of the differential invariants; the center 
point r of the rotation is invariant, and the invariant of the expansion is a 
line. 

13.6.2 Recognition of hand gestures 

Another interesting application, suggested by the seminal paper of Hoffman 
[12], is to recognize key points of an image by using the previous Lie opera­
tors. Figure 13.7.a shows hand gestures given to a robot. Using Lie filters, 
a robot can interpret whether it should follow, stop or move in circles, see 
Figure 13.7.b. Table 13.1 gives the firing weights for these filters used when 
interpreting the various gestures. We can also interpret these Lie filters as 
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the basic elements, or perceptrons, of neurocomputing. 

FIGURE 13.7. a) Top images: gestures for robot guidance (follow, stop 

and explore). b) Lower images: detected gestures by the robot vision 

system using Lie operators. 

H and gesture Lx Ly Lr L8 Lb LB Tolerance 

fingertip 0 0 9 -4 11 -9 10% 

stop 0 0 -3 1 1 4 10% 

fist 0 0 -2 2 2 -1 10% 

TABLE 13.1. Firing weights of Lie Operators by key points of hand 

gestures 

13.6.3 The meet filter 

The meet operation can be applied to the output of the filters in order to 
select the relevant points of the image. The meet operation is computed 
using equation (3.21). The basic idea is that the image is first convolved 
using two different Lie filters, and then their outputs are combined via the 
meet operation 

(:Fa * I) n (:Fb * I). (6.57) 
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The * of the filters Fa and Fb are entirely expressed in terms of bivectors. 
The result is the intersection of the filter outputs. Figure 13.8 shows the 
meet of different Lie filter ouputs. By using a more extensive system of 
meet filters, we should be able to extract more complicated contours . 

o 0 o 0 

o o (J 
°0 
o 0 

.. 

FIGURE 13.8. Top images: meet of Lie filters a) lines b) corners c) 

joints d) discs. Lower images: detected intersections by the meet of 

the Lie filter outputs. 

13.7 Conclusion 

We have shown how geometric algebra can effectively be used to carry 
out analysis on a manifold which is useful in robotics and image analysis. 
Geometric algebra offers a clear and concise geometric framework in which 
calculations can be carried out. Since the elements and operations in geo­
metric algebra are basis free, computations are simpler and geometrically 
more transparent than in more traditional approaches. 

Stereographic projection, and its generalization to the conformal group 
and projective geometry, have direct applications to image analysis from 
one or more viewpoints. The key idea is that an image is first represented 
in the null cone, and is then projected into affine geometries where the 
image analysis takes place. Since every Lie algebra can be represented by 
an appropriate bivector algebra in an affine geometry, it follows that a 
complete motion analysis is possible using their bivector representations. 
In a novel application in the 3-dimensional affine plane, we have computed 
rigid motion and applied the algebra of incidence for problems in robotics. 

Future work is planned in the reconstruction of 3-D affine motion, in 
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the design of steerable filters, and in the use of bivector algebras in visual 
robot tracking. 
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Chapter 14 

Geometric Algebra in Quantum 
Information Processing by 
Nuclear Magnetic Resonance 

Timothy F. Havel, David G. Cory, Shyamal S. 
Somaroo, and Ching-Hua Tseng 

14.1 Introduction 

The relevance of information theoretic concepts to quantum mechanics has 
been apparent ever since it was realized that the Einstein-Podolsky-Rosen 
paradox does not violate special relativity because it cannot be used to 
transmit information faster than light [22, 39]. Over the last few years, 
physicists have begun to systematically apply these concepts to quantum 
systems. This was initiated by the discovery, due to Benioff [3], Feynman 
[25] and Deutsch [17], that digital information processing and even univer­
sal computation can be performed by finite state quantum systems. Their 
work was originally motivated by the fact that as computers continue to 
grow smaller and faster, the day will come when they must be designed with 
quantum mechanics in mind (as Feynman put it, "there's plenty of room 
at the bottom"). It has since been found, however, that quantum informa­
tion processing can accomplish certain cryptographic, communication, and 
computational feats that are widely believed to be classically impossible 
[5, 9, 19, 23, 40, 53],as shown for example by the polynomial-time quan­
tum algorithm for integer factorization due to Shor [45]. As a result, the 
field has now been the subject of numerous popular accounts, including 
[1, 11, 37, 60]. But despite these remarkable theoretical advances, one out­
standing question remains: Can a fully programmable quantum computer 
actually be built? 

Most approaches to this problem (loc. cit.) have attempted to isolate 
a single submicroscopic system completely from its environment, so that 
it can be placed in a known quantum state and coherently controlled, for 
example by laser light. Although such precise state preparation will cer­
tainly be needed to implement a quantum computer that can be scaled 
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to problems beyond the reach of classical computers, it is not an absolute 
prerequisite for the coherent control and observation of quantum dynamics. 
The most complex demonstrations of quantum information processing to 
date have in fact been achieved by liquid-state nuclear magnetic resonance 
(NMR) spectroscopy, using the spin 1/2 nuclei in macroscopic ensembles 
of molecules at room-temperature [12, 13, 15, 28]. Under these conditions 
the state of the nuclear spins is almost completely random, but informa­
tion can nevertheless be stored in their joint statistics. This information is 
processed by combining the intra-molecular spin Hamiltonian with exter­
nal radio-frequency fields. These fields are microscopically coherent, and 
can be engineered so as to act coherently across the entire sample. Spe­
cial statistical states, called pseudo-pure states, can be prepared so that 
the macroscopic dynamics mirrors the microscopic dynamics of the spins. 
Finally, the spin degrees of freedom are remarkably well-isolated from the 
motional and electronic degrees of freedom, so that their decoherence times 
(i.e. the decay time for a quantum superposition) is typically on the order 
of seconds in the liquid state. Such de coherence is not only the chief obsta­
cle to performing nontrivial quantum computations by any technology, but 
is increasingly recognized as playing a fundamental role in how quantum 
mechanics must be reconciled with classical physics [29]. 

Nuclear magnetic resonance also provides an experimental paradigm 
for the study of multiparticle geometric algebra, as elegantly developed 
in [20, 21, 48]. The reason is that the so-called product operator forma­
lism, on which the modern theory of NMR spectroscopy is largely based 
[7, 8, 16, 24, 46, 47, 51, 57], is a nonrelativistic quotient of the multipar­
ticle Dirac (i.e. space-time [33]) algebra. Thus NMR provides a natural 
and surprisingly easy way to experimentally verify some of the predictions 
of multiparticle quantum mechanics, as derived by geometric algebra. The 
existence of a concrete physical application for the theory is also likely to 
inspire new problems with a more general significance. In addition, NMR 
is perhaps the most broadly useful form of spectroscopy in existence to­
day, and should greatly benefit from the adoption of the algebraic tech­
niques and geometrical insights afforded by geometric algebra methods. 
These same benefits have already been shown to apply to the theory of 
quantum information processing, regardless of its physical realization [49]. 
The numerous connections between quantum information processing and 
foundational issues in quantum mechanics, particularly those pertaining to 
nonlocality and entanglement, bring the circle to a close. 

This paper is intended to introduce physicists and mathematicians to the 
main ideas behind quantum information processing by liquid-state NMR 
spectroscopy, using the language and techniques of geometric algebra. The 
first section provides a brief overview of multiparticle geometric algebra, 
mainly to set the notation and terminology (more complete accounts may 
be found in the above references). The next section gives a quick introduc­
tion to quantum information processing, again referring to the literature for 
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more complete accounts. This is followed by a detailed presentation of the 
basics of liquid-state NMR spectroscopy, using the product operator for­
malism, and how NMR can be used to perform universal logical operations 
on quantum information. The paper concludes with the results of recent 
experiments which show how geometric algebra can be used to "program" 
an NMR spectrometer to perform analog information processing, i.e. to 
directly simulate general quantum systems. 

14.2 Multiparticle Geometric Algebra 

Ever since Hestenes' pioneering work on the applications of geometric al­
gebra to relativistic physics [33], it has been known that the Pauli al­
gebra ~h is isomorphic to the even subalgebra (It 3 of the Dirac (space­
time) algebra (11,3. This isomorphism is obtained by choosing an inertial 
frame [/0,/1,/2"3]' where 16 = -/~ = 1 and 1p,lv = -'v'p, for all 
o ::::: ZJ < J1 ::::: 3, and defining the Pauli operators as: 

(2.1) 

Note that (7p,(7v = -(7v(7p, (1::::: ZJ < J1::::: 3) and (7p,(7p, = 1 (1::::: J1::::: 3), 

thus showing that this mapping gives the desired isomorphism. 
The multiparticle Dirac algebra (IN,3N [20, 21, 48] is designed to model 

the internal degrees of freedom of spin 1/2 particles like electrons, protons 
and the atomic nuclei typically observed by NMR. It is obtained simply by 
taking a different orthogonal copy of space-time for each of the N distin­
guishable particles, with bases 

b~'/~'/~"~lk=l, ... ,N] , (2.2) 

and considering the geometric algebra that they generate (note the use of 
Roman superscripts to label particle spaces). This algebra has dimension 
24N. The subalgebra (Qt3)N of dimension 23N generated by the even sub-

algebras (It 3 from each' particle space is endowed with a natural tensor 
product str~cture, since 

(2.3) 

commutes for all 1 ::::: k ::::: C ::::: N. This plus the fact that it is the algebra, 
rather than just the underlying vector space, which is physically relevant, 
explains why the state space of a system of distinguishable particles is the 
tensor product (Q3r59N of their individual state spaces (13' 

Nevertheless, this particular tensor product space appears to be larger 
than is actually needed, since physicists make do with the complex ten­
sor product of the Pauli algebras, which has real dimension 22N+1. These 
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superfluous degrees of freedom are due to the fact that the multiparticle 
geometric algebra contains a different unit pseudo-scalar in every parti­
cle space. They may be removed by projecting everything onto the ideal 
generated by the correlator, 

(2.4) 

where ~ k == (7~(7~(7~ is the unit pseudo-scalar associated with the k-th 
particle space. This primitive idempotent is easily seen to commute with the 
entire multiparticle Pauli algebra, and hence defines a homomorphism into 
an algebra Uh)®N /C of the correct dimension. This C-correlated product 
of Pauli algebras, in turn, is isomorphic to the algebra of all 2N x 2N complex 
matrices, and so capable of representing all the operations of nonrelativistic 
multi particle quantum mechanics. 

Interestingly, when restricted to the product of the even subalgebras 
of the embedded Pauli algebras, (Qt )®N, factorization by C acts as an 
isomorphism. This C -correlated even algebra is isomorphic to a real tensor 
product of N quaternion algebras (Qt)®N, and so has dimension 22N -
the same as the real linear space of Hermitian matrices as well as the 
Lie algebra u(2N) of the unitary group. Henceforth, the factor of C in all 
expressions will be dropped unless there is a specific reason to include it, 
and the pseudo-scalars from different particle spaces will be identified with 
the single unit imaginary 

(2.5) 

One can further define spinor representations of the rotation group 50(3) 
within the multiparticle geometric algebra [20, 21, 33,48]. This relies upon 
the fact that spinors can be regarded as a minimal left-ideal in the algebra, 
which is generated by a primitive idempotent E. Including the correlator 
C, this idempotent may be written in product form as: 

EC == E~E~ ... E~C (E~ == ~(1+(7~), k=l, ... ,N) (2.6) 

The left-ideal itself consists of those elements \(r E (Q3)®N such that 
\(r = \(r EC, which in the Pauli matrix representation of the C-correlated 
algebra corresponds to matrices with nonzero entries only in their left­
most column. These may be identified with the usual state vectors 11/J) of 
a (2N )-dimensional Hilbert space. 

Using the relation E = (7~E for all k, we can redefine our correlator C 
in this left-ideal to be 

(2.7) 

which will be referred to as the directional correlator. It can be shown that, 
in contrast to C, right-multiplication by D maps the tensor product of 
quaternion algebras (Qt),2!N onto a subalgebra of the correct dimension 
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2N +1, and that the quaternion algebra in every particle space acts by left­
multiplication to give a spinorial representation of the rotation group [21]. 
Thus this subalgebra provides a covariant parametrization for the space of 
N-particle states, and for most purposes one can drop the idempotent E 
and work directly in this sub algebra. Its elements 'If; = 'If;D are accordingly 
called spinors. 

The Pauli operators themselves act on the corresponding one-particle 
spinors according to 

0"1-'1 ~) ~ 0"1-' 0 'If; == 0"1-''If;0"3 (1::; fL ::; 3) 

z 1 ~) ~ L 0 'If; == L'If;0"3 = 'If; L0"3 , 
(2.8) 

where right-multiplication by 0"3 keeps the results in the Pauli-even subal­
gebra. This can be viewed as a projection of the geometric product times 
E+ back into the even subalgebra, since 

where the hat "~,, denotes the main involution or parity operation in ~h, 
which changes the sign of the odd components. This action is readily ex­
tended, in a well-defined fashion, to an action of the C-correlated products 
of the Pauli operators on the D-correlated products of elements from the 
even subalgebras of multiple particles. 

The multiparticle Dirac algebra is essential to understanding the geome­
tric origin of the tensor product in multi-spin quantum physics, which in 
turn plays a central role in both quantum computing and NMR ( vide infra). 
The remainder of this paper, however, will make direct use of only the non­
relativistic quotient algebra. In this regard, it is important to note that the 
Dirac reverse I' of any r E Wi3) corresponds to the conjugate (i.e. rever­
sion composed with the main i~volution) in ~h, whereas the Pauli algebra 
reverse corresponds to the frame-dependent operation Tot TO. Henceforth, 
the notation I' will be used exclusively for the Pauli algebra reverse. This 
operation is readily extended to the multi particle Pauli algebra by defining 
(r 1 r2) ~ == 1'11'2, and remains well-defined after correlation. In the usual 
matrix representation, this operation is just the Hermitian conjugate. 

14.3 Algorithms for Quantum Computers 

Because of the tensor product involved, the exact representation of a co­
llection of finite-state quantum systems on a classical computer takes an 
amount of memory which grows exponentially with the number of systems. 
As first noted by Feynman [25], this implies that it may be possible to 
simulate the evolution of one collection of finite-state quantum systems by 
another, using only polynomial resources (i.e. time and memory). The idea 
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of operating on digital information stored in finite-state quantum systems 
originated with Benioff [3J, and was extended by Deutsch [17J to show that 
discrete problems can also be solved more rapidly on a quantum computer. 
At this time, however, very few problems are known which can be solved 
exponentially more rapidly, the most notable being Shor's integer facto­
rization algorithm [45J. A quantum algorithm for solving general search 
problems with a quadratic speed-up over linear search is available [30], but 
it is now widely believed that the important class of NP-complete problems 
[27J cannot be solved in polynomial time even on a quantum computer [4J. 
The advantages that have been demonstrated are nevertheless significant, 
and much remains to be learned. 

In its standard form, a quantum computer stores binary information in 
an ordered array of distinguishable two-state quantum systems, e.g. spin 
1/2 particles. These are usually referred to as "qubits". In keeping with 
their usage, the two orthogonal basis states that represent binary "0" and 
"I" are denoted by 10) and 11), respectively. Thus a two-bit quantum 
computer stores the integers 0, 1, 2 and 3 in binary notation as I 00), I 01 ), 
110) and 111), where 

(3.10) 

(81,82 E {O, I} ). This extends in the obvious way to an arbitrary number 
of qubits N. The interesting feature of qubits is their ability to exist in 
superposition states, colO) + c111) (co, C1 E IC, Icol2 + ICl12 = 1). Such a 
state is not between I 0) and 11), as in an analog classical computer with 
continuous voltages, nor is it really in both states at once, as sometimes 
stated. It can most accurately be said to be in an indeterminate state, 
which specifies only the probability Ico 12 and ICl12 with which 10) and 11 ) 
will be observed on testing it for this property. 

By itself, this is nothing that could not be done on a classical computer 
with a good random number generator, but things get more interesting 
when one considers superpositions over multiple qubits, e.g. 

~(I 00) - 101) + 110) - 111)) 

~(IO)+ll))(IO)-ll)) . 
(3.11) 

Let U f be a unitary transformation of the two qubits, which is defined on 
the computational basis by 

UfI OO ) = 10)11(0)), 

Ufl lO ) = 11)11(1)), 

U f 101) = 10) 11 - 1(0)) , 

Ufl 11 ) = 11)11-1(1)), 
(3.12) 

where 1 : {O, I} --+ {O, I} is one of the four possible invertible boolean func­
tions of a single bit, and extended to all superpositions by linearity. This 
implies that the application of U f to a superposition over its input (left) 
qubit effectively computes the value of 1 on both inputs at once. Applied 
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to the superposition state I 'ljJ) above, where the output (right) qubit is also 
in a superposition, we obtain after straightforward rearrangements: 

(3.13) 

Now consider a second unitary transformation of the qubits RH, which 
is called the Hadamard transform and defined on a basis for each bit by 

(3.14) 

This is easily seen to transform the above as follows: 

RHU II 'ljJ) = ~ ((( _l)I(O) + (_l)I(1))1 0) + 

(( _l)I(O) - (-1)I(1))11)) 11) 
(3.15) 

Thus if f(O) = f(l) (Le. f is a constant function), testing the "input" 
qubit will yield 10) with probability 1, whereas if f(O) = 1 - f(l) (Le. f is 
a "balanced" function), it will yield 11) with probability 1. The interesting 
thing is that this is done with but a single "evaluation" of the function f 
(via U I), whereas distinguishing these two cases classically would require 
two evaluations. This quantum algorithm is due to Deutsch & Jozsa [18]. 

The feature of quantum mechanics that makes this possible is the cohe­
rent mixing of the basis states by the Hadamard transform, so that those 
corresponding to the desired solution are amplified and the phase differen­
ces among the remainder result in cancellation. Because this can also occur 
when the state of a qubit is correlated with its spatial coordinate, as in 
optical diffraction, this is often referred to as interference. By itself, it does 
not yield an asymptotic reduction in the computation time required, but 
when combined with the exponential growth in the state space with the 
number of particles, it becomes possible to cancel exponentially large num­
bers of possibilities and hence attain exponential speed-ups, as in Shor's 
algorithm. 

It should be noted that factorizable states, Le. those that can written as 
a product of superpositions over the individual qubits (as in I 'ljJ) above) 
are effectively parametrized by the coefficients c~ and c~ of the qubits. 
Taking the constraints I c~ 12 + I c~ 12 = 1 (1 S k S N) and the fact that 
there is but a single global phase into account, this implies that the dimen­
sion of the manifold of such states increases as 2N + 1, not exponentially. 
The exponential growth in the dimension thus requires that states can be 
created which are nonfactorizable, or entangled. Entangled states are not 
only required for efficient quantum computing, but are the source of many 
quantum "paradoxes" as well [39]. 

The Hadamard transform is a simple example of a quantum logic gate, 
which maps basis states to superpositions. Unitary transformations like 
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U f, on the other hand, constitute logical operations with classical boolean 
analogues, which must however be reversible (since unitary transformations 
are always invertible). The simplest example is the NOT gate: NI 0) = 11) 
and Nil) = I 0). More interesting calculations require feedback, i.e. opera­
tion on one qubit conditional on the state of another. Although reversibility 
precludes operations like AND, which have two inputs but only one output, 
the XOR gate, with the second qubit passed through unchanged, can be 
realized as a unitary transformation: 

8 112 100 ) 

8 112 101) 

100), 8 112 110) 

111), 8 112 111) 

110) , 

101) . 
(3.16) 

For obvious reasons, this is sometimes called a controlled-NOT, or c-NOT, 
gate. The corresponding three-qubit analog T1123, which NOT's the first 
qubit if the other two are both 11), is known as the Toffoli gate after the 
person who first realized that it is universal for boolean logic [55]. This 
follows from the fact that, if one sets the first (target) input bit to 1, the 
output is the NAND of the other two inputs. 

More generally, the c-NOT gates, together with all one-qubit quantum 
gates, generate the entire unitary group U(2N) on N qubits [2]. The gene­
ral problem of "compiling" any given gate U whose generator log(U)/(m,) 
can be factorized into commuting product operators will be solved cons­
tructively by geometric algebra below. Nevertheless, the important issue is 
to characterize those unitary transformations which admit efficient imple­
mentations, meaning that the number of "elementary operations" involved 
grows only polynomially in the number of qubits affected. Such elementary 
operations are usually required to be "local", in that they involve only a 
few qubits at a time. The natural Hamiltonians of NMR, for example, have 
at most two spins in any term, but can only be simulated classically using 
exponential resources. 

14.4 NMR and the Product Operator Formalism 

In liquid-state NMR one deals with ensembles of molecules whose spins are 
in a mixed state. A concise description of the relevant statistics is given 
by the density operator [6]. A matrix for the density operator of a pure 
(i.e. single) quantum state is obtained from the corresponding state vector 
by forming the dyadic product I ¢ ) ( ¢ I (( ¢ I ¢) = 1). As shown in Refs. 
[32, 48, 49], the geometric algebra analog of the dyadic product is 'l/JE1p 
( ( 'l/J1p) = 1). The density operator of a general mixed state is a convex 
combination of the density operators of its constituent spin states, namely 

( 4.17) 
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where Pj ~ O,.E j Pj = 1 can be interpreted as the probabilities of the 
spin states in the ensemble. Such a representation is, in general, highly re­
dundant. Because the density operator is necessarily Hermitian (reversion 
symmetric in the product Pauli algebra), a nonredundant, real parametriza­
tion can be obtained by expanding it in the product operator basis 

p = 1 N 
(lit 0" It' ... 0" w"l , (4.18) 

ItE {O, ... ,3} N 

where 0"0 == 1 == 1. 
Evolution of a spinor under a time-independent Hamiltonian H is des­

cribed by operation with the corresponding propagator as in Eq. 2.8: 

I '¢) ...... 'IjJ ---4 exp( -ttH) I '¢) ...... exp( -ttH) 0 'IjJ (4.19) 

Since O"~E = E = EO"~ for all 1 :::; k :::; N, it follows that the density 
operator itself evolves by two-sided multiplication with the propagator and 
its reverse (i.e. conjugation in the multiplicative group): 

P ---4 exp( -ttH)pexp(ttH) = 

2N L. Pj exp( -ttH)'ljJjE;Pj exp(ttH) 
J 

( 4.20) 

Similarly, the expected value of an observable with Hermitian operator 
A is given by the average of its quantum mechanical expectation values 
( '¢j I A I '¢j ) ...... 2N ( A 'IjJ j E "jj j ) over the ensemble (where ( . ) denotes the 
scalar part). It follows that these averages may be obtained directly from 
the density operator itself as 

(4.21) 

It may be seen that the factor of 2N in our definition of the density operator 
(Eq. 4.17) compensates for the factor of 2- N in the idempotent E, so that 
( p) = 1. This normalization of p differs from the usual normalization to a 
trace of unity in a matrix representation, but saves on factors of 2N when 
using geometric algebra. 

By our remark following Eq. 2.4, it is also possible to represent the 
Hamiltonians of NMR in product operator notation. The dominant term 
in these Hamiltonians is the Zeeman interaction of the magnetic dipoles of 

One might hope that one could drop the idempotent in these definitions, as was done 

previously for spinors, and work with the convex span of products of the form 1jJip. Since 

these products are even and reversion symmetric, however, they have no bivector part, 

and thus they do not span enough degrees of freedom to encode for density operators. 
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the spins with the applied magnetic field Bo. Assuming as usual that the 
field is directed along the z-axis, this term may be written as 

where "(k here denotes the gyromagnetic ratio of the k-th nucleus, and 
{jk « 1 is an empirical correction called the chemical shift which describes 
the diamagnetic shielding of the nucleus by the electrons in the molecule. 
In most of what follows, it will be assumed that we are working with a 
homonuclear system, wherein "(k = "(£ == "( for all 1 ~ k < £ ~ N. 

In accord with the forgoing observations, the density operator of an en­
semble of N -spin systems evolves under the Zeeman Hamiltonian as 

p ~ exp( -ttHz ) pexp(ttHz) = 

L f2/-L exp( -ttw6(T~/2) (T~1 exp( ttw6(TV2) (4.23) 

/-LE{O, ... ,3}N ... exp( -ttwr! (Tfj /2) (T~N exp(ttwr! (Tfj /2) 

Thus the vector given by those terms depending on just a single spin index, 
e.g. f2f(Tf + f2~(T~ + f2~(T~ (f2~k == f2o ... vk ... o), precesses about the applied 
magnetic field at a constant rate wi. This so-called Bloch vector describes 
the observable macroscopic magnetization due to polarization of the k-th 
spin over all molecules of the ensemble [24, 26]. 

In NMR spectroscopy, the spins are controlled by pulses of RF (radio­
frequency) radiation about the z axis. The corresponding Hamiltonian 

N 
HRF = - ~ Lk=l w~ (cos(wt)(T~ + sin(wt)(T~) (4.24) 

is time-dependent, which normally makes it impossible to give a closed­
form solution. Fortunately, in the present case it is possible to transform 
everything into frame which rotates along with the RF field B 1 , so that if 
n"(IIBd == wt » Iwi -wi for all k (i.e. the pulse is strong and hence can be 
made short enough that the relative precession of the spins over its duration 
is negligible), we can regard H RF as a time-independent Hamiltonian which 
rotates each spin at the constant rate w~ about the x-axis in the rotating 
frame. By changing the phase of the pulse, one can rotate about any desired 
axis in the transverse (xy) plane. Henceforth all our transformations will 
be relative to such a rotating frame (cf. [34]). 

The spins, of course, also interact with one another. This paper is ex­
clusively concerned with the NMR of molecules in liquids, where the rapid 
diffusional motion of the molecules averages the through-space interactions 
between their nuclear magnetic dipoles to zero much more rapidly than 
those interactions can have any net effect. Thus the only effective inte­
raction between the nuclei is a through-bond interaction known as scalar 
coupling. Assuming the differences in the resonance frequencies wi - w6 of 
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the spins are substantially larger than the scalar coupling constants Jki 
among them, the transverse components Jkl(u~uf + u~u~) in each term 
of this Hamiltonian are similarly averaged to zero by their rapid differential 
precession. It follows that its effects are well-approximated by the remai­
ning terms parallel to the Bo field, i.e. 

H J == ~ L Jkl u~u~ (4.25) 
k<t 

(this is known as the secular, or weak-coupling, approximation). This Hamil­
tonian transforms the observable "single quantum" (i.e. single Pauli ope­
rator) terms according to 

ut ---t cos(t1l"Jki)ut + sin(t1l"Jkt)u~u~ 
= exp( -tl,1l" Jktu~)u~ E~ + exp(tl,1l" Jktu~)u~ E:' 

(4.26) 

In terms of Bloch diagrams (see Figure 14.1), this later form also shows 
that the magnetization vectors due to spin 1 in those molecules wherein 
spin 2 is 10) and 11 ) turn clockwise and counterclockwise in a frame which 

In-phase 
Absorptive 

In-phase 
Dispersive 

Anti-phase 
Absorptive 

Anti-phase 
Dispersive 

FIGURE 14.1. Bloch diagrams depicting the "single quantum" 

in-phase absorptive (uD, dispersive (u~) and anti-phase absorptive 

(u}un, dispersive (u~un states of a two-spin system. Vectors with an 

empty head represent the magnetization from spin 1 in those molecules 

wherein the second spin is "up" (i.e. u~E~, J.L = 1,2) while vectors 

with a filled head represent the magnetization from spin 1 in those 

molecules wherein the second spin is "down" (i.e. u~E~, J.L = 1,2). 

Under scalar coupling, these two components of the magnetization 

counter-rotate at a rate of 2/ J, where J is the scalar coupling strength 

in Hz, thereby transforming in-phase absorptive into anti-phase dis­

persive and in-phase dispersive into anti-phase absorptive (see text). 
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co-rotates with spin 1, respectively, at a rate of J k £ /2 sec-I. It will be 
shown shortly how this interaction can be used to perform conditional 
logic operations on the spins. 

The final issue to be dealt with is how the density operator and Hamil­
tonian are manifest in the spectra obtained by NMR. As mentioned above, 
the precessing magnetic dipole of each spin is described by those compo­
nents of the density operator which depend on just that spin index. The 
transverse component of this dipole produces an oscillating signal in the 
receiver coils, whose Fourier transform contains a peak at the precession fre­
quency w~ of each spin. According to the usual phase conventions of NMR, 
the peak from lT~ has an absorptive shape, while that from lT~ is dispersive 
(see Figure 14.2). The frequencies of the spins are further modulated by 
the scalar coupling interactions, which split each peak into a multiplet of at 
most 2N -1 peaks at frequencies of w~ ± 7r Jk1 ± ... ± 7r JkN. By multiplying 
Eq. 4.26 through by lT~ and using the fact that EilT~ = ±Ei, it can be 
shown that transverse-longitudinal correlations (e.g. lT~lT~) evolve into ob­
servable terms (e.g. lT~) at frequencies of ±7r Jk£, but with opposite signs. 
It follows that the pairs of peaks they generate likewise have opposite sign, 
or are anti-phase, as opposed to in-phase peaks with the same signs (see 
Figure 14.2). 

Thus, in effect, an NMR spectrum enables us to directly readout all terms 
of the density operator with just one transverse component. By collecting 
spectra following 7r /2 readout pulses selective for each spin, it is possible to 
reconstruct the density operator completely. This kind of measurement con­
trasts starkly with measurements on single quantum systems, which induce 
"wave function collapse" to a random eigenstate of the observable so that 
the density operator can only be reconstructed by collecting statistics over 
repeated experiments. That wave function collapse does not occur is due 
to the fact that averages over the ensemble contain insignificant informa­
tion on anyone system in it. Such ensemble measurements are sometimes 
called weak measurements, to distinguish them from strong measurements 
on single quantum systems [39]. 

14.5 Quantum Computing by Liquid-State NMR 

Even at the highest available magnetic fields, the energy of the nuclear 
Zeeman interaction is at most about 10-5 of mean thermal energy per 
degree of freedom kBT /2 (where kB is Boltzmann's constant and T the 
absolute temperature). Thus in liquid-state NMR the equilibrium state of 
the spins is almost totally random, so that the probabilities of finding a 
spin "up" (parallel the field) and "down" are nearly equal. According to 
the principles of statistical mechanics, these probabilities are given by 2- N 
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In-phase 
Absorptive 

In-phase 
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FIGURE 14.2. Simulated NMR spectra for a weakly coupled two-spin 

molecule (amplitude of the real part versus frequency). On the left is 

the spectrum of the spin state ui + u§, which gives a pair of in-phase 

absorptive peaks for spin 1 (left) and a pair of in-phase dispersive 

peaks for spin 2 (right). On the right is the spectrum of the spin state 

ui u~ + u~u§, which gives a pair of anti-phase absorptive peaks for spin 

1 (left) and a pair of anti-phase dispersive peaks for spin 2 (right). Fits 

to the peak shapes in such spectra after various 7r /2 rotations of the 

individual spins yield sufficient information to uniquely reconstruct 

the complete density operator. 

times the eigenvalues of 

exp( -Hz/(kBT)) 
Peq = (exp( -Hz/(kBT))) ~ 1 - Hz/(kBT) , (5.27) 

where the right-hand side is known as the high-temperature approximation. 
Expanding the Zeeman Hamiltonian yields the (high-temperature) equili­
brium density operator in product operator notation: 

(5.28) 

Since the observables of NMR lT~ and lT~ have no scalar part, it follows 
from Eq. 4.21 that the scalar part of any density operator produces no net 
NMR signal. It also does not evolve under unitary operations, and hence 
NMR spectroscopists usually drop it altogether. Assuming a homonuclear 
system (so that w~ ~ w6 == Wo == n,llBol1 for all 1 :s; k,£ :s; N), it is 
also common practice to drop the constant factor .6.0 == wo/(2kBT) in the 
above. Then the eigenvalues of this "density operator" Peq are given by 
ei = N - 2#i, where #i is the Hadamard weight (number of ones in the 
binary expansion) of the integer i = 0, ... ,2N - 1. Their multiplicities are 
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the binomial coefficients e;:J. For example, the Pauli matrix representation 
of the homonuclear two-spin equilibrium density operator is: 

Peq (5.29) 

The obvious way to store binary information in an ensemble of spin sys­
tems at equilibrium is to regard each chemically distinct type of spin as a 
"bit" which represents 0 or 1 as its net polarization is up or down, respec­
tively, so that the integers from i = 0, ... ,2N - 1 are stored in the states 
±u j ± ... ± uf!. This is, however, a very different thing than storing these 
integers in the pure states Ii) (the Zeeman basis vector obtained by binary 
expansion of the integer i), the density operators of which are signed sums 
over all possible products of the form U~l ... u~n 
(1 ::::: kl < ... < kn ::::: N), as in Eq. 4.18 with {!I" = ±1 for all f-L E {0,3} 
and 0 otherwise. The problem is that, without these higher-order (n > 1) 
product terms, it is not possible to perform conditional operations on the 
state, for the simple reason that by linearity these operations act indepen­
dently on each term of the sum. These higher-order terms are nonnegligible 
in the equilibrium state only at temperatures approaching absolute zero -
which is not an option available in liquid-state NMR! 

A class of weakly polarized nonequilibrium states nevertheless exists in 
which the linear and higher-order terms are all present with equal magni­
tudes, as they are in pure states. These states, usually known as pseudo-pure 
states [13, 15, 28, 32, 36], are also characterized by having a single non­
degenerate eigenvalue in the standard matrix representation, so that they 
may be written as a trace-preserving rank 1 perturbation on the identity: 

Ppp (1 - ~) + 2N ~17J!)( 7J! I 
+--+ (1 - ~) + 2N ~'ljJE;P 

(5.30) 

The perturbation parameter ~ is restricted by the requirement that the 
density operator be positive-semidefinite to -1/ (2N - 1) ::::: ~ ::::: 1. Assu­
ming that the pseudo-pure state is at equilibrium versus a Hamiltonian of 
the form Ho(E - 2-N ), this is related to the polarization -1 ::::: ~o ::::: 1 
of a single spin versus Ho u z /2 by ~ = ~o/((1 - ~o)2N-l + ~o). For e­
xample, the two-spin pseudo-pure ground state is given by the above with 
17J!) = 100) +--+ 'ljJ = 1, i.e. 

PO~ 1+~(22E-l) = 1+~(4E~E!-I) 
(5.31 ) 

Since the identity 1 commutes with everything, pseudo-pure states are nece­
ssarily mapped to pseudo-pure states by unitary operations, and so provide 
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a carrier space for a representation of SU(2N) (modulo phase) just like true 
pure states. 

In addition, the fact that pseudo-pure states are realized in the statistics 
of macroscopic ensembles of identical quantum systems implies that the 
available measurements are weak (section 14.4). Thus NMR measurements 
on pseudo-pure states actually enable one to directly obtain the expectation 
value of any observable A relative to the perturbation spinor 1/;, i.e. 

(pA) = (1 - ~)(A) + 2N ~(A1/;E1p) ...... ~('ljJ I A I 'ljJ) , (5.32) 

which follows from the fact that NMR observables have no scalar part. 
The ensemble nature of NMR also permits certain types of non-unitary 
operations to be performed on the system. Since the eigenvalues of the high­
temperature equilibrium and pseudo-pure density operators are different, 
the preparation of pseudo-pure states necessarily involves such non-unitary 
operations. There are presently four methods of implementing non-unitary 
operations in NMR, each of which leads to a physically different (though 
mathematically equivalent) type of pseudo-pure state. 

The conceptually simplest type is a temporal pseudo-pure state, which 
is obtained by averaging the results (signals or spectra) of experiments 
performed at different times on different states, such that the sum of their 
density operators is pseudo-pure. This is analogous to phase-cycling in 
NMR [24, 26]. For example, up to a factor of 2/3, the average of the follo­
wing three two-spin states clearly has the same nonscalar part as the above 
pseudo-pure ground state: 

PA 

PB 
Pc 

1+~(0"1+O"D 

1 + ~ (0"1 + 0"10"~) 
1 + ~ (0"10"~ + O"~) 

(5.33) 

The first state is the equilibrium state, while the other two may be obtained 
by permuting the populations in the equilibrium state by the c-NOT gates 
8 211 and 8 112 , respectively. 

Another way to perform non-unitary operations in NMR relies upon 
the fact that the observed signal is an integral over the sample volume. 
Thus if one can create a distribution of states across the sample such that 
their average is pseudo-pure, one obtains a spatial pseudo-pure state. The 
most straightforward way to do this is to apply a magnetic field gradient 
across the sample, usually a linear gradient along the z-axis parallel to the 
applied magnetic field Bo. This causes the spins to precess at differing rates, 
depending on their z-coordinates, so that the net transverse magnetization 
vector perpendicular to the z-axis is wound into a spiral whose average 
is zero. The transverse phase information thus rendered unobservable is 
exactly that which would be lost in a strong measurement of the spins 
along the z-axis, but with the rather striking difference that this phase 
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information can be recovered by inverting the gradient. The next section 
will present specific RF and gradient pulse sequences for spatial pseudo­
pure states. 

A rather different approach is to "label" a pseudo-pure subensemble of 
the spins by a specific state of one or more "ancilla" spins. This approach 
was used over 20 years ago to demonstrate spinor behavior under rotations 
by NMR [54], and was first applied to NMR computing by Chuang et al. 
[28, 58]. The correlation with ancilla spin states permits the signal from 
the pseudo-pure sub ensemble to be isolated by filtering based on the fre­
quency shifts induced by scalar-coupling. The simplest example of such a 
conditional pseudo-pure state is 

p 1 + ~(O"~ + O"~ + O"~O"~)O"~ 
(1 + ~(4E~E~ -1)) E~ + 
(1- ~(4E~E~ - 1)) E~ . 

(5.34) 

It can be shown that this state is related to the equilibrium state by unitary 
c-NOT operations. The latter expression in the equation makes it clear that 
in the sub ensemble wherein spin 3 is "up" (i.e. in its ground state E~) 
the spins 1 & 2 have a population excess in their ground state (assuming 
~ > 0). Similarly, in the subensemble with spin 3 "down" spins 1 & 2 
have a population deficit in their ground state. Significantly, therefore, on 
average across the entire ensemble spins 1 and 2 are entirely unpolarized 
(i.e. random). This can be seen in NMR by decoupling spin 3, i.e. by rotating 
it rapidly with an RF field so that its interactions with spins 1 and 2 are 
averaged to zero. This effectively removes spin 3 from the system, so that 
(in the above situation) the spectrum of spins 1 and 2 is reduced to a flat 
line. 

The general operation of "removing" a qubit from a system is known 
in quantum computing as the partial trace. As shown in Ref. [49], this 
corresponds to dropping all terms which depend upon the spin over which 
the partial trace is taken in the product operator expansion of the overall 
density operator. It provides us with our fourth type of pseudo-pure state, 
which is called a relative pseudo-pure state. An example in this case is 
given by [32] 

p = 4 ((El + E2 )E3 E4 + (El E2 _ El E2 )E3 E4 + + +++ ++ -++-

(E~E=- - E~E=-)E~E~ - (E~ + E=-)E~E~) 
(5.35) 

wherein it may be seen that tracing over spins 3 and 4 leaves only the 
bottom line, which is a two-spin pseudo-pure state. This density operator 
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is again related to the four-spin equilibrium density operator by unitary 
operations. 

The one thing that all these methods of preparing pseudo-pure states 
from equilibrium states have in common is a rapid loss of signal strength 
with the number of spins in the resulting pseudo-pure state. This can be 
understood most simply from the fact that, since the number of Zeeman 
basis states grows exponentially with the number of spins, at any fixed po­
larization (specific entropy) the expected population in anyone state must 
likewise decline exponentially [59]. Nevertheless, current methods should 
be able to prepare usable pseudo-pure states on up to ca. 8 - 12 spins. 

In addition, it is also at least difficult to study nonlocal effects by NMR, 
since that would require allowing the spins to interact by scalar coupling 
through a chemical bond, then rapidly breaking the bond, separating the 
molecular fragments, and performing further measurements. A more fun­
damental problem lies in the fact that the microscopic interpretation of 
experiments on weakly polarized spin systems are always ambiguous, in 
that there are many different ensembles whose average yields the same 
overall density operator [10]. Although these issues preclude the use of 
NMR as a means of studying foundational issues in quantum mechanics 
involving nonlocality and entanglement, they do not limit its utility as a 
means of developing the engineering principles needed for quantum infor­
mation processing [32]. Indeed, the long decoherence times characteristic of 
nuclear spins, together with the superb coherent control available through 
modern NMR technology, has enabled demonstrations of many basic fea­
tures of quantum information processing which had previously existed only 
in theory. The next section describes how this was done. 

14.6 States and Gates by NMR 

This section will show how the quantum logic operations introduced in 
section 14.3 can be represented in the product operator formalism, how 
they can be implemented in NMR by RF pulse sequences, how they act 
on density operators in product operator notation, and finally how they 
can be used together with gradient pulses to generate pseudo-pure states. 
The simplest logic gate is the NOT operation N on a single qubit (spin). 
This is a rotation by 71' about a transverse axis, which in the usual phase 

As further discussed in Ref. [32], there are a number of ways in which this loss can 

be distributed among the various available resources (i.e. repetitions of the experiment, 

sample volume and the number of ancillae used), but within the validity of the high­

temperature approximation no truly scalable method exists. 
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conventions is taken as the x-axis: 

N = exp(-(1f/2)~O'l) = cos(1f/2)-~O'lsin(1f/2) = -~O'l (6.36) 

Via the anticommutivity of 0'1 and 0'3, this is readily verified to flip the 
qubit in question, e.g. 

NIO)(OIN ~ NE+N 

(-~O'd~(1 + O'3)(~O'd 
~(1-O'3)(O'd2 = E_ ~ 11)(11. 

(6.37) 

As previously mentioned, such a rotation can be implemented by a single 
pulse of RF radiation of amplitude WI = Ti/yllB 1 11 and duration 1f /Wl, whose 
frequency is on-resonance with that of the target spin. 

This can be generalized to a rotation by an arbitrary angle about an 
arbitrary transverse axis, which implements a one-bit quantum logic gate. 
The one-bit quantum gate most commonly considered in quantum com­
puting, however, is the Hadamard transform RH defined in Eq. 3.14. By 
translating this spinor definition to density operators, it may be seen that 
this gate acts on the components of the Bloch vector as 

RH O'IRH = 0'3, RH O'2RH = - 0'2, RH O'3RH = 0'1, (6.38) 

and so corresponds to a rotation by 1f about the axis (0'1 + 0'3) /,,;2, i.e. 

(6.39) 

Although rotations about non-transverse axes are not easily implemented 
in most NMR spectrometers, the Hadamard is nevertheless readily obtained 
from the following sequence of transverse rotations: 

(6.40) 

A convenient short-hand (similar to the graphical representation of pulse 
sequences widely used in NMR) is to just specify the sequence of Hamilto­
nians applied: 

(6.41) 

Note that in this sequence, the Hamiltonians are written in left-to-right 
temporal order, opposite to that in Eq. 6.40. 

Turning now to a two-bit gate, we rewrite the c-NOT defined in Eq. 3.16 
as follows: 

8 112 100) (00 I + 110) ( 10 I + 101) ( 111 + 111) (011 

I 00 ) ( 00 I + 110 ) ( 10 I + 0' ~ (111 ) ( 11 I + I 01 ) ( 01 I) 
(1®10)(01)+O'~(1®11)(11) ~ E!+O'~E~ 

(6.42) 
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This in turn can be expressed in exponential form as 

exp((1l"/2)t(1 - lTt)E:') 

exp (( 1l" /2)tE:') exp( -( 1l" /2)tlT~ E:') 

(E~ + tE:') (E~ - tlT~E:') 

E2 + lT 1 E2 = 8112 + 1 - , 

(6.43) 

which says that this c-NOT can be regarded as a flip of spin 1 conditional 
on spin 2 being "down". Alternatively, by defining the idempotents 
G~ == ~(l ± lTD, we can write this as 

(6.44) 

This reveals an interesting symmetry: the same c-NOT can also be viewed 
as inversion of the phase of spin 2 conditional on spin 1 being along -lT1. 

To implement the c-NOT by NMR, it is necessary to use the scalar cou­
pling to induce a conditional phase shift. The pulse sequence can be derived 
simply by fully expanding the propagator into a product of commuting fac­
tors: exp(1l"tG~E:') = 

exp( (1l" / 4)t) exp( -( 1l" / 4)tlT~) exp( -( 1l" /4)tlTD exp( (1l" / 4)tlT~lT~) (6.45) 

The first factor is just a global phase Vi, which has no effect when a 
propagator is applied to a density operator and hence can be ignored. The 
last factor cannot be implemented directly, but can be rotated about IT§ 
into the scalar coupling Hamiltonian exp((1l"/4)tlT1lT~) = 

exp( (1l" / 4)tlTD exp( -( 1l" / 4)tlT~lT~) exp( -(1l" / 4)tlT~) (6.46) 

Making this substitution in Eq. 6.45 leaves two transverse rotations of spin 
1 adjacent one another, but their product is equivalent to a single transverse 
rotation and a phase shift: 

exp( -(1l" /4)tlTD exp( (1l" /4)tlTD 

exp( (1l" / 4)tlT~) exp ( - (1l" /4)tlTD 
(6.47) 

It follows that the c-NOT may be implemented by the NMR pulse sequence: 

(6.48) 

Pulse sequences for many other reversible boolean logic gates may be found 
in Ref. [42]. 

Even though we are working in a rotating frame, the spins precess at 
slightly different rates depending on their chemical shifts {jk (vide supra). 
The c-NOT sequence requires that this differential Zeeman evolution be 
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"turned off" leaving only the coupling Hamiltonian active during the 
1/(2Jl2) evolution periods. This can be done by inserting "refocusing" 7r­
pulses in the middle and at the end of the period, as follows from: 

exp( (7r /2)~( O'~ + O'i)) exp ( - (7r / 4)~( O'~ + O'~)) 
exp( - (7r /2)~(0'~ + O'i)) exp( - (7r / 4)~( O'~ + O'~)) 

(~O'~O'i) exp( -(7r /4)~(0'~ + O'm 

(-~O'~O'i) exp( -(7r /4)~(0'~ + O'~)) 

exp((7r/4)~(0'~ + O'~)) (0'~0'i)2 exp( -(7r/4)~(0'~ + O'~)) 
exp((7r/4)~(0'~ + O'~)) exp( -(7r/4)~(0'~ + O'~)) = 1 

(6.49) 

It also requires that the scalar coupling evolution be turned off during the 
Zeeman evolutions at the end of the pulse sequence, which can be done by 
applying a selective 7r-pulse to just one of the spins while the other evolves, 
then vice versa, and finally realigning the transmitter phase with that of 
the spins. This ability to "suspend time" in one part of the system while 
working on another is an essential component of quantum computing by 
NMR spectroscopy [35]. 

Higher-order logic gates can be implemented by analogous sequences. For 
example, the c2-NOT or Toffoli gate is: 

(1- E=-E~) + O'~E=-E~ 
1 - 2G~E=-E~ = exp( -7r~G~E=-E~) 

On expanding the propagator as before, one obtains: 

exp( -( 7r /2)~E=-E~) exp( -( 7r /8)~O'D exp( -( 7r /8)~0'~ O'~) 

exp( -( 7r /8)~0'~0'~) exp( -( 7r /8)~0'~0'~0'~) 

(6.50) 

(6.51) 

The last (left-most) factor in this sequence consists of Zeeman and coupling 
evolutions, and can be implemented by adjusting their relative rates via 
refocusing 7r-pulses. The transverse rotation and "two-body" factors can 
also be implemented in a fashion similar to that given above for the simple 
c-NOT gate. The "three-body" factor, on the other hand, must be built-up 
from successive two-body evolutions (since that is all nature provides us 
with [56]), for example as exp( -(7r/8)~O'lO'~0'~) = 

(6.52) 

Assuming that all the couplings are equal to J, and that the time required 
for RF pulses is negligible, this sequence requires approximately 2/ J in 
time. By neglecting relative phase shifts among the states and allowing 
multiple simultaneous evolutions, this can be reduced to 3/(4J) [15]. A 
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graphical scheme for designing such pulse sequences, and its application to 
the en-NOT for n ::::: 16, may be found in [41]. 

In the next section, it will be shown that NMR enables Feynman's idea 
of simulating one quantum system by another to be demonstrated, using 
however an ensemble of spins in a pseudo-pure state to simulate a quantum 
system in a true pure state. This will use the following sequence of RF and 
gradient (\7) pulses to convert the equilibrium state of a two-spin system 
into a pseudo-pure ground state (where the propagator for the Hamiltonian 
over each arrow conjugates the preceding expression to get the next): 

0"1 + 0"2 
[-i(O"i+O"~)] 

1 (1 1 2 2) 
3 3 

) v'2 0"2 + 0"3 + 0"2 + 0"3 

[ 1r 1 2] - "40"30"3 
1 ( 1 2 1 1 2 2) ) v'2 0"10"3 + 0"3 + 0"30"1 + 0"3 

[;2 (O"~+O"~)] 
~ ( v'3 (E~E~ - ~(1 - O"iO"i)) ) 

+ 1 (0"1 E2 + E1 0"2) 
2 1 + + 1 ) 

[V'] 
v'3 (0"1 + 0"2 + 0"10"2 _ 0"10"2 _ 0"10"2) (6.53) ) 
16 3 3 3 3 1 1 2 2 

[-~a~] v'3 (0"1 _ 0"2 _ 0"10"2 + 0"10"2 _ 0"10"2) ) 
16 3 3 3 3 1 1 2 2 

[V'] v'3 (0"1 _ 0"2 _ 0"10"2) ) 
16 3 3 3 3 

[~O"~] 
v'3 (0"1 + 0"2 + 0"10"2) ) 
16 3 3 3 3 

It will be observed that the first gradient pulse converts O"tO"i into the pure 
zero quantum coherence O"tO"i + O"~O"~, by destroying the corresponding 
double quantum component O"iO"i - O"~O"~. This is due to the assumption 
of a homonuclear system, wherein zero quantum terms have almost no net 
magnetic moment and hence are not rapidly dephased by a gradient. Ne­
vertheless, a 7r-rotation selective for only one spin converts this back to a 
double quantum term, which the second gradient wipes out. In a heteronu­
clear system zero quantum terms are rapidly dephased by a gradient, and 
hence the second gradient would not be necessary. 

14.7 Quantum Simulation by NMR 

This section describes a methodology and proof of concept for the simula­
tion of one quantum system by another, as originally envisioned by Feyn­
man [25] and studied in detail by Lloyd [38]. This will also enable us to 
illustrate many of the above concepts in quantum information processing. 
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Unlike the digital quantum computer envisioned by Benioff and Deutsch, 
however, a quantum simulator is an essentially analog device, which maps 
the state of the simulated system directly onto the joint states of the qubits 
without discretizing the problem. Such an analog encoding is not only pre­
cise in principle, but also more efficient, so that quantum simulations be­
yond the reach of today's computers could be performed with only 20 to 30 
qubits [37,38]. In addition, since it is usually only the long-term average be­
havior of quantum systems that is of interest, quantum simulations would 
be expected to be less sensitive to errors than quantum computations. Fi­
nally, the ensemble nature of NMR allows such averages to be observed 
directly, saving the otherwise requisite repetitions of the same simulation 
in order to obtain them. 

The general scheme used here for quantum simulation is summarized in 
the following diagram: 

Is) __ U_=_e_x_p(_-_T_~H_s) ___ • I s(T)) 

(7.54) 

V T = exp( -tT~il p) 
I p) ------------'------+-. I pr) 

Here, Is) and I p) denote the states of the simulated system and the phy­
sical system used to implement the simulation, respectively. The simulated 
state after a specified amount of time T and the corresponding physical 
state are denoted by I s(T)) and I PT), respectively (note T is not the 
physical time!). The invertible (generally unitary) linear mapping rp encodes 
the simulated system's states in those of the physical system. Finally, Hs is 
the simulated Hamiltonian, while il p is the average physical Hamiltonian 
over the time tT required for the simulation. This average Hamiltonian is 
obtained by interspersing periods of free evolution under the actual phy­
sical Hamiltonian H p with a sequence of RF pulses which effect unitary 
operations Vi (i = 1, ... , M), so that: 

rp-1exp(-T~Hs)rjJ = exp(-tT~rp-1Hsrp) 

M 

exp( -tT til p) = II exp( -ti ~H p) Vi 
i=1 

(7.55) 

A general methodology has been developed by NMR spectroscopists to 
permit them to implement arbitrary average Hamiltonians to any desired 
degree of accuracy [31]. 
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The Hamiltonian to be simulated is often given in canonical form (i.e. 
in terms of its energy levels). In this case an encoding ¢ which maps the 
eigenstates of H 5 to those of iI p is most convenient. Although it is not 
strictly necessary, the task of implementing the average Hamiltonian by 
NMR is greatly facilitated by converting it into product operator form. 
Thus suppose that the simulated Hamiltonian is 

(7.56) 

where the energies H j are arbitrary real numbers. Because no ordering of 
the energies is assumed, by a choice of indexing every eigenstate encoding 
can be put in the form 

(7.57) 

where 15k E {O, I} is the k-th bit in the binary expansion of the integer j. 
In terms of density operators, this becomes 

(7.58) 

where E1 = 1 - 2c5k and E~ are the usual idempotents. On expanding these 
products and regrouping, one obtains: 

(7.59) 

Inserting the identity 1 = Li:~l Ek and using the relation (1"~Ek = E{Ek 
now yields: 

(7.60) 

Comparison of these two expressions for iI p shows that 

(7.61) 

where 0: = [al, ... ,a2N_llT and M®N a matrix whose jk-th entry is 
(-l)#j&k (with #j&k being the Hadamard weight ofthe AND of j and k). 

This linear transformation from the (1"3 product basis for diagonal opera­
tors to eigenstates is known as the Walsh-Hadamard transform. As implied 
by the notation, the matrix M®N is a Kronecker (tensor) power of the 
2 x 2 matrix 

(7.62) 
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It is easily seen that M and hence M®N is its own inverse up to factors of 
2 and 2N , respectively, and hence this transformation is easily inverted to 
convert any operator in canonical form into its product operator expansion. 
Consider, for example, simulating the first 2N levels of a quantum harmonic 
oscillator, with H j = (2j + 1)0/2 for j = 0, ... , 2N - 1. The corresponding 
product operator form is given by: 

(7.63) 

Significantly, this expansion contains no product terms, so that evolution 
under it cannot induce new correlations among the qubits. This property 
depends on the encoding cp, however, as may be seen by reordering the (first 
four) energy levels as Ho = 0/2, Hi = 30/2, H2 = 70/2 and H3 = 50/2; 
this corresponds to a so-called Grey encoding, in which adjacent energy 
levels differ by single qubit NOT operations. In this case the propagator of 
the desired average Hamiltonian may be shown to be 

V T exp(-Tdlp) 

exp(-TLO((l +lT~/2) lT~ - 2)) 
(7.64) 

In order to demonstrate these ideas in practice, NMR experiments will 
now be described which implement the first four levels of a quantum har­
monic oscillator in the above Grey encoding [50]. These experiments were 
done on the molecule 2,3-dibromothiophene, which contains two weakly 
coupled hydrogen atoms (see Figure 14.3). Letting K == (w 2 - Wi )/(27r) 
and placing the receiver on the first spin (i.e. choosing a rotating frame 
wherein wi = 0), the physical Hamiltonian of this system becomes: 

(7.65) 

S 
H __ / " __ Br 

C C 

\\ II 
/c-c" 

H Br 

FIGURE 14.3. Chemical diagram of the molecule 2,3-dibromothio­

phene used for simulation of a quantum harmonic oscillator (see text). 

The two hydrogen atoms were used as the qubits in an analog repre­

sentation of the oscillator's first four energy levels. 
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Up to an overall phase factor, the desired average Hamiltonian is obtained 
from the following pulse sequence 

[-7r (u~ + u~)] ----+ h/2u~u~] 

----+ [7r (u~ + uD] ----+ [(T1/2 + T2)U~U~] 
(7.66) 

This may be shown by using the fact that u~u~ anticommutes with u§, 
commutes with u~u~ and squares to 1 to rearrange the corresponding se­
quence of propagators as follows: 

exp( -(T1/2 + T2)t-H p) exp( -(7r/2)t-(u~ + uD) 

exp( -(T1/2)t-Hp ) exp((7r /2)t-(u~ + u~)) 

exp( -(T1/2 + T2)t-7r(K + Ju~) u~) (-t-)u~u~ 
exp( -(T1/2)t-7r(K + Ju~) uD t-u~u~ 

exp( -(T1/2 + T2)t-7r(K + Ju~) uD 

exp(( -t-)u~u~ (-(T1/2)t-7r(K + JuD u~) t-u~u~) 

exp( -(T1/2 + T2)t-7r(K + ~u~) u~) 
exp(-(T1/2)t-7r( -K + JuD u~) 

exp( -t-7r(T2K + (T1 + T2)Ju~) (2) 

(7.67) 

Thus the desired propagator V T at a simulated time T is obtained (up to 
its overall phase) by setting T2 = nT / K and T1 = nT /(2J) - T2. 

In order to illustrate the simulation, the spin system was prepared in 
a pseudo-pure ground state, as described in Eq. 6.53 above. It was then 
transformed into a double quantum superposition (I ~ )DQ == 10) + t-12)), 
and evolved for a regularly spaced sequence of 64 simulated times T up to 
one full period n-1 . For each time T, the corresponding double quantum 
spin state (¢( I ~ ) DQ) = 1 01 ) + t- 110 )) was transformed via a readout pulse 
selective for a single spin back to a single quantum spin state, which gives 
rise to a peak in the spectrum whose amplitude could be used to monitor 
the simulation. A similar set of experiments was also done on the full super­
position (10) + ... + 13)) over the first four energy levels of the oscillator. 
Due to the Grey code used, the single and triple quantum coherences in 
this case all give rise to observable peaks whose amplitudes could be mo­
nitored directly. Figure 14.4 shows these peak amplitudes as a function of 
simulated time T for each of these cases. Note in particular that a triple­
base-frequency oscillation does not occur naturally in a two-spin system, 
thereby confirming that this simulation involves a nontrivial modification 
of the system's physical Hamiltonian. The original reference [50] also shows 
data for the simulation of a driven anharmonic quantum oscillator, which 
does not rely upon knowledge of the eigenstates, thereby showing that the 
simulation methodology of Eq. 14.7 is general. 
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FIGURE 14.4. Plots of selected peak amplitudes (x) versus fraction 

of harmonic oscillator period simplated for the ground (a), a double 

quantum (b) and the single (c) and triple (d) quantum coherences in 

a full superposition over all four energy levels. The solid-lines through 

each data set were obtained by three-point smoothing. 

14.8 Remarks on Foundational Issues 

Using a mathematical formalism based on geometric algebra, we have 
shown how quantum information processing can be performed on small 
numbers of qubits by liquid-state NMR spectroscopy, where the qubits are 
physically realized in the joint statistics of a highly mixed ensemble of 
spin systems. There has nevertheless been considerable controversy over 
whether or not these experiments are truly "quantum" [10, 43]. The fact 
that all of quantum mechanics can be done with the multiparticle Dirac 
algebra, together with the implied geometric interpretation, makes an ab­
solute distinction between "quantum" and "classical" seem a little less 
profound. Nevertheless, the general consensus now seems to be that liquid­
state NMR should be regarded as "quantum" not so much because the 
measurements that can be made on anyone state require the formalism of 
quantum mechanics for their description, as because the manifold of states 
and measurement outcomes generated by the available operations do. Thus, 
even if a highly mixed density operator is expressed as an average over an 
ensemble of unentangled states, a sequence of RF pulses and evolutions 
under scalar coupling can always be applied which converts at least some 
of these states into entangled ones. 
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Our work also touches upon a number of interesting questions regarding 
the emergence of classical statistical mechanics from an underlying quan­
tum description of the system and its environment, and at the same time 
provides a readily accessible experimental system within which these ques­
tions can be studied. It is now widely believed that classical statistical 
mechanics works because the system and its environment become entan­
gled through their mutual interactions [29, 62]' so that the partial trace 
over the environment results in an intrinsically mixed state of the system. 
If the eigenstates of the resulting density operator are stable under the 
environmental interactions, the system's dynamics can be described by a 
classical stochastic process on those eigenstates. This process by which co­
rrelations between the selected eigenstates are lost is known as decoherence. 
From this perspective, a pure state is a state of the universe as a whole 
in which the system and its environment are mutually uncorrelated. Ne­
vertheless, decoherence remains a theory of ensembles; it does not explain 
what happens in any single system, and hence in particular does not resolve 
the quantum measurement problem [39]. 

The potential utility of NMR as a means of exploring some of these issues 
experimentally is illustrated by our recent demonstration of a quantum 
error correcting code [14]. This extension of the classical theory of error 
correction to quantum systems was developed in order to control decohe­
rence in quantum computations [44, 52], which would otherwise destroy the 
coherences on which quantum algorithms depend [11, 60]. Such codes rely 
upon the fact that the effects of environmental interactions on the system 
can be completely described by a discrete stochastic process of the form 
p --+ L:m Pm U m P fj m , where Pm 2 0 are the probabilities with which 
the unitary operators U m are applied to the system. Assuming that this 
process is known, additional ancillae qubits in a specific state I 0) can be 
added to the system, such that each distinct "error" (i.e. operator U m) 
maps their joint state into orthogonal subspaces. Thus measurements e­
xist which can determine the error (though not the state of the system p), 
enabling it to be corrected. This remarkable ability to intervene in such 
fundamental processes promises to be useful in characterizing how they 
occur in nature [32]. 

The primary experimental question which remains is: How many qubits 
will we be able to completely observe and control via NMR spectroscopy? 
The aforementioned signal-to-noise problems associated with preparing 
pseudo-pure states from high-temperature equilibrium states would appear 
to impose an upper bound on liquid-state spectroscopy of ca. 8 - 12 qubits, 
and various other practical difficulties (i.e. limited frequency resolution, 
and the intrinsic decoherence in these systems) may make it difficult to go 
even that far. These limitations are not intrinsic to NMR per se, however, in 
that for example polarizations approaching unity can be obtained in crys­
talline solids at temperatures of 4K, while at the same time increasing the 
intrinsic decoherence times of the spins to hours or more. Additionally, it 
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is in principle possible to use gradient methods to spatially label the spins, 
thereby circumventing frequency resolution problems. By these means co­
herences among up to ca. 1011 spins have been created, and refocused, in 
the laboratory [61]. Regardless of the technology by which a large-scale 
quantum computer is ultimately implemented, it is certain that both NMR 
and geometric algebra will remain essential tools for its development. 



Chapter 15 

Geometric Feedforward Neural 
Networks and Support 
Multivector Machines 

Eduardo Bayro Corrochano and Refugio Vallejo 

15.1 Introduction 

The representation of the external world in biological creatures appears 
to be definable in terms of geometry. We can formalize the relationships 
between the physical signals of external objects and the internal signals of 
a biological creature by using extrinsic vectors coming from the world and 
intrinsic vectors representing the world internaly. We can also assume that 
the external world and the internal world have different reference coordi­
nate systems. If we consider the acquisition and coding of knowledge as a 
distributed and differentiated process, it is imaginable that there should e­
xist various domains of knowledge representation obeying different metrics 
which can be modelled using different vectorial basis. How it is possible 
that nature could have acquired through evolution such tremendous repre­
sentation power for dealing with complicated geometric signal processing 
[13]7 Pellionisz and Llinas [15, 16] claim in a stimulating series of arti­
cles that the formalization of the geometrical representation seems to be 
the dual expression of extrinsic physical cues performed by the intrinsic 
central nervous system vectors. These vectorial representations, related to 
reference frames intrinsic to the creature, are covariant for perception ana­
lysis and contravariant for action synthesis. The authors explain that the 
geometric mapping between these two vectorial spaces can be implemented 
by a neural network which performs as a metric tensor [16]. 

In view of this line of thought, the geometric interpretation of Clifford 
algebra by Hestenes [11], offers an alternative to tensor analysis that has 
been employed since 1980 by Pellionisz and Llinas for the theory of the per­
ception and action cycle (PAC). Tensor calculus is covariant, which means 
that it requires transformation laws for getting coordinate independent re­
lations. Clifford algebra or geometric algebra is more attractive than tensor 
analysis because it is coordinate free, and because it includes spinors which 
the tensor theory does not. The computational efficiency of geometric al-
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© Birkhäuser Boston 2001



3lO Eduardo Bayro Corrochano and Refugio Vallejo 

gebra has also been confirmed in various challenging areas of mathema­
tical physics [6]. The other mathematical system used in neural networks 
is matrix analysis. Geometric algebra better captures the geometric cha­
racteristics of the problem independently of a coordinate reference system 
and offers also other computational advantages that matrix algebra does 
not, e.g. the bivector representation of linear operators in the null cone, 
incidence relations (meet and join operation), and the conformal group in 
the horosphere. 

Attempts at applying the geometric algebra to neural geometry have 
been already made in [8, 9, 4, 2]. In this paper, first we show the genera­
lization of the standard feedforward networks in the geometric algebra and 
then we give an introduction of the use of the SV -Machines in the geometric 
algebra framework. Using SV-Machines we can generate straightforwardly 
two layer networks and RBF networks, which is an important issue. In 
this way we expand the sphere of applicability of the SV-Machines for the 
treatment of multi vectors. 

The paper is organized as follows. Section two reviews the computing 
principles of feedforward neural networks, giving their most important cha­
racteristics. Section three deals with the extension of the multilayer per­
ceptron (MLP) to complex and quaternionic MLPs. Section four presents 
the generalization of the feedforward neural networks in geometric alge­
bra. Section five describes the generalized learning rule across different 
geometric algebras, and it presents experiments which compare geometric 
neural networks with real valued MLPs. Section six introduces the Support 
Multivector Machines and gives experiments. The last section discusses the 
applicability of the geometric feedforward neural nets and the Support Mul­
tivector Machines. 

15.2 Real Valued Neural Networks 

The approximation of nonlinear mappings using neural networks is useful in 
various areas of signal processing, such as pattern classification, prediction, 
system modelling and identification. This section reviews the fundamentals 
of standard real valued feedforward architectures. 

Cybenko [5] used for the approximation of a continuous function g(x), 
the superposition of weighted functions 

N 

y(x) = L WjOj(wJ x + ej ), 
j=l 

(2.1) 

where 0"(.) is a continuous discriminatory function like a sigmoid, Wj E R 
and x, ej , Wj ERn. Finite sums of the form ofEq. (2.1) are dense in C°(In), 
if 19k(X) - Yk(x)1 < E for a given E > 0 and all x E [0, It. This is called 
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a density theorem and is a fundamental concept in approximation theory 
and nonlinear system modelling [5, 10]. 

A structure with k outputs Yk, having several layers using logistic func­
tions, is known as the Multilayer Perceptron (MLP) [20]. The output of 
any neuron of a hidden layer or of the output layer can be represented in 
similar way, 

Ni 

OJ = liL WjiXji + OJ) 
i=1 

Nj 

Yk = A(L WkjOkj + Ok), 
j=1 

(2.2) 

where Ij (-) is logistic and Ik (.) is logistic or linear. Linear functions at the 
outputs are often used for pattern classification. In some tasks of pattern 
classification, a hidden layer is necessary, whereas in some tasks of auto­
matic control two hidden layers may be required. Hornik [10] showed that 
standard multilayer feedforward networks are able to approximate accu­
rately any measurable function to a desired degree. Thus they can be seen 
as universal approximators. In case of a training failure, we should attribute 
an error to an inadequate learning, an incorrect number of hidden neurons 
or a poorly defined deterministic relation between the input and output 
patterns. 

Poggio and Girosi [18] developed the Radial Basis Function (RBF) net­
work, which consists of a superposition of weighted Gaussian functions, 

N 

Yj(x) = L WjiGi(Di(X - ti)) (2.3) 
i=1 

where Yj is the j-output, Wji E R, Gi is a Gaussian function, Di a N x N 
dilatation diagonal matrix and x, ti E Rn. The vector ti is a translation 
vector. This architecture is supported by the regularization theory. 

15.3 Complex MLP and Quaternionic MLP 

A MLP is defined in the complex domain when its weights, activation 
function and outputs are complex valued. The selection of the activation 
function is not a trivial matter. For example, the extension of the sigmoid 
function from R to C, 

1 
J(z) = (1 + e-Z) (3.4) 

where Z E C, is not allowed because this function is analytic and un­
bounded [12]; similarly for the functions tanh(z) and e-z2 . These kinds 
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of activation functions exhibit problems with convergence in training due 
to their singularities. The necessary conditions that a complex activation 
J(z) = a(x,y) +ib(x,y) has to fulfill are: J(z) is nonlinear in x and y, the 
partial derivatives ax, ay, bx and by exist (axby =t- bxay) and J(z) is not 
entire. Accordingly, Georgiou and Koutsougeras [12] proposed 

z 
J(z) = c+~lzl (3.5) 

where c, r E R+. These authors extended the usual real back-propagation 
learning rule for the Complex Multilayer Perceptron (CMLP). 

Arena et al. [1] introduced the Quaternionic MLP (QMLP) which is 
an extension of the CMLP. The weights, activation functions and outputs 
of this net are represented in terms of quaternions [22]. They choose the 
following non-analytic bounded function 

J(q) J(qO + q1i + q2j + q3k) (3.6) 

(1 + ~-qO ) + (1 + ~-ql )i + (1 + ~-q2 )j + (1 + ~-q3 )k, 

where JO is now the function for quaternions. These authors proved that 
superpositions of such functions approximate accurately any continuous 
quaternionic function defined in the unit polydisc of en. The extension of 
the training rule along the lines of the CMLP was done in [1]. 

15.4 Geometric Algebra Neural Networks 

Real, complex and quaternionic neural networks can be further generalized 
in the geometric algebra framework. The weights, the activation functions 
and the outputs will be now represented using multi vectors. In the real 
valued neural networks of section 15.2, the vectors are multiplied with the 
weights using the scalar product. For geometric neural networks the scalar 
product will be replaced by the geometric product. 

15.4.1 The activation function 

The activation function of Eq. (3.5), used for the CMLP, was extended 
by Pearson and Bisset [14] for a type of Clifford MLP by applying diffe­
rent Clifford algebras, including the quaternion algebra. We propose here 
an activation function which affects each multivector basis element. This 
function was introduced independently by the authors [4] and is in fact 
a generalization of the function of Arena et al [1]. The function for a n­
dimensional multivector m is given by 
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FIGURE 15.1. McCulloch-Pitts Neuron and Geometric Neuron. 

+mijkUi /\Uj /\Uk + ... + mnUl/\U2/\' . '/\Un ) 

= (mo) + f(mi)Ui + f(mj)uj + f(mk)Uk + ... + f(mij)Ui/\Uj + 

+ ... + f(mijk)Ui/\Uj/\Uk + ... + f(m n )Ul/\U2/\" ./\Un , (4.7) 

where fO is written in bold to be distinguished from the one used for a 
single argument f(·). The values of f(·) can be of the sigmoid or Gaussian 
type. 

15.4.2 The geometric neuron 

The McCulloch-Pitts neuron uses the scalar product of the input vector 
and its weight vector [20]. The extension of this model to the geometric 
neuron requires the substitution of the scalar product with the Clifford or 
geometric product, i.e. 

wx + lJ = W· x + w /\ x + lJ (4.8) 

Figure 15.1 shows in detail the McCulloch-Pitts neuron and the geometric 
neuron. This figure also depicts how the input pattern is formated in a 
specific geometric algebra. The geometric neuron outputs a richer kind of 
pattern. Let us illustrate this with an example in ~ho,o 

o f(wx + lJ) (4.9) 

f(so + SlUl + S2U2 + S3k + S4UIU2 + S5Ulk + S6U2k + S7U!U2 k) 

f(so) + f(Sl)Ul + f(S2)U2 + f(S3)k + f(S4)UIU2 + ... + 
+ f(S5)u1k + f(S6)U2k + f(S7 )u!U2k, 

where f is the activation function defined in Eq. (4.7) and Si E R. If we use 
the McCulloch-Pitts neuron in the real valued neural networks the output 
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is simply the scalar given by 

N 

0= f(2: WiXi + B). (4.10) 

The geometric neuron outputs a signal with more geometric information 

0= f(wx + 8) = f(w· x + W 1\ x + 8) (4.11) 

It has both a scalar product like the McCulloch-Pitts neuron, 

N 

f(w· X + B) = f(so) == f(2: WiXi + B) (4.12) 

and also the outer product given by 

f(wl\x + 8 - B) f(Sr)(J1 + f(S2)(J2 + f(S3)k + f(S4)(J1(J2 + ... + 
+ f( S5)(J1 k + f( S6)(J2 k + f( S7 )(J1 (J2k. (4.13) 

Note that the outer product gives the scalar cross-products between the 
individual components of the vector. This is nothing else than the multi­
vector components of points or lines (vectors), planes (bivectors) and vo­
lumes (trivectors). This characteristic can be used for the implementation 
of geometric preprocessing in the extended geometric neural network. To 
a certain extend, this kind of neural network resembles the higher order 
neural networks of [17]. However, an extended geometric neural network 
uses not only a scalar product of higher order, but also all the necessary 
scalar cross-products for carrying out a geometric cross-correlation. Figure 
(15.2) shows a geometric network with its extended first layer. 

In conclusion, a geometric neuron can be seen as kind of geometric co­
rrelation operator which, in contrast to the McCulloch-Pitts neuron, offers 
not only points but also higher grade multivectors like planes, volumes, ... 
, hyper-volumes for interpolation. 

15.4.3 Feedforward geometric neural networks 

Figure (15.3) depicts standard neural network structures for function a­
pproximation in the geometric algebra framework. Here, the inner vector 
product has been extended to the geometric product and the activation 
functions are according to (4.7). 

The equation (2.1) of the Cybenko's model in geometric algebra is 

N 

y(x) = 2: wjf(wj . x + Wj 1\ x + 8j ). 
j=l 

(4.14) 
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~ t 
s: neighbour distance < radius of the hypersphere around x, 

FIGURE 15.2. Geometric neural network with extended input layer. 

The extension of the MLP is straightforward. The equations using the 
geometric product for the outputs of hidden and output layers are given 
by 

Ni 

OJ fj(L Wji . Xji + Wji 1\ Xji + OJ) 
i=1 

N j 

h(L Wkj . 0kj + Wkj 1\ 0kj + Ok) 
j=1 

(4.15) 

In radial basis function networks, the dilatation operation, given by the 
diagonal matrix Di , can b_e implemented by means of the geometric product 
with a dilation Di = en¥- [11], i.e. 

(4.16) 

N 

Yk(X) = L wkjGj(Dj(Xji - tj)i\) (4.17) 
j=1 

Note that in the case of the geometric RBF we are also using an activation 
function according to (4.7). 
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FIGURE 15.3. Geometric Network Structures for Approximation: (a) 

Cybenko's (b) GRBF network (c) GMLPp,q,r. 

15.5 Learning Rule 

This section presents the multidimensional generalization of the gradient 
descent learning rule in geometric algebra. This rule can be used for the 
Geometric MLP (GMLP) and for tuning the weights of the Geometric RBF 
(GRBF). Previous learning rules for the real valued MLP, complex MLP 
[12] and the quaternionic MLP [1] are special cases of this extended rule. 

15,5,1 Multi-dimensional back-propagation training rule 

The norm of a multivector x for the learning rule is given by 

Ixl = (xlx)~ = C~)x]~) ~. (5.18) 
A 

The geometric neural network with n inputs and m outputs approximates 
the target mapping function 

(5.19) 

where (Qp,q,r)n is the n-dimensional module over the geometric algebra 
gp,q,r [14]. The error at the output of the net is measured according to the 
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metric 

E = -2
1 1 IIYw - Yt11 2 , 

XEX 
(5.20) 

where X is some compact subset of the Clifford module (9p ,q,r)n involving 
the product topology derived from equation (5.18) for the norm and where 
Yw and Yt are the learned and target mapping functions, respectively. The 
back-propagation algorithm [20] is a procedure for updating the weights and 
biases. This algorithm is a function of the negative derivative of the error 
function (Eq. (5.20)) with respect to the weights and biases themselves. 
The computing of this procedure is straightforward and here we will only 
give the main results. The updating equation for the multivector weights 
of any hidden j -layer is 

Nk 

Wij(t + 1) = 1][(LOkj ® Wkj) 8 F'(netij )] ® 0i + aWij(t), 
k 

for any k-output with a non-linear activation function 

and for any k-output with a linear activation function, 

(5.21 ) 

(5.22) 

(5.23) 

In the above, F is the activation function defined in equation (4.7), t is the 
update step, 1] and a are the learning rate and the momentum respectively, 
® is the Clifford or geometric product, 8 is the scalar product and n is 
the multivector anti-involution (reversion or conjugation). 

In the case of the non-Euclidean 90,3,0 n corresponds to the simple con­
jugation. Each neuron consists now of p+q+r units, each for a multivector 
component. The biases are also multivectors and are absorbed as usual in 
the sum of the activation signal called here netij' In the learning rules, Eqs. 
(5.21)- (5.23), the way how the geometric product and the anti-involution 
are computed varies depending on the geometric algebra being used [19]. 
As illustration we give the conjugation required in the learning rule for the 
quaternion algebra: x = Xo - X10'1 - X20'2 - X30'10'2, where x E 90,2,0. 

15.6 Experiments Using Geometric Feedforward 

Neural Networks 

The power of the method of learning using bivectors is demonstrated by u­
sing the XOR function. Figure 15.4 shows that the geometric nets GMLPo,2,0 
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FIGURE 15.4. Learning XOR using the MLP(2), MLP(4), GMLPo,2,O, 

GMLP2 ,O,O and P-QMLP. 

and GMLP2 ,o,o have a faster convergence rate than the MLP and the P­
QMLP, the quaternionic Multilayer Percept ron of Pearson [14], which uses 
the activation function given by the equation (3.5). Figure 15.4 shows the 
MLP with 2- and 4-dimensional input vectors . Since the MLP(4) , working 
also in 4D, can not beat the GMLP, it can be claimed that the better 
performance of the geometric neural network is not only due to the higher 
dimensional quaternionic inputs, but rather to the algebraic advantages of 
the geometric neurons of the net. 

LOrenz Alraetor 

'expecled' • 
·GMLP_0.2· 

Lorenz AlfaCIOI 

'expecled' • 
'MLP' 

FIGURE 15.5. a) Training error b) Prediction by GMLPo,2,O and ex­

pected trend c) Prediction by MLP and expected trend. 

Let us show another application of a geometric multi-layer percept ron 
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which distinguishes geometric information in a chaotic process. For that 
we used the well known Lorenz attractor (a=3, r=26.5 and b=l) with the 
initial conditions [0,1,0] and sample rate 0.02 sec. A 3-12-3 MLP and a 
1-4-1 GMLPo,2,O were trained in a time interval of from 12 to 17 seconds 
to perform a 8 T step ahead prediction. The next 750 samples, unseen 
during training, were used for the test. Figure 15.5.a shows the error during 
training. Note that the GMLPo,2,O converges faster than the MLP. Figures 
15.5b-c show that the GMLPo,2,O predicts better than the MLP. Analyzing 
the covariance parameters of the MLP [0.96815, 0.67420,0.95675]' and those 
of the GMLPo,2,O [0.9727, 0.93588, 0.95797]' we can see that the MLP 
requires more time to process the geometry involved in the second variable, 
because the convergence is slower. As a result, the MLP loses the ability to 
predict well on the other side of the looping (see Figure 15.5. b) . In contrast, 
the geometric net captures at an early stage the geometric characteristics 
of the attractor, so it can not fail in its prediction on the other side of the 
looping. 

15.7 Support Vector Machines In Geometric 

Algebra 

The Support Vector Machine (SVM) approach of Vladimir N. Vapnik [21] 
applies optimization methods for learning. Using SV-Machines we can ge­
nerate a type of two layer networks and RBF networks as well as networks 
with other kernels. Our idea is to generate neural networks using the SV­
Machines in geometric algebra. In this way we are using SV-Machines for 
the processing of multivectors. We will call our approach Support Multivec­
tor Machine (SMVM). Let us review briefly the SVM and then explain the 
SMVM. 

15.7.1 Support vector machines 

The SVM maps the input space Rd into a high-dimensional feature space 
H, given by <I> : Rd =} H, satisfying a Kernel K(Xi' Xj) = <I>(Xi) . <I>(Xj) 
which fulfill the Mercer's condition [21]. The SMV constructs an optimal 
hyperplane in the feature space which divides the data into two clusters. 

SV-Machin£s build the mapping 

f(x) = sign ( L YiQiK(Xi,X)-b). (7.24) 
supportvectoTs 

We find the coefficients Qi in the separable case (and analogously in the 
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non-separable case), which maximizes the functional 

(7.25) 

subject to the constraints L:~=l aiYi = 0, where ai ;::: 0, i=1,2, ... ,l. This 
functional coincides with the functional for finding the optimal hyperplane. 

Examples of SV Machines include: 

• polynomial learning machines K(x, Xi) = [(X, Xi) + l]d 

• radial basis functions machines K,(lx - XiI) = exp{ -"(Ix - xil 2 } 

• two layer neural networks K(x, Xi) = S (v(x . Xi) + c). 

15.7.2 Support multivector machines 

A Support Multivector Machine (SMVM) maps the multivector input space 
R 2n of 9p ,q,r (n = p + q + r) into a high-dimensional feature space Rnf 

(nf >= 2n) 

(7.26) 

The SMVM constructs an optimal separating hyperplane in the multivector 
feature space by using, in the nonlinear case, the kernels 

N graded spaces N graded spaces 

L Km(Xmi, Xmj) = L cl>(Xmi) . cl>(Xmj), (7.27) 
m=l m=l 

which fulfill the Mercer's conditions. SMV-Machines for multivectors X of 
a geometric algebra 9p ,q,r are implemented by the multivector mapping 

N gradedspaces 

{Yl, Y2, ... , Ym} = L fm(Xmi) 
m=l 

N graded spaces 

L sign ( L YmiamiK(Xmi,Xm)-bm),(7.28) 
m=l support vectors 

where m denotes the grade of the spaces. The coefficients ami in the the 
separable case (and analogously in the non-separable case), are found by 
maximizing the functional 

N graded spaces I 

W(a7') = W( L Lami) = (7.29) 
m=l . 



15. Geometric Neural Networks 321 

N graded spaces lIN graded spaces I 

L LCtmi -"2 L LCtmiCtmjYmiYmjK(Xmi,Xmj) 
m=l i=l m=l i,j 

subject to the constraint 

N graded spaces I 

L L CtmiYmi = 0, (7.30) 
m=l i=l 

where Ctmi 2 0, for m=l, ... ,N graded spaces and i=1,2, ... ,I. This functional 
coincides with the functional for finding the optimal separating hyperplane 
for the multivector feature space. 

15.8 Experimental Analysis of Support 

M ultivector Machines 

This section presents the use of the SMVM using RBF kernels to find su­
pport multivectors; this illustrates the geometric role of the support multi­
vectors. The second experiment applies SMVM for the task of robot gras­
ping. In this experiment, the coding of the data using the motor algebra 
simplifies the complexity of the problem. 

15.8.1 Finding support multivectors 

This section shows the use of SVM for finding the support vectors in the 2D 
and 3D cases. The examples show how we can depict the feature space and 
how the SVM and the SMVM work. First, we take two clusters in R2 and 
apply a nonlinear SVM and a nonlinear SMVM, using in both cases a RBF 
kernel. Figure 15.6.a shows the original 2D data, Figure 15.6.b the support 
vectors found by SVM and 15.6.c the support multivectors found by the 
SMVM in ~ho,o. The multivectors used were mi = Xi + ~ L:~:~ Xj + (Xi­

Xi+l)/\(Xi - Xi+2). Note that the areas follow the borders of the clusters, 
whereas in the SVM case some of the support vectors are in the interior of 
the clusters. 

In the following experiment we are interested in the separation of the two 
clouds of 3D. points as shown in Figure 15.7.a. Note that the points of the 
clouds lie on a non-linear surface. Figure 15.7. b shows individual support 
vectors found by the linear SVM when the curvature of the data manifold 
changes, and 15.7.c shows the individual support multivectors found by the 
linear SMVM in 93,0,0. The multivectors coding the data are of the form: 

mi = Xi + i L:~:~ Xj + (Xi - Xi+l)/\(Xi - Xi+2)/\(Xi - Xi+3), which repre­
sent pyramidal volumes. Note that the width of the volume basis follows 
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the curvature change of the surface. This experiment shows how the su­
pport multivector captures the geometric properties of the manifold. It is 
interesting to note that only a linear SMVM is sufficient to find the optimal 
support multivector. In Figure 15.7.c, a multivector lies inside of the lower 
cluster which was not considered by the SMVM, whereas in the SVM case 
(see Figure 15.7.b) it was unnecessarily used as a support vector. 

of 

FIGURE 15.6. 2D case using RBF Kernel: a) two 2D clusters data b) 

SVM (support vectors'indicated with diamonds) c) SMVM using ~ho,o 

(support multivectors by triangles). 

15.8.2 Estimation of 3D rigid motion 

In this experiment, we show the importance of the input data coding and 
the use of the SMVM for estimation. The problem is to estimate the Eu­
clidean motion necessary to move an object to a certain point along a 3-D 
nonlinear curve. The task might be to move the grasper of a robot ma­
nipulator to a specific curve point. In order to linearize the model of the 
motion of a point, we used the geometric algebra 9t,0,1 or motor algebra [3]. 
Working in a 4D space, we simplify the complexity of the motor estimation 
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FIGURE 15.7. 3D case: a) two 3D clusters. b) A linear SVM by chang­

ing the curvature of the data surface (one support vector). c) A linear 

SMVM using 93,0,0 by changing the curvature of the data surface. 

necessary to carry out the 3D motions along the curve. We assumed that 
the trajectory is known and prepared the training data as couples of 3D 
position points Xi and the 3D rigid motions, coded in the motor algebra 
9t,0,1 as follows 

Pi = 1 + JXi 

Mi = TiRsi , 

(8.31 ) 

(8.32) 

where the rotor R = cos( ~ ) + sin( ~) rotates about the screw axis line L, 
and the translator Ti = 1 + Jdi'!)i corresponds to translating the distance 
di E R along LSi' Considering motion along a non-linear path, we take the 
lines connecting to sampled points ofthe curve as the screw lines LSi. With 
the estimated motor Mj for the position Pj, obtained using the SMVM, 
we can move the grasper to the new position j 

(8.33) 

where Xl stands for any point on the grasper in its final position. 
The training data for the SMVM consists of the couples Pi as input data 

and the Mias output data. The training was done so that the SMVM 
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, e 
could estimate the motors M j for the unseen points P j. Since the points 
Pi are given by the three first bivector components, and the outputs by 
the eight motor components of M i , we used an SMVM architecture with 
three inputs and eight outputs. We used three inputs because the points 
are of the form 

(S.34) 

Since the first component of all the P j is "1", we can ignore it. After the 
training we tested whether the SMVM can or can not estimate the right 
3D rigid motion. The Figure 15.S.a (left top) shows a nonlinear motion 
path; we took a bunch of points of this curve and their correspondent 
motors for training the SMVM architecture. For recall, we selected three 
arbitrary points which were not used during the training of the SMVM. 
The estimated motors for these points were applied to the object in order 
to move it to these particular positions of the curve. We can see in Figure 
15.S.a that the estimated motors are very good. Thereafter we trained a 
real valued MLP with 3 input nodes, 10 hidden nodes and eight output 
nodes trained with the same training data and with a convergence error 
of 0.001. Figure 15.S.b (right top) shows the motion approximated by the 
net. However, we see that the SMVM in Figure 15.S.a has a bit better 
performance. Then we carried out similar experiments using noisy data. For 
that we add 1% of uniform distributed noise to the three components of the 
position vectors and to the eight components of the motors multivectors 
as well. We trained the SMVM and MLP with this noisy data. The latter 
used again a convergence error of 0.001. The results for the case of noisy 
data show that the SMVM behaves better than the MLP. 

15.9 Conclusions 

In the literature there are basically two mathematical systems used in 
neural computing: the tensor algebra and the matrix algebra. In contrast, 
here the authors use the coordinate-free geometric algebra for the analysis 
and design of feedforward neural networks. The paper shows that real-, 
complex- and quaternion-valued neural networks are just particular cases 
of the more general geometric algebra multidimensional neural networks, 
and that some of them can be generated by using Support Multivector 
Machines. In particular, the generation of RBF for neurocomputing in geo­
metric algebra is easier than using the SMVM, which allows us to find 
the optimal parameters automatically. The use geometric algebra in SVM 
offers both new tools and new understanding of SV-Machines for multi­
dimensional learning. The experiments demonstrate the advantages of using 
geometric neural networks. In particular, the experiment of grasping shows 
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FIGURE 15.8. From top to bottom: estimated three grasper positions 
(indicated with an arrow) using noise free data and noisy data 1% a) 

left column: estimation using a SMVM in {h,O,l. b) right column: ap­
proximation using a 3-10-8 MLP. 

the importance of choosing a geometric algebra suitable for the preparing 
of the input and output data. 



Chapter 16 

Image Analysis Using 
Quaternion Wavelets 

Leonardo 'Iraversoni 

16.1 Introduction 

The idea for Quaternion Wavelets comes from the need to represent evol­
ving objects without the use of sequencial pictures of the object in different 
positions. We present a short introduction to ordinary wavelets, emphazi­
sing those concepts that are needed to translate the ideas to a quaternion 
framework. We also set up the quaternionic framework for the theory, be­
cause even when it is known, it has been used in so many different ways 
that a coherent picture becomes very difficult. 

Step by step, we first represent a static object, the complex human head. 
From this very first step, the advantages of our approach become evident. 

There are antecedents to our work. M. Mitrea [1] published a paper 
about Clifford Wavelets, a the more exhaustive aproach to the subject, 
years before I published [3]. MyoId paper treats quaternion wavelets from 
a completely different point of view. In this paper, I try to develop a little 
more the ideas of Mitrea in terms of a "static" use of quaternion wavelets, 
and also some of my own ideas related to its "dynamic" use. 

There are some tools normally used in 2D or 3D for wavelets or B-splines 
that must be first defined in the quaternionic environment, so that we can 
use them later. 

16.1.1 Wavelets 

We will consider wavelets of one real variable in order to later derive the 
wavelets of one quaternion variable. Consider the space L2(llR) of all mea­
surable functions f defined on the real line IlR that satisfy: 

(1.1 ) 
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These functions decay very rapidly to zero at ±oo. We also need the defi­
nitions of internal product and norm in L2(llR): 

< f,g >= i: f(x)g(x)dx 

IIfl12 =< f, f >1/2 

(1.2) 

(1.3) 

Now let 'Il be the set of integers, 'Il = { ... , -1,0,1, ... }. In order to cover 
all of IlR we define the set of functions 

'I/J(x-k), kE'Il (1.4) 

If we don't want single frequency waves, we must consider 

(1.5) 

A function 'I/J E L2(llR) is called an orthogonal wavelet if the family 'l/Jj,k is 
an orthonormal basis of L2(llR) 

The simplest example of an orthogonal wavelet is the Haar function: 

{
I for 

'l/JH = -1 for 
o otherwise 

16.1.2 Multirresolution analysis 

0::::: x < 1/2 
1/2::::: x < 1 (1.6) 

Any wavelet generates a direct sum decomposition of L2(1lR). Let us con­
sider for each j E 'Il, the closed subspaces: 

10 = ... + W j - 2 + W j - 1 j E 'Il 

which have the following properties: 

1) ... C V-I eVa C VI C ... 

2) clasp (u 10) = L2(llR) 
JEZ 

3) n 10 = {O} 
jEZ 

4) 10+1 = 10 + Wj, j E 'Il 
5) f(x) E 10 +-+ f(2x) E 10+1, j E 'Il 

If the reference subspace Va is generated by a single function 
¢ E L2(llR), 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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where 
(1.14) 

then all the subspaces Vj are also generated by ¢. 
A function ¢ is called a "scaling function" and generates a Multiresollu­

tion Analysis(MRA), if it generates a nested sequence of closed subspaces 
Vj that satisfy conditions 1), 2), 3) and 5). A typical example of scaling 
functions are the mth order cardinal splines for mE'll. 

16.1.3 Cardinal splines 

The cardinal splines are no other than polynomial spline functions with 
equally spaced simple knots. Let 'll be the set of all integers taken as 
knots, 7rm the collection of algebraic polynomials with degrees of at most 
m, and let Fm = F(llR) the collection of all functions f, f', ... , f(m) which 
are everywhere continuous. 

Definition ([2]). For each positive integer m the space 8 m of cardinal 
splines of order m, and with the knot sequence'll, is the collection of 
all functions f E Fm-2 such that the restrictions of f to any interval 
[k, k + 1), k E 'll are also in 7rm -l. That is 

fl[k,k+l) E 7rm -l, k E 'll (1.15) 

For example, the first order cardinal B-Spline Nl is the characteristic 
function of the unit interval [0,1). For m ~ 2, N m may be defined by 
integral convolution 

Nm(x) = Joo Nm- 1 (x - t)N1 (t)dt = r1 Nm- 1 (x - t)dt 
-00 h (1.16) 

From another point of view, the subspace Vo generated by N m is exac­
tly the definition we gave earlier for the cardinal B-spline. All the other 
subspaces Vj may now be specified by 

(1.17) 

16.1.4 Decomposition and reconstruction 

It follows that {Vj} is generated by the scalar function ¢ E L2(llR) and 
{Wj} is generated by some wavelet 'ljJ E L2(llR). Every function f E L2(llR) 
can be approximated uniquely, given N E 'll, as closely as desired by some 
fN E VN , 

fN = fN-l + gN-l (1.18) 
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where !N-l E VN - I and gN-I E WN - I . Repeating this process, we get 

!N = gN-I + gN-2 + .... + gN-M + !N-M (1.19) 

This is called the "wavelet decomposition". By suitable choosing M, we 
can obtain a !N-M sufficiently "blurred". For all x E IJR, we have that 

(1.20) 
k 

7jJ(x) = :L Qk¢(2x - k) (1.21) 
k 

The above functions are called the scale relations of the scaling function 
and wavelet. Since both ¢(2x) and ¢(2x - 1) are in VI and VI = Vo + Wo, 
there are four [2 sequences {a_2d, {L 2k }, {al-2k and {bl - 2d such that 

¢(2x) = :L[a-2k¢(x - k) + L 2k7jJ(X - k)] (1.22) 
k 

¢(2x - 1) = :L[a-2k¢(x - k) + L 2k7jJ(X - k)] (1.23) 
k 

(1.24) 

Combining both of these formulas, we get 

¢(2x -l) = :L[al-2k¢(X - k) + bl- 2k7jJ(X - k)], (1.25) 
k 

which is the decomposition formula. 
Using the decomposition formula, we get the decomposition algorithm 

ct.-I = :L al-2kc{ (1.26) 
I 

d{-I = :L bl - 2kc{, (1.27) 
I 

and the composition algorithm 

ct. = :LlPk-21c{-1 + Qk-2I dt l ] (1.28) 
I 

16.1.5 Hilbert spaces of quatemionic valued functions 

Let V4 ,s be a 4-dimensional real linear vector space with the basis 
(el,e2,e3,e4), and where s is an integer such that 0 $ s $ 4. Let a bilinear 
form 

(vlw), v,w E V4 ,s (1.29) 
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be given on V4 ,s such that 

(eilej) = 0, i i- j 

(eilei) = 1, i = 1, "" s 

( ei lei) = -1, i = s + 1, .. " 4 

(1.30) 

(1.31 ) 

(1.32) 

We call V4 ,s a quadratic linear space, If v = 2.=;=1 Viei E V4 ,s then the 
associated quadratic form is: 

s 4 

(vlv) = LV; - L v; (1.33) 
i=1 i=s+1 

Consider now the 24 dimensional real linear space C(V4 ,s) defined by the 
basis 

{eA = eh,oo,hr : A = (hI, .. " hr ) E PN, 1:::; hI < .... < hr :::; 4} (1.34) 

Let N be the set {I, 2, 3, 4}, A product is defined on C(V4,s) by 

eAeB = (_1)4CCAn B) Sl( _l)pCA,B)eA~B 

Here S = {I, .. , s}, 

p(A,B) = LP(A,j), p(A,j) = #{i E A: i > j}, 
JEB 

eo is the identity element, 

e; = 1, i = 1, .. " s 

e;=-l, i=s+1, .. ,,4, 

and where for 1 :::; hI < .... < hr :::; 4, 

For any vectors v, wE V4 ,s, we have 

vw + wv = 2(vlw) 

(1.35) 

(1.36) 

In this way C(V4 ,s) becomes a real, linear, associative, but non conmutative 
algebra called the Universal Clifford algebraover V4 ,s' 

The linear subspace of C(V4 ,s), spanned by the ( ; ) elements eA, 

where #A = p, is denoted by Cp and is called the space of p-vectors, Co is 
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the 1-dimensional subspace of O-vectors or scalars, C1 is the 4-dimensional 
subspace of 1-vectors or vecotrs of V4,s with the basis {el, e2, e3, e4}, C4 is 
the 1-dimensional subspace of 4-vectors or pseudo-scalars with basis {e1..4}. 

Geometrically each p-vector is a piece of an oriented p-dimensional sub­
space of the underlying space V4 ,s with a certain magnitude. 

The product of two 1-vectors has a symmetric and an antisymmetric 
part, 

1 1 
vw = 2"(vw + wv) + 2"(vw - wv) (1.37) 

or 

vw=(V\w)+VAw, (1.38) 

the inner product (v\w) coincides with the bilinear form on V4,s. The outer 
product is an antisymmetric 2-vector which vanishes when the vectors are 
collinear. 

16.1. 6 Modules over quaternions 

There are right and left quaternion modules denoted with the subscripts 
(r) and (l). 

Let X(l) be a unitary left quaternionic module. Thus, X(l)+ is an abelian 
group with an operation (A, J) --+ Af from IH x X into X(l), defined such 
that for all A, J.-L E IH and f, 9 E X(l): 

1) (A + J.-L)f = )..j + J.-Lf 

2) (AJ.-L)f = A(J.-Lf) 

3) A(f + g) = Af + Ag 

4) eof = f. 

If X(l) and Y(l) are unitary left quaternionic modules, then a function 
T : X(l) --+ Y(l) is a left quaternionic linear operator if for all f, 9 E X(l) 
and A E IH: 

T(Af + g) = AT(f) + T(g) (1.39) 

Let X(l) be a unitary left quaternionic module. Then a family P of func­
tions p : X(l) --+ R is said to be a proper system of semi-norms on X(l) if 
the following conditions are fullfilled: 

1) There exists a constant Co :::: 1 such that for all PEP, A E 1t and 
f,g E X(l): 

1.1) p(f + g) :::; p(f) + p(g) 
1.2) p(AJ) :::; CO\A\op(f) and p(AJ) = \A\p(f) if A E IIR 
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2) For any finite number of functions PI, P2, .... , Pk E P, there exist pEP 
and C > 0 such that for all f E X(I): 

(1.40) 

3) If p(f) = 0 for all pEP then f = o. 

16.1. 7 Hilbert quaternion modules 

Let H(r) be a unitary right quaternion module. Then a function 

(, ) : H(r) x H(r) ----> IlH (1.41) 

is said to be an inner producton H(r) if for all f,g, hE H(r) and A E IlH 

1) (f, 9 + h) = (f, g) + (f, h) 
2) (f,gA) = (f,g)A 
3) (f, g) = (g, f) 
4) < Teo' (f, f) >:::: 0 and < Teo, (f, j) >= 0 iff f = 0 
5) < Teo , (fA, fA) >:S IAI6 < Teo' (f, j) > it follows that: 

(f,0) = (0,1) = 0 and that (fA,g) = >'(f,g) 
Putting 

IIfl12 =< Teo' (f, f) > (1.42) 

for each f E H(r) , II· II becomes a proper norm on H(r) which is a right 
quaternion normed module. 

16.1.8 Hilbert modules with reproducing kernel 

Let H(r) be the unitary Hilbert quaternion module consisting of quaternion­
valued functions defined on some set F. Then a function K : F x F ----> IlH 
is called reproducing kernelof H(r) if for any fixed t E F, 

1) K(., t) E H(r) 

2) f(t) = (K(.,t),j) for all f E H(r)' 

In this case, H(r) is said to be a unitary right Hilbert quaternion module 
with reproducing kernel. 

16.1.9 Kernel 

Let Rm+1 with m :::: 1 be an Euclidean space. 
Points in IIRm+1 are denoted by x = (XO, Xl, .... , x m ), or by (xo, x). We 

can see that x = (Xl, ... , xm) lies in the hyperplane Xo = 0, which is identi­
fied with IIRm. 
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On the other hand, the vector subspace HI of the quaternion algebra IlH 
has dimension 3. Assuming that m :s:; 3, for x E IJRm +1 , and x E IJRm , we 
write 

m 

X = Leixi 
i=O 

m 

x= Leixi 
i=1 

In the particular case when m = 3, 

3 

X = Leixi 
i=O 

3 

X= LeiXi 
i=1 

m 

X = Leixi' 
i=O 

3 

x= LeiXi 
i=O 

(1.43) 

(1.44) 

, and the Euclidean norm and the quaternion norm of x differ by the 
constant Ixlo = 23/ 2 1x1-

Let n be an open subset of R3+1. Functions f defined in n with values 
in IlH are of the form 

f(x) = L eH fH(X) (1.45) 
H 

where the functions fH are real valued. Whenever f has a property such as 
continuity, or differentiability, it is clear that all the components f H also 
possess the property. The conjugate of the function f, l is defined by 

Let D denote the differential operator 

3 

D= LeJJxi 
i=O 

Then 

i,H 

The conjugate operator is given by 

3 

D = LeiOXi 
i=O 

(1.46) 

(1.47) 

(1.48) 
i,H 

(1.49) 

Definition A function fECI (n, H) is said to be left or right monogenic 
in n if D f = 0 or f D = 0 in n. 

The components of a left monogenic fuction fare 

LeieHOxJH, 
i,H 

(1.50) 
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so the condition of monogenicity is equivalent to a sistem of 23 linear homo­
geneous first order partial differential equations with constant coefficients. 
If f(x) = L:;=1 ed(xi) the sistem takes the form 

div f = 0 

rot f = 0 

(1.51 ) 

(1.52) 

The set of left (right) monogenic functions in 0 is denoted by M(r) (0; H) 
and M(l) (w; H). Under the ordinary laws of addition and multiplication, it 
forms a right or left module. 

Note that DD = DD = bo3+1eO, where born+! denotes the Laplacian 
in IlR3+ 1 . Any monogenic function in 0 is harmonic, and hence infinitely 
differentiable and IlEI -analytic in O. Also, each of its components is real 
analytic in O. 

Denoting by a(O; H) the bi-llEI-module of IlEI-valued analytic functions 
in 0, we thus have 

(1.53) 

where E(O; H) denotes the unitary bimodule of all IlEI-valued functions in 
o 

Proposition If 0 is open and star shaped with respect to the origin, and 
u : 0 -+ IlR is harmonic in 0, then the function 

f(x) =u(x)eo+ 11 t 2Du(tx)xdt- [11 t 2 DU(tX)XdtL 

is left monogenic in 0 and its scalar part is exactly the function u. 

Introducing spherical coordinates 

Xo = r cos 81 

Xl = rsin81 cos 82 

x2 = r sin 81 sin 82 cos 83 

x3 = r sin 81 sin 82 sin 83 sin 84 

(1.54) 

(1.55) 

(1.56) 

(1.57) 

(1.58) 

where 0 < r < +00, 0 < 81 ,82 :s: 7r, 0 < 83 < 27r for a point X E R4 , we can 
write 

where 

X = rw x = rw 

3 

W = LeiWi, 
i=O 

3 

W = LeiWi 
i=O 

(1.59) 

(1.60) 
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for 
Xi Xi 

Wi = ~ = -;: , i = 0,1,2,3 (1.61 ) 

Notice that w represents a point on the unit sphere S3. For the operators 
D and D the following spherical form, valid in R4 , is obtained 

where 

and 

1 
D = war + -aw , 

r 

3 1 aw 
aw = 2:-1 -.12' a() ·ao; 

·-1 aw t 
t- ao, 

aw . 2 . 2 
1 1

2 

a()i =sm ()l.·· sm ()i-1 

Definition The operators 

r = waw and r* = w8w 

(1.62) 

(1.63) 

(1.64) 

(1.65) 

are called the spherical Cauchy Riemann operators, and have the respective 
adjoint operators 

(1.66) 

Note that we can write the generalized Cauchy Riemann operator D and 
its conjugate D in the form 

(1.67) 

D = w ( ar + ~ r*) = (ar + ~ r@) w (1.68) 

The spherical Cauchy Riemann operators can be used to decompose the 
Laplace Beltrami operator A.:i appearing in the spherical expression for the 
Laplacian 

We thus find that 

(1.69) 

(1. 70) 

(1.71) 

(1. 72) 
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(1. 73) 

The so called Cauchy kernel E in R4 is given by 

1 x 
E(x) = --I 14 ' x#O 

W4 x 
(1.74) 

where: 
_ 4/2 1 

W4 - 21f f( 4/2) (1. 75) 

is the area of the unit sphere S3 

The function E enjoys the following properties 

1) E E M(IHl4; IIH) since E E a(IHl4; IIH), DE = ED = 0 in IHl4, and 
limx--->oo E(x) = 0 

2)The Cauchy kernel E also defines a left and a right IIH-distribution, 
since 

DE=ED=D (1. 76) 

We write E E DCr) (IHl4; H) as for E E DCl) (IHl4; IIH) It folllows that the 
function E is a left and a right fundamental solution of the operator D 

We now have all of the definitions that are required in order to construct 
quaternion wavelets and quaternionic splines 

16.2 The Static Approach 

First of all we must explain why we use the word "static". Quaternions, in 
fact, may be used to represent motions, so any quaternionic function can 
also represent a movement or a sucession of movements. In our approach, we 
do not use such properties, but rather simply manipulate a tridimensional 
image by using Haar quaternion wavelets. 

The first use of this approach is due to Mitrea [1], where he introduces 
Clifford WaveletsIn what follows, Clifford algebras will be denoted by IHlCn) 
and complex Clifford algebras by CCn)' 

We wish to construct systems of Clifford valued wavelet-like bases adapted 
to a Clifford valued measure b(x)dx in IHlm where b: IHlm ----> IHln+1 c CCn)' 
Since Clifford algebras are not commutative, we will use a pair of Clifford 
algebra valued functions, denoted by {I07,khk and {IOfdj,k. We will call 
them Clifford wavelets, if they satisfy the following properties. 

Properties 
1) Cancellation properties: < IOY,k' IOf"k' >b= Dj,j,Dk,k' 
2) They form a Riesz frame for L2: 

f = L < f,IOfk >b IOY,k = L IOfk < IOY,k' f >b (2.77) 
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for any L2-integrable Clifford algebra valued function f. More generally, 

(2.79) 

Definition Let H an arbitrary complex separable Hilbert space, and V 
a closed submodule (left or right) of HCn)' A continuous endomorphism T 
of V is called 8-accretive on V if 

Re[Tx, xl ?: 81Ixll(2) x E V (2.80) 

A form B : H(2) X HCn) ---* CCn) is called 8-accrettive if 
l)B(-,·) is bilinear, that is B(ax + f3y, z) = aB(x, z) + f3B(y, z) and 

B(x, ta + z(3) = B(x, y)a + B(x, z)f3 for all a, f3 E IC(2) and x, y, z E HCn) 
2) B(·,·) is continuous on V 
3)Re B(x, x) ?: 81Ixll(2) for any x E HCn) 

16.3 Clifford Multiresolution Analyses of 

L2(llRm) ® C(n) 

We will abreviate Clifford multiresollution analysis by CMRA 
We will consider H = L2(llRm) with the involution given by the conju­

gation of complex valued functions, and 

BU, g) = r f(x)b(x)g(x)dx f, 9 E L2(llRm)Cn) (3.81) 
JllRm 

Here b : IlRm ---* IlRn+1 c CCn) is a LOO function with Re b(x) ?: 8 > 0, 
and B is a 8-accretive form on L2(llRm)Cn)' Consider now {V~h a mul­
tiresolution analysis of L2(llRm) that is a family of closed subspaces for 
which 
l)n:: V~ = {O} and u:: V~ is dense in L2(llRm) 
2)For any k E 72, f(x) E V~ {:=::} f(2x) E V~+l 
3)For any j E 72, f(x) E V~ =} f(x - j) E V~ 
4)There exists ¢(x) E V~ such that {¢(x - j)} is an orthonormal basis 

for V~ 
The functions 

¢j,k = 2km/2¢(2kx - j), k E Z , j E Zm (3.82) 

form an orthonormal basis for V~, and there exist 2m - 1 functions{ 1PE} in 
V{ with the same regularity and decay, as the functions ¢, which form an 
orthonormal basis of the wavelet space W6 = V{ e V~. 
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Note that Ne,j,de,j, defined by 

'l/Je,j,k(X) = 2km/2'l/Je(2kX - j), k E Z, j E zm (3.83) 

is an orthonormal basis for Wk = V~+1 8 V~ 
It is important to note that for the above CMRA of L2 (llR m) (2), it can 

be proved that there exists a dual pair of wavelet bases {IO~j,k}e,j,k and 

{IO~j,de,j,k which are r-regular. 

16.4 Haar Quaternionic Wavelets 

Having the definition above, given by Mitrea, we can adapt it to quater­
nions to obtain a Quaternion Multiresolution Analyses (QMRA)which is a 
particular case of the CMRA defined above. 

We will first build a quaternion Haar wavelet. Then we will show that we 
can use quaternion wavelets to do in 3D what is usually done in 2D with 
ordinary wavelets in a pyramid algorithm. 

For any k E 'Il, let 1 k denotes the collection of all dyadic cubes 

(4.84) 

i = 1,2, 3} v E 'Il3 (4.85) 

having the side length [(Q) = 2-k, and let 1 = UkEZl lk Each dyadic 
cube Q E 1 has 23 "children". For example, for m = 3 each cube has the 
8 children 

{Qj};:1 = {Q' E lk+1 ; Q' C Q} 

The QMRA of L2(llR3 )(2) uses 

Vk = {f E L2(llR3 )(2)} 

where f is piecewise constant on the cubes of l} 

( 4.86) 

(4.87) 

For each Q E 1, we now build a family of 23 - 1 functions in Vk+1, (L. 

Traversoni A. Gonzalez [4] (1998)), denoted by {f)Q,d~:11 such that 

1) ilR3IOQ'i(X)b(X)dX = ilR3 b(x)loQ,i(X)dx = 0, 

i = 1,2, ... , 23 - 1. 

2) ilR310Q'i(X)b(X)IOQ,j(X)dX = Di,j V i,j 

We can take 

(4.88) 

(4.89) 

(4.90) 
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where 

ai = (t3(Qj))_1 
J=l 

bH1 = 3(QH1)-1 

The Haarquaternion wavelets are defined by 

where 

IO~,i = M(Q, i)-1/2IoQ ,i i = 1,2, .... ,23 - 1 

IO~,i = IOQ,iM(Q,i)-1/2 i = 1,2, .... ,23 -1 

M(Q,i) ~ (t,3(Qi)) -, (t,3(Qi)) 3(Q'+')-' 
IM(Q, i)1 ~ IQI-1 

and where IQI is the euclidean volume of the cube. 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

( 4.95) 

( 4.96) 

It is very important to note that the wavelets either vanish or are quater­
nion-valued in 11R(2)' 

16·4·1 Decomposition and reconstruction for 

quaternion wavelets 

Now, just as in the real case, we can write analogously {Vj} generated by a 
scale function <I> E L2(11R~2))' In this case the functions are the cubes, and 

the {Wj} are generated by some wavelet 'lj; E L2(11R~2))' Every function 

I E L2(11R~2)) can be aproximated uniquely, given N E 'll, as closely as 
desired by some IN E V N , 

IN = IN-1 + gN-1 ( 4.97) 

where IN-1 E VN-1 and gN-1 E W N - 1. Repeating this process, 

IN = gN-1 + gN-2 + .... + gN-M + IN-M· ( 4.98) 

16.4.2 A biomedical application 

Suppose now that we have a set of 3D data, for example, tomography data 
for the interior of the brain. This 3D data is given in the form of a collection 
of 2D pictures of slices, and the device which makes the image gives a color 
to each pixel in order to diferenciate softer than harder tissues. The position 
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FIGURE 16.1. a) A B-spline adjusted to the contour. b) Slices are 

united by triangles, in each slice polygons are created as limits of each 

distinguishable tissue. c) A surface is adjusted in each triangle. 

of each slice is known to be 1.2 mm. The horizontal width of each pixel is 
about O.lmm, so if we transform each pixel in a "boxel" , a cube of O.lmm of 
side of the same colour, we still have voids between slices of about 1.1mm. 
This means that 11 boxels are needed to give continuity to an image of a 
tumor. Now, we want to represent each boxel by a quaternion of the form 
qi = {cos (X, x sin (x, y sin (x, z sin (X}, where x, y, z are the spacial coordinates 
of each boxel with respect to the baricenter of the head, and we let (X be 
the color. 

We can now apply the quaternion Haar wavelets to this data, but first 
we must interpolate the data in order to fill in the gaps. The problem is 
how to interpolate in such a way as to take advantage of the properties of 
quaternions. There are many possible strategies. We can cite for example 
the classical work by Schumaker [9], where pattern recognition is used to 
distinguish between the different tissues. The idea used in his approach has 
the 3 steps 

In the Figure 16.1.a, the border is defined by a curve given by pixels, 
and a B-spline is adjusted to such data in order to reduce the number of 
data points, giving a polygonal PSi that represents the border for the ith 

slice. Repeating the procedure, we get polygonals for the adjacent slices 
PSi - 1 and PSi+1 ' In Figure 16.1.b, a triangulation is constructed between 
polygonals and in Figure 16.1.c, surfaces are adjusted to each triangle in 
order to have C1 continuity between the triangles. 

At the end, continuity between the contiguous slices is ensured by per­
forming one interpolation for each different tissue. Instead, we choose a 
local interpolation scheme more amenable to our means. The function to 
be interpolated is the color, represented by the angle of rotation in the 
scalar part of the quaternion. Interpolation is performed between the "na­
tural neighbors" of the point considered in 3D (there are several techniques 
of determining such neighbors, we can cite, Traversoni[7] and Sukumar [6]). 

To minimize the computations necessary, we first reduce the data by 
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FIGURE 16.2. The local cloud of points to be interpolated and the 

zones in the two layers where are the points. 

filtering, then we create the interpolated points, and finally we apply the 
reconstructing procedure to the new set. (see figure 1 and 2) 

The formula we used to interpolate is a combination of the known for­
mulas for the plane 

I( .) = ~Pisin(Wi8) 
p, ~ sin (8) 

,=1 
( 4.99) 

Here the weights Wi are a function of the position. 
Once the interpolation of the gaps between the slices has been completed, 

we can use quaternion wavelets, and in particular, the Haar quaternion 
wavelet on the resulting data. 

The first experiment is to compress and decompress the data set. To do 
this, we use the compression-decompression algorithm 

~-1 = L al-2kq (4.100) 
I 

d{-l = L bl - 2kq (4.101) 
I 

or the composition algorithm 

c{ = LlPk-21Q-1 + Qk_21dC1j (4.102) 
I 

We present in figures 3 and 4 a detail (a piece of the nose) and the whole 
image of the head, as can be seen in image 4 we have some oscillation 
problems that produce artifacts in some places. 
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FIGURE 16.3. A detail of the figure (the nose) showing the boxels. 

FIGURE 16.4. The full image of the head, showing the same colours 

provided by the magnetic resonance device. 
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16.5 A Dynamic Interpretation 

Quaternions can represent rotations and movements in general. For exam­
ple, in a dynamic environment, a Haarwavelet may be a full turn to the 
left or to the right, instead of 1 or -1 when we deal with real numbers. 

Reconstructions of movements given by several positions of a rigid body 
have been done by Jiittler and others using dual quaternions and quater­
nionic B spline. More complex objects may be represented, such as moving 
surfaces, by using quaternionic wavelets. 

Consider, for example, the case of a sphere and a surface moving over it. 
Let S be a surface over the unit sphere and let P = {PI, P2 ... Pn} be a set of 
given perturbations, each with its given trajectory. Let t = {tI' t2, .... , tn } be 
the times of each of the perturbations, and i = {iI, i2' .... , in} the positions 
of the surface S. 

We are going to express the set t by a set of unit quaternions and the 
perturbations by another set of quaternions. Multiplying them together, 
gives the expression of a moving perturbation. Let M Pi = qt * qz where * 
stands for the quaternionic multiplication. What we want to know is the 
state of the perturbation, first for a static point at any time, as well as the 
same state of perturbation of the point moving in a given trajectory. 

Let u = {UO,UI,U2,U3} be a quaternionic function represented by 

{cos ¢, x sin phi, y sin ¢, z sin ¢} (5.103) 

where ¢ = f(t) and f(t) is a function of a real variable t. As ¢ is the angle 
of the rotation represented by the quaternion, the rotation is around a fixed 
(x, y, z) axis. Of course, ¢ can a wavelet, ¢ E L2(11R). 

We can reconstruct the movement of a rotating object by using wavelets 
on its angular velocity at several instants in time. We will use the wavelet 
of a spline, following Chui [2]: 

(5.104) 
n 

1 (l)m 2m-2 
Qm(z) = 2 L qn zn = ; z L N2m (k + 1)( _z)k 

n k=O 
(5.105) 

where, since Qm is the product of two polynomials from the sequence {qn}, 
the convolution of these two polynomials is 

qn= ~~~~f( ~ )N2m(n+1-i) n=O, ... ,3m-2 
z=o 

(5.106) 

The same may be done with the coefficients (x, y, z) of the vectorial part, 
which will represent changes of the direction of the axis, or even dilations 
of the axis. 
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16.6 Global Interpolation 

We will start by using radial basis functionsfor global interpolation on the 
skewfield of the quaternions. 

We first introduce the Teodorescu transform 

where 

(Tcu)(x) = - L e(x - y)u(y)dy 

e(x) = ~ w(x) 
an Ixl n - 1 

X 
w(x) = GI 

3 

X = ± = 2::xiei. 
i=l 

(6.107) 

(6.108) 

(6.109) 

(6.110) 

We also define, following Guerlebeck [5], a IIH-regular quaternionic spline, 

Sp(x) = 1r e(y - x)a(y)sp(y)dry (6.111) 

Note that such splines are monogenic functions, monogenic functions. Let 
PIIH be the space of monogenic polynomials on IIH, Delanghe [8]. 

A quaternionic regular polynomial has the form: 

(6.112) 
J-Ll,,· ·,j.trn 

where 
(6.113) 

and where {eo, el, e2, e3} is a basis of IIH and x = L:~=o Xiei and e6 = eo 
and eiej + ejei = -28ij 

This leads to the idea of a "moving thin plate" spline. We can change 
it into a quaternionic wavelet, where the scaling function is a quaternionic 
spline. Movement is obtained by the variation of each source or sink (at 
the data points), and interpolation between them may be done using a 
quaternionic polynomial b-spline or cardinal quaternionic wavelet splines. 

16.7 Dealing with Trajectories 

One of the most widely used applications of quaternions has been the re­
construction of trajectories, of points, and of even planes and surfaces. Ge­
nerally trajetories are interpolated using B splines and wavelets. The usual 
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interpolation for trajectories is made using dual quaternions, see Jiittler 
[11] and Bayro [10]: 

Consider the translational 

Q(i) = 2 + E ~ d3 ( t - ti ) pCi) (7.114) 
tras ~ J t. _ t. J 

j=O ,+1 , 

and the rotational 

3 

Q(i) = 2 + E '" d3 ( t - ti ) d i ) 
r~ ~ J t t J 

j=O i+l - i 

(7.115) 

Multiplication of the translational and rotational gives a quaternion des­
cribing any possible movement. Chui [2] has shown that B splines can 
in general be used as scaling functions, as we have already seen in the 
introduction. 

We can then make a multiresollution analysis by using the quaternion 
B-splines described above. This might seem trivial and not significantly di­
fferent than the more usual treatments. The difference is in the application 
that allows us to use wavelet procedures in the trajectory reconstruction of 
blurry objects (for example, the blurryness due to bad reception of radar 
data which hides the dimensions, orientation, and position of the object). 

16.8 Conclusions 

Combining Computer Aided Geometric Design (CAGD) techniques and 
wavelet techniques offers the most promising way of developing quaternion 
wavelets of quaternion splines. Using quaternion wavelets allows us to add 
movement and further develop Computer Aided Geometic Mechanics. For 
example, from several images of a beating heart, the movement can be 
reproduced not as in a film, but by approximating the equations of the 
movement. Unfortunately, our computational skills don't allow us at the 
moment to make commercially competitive programs. But I think that the 
potential of the technique is important enough to justify trying to improve 
the computational techniques. 

All of the programs used here were implemented in MATLAB, with a 
lot of constraints in memory and in the speed of the computations needed 
to do real time animations. At present the programs are very slow. Much 
work is still necessary to realize the full potential of the software for CAGD 
and the full animation of images based on quaternion wavelet techniques. 
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Chapter 17 

Objects in Contact: Boundary 
Collisions as Geometric Wave 
Propagation 

Leo Dorst 

17.1 Introduction 

17.1.1 Towards a 'systems theory' of collision 

The motivation behind this work is to make the computation of collision­
free motions of robots efficiently computable. For translational motions, 
the boundary of permissible translations of a reference point is obtained 
from the obstacles and the robot by a kind of dilation, 'thickening' the 
obstacle (see below for details) to produce the forbidden states in the con­
figuration space of translations. The intuitive similarity of this operation 
to convolution suggests that we might be able to find a kind of Fourier 
transformation, in the sense that we might separate the shapes into inde­
pendent 'spectral components' and combine those simply; after which the 
collision boundary would be obtained by the inverse transformation. This 
would enable the development of a 'systems theory' for collisions. 

This was indeed done for two-dimensional boundaries [1], using a Legen­
dre transformation and its coordinate-free counterpart (which is related 
to the polar curves of projective geometry). However, using classical di­
fferential geometry the generalization to the m-dimensional case was not 
straightforward. In this Chapter we do it using geometric algebra, which 
easily captures the geometric intuition in simple, computable expressions 
and allows compact derivations of fairly advanced results. 

17.1.2 Collision is like wave propagation 

This paper actually treats the mathematics of geometric wave propagation 
according to Huygens' principle, in which points on a wave front become 
secondary sources (also called propagators), of which the forward caustic 
generates the new wave front. The reason is that for arbitrary shapes of 
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propagators, the generation of the secondary wave front is mathematically 
very closely related to the collision problem which we really want to treat 
(but the wave propagation formulation has some advantages). 

This can be seen as follows, using Figure 17.1. 

• Huygens wave propagation 
When we perform a Huygens wave propagation for a finite time in­
terval, we place copies of a 'propagator' A at each position on a wave 
front B (see Figure 17.la). By Huygens' principle, the forward caustic 
of these secondary wave fronts then forms the resulting propagated 
front, which we denote AffiB (see Figure l7.lb). Each point P of Bin 
this way locally 'causes' a point in the result (easiest to see when A is 
convex and B is differentiable). By performing a linear approximation 
to B at P, it is clear that at every point of the resulting caustic, the 
tangent is equal to that of the point which caused it, and equal to 
the tangent at the corresponding point of the 'propagator' A. 

• Collision detection 
Now consider Figure l7.lc, which depicts the collision of a movable 
object (the robot) A' with a fixed obstacle B. The position of A' 
is indicated by that of its reference point, which is some fixed point 
that moves with it (of we were to allow rotations, we would need to 
specify a reference frame, but for now a reference point is enough). 
This point is prevented from moving freely due to the collision at 
P. Computing such local contacts for all translational motions of A' 
generates the boundary of the 'free space' for the reference point of 
A'. A linear approximation shows that the tangents at P of B, A' and 
the reference point at the resulting boundary are proportional (with 
the outwardly directed normal vector of A' at P having an opposite 
sense). 

This shows that the two operations of wave propagation and collision are 
mathematically closely related. Indeed, the boundary of free space in the 
collision problem is precisely (-A')ffiB, i.e. the propagation of B with the 
propagator -A' == {-a I a E A'}. Thus an analysis of either is applicable 
to the other. 

In this Chapter, we will use the wave propagation terminology, since it 
has the simplest relationship between directed tangents (no opposite o­
rientations). We first come up with a representation for proper boundaries 
which unifies the 'hypersurface' aspects of a boundary with the assign­
ment of a local 'inside'. Then we analyze the wave propagation in terms of 
this representation; it will turn out to be the 'Fourier-like' representation 
we were looking for, in which wave propagation becomes separable into 
a simple operation on the 'spectral components' (these are the tangent 
hypersurfaces of the objects involved). 
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(a) 

(c) 
reference point 

of object 

FIGURE 17.1. Wave propagation and collision are mathematically si­

milar (see text). 

17.1.3 Related problems 

In fact, operations similar to wave propagation occur in many places in 
science and engineering. In computer graphics, 'growing' objects by thic­
kening some specified skeleton shape involves a thickening by spheres (or 
other shapes), which is clearly equivalent to one step of Huygens wave 
propagation. In image analysis, the field of 'mathematical morphology' for 
object selection, originally designed to mimic the selective filtering of grains 
by sieves, involves extensive use of the 'dilation' operation - which is essen­
tially 'growing' the object geometrically. The 'distance transform' and the 
related techniques of 'skeletonization', which involve computing the shor­
test distance to the nearest object, are also example of operations with 
a wave-propagation-like structure. In robotics, some investigators have a­
pproached the 'path planning problem' in this manner, with the waves 
computing the distance function for the shortest path in the state space 
of the robot between initial state and goal state. In milling (carving away 
excess material to end up with a desired shape), the carving bit performs a 
destructive collision with the object to produce the result; the relationship 
between those three is again essentially Figure 17.1c. In scanning tunne­
ling microscopy, an atomic probe (of unknown shape) is moved over an 
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unknown atomic surface such that voltage between them is constant; this 
implies a contact operation on the equi-potential surfaces, which happens 
according to Figure 17.1c, in good approximation. Again, this gives the 
same relationship between the surface, the probe, and the measured sur­
face of positions. 

Our analysis of the mathematics of geometric wave propagation is in 
principle applicable to all these fields. However, most of these applications 
contain an essential element which we will not treat here: in sharply con­
cavely curved sections of B, a locally tangent contact of A' can be precluded 
by an intersection of A' elsewhere along B. This happens in the central sec­
tion of Figure 17.1b, and part of the caustic then becomes excluded (e.g. 
you would not send your milling bit there, it would carve out unwanted 
sections). Mathematically, it is easier to treat these parts on a par with 
the rest, and in a genuine wave propagation they would be observed. For 
the robotics collision application which motivated this work, these parts 
must be treated: if those concave parts of the obstacle B have been ob­
served somehow, a path planning algorithm should already exclude the 
corresponding parts of AffiB from consideration, even though later obser­
vations of other sections of B may exclude them eventually as impossible 
collisions. 

17.2 Boundary Geometry 

17.2.1 The oriented tangent space 

In an m-dimensional Euclidean vector space 91 (1m), with pseudoscalar 1m, 
we consider an object, noting specifically its boundary. This boundary is 
an (m-1)-dimensional hypersurface, with locally two 'sides': an inside and 
an outside. Assume the boundary to be smooth (we will not treat edges in 
this Chapter); then at every point p of the boundary, the boundary surface 
has a local tangent space with pseudoscalar I[p] of grade m -1 (which 
we will mostly denote by I, with p understood; throughout this Chapter 
we will use square brackets for non-linear arguments, round brackets for 
linear arguments). We may represent this tangent space by a dual vector 
n[p] (with again p mostly understood as the parameter), defined by the 
geometric product with the inverse pseudoscalar: 

n[p] = - I[p] 1;;-,1. (2.1) 

The '-' is introduced here to avoid awkward signs later on. We will call 
n[p] the normal vector to I[p]. Since we are only interested in rigid body 
transformations, we can restrict our treatment to Euclidean geometry, in 
which the normal vector is well-behaved (the normal vector of a trans­
formed object is the transformation of the normal vector), so using duals 
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I [p] 

FIGURE 17.2. The inward pointing normal n[p] related to the orien­

tation of the local tangent space I[p], in two-dimensional 9(12 ) (left) 

and 3-dimensional 9(13 ) (right). 

is permitted. We wish to denote the notion of 'inside' geometrically in the 
boundary representation, to make it more than merely the representation 
of the boundary surface. This involves orienting n[p] (and hence I[p]). The 
usual convention for a circular blob in 2D (with the usual right-handed 
pseudoscalar 12 ) is 'when following the contour, the object is at the left­
hand side'. So with a tangent I[p] in the direction of motion, we have I[p] 12 
as inward pointing direction. Therefore n[p] = -I[p] 121 = I[p] 12 is the 
inward pointing normal vector. We generalize this to m-dimensional space, 
deriving the sign of I[p] using Equation (2.1) from the desire to have n[p] 
be the locally inward pointing normal vector. Thus the tangent spaces have 
been oriented properly, whether represented by I[p] or by n[p]. 

17.2.2 Differential geometry of the boundary 

The boundary surface at position p in gl(lm) has directed tangent I[p]; 
when we move along the boundary surface, the tangent will change. The 
description of these changes can be found in [3](Chapters 4 & 5), and we 
briefly repeat and extend the elements relevant to our analysis. 

So let n denote the inside pointing local unit normal vector, as a diffe­
rentiable function of the position p on the boundary. Its direction can be 
derived from the first order differential structure of p (e.g., if the surface of 
the boundary is implicitly given by a scalar function ¢ as ¢(p) = 0, then 
n[p] is proportional to 8 p ¢(p)), but its sign must be explicitly determined 
by our notion of 'inside'. The second order differential structure of the 
boundary is obtained by differentiating such a properly oriented n using 
a vector derivative in some direction a. We denote the resulting position­
dependent linear function by gO [pl. So g[p] : Im[P] -4 I[p] is defined as 
the differential of n: 

g(a)[p] == (a· 8)n[p], (2.2) 

and in our notation we will mostly let the dependence on p be understood 
implicitly. Since g(a) is a linear function of the vector argument a, we may 
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extend it to arbitrary multivector arguments as an outermorphism (i.e. a 
A-preserving linear operator). Specifically, we can form !!(a"a2A'" am-I), 
with the ai forming a basis for the tangent space Ql (I[p]) at p. The quantity 
!!(I) thus denotes the volumetric change of n as we move over a local 
tangent volume the size of the tangent pseudoscalar I; the ratio with I 
(which is the determinant of the mapping !!) is related to the directed 
Gaussian curvature K, of the boundary at p by: 

(2.3) 

(the --:-- denotes grade inversion), where we obtain an extra sign factor 
relative to the standard convention for the definition of K, which uses the 
outward pointing normal vector, due to the fact that n ----; -n gives 
!!(I) ----; !!(i) by Equation (2.2). 

The vector !!(a) gives the change in the unit normal vector when moving 
in the a-direction; this value is unique for the regular surfaces we treat. It 
is one of the properties of differentials that !!(P( a)) = !!(a) for all a (where 
P(a) == (a· 8)p is the projection onto the local tangent space) - and so 
a unique inverse to !!(-) does not exist. Any a that projects to the same 
P(a) gives the same value for n; but even when we limit the inverse to have 
values in the tangent space Ql (I[p]) , there may not be a unique solution. 
(An example is a cylinder with axis z, where only the component of P(a) 
perpendicular to z determines the value of !!(a).) Therefore the inverse of 
!!(.) usually produces a set of vectors in the space with pseudoscalar 1m 
based at p (we will denote this space by Ql(lm[P])), We prefer to limit the 
values to the local tangent space Ql(l[p]), and so define: 

(In words, !!-1 gives the set of 'tangent velocities' at the point p required 
to produce the change m in n.) Such set-valued functions can be added, 
using the Minkowski sum (denoted by EB) as set addition: 

A EB B = {a + b I a E A, bE B}, (2.5) 

where the '+' denotes is the vector addition. Note that if one of the argu­
ments is 0, then so is the result. 

17.3 The Boundary as a Geometric Object 

In the representation of the boundary so far, we required a description of the 
position p (of which the differential structure gives us the direction of the 
local tangent space, characterizable by I[p] or n[p]) and an orientation sign 
to specify 'inside' (which then gives the proper sign to I[p] or n[p]). Thus 
the boundary is not yet a single geometric object in an embedding space. 



17. Objects in Contact: Boundary Collisions as Geometric Wave Propagation 355 

In [1], a single representation was found in a homogeneous embedding in 
projective (m+l)-space (for m = 2 only); it is actually structurally more 
clear to embed in the null-cone of the Minkowski space with Clifford algebra 
C€m+1,l, and we do so now. 

17.3.1 Embedding in cem +1,1 

We embed the boundaries of the Euclidean space ~;I (1m) through a con­
formal split in the higher dimensional space Q1(Im+2) with pseudoscalar 
Im+2 == Elm. Here E is a bivector defined as 

(3.6) 

where eo and eO span the two extra dimensions. We choose them to be two 
reciprocal null vectors perpendicular to 1m , so they satisfy 

(eo)2 = (eO)2 = 0, eo' eO = I, eo' 1m = eO ·Im = O. (3.7) 

We are therefore in the Clifford algebra C€m+l,l of a Minkowski space (with 
eo and eO spanning the null cone), and E2 = 1. As Chapters 1 and 3 have 
shown, this representation can be used to extend the more commonly used 
projective split (with eo as splitting vector) to an isometric embedding of 
Euclidean m-space onto the hO'f'Osphere in Q1(Im+2)' (The horosphere is 
the intersection of the null cone with the plane x . eO = 1.) This powerful 
embedding was introduced into geometric algebra in [2] and [4]; Chapter 1 
introduces two splits to produce this representation; we prefer the additive 
split as in the original formulation of [4] (using eO for their -e since we 
want proper reciprocity between eo and eO). In that split, a point p is 
represented as the null vector: p' = eo + p - eO p 2/2. We will use bold for 
elements of the algebra Q(lm), and the usual math font for elements of the 
larger algebra Q(Im+2). 

Intuitively, eo is the representation of a point at the origin, and _eo is the 
representation of (the direction of) the point at infinity. In this Chapter, 
we will only need to embed fiats, i.e. offset linear subspaces such as 
O-dimensional points, I-dimensional lines, etc., since those are the tangent 
spaces used to describe the boundaries. A flat with tangent I at the position 
p is represented in the additive split as (see [4]): 

eO 1\ p' 1\ I = eO 1\ (eo + p) 1\ I (3.8) 

(leave off 'eo 1\' to retrieve the usual homogeneous representation). For 
brevity, we will denote eo + p, the homogeneous representation of the point 
at p, by p. Note that eO 1\ p' = eO 1\ p, so that we may substitute p for p' in 
this equation. 

Instead of with Equation (3.8), it is somewhat more convenient to work 
with its dual in our embedding space Q(Elm ), using (Elm )-l = 1;;,1 E: 

(eOl\pl\l)I~lE -(eOl\p).nE=p.(eO.(En)) 
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We define this as the representation B(n)[p] of the boundary at p, so: 

(3.9) 

This represents the fiat by its normal vector and its scalar support p . n as 
an object in cem+l,l. This representation is indexed by n, and has an extra 
component in the eO-direction; this scalar is the support of the fiat. Over all 
n occurring in the boundary, this is therefore essentially the extended Gauss 
map: the sphere of directions, augmented by a scalar function specifying 
the directed support, see [5]. We will soon see that (B(n) [p])2 = 1, so that 
the extended Gauss-sphere is geometrically embedded as an actual sphere 
in Minkowski space (rather than as a scalar-valued function on the tangent 
space sphere, which is the usual description). 

17.3.2 Boundaries represented in Q(EIm) 
We view a boundary as a collection of tangent fiats, and assume throughout 
this Chapter that this collection is differentiable; so we limit ourselves to 
'regular boundaries' in this sense. (This does not preclude the treatment 
of swallowtail catastrophes in the propagation result, as we will show in 
Section 17.4.5 - despite the characterization of such a curve in classical 
differential geometry as non-regular.) 

Since the representation Equation (3.9) contains n explicitly, we will view 
the boundary as 'indexed by n'. We are then required to view the positions 
p as a function of n, so we write p[n] - we use square brackets since p is 
generally non-linear in n. Also, this is not a single-valued function, since the 
same tangent may occur at different locations if the object is not convex. 
Once we have done this, the representation becomes a set-valued function 
of n only, which we denote by B(nA) for a boundary A - though we mostly 
omit the subscript if the context is clear. 

The representation B(n) has some very nice properties: 

• representation commutes with differentiation 
We have to be careful here, since it depends whether we differentiate 
B(n)[p] relative to variations in p (defining n as a function of p) 
or in n (with p as a function of n). Differentiating relative to n, we 
obtain: 

(rn·8n )B(n)[p[nlJ (rn· 8 n ) (p[n]. (eOn)) 

P(n(rn)) . (eOn) + p[n]· (eOrn) 

p[n]· (eorn) = B(rn) [p[n]], (3.10) 

since P(n(rn)) is an element of the tangent space at p[n], and there­
fore perpendicular to both eO and n. This thus gives the commutative 
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relationship between differentiation and representation: 
(m· 8 n )B(n) = B((m· 8 n )n). It is convenient to use a shorthand 
for the differential, as in [3]: define B(a) == (a· 8 n )B(n), then 

B(m)[p] = B(m)[p]. 

(Be careful to use both expressions at the same value of p[n], not at 
p[m]!) Since we need to preserve the norm ofn for the representation 
(n2 = 1), we will only use differentials for which 
0= (m . 8 n )n2 = 2m· n, i.e. m is perpendicular to n. 

On the other hand, taking the derivative of B(n)[p] to p yields 

(a·8p )B(n)[p] (a· 8 p ) (p. (eOn[p])) 

P(a) . (eOn) + p. (eOn(a)) 

p. (eOn(a)) = B(n(a))[p], 

so that now BO needs to be evaluated at n(a) rather than at a. 

• any tangent multivector u based at p is represented as B(n(u))[p] 
The derivation above shows that a tangent vector a at p is represented 
as B(n(a))[p]; since this is linear in a we can extend it as an outermor­
phism to any tangent blade at p, and then by linearity to any tangent 
multivector. For a scalar a, this gives B(n(a))[p] = B(a)[p] = a, as 
it should. 

• any multivector u from the differential space based at p is represented 
as B(u)[p] 
This result is very useful, but a bit hard to formulate. By the differen­
tial tangent space at p we mean the space g1 (n(I)); the differential 
space at p is then the space spanned by n and the differential tangent 
space. Equation (3.10) shows that the vectors m from the differential 
tangent space are represented as B(m)[p]. This is a linear map, and 
can be extended by outer morphism to all of the differential tangent 
space. But since n is represented by B(n)[p]' which is of the same 
form, we can even extend the representation to any multivector of 
g(n 1\ n(I)) based at p, i.e. any multivector of the differential space 
at p. So the representation of such a u at p is p . (eOu). For a scalar 
a, this gives B(a)[p] = a, as it should. 

• the representation at p commutes with the geometric product 
For scalars, this holds by linearity. For vectors m1 and m2 in the 
differential space at p: 

(p. (eOmd) (p. (eOm 2)) 

(m1 - eOp. m1) (m2 - eOp. m2) 
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ffilffi2 - eO ((p. ffil)ffi2 - ffil(P· ffi2)) + 0 

(ffilffi2) - eO (p. (ffilffi2)) = p. (eO(ffi l ffi2)) 

B(ffilffi2). 

This result for vectors extends naturally to the whole geometric al­
gebra of the differential space at p. Note how this uses eOeo = 0; this 
is why we like the embedding in Minkowski space. This specifically 
means that the representation is isometric; for instance 
(B(n))2 = B(n2) = B(l) = 1, so all B(n) reside on a sphere in 
Minkowski space; this is the embedding of the extended Gaussian 
sphere of directions we referred to earlier. 

We can derive a similar result for the tangent space at p: the repre­
sentation of elements of the tangent algebra also commutes with the 
geometric product; however, we will not need that in this Chapter. 

• the representation is invertible if K =1= 0 
Observe that p = eo + p is perpendicular to the representation of any 
of the elements of the differential space at p, since 
p. B( u) = p. (p . (eOu)) = (pl\p). (eOu) = O. This gives m independent 
conditions, and thus determines p, if and only if the differential tan­
gent space n(l) is (m-1)-dimensional (perpendicularity to n provides 
the one extra condition required). Since n(l) = KI by Equation (2.3), 
and I is known to be (m - 1 )-dimensional for the regular surfaces we 
study, this requires that K =1= O. 

So when K =1= 0, we have a proportional image of the full-rank tan­
gent space at p present as the tangent space to our representation 
at B(n)[p]. The perpendicularity of p to this and to n gives m cons­
traints, and is therefore sufficient to determine p by duality in the 
embedding space of B(n) 1\ B(I) = B(n 1\ I) = B( -1m) = -B(lm). 
And indeed: 

(3.11) 

This is the flat of the point at p, so that p is retrievable as: 
p = eo· (B(lm)I;;,l E) - eo, the usual formula in the additive split. 
The computation of Equation (3.11) is straightforward: 

- (p. (eOlm)) I~l E = -p 1\ (eOlml~l E) 

-pl\ (eOE) = _(pl\eo) = eO I\p. 

(When K = 0, the dual of the largest possible tangent space of the 
representation produces a flat of equivalent positions with the same 
local shape as at p; for instance, for a cylinder we obtain a line parallel 
to its axis. This need not be a disadvantage, since we will see that 
all such points behave similarly under wave propagation; this thus 
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allows for effective lumping in propagation algorithms. We plan to 
investigate that.) 

We thus have (in those non-fiat cases) in B(n) = n - eO(p[n] . n) an in­
vertible representation of a boundary in terms of a 'spectrum' of tangent 
directions indexed by n (or dually by I), with 'amplitude' p[n] . n marked 
off in the eO-direction. The advantage of the embedding space is that the 
original boundary and its dual representation reside in the same space 
9(Elm ), so that the transition between them is purely algebraic and geo­
metric (through perpendicularity). 

17.3.3 Example: a spherical boundary 

Let us do an example: the representation of m-dimensional boundaries of 
which the surface is a sphere - we are interested in both spherical blobs 
and in spherical holes. 

The position of points on a sphere with center c and radius p can be 
defined by the scalar function equation ¢(p) = 0, with ¢(p) = (p - c)2 _ p2 . 
Differentiation to p yields for the unit normal vector n: 

This needs to be oriented properly to point inwards. For a spherical blob, 
the inward pointing normal is positively proportional to c-p, for a spherical 
hole to p - c. We can therefore use the radius p of the sphere to indicate 
which it is; we prefer to denote blobs by a positive radius, holes by a 
negative radius, so we obtain 

c-p 
n=-- (3.12) 

p 

as the inward pointing normal for a spherical boundary, whether hole or 
blob. Then to make B(n), we need to express p in terms of n, which is 
simply p = c - p n. This gives: 

B(n) = n - eO(p. n) = n - eO(c. n - p) 

as the representation of the spherical boundary. This representation satis­
fies B(n)2 = 1 and c· B(n) = p (with c = eo + c); so in the embedding 
space it is on the intersection of the Gaussian sphere in Minkowski space 
with the plane with normal vector c, at distance p. This is illustrated in 
Figure 17.3a for the 2-dimensional case of the circular blob. The Minkowski 
sphere looks like a cylinder to our Euclidean eyes; the intersection with the 
plane c· B(n) = p gives the tilted ellipse depicted. Figure 17.3b depicts the 
circular hole and its representation, which simply has the opposite sign. 
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eO . x = 1 

B(n) 

(a) a circular blob 

eO . x = 1 

(b) a circular hole 

B(n) 

FIGURE 17.3. The representation ofa circular hole and a blob in 9(12 ). 

For the p-curve the vertical axis denotes eo; since p = eo + p, this curve 

resides in the plane eO. x = 1 which is indicated. For the B(n) curves, 

the vertical axis is eO, and the curve resides on the extended Gaussian 

sphere B(n)2 = 1, which due to the Minkowski geometry of 9m+l,1 looks 

like a Euclidean cylinder in this projection. The curves have been made 

into cones to better indicate their spatial nature, and to help show that 

p = eo + p is everywhere perpendicular to B(lm) = B(n) /\ B(I). Since 

eo· eO = 1, the axes eo and eO are parallel under the duality involved in 

the representation, which is why we can draw them this way. 
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The representation of the Gauss sphere in a space shared with the origi­
nal curve makes the dual (i.e. perpendicular) nature of the representation 
geometrically explicit. 

We may check the differential relationships: 

B(rn) (rn· 8 n ) (n - eO(c· n - p)) 

rn - eO(c· rn) = (eo + c - pn) . (eorn) = B(rn), 

since rn . n = O. (Note that according to Equation (3.10), B(rn) should 
not be interpreted as rn - eO(c . rn - p), simply substituting rn for n in 
the expression for B(n); the latter is shorthand for B(n) [p[nll and we need 
B(rn) [p[nll, not B(rn)[p[rn]]!) 

To retrieve position and curvature from the representation, we take the 
derivative in the embedding space. With the above, we obtain through 
outermorphism: 

and then for the dual of this: 

- E + eO (c . Im)I;;,I E + P eOn;;,I E 

-E + eO(c 1\ l)E - peon 

-E + eO(c - pn) = eO 1\ (eo + c - pn). 

We retrieve p in terms of n from this by: 

p = eo . (eO 1\ (eo + c - p n)) - eo = c - p n, 

which is indeed the set of positions on the spherical boundary with inward 
pointing normal n. 

By the way, note that !!(a) == (a· 8 p )n[p] = -a/ p, by Equation (3.12). 
Therefore the Gaussian curvature is, by Equation (2.3), given by 

as it should be. 

17.3.4 Boundaries as direction-dependent rotors 

Equation (3.9) for B(n)[p] can be written in an interesting alternative form: 

B(n)[p] n - eO(p. n) = (1 - eOp/2) n (1 + eOp/2) 

exp( -eop/2) n exp(eop/2). 

Thus the n-representation can be constructed from a normal vector n via 
the general versor equation U(x) = Uxfj-l, using the n-dependent versor 

(3.13) 
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This is the versor Tp of a translation over p[n] in the standard homogeneous 
model of a Euclidean space gl(lm) in the Minkowski space 91(Elm)' see 
[4]. It is even a rotor, since ufJ = (1 - eOp[n]/2)(1 + eOp[nl/2) = 1. In 
this view, we can see an object boundary (as represented by B(n)) as an 
n-dependent translation p[n] applied to the unit normal vector n. Since 
the latter is the representation of a point blob at the origin as a (trivial) 
function of its orientation, this provides the view: 

Any object boundary can be represented as a deformation by 
orientation-dependent translation of a point blob at the origin. 

Non-convex objects may have a particular inward pointing normal vector 
n at different points p, so for those the function p[n] should be considered 
set-valued. 

11. 3. 5 The effect of Euclidean transformations 

When a boundary is subjected to a transformation, its representation must 
change. If we represent the boundary as a rotor, the transformed rotors un­
der common Euclidean operations transform in a straightforward manner, 
according to the rules in Table 17.1 (ignore the entry of wave propagation 
for now). These are easily proved by keeping track of what happens to the 
position and its differential (which gives n). As an example we treat the 
rotation of a boundary. 

When the boundary rotates around c over a bivector angle characteri­
zed by a rotor R (we use boldface since this rotor is in 9 (1m) ), then p 
becomes (R(p - c)R- 1 + c). This is achieved on its versor Tp by: Tpl = 
Tc (R(T _cTp)R -1), as is easily verified. Differentiating yields that n is 
rotated as well, to n' = RnR -1. The B(n)-representation of the rotated 
boundary is achieved by applying Tpl to n' as a versor, which yields: 

T..pl (n') rp 'T- 1 .Lpln p' 

(TcRT_cTpR-1) RnR-1 (TcRT_cT pR-1)-1 

(TcRT-c)Tp nT~l(TcRT_c)-l. 

Therefore the total result can be achieved by the application of a new versor 
to the original n. This new versor is Tp left-multiplied by: 

This is the entry in Table 17.1; other entries are derived similarly. 
Equation (3.14) gives the rotated boundary in a representation which is 

'parametrized' in terms of RnR -1, so it can not immediately be used in 
combination with other, n-based, boundaries without reparametrization. 
Such a reparametrization cannot in general be done globally, since p[n] 
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boundary operation boundary rotor (spectrum) 

null-boundary (a point blob) 1 

arbitrary boundary creation Tp[nJ = exp( -eOp[n]/2) 

translation over t Tt Tp[nJ = exp( -eOt/2) Tp[nJ 

rotation (center c, rotor R) Rc,R Tp[nJ = (R - eO(c·R)) Tp[nJ 

mirroring in hyperplane, support d Md Tp[nJ = (d - eOd2 /2) Tp[nJ 

wave propagation by boundary Tq Tq[nJ Tp[nJ 

TABLE 17.1. The boundary rotor Tp[nJ associated with common oper­

ations on the boundary. 

AffiB 

FIGURE 17.4. The definition of wave propagation. 

may be quite arbitrary. However, it can be shown that for small central 
rotations, in the first-order approximation R = 1 - i¢/2, the represented 
boundary becomes B(n) - eO(n 1\ p) . (i¢). Perhaps surprisingly, this does 
not involve derivatives of n. 

17.4 Wave Propagation of Boundaries 

17.4·1 Definition of propagation 

Propagation combines two boundaries A and B to produce a boundary 
AEI1B according to the following rules (which can be taken as the definition 
of propagation, or alternatively derived from a formulaic definition as in 
[1]): 

Propagation definition: 
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• The resulting position vector after combining a point PA 
on A and a point Ps on 8 is the position PA + Ps: 

PAffis = PA + Ps (4.15) 

• The points PA and Ps must have the same inward pointing 
normal vector (to A and 8, respectively), and this is also 
the inward pointing normal vector at the resulting position 
in the resulting boundary. Symbolically: 

(4.16) 

These conditions together fully determine the propagation result and the 
dependence of its geometrical properties on the geometrical properties of 
A and 8. 

17.4.2 Propagation in the embedded representations 

Since B(n) is an invertible description of a boundary, if we can construct 
the representation of the wave propagation result then we know what the 
resulting boundary is. But this is extremely simple, since the representation 
lends itself to direct implementation of the definition of propagation of 
Equation (4.15) and Equation (4.16). 

Let PA[n] be defined as: PA[n] == {x E A I nA[x] = n}, so as the set 
of all positions of the boundary where the inward normal vector is ni and 
similarly for Ps[l Then the propagation result of 
B(nA) = nA - eO(PA[nA] . nA) and B(ns) = ns - eO(ps[ns] . ns) is by 
Equation (4.16) indexed by the same normal vector n, and 

n - eO (PAffis[n] . n) 

n - eO ((PA[n] EB ps[n]) . n) 
n - eO ((PA[n] . n) EB (ps[n]· n)). ( 4.17) 

So basically, the eO components add up at the same n (we must use EB since 
p[n] is a set-valued function). 

In the direction-dependent translator representation of boundaries, we 
get: 

1 - eO(PA[n] EB ps[n])/2 

U (1 - eOpA[nl/2 - eOps[n]/2) 

U (1 - eOPA[nl/2) (1 - eOps[nl/2) 

TpA[nj Tps[nj, 
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where we used that eO is a null vector perpendicular to PA and PB, and 
wrote the Minkowski sum as a union of ordinary additions. So wave pro­
pagation is represented as the product of boundary rotors (at least if we 
overload the geometric product to work on sets of rotors, a straightforward 
extension). 

17.4.3 A systems theory of wave propagation 

and collision 

The above is analogous to what the Fourier transformation does for con­
volution: the convolution of two signals becomes a multiplication of their 
frequency spectra (a complex number A(w) exp(i1>(w)) for each frequency 
w); propagation of two boundaries has become multiplication of their 'di­
rection spectra' Tp[nJ (a rotor exp(-eOp[nl/2) for each direction n). 

This algebraic analogy permits a transfer of ideas from linear systems 
theory to the treatment of wave propagation, collision detection, and the 
other related problems of Section 17.1.3. For instance, for linear systems 
the delta-function is the function with which convolution reproduces the 
convolution kernel; it is the input function which allows measurement of 
the system's response function [6] (for instance, the image of a point source 
gives the optical transfer function of a camera). In wave propagation, the 
point at the origin plays the same role: propagation from it provides the 
shape of the propagator; in ropotics, you could measure the shape of a 
robot vehicle by tracking the position of a reference point as the vehicle 
collides with an infinitely thin pole at the origin. This is because the versor 
representation of a point equals 1, or equivalently B(n) = n); so this is the 
'delta-boundary' for propagation. 

In linear systems theory, if a delta-function is not available as a probe one 
may hope to reconstruct the system's response function by determining the 
common multiplicative factor in the Fourier transformation of a sufficiently 
rich set of responses (through a Wiener filter [6]); this can then be used 
to sharpen that data by deconvolution. Similarly, given sufficiently rich 
collision data, one could determine a common multiplicative versor (or 
common additive n-dependent function in the B(n)-representation) by a 
similar procedure. This would enable determination of the shape of the 
atomic probe in the STM example of Section 17.1.3, and then of the actual 
unknown atomic surface by a 'de-dilation' of the measured surface. (But to 
do this fully, one would need to treat the unobservable parts of the collision 
boundary around the swallowtail catastrophes of Figure 17.1b properly -
which we have not done yet.) 

Such direct transfer of techniques from linear systems theory is possible 
because we have found a characteristic 'spectral' representation, which e­
nables us to replace the involved effects of the collision operation as local 
operations in the spectral domain. 
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17.4.4 Matching tangents 

The rotor result shows the algebraic analogy with the Fourier approach to 
convolution; yet the equivalent 'addition of eO-components' is actually sim­
pler to implement. However, we should not that either result is somewhat 
deceptively simple, since the demand that both PA and PH be written in 
terms of the same n may require an inversion and a reparametrization of 
either or both to obtain P as a function of n valid over a finite domain (if 
the boundaries were originally given in terms of parametrized position). Yet 
this can be done, if necessary numerically; and then the result is useful to 
construct the resulting boundary (in its n-based representation form), and 
to derive its properties. Collision detection and wave propagation (and the 
other, equivalent operations mentioned in the introduction) can be done 
fully in this representation. (In some applications such as radar observa­
tions, the representation B(n) = n - eO(p . n) is even measured directly: 
a radar yields the distance (p . n) of a tangent plane perpendicular to the 
direction n of the outgoing beam.) It is only when one desires the result to 
be drawn as a positional surface that the rather involved inversion formula 
Equation (3.11) needs to be invoked. 

17.4· 5 Examples of propagation 

For a sphere at c with radius p, we found in Section 17.3.3 the representa­
tion B(n) = n - eO(c· n - p). Therefore the dilation of two spheres (index 
1 and 2) yields: 

B(n) n-eo(ci·n-pd-eO(c2·n-P2) 
n - eO ((Ci + C2) . n - (Pi + P2)), 

which is immediately recognizable as the sphere with center (Ci + C2) and 
radius (Pi +P2). This is what we would expect as the result; but note that it 
is also valid for spherical holes (p negative). The propagation of a hole with 
radius P by a blob with radius p is a point (with radius zero). Or, in terms 
of robot collision avoidance, a spherical robot of radius p in a hole with ra­
dius p cannot move, its only permissible position is (Ci + C2). Figure 17.5a 
depicts the wave propagation on a parabolic concave boundary, and it was 
generated by adding the representations of a parabola (x· e2) = ~ (x· ed2 

(with 'inside' in the (-e2)-direction) and a circular blob, and then 'invert­
ing' the result to a positional boundary. Note the occurrence of swallowtail 
catastrophes in some of the wave fronts. Classically, these have been con­
sidered hard to treat, and even non-differentiable; however they are fully 
differentiable in our directed representation of the tangent space. In fact, 
these spatial cusps correspond to inflection points in the n-representation, 
and are thus nothing more unusual than a sign change in the curvature 
of B(n). This is illustrated in Figure 17.5b, which shows how the bound­
aries and their representations coexist in C€m+i,i. The depiction is similar 
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fo 

(a) 

representation of h -+ 

eo-plane 

repre enta ion of fo -+ 

(b) 

FIGURE 11.5. Circular wave propagation of the parabola-shaped 

boundary fo (see text for explanation). 
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to Figure 17.3, but we have rescaled B(n) and drawn its intersection with 
the plane e2 = -1, where it is in fact the Legendre transformation of the 
boundary, see [1]. (In this example, we obtain n' - ~eO(n'2 - 1) where 
n' = n/(n . e2).) The shift in eO (by the radius p of the circle, since the 
centered circular blob has B (n) = n + eO p) results in the development 
of inflection points in the representation, which correspond to the cusps. 
The locations where the boundary surface self-intersects (important for the 
analysis of the 'millability' of surfaces) correspond to non-local properties 
of the representation; the intersection point at ~(1 + p2)e2 for p > 1 corre­
sponds to a straight part of the convex hull of B(n) (for some more details 
see [1]). 

17.4.6 Analysis of propagation 

N ow that we have a convenient representation of wave propagation, we can 
derive many properties of the geometry of the result, for instance: 

The propagated boundary C = AffiB obeys the 'velocity law' 

which relates velocities on the propagated boundary to those on 

the propagators: 

!!A~S(m)[pA EB Ps] = !!i (m) [PA] EB !!sl(m)[ps]. (4.18) 

The result is 0 for m not in the common range of !!A(·) [PA] 
and !!s(-)[ps]. 

Proof: Introduce three tangent vectors a, band c, to measure the derivative 

on each of the surfaces, and use the chain rule of [3] to rewrite them in terms of 

derivatives of p[n]: a = P A(a) = (a· 8 p )PA = (!!A (a) . 8 n ) PA[n] and similarly 

b = PB(b) = (b· 8 p )pB = (!!B(b) . 8 n ) PB[n] and 

c = Pc(c) = (c·8p )pc = (!!c(c)· 8 n ) pc[n]. Now select these such that !!A(a) = 
!!B (b) = !!c (c) = m. We then find from the above that these tangents add 

as position vectors: c = (m· 8 p )pc[n] = (m· 8 p ) (PA[n] + PB[n]) = a + b. 

Our selection of m implies that a E !!Al(m), b E !!Bl(m) and c E !!el(m); 

therefore, over all possibilities of choosing a and b given c, we obtain !!e l (m) = 

!!Al(m) EB!!Bl(m). The right hand side produces 0 for any element not common 

to both sets contributing to the Minkowski sum; hence only elements in both 

ranges contribute - which implies that m must be in the common range of !!A 0 
and !!BO at PA and PB, respectively. 0 

This interaction of the local differential geometries can produce involved re­
sults, especially for surfaces with torsion. However, there is an interestingly 
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simple property when we 'lump' OVer all tangent directions at p: 

In m-dimensional wave propagation, Gaussian curvatures add 

reciprocally: 

-1 -1 -1 
"'c = "'A +"'B (4.19) 

(locally, at every triple of corresponding points). 

Proof: Extending Equation (4.18) as a linear outermorphism to all of 9(1) at 

the appropriate points we get: !!:.:i~B(I) = !!AI(I) + !!i3 I (I) for each triple of co­

rresponding points. The Gaussian curvature is related to !!(I) by Equation (2.3): 

!!(I) = ",r l , so that !!-I(I) = 1/"" at each point, and Equation (4.19) follows 

after division by i. 0 

One of the obvious consequences is that locally flat parts (where'" = 0) 
stay locally flat after propagation. 

17.5 Conclusions 

This Chapter demonstrates that the rather involved operation of wave front 
propagation in m-dimensional space can be represented as a geometric 
product of direction-dependent rotors. These rotors represent boundaries 
in Euclidean m-space, within a Minkowski space of dimension (m + 1,1), 
as direction-dependent translations of the point object at the origin. This 
representation combines well with Euclidean operations on the boundaries, 
as Table 17.1 showed. We plan to use it to analyze differential properties 
of the propagation operation (some first results Were shown). 

Alternatively, and computationally somewhat more convenient, propa­
gation can be represented as an addition of scalar support functions on 
the Gauss sphere of directions; in our representation this is a sphere in 
Minkowski space, with the support function geometrically represented as 
the eO-component. Such representation have been used before (e.g. [5]); but 
their relevance for the propagation-type interactions of boundaries appears 
to be new; and we now have them for arbitrary dimensionality. 

We hope to apply this spectral representation of wave propagation to 
some of the practical problems of Section 17.1.3 which have, in essence, the 
same mathematical structure; notably to the prevention of robot collisions 
which was our original motivation. This will require the development of 
efficient algorithms based on our representation. 
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Chapter 18 

Modern Geometric 
Calculations in Crystallography 

G. Aragon, J .L. Aragon, F. Davila, A. Gomez and 
M.A. Rodriguez 

18.1 Introduction 

The aim of mathematical crystallography is the classification of periodic 
structures by means of different equivalence relationships, yielding the well 
known crystallographic classes and Bravais lattices [1]. Periodicity (crys­
tallinity) has been the paradigm of classical crystallography . Recently, 
more systematical attention has been paid to structures which are not or­
thodox crystals. For example, some generalizations, involving curved spaces 
with non-Euclidean metrics, were developed for the understanding of ran­
dom and liquid crystalline structures [2]. However, the first step away from 
orthodox crystalline order, represented by the 230 crystallographic space 
groups, was motivated by the appearance of quasicrystals in 1984 [3]. Since 
then, crystallography has been the subject of deep revisions. Quasicrystals 
are metallic alloys whose diffraction patterns exhibit sharp spots (like a 
crystal) but non-crystallographic symmetry. This means that the lattice 
underlying the atomic structure cannot be periodic. So, crystallography 
faces a non-crystalline but perfectly ordered structure. There are also many 
other directions in which classical crystallography can be generalized, by 
relaxing or altering various requirements, to include structures which are 
ordered but do not follow the exact paradigm of crystallization [4]. 

Quasiperiodic structures can be obtained by an appropriate projection 
from an N-dimensional periodic lattice (N > 3). This embedding allows to 
recover, in a higher dimensional space, crystallographic concepts such as 
lattice translational symmetry, reciprocal lattice and unit cell . Extending 
crystallography to N -dimensions was then an obvious step (4-dimensional 
crystallography was completely worked out in 1978 in [5]). 

The purpose of this work is to show that geometric algebra is a power­
ful language in which to carry out various crystallographic calculations in 
spaces of arbitrary dimensions. With the application of concepts from geo­
metric algebra, it is shown how to find the densest planes in 6-dimensional 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering
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lattices and how to analyze the problem of coincidences between two la­
ttices in arbitrary dimensions. The first problem is directly related with 
the possible external shapes (facets) of real quasicrystals and the second 
one has provided helpful answers to the complex problems that arise in 
the description of grain and twin boundaries. We hope that our results 
encourage more research in the formulation of crystallography in a concise 
geometrical language which is valid in any dimension. 

18.2 Quasicrystals 

Quasicrystals are metallic alloys whose diffraction patterns exhibit sharp 
spots but non-crystallographic symmetry. The sharp spots in the diffraction 
pattern mean that the structure has long-range order but the forbidden 
symmetry implies that the lattice underlying the atomic structure cannot 
be periodic. The lattice is quasiperiodic, so it is referred to as a quasilattice 
[6J. 

After the discovery of the first quasicrystalline A1o.86MnO.14 alloy, with 
icosahedral symmetry [3J, a large variety of quasicrystals were obtained; 
most of them are quasiperiodic in the plane and present periodicity in 
the perpendicular direction. Symmetries found so far correspond to lO-fold 
(decagonal), 8-fold (octagonal) and 12-fold (dodecagonal) rotation [7J. Even 
a I-dimensional quasicrystal has been discovered; the diffraction pattern 
shows a periodic plane, and a perpendicular quasiperiodic row of spots [8J. 

The first example of a non-periodic tiling of the plane with 5-fold sy­
mmetry was the "Penrose Tiling" . In 1974, Roger Penrose discovered an 
aperiodic, highly ordered, pentagonal tiling which consists of a pair of tiles 
(rhombi) and a set of matching rules that forces non-periodicity [9J. It 
was latter demonstrated that the Penrose Tiling have an optical diffraction 
pattern with numerous sharp peaks [lOJ. The set of vertices of the Penrose 
pattern was then the first example of a quasilattice. 

The use of matching rules to generate quasiperiodic tilings is very res­
trictive and it was necessary to develop more efficient methods to genera­
te infinite quasilattices of any desired symmetry and dimension. In what 
follows, we shall discuss the most popular and elegant: the so-called Cut 
and Projection Method [11, 12J . 

The Cut and Projection Method regards n-dimensional quasilattices as 
projections of a subset of a lattice in an N-dimensional space R N, 

(N > n). The simplest example is the generation of a I-dimensional qua­
sicrystal, consisting of a tile of two types of intervals, by projecting points 
from a 2-dimensional square lattice (Figure 1.1). Let us denote by Ell the 
line to be tiled and consider the strip obtained by shifting the unit square 
r 2 of the lattice along Ell. The points inside of the strip are projected or­
thogonally onto Ell producing a sequence of projected points. If the slope 
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of Ell, with respect to the canonical basis of R2, is rational, the sequence 
is periodic, otherwise a quasiperiodic sequence is obtained. In particular, 
if the slope is given by liT, T the golden mean, the distribution of seg­
ments on the line obeys a Fibonacci sequence. The generalization to obtain 
2- and 3-dimensional quasilattices is straightforward [12]. For example, we 
shall consider the most useful case of quasilattices with icosahedral symme­
try which are obtained by projecting a cubic lattice in the 6-dimensional 
space. 

. . 
• • • • • • . . Ell . . . . 

• • • • • . . . . . . . . . · . . . 
• • • • . . . • . . . . . . · . . · . . . . . • • ~.' 

. • • · . . . . . . . . 
• • • 

. 

• • • • . . 

• • • • 

FIGURE 18.1. Illustration of the cut and projection method in 

two-dimensions. If the slope of Ell is irrational, points inside the strip 

S project on Ell in a ordered non-periodic structure. 

Let us consider the cubic lattice Ap = Z6 C R6 equipped with an 
orthonormal basis {el' e2, e3, e4, es, e6} and let us denote by r 6 the unit 
hypercube. Now, let Ell be the 3-dimensional "physical space" of the quasi­
lattice and assume that it does not contain any points of the lattice Ap. 
A "strip" S in Ap is generated by shifting r 6 along Ell, i.e., S = r 6 EEl Ell. 
If pll : Ap -+ Ell is the projection from the lattice Ap onto the physical 
space, a quasilattice Qp is generated in Ell by projecting all the points of 
Ap that fall inside the strip S. That is 
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Qp=pll(ApnS). 

R6 can be decomposed as R6 = Ell EB E-"- where E-"- is the orthogonal 
complement to Ell that is often called "phason space" . If P-"- : Ap --; E-"- is 
the projection onto E-"-, then the projection of all points inside the strip onto 
E-"- defines an "acceptance domain" K = P-"- (Ap n S) . The name comes 
from the fact that a point x E Ap is inside the strip S if P-"- (x) E K. In 
this case, K is a rhombic triacontahedron. 

The physical space Ell is fixed by the condition that 

(2.1) 

where {cl,c2,c3,c4,c5,c6} are vectors pointing to the upper vertices of an 
icosahedron (they line up with the six 5-fold symmetry axes, as shown in 
Figure 1.2) . Relative to the orthonormal basis, the projection matrix is 
[12]: 

b a -a -a a a 
a b a -a -a a 

pil = -a a b a -a a 
-a -a a b a a 

a -a -a a b a 
a a a a a b 

where a = 1/V20 and b = 1/2. The projector onto E-"- is given by 
P-"- = 1 - pil where 1 is the 6 x 6 identity matrix. 

(2.2) 

In six dimensions, there exists three Bravais lattices invariant under the 
icosahedral group [13]: simple cubic (P), face centered (F) and body cen­
tered (I). Defined as in [14] 

Ap { t, ni ei I ni E Z } , (2.3) 

AF { t, ni ei I t, ni = 0 (mod 2) } , (2.4) 

AI {t, ~iei I ni = nj (mod 2)}. (2.5) 

Most of the experimentally observed icosahedral quasicrystals are of the 
P type, however F icosahedral quasicrystals have been obtained in some 
alloys such as Al65Cu20Fe15 [15], Al65CU20Ru15 [16], Al70Pd20MnlO and 
Al70Pd20RelO [17]. The last case (I) has not yet been observed experimen­
tally. 
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18.3 The Morphology of Icosahedral Quasicrystals 

It is well known that crystals frequently grow with polyhedral external 
shapes (habits) . This fact can be understood on the basis that crystals 
consist of identical units that are repeated according to a lattice. The lattice 
periodicity also explains why the various facets (flat faces of the polyhedra) 
of crystals form always the same angles among themselves (law of constancy 
of angles) and why the directions of the normals to the facets can be indexed 
(Miller indices) with small integers (law of rational indexes). 

The name" morphologically important planes" comes from the fact that 
the observed facets tend to correspond to the densest lattice planes (Bravais 
rule) , which at the same time are those with the largest distances among 
themselves to keep constant lattice volume. The densest lattices planes have 
small values of the Miller indices h, k, l [18]. 

One of the facts that verified the icosahedral nature of some alloys was 
the macroscopic solidification morphology, which was first reported within 
the Al6CuLi3 phase [19]. The macroscopic external shape of this phase 
clearly consist of stacked triacontahedra (the triacontahedron is a non­
regular polyhedron with 30 rhombus-shaped faces, 32 vertices, 60 edges and 
icosahedral symmetry). More evidence of icosahedral morphology was later 
found in stable icosahedral alloys; a pentagonal dodecahedron morpholo­
gy was observed in Al65Cu20Fe15 [15] and Ga16Mn32Zn52 [20]; rapidly 
quenched AlM n quasicrystals also exhibit small crystallites with a dodeca­
hedral morphology. From the experimental observations one can conclude 
that, as a rule, quasicrystals belonging to the P 6-dimensionallattice [Equa­
tion (2.3)] show the polyhedral shape of a rhombic triacontahedron while 
the more likely shape of F quasicrystals [Equation (2.4)] is a pentagonal 
dodecahedron. Quasicrystals of type I have no yet been observed experi­
mentally. 

Bravais' Law of reticular density states that the important faces of a 
crystal should be those parallel to the densest lattice planes (which at the 
same time are those with the largest distances among themselves). It has 
been surprisingly successful in predicting the morphology of crystals of 
many compositions [18]. This idea can be extended to quasicrystals in a 
direct manner using the Cut and Projection Method described in Section 
18.2. The assumption is made that the important quasilattice planes in 
quasicrystals are also those with the highest density and largest separa­
tion. Thus, a hypothesis can be formulated that relevant planes in R 3 are 
those that correspond (via projection) to the densest lattice hyperplanes 
in R 6 . In what follows, we solve this problem for the 6-dimensional latti­
ces P, F and I. We obtain that considering only the densest quasilattice 
planes, the most likely external form of the ideal icosahedral quasicrystals 
are the triacontahedron and the pentagonal dodecahedron, for the P and 
F cases, respectively, in agreement with experimental observations. The I 
phase, yet unobserved, should prefer the shape, according our results, of a 
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FIGURE 18.2. The projected basis vectors Ei of Ap are six vertices of 

an icosahedron. 

triacontahedron. 
Our procedure can be summarized this way: 

1. Consider a plane p of the quasilattice characterized by the 2-blade 
Bp. 

2. Find the sublattice Aw C Ai, i = P, F, I, whose points project onto 
the plane p. The density p of points in p is directly related to the 
density of Aw. 

3. Find the average density 15 of the family of planes parallel to p. The 
more dense this family of planes is, the more likely it is that a facet 
will appear and develop. 

We present in detail only the case of planes invariant under the 5-fold 
rotations (the 5-fold planes) in a P quasilattice. A similar approach may 
be applied to the other cases including quasilattices of types F and I. 

Consider a plane (facet) in a quasilattice whose normal points in the 
direction of one of the 5-fold axes. Using the numbering shown in Fig. 1.2 
for the vectors pointing to the vertices of an icosahedron, it can be readily 
seen that two vectors in this plane are 
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and 

c1 - c2 = pll (e1) - pll (e2), 

so a 5-fold plane p is characterized by a 2-blade 

Bp = (c3 - c2) 1\ (C1 - C2) . 

Now consider the subspace We R6 defined as 

W = Span{c3 - C2,C1 - C2,ct - ci,ct - ci,ct}, 

(3.6) 

where C1, C2 and C3 are as before and ct = P.1.(ei), i = 1,2,3,6. Since 
pll (ci) = Ci and pll (ct) = 0, all vectors in W project onto the plane 
characterized by (3.6). Then the 5-dimensional subspace W projects onto 
the 5-fold plane of the quasilattice. The sublattice Aw C Ap is therefore 

Aw = WnA p . 

A basis for Aw can be obtained by noticing that a vector x = I:~=1 Xiei 

lies in Aw if and only if Xi are integers and if 

Bw 1\ x = 0, (3.7) 

where Bw = (c3 - C2) 1\ (C1 - c2) 1\ (C3 - c2") 1\ (ct - c2") 1\ ct· 
With respect to the orthonormal basis {ed ~=1' the components of vec­

tors Ci and ct form the i-th column of the projection matrix pll and 
p.1., respectively [see Equation (2.2)J. Using these values, we obtain that 
(3.7) is fulfilled if Xl + X2 + X3 + X4 + X5 + x6/V5 = 0, i.e., X6 = ° and 
Xl + X2 + X3 + X4 + X5 = 0. So, a basis for Aw is given by 

{(I, 0, 0, 0, -1,0), (0, 1,0,0, -1,0), (0,0,1,0, -1,0), (0,0,0,1, -1, On 
or 

(3.8) 

As we can see, the lattice Aw that projects onto the 5-fold plane cha­
racterized by Bp is 4-dimensional. One can obtain the pattern of projected 
points onto this 5-fold plane by the Cut and Projection Method in Aw , 
with the strip Sw = (S n Aw). 

There is a 2-dimensionallattice Aw .1., orthogonal to Aw , which projects 
onto an I-dimensional space orthogonal to the quasilattice plane, i.e., pro­
jects onto a space spanned by the normal to the 5-fold plane. By considering 
the 4-blade 



378 G. Aragon, J.L. Aragon, F. Davila, A. Gomez and M.A. Rodriguez 

TABLE 18.1. Generators of the primitive cells of sublattices Aw asso­

ciated with three P-type quasilattice planes in three dimensions. 

Direction Generators in 3D Generators of Aw 

2-fold {c1,c2} {e1,e2,e3 -e5,e4 - e6} 
3-fold {c1 + C2, C2 + c3} {e1 - e3, e2 + e3, e4 - e6, e5 - e6} 
5-fold {c3 - C2,C1 - c2} {e1 - e5,e2 - e5,e3 - e5,e4 -e5} 

a 2-blade BwJ. that characterizes a 2-dimensional space containing Awl. 
can be found. It must satisfy the condition BwBwJ. = Ae12 ... 6, where 
A E R. Therefore 

B Ae12 ... 6 
WJ. = ---, 

Bw 

which gives 

so a basis for Awl. is 

{e1 + e2 + e3 + e4 + e5, e6} . 

The pattern of vertices along the normal to the 5-fold plane, that gives 
the sequence of separations between planes, is derived similarly by the cut 
and projection method but in the 2-dimensional lattice 

Awl. = PwJ. (Ap), 

with a strip 8w J. = PwJ. (8), where PwJ. denotes the orthogonal pro­
jection onto the subspace W 1.. For our purposes, all that matters is the 
lattice Aw generated by (3.8), whose points project onto the 5-fold plane 
and which contains information about the density of vertices in this plane. 

The procedure described above was applied also to the 6-dimensionalla­
ttices of types F and I. Calculations were made to determine the morpho­
logical importance of high symmetry planes, Le., 5-fold, 3-fold and 2-fold 
facets. Results for the three type of the 6-dimensional lattices are summa­
rized in Tables 18.1-18.3 which give generators of three different quasilattice 
planes in three dimensions and a basis for the 4-dimensional lattices Aw 
associated with each plane in terms of the orthonormal basis. 

For a given type of lattice (Ap , AF or AI) and for a given type of facet 
(2-fold, 3-fold, 5-fold or any other), the average occupation density (number 
of vertices per unit area) of the family of planes parallel to the facet is 
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TABLE 18.2. Generators of the primitive cells of sublattices Aw asso­

ciated with three F -type quasilattice planes in three dimensions. 

Direction Generators in 3D Generators of Aw 

2-fold {-Cl - C2, Cl - cz} {-el-e2,el-e2, 

e3 - e4 - e5 + e6, e4 - e6} 
3-fold {-cl - C2, C5 - c6} {-el - e2, el - e3, e4 - e5, e5 - e6} 
5-fold {Cl - C2,C2 - c3} {el - e2,e2 - e3,e3 - e4,e4 - e5} 

TABLE 18.3. Generators of the primitive cells of sublattices Aw asso­

ciated with three I-type quasilattice planes in three dimensions. 

Direction Generators in 3D Generators of Aw 

2-fold {cl,c2} {el,e2,e3 - e5, 

(-el - e2 - e3 + e5 + e5 - e6)/2} 
3-fold {Cl +C2,C2 +c3} { -e2 - e3 - e4 + 2e5 - e6, 

el + 2e2 + e3 + e4 - 2e5 + e6, 
-el - e2 - e4 + 2e5 - e6, e4 - e5} 

5-fold {c3 - C2,Cl - C2} {el - e5,e2 - e5,e3 - e5,e4 - e5} 
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TABLE 18.4. Volumes of the primitive cells of lattices Aw and average 

density of planes for each case. 

I Lattice I Direction V (Aw) 15 

P 2-fold 2 0.500 

3-fold 3 0.333 

5-fold J5 0.447 

F 2-fold 4 0.250 

3-fold 3 0.333 

5-fold J5 0.447 

I 2-fold 1 1.000 

3-fold 3 0.333 

5-fold J5 0.447 

inversely proportional to the volume V (Aw) of the primitive cell of the 
4-dimensionallattice Aw that projects onto one plane of the family: 

pCXV(Aw )" 
1 

(3.9) 

From the generators of each Aw in Tables 18.1-18.3, the volume of the 
unit cell in each case can be calculated. Table 18.4 shows volumes of the 
unit cells calculated for the three families of planes of the three quasilatti­
ces Ap , Ap and AI. The average density 15 has been calculated using the 
approximation (3.9) and is given in the last column. 

From Table 18.4, the following predictions about the ideal shape of the 
icosahedral quasilattices can be made: 

• In the case P, the largest occupation density is carried by the planes 
with a normal along the 2-fold axis of the icosahedron. The polyhedral 
shape should have big 2-fold facets resembling a rhombic triaconta­
hedron. 

• In the case F, the densest planes are those of the 5-fold family. In this 
case we have a polyhedron with big 5-fold facets. The ideal shape is 
therefore a pentagonal dodecahedron. 

• In the yet unobserved case I we have the same result as in the P case 
but with larger 2-fold facets. This resembles also a rhombic triacon­
tahedron. 

All these prediction are in agreement with experimental observations 
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18.4 Coincidence Site Lattice Theory 

Coincidence Site Lattice (CSL) theory has provided partial answers to the 
complex problems that arise in the description of grain and twin boundaries 
[21] . Mathematically, the problem can be stated as follows: 

Let A be a lattice in Rn and let R E O(n) be an orthogonal transforma­
tion . R is called a coincidence isometry if An RA is a sublattice of A. The 
problem is therefore to identify and characterize coincidence isometries of 
a given lattice A. 

This problem has been worked out from several points of view. M.A. 
Fortes [22] developed a matrix theory of CSL in arbitrary dimensions, in­
cluding a method to calculate a basis for the coincidence lattice through 
a particular factorization of the matrix defining the relative orientation. 
Also Duneau et al. [23] developed a matrix theory where the parameters 
of the coincidence lattice are evaluated by means of a method based on 
the Smith normal form for integer matrices. M. Baake [24] used complex 
numbers and quaternions to solve the coincidence problem in dimensions 
::; 4. Finally, in Aragon et al. [25] a weak coincidence criterion is proposed 
and 4-dimensionallattices are used to characterize CSL in the plane. 

Here, a different point of view is adopted. We analyze the problem in 
terms of reflections by finding conditions under which a given reflection 
is of coincidence . The use of reflections instead of rotations suggest the 
use of geometric algebra as a natural tool for this problem. It is found 
that any arbitrary coincidence isometry can be decomposed as a product 
of coincidence reflections in vectors of the lattice A. 

18.4.1 Basics 

Here we present a brief summary of basic concepts related to lattices and 
coincidence lattices. For this purpose we adopt definitions and notation 
given by Baake [24], who has formulated the CSL in more mathematical 
terms. 

Definition 18.1. A discrete subset A C R n is called a lattice, of dimension n, 
n 

if it is spanned as A = E9 Zai, with {al' a2, ... , an} a set of linearly independent 
i=l 

vectors of Rn. These vectors form a basis of the lattice. 

The lattice A is isomorphic to the free Abelian group of order n. It lead 
us to define the concept of sublattice: 

Definition 18.2. Let A be a lattice in Rn. A subset A' c A is called a 

sublattice of A if it is a subgroup of finite index, i.e., [A: A'] < 00 (the number 

of right lateral classes is finite). It is also said that A is a superlattice of A'. 
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The following two definitions are central for the coincidence problem: 

Definition 18.3. Two lattices Al and A2 are called commensurate, denoted 

by Al '" A2, if and only if Al n A2 is a sublattice of both Al and A2. 

Definition 18.4. Let A be a lattice in Rn. An orthogonal transformation 

R E O(n) is called a coincidence isometry of A if and only if RA '" A. The 

integer L.(R) := [A : A n RAJ is called the coincidence index of R with respect to 

A. If R is not a coincidence isometry then L.(R) := 00. Two useful sets are also 

defined: 

OC(A) 

SOC (A) 

{R E O(n) I L.(R) < oo}, 

{R E OC (A) I det(R) = I}. 

Coincidence transformations are usually worked out using matrices. In 
what follows, we recall this approach in order to state a result that will be 
used later. 

Definition 18.5. Let A be a lattice in R n with basis {al,a2, ... ,an }; the 

structure matrix N, of A, is defined through the relation ai = Nei = 2::7=1 Njiej, 

where {el, e2, ... , en} is the canonical basis of R n . 

Structure matrices can be useful to formulate the problem of coincidence 
between two lattices (for a proof see Ref. [22]): 

Theorem 18.1. [Grimmer] Let Al and A2 two lattices in R n with structure 

matrices Nl and N 2 , respectively. Then Al '" A2 if and only if N 1- 1 N2 has 

rational entries. 

Notice that if A2 = RA l , where R is a coincidence isometry, then 
N2 = RNI and, in this case, NIl RNI is a rational matrix. In case of 
a hypercubic lattice, Nl is a diagonal matrix and then we can state the 
following 

Theorem 18.2. Let A be an hypercubic lattice in R n and let R be an ortho­

gonal transformation, then, R E OC (A) if an only if their matrix, with respect 

to the canonical basis, has rational entries. 

In the next section we formulate the problem of coincidences between 
lattices, using reflections as the primitive isometry, in the language of geo-
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metric algebra. We restrict ourselves to the case of hypercubic lattices A = 
zn. 

18.4.2 Geometric algebra approach 
n 

Let zn = EB Zei a n-dimensional hypercubic lattice with the canonical 
i=l 

basis {e1' e2, ... , en}. Any reflection R of a vector x, in the hyperplane 
Hs = s.l, is written as R(x) = -sxs-1 = -ASX (AS)-\ for A i= o. We 
now shall find conditions under which the reflection R(x) = -sxs-1 is a 
coincidence reflection. 

We have that 

( ) 1 -SXS 
R x = -SXS- = -2-' 

S 

where S = L:~=1 D:kek, D:k E Z. In terms of the canonical basis, R reads: 

Therefore 

( fn~ - D:;) ei - f 2D:iD:jej 
k-j." j=l(j-j.i) 

R (ei) = --'--------'---c:-n-~....::....:......::....:..--- (4.10) 

L: D:r 
1=1 

from which we have that, in terms of the canonical basis, the entries Rij 

of the matrix Rare: 

for i = j, 

_ 2QiQj 

f>r 
for i i= j. 

l=l 

This proves that if the D:i (i = 1, 2 .. n) are rational then the matrix R has 
rational entries and, due to Grimmer's theorem, represents a coincidence. 

Conversely, now let us prove that if R is a coincidence reflection, then 
there exists t with rational entries such that R(x) = -sxs-1 = -txr1. 



384 G. Aragon, J.L. Aragon, F. Davila, A. Gomez and M.A. Rodriguez 

Since R is a coincidence reflection, Ri,j E Q Vi,j. Let s = L:~=1 akek, 
be a vector such that R(x) = -sxs-1. Since s =1= 0, not all the ak can be 
zero, in particular (renumbering the basis if necessary), let a1 =1= O. Then, 
since 

2aiaj 
Ri,j = (ji,j -~ 

uhah 

it follows that (aiaj) / (L:h a~) E Q and, in particular 

Call Qj = (a1aj)! (L:ha~), Qj E Q. Then define t = L:jQjej (t has 
then rational coordinates). But 

'" a1 '" a1 t= LQjej = ~ Laiej = ~s, 
j uh ah uh ah 

and since R(x) = -sxs-1 

R(x) = - (L:h a~t) x (~r1) = -txt-I, 
a1 L:h a h 

which completes the proof. 
From the above results, we arrive to the following 

Proposition 18.1. Let zn = EB Zei, then the transformation R(x) = -sxs- 1 

i=l 

is a coincidence reflection, i.e. R( x) E OC (zn), if and only if there exists a vector 

t, with rational components, such that R(x) = -sxs- 1 = -txC 1 . 

Immediate consequences of the above propositions are the following co­
rollaries: 

Corollary 18.1. Let zn = EB Zei, then the transformation R(x) = -sxs- 1 

i=l 

is a coincidence reflection, i.e. R( x) E OC (zn), if and only if there exists a vector 

t, with integer components, such that R(x) = -sxs- 1 = -txC 1 . 

Proof: Let t' = f ;J ej which fulfills the conditions of proposition 18.1, with 
j=l J 

(Xj, f3j E Z. Consider "( = lcm {f3j, j = 1,2, ... ,n}. Therefore t = "(t' has integer 

entries. 

Corollary 18.2. Let zn 

transformation 

D 

n 
E9 Zei, and consider the following orthogonal 
i=l 
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If each vector Si has rational or integer entries, then R(x) E OC (zn). 

At this point, we have that in a n-dimensional hypercubic lattice 
n 

zn = EEl Zei, transformations given by 
i=1 

are of coincidence if Si E zn (we use Rs; to denote the reflection by a 
vector sd Note that the treatment given above is also valid for the case 
of orthogonal transformations, since by Cart an-Dieudonne theorem any 
orthogonal transformation can be decomposed as the product of a finite 
number of R Si , i = 1,2 .... k (k:S 2n) [26]. Thus in general, since OC(A) is 
a group under composition, for an arbitrary number of reflections one has 

n 
Theorem 18.3. Let A = EB Zai, be a lattice and let R be an orthogonal 

i=l 
transformation. If Rs; E OC (A), for i = 1,2, ... , k, then R E OC (A) . 

This is also a consequence of Cartan-Dieudonne's theorem. 
The reciprocal is not always true; it is possible to have two reflections 

R SI , RS2 1. OC(A) and such that R = RSI RS2 E OC (A). Although the 
reciprocal of the theorem does not hold, we can see that if R = RSI RS2 , 
Si E R2 and s; = 1 (i = 1,2), in terms of the canonical basis R reads 

((81 .82)2 -181 A s212) el - 2 (SI· S2) lsI A s21e2 

-2 (81.82) 181 A s21el + ((SI . S2)2 -lsI A 8212) 

Then R E OC (A) if and only if the geometric product 8182 has rational 
coordinates. Thus, in general, we have 

n 
Proposition 18.2. Let A = EB Zai, be a lattice and let RSI and RS2 ' 

i=l 
Si ERn, (i = 1,2) be two reflections. Then RSIRs2 E OC(A) if and only if 

the geometric product SlS2 has rational components. 

It can be proved iterating the Equation (4.10) and evaluating the geo­
metric product in the canonical basis. 

From this proposition it follows that 
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n 

Theorem 18.4. Let A = E9 Zai, be a lattice and let R be an orthogonal trans-
i=l 

formation. Then R E OC (A) if and only if there are exist RBi' i = 1,2, ... , k 

( k :S 2n ) such that the geometric product SiSHl, (i = 1,2, ... , k - 1) has ra­

tional components for k even. If k odd, it is also required that Sk has rational 

components. 

The proof is based on induction, using the Cartan-Dieudonne's theorem, 
the proposition 18.2 and the fact that OC (A) is a group under composition. 

These results are valid for any hypercubic lattice since the OC -group 
is isomorphic to OC (zn). Then for the purpose of studying coincidences, 
one may well restrict the attention to the reflections RSj' the vectors Sj 

and the rotations RSiRsi+l' i = 1,2, ... , k, (k ::::; 2n), such that both Sj and 
SiSi+! has rational components. 

18.5 Conclusions 

In this work we show that geometric algebra is the natural algebraic setting 
for performing modern crystallographic calculations. The algebra incorpo­
rates in a single system all the tools required for doing geometry and for 
dealing with spaces of arbitrary dimensions. 

In the first part we show how geometric algebra can be used to study the 
fundamental problem of finding the densest planes in quasicrystals and of 
predicting their external shape. 

In the second half of this contribution we present a preliminary examina­
tion of the possible role of geometric algebra in the study of grain bounda­
ries. The mathematical problem of finding coincidence lattices is addressed 
in this language which, we believe, is the natural one for most of modern 
crystallography. 
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Chapter 19 

Quaternion Optimization 
Problems in Engineering 

Ljudmila Meister 

19 .1 Introduction 

The interconnection between algebraic and geometric descriptions of space­
time properties has attracted and ravished mathematicians since the time 
of Euclid. The last two centuries have been marked by several great con­
tributions to this subject; among them Clifford and Grassmann algebras 
and Hamilton's quaternions. Quaternions were invented by Hamilton to 
simplify mathematical modelling of rigid body motion in three dimensions. 
A fascinating history of quaternions is presented in many books, see, for 
instance, [1]. The joint work of many mathematicians revealed the funda­
mental connections of Clifford's, Grassmann's, and Hamilton's approaches. 
The result of all this work is Geometric Algebra (see [13]). 

The demands of different engineering areas, such as space and terrestrial 
navigation, photogrammetry, computer vision, robotics, and others, revived 
a Worldwide interest in the problems of orientation, and in particular, in 
the orientation of a rigid body in a 3-dim space. 

The main problem of orientation in space and terrestrial navigation is 
determining the location and attitude of a vehicle. (Attitude means the 
orientation of a vehicle in space with respect to an inertial reference frame. 
Although widely adopted by engineers, this term is sometimes confusing to 
mathematicians.) Conventionally, the control systems of vehicles are of two 
main types [7]: control systems based on gyrostabilized platforms (usually 
called inertial navigation systems), and control systems without gyrostabi­
lized platforms (usually called strap-down navigation systems). In the first 
case, a vehicle has an on-board inertial reference frame, and all measure­
ments and succeeding calculations are realized with respect to this reference 
frame. In the second case, there is no on-board inertial reference frame: 
measurement equipment is rigidly fixed and is rotating together with the 
vehicle. It is in the second case that quaternions provide an extremely con­
venient mathematical apparatus, and this is the reason of the growing in­
terest to quaternions in space technology. Application of quaternions leads 
to a significant reduction of computer time and memory requirements with-

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering
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out any loss in accuracy (see [9]). The analysis of the problem of attitude 
determination, including a quaternion algebra approach and a vast list of 
references, are given in [22]. 

The main object of the present work is to show a general background of 
applications of quaternions to various problems of orientation in different 
engineering areas. In each case the initial questions are reduced to quater­
nion optimization problems. To illustrate the theory we use examples from 
photogrammetry and navigation. 

Since our main interest concerns applications of quaternions to enginee­
ring, we will try to avoid using special knowledge in mathematics which 
may be beyond the scope of engineers. We collect, for the readers' sake, the 
most important properties of quaternions, even though some of them have 
been presented and discussed by other authors (see, for instance, [11, 16]). 
A vast list of references on applications of quaternions in photogrammetry, 
geodesy, and navigation was given by the author in [19]. 

19.2 Properties of Quaternions 

19. 2.1 Notations and definitions 

We recall briefly the main notations, definitions, and properties of quater­
nions. Quaternions are generalized complex numbers of the form 

(2.1) 

where the coefficients ao, al, a2, a3 are real numbers (or functions) and 
i, j, k are imaginary units. The real part of A is denoted by Re A = ao. 
The sum of all the other terms makes up the imaginary part 1m A of A. If 
Re A = 0 the quaternion A is called imaginary. 

Arithmetic operations with quaternions are similar to those for ordinary 
complex numbers. Products of the imaginary units are defined as follows 

ii=jj=kk=-1 
ij = -ji = k 

ki = -ik = j 
jk = -kj = i. (2.2) 

Multiplying two quaternions according to these rules, one gets the coeffi­
cients of their product. Quaternion multiplication is associative, distribu­
tive, but, in general, not commutative. However, for arbitrary quaternions 
we have 

Re(AB) = Re(BA). (2.3) 

The following important assertion is easily proved: 

Lemma 1 If Re(AB) = 0 for an arbitrary quaternion B, then A = O. 
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Quaternion multiplication and matrices. 

In engineering applications it is sometimes useful to rewrite quaternion 
equations in a matrix form. There is a one-to-one correspondence between 
quaternions and 4-vectors 

A = ao + ali + a2.i + a3k ------- v A = (ao, al, a2, a3l. (2.4) 

(We consider column vectors; the superscript "T" means transposition.) 
Let v A and VB be the 4-vectors which correspond to the quaternions A 

and B, respectively. The matrix form of the product AB is 

VAB = G l (A)VB = G2(B)VA (2.5) 

where the matrices Gl(A) and G2(B) are given by 

("0 -al -a2 -a, ) 
G,(B) ~ ( 

bo -bl -b2 -b3 

Gl(A) = al ao -a3 a2 . bl bo b3 -b2 
a2 a3 ao -al ' b2 -b3 bo bl 
a3 -a2 al ao b3 b2 -bl bo 

Using mathematical induction, one can prove that for an arbitrary num-
ber of factors Al ... An one has 

This assertion allows us to avoid difficulties that are connected with the 
noncommutativity of quaternion multiplication. 

Example 1 Given A = BCD, B -=J 0, D -=J 0, what are the components of 

C? Using (2.6) one gets VA = Gl (B)G2(D)vc. It then follows that 

Vc = G2l (D)G1l (B)VA. 

More properties of the matrices Gl and G2 are discussed in [19]. 

19.2.2 Quaternions and vectors 
In engineering problems we usually operate with vectors in 3-dim space. Let 
el , e2, e3 be the basis vectors of a 3-dim right-handed orthogonal reference 
frame S. Each vector r can be represented in S as follows 

with the components rl, r2, r3 relative to S. One can identify the imaginary 
units i,j, k with the basis vectors and consider the components of r as 
coefficients of the imaginary quaternion 

) 
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We say that Rs is the associated quaternion to rs. On the other hand, 
coefficients of an arbitrary imaginary quaternion can be considered as coor­
dinates of a certain vector in 3-dim space. From now on we will use the 
word "vector" when speaking of the associated imaginary quaternion and 
vice versa. 

Using the correspondence between vectors and imaginary quaternions, 
one finds that 

A 
A+B 

AB 

ao +a 
ao + bo + a + b, cA = cao + ca 

aobo - a· b + aob + boa + a x b 

(2.7) 
(2.8) 
(2.9) 

where a . b is the scalar product and a x b is the vector product of the 
vectors a and b. The collinearity, orthogonality, and coplanarity of vectors 
can now be directly expressed in terms of the algebraic operations between 
their associated quaternions, 

orthogonality (a..Lb) : AB + BA = 0 

collinearity (a II b) : AB - BA = 0 

coplanarity (a, b, C E the same plane) : 

C(AB - BA) + (AB - BA)C = o. 

(2.10) 

(2.11) 

(2.12) 

When dealing with quaternions as abstract mathematical objects, their 
imaginary parts are treated as vectors relative to the same reference frame. 
Things are different when one works with quaternions associated with vec­
tors which have been measured during engineering experiments. We have 
to take into consideration what reference frames were used in making the 
measurements. We cannot draw any conclusions about the relative po­
sition of the vector parts of quaternions if they are relative to different 
reference frames. Fortunately, it is not necessary to transfer all vectors to 
the same reference frame before going to the associated quaternions. It is 
possible to transform quaternions directly from one reference frame into 
another. Thus, when dealing with quaternions, the situation is similar to 
the one when dealing with vectors: one has to distinguish particular refe­
rence frames to which the quaternions (or the vectors) are related. We will 
use a subscript to indicate a particular reference frame. 

A trigonometric form of quaternions. 

Every quaternion A = ao + a can be represented in the trigonometric form: 

A = IIAII(cosa + esina) (2.13) 

where IIAII = (ao 2 +a1 2 +a22 +a3 2)1/2 is the norm of A, where the unit vec­
tor e, the axis of A, is given by e = a/lal, lal 2 = a12+a22+a32, and where 
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a, the angle of A, is given by cos a = ao/llAl1 , sina = lal/llAII, 0:::; a < 7L 

If A is a normalized quaternion, i.e. IIAII = 1, then 

A = cosa + esina. (2.14) 

A quaternion given by (2.14) is also called a "spinor". 

19.2.3 Quaternion description of rotations 

Rotations of vectors. 

Quaternions give a very clear algebraic description of rotations in 3-dim 
space. Let 8 be an arbitrary 3-dim right-handed orthogonal inertial refe­
rence frame with the basis vectors identified with i,j, k and let r1 be an 
arbitrary vector in 8 with the associated quaternion R1 . The result r2 of 
the counterclockwise rotation of r1 about the axis e by the angle 2a is 
given by 

(2.15) 

where the quaternion A is as in (2.14) and A* is the conjugate quaternion 
A* = ao - a. (Note, that r1, r2 and the axis e of A are relative to the same 
reference frame.) If a rotation is described by the quaternion A we call it 
an A-rotation. 

Rotations of reference frames. 

Let the reference frame 8 1 be rotated as a rigid body to a new position 
82 by the quaternion A, i.e. A : 8 1 ---+ 82 . This means that every basis 
vector of 8 is transformed by the A-rotation. We assume that the axis of A 
is given in the frame 8 1 . The new components of a fixed vector r relative 
to the rotated reference frame 82 are the components of the quaternion 

(2.16) 

Composition of rotations. 

Let A and B be two normalized quaternions such that A : 8 ---+ 8' and 
B : 8' ---+ 8". If the axes of A and B are both given in the same reference 
frame 8, then the resulting quaternion C : 8 ---+ 8" is given by 

C = BsAs. (2.17) 

If the axis of A is given in 8 while the axis of B is given in 8', then the 
order of the factors changes: 

C = AsBsl. (2.18) 
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Indeed, since BSf = AsBsAs, we have Bs = AsBsfAS' Substituting this 
into (2.17), we get (2.18). 

Example 2 Let S be a 3-dim right-handed orthogonal reference frame and 

let it be rotated by the quaternions A, B, C, D as follows 

The subscripts indicate the reference frame in which the axes of the quater­

nions are given. The resulting quaternion Ts : S ---+ S4 is 

Ts = BsAsDs2CSZ' 

The consideration above shows that we can choose the reference frame 
where quaternions have the simplest form for a particular calculation. 

Rotations and parallel translations. 

Now assume that a given A-rotation Sl ---+ S2 is supplemented with a 
parallel displacement. Let b be a position vector of the origin of S2 with 
respect to Sl and B be the associated quaternion. A parallel displacement 
has no effect when operating on free vectors. 

If r is a position vector with the endpoint M relative to Sl and p is the 
position vector of M relative to S2, then we have 

(2.19) 

See Figure 19.1. 

M 

FIGURE 19.1. Rotation and parallel translation of the position vector. 
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Rotations which depend on time. 

Let 8 1 and 8 2 be two 3-dim right-handed orthogonal reference frames with 
the same origin. Let 8 1 be a fixed frame and 8 2 be rotating about 8 1 with a 
rotational velocity w(t) which depends on time. The associated quaternions 
are Ws, (t) relative to 8 1 , and WS2 (t) relative to 8 2 . The quaternion T12(t) 
corresponding to this rotation is a solution to the differential equations [12]: 

d 1 
dt T12 = "2 Ws, T12 or (2.20) 

where IIT12(t)11 = 1 for every t. 

19.3 Extremal Problems for Quaternions 

19.3.1 Differentiation with respect to quaternions 

As we shall see later, various applied problems can be formulated as ex­
tremal problems (minimum or maximum) of a function of a quaternion ar­
gument. To find the points of extrema we have to use differential calculus. 
Derivatives of functions can be defined in two ways: "strong" (or Frechet's) 
derivative and "weak" (or Gateaux's) derivatives. To find points of ex­
trema we have to employ the strong derivative, which is not suitable for 
calculations (see [18]). Since quaternions form a 4-dim linear normed space, 
the strong and the weak derivatives are equivalent, if they both exist and 
are continuous. Thus, we can use the weak derivative, which is defined as 
follows: 

Definition 19.1. Let f(X) be a scalar function of the quaternion variable X 

and let H be an arbitrary quaternion. The derivative of f(X) with respect to X 

in the direction of H is 

f'x,H(X) = lim dd f(X + EH) 
c-O E: 

where E is a scalar. 

One can use the standard techniques for finding these derivatives. 

Example 3 Find the derivative ofthefunctionf(X) = IIXI12. Since IIXI12 = 
XX* we have 

f'x H(X) = lim dd IIX + EHI12 = lim dd (X + EH)(X + EH)* = 
, .:-->0 E .:-->0 E 

This must not be confused with the weak derivative in distribution theory. 
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lim dd (XX* + cHX* + cXH* + c2 HH*) = HX* + XH* = 2Re(HX*). 
0--+0 c 

Generally, derivatives with respect to quaternion variables depend on the 
quaternion variable. It is similar to the directional derivative of a function 
of a vector variable. 

Definition 19.1 can be naturally extended to the case of several quater­
nion variables. 

19.3.2 Minimization of loss functions 

In engineering applications, particularly in navigation and optimal control 
theory, minimizing functions are usually called loss functions. We shall 
use the same terminology. 

Let f(X) be a scalar loss function of a quaternion argument. At the 
points of extrema, 

f'x,H(X) = 0 (3.21 ) 

for every H. The condition (3.21) for an extrema depends on an arbitrary 
quaternion H. Fortunately, for many applied problems the loss functions 
has a special structure that makes it possible to eliminate this arbitrary 
quaternion. The following theorem holds. 

Theorem 1 If a scalar loss function f(X) of the quaternion variable X 

has the form 

N 

f(X) = L IIFn(X) 112 (3.22) 
n=! 

where Fn(X) are polynomial quaternion functions with quaternion coeffi­

cients 

(3.23) 

then it is possible to eliminate the arbitrary quaternion H from the equation 

of extremum {3.21}. 

The proof of this theorem is based on the properties of quaternions, and 
especially on Lemma 1. 

19.3.3 Conditional extremum problems 

When we have to find the points of extrema of a loss function under certain 
conditions, for example for normalized quaternions, we get the so-called 
conditional extremum problems. The condition /lXII = 1 leads to the follo­
wing problem: 
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Problem 1 Let f(X) be a scalar loss function of a quaternion variable. 

Find the point of extremum under the condition IIXI12 = 1. 

To solve such a problem, we employ the Lagrange multiplier method 
which consists of looking for extremum of the auxiliary Lagrange function 

where, is an unknown scalar, called the Lagrange multiplier. Differentia­
ting F(X, ,) with respect to X and equating the derivative to zero, we 
get 

F'x,H(X, ,) = o. (3.24) 

Equation (3.24) and the condition IIXI12 = 1 give a set of two equations in 
the unknowns X and,. 

19.3.4 The least-squares method for quaternions 

Another example of a quaternion conditional extremum problem is the 
problem of quaternion interpolation. We formulate this problem as follows: 

Problem 2 Let Xl, X 2 , ... , X N be the measured values of a normalized 

quaternion. We wish to find the optimal value of the quaternion which 

minimizes the least-squares loss function 

N 

f(X) = L IIX - Xpl12 
p=l 

under the condition IIXI12 = 1. 

The auxiliary Lagrange function is 

N 

F(X, ,) = L IIX - Xpl12 + ,(IIXI12 - 1). 
p=l 

Differentiating by X and equating the derivative to zero gives 

d N 
lim -d ('" IIX + EH - Xpl12 + ,(IIX + EHI12 - 1) 
0--->0 E L....t p=l 

N 

2 L Re(XH* - XpH*) + 2,Re(XH*) = 0 
p=l 
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where H is an arbitrary quaternion. Using Lemma 1, we get the algebraic 
equation 

N 

2)X - Xp) +,X = 0, 
p=l 

which does not contain H. Hence, 

x = E:=l X P. 

N+, (3.25) 

The Lagrange multiplier, is determined by the condition that IIXII2 = 1 : 

Then we get 

N N 

IN +,1 = (2: Xp)(2: X p)*. (3.26) 
p=l p=l 

The right-hand side in (3.26) is not a quaternion but a real number since 

N N N 

(2: Xp)(2:Xp)* = II 2: Xp112. 
p=l p=l p=l 

Thus, 

p=l 
and we get the two possible solutions 

N N 

,1 = II 2: Xpll- N or ,2 = -II 2:Xpll- N. 
p=l p=l 

Finally, we select as the optimal value of X 

19.4 Determination of Rotations 

19·4·1 Unknown rotation of a vector 

Let us consider now the "inverse problem": 
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Problem 3 Let rand p be two measurements of the same unit vector be­

fore and after a rotation in the reference frame 5. The associated quater­

nions are Rand P correspondingly, IIRII = IIPII = 1. We wish to find the 

unknown rotation, i. e. the axis and the angle of a normalized quaternion 

X, such as 

P=XRX* (4.27) 

with the condition that IIXII = 1. 

Problems of this kind are quite common, for example in robotics or when 
calibrating measurement equipment. We consider three methods for solving 
this problem: a method based on the algebraic properties of quaternions, a 
method based on geometric considerations, and the method of conditional 
extrema. 

Algebraic method. 

Multiplying (4.27) by X R* on the right gives 

PXR* = X. 

Now, using the matrix form of quaternion multiplication (2.6) gives 

( 4.28) 

( 4.29) 

Thus, we have reduced the initial problem to the well-known eigenvector 
problem of matrices, which is discussed thoroughly in many books on Linear 
Algebra (see, for example, [14]). From the properties of the matrices G1 

and G2 , it follows that the (4 x 4) matrix G1 (P)G2 (R*) is symmetric and 
orthogonal. Hence, it has only real eigenvalues, which are equal to 1 or 
-1. The sum of the eigenvalues of a matrix is equal to the trace of this 
matrix, i.e. to the sum of elements on the main diagonal. It is easy to 
verify that the trace of G1 (P)G2 (R*) is 0, therefore, this matrix has only 
two different eigenvalues, Al = 1 and A2 = -1, each of them being of the 
second order. This means that Equation (4.29) has a solution, which is the 
eigenvector corresponding to the eigenvalue A = 1. This solution can be 
found in the usual way (see [10]). Since every eigenvector is determined up 
to an arbitrary constant, we can choose this constant such that IIXII = 1. 

Since the eigenvalue A = 1 is of the second order, the solution is not 
unique but depends on one free parameter. This will be more transparent 
from the geometric considerations given below. 

Geometric method. 

First, note that the linear quaternion equation (4.27) is invariant under ro­
tations of the reference frame. In fact, let 5' be a new reference frame which 
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is obtained by the T-rotation of S, i.e. S' = TST*. Multiplying (4.27) by 
T from the right and by T* from the left leads to 

T* PT = T* XRX*T. (4.30) 

Since IITI12 = T*T = 1, we can write 

T* PT = T* XTT* RTT* X*T. (4.31) 

Let A = T* PT, B = T* RT, Y = T* XT, then Equation (4.31) becomes 

A = YBY* (4.32) 

where all quaternions have imaginary parts relative to the new reference 
frame S'. This means that the Equation (4.27) is invariant under the ro­
tation. This fact allows us to simplify the linear quaternion equations by 
choosing an appropriate reference frame. 

To solve Equation (4.27) we assume without loss of generality that the 
axis i coincides with the bisector of the angle 0: between the vectors rand 
p, and that these vectors are located in the plane spanned by i,j. (See 
Figure 19.2.) 

k 

j 

FIGURE 19.2. Relative position of the vectors rand p. 

Clearly, the axis x of the quaternion X (the axis of rotation) is an arbi­
trary straight line lying in the plane spanned by the axes i, k. Hence, the 
unknown quaternion X must be of the form X = Xo + xli + X3k, where 
x5 + xi + x~ = 1. 

The angle of the rotation {j can be found from simple geometric conside­
rations. Let D be the point of the orthogonal projections of the end points 
M and N of rand p on the vector x (see Figure 19.3). 

Due to symmetry, these projections coincide, and we have the following 
relation 

{j sin ~ 
tan - = -----::-----=----::-

2 cos ~ sin/3 
(4.33) 
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k 

x 

j 

M 

N 

FIGURE 19.3. Connection between the angles (MD and ND are or­

thogonal to x ). 

where (3 is the angle between x and the axis i. We apply the trigonometric 
formulas 

. 2' a a 2 2 a 1 sm a = sm 2" cos 2" ; cos a = cos 2"-
and rewrite (4.33) as 

8 sin a 
tan - = -;-----;-----,----:: 

2 ( cos a + 1) sin (3 
(4.34) 

The components of x are (cos (3, 0, sin (3), so the trigonometric form of X 
is 

X = cos ~ + (i cos (3 + k sin (3) sin ~. 
Therefore, the coefficients of X are 

8 . 8 .. 8 
Xo = cos 2; Xl = cos (3 sm 2; X3 = sm(3sm 2' 

The geometric method clearly shows that the solution is not unique, but 
rather there is a set of solutions depending on a single parameter ( 8 and 
(3 are connected by (4.34)). To get a unique solution, we must impose an 
additional condition. This could be the condition of choosing the minimal 
angle of rotation. This condition implies that 

8 sin a 
(3 = Jr /2, tan - = ( ) 2 cosa+l 

and X = cos (8/2) + ksin (8/2). It is the particular solution which corres­
ponds to a rotation about the axis k by the angle 8 = a. 

The assumption that the axis of rotation lies in the common plane with 
rand p leads to (3 = 0 and 8 = Jr, so that X = i. This is the solution which 
corresponds to the rotation about the axis i by the angle Jr. 

Another example of an additional condition could be a restriction on the 
location of the axis of rotation, used in robotics (see, for instance, [21]). 
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Method of conditional extrema. 

This method is used when the vectors rand p are measured with measur­
ment errors. Then we have a nonzero difference, 

Q=XRX*-P 

where Q is the quaternion associated with the vector of errors, which leads 
to the following quaternion conditional extremum problem: 

Problem 4 Find the quaternion X which minimizes the loss function 

f(X) = IIXRX* - PI1 2 ( 4.35) 

under the condition IIXII = 1. 

The auxiliary Lagrange function is 

F(X) = f(X) + ,(IIXI1 2 - 1) 

where, is the unknown scalar Lagrange multiplier. Differentiating F(X), 
one gets 

F~ H(X) = lim dd F(X + EH) 
, 0->0 E 

= 2Re(XRX* - P)(HRX* + XRH*)* + 2,ReXH* 

= 2Re(X RX* - P)X R* H* + 2Re(X RX* - P)H R* X* + 2,ReX H* 

( 4.36) 

Let us transform the second term on the right of (4.36) separately. U­
sing Equation (2.3) and identities R* = - R (which hold for imaginary 
quaternions), and ReA = ReA* (for arbitrary quaternions), we get 

2Re(X RX* - P)H R* X* = 2ReH R* X* (X RX* - P) 

= 2Re(XRX* - P)*XRH* = 2Re(XRX* - P)XR*H*. 

Substituting (4.37) in (4.36), we get 

F~,H(X) = 4Re(XRX* - P)XR* H* + 2,ReXH* = o. 

(4.37) 

( 4.38) 

Finally, applying Lemma 1 to Equation (4.38), we obtain an algebraic 
quaternion equation which does not contain the arbitrary quaternion H 

2(XRX* - P)XR* + ,X = o. (4.39) 

After a simple transformation, (4.39) becomes 

PXR* - 2+, X - 2 . (4.40) 
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This equation is similar to Equation (4.28), so it has solutions if 

2+1'=1 or 2+1' __ 1 
2 2 - . 

We must choose the maximal eigenvalue. In fact, we have 

f(X) = IIXRX* - PI1 2 = (XRX* - P)(XRX* - P)* 

( 4.41) 

= 1- PXR* X* - XRX* P* + 1 = 2 - 2Re(PXR* X*) (4.42) 

Hence, f(X) is minimal when Re(PXR* X*) is maximal. But from (4.40), 
it follows that Re(PXR* X*) = (2 + 1')/2, therefore (2 + 1')/2 must be 
maximal. 

Thus, again we get an eigenvector problem whose solution can be ob­
tained in the standard way. 

19.4.2 Rotation of several vectors 

When we have N unit vectors r1, ... , r N which are measured before the 
rotation, and P1' ... ' P N which are measured after it, then we have to 
consider the loss function 

N 

f(X) = L IIXR,.X* - Pnl1 2 ( 4.43) 
n=l 

with IIXII = 1. The same considerations as before lead to the equation 

N 
~ P, X R* = 2N + l' X L.J n n 2 . 
n=l 

Transferring (4.44) to the matrix form gives 

(4.44) 

(4.45) 

The matrix G = 2:;;=1 G1(Pn)G2(R~) is symmetric since it is a sum of 
symmetric matrices, but, in general, it is not orthogonal. Therefore, G has 
exactly 4 real eigenvalues, and, as before, we choose the maximal one. The 
corresponding eigenvector gives the solution to the problem. 

19.5 The Main Problem of Orientation 

The main problem of orientation of a rigid body can be formulated as 
follows. Let 81 and 82 be two 3-dim right-handed orthogonal reference 
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frames. Let 8 1 be an inertial reference frame and 8 2 be a body-fixed refe­
rence frame with the origin at the center of mass of the rigid body. Given 
a set of measurements, we wish to find the attitude and the position of the 
body with respect to 8 1 at a certain moment t. This means that we have 
to find a normalized quaternion X of the X-rotation and the imaginary 
quaternion B associated with the position vector b of the origin of 8 2 . 

According to the available measurements, we have different variants of 
the problem. We consider here the most important cases. 

19.5.1 Orientation based on free vectors 

Some free vectors are measured with respect to both reference frames: 
let r n, n = 1, ... , N, be results of measurement with respect to 8 1 and 
Pn, n = 1, ... , N, be results of measurement with respect to 8 2 . The 
associated quaternions are RnSl and PnS2' respectively. 

Such problem arises, for example, in space navigation, when unit vectors 
of a stars' directions are measured with respect to an inertial frame (8d and 
a body-fixed reference frame (82 ). The distances between every star and 
the origins of 8 1 and 8 2 are infinitely large in comparison with the distance 
between the origins. Therefore, the vectors r nand Pn have to be equal. In 
space navigation this problem is often quoted as "Wahba problem" [22J. 
The geometry of the problem is given in Figure 19.4. 

o , , 

FIGURE 19.4. Geometry of orientation based on free vectors. 
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Mathematical model of the problem. 

The reference frames Sl and S2 are connected by the X-rotation, hence 
S2 = XS1X* and we have 

PnS2 = X* Rns1X, n = 1, ... ,N. (5.46) 

According to the least-squares method, in the presence of measurement 
errors, we have to minimize the scalar loss function 

N 

f(X) = L IIX* Rns1X - Pns2 11
2 (5.47) 

n=l 
under the condition IIXII = 1. Denoting Y = X* we get the same loss 
function as in (4.43). Note, that only attitude can be determined in this 
case. 

This problem has been discussed by many authors (see, the references 
given in [19, 22]). 

19.5.2 Roto-translation problem 

Now, let the vectors rn be the measured position vectors of the objects Mn 
relative to Sl and the vectors Pn be the measured position vectors of these 
objects relative to S2. In general, the reference frames will have different 
unit lengths with an unknown scale factor. One has to find the scale factor, 
the attitude of S2, and the location of its origin. The geometry is similar 
to that given in Figure 19.1. 

Mathematical model of the problem. 

Let p be an unknown scale factor. According to (2.19), we get the loss 
function 

N 

f(X, B, p) = L IIX* RnSl X - PPnS2 - BS2112 (5.48) 
n=l 

where IIXII = 1. 
The complete solution of the problem in quaternions was given by F. 

Sanso [20j. He also observed that if one chooses the origins of Sl and 
S2 at the centers of gravity of the points rand p, respectively, then the 
translation vector b will vanish and (5.48) reduces to a form similar to 
(5.47). 

19.5.3 Photo exterior orientation problem 

Let rn be the measured position vectors of the objects Mn relative to Sl, 
and p~ be the measured position vectors of their images M~ on a photo 
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relative to the photographic reference frame 52' These reference frames 
also have different unit lengths with an unknown scale factor. One has to 
find the scale factor, the location of the perspective center of the camera 
objective lens at the moment of exposure (the origin O2 of 52) and the 
attitude of the camera in space (the attitude of 52). Geometry of this case 
is shown in Figure 19.5. This is the well-known problem of photo exterior 
orientation in photogrammetry (see, for instance, [24]). 

FIGURE 19.5. Geometry of photo exterior orientation. 

Mathematical model of the problem. 

This case is different from the preceding one because the position vectors 
Pn of the objects Mn relative to 52 are not known. If we introduce the scale 
factors /-In such as Pn = /-lnP~, then we can use the same loss function as 
before. Denoting by P~S2 the quaternion associated with the vector P~, we 
get 

N 

f(X, B, /-In) = L IIX* RnSl X - /-lnpP~S2 - BS2112 (5.49) 
n=l 

with IIXII = 1. However, this unnessesarily increases the number of the 
unknowns. 

To avoid the additional scale factors, we can use another loss function 
based on the condition of collinearity (2.11). Since the object and its image 
lie on the same line, the vectors rn - b and P~ are collinear, and using the 
quaternion condition of collinearity (2.11), we get the loss function 

N 

f(X, B) = L IIP~S2X*(RnSl - BsJX - X*(RnSl - BSJXP~S2112(5.50) 
n=l 

with IIXII = 1. This problem was considered by the author in [4J. 
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19.5.4 Orientation based on coplanar vectors 

Assume now that only the unit vectors r~ and p~ of the directions to several 
objects Mn are measured with respect to 8 1 and 8 2 , respectively, and that 
the distances between the objects and origins of the reference frames are 
comparable. The geometry of this case is given in Figure 19.6. 

FIGURE 19.6. Geometry of unit coplanar vectors. 

Mathematical model of the problem. 

Introducing the unknown scale factors An and /-In, such as RnSl = AnR~Sl 
and PnS2 = /-lnP~S2' one can use the same loss function as in the roto­
translation problem, but now the loss function depends on the additional 
unknowns An and /-In 

N 

f(X, B, An, /-In) = L IIAnX* R~Sl X - /-lnP~S2 - BS2112 (5.51 ) 
n=l 

with IIXII = 1. A quaternion approach to this problem in computer vision 
was thoroughly treated by J . Lasenby [17]. 

19.5.5 Relative orientation of a stereo-pair 

Let r~ be position vectors of the images M~l of the objects Mn on the 
first photo measured in the photographic reference frame 8 1 , and let p~ 
be position vectors of the images M~2 of the same objects on the second 
photo measured in the photographic reference frame 82 . We wish to find 
the position vector b of the origin of 8 2 and the attitude of 8 2 with respect 
to 8 1 . In photogrammetry this problem is known as the problem of relative 
orientation of a stereo-pair. It has a geometric interpretation similar to the 
previous case (see Figure 19.7). 
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FIGURE 19.7. Geometry of relative orientation of a stereo-pair. 

Mathematical model of the problem. 

Again the position vectors of the objects Mn are not known. We could 
introduce the unknown scale factors as before, but in order to avoid addi­
tional unknowns we use another form of the loss function. Since every three 
vectors r~, p~, b have to lie in the same plane, their associated quaternions 
have to satisfy the condition of coplanarity (2.12), and we get the loss func­
tion 

N 

f(X, B) L II(R~s2P~s2 - P~s2R~S2)Bs2 
n=l 

(5.52) 

where R~S2 = X* R~Sl X and IIXII = 1 as before. 
It should be pointed out that for this loss function we have to use an 

additional condition of the form IIBII = b. Otherwise, we would get the 
trivial minimum B = o. The quaternion approach to this problem was 
considered by the author in [2], and the reduction of the problem for space 
navigation was given in [6]. 

We have presented here only the mathematical models of the above 
problems using quaternions. This overview shows that various orientation 
problems in different engineering areas can be considered as quaternion 
conditional extremum problems. The quaternion language enables short 
algebraic formulations and clear geometric interpretations which reveal the 
similarities of the problems. 
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19.6 Optimal Filtering and Prediction 

In this section, we study the orientation of a system when not only mea­
surements of some vectors are given, but when the equation of motion of 
the system is also known. We start with some definitions. 

19.6.1 Random quatemions 

First, we give very briefly some notations and definitions of random quater­
nions. A random quaternion A = ao + ali + a2j + a3k is a quaternion with 
random variable coefficients ao, aI, a2, a3, where i, j, k are imaginary 
units as before. Let E[azl and O"[azl be the mean value and the standard 
deviation of the coefficients al, I = 0, 1, 2, 3, respectively. 

Due to the one-to-one correspondence between quaternions and 4-vectors, 
it is possible to use the same methods as in the case of random vectors. 

The mean value E[A] (the mathematical expectation) of A is 

The covariance (4 x 4) matrix e[A] of A is given by 

( 
cl1[A] 

e[A] = C2l [A] 
C3l[A] 
c4dA] 

(6.53) 

(6.54) 

The terms on the diagonal of the matrix e[A] are the variances of the 
coefficients of A, i.e. cll[A] = E[af-ll - E2[al_l] = 0"2 [al-l], I = 1,2,3,4. 
The off-diagonal elements are the covariances of the coefficients 
clp[A] = E[(al-l - E[al-l])(ap-l - E[ap_l])]; l,p = 1,2,3,4, I i= p. Using 
the 4-vector v A corresponding to the random quaternion A, equality (6.54) 
can be expressed in the vector form 

Let us consider the quaternion 

The following identity is easy to prove 

(6.55) 

Indeed, since E*[A] = E[A*], we have 

E[IIA - E[A]112] = E[(A - E[A])(A - E[A])*] 
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= E[AA*]- E[E[A]A*]- E[AE*[A]] + E[E[A]E*[A]] 
3 4 

= E[AA*]- E[A]E[A*] = LE[ar]- E2 [azl = Lell = 11a-[A]112. 
[=0 [=1 

Hence, 11a-[A]112 = E[lIA - E[A]112] is the variance of A and 11a-[A]11 is the 
standard deviation of A. It follows from the consideration above that the 
trace of the covariance matrix e[A] is equal to the variance of A. More 
details on random quaternions can be found in [23]. 

19.6.2 Optimal filtering and prediction for 

single-stage rotations 

Let us consider a system moving with respect to a reference frame Sl. The 
system with the 3-dim position vector x makes a discrete rotation about 
the unit axis ao through the angle 2ao from the state Xo to the state Xl' 
The relation between these two states of the system is 

(6.56) 

where Xo and Xl are the quaternions associated with the position vectors. 
The known normalized quaternion Ao = cos ao + ao sin ao corresponds to 
the rotation, and Wo is a random quaternion with the mean E(Wo) = 0 and 
known covariance. We introduced the quaternion Wo because the system 
may be subjected to random disturbances, for example, the axis and the 
angle of rotation could be known only up to measurement errors. 

We also assume that Xo is a random quaternion, with the known mean 
.io and the known covariance. As usually, we consider Wo and Xo to be 
independent. 

Equation (6.56) is called the "equation of dynamics" of the system. 
We wish to estimate the system's position vector in the state 1 by using 

a 3-dim measured vector Zl, connected with Xl by 

(6.57) 

where Zl is the quaternion associated with Zl, Bl is a known quaternion, 
and VI is a random quaternion with zero mean and known covariance. The 
random quaternions Zl and V1 are assumed to be independent of the state 
quaternion X. Equation (6.57) is called the "equation of observation". 

The form of Equation (6.57) means that, in general, measurements could 
be relative to another reference frame, say S2, which is obtained from Sl 
by S2 = BlS1B~. Without loss of generality we can assume that IIBll1 = 1. 

Using the matrix form of quaternion multiplication (2.6), we can rewrite 
Equations (6.56) and (6.57). Then, we get the ordinary problem of optimal 
filtering for a single-stage linear transitions (see [8] p.359). The solution of 
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the problem is known as the Kalman filter [15]. The matrix form of the 
solution is quite burdensome. We shall present the quaternion approach to 
the problem. 

It is clear that Xl is also a random quaternion. From Equation (6.56), 
we get the mean value 

(6.58) 

It is natural to consider this mean value as an a priori prediction of Xl, 
before taking measurements of state l. 

A reasonable estimate of X I, which takes into account the prediction X I 
and the measurements Zl, is the least-squares estimate, which is optimal 
and which is denoted by Xl. This optimal estimate has the value of X 
which minimizes the scalar loss function 

(6.59) 

The mean value of the first term on the right-hand side is the variance 
of the error of the prediction, and the mean value of the second term is 
the variance of the error of the measurement. We have to minimize both 
terms, and this leads to the loss function (6.59). 

In control theory, the "weighted-least-squares estimate" is usually used. 
We present only the least-squares method to make all calculations clearer. 
The case of the weighted-least-squares estimate was considered by the au­
thor in [3]. 

Using the same technique of differentiation as before, we derive 

f'x,H = 2Re ((X - XdH* - (Zl - B;XBdB;H* BI ) 

= 2Re ((X - XI)H* - BI(ZI - B;XBI)B;H*) = O. 

Hence, by applying Lemma 1 to Equation (6.60), we get 

The optimal estimate we are looking for is the following 

(6.60) 

(6.61) 

The value Xl is the optimal estimate after the measurement has been 
made. It depends on the prior expected value X I, which is the estimate of 
X I before measurements are made. 

The coefficient 1/2 in (6.61) appeares because BI is assumed to be nor­
malized. Otherwise there would be the coefficient 1/(1 + IIBI I1 4 ). 
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19.6.3 Optimal filtering and prediction for 

multi-stage rotations 

Now, assume that the system considered above undergoes several discrete 
rotations, one after another, about the axes an by the angles 2an , where 
n = 0,1, ... , N -1. See Figure 19.8. After every rotation we make measure­
ments of the system's state. We would like to have the optimal estimate of 
the position vector of the state N. 

FIGURE 19.8. Motion of the system. 

In this case, Equation (6.56) becomes 

(6.62) 

where An = cos an + an sin an, the mean values and covariance matrices 
of Xo and Wn are known for every n, and the vector of the system's state 
does not depend on Wn for every n. 

We now have several equations of observation of the form (6.57): 

(6.63) 

where IIBnl1 = 1 for every n. The mean value and the covariance matrix of 
Vn are known, and Vn does not depend on Xo and Wn for every n. 

As before, the optimal prediction of the state X N based on previous the 
measurements is XN = AN-IXN-IAN_l' and we get the optimal estimate 

A 1 ( - ) Xn = 2 Xn + BnZnB~ . (6.64) 

Estimation of the error covariance matrix before and after the measure­
ments are made can be obtained in the same way as in ordinary control 
theory. 
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Another case of the system's motion based on the equation of dynamics 
(2.20) was considered by the author in [5]. 

19.6.4 The law of large numbers 

An interesting interpretation of the law of large numbers for quaternions 
follows. Let An = En = 1 for every n, and suppose that the equation of 
dynamics does not include the random quaternion W. We then have 

X n+1 = Xn 
Zn = Xn + Vn. 

(6.65) 

(6.66) 

Using equations (6.65) - (6.66), we wish to find a constant quaternion X 
due to making repeated measurements containing errors. From (6.64) we 
have the following optimal estimate of X N: 

A 1 ( _ ) 
X N = 2 XN+ZN (6.67) 

where the prediction Xn is given by 

(6.68) 

Substituting (6.68 ) into (6.67), and repeating the process for all sub­
scripts, we finally arrive at 

A 1 (- N-l ) XN = 2N XO + Zl + 2Z2 + 4Z3 + ... + 2 ZN. (6.69) 

This result means that the later measurements have a larger weight. 
We have presented the theoretical background of the application of quater­

nions to different problems in engineering. Quaternion algebra gives a fresh 
approach to old problems as well, allowing us to focus on essential points, 
and to use similar treatments for problems from different fields. Using 
quaternions, we have rather simple and elegant analytic methods which 
clarify the essence of the problems. Developing the corresponding numeri­
cal algorithms and mathematical software has great practical value and is 
a subject of for special consideration. 

19.7 Summary 

We presented theoretical background of applications of quaternions to pro­
blems from different engineering areas. We used examples mainly from pho­
togrammetry and space navigation, but specialists working in such areas 
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as robotics, computer vision and flight simulators, etc. can recognize their 
problems immediately and employ the same or similar methods. Manyengi­
neers and designers have already discovered the wonderful world of quater­
nions and have started to use them extensively. Quaternion algebra gives 
a fresh approach to old problems as well, allowing us to focus on essential 
points, and to use similar treatments for problems from different fields. U­
sing quaternions we have rather simple and elegant analytic methods which 
clarify the essence of problems. Developing the corresponding numerical al­
gorithms and mathematical software has a great practical importance and 
is a subject of a special consideration. 



Chapter 20 

Clifford Algebras in Electrical 
Engineering 

William E. Baylis 

20.1 Introd uction 

The Maxwell-Lorentz equations that underpin all of electrical engineering 
are intrinsically relativistic. Even in problems confined to nonrelativistic ve­
locities, the fundamental relativistic symmetries of the underlying theory 
imply important relations that often hold the keys to solutions of electro­
magnetic problems and may suggest significant insights into the underlying 
phenomena. 

Electrical engineers usually employ noncovariant notation with vectors in 
three-dimensional physical space. Unfortunately, such notation is ill-suited 
to reveal basic relativistic symmetries of the phenomena under investiga­
tion. The reason for the engineers' choice is clear: the geometric and physi­
cal significance of vectors is much more apparent than that of the indexed 
tensor elements traditionally employed in relativistic formalism. On the 
other hand, the notation of differential forms, which has been promoted 
[12] over the last three decades for use in general relativity, is well adapted 
for distinguishing topologically invariant properties from those that depend 
on the metric. But while it certainly offers a covariant notation for problems 
in special relativity, its very flexibility in distinguishing between forms and 
vectors requires a level of abstraction that is unnecessary for most problems 
in metric spaces. Abstractions to metric-free formulations are not generally 
appreciated by engineers who have little need to distinguish, say, between 
electromagnetic fields that are 2-forms from those that are 2-vectors. 

This paper explores an alternative approach based on Clifford's geometric 
algebras. Geometric algebras of various sizes have been applied to a variety 
of engineering problems. [3] Of course the complex numbers themselves are 
elements of the geometric algebra C£O,l on the vector space of metric signa­
ture -1. We write C ~ C£O,l ~ C£t,2 , which also states the equivalence of 
complex numbers and the sub algebra of even elements of C£O,2. The Clifford 
algebra C£O,2 ~ 1HI ~ C2 is the algebra of Hamilton's quaternions, which can 
be expressed as noncommuting products of pairs of complex numbers. The 
quaternion algebra 1HI is useful for describing and calculating rotations in 3-

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering
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dimensional space. [1] It and the dual quaternion algebra JH[EBJH[, comprising 
sums q+sq' where q, q' E JH[ and s is a commuting nilpotent, are being used 
for robotics and imaging, as described elsewhere in this volume. While the 
utility of quaternions in computing three-dimensional orientations waS well 
appreciated in the space program, their usage has mushroomed since their 
discovery by software writers of video games, for which they allow efficient 
computations with minimal storage for smooth rotations of solid objects. 

One may argue that the algebra isomorphism JH[ c:::: C£O,2 does not natu­
rally model the symmetry of physical space ~3, because in CeO,2 two of the 
unit quaternions, say i,j, are selected as basis vectors whereas the third is 
a bivector: k = ij . The geometric algebra based on ~3 with signature -3 
may be a more natural choice for the quaternions, but because its volume 
element ijk = k 2 = -1 is just the negative of the unit scalar, it is a non­
universal algebra. Like the universal Clifford algebra C£O,2 to which it is 
isomorphic, its vectors all square to negative numbers. This "disease" (as 
detractors of quaternions referred to it) [1] is avoided in the approach that 
recognizes the quat ern ion algebra as isomorphic to the even subalgebra 
of ce3, the geometric algebra of vectors in physical space with signature 
+3: JH[ c:::: c£t . Pure quaternions are all bivectors of ce3 rather than vec­
tors. The full algebra C£3 has been used in the form of the Pauli matrix 
algebra,[2, 4] in which the Pauli spin matrices represent orthonormal basis 
vectors of the underlying space, and it is isomorphic to the quaternions over 
the complex numbers, ce3 c:::: JH[ X C. In contrast to JH[, ce3 allows one to dis­
tinguish vectors and bivectors, and compared to the complex qUaternions, 
its geometric application and interpretation is usually more intuitive. The 
complex numbers are just the center (commuting part) of C£3' 

The algebra ce3 is in turn isomorphic to the even subalgebra of Ce1,3, 

which together with C£3,1 are geometric algebras based on Minkowski space­
time. Although these algebras are best known to physicists in the matrix 
forms of the Dirac algebra of relativistic quantum theory, they have also 
been applied to relativistic problems in classical electrodynamics [8]. Still 
larger geometric algebras have been used for projective treatments of vision 
problems, as described in other chapters of this volume, and applications of 
Clifford analysis and extensions of wavelets appear promising in potential 
theory and signal processing. 

Geometric algebras are algebras of vectors, and in particular, C£3 is the 
algebra of the vectors of physical space and thus the natural extension of 
the vector analysis most familiar to engineers. The purpose of this chapter 
is to show that C£3 provides a framework that seemlessly extends this 
familiar vector analysis to an efficient covariant description of relativistic 
electromagnetic phenomena, thereby providing a powerful but easily aCce­
ssible tool to electrical engineers. The extension uses paravectors of C£3, 
that is, sums of scalars and vectors, that constitute a four-dimensional li­
near space with a natural Minkowski spacetime structure. Several explicit 
applications to electrical engineering problems are given. 
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20.2 Structure of CR3 

Geometric algebras assume an associative product of vectors in a metric 
space that is distributive over addition and satisfies the fundamental axiom 
for any vector v , 

vv=v·v, (2.1) 

that is, the square of the vector is just its square length. Elements of CC3 

include all products of 3-dimensional vectors and their real linear combi­
nations. 

If an orthonormal basis of physical space is written {el, e2, e3} , axiom 
(2.1) implies that 

ejek+ekej = 2Djk , (2.2) 

where the Kronecker delta Djk is the metric tensor of the space. It follows 
that elements of CC3 form a linear space of dimension 23 = 8 spanned by 
the basis 

{1,el,e2,e3,e2e3,e3el,ele2,ele2e3} over~ 

taken over the reals. Subspaces include the real scalars with the basis {I} , 
the real vectors of physical space with the basis {el, e2, e3}, the bivectors 
with the basis {e2e3, e3el, el e2} , the trivectors with the basis {el e2e3} , 
the quaternions (even elements) spanned by {l, e2e3, e3el, ele2}, and the 
paravectors,[ll] spanned by {I, el, e2, e3} . 

The center of CC3 is spanned by {l,ele2e3} ,and since (ele2e3)2 = -1, 
the volume element itself can be identified with the unit imaginary i. With 
this identification, bivectors are imaginary vectors, for example 

(2.3) 

Every element of CC3 is thus a complex paravector, and the 8-dimensional 
real linear space of CC3 is reduced to the 4-dimensional space spanned by 

(2.4) 

where to emphasize the role of paravectors as vectors in a space of four di­
mensions, I have defined eo == 1 . This definition lets us express paravectors 
with the summation convention 

(2.5) 

where repeated Greek indices (one upper, one lower) are summed over 
values 0,1,2,3, and repeated Latin indices are summed over values 1,2,3. 

20.2.1 Clifford dual and conjugations 

The Clifford dual of any element x E CC3 is conveniently defined by 

(2.6) 
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In particular, the dual of a bivector is the orthogonal vector, for example 

(2.7) 

The antiautomorphic conjugations (involutions) of elements x = xl-'el-' of 
Cf3 are defined by 

Clifford conjugation x ---+ x = xOeo - xkek (2.8) 

Hermitian conjugation x ---+ xt = xl-'*el-" (2.9) 

They can be combined into the grade automorphism x ---+ xt and used to 
isolate different parts of an element: 

scalar part 
1 

(x) s = "2 (x + x) (2.10) 

1 
(2.11) vector part (x)v = - (x - x) 

2 

real part 
1 

(x)IR="2(x+xt ) (2.12) 

imaginary part 
1 

(x)~ = "2 (x - xt) (2.13) 

1 
even part (x)+ ="2 (x+xt) (2.14) 

odd part 
1 

(x)_ ="2 (x-xt ). (2.15) 

20.3 Paravector Model of Spacetime 

The metric of 4-dimensional paravector space is determined by the Eu­
clidean metric of physical space. We note that although x 2 is not generally 
a scalar, the product xx always is and can be used as the quadratic form 
to specify the inverse of any invertible element: 

-1 X 
X = ----= , 

xx 
(3.16) 

If (and only if) xx = 0, the element x is not invertible. The associated 
symmetric bilinear form for elements x = xl-'el-' and Y = y" e" is found from 
the quadratic forms of x + y, x, and y : 

1 
(xy) s = "2 (xy + yx) 

where the metric-tensor elements 

=xl-'Y"T)I-'''' 

1, 
-1, 

0, 

f-L=V=O 
f-L=v=1,2,3 

f-Li-v 

(3.17) 

(3.18) 

(3.19) 
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are seen to take the Minkowski spacetime form. 
Paravectors of physical space thus have a natural spacetime metric and 

can serve to model vectors in spacetime. Their scalar parts are their time 
components. The paravectors x, y are said to be orthogonal iff (xy) s = 0, 
and real paravectors can be classified as timelike, spacelike, and null (or 
light like ) as usual. Some examples are 

• spacetime momentum : p = E / c + p = mcu is timelike: 
pp = m 2c2 > O. 

• photon wave vector: k = ~ (1 + k) is lightlike (null): kk = O. It is 
orthogonal to itself! 

• charge current j = pc + j is timelike. 

• paravector potential A = </J/c+A (can be lightlike, spacelike, or time­
like; it depends on the gauge choice). 

• Gradient operator 0 = el-'0l-' = ClOt - V'. 

20.3.1 Spacetime planes: biparavectors 

Linear combinations of paravectors p and q lie in the spacetime plane given 
by the biparavector (pij)v = pl-'qV (el-'ev)v . The biparavector space is the 
span of {eleO, e2eo, e3eo, e2e3, e3el, e l e2} . It is seen to be the direct sum 
of vector and bivector spaces of a 3 . Unit biparavectors are operators that 
rotate paravectors to orthogonal directions in a spacetime plane: 

• ele2 (vlel + v2e2) = vl e2 - v2el elliptic (spacelike) plane 

• eleO (vlel + vOeo) = vleo + VOel hyperbolic (timelike) plane. 

Imaginary biparavectors such as el e2 are bivectors of a 3 and generate 
rotations, whereas real biparavectors such as el eo are vectors and genera­
te boosts (see the subsection "Lorentz Transformations and Covariance" 
below). 

Clifford duals in a 3 can be given the spacetime form *x == x (ele2e3eo). 
They generalize Hodge duals to arbitrary (not necessarily homogeneous) 
elements. Note that dual spacetime planes are orthogonal in the sense that 
every paravector in one is orthogonal to every paravector in the other. For 
example, the spacetime planes el e2 and eOe3 are dual and orthogonal to 
each other: 

* (ele2) = (ele2) (ele2e3eO) 

= eOe3· (3.20) 
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A linear combination of dual biparavectors is also a biparavector, but it 
represents a pair of orthogonal spacetime planes rather than a single plane. 
Biparavectors that represent single spacetime planes are called simple and 
are distinguished by the fact that they square to real scalars. 

20.3.2 Lorentz transformations and covariance 

Lorentz transformations of a spacetime vector p are defined to be linear 
transformations that leave p real and pp invariant. Restricted (proper, or­
thochronous) transformations are spacetime rotations. They take the spino­
rial form 

P -t LpLt, LL = 1. (3.21 ) 

The transformation elements L E SL (2, C) can be expressed in several 
equivalent forms: L = BR = ±exp (W /2), W = ~Wpv (epev)v ' where 
B = Bt is a boost and R = Rt is a spatial rotation. In particular, spatial 
rotations, which form the subgroup SU (2) C SL (2, q, are realized by 
transformation elements of the form 

R = exp (8/2), (3.22) 

where e is a bivector whose magnitude is the angle of rotation and whose 
"direction" gives the rotation plane. The elements of the basis tetrad {ep } 

are paravectors and therefore transform according to (3.21). The trans­
formed basis tetrad comprises up = LepL t, which includes the proper 
velocity u = Uo = LL t of the transformed tetrad. 

From the form (3.21) one can derive the transformation law for bipara­
vectors. Thus, if p and q are spacetime vectors, 

(3.23) 

It may be noted that the transformation biparavector W can be expressed 
in the biparavector basis of either the original or transformed tetrad; the 
coefficients WPV are the same for both cases. This is easily proved: 
L = LLL = exp (LWL) = exp (~Wpv (upuv)v)and works for boosts, 
rotations, or a combination of the two. 

The Lorentz transformations (3.21) and (3.23) can be passive, active, or 
a combination. Only the relative orientation and motion of the observed 
frame with respect to the observer is significant. Generally, a tetrad {uP} 

Lounesto[lO] has pointed out the need for the minus sign in the expression 

L = ± exp (W /2) , since expressions of the form - exp (W' /2) cannot be put in the 

form + exp (W /2) when (W/)2 = 0, W' ,; 0. We note (i) that these are the only 

transformations for which the minus sign is required, (ii) that they are a set of measure 

zero, and (iii) even they can be reached as a limit of the transformations + exp (W /2) . 
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represents a frame that is moving with proper velocity Uo with respect to 
the observer. Usually any observer will reduce expressions to his or her own 
frame and determine coefficients on the rest tetrad {e!-,} with eo = 1. It 
is important to distinguish absolute frames from tetrads, which indicate 
frames relative to the observer. Two observers in relative motion can use 
the rest tetrad {e!-,} to describe phenomena in their distinct rest frames. 
(See [5] for more discussion.) 

Any split of a paravector into scalar and vector parts, or of a biparavec­
tor into real and imaginary parts, is not covariant, since different observers 
will determine different components in their rest frames. Nevertheless, in 
Ge3 , relativistic relations can be expressed without splits and without com­
ponents, relating whole paravectors and their products so that all terms 
transform in the same way. Such relations are covariant. The fundamental 
equations of physics are all expected to be covariant. A number of examples 
are given below. 

20.4 Using Relativity at Low Speeds 

20.4.1 Maxwell and continuity equations 

The paravector model of spacetime in C£3 offers insights and simplifications 
at low speeds as well as high. Covariance restricts equation forms and 
provides for compact notation and derivations. For example, Maxwell's 
(microscopic) equation 

8F = Zo) (4.24) 

relates the gradient of the biparavector electromagnetic field (Famday[12]) 
F 

( 4.25) 

to the paravector current j, where the impedance of free space is 
Zo = (EOC)-l = 411' X 30 Ohm. The relations (4.24) and (4.25) are covariant: 
both sides of each transform in the same way, and both are valid in every 
inertial frame. Maxwell's equation is easily split into real and imaginary 
scalar and vector parts to give the usual four vector equations, and the re­
lation (4.25) for the field is readily expanded in unit biparavectors (e!-,ev)v 
to relate tensor components F!-'v to derivatives of the paravector potential 
as well as to the electric and magnetic fields in any frame. Maxwell's equa­
tion (4.24) leads in one step to the continuity equation when one realizes 
that 88 is a scalar operator and F has no scalar part: 

(4.26) 

The number :3 == 2.99792458 arises from the defined value of the speed of light. 
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20.4.2 Conducting screen 

The covariant form (4.24) of Maxwell's equation immediately gives current 
densities j for any field configuration F. For example, for an ideal plane 
capacitor, the field is F = elEo [& (Xl) - & (Xl - d)] , where & (Xl) is the 
Heaviside step function and we have assumed a uniform field el Eo in the 
region 0 < xl < d. Differentiation of the step functions gives Dirac delta 
functions for the charge density, 

= pc, (4.27) 

which implies opposite surface charges coEo at the two plates. Similarly, 
the uniform interior magnetic field F = icBoe3& (a - r) of a solenoid of 
cylindrical radius a requires the current density 

] = -ire3c2coBo8 (r - a) ( 4.28) 

. -Bo 
J=¢-8(r-a), 

ILo 
( 4.29) 

where ¢ = e3 x r, and thus an azimuthal current of Bo/ ILo per unit length 
in the surface of the solenoid. 

Consider next an external field incident on a thin conducting screen. Let 
n be a unit vector normal to the screen (see Fig. 20.1) and let F _ (x) and 
F + (x) be the electromagnetic field on the two sides as a function of the 
spacetime position x. 

EndExpansion 
The total field can be written 

F(x) = F _(x) + & ((xn)s) [F +(x) - F -(x)] , ( 4.30) 

where 
(4.31 ) 

Maxwell's equation gives the current in the screen 

( 4.32) 

Since j is real, the real components of F + and F _ perpendicular to n, as 
well as the imaginary components parallel to n, must be equal at (xn) s = 0: 

( 4.33) 

In particular, if F + vanishes, then the components B_ . nand E_ x n of 
F _ must vanish in the screen. 

The current j in the screen can be expressed as 

j(x) == K(x) 8(x· n) , (4.34) 
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F. 

n 

Conducting screen 

FIGURE 20.1. The screen lies in the plane at (xn) s == x . n = 0; n is the 

vector dual and hence normal to the screen. 

where K(x) = ~(x) c + K(x) is the surface current in the screen 

K(x) = coc [F +(x) - F -(x)] n, (xn) s = 0, (4.35) 

comprising both a vector current K(x) and c times the scalar surface charge 
~(x): 

~(x) = co [E+(x) - E_ (x)]· n 

K(x) = nx [B+(x) - B_(x)] / JL. 

Let Fo be the radiation field incident on the screen from the left, 

(4.36) 

(xn) s < 0, and assume the screen fully blocks the radiation: F + = O. The 
currents in the screen must radiate the field -Fo toward the right in order 
to cancel Fo. By reflection symmetry, whatever field the current in the 
screen radiates to the right, it also radiates to the left. That is, the part 
F _ - Fo of the field on the left of the screen that is not the incident field 
Fo must be the reflection in the screen of -Fo on the right. Remembering 
that nxt n is the reflection of any element x in the in plane, we find the 
reflected field at the real spacetime position x to be 

F 1(x) = F _(x) - Fo(x) 

= -nF~(nxn) n = nFb(nxn) n. (4.37) 
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In the screen, (xn) s = x . n = 0 and x = nxn. Therefore, 

K(x) = -cocF _(x) n = -coC [Fo(x) n + nF6(x)] 

= - 2coc (Fo(x) n)JR . ( 4.38) 

A plane wave Fo = (1 + ko) EO(8) , where 8 = (kox)s , thus induces a 
current 

K(x) = 2coc [(kOXEo) x n - Eo·n] 

The reflected wave is 

( 4.39) 

where kl = -nkon, El = nEon, and 81 = (konxn) s = (k1X) s with 
k1 = w / c + k1 = nkon. The simplest configuration to handle is normal 
incidence: let k o= n. Then k1 = -ko, E1 = -Eo, 81 = wt - k1·x, and 

F1 = - (1 - ko) EO(8d 

K(x) = 2cocEo(wt) . ( 4.40) 

More interesting is oblique incidence. Let n = e3, ko= e3 cos e - e2 sin e, 
and Eo = EO(8) (e2 cos e + e3 sine) . Then 

Fo(x) = (1 + ko) EO(8) 

= Eo ( 8) (e2 cos e + e3 sin e - e2 e3) , 

where 

The surface current in the screen is 

K(x) = -2coc (Fo(x) e3) JR = 2cocEO(8) (e2 - sine) , 

with x3 = 0, and the reflected wave is 

-t F1(X) = -e3FOe3 

= -EO(81) (e2 cose - e3 sine + e2e3) , 

(4.41 ) 

( 4.42) 

( 4.43) 

(4.44) 

where 81 = wt-k1·x = wt+ (x3 cos e + x 2 sine) w/c. For a monochromatic 
wave with, for example, EO(8) = Eo(O) cos 8, we thus find a ripple of current 
and a fluctuating charge density in the screen. 

The same result is obtained by boosting the current j(x) = K(x) 8( (xn) s) 
and F for the case of normal incidence in the -e2 direction by an appropria­
te amount. When the incident radiation has the orthogonal polarization, 
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namely E = Eo(s) el, but the same propagation vector as in the oblique 
case above, then K = 2EocEO (s) el cos e. 

The paravector model is also useful for finding the general solution of 
Maxwell's equation (4.24) for the electromagnetic field in terms of the cu­
rrent (Jeffimenko), which is easily derived in the compact form (see [5] for 
details): 

( 4.45) 

The real and imaginary parts of this result are known as the generalized 
Coulomb-Faraday and generalized Biot-Savart laws, respectively, and were 
first derived by o. Jeffimenko. [7] 

20·4·3 Lorentz force 

The ability to easily relate inertial frames provides insight into many re­
lations and shows, for example, how the Lorentz-force equation follows 
directly from covariance and the definition of the electric field. The elec­
tric field at a point x is defined to be the force per unit charge on a test 
charge at rest at x. This corresponds to the Lorentz force Prest = eErest 
in the instantaneous rest frame of the charge e, where E rest = (Fresteo) JR 

is the electric field at the position of the charge and F is the covariant 
electromagnetic field. 

Let A be the particular Lorentz transformation that boosts the charge 
from rest to its motion in the lab, where the field is F = AF rest A . By letting 
the dot continue to refer to differentiation with respect to the rest-frame 
time (i.e., the Lorentz-invariant proper time), we find 

P = APrestAt = eAErestAt 

= eA(Frest)JRAt = e(AFrestAt)JR 

= e (FAAt) JR = e (Fu) JR . (4.46) 

This is the paravector form of the usual Lorentz-force equation, from which 
it is easily read that P lies in the spacetime plane of F (assuming the field F 
is simple) in the direction orthogonal to the projection of u in that plane. 
The usual component form pI-' = eFl-'vuv is recovered by expanding p and 
u in the paravector basis elements e>.., expanding F in unit biparavectors 
(el-'ev)v' using the asymmetry of its indices, and noting 

((el-'ev)v e>..) JR = el-' (eve>..) s - ev (el-'e>..) s 
(4.47) 
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20.4.4 Wave guides 

Lorentz transformations are useful not only for appreciating basic symme­
tries of electromagnetic theory, but also for deriving and understanding 
practical results such as wave-guide modes. For example, we can start with 
a standing wave between two parallel plane conductors at Y = 0 and y = 
7fc/wo: 

F = cBOele2 cos [wo (t - e2Y/c)] 

= icBoe3 cos wot cos WoY / c + CBOel sin wot sin Woy / c. 

( 4.48) 

( 4.49) 

A boost by L = ul /2 in the e3 direction, with u = '"'( (1 + ve3/c) , yields a 
field in the TEol mode: 

F -+ LFL 

= icBoe3 cos wot cos Woy / c + UCBOel sin wot sin Woy / c 

= iBo (ce3 cos wot cos woy/ c + '"'(ve2 sinwot sinwOY/c) 

+ '"'( BOel sin wot sin Woy j c, 

where in terms of the transformed (primed) coordinates, 

wot = wt' - kgz', y = y' 

W = '"'(wo = VW5 + k~C2, kg = '"'(vwojc2. 

( 4.50) 

(4.51) 

( 4.52) 

( 4.53) 

One sees that the standing-wave frequency is just the cut-off frequency, 
and that the dispersion relation w2 = w5 + k~C2 is a direct result of the 
Lorentz-factor relation, '"'(2 = 1 + '"'(2v2 / c2. 

20.5 Relativity at High Speeds 

Of course there are also applications in electrical engineering where rela­
tivistic treatments are not only convenient but necessary. These include 
the relativistic motion of charges in strong electromagnetic fields [9] and 
radiation from charges in relativistic motion. 

20.5.1 Motion of charges in fields 

The equation of motion (4.46) that we need to solve is simpler in its spino­
rial form, which governs the time evolution of the active Lorentz transfor­
mation A (7) E SL (2, q that takes the charge from rest to its momentum 
p (and orientation) at proper time T: 

p = AmcAt. (5.54) 
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The transformation element A ( T) is the spinorial form of the Lorentz trans­
formation and is known as the eigenspinor of the charge. It is related to 
the charge's proper velocity by 

(5.55) 

From the unimodular property of A, namely All. = 1, the eigenspinor is 
seen to satisfy an equation of motion of the form 

A= ~!1A 
2 

(5.56) 

where the biparavector n == 2AA gives the spacetime rotation rate of the 
charge. By taking the proper-time derivative of p (5.54) and substituting 
(5.56), we obtain 

p = AmcAt + AmcAt 

= mC(!1AAt)JR = mc(!1u)JR. 

(5.57) 

(5.58) 

This has the same form as the Lorentz-force equation (4.46), and a com­
parison identifies the spacetime rotation rate of the charge as proportional 
to the field F at the position x of the charge: !1 = eF / mc. Thus the 
Lorentz-force equation (4.46) can be replaced by the simpler spinorial form 

A = eF A. 
2mc 

(5.59) 

If the direction of the field F is constant at the position of the charge, the 
integral of (5.59) gives directly 

A (T) = exp (_e_ r dT'F (T')) A (0) . 
2mc Jo (5.60) 

Solutions can also be found[5] for charge motion in a plane-wave pulse, 
for which the field has the form of the null fiag[13] 

(5.61) 

where k is the propagation direction and E (8) is the real electric field, 
taken perpendicular to k, as a function of the scalar parameter 

8 = (kx)s = wt-k· x. The null paravector k = w/c+k = (w/c) (1 + k) is 

the nominal propagation paravector in the direction k, but since the wave 
is generally not monochromatic, the actual value of the scalar w / c can be 
chosen for convenience. The functional form of E (8) is arbitrary, but for a 
circularly polarized Gaussian pulse it can have the form 

E (8) = E (0) exp (i8k - 0:82 ) , (5.62) 
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where a is a constant proportional to the inverse width of the wave packet. 
The field (5.61) is seen to be a null biparavector (FF = 0) and hence simple. 
Its vector part is the electric field E (8) and its bivector part gives the plane 
whose normal is the magnetic field: kE (8) = icB. The solution makes use 
of the important projector properties of the factor 1 + k, namely 

(5.63) 

As simple as the spinorial equation (5.59) is, it appears at first to be 
impossible to solve, since F is to be evaluated at the spacetime position of 
the charge, and the position is known only after the equation is solved and 
u is integrated. However, a remarkable symmetry permits direct solution. 
The key to the solution is the surprising invariance of the wave paravector 
k not only in the lab, but also in the sequence of instantaneous rest frames 

of the accelerating charge. Because kc = W ( 1 - k), the spinorial Lorentz­

force equation (5.59) in the field (5.61) gives 

kA = ekF A = O. 
2mc 

(5.64) 

~ ~t 
From conjugations of this result, Ak = 0 = kA , and it follows that k in 
the frame of the charge is constant: 

_ Wrest ( A) _ - - t _ krest - -c- 1 + k - AkA - const. (5.65) 

Furthermore, the proper time-rate of change of the Lorentz scalar 8 is 
simply the fixed rest-frame frequency 

s = c (kfl) s = Wrest . (5.66) 

Consequently, the evolution (5.56) of the eigenspinor can be expressed 

dA 1· eFA 
-=-A=--­
d8 S 2mcwrest 

eE(8)kA(8) ekE(8)A(0) 
2mwwrest 2mwwrest' 

(5.67) 

since integration of kA = 0 implies that kA is constant, and kE = Ek. In 
terms of the paravector potential A (8) , 

where A' (8) = dA (8) / d8, and with the Lorenz-gauge condition 
(BA)s = 0, 

F = ckA' (8) = -cA' (8) k 

(5.68) 

(5.69) 
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so that dA/ds can be integrated to give fj,A == A (s) - A (0) proportional 
to the change fj,A in the paravector potential: 

fj,A = ekfj,A A (0) . 
2mwrest 

(5.70) 

This beautifully simple result can be used to find the proper velocity 
u = AA t and spacetime position x = c J UdT of the charge at later times. 
The method has recently been extended by adding an axial magnetic or 
electric field to the plane-wave pulse. The extensions give exact solutions 
of the effective mass of the charge dressed by the pulse. They also pro­
vide analytical solutions for the autoresonant laser accelerator (ALA). By 
locking the proper cyclotron frequency of the charge onto the rest-frame 
frequency of circularly polarized radiation, the ALA can achieve impressive 
accelerations of the charge. [6] 

20.5.2 Virtual photon sheets 

The paravector potential of an accelerating point charge e following the 
world path r (T) is the Lienard-Wiechert potential 

Zo eu 
A(x) = 41r (Ru)s' (5.71) 

where uc = dr / dT and it is understood that rand u are evaluated at 
the retarded time so that R == x - r ( T) is a lightlike ray. Differentiation 
with allowance for the dependence of the retarded time T on x gives the 
electromagnetic field (4.25):[5] 

Zo e ( 1 - -) F(x) = -4 --3 c(Ru)v + -RuuR 
1r (Ru)s 2 

(5.72) 

in which the first term is the transformed Coulomb field and the second 
term is a null flag that gives the radiation (acceleration) field. 

If r (T) is confined to a single timelike plane, the calculation of field 
lines is quite simple. One notes that the electromagnetic field propagates 
from the charge at the speed of light and that in the commoving frame of 
the charge, the field starts off as the Coulomb field. Consider streams of 
"virtual photons" that are emitted isotropic ally in the commoving frame. 
The emission angles are easily transformed to the lab frame. While each 
virtual photon moves in a fixed direction at the speed of light, the stream 
consists of photons emitted at different times from the moving charge. If 
the charge oscillates, the streams develop kinks, similar to the kinks in 
a stream of water from an oscillating hose even though the component 
droplets follow ballistic trajectories. 
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FIGURE 20.2. Virtual photons that form the electric field lines of a 

uniformly accelerated charge, as calculated by Maple V. The photons 

are shown both at the instant the charge turns around and later, after 

it has accelerated some distance along the x axis. 

The virtual-photon streams sweep out sheets in spacetime. The tangent 
plane to the sheet at the observer position x = r+ R at retarded proper time 
T = 0 contains both the ray R and the proper-time derivative d (r + R') /dT, 
where R' (T) is defined to be equal to R (0) in the commoving frame of the 
charge. In terms of the eigenspinor of the charge (see previous subsection), 

(5.73) 

and the direction of R' (T) will generally change if the charge is accelerating. 
From the evolution equation (5.56) for A (T), 

dR' 
dT = (OR') JR = (OR) JR 

at T = O. The tangent plane is thus given by the biparavector 

( R d~ (r + in) v = (Rile + R(OR) JR) v 

= ( Rue + ~ ml t R) v . 

(5.74) 

(5.75) 

Now both the position r of the charge and the direction of the ray R 
changes in time. If the acceleration is collinear with the velocity, 0 is real 
and commutes with u so that 

u = (Ou}JR = Ou 
ot = uu 

(5.76) 

(5.77) 
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and the tangent plane to the photon sheets is 

/ 1 - -) 
\ Rue + "2 RuuR v (5.78) 

is exactly the plane of the electromagnetic field (5.72). Furthermore, it can 
be shown that the slice of such sheets at an instant in time give the electric­
field lines. This is the basis for the virtual photon method, which allows 
the calculation of field lines with an extremely simple algorithm. [5] At each 
time step, virtual photons are launched at the Lorentz-transformed angles 
and continue to move in straight lines at the speed of light. The result of a 
Maple plot of the electric field lines for a uniformly accelerating charge is 
shown in Fig. 20.2. 

20.6 Conclusions 

The paravector model of C£3 lets electrical engineers take advantage of 
the natural relativistic symmetries of the Maxwell-Lorentz theory while 
remaining close to their familiar vector notation. The powerful new tools 
offered by geometric algebra include projectors and eigenspinor methods. 
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Chapter 21 

Applications of Geometric 
Algebra in Physics and Links 
With Engineering 

Anthony Lasenby and Joan Lasenby 

21.1 Introduction 

While the early applications of geometric algebra (GA) were confined to 
physics, there has been significant progress over recent years in applying 
geometric algebra to areas of engineering and computer science. The beauty 
of using the same language for these applications is that both engineers and 
physicists should be able to understand the work done in each others fields. 
It is the aim of this paper to give brief outlines of the use of GA in the a­
reas of relativity, quantum mechanics and gravitation - all using tools with 
which anyone working with GA should be familiar. Taking one particular 
area, multiparticle quantum mechanics, it is shown that the same mathe­
matics may have some interesting applications in the fields of computer 
vision and robotics. 

In this contribution, we review some of the physical applications in which 
a geometric algebra formulation is particularly helpful. This includes elec­
tromagnetism, quantum mechanics and gravitational theory. Then we show 
how some of these same techniques are of use and interest in engineering. 
More generally, we show how the availability of a unified mathematical lan­
guage, able to span both disciplines, is an advantage in allowing profession­
als from each area to increase their understanding of previously inaccessible 
material, and make contributions outside their usual areas of expertise. As 
a case study involving new material, we examine a generalization to 4-d 
space, of the new conformal representation of 3-d Euclidean space being 
developed by Hestenes and collaborators (see e.g. chapter 1). This confor­
mal representation is already finding application in robotics [3] and may 
also be important in interpolation of rigid body motion [4]. We show how 
the 4-d version has unexpected links with the mathematics of sophisticated 
objects called 'twistors', and perhaps even more surprisingly, with multi­
particle quantum mechanics. These links then suggest a novel method for 
carrying out such interpolation, allowing consideration of velocities as well 
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as positions in 3-d. 
In order to start the discussion of applications of geometric algebra in 

physics, it is necessary to introduce the spacetime algebra or STA - the 
geometric algebra of relativistic 4-dimensional spacetime. This may seem 
overly complicated to someone who wishes to see examples of links bet­
ween physics and engineering expressed in geometric algebra. It is true 
that relativity theory impinges hardly at all on most engineering practice 
and applications. However, we shall see below that setting up the STA at 
the start is useful in areas as diverse as computer vision, quantum com­
puting and (as mentioned before) interpolation of rigid body motion. Also, 
it is what will allow us to consider applications in physics such as electro­
magnetism and gravitational theory. Thus this contribution begins with an 
introduction to the STA and shows briefly how a concept called the pro­
jective split allows an easy articulation between four dimensions and the 
concepts of ordinary 3-dimensional geometric algebra. 

21.2 The Spacetime Algebra 

The spacetime algebra or STA is the geometric algebra of Minkowski space­
time. We introduce an orthonormal frame of vectors blL}' J.L = 0 ... 3, such 
that 

The STA has the basis 

1 blL} blLl\/,v} {hlL} 
1 scalar 4 vectors 6 bivectors 4 trivectors 

The pseudoscalar i anti-commutes with vectors. 

i == /'0/'1/'2/'3 
1 pseudoscalar 

(2.1) 

At this point we note that generally, when working with single particle 
algebras, the standard has become to use I for the pseudoscalar; however, 
here, we will use i to denote the pseudoscalar to avoid later confusion when 
we discuss the multiparticle STA. 

21.2.1 The spacetime split, special relativity, 
and electromagnetism 

In special relativity (SR) we deal with a 4-dimensional space; the three 
dimensions of ordinary Euclidean space, and time. Suppose we have a sta­
tionary observer with whom we can associate coordinates of space and time; 
this observer will observe events from his spacetime position. Now suppose 
that we have another observer travelling at a velocity v - he too will ob­
serve events from his continuously changing spacetime position. Relative 
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vectors for an observer moving with velocity v are modelled as bivectors, 
so al\v gives the vector a seen in the v frame. Usually we take v = 1'0 and 
define 

k = 1,2,3 (2.2) 

The even sub algebra of the STA is then the algebra of relative space, 
spanned by 

1, {ad, {iad, i (2.3) 

The distinction between relative vectors and relative bivectors is frame­
dependent and the process of moving between a vector a in the 4-d STA 
and its representation a in the relative space is known as the spacetime 
split; 

a = al\l'o (2.4) 

In practical geometric problems occuring in computer vision and com­
puter graphics it is common to move up from our 3-d Euclidean space to 
work in a 4-d projective space, where non-linear transformations become 
linear and where intersections of lines, planes etc., are easy to compute. This 
extra dimension is analogous to the 1'0 in the STA (although in projective 
geometry one can have either a (+, +, +, +) or a (+, -, -, -) signature) 
and moving between projective space and Euclidean space can similarly be 
carried out using the projective split, given by 

al\l'o 
a=--

atho 
(2.5) 

Here we are again relating the vectors in relative space (3-d) with bivec­
tors in the higher (4-d) space. Alternatively, we can define the vector in 
3-space, a as ajl'j, j = 1,2,3 and the associated vector in the higher space, 
a, by 

a = ao(ajl'j + 1'0), j = 1,2,3 (2.6) 

so that we have 

(al\l'oho a = -'----'-"-'--'-'-
a/ho 

(2.7) 

Both of the above interpretations have been used in the literature in 
discussions of projective and conformal geometry, [6, 7]. 

Returning to the STA, one can conventionally derive a coordinate trans­
formation between the frames of two observers, and to move between 
these two frames one applies a matrix transformation known as a Lorentz 
Boost. Geometric algebra provides us with a beautifully simple way of 
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dealing with special relativistic transformations using the simple formula 
for rotations that we will discuss below, namely a' = RaR ([8, 9]). 

We have seen in other contributions in this volume that in any geometric 
algebra, rotations are achieved by quantities called rotors. A rotor R can 
be written as 

R= ±exp(-B/2) (2.8) 

where B is a bivector representing the plane in which the rotation takes 
place. It is then easy to show that a rotation of a vector a to a vector a' is 
achieved by the equation 

a' = RaR 

In 3-d R is made up of scalar and bivector parts while in 4-d it has scalar, 
bivector and pseudoscalar parts; in each case it has a double-sided action. 
We should stress here that a rotor is simply part of the algebra and need 
not have special operator status. We will see in the following sections that 
rotors are crucial quantities in much of physics, in particular, we will see 
that simple rotations in the STA will allow us to understand most of special 
relativity and will play an important role in quantum mechanics. 

The Lorentz boost turns out to be simply a rotor R which takes the time 
axis to a different position in 4-d ; R'YoR. So, in an elegant coordinate-free 
way we are able to give the transformations of SR an intuitive geometric 
meaning. All the usual results of SR follow very quickly from this starting 
point. 

Moving nOw to electromagnetism, the electromagnetic field strength is 
given by the bivector 

(2.9) 

where the Greek indices f.L and v run over 0,1,2,3. In the 'Yo frame this 
decomposes into bivectors of the form 'Yno and 'Ynj (i,j, = 1,2,3, i i- j), 
so that we can write 

F = E+iB (2.10) 

where E and B are the electric and magnetic fields and are given by 
E = Ekak = ~(F - 'YoF'Yo) and B = Bkak = ~(F + 'YoF'Yo), Here, sand­
wiching between 'Yo flips the sign of the 'Yno bivectors but leaves the 'Ynj 
bivectors unaltered. This form of F explains the usefulness of complex 
numbers in electromagnetism. Now, let us define the 4-d gradient operator 
as 

(2.11) 
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It is not hard to show that the full Maxwell equations can then be written 
simply as 

(2.12) 

where J is the source current. The above formulation of electromagnetism 
is also being used in several engineering applications, e.g. surface scattering 
of EM waves from objects such as ships, antennae design etc. 

As an example of the simplifications that this approach can afford, con­
sider what the electric and magnetic fields look like under a Lorentz boost. 
The conventional complicated formulae for the transformation are now re­
placed by the result 

E' + iB' = R(E + iB)R 

where dashes denote transformed quantities and R is the rotation in the 
STA representing the boost. 

To illustrate this explicitly, and to make the link with the standard for­
mulae, we consider a boost with velocity parameter u (so the actual velocity 
is tanh u) in the x direction, where the original field is E = Eay, i.e. an 
electric field in the y direction only with no magnetic field component. We 

u a 
have R = e Z x and so 

E' + iB' 
u u 

Eezaxa e- zax 
y 

EeuaXay = E(cosh u + ax sinh u)ay 

E(cosh uay + ia z sinh u) (2.13) 

We can clearly see a B field is induced in the z-direction, with ampli­
tude E sinh u. Note the electromagnetic invariants arise immediately via 
the relation 

F,2 = RFRRFR = RF2R = F2 (2.14) 

since F2 contains only scalar and pseudoscalar parts. Specifically we have 

Scalar part of F2 

Pseudoscalar part of F2 (2.15) 

and so E2 _B2 and E8B are invariant under any Lorentz transformation 
(as may be checked for the example above). 

The complicated tensor formula for the electromagnetic stress energy 
tensor becomes extremely simple in the STA. We find the flow of ener­
gy jmomentum through a hypersurface normal to the vector n is given by 

1 -
T(n) = 2,FnF (2.16) 
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That is, we just rotate n by F! 
This then easily leads to the standard Heaviside and Poynting formulae 

for the energy density and momentum flow in a given frame (e.g. the ')'0 

frame). (For further examples and details see e.g. [9, 10, 11] and [12].) The 
STA really does seem to capture the essence of electromagnetism in a very 
compact and useful formalism! 

21.3 Quantum Mechanics 

In non-relativistic quantum mechanics there are important quantities known 
as Pauli spinors - using these spinors we are able to write down the Pauli 
equation which governs the behaviour of a quantum mechanical state in 
some external field. The equation involves quantities called spin operators 
which are conventionally seen as completely different entities to the states. 
Using the 3-d geometric algebra we are able to write down the equivalent 
to the Pauli equation where the operators and states are all real-space mul­
tivectors - indeed the spinors become proportional to rotors of the type we 
have discussed earlier. The algebra of the {CI'i} is isomorphic to the algebra 
of Pauli spin matrices. 

To see how this works in a simple context, we consider the case of an 
electron in a magnetic field. A conventional quantum Pauli spinor 1'ljI), 
which is normally written as a two component complex column 'vector', is 
put into 1-1 correspondence with a GA spinor 'ljI (an even element of the 
geometric algebra of 3-d space) via: 

1'ljI) = 2· 1 f-? 'ljI = a + a ZCl'k ( aO + ja3 ) 0 k. 
-a +Ja 

(3.17) 

(Note the symbol j is used for the unit scalar imaginary of quantum me­
chanics). We are interested in how the electron spin behaves, and will ignore 
any spatial variation. It is then easy to show that the GA form of the Pauli 
equation for this setup is 

d'ljl 1. - = -')'zB'ljI dt 2 
(3.18) 

Here B is the magnetic field as described in the previous section and ')' 
is the 'gyromagnetic ratio'. b ~ elm for an electron, where e and mare 
the elect on charge and mass.) Any Pauli spinor can be decomposed as 

1 
'ljI = p2 R, where p is a scalar and R is a rotor. Substituting this form into 
(3.18), multiplying by ;j; and denoting time derivatives by an overdot, we 
obtain 

(3.19) 

It is straightforward to show that RR = 1 implies RR is a bivector. The 
right hand side of (3.19) is also a bivector, so we deduce p = O. The scale 
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thus drops out of the problem and the dynamics reduces to the rotor equa­
tion 

R= hiBR (3.20) 

The conventional approach is unable to work with this single rotor equa­
tion, but instead has to work with two coupled complex equations, one 
for each of the components of the quantum state. Although the underlying 
physics is the same, the rotor form is often significantly easier to solve (e.g., 
for a constant field B = BOCT3 along the z-axis, we can immediately inter­
grate to find 'l/J(t) = expbBotiCT3/2)'l/JO) and makes the analogue with the 
corresponding classical system much more transparent. 

Relativistic quantum mechanics is conventionally described by the Dirac 
algebra, where the Dirac equation again tells us about the state of the 
particle in an external field. Here we use the 4-d spacetime geometric alge­
bra with the algebra of the blL} isomorphic to that of the Dirac matrices. 
Again the wavefunction in conventional quantum mechanics becomes an 
instruction to rotate a basis set of axes and align them in certain directions 
- analogous to the theory of rigid body mechanics! We see therefore that 
there is a significant shift in interpretation; in GA, the states and opera­
tors no longer live in different spaces but are instead simply multivector 
elements of the geometric algebra. 

Thus, with the STA, we can eliminate matrices and complex numbers 
from the Dirac theory. Suppose we start with the standard Dirac matrices: 

~i ( 0 '"V -I - ~ 

-CTi 
(3.21) 

where the {ai} are the usual Pauli spin matrices and I is the 2 x 2 identity 
matrix. A Dirac column spinor I'l/J) maps onto an element of the 8-d even 
subalgebra ( a spinor) of the STA via the following: 

(3.22) 

Dirac matrix operations are now replaced by: 

(3.23) 

This enables us to write the Dirac equation as 

(3.24) 

where \7 = ,lLalL is the gradient operator defined in the previous section 
and A is the 4-potential of the external electromagnetic field. Note this 
equation - often referred to as the Hestenes form of the Dirac equation -
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is independent of choice of matrix representation and is therefore the best 
form in which to expose the geometric content of Dirac theory. 

In the conventional approach it is usual to define an additional operator 
15 = - j10111213 - in our approach this is replaced by right multiplication 
by (}3. Two of the main observables of Dirac theory (J and s, the so-called 
bilinear covariants) become: 

J iL = (1{;1 iL ~ ) <-t ({(ryiL ~"to) = "tiL 8 J 

SiL = (1{;151 iL ~ ) <-t ( ;jryiL ~"(3) = "tiL 8 s 

where 1{; is the Dirac adjoint. The key quantities are the STA vectors J and 
s: 

(3.25) 

(Note that there exist a set of identities called the Fierz identities which, 
in the above formulation, reduce to simple vector manipulations.) 
It is now possible to decompose the spinor ~ in a Lorentz invariant manner; 

scalar + pseudoscalar (3.26) 

Using this decomposition we can write ~ as follows 

(3.27) 

where R is a spacetime rotor. The observables now become 

(3.28) 

so the spinor reduces to an instruction to rotate the { "tiL} frame onto the 
frame of observables. The STA framework for quantum mechanics has been 
applied in tunnelling theory [13] where it is capable of plotting streamlines 
representing the path of a particle inside a barrier. It is then easy to calcu­
late tunnelling times, the time a particle spends within a barrier, - some­
thing which is much harder to do in conventional quantum mechanics where 
the concepts of imaginary time or momentum preclude straightforward cal­
culations. Applications in electron scattering [14] have reformulated much 
of conventional theory allowing spin sums to be done straightforwardly and 
revealing rotor-structure at the heart of the formulation. For further details 
of applications to quantum theory, see [15]. The above once again illustrates 
that using geometric algebra one is able to deal with complex subjects such 
as relativistic quantum mechanics using those same tools used in current 
engineering applications of geometric algebra. 
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21.4 Gravity as a Gauge Theory 

A gauge theory occurs if we stipulate that global symmetries must also 
be local symmetries - electromagnetism is a gauge theory where the sy­
mmetries are called phase rotations. Making these local, i.e. able to change 
arbitrarily from one spacetime position to the next, implies the introduction 
of forces. In geometric algebra, gravity can also be regarded as a gauge 
theory. If we require that the physics at all points of spacetime is invariant 
under arbitrary local displacements and rotations (recall that a 4-d rotation 
is a Lorentz boost), the gauge field that results is the gravitational field. 
Thus, the aim is to produce a gauge theory of gravity employing fields in a 
'flat' background spacetime (defined by the STA); we then have no need for 
the complex notions of curved spacetime that are associated with Einstein's 
theory of general relativity. How can we construct such a theory without 
imposing some form of absolute Newtonian space? We start by ensuring 
that the following criteria are satisfied: 

1. The physical content of a field equation must be unchanged under 
arbitrary local field displacements. 

2. The physical content of a field equation must be unchanged under 
arbitrary local rotations of the fields. 

In looking at how the resulting gauge theory differs from past gauge­
theoretic approaches to gravity, we note the following points: 

1. It is different from Poincare gauge theory, which retains the ideas of 
a curved spacetime background. 

2. There is no need to restrict to infinitesimal transformations; within 
GA we can work with finite rotations. 

3. The need for principle 2 only emerges fully from a theory based on 
the Dirac equation. 

To see mathematically what the symmetry constraints impose we first con­
sider a relation of the type 

a(x) = b(x) (4.29) 

which equates spacetime vectors at the same point. Now we introduce new 
fields 

a'(x) == a(x') b'(x) == b(x') ( 4.30) 

where x' = f(x) is some arbitrary (nonlinear) mapping between position 
vectors. The equation 

a'(x) = b'(x) (4.31) 

has exactly the same content as the original equation, since the value of x 
is irrelevant provided it covers all of spacetime. This is true for arbitrary 
displacements. 
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In order to satisfy our previous conditions we require that this holds for 
all physical equations. 

Next consider a relation of the type a(x) = \l¢(x). If we replace ¢(x) 
with ¢/(x) = ¢(x') we must now consider \l acting on the new scalar field 
\l ¢(f (x))); by using the definition of the vector derivative it can be shown 
that [16] 

\l¢'(x) = f[\l xl¢(x')] ( 4.32) 

where 
f(a) = a8\l f(x) (4.33) 

Here, f(a) = f(a, x) is a linear function of its vector argument, and a nonli­
near function of position, f( a) is its adjoint. The appearance of this function 
means that the equation does not have the required transformation pro­
perty. 

We repair this by replacing \l with a new derivative h(\l), where h(a) 
is a linear function of a and has arbitrary position dependence; we call 
h(a) = h(a, x) the position gauge field. The adjoint function is written 
h(a). Under a local displacement, this is defined to transform as 

h(a,x) I-> h'(a,x) = h[f- 1 (a),x'] 

This law ensures that the equation 

a(x) = h[\l¢(x)] 

(4.34) 

(4.35) 

is now covariant, in the required manner, i.e. under a change of position 
the equation takes the same form but is evaluated at that new position. 

Recovering General Relativity 

Using the linear function h it is now possible to recover classical general 
relativity (GR). To do this we first introduce a set of local coordinates 
xl' = xl'(x), with coordinate frames 

(4.36) 

we can then recover a metric as follows: 

( 4.37) 

This metric is then treated as a field in a flat background spacetime. 

Rotations 

As we have indicated in previous sections, rotations are often the key to 
the simplifications provided by GA. In this application it is again true that 
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rotations are key to the novelty of this new approach, and also the key to 
torsion. Let us return to the equation a(x) = b(x). Note that the physical 
content of this equation is unchanged if we replace a and b by 

a'(x) = Ra(x)R b'(x) = Rb(x)R ( 4.38) 

since a = b =} a' = b'. The physics is unchanged, provided the absolute 
direction of the vector in the STA does not enter (the second of our two 
principles). Again, this argument holds for arbitrary, local rotations. 
To ensure that relations of the type 

a = h(V'¢) (4.39) 

remain unchanged, we are led to the transformation law 

h(a) ~ h'(a) = Rh(a)R ( 4.40) 

for h under local rotations. 
What does general relativity have to say about this transformation? -

surprisingly, nothing! 
The metric gILl-' is unchanged by this transformation, as are the components 
of covariant quantities: 

( 4.41) 

Both F and h rotate to leave the components unchanged. 
(Most of) classical general relativity can be formulated in the STA with­
out mentioning the rotation gauge. But do we also need to consider the 
Poincare group? In fact, it is already fully encompassed by allowing arbi­
trary displacements. 

This then leads us to ask the question of whether we have to address 
the rotation group at all? The answer to this question is Yes!; it is indeed 
unavoidable in the Dirac theory. We can see this by recalling the fact that 
observables such as J = 'IjJ'Yo'([; imply the spinor transformation law 

(4.42) 

Since this cannot be hidden, we are forced to introduce a new gauge field 
to make the Dirac theory invariant under local rotations. 

Now let us look at the directional derivatives of V'(R'IjJ): 

a8V'(R'IjJ) a8V'R'IjJ + Ra8V' 'IjJ 

R[Ra8V'R'IjJ + a8V''IjJ] 

Note that the quantity Ra8V'R is a bivector. We now define the spinor 
covariant derivative as 

( 4.43) 
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n(a) is a bivector-valued linear function of a, with nonlinear position de­
pendence which has the transformation law 

n(a) f--+ n'(a) = Rn(a)R - 2a8\! RR (4.44) 

We are now able to write down the minimally-coupled Dirac equation: 

(4.45) 

The {Oa, a} construction is a frame-free way of writing a contraction (see 
[16] for further details). 

Observables 

We see that it is now possible to differentiate covariant vectors: 

which suggests that we define the derivative 

VaJ (Da'I/Jho~ + 'I/J'Yo(Da'I/J) 
a8\! J + n (a) x J 

( 4.46) 

This is the covariant derivative for multivectors, where AxB = ~(AB-BA) 
represents the Hestenes commutator product [25]. 

From n(a) we define 
w(a) = nh(a) (4.47) 

which is covariant under local displacements, and only sees the rotation 
group. When the rotation gauge is fixed, the quantities in w(a) become 
physical observables (measurable). Classical general relativity has no ana­
logue of these. 

Note here that the full covariant derivative is 

( 4.48) 

The rest of the theory then proceeds by defining the following field 
strength tensor 

(4.49) 

By a double contraction we can get the Ricci scalar 

(4.50) 

This can then be used in an action principle requiring stationarity of 

(4.51) 
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where the matter Lagrangian is Lm and with n(a) and h(a) as the dy­
namical variables ('" = 87rG is the gravitational coupling constant). 

The result is a theory which locally reproduces the equations of the ECKS 
(Einstein, Cartan, Kibble, Sciama) extension of GR with the following no­
table differences: 

• it sits in a topologically trivial flat spacetime 

• has all the advantages of flat-space STA still available for calculations 

• finite gauge rotations and displacements are allowed 

• the torsion type is uniquely picked out (80 (a)Lm = S(a) = torsion 
tensor. This must be of the Dirac type, i.e. 8abS(a) = 0 for minimal 
coupling) 

• Physical observables and gauge covariant quantities of the theory are 
clearly picked out. 

21.4.1 Some applications 

In this section we briefly outline some of the applications of this gauge 
theory of gravity (GTG). 

1. Covariant and gauge-invariant calculation of cosmic microwave back­
ground (CME) anisotropies. 
The GTG approach provides a completely unified scheme for scalar, 
vector and tensor quantities. It has been applied very successfully 
to the gauge-invariant calculation of CMB anisotropies [17] and to 
the development of perturbations, where it recovers the covariant a­
pproach of Ellis and coworkers [5]. 

2. Topological applications. 
Despite sitting in a topologically trivial flat spacetime, the GTG 
can in fact be applied to some situations which would conventio­
nally be thought of as involving topology. It is found that entities 
like cosmic strings are allowed and can be treated (similar to the 
Aharanov-Bohm effect in electromagnetism), but that wormholes, 
kinks, Kruskal-Szekeres and all forms of double cover are ruled out 
under this theory. 

3. Cosmic Stings 
A new spinning cosmic string solution [18] has been found which 
corrected an earlier GR-based attempt. 

4. Singularities 
The availability of integral theorems (Gauss etc. ) means that we 
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FIGURE 21.1. Setup for computing spectrallineshapes using the GTG 

approach. 

can study the structure of singularities in new ways. For example, 
the singularity at the centre of the Kerr solution is revealed to be a 
ring of matter rotating at light-like velocity, but with a ring of pure 
tension stretched across it [19]. Such conclusions are gauge invariant. 

5. Spectrallineshapes 
A recent project [20] has concentrated on calculating spectral line­
shapes from iron-line fluoresence in accretion discs around black holes 
in active galactic nuclei (AGN). Here the GTG provides an efficient 
calculational tool and gives a clear approach to the physical (gauge 
invariant) predictions, see figure 21.1. Results so far, for a particular 
active galactic nucleus, show that if a is the specific angular mo­
mentum of the black hole line and M is its mass, then aj M > 0.9 
at 90 percent confidence, giving some of the first quantitative evi­
dence for a spinning black hole. In this approach the 2nd order GR 
geodesic equations are replaced by first order equations for a rotor 
which describes the photon momentum. Integrating the rotor equa­
tions in such a setup has links with the procedures required when 
dealing with buckling beams and deforming elastic fibres (see below). 

6. Black holes 
In the GTG approach, black holes have a memory of the direction of 
time in which they were formed encoded in them. This means that 
the first order (in derivatives) nature of the GTG results in time-
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reversal properties which are slightly different than those predicted 
in G R based on metric (second order) theory. A full discussion of this 
may be found in [16]. 

7. Spinning Black Holes 
The GTG has produced a new and very simple form of the Kerr 
solution for spinning black holes [21]. This is called the Newtonian 
Kerr and takes the form 

h(a) = a - a8eu 
2Msinhu V 
Lcosh2 u 

( 4.52) 

where we work in oblate spheroidal coordinates (t, u, ¢;, v), and the 
velocity vector V is given by 

cosh Ul'o + cos v¢ 
V=-----;=:=~=== J cosh2 U - cos2 V 

(4.53) 

This provides a global solution which is not much more complicated 
than the Schwarzschild solution for stationary black holes. 

21.4.2 Summary 

This section has given an outline of how GA can be used to formulate a 
gauge theory of gravity and in the process reduces the tensor manipulations 
of general relativity to nothing more than linear algebra. The same tools are 
used throughout. Indeed it may be possible to use linear functions, which 
act in the same way as the h functions, to model elasticity. The concept of 
a frame of reference that varies in either space or time (or both) is also at 
the heart of much work that tries to understand deforming bodies. A very 
simple example is provided by a beam of uniform cross-section subject to 
some loading along its length. We can describe this deformation by splitting 
up the beam into very small segments and attaching a frame to the centre 
of mass of each segment. As the beam deforms and is subjected to torsional 
forces, we can describe its position at a given time by a series of translations 
and rotations specifying the positions and orientations of each element, see 
figure 21.2. 

Current work [22] has focussed on rewriting conventional buckling equa­
tions in terms of GA which has the advantage of allowing us to deal with 
finite rotations and to interpolate resulting rotor fields. However, the me­
thods outlined in this section present us with the possibility of employing 
more sophisticated techniques for such problems and for more general pro­
blems involving the deformation of long elastic fibres under given boundary 
conditions. 
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FIGURE 21.2. Model of a beam split into very small segments - the 

deformation is described by the positon and orientation of each seg­

ment. 

21.5 A New Representation of 6-d Conformal 

Space 

A useful new application of geometric algebra to Euclidean geometry has 
been given by Hestenes et al. [2J. This uses a 5-d space to provide a con­
formal model of Euclidean geometry. Specifically two null vectors, e and e* 
are adjoined to Euclidean space, which anticommute with the three basis 
vectors of Euclidean space and satisfy 

et5e* = 1. (5.54) 

Two key results are 

1. If x and yare the 5-d vectors representing 3-d points x and y, then 
the inner product in 5-d gives a measure of the distance between the 
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points in 3-d: 

1 2 
x8y = - - (x - y) . 

2 
(5.55) 

2. Secondly, both translations and rotations in 3-d are representable by 
versor multiplication in 5-d. We can write 

X' = DxD- 1 , (5.56) 

where D = TaR, R represents a rotation about a direction in 3-d and 
Ta = 1 + ~ae is a translation in the direction a. Note ae is a null 
bivector in the 5-d space, and so Ta can be written in the exponential 
form exp(~ae). 

This new conformal model of Euclidean geometry appears to be rich in 
applications to computer vision and robotics (see chapter 13, where the 
authors use the conformal model for the algebra of incidence and for esti­
mating Euclidean motion ). One possible application is to the problem of 
the joint interpolation of rotational and translational motion of robot arms 
(see e.g. [4, 1]), where the ability to write the motion in versor form could be 
of great benefit. Here, we consider a similar model but applied to relativistic 
rather than Euclidean geometry. This can be achieved in two ways. Firstly, 
one could use a 6-d space in which two extra null vectors satisfying e8e* = 1 
have been added to a 4-d Lorentzian space. This is the obvious generaliza­
tion of Hestenes' method to one dimension up, and should work very well as 
something to apply to relativistic problems (e.g. it may allow the problem 
of motion interpolation to be extended to include interpolation of velocities 
as well as positions - this is currently being investigated). However, as a 
novel method, one may instead use the 2-particle space of the 'multipar­
ticle STA' (see [15, 12]), which is in fact 8-dimensional, and it is this we 
consider in detail here. The reason for wishing to stress this new method, is 
that it sheds wholly unexpected light on the links between such disparate 
concepts as multiparticle quantum mechanics, relativity, twistors, 2-spinors 
and the Hestenes conformal representation. Many of these are things which 
'engineers' might never have expected to find out about, or to be related to 
things they wish to know, but here we show how they are in fact intimately 
related. In particular, we show that the re-expression of twist or theory in 
multiparticle GA, shows that the main results of the Hestenes conformal 
representation method are already-known aspects of twist or theory! The 
links between both of these and multiparticle quantum mechanics appear 
to be wholly new. (There is even an exciting hint in the work that it will 
allow a new and concrete expression of the particle physics concept of su­
persymmetry.) We give here just the bare outline of the method - a more 
detailed exposition is in preparation. 
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21.5.1 The multiparticle STA 

To get started on this topic we need to understand aspects of the multipar­
ticle theory within geometric algebra. The MSTA (Multiparticle SpaceTime 
Algebra) approach is capable of encoding multiparticle wavefunctions, and 
describing the correlations between them. The presentation here is hope­
fully complementary to the presentation given in the context of quantum 
computing by Havel (see chapter 14) and parallels that given in Chapter 
11 of the Banff Lectures [12] by Lasenby, Gull and Doran and in the review 
paper by Doran et al. 'Spacetime Algebra and Electron Physics' [15]. 

The n-particle STA is created simply by taking n sets of basis vectors 
{I'~}, where the superscript labels the particle space, and imposing the 
geometric algebra relations 

0.5 i -I j 
0.5 i = j. 

These relations are summarized in the single formula 

i 5: j ;:}ij 
I'pYl'v = u 'rJ/w· 

(5.57) 

(5.58) 

The fact that the basis vectors from distinct particle spaces anticommute 
means that we have constructed a basis for the geometric algebra of a 
4n-dimensional configuration space. (Note the extra dimensions serve sim­
ply to label the properties of each individual particle, and should not be 
thought of as existing in anything other than a mathematical sense.) 

Throughout, Roman superscripts are employed to label the particle space 
in which the object appears. So, for example, 1jJl and 1jJ2 refer to two copies 
of the same I-particle object 1jJ, and not to separate, independent objects. 
Separate objects are given distinct symbols while the absence of super­
scripts denotes that all objects have been collapsed into a single copy of 
the STA. 

21.5.2 2-Particle Pauli states and the 
quantum correlator 

As an introduction to the properties of the multiparticle STA, we first 
consider the 2-particle Pauli algebra and the spin states of pairs of spin-
1/2 particles. As in the single-particle case, the 2-particle Pauli algebra is 
just a subset of the full 2-particle STA. A set of basis vectors is defined by 

which satisfy 

(5.59) 

(5.60) 

(5.61) 
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So, in constructing multi particle Pauli states, the basis vectors from diffe­
rent particle spaces commute rather than anticommute. Using the elements 
{l, iaL ia~, iaJ ian as a basis, we can construct 2-particle states. Here we 
have introduced the abbreviation 

(5.62) 

since, in most expressions, it is obvious which particle label should be atta­
ched to the i. In cases where there is potential for confusion, the particle 
label is put back on the i. The basis set {1, iaL ia~, iaJ ian spans a 
16-dimensional space, which is twice the dimension of the direct product 
space of two 2-component complex spinors. For example, the outer-product 
space of two spin-1/2 states can be built from complex superpositions of 
the set 

(5.63) 

which forms a 4-dimensional complex space (8 real dimensions). Here 
the (1,0)T and (0, 1)T symbols refer to the spin up and spin down states 
of conventional quantum mechanics, often written as I i) and I 1) respec­
tively. The dimensionality has doubled because we have not yet taken the 
complex structure of the spinors into account. While the role of j is played 
in the two single-particle spaces by right multiplication by iaj and ia~ 
respectively, standard quantum mechanics does not distinguish between 
these operations. A projection operator must therefore be included to en­
sure that right multiplication by iaj or ia~ reduces to the same operation. 
If a 2-particle spin state is represented by the multivector 'lj!, then 'lj! must 
satisfy 

(5.64) 

from which we find that 

'lj! = -'lj!id ia~ 
=* 'lj! = 'lj!~(1- iaj i(5). 

(5.65) 

On defining 
E 1 (1 . 1· 2) = 2 - za3 za3 , (5.66) 

we find that 
(5.67) 

so right multiplication by E is a projection operation. (The relation E2 = E 
means that E is technically referred to as an 'idempotent' element.) It 
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follows that the 2-particle state 'lj; must contain a factor of E on its right­
hand side. We can further define 

J E · 1 E' 2 1 (. 1 . 2) = ZiT 3 = ZiT 3 = "2 ZiT 3 + to' 3 (5.68) 

so that 
(5.69) 

Right-sided multiplication by J takes on the role of j for multiparticle 
states. 

The STA representation of a direct-product 2-particle Pauli spinor is now 
given by 'lj;lcjJ2 E, where 'lj;l and cjJ2 are spinors (even multivectors) in their 
own spaces. A complete basis for 2-particle spin states is provided by 

(~)®(~) ~ E 

(~)®(~) ~ -iO'~E 

(5.70) 

( ~ ) ® ( ~ ) ~ -iO'~E 

(~)®(~) ~ iO'~ iO'~E. 

This procedure extends simply to higher multiplicities. All that is re­
quired is to find the 'quantum correlator' En satisfying 

lfor all j, k. (5.71) 

En can be constructed by picking out the j = 1 space, say, and correlating 
all the other spaces to this, so that 

n 

En = II ~(1 - iO'~ iO'~). (5.72) 
j=2 

The value of En is independent of which of the n spaces is singled out and 
correlated to. The complex structure is defined by 

(5.73) 

where id can be chosen from any of the n spaces. To illustrate this consider 
the case of n = 3, where 

and 

(5.74) 

(5.75) 

(5.76) 
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Both E3 and h are symmetric under permutations of their indices. 
The above was framed for non-relativistic Pauli spinors, but in fact, the 

whole discussion also applies to Dirac spinors, since these are represented 
by even elements and multiplication by j is still right-sided multiplication 
by iU3' A significant feature of this approach is that all the operations 
defined for the single-particle STA extend naturally to the multiparticle 
algebra. The reversion operation, for example, still has precisely the same 
definition - it simply reverses the order of vectors in any given multivector. 
The spinor inner product also generalises immediately, to 

(5.77) 

where the right-hand side is projected onto a single copy of the STA. The 
factor of (En)-l is included so that the state '1' always has unit norm, 
which matches with the inner product used in the matrix formulation. 

21.5.3 A 6-d representation in the MSTA 

Much more could be said about the properties and applications of the 
MSTA, but here we wish to use it in a novel linking-together of quantum 
mechanics, twistors and conformal geometry. 

Let ¢ be a (single particle) Dirac spinor, and r = i"to + X')'l + Y')'2 + Z')'3 

be the position vector in 4-d space. 
Consider the operator f, mapping Dirac spinors to Dirac spinors, given 

by 
(5.78) 

The operator (1 + f) has the remarkable property of leaving the inner 
product between Dirac spinors invariant. Specifically, we have 

(5.79) 

where 
'lj;' = (1 + f)'lj; and ¢' = (1 + f)¢. (5.80) 

(The subscript S applied in this single-particle case just means the scalar 
and iU3 parts only are taken.) This relation is true for any Dirac spinors 'lj; 
and ¢. We note further f2 = 0, so we can write (1 + f) in the 'rotor' form 

ef . 
Now consider the following two-particle quantum state: 

(5.81 ) 

This is a relativistic generalisation of the non-relativistic Pauli singlet state 
(see Doran et al [15]). Specifically it can be shown that it obeys 

(5.82) 
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for any (Lorentz) rotor R, and is therefore relativististically invariant. We 
now use this to construct our first '6-d' point as follows: 

(5.83) 

'Ij; here is a 2-particle wavefunction which provides a representation of the 
4-d point r. We shall see shortly in what way it connects with 6 dimensions. 
Firstly, however, note that this 'Ij; has vanishing norm viewed as a 2-particle 
wavefunction: 

(;j;'Ij;)s = o. 
More generally, let 

correspond to some different 4-d position s. Then we find 

- 1 2 (¢'Ij;)s = --(r - s) . 
4 

(5.84) 

(5.85) 

(5.86) 

Just as with the 'horosphere' construction used by Hestenes, we see we have 
found a way of turning differences into products, except here it is taking 
place in a relativistic context. 

The way the quantum state links with 6 dimensions is as follows. The 
state space for relativistic spinors describing two particles is 16 complex 
dimensional (as effectively the outer product of two Dirac spinors) and 
splits into a lO-d space symmetric under particle interchange (i.e. swapping 
of the 1 and 2 labels) and a 6-d space anti-symmetric under interchange. 
This 6-d space is 'complex' (i.e. with 12 real degrees of freedom), but we can 
define a 'real' subspace of it via taking the following as being the general 
point: 

(5.87) 

Here 

I 1 2 1 2 (. 1 . 2) 1 (1 1) 1 (1 2) 1 (1 . 1· 2) E = -l'ol'oEl'ol'o = UJ2 - U'2"2 + (l3"2 + (l3"2 - W3 Z(l3 , 

(5.88) 
and 

(5.89) 

V, W, T, X, Y and Z are the coordinates of a 6-d real space with metric 

(5.90) 

The extra dimensions V and Wallow the formation of the combinations 
V + Wand V - W, which correspond to null directions in the 6-d space. 
(These directions are the equivalent of the e and e* introduced by Hestenes 
in the 5-d case.) 
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The representation of 4-d points proceeds via working with points on the 
'null cone' in 6-d. For these points we relate the 6-d space to ordinary 4-d 
Lorentz space projectively via 

T 
t= V - W' 

x 
X= V-W' 

y z 
y = V - W' 

The way this relates to our previous construction is as follows: 

(5.91) 

(5.92) 

i.e. it is simply a scaled version of the state generated by the rotor cons­
truction. We can see this by taking the length of 'l/Jp, via the norm of the 
quantum state: 

(5.93) 

This being null implies 

(5.94) 

i.e. 

(5.95) 

'l/Jp is thus just 

(5.96) 

Al A2 
which is (V - W) er er f as claimed. 

21.5.4 Link with twistors 

The above has been framed as a mixture of 2-particle relativistic quan­
tum mechanics (written in the MSTA) and conformal geometry. It also 
links directly with twistor theory (see e.g. Penrose & Rindler, Vol. 2 [23]). 
Twistors were introduced by Penrose as objects describing the geometry of 
spacetime at a 'pre-metric' level (partially in an attempt to allow an alter­
native route to quantum gravity). Instead of points and a metric, the idea 
is that twistors can represent incidence relations between null rays. Space­
time points and their metric relations then emerge as a secondary concept, 
corresponding to the points of intersection of null lines. As discussed in 
Lasenby, Doran & Gull [24], in geometric algebra twistors are translated as 
Dirac spinors with a particular position dependence. Specifically, a twistor, 
which is written in 2-spinor notation as 

(5.97) 
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is translated as the Dirac spinor Z given by 

(5.98) 

where r is the 4-d position vector and ¢ is the (constant) Dirac spinor 

(5.99) 

with Wo and 7r the geometric algebra Pauli spinors corresponding to the 
Penrose & Rindler 2-spinors wc; and 7r A'. ( wc; is wA evaluated at the 
origin.) 

What we can observe now is that Z is none other than e -7' ¢. This links 
twistors with the previous section. In twistor theory, given two twistors Z 
and X satisfying certain conditions, we can find a spacetime point corres-

ponding to their intersection via forming the skew [~] twist or 

(5.100) 

(see Penrose & Rindler, Vol. 2, [23], p. 65 and p. 305). Without going into 
the details, it turns out that what we have described in the previous section 
corresponds precisely to this construction, but instantiated in a concrete 
fashion in the MSTA. In particular, the twist or relation 

(5.101) 

(Equation 6.2.30 of Penrose & Rindler, Vol. II) corresponds precisely to 
both our Equation 5.86 and the Hestenes 'horosphere' relation Equation 5.55. 
The latter is already prefigured therefore in twist or geometry. 

It might be wondered why, if corresponding constructions exist in twistor 
theory, it is useful to have a version in geometric algebra. The advantages 
of the latter are twofold. Firstly, there is the economy of using a single 
algebraic system for all areas as different as quantum mechanics, conformal 
geometry, screw theory etc. Secondly, we can use the geometric algebra to 
do things which are not easily possible within twist or theory, but which 
extend its results in a very neat fashion. For example, in the next section 
we show how the full special conformal group of Lorentzian spacetime can 
be realized via very simple transformations in our two particle space. The 
corresponding operations would be much harder to display explicitly in 
twist or theory. 

As a final remark in this area, we note that twist or theory encourages one 
to think about a complexified version of Lorentzian spacetime. The same 
occurs in our present constructions via the fact that the 2-particle anti­
symmetric space is actually 12-dimensional, allowing us to have a complex 
version of the 6-d conformal space. In order to understand some areas 
of practical computer vision, we apparently require a complex projective 
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space; this is the case particularly for camera calibration using the concepts 
of the absolute conic and absolute quadric. A complex version of our 6-d 
conformal space may turn out to be very useful in allowing us to find a 
natural home for such entities in geometric algebra. This area is currently 
being explored. 

21.5.5 The special conformal group 

We now look briefly at how rotations, dilations, inversions, translations and 
special conformal motions in Lorentzian spacetime can be represented via 
simple transformations in our two particle space. This parallels the equi­
valent analysis in the 5-d case given by Hestenes for motions in Euclidean 
space, except that here they emerge in a (perhaps surprising) fashion as 
operations within relativistic quantum mechanics. In 3-d the importance 
of such motions is that they preserve the angles between vectors, and thus 
are next in generality as regards rigid body motion if we wish to go beyond 
the strictly Euclidean transformations of translation and rotation. In 4-d, 
they are of great interest in physics from the point of view of conformally 
invariant theories, such as electromagnetism and massless fields, and may 
be of interest in engineering for the description of rigid body motion where 
velocities and not just positions are specified, and also in projective spaces. 
We now describe in each case the required operation, and indicate why it 
works. 

Translations: 

Here we just need to note that the operators i' for different r's are 
all mutually commutative. Thus if we have a point r in 4-d that we 
wish to move to r + s, where s is another 4-d position vector, we just 
need to carry out the transformation 

(5.102) 

Rotations 

These are easily accomplished. Given a Lorentz rotor R, we rotate in 
the 2-particle space via 

(5.103) 

This works since e.g. the rl term in the expansion for 'l/Jp responds 
like 

(5.104) 

Inversions 

The aim here, in the 4-d space, is to have r f---+ r/JrJ2. Since the 
coefficient of E' in the 'l/Jp expansion is -JrJ2, the way to achieve this 
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in the 2-particle space would be to swap the roles of E and E'. We can 
achieve this by multiplying on the right by iO'~iO'§, since this swaps 
both ideals. At the same time one finds 

(5.105) 

and vice-versa. Thus the required operation is 

(5.106) 

Dilations 

Here in 4-d space we want r to transform to ear, where a is a scalar. 
In the 2-particle space we need a rotor operation which can accom­
plish this. Like inversion, it is clear that we need to swap the roles of 
the ~ (1 + 0'3) and ~ (1 - 0'3) ideals, only this time it needs to happen 
in a gradual fashion. It is easy to show that the required operation is 

(5.107) 

Special conformal motions 

These motions are in fact composites of inversions and translations, 
so in a sense we have already done these. However, the resulting 
expression for the operation in the 2-particle space is quite neat, so 
we give the results explicitly. In 4-d space we want to achieve the 
motion 

1 
rf--->r---

1 + sr' 
(5.108) 

where s is a constant vector. This can be generated via inverting r, 
translating by s and then inverting again (see Hestenes & Sobczyk 
[25], p. 218). In our case, the combination of two inversions amounts 

to changing the ideal used in i to its opposite, plus a change of sign 
for the vector. Thus if we define the new operator f via 

(5.109) 

we see that the overall operation we want is 

( -1 + -2) 'lj;p f---> 'Ij;'p = e - s s 'lj;p. (5.110) 

21.5.6 6-d space operations 

Although above we have confined ourselves to setting up the basic co­
rrespondence between conformal operations and 'quantum' operations in 
the 2-particle space, it is of interest to relate these operations directly to 
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the operations that would be carried out in a 6-d space generalising the 
'horosphere' construction. The simplest version of such a space uses the 
representation discussed at the end of Hestenes & Sobczyk [25]. At the 
risk of causing great confusion, we shall stick with the original Hestenes & 
Sobczyk notation, which has e and e, satisfying 

(5.111) 

as the new vectors which would be added to make up a (1,3) space with 
vectors r say, up to a (2,4) conformal space. The null vectors formed from 
e and e are defined by 

n = e + e, n = e - e. (5.112) 

The crucial representation formula, relating (in this case) 4-d vectors r 
to their 6-d eq ui valents F ( r) is 

F(r) = -(r - e)e(r - e) + (r - e)2e, (5.113) 

([25], eqn 3.14). Re-expressing this in terms of the null vectors, one finds 

F(r) = r2n + 2r - n. (5.114) 

We should compare this equation (5.114), with our quantum representation 
(5.96). It is clear that how they work is that (up to signs) the relativistic 
singlet state E takes on the role of the null vector n, its version using the 
opposite ideals, E', takes on the role of n and the middle term 
rlEi"'d+r2Ei'y~ is an expanded version (appropriate to the 2-particle space) 
of the vector 2r. 

It is now very interesting to compare some of the actions of the conformal 
group in the two approaches. Taking inversion as an example, this operation 
is not discussed in Hestenes & Sobczyk, but it is easy to see that we invert 
a 4-d point, r f---t r/lrI2, via reflection in the unit vector e. Explicitly, we 
carry out 

F(r) f---t eF(r)e. (5.115) 

This swaps the roles of nand n. In the 2-particle case, we know inversion 
is accomplished by right multiplication by ia~ia~, since this swaps the 
quantities E and E'. Thus the quantum operation of swapping the spin states 
(up ~ down) of the 2-particles (which is what the ia~ia~ multiplication 
achieves), parallels the operation of reflection in the 6-d space. This hints 
at a deep geometrical connection between the two spaces, which will be 
investigated further elsewhere. 

21.6 Summary and Conclusions 

In this contribution we have seen that geometric algebra is able to span 
an enormous range of physics and mathematical physics. From the rest 
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of this volume it is clear that GA is useful in many areas of engineering 
also. Thus GA stands ready to be adopted as a useful and efficient tool by 
scientists and engineers in a wide variety of fields, with consequent benefit 
for mutual comprehensibility. Even areas considered as difficult as general 
relativity have been shown to be understandable within GA using just 
simple tools of linear function theory. The links between the new conformal 
representation of Euclidean geometry, twistors and multi particle quantum 
theory have been shown to be both fascinating and unexpected. Much more 
work is possible along this direction, including the possible role of complex 
projective and conformal geometry, and of relativistic spaces in allowing 
representation of velocity as well as position transformations. 
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Chapter 22 

Clifford Algebras as 
Projections of Group Algebras 

Vladimir M. Chernov 

22.1 Introduction 

Clifford algebras appeared as a result of the natural desire of mathemati­
cians to extend a finite-dimensional vector space to an algebraic structure 
where the inner and outer products are defined in terms of a single ge­
ometric multiplication [14], [26], [1], [25]. This idea was most attractively 
developed by D.Hestenes [20], [21]), and was immediately accepted by some 
physicists. 

The effective application of Clifford algebras to the Computer Sciences is 
based on two ideas. First, some problems in robotics and computer vision 
have a direct physical analog in higher dimensions [22], [16]. For exam­
ple, the 8-dimensional geometric algebra of Euclidean space extends the 
4-dimensional quaternion algebra for analysis and motion simulation in 
robotics [2], [23] computer vision [23], [15] and neurocomputing [3]. 

Second, Clifford algebras can be used for data representation and increa­
sing the effectiveness of some signal processing algorithms. For example, 
data representation in the quaternion algebra or in the 2 x 2 matrix al­
gebra permits effective multidimensional FFT algorithms "with multi over­
lapping" [7], [8]. 

In the first case, the elements of a Clifford algebra are easy to interpret 
geometrically. In the second case, the existence of a large Clifford algebra 
group of automorphisms greatly facilates calculations. 

Signal (image) analysis and digital processing tasks have a clear physi­
cal origin. Their solution requires a significant amount of calculations and 
effective algorithmic support. For these tasks it is necessary to develop and 
use algebraic means which have both a clear physical interpretation and 
calculational efficiency. 

Many effective methods of discrete signal processing are based on al­
gorithms in which most arithmetic operations are multiplications by the 
constant numbers of some finite set (e.g. fast algorithms (FA) of discrete 
orthogonal transforms (DOT) [4]). Thus, the idea of increasing the dimen­
sion by the inclusion of "popular" constants seems to be very attractive. 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering

© Birkhäuser Boston 2001
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This article introduces the corresponding formal structures, and gives e­
xamples of their application to the synthesis of DOTs fast algorithms. 

22.2 Group Algebras and Their Projection 

22.2.1 Basic definitions and examples 

Definition 1 Let Vj E lR, Vl, ... , vp > 0, Vp+l, ... , Vd < 0, q = d - p. 

According to [1], the Clifford algebra C(p, q) of a d-dimensional vector space 

with the basis {el' ... , ed} is the 2d -dimensional associative algebra with the 

basis 

o-j=O,I}, (2.1) 

together with the multiplication of the basis elements EA induced by the 

multiplication of the elements ej, 

(2.2) 

Definition 2 Let G be a D-elementfinite group. The group algebra A(F, G) 

over the field F is a D-dimensional associative algebra 

A(F, G) = {Q = L Itgt; It E F} 
9tEG 

(2.3) 

with the multiplication rule 

Q,QF ~ Cp, (2.4) 

Example 1 

The quaternion algebra H is usually understood as an associative 4-di­
mensional algebra over R with the basis {l, i,j, k,} and the multiplication 
rules: 

i2= j2= k2, ij = -ji = k. (2.5) 

On the other hand, the finite quaternion group Hs contains 8 elements 
usually denoted [19] by 

Hs= {±1, ±i, ±j, ±k,} (2.6) 

with the multiplication rule (2.5) and the additional stipulation that 

(-I)a = -a, (a E Hs). 
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The designation (2.6) is a consequence of the connection between the rule 
for multiplication in the group Hs and in the algebra H that has been found 
to be useful. Note, however, that the elements of the algebra H and the 
group Hs are of a fundamentally different kind. This difference becomes 
even more evident if for the elements of the group Hs we use "neutral" 
designations aI, ... , as (see [19], Ch.l., Example 5). We may employ another 
description of the group Hs in the form 

(2.6), 
Hs = {E,T,I,J,IJ,T1,TJ,T1J} , 

with the rules of group multiplication: 

• the element E is the identity of the group 

HSi 

• the element T is an involution: 
T2 = Ei 

.IJ=TJ1. 

The element T is like the number (-1). 
Let us consider an S-dimensional group algebra A(R, Hs) 

A(R,Hs)= {Q= 2:= It9ti ItE JR.i t=1, ... ,S}. 
9tEH8 

with multiplication defined by 

Q,QF t, C" 
The mapping 1lf : A(R, Hs) -+ H defined by 

Ef------71, Tf------7(-1), 1f------7i, Jf------7j, 

1lf(QIQ2) = 1lf(Qd1lf(Q2) 

(2.7) 

is linearly extended to an homomorphism of the algebra A(R, Hs) into the 
algebra H. In other words, only the homomorphism (projection) 1lf of the 
group algebra A(R, Hs) into H maps the involution T into the number 
(-1). Thus, the quaternion algebra is a "projection" of the S-dimensional 
group algebra A(R, Hs). 

This process of generating Clifford algebras is not limited to the alge­
bra H = 0(0,2). We can, for example, find another group algebra which 
projects into the Clifford algebra G(1, 1) of the pseudo-Euclidean plane. 
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Example 2 

Consider the 8-element dihedral group D4 (see [19], Ch.1., Example 1) 

D { 1 2 3 1 2 3} 4 = E:, T, 0" ,0" ,0" ,TO" ,TO" ,TO" , (2.8) 

where E: is identity element of the group D 4 , and group multiplication is 
defined by 

(2.9) 

and group algebra A(R, D 4 ) with multiplication given by (2.4) and (2.9). 
The Clifford algebra G(I,I) is a 4-dimensional algebra with the basis 
{I, e1, e 2 , e 1 e2} and the multiplication 

The mapping IJi of the 8-dimensional group algebra of the dihedral group 
into G(I, 1) is defined by the following rules 

and is linearly extended to an homomorphism of the algebra A(R, D 4) into 
the Clifford algebra G(1, 1). 

Where can we go with these ideas? 

22.2.2 Clifford algebras as projections of group algebras 

The above examples lead us to the description of Clifford algebras as pro­
jections of group algebras. 

Theorem 1 Let C(p, q) the 2d-dimensional Clifford algebra defined by 

the relations (2.1) and (2.2). Then there exists a 2d+l_ group G and an 

homomorphism IJi : A (R, G) --+C (p, q) such that 

ImlJi 95 C(p, q), (q = d - p). 

Proof Let T be the central involution, and let the elements gl, ... ,gd, T 

satisfy the relations 

E:, 
222 2 gl = ... = gp = E:, gp+1 = ... = gd = T; 

9i9j = T9j9i, i, j = 1, ... ,d. 

The group G is generated by the elements T, 91, ... ,9d and contains the 
2d+l elements 
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Now consider the group algebra A(R, G) and the mapping 
1l! : A(R, G) ----'>C(p, q) induced by the mapping 'lj;, 

The homomorphism 1l! maps A(R, G) into the factor-algebra A(R,G) / J, 

where J is the main ideal, generated by the element (c: + T). It is easy to 
see that the factor-algebra has dimension 2d and that the multiplications 
rules are the same as (2.1) and (2.2) .• 

22.3 Applications 

The discrete orthogonal transforms (DOT) 

N-l 

x(m) = I: x(n)hm(n), m = 0, ... , N - 1, x(n) E lR, <C, (3.10) 
n=O 

where x(n) is an input signal and {hm(n)} is the set of basis functions 
satisfying the orthogonality conditions 

N-l 

I: hp(n)h~(n) = 8pq , 
n=O 

where * denotes complex conjugation. The DOT are one of the main means 
of digital signal processing and have been discussed in many publications 
(see [4], [24], [18], etc.). 

22.3.1 Fast algorithms of the discrete Fourier transform 

The well-known "overlapped" one-dimensional FFT is built on the possibi­
lity of obtaining computational advantage at the expense of the redundancy 
of the representation 

of a real input signal x (n). More exactly, the possibility of constructing 
an overlapped algorithm exists due to the presence in the field of complex 
number <C of a non-trivial automorphism, complex conjugation, acting 
identically upon lR, 

N-l 

x(m) = I:x(n)exp{27l'ir;}' m=O, ... ,N-l, N=2T , x(n)ER 
n=O 

Let us define the auxiliary sequence 

zen) = x(2n) + ix(2n + 1) = xo(n) + iXl(n). 
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!f-l 
z(m) = L z(n)exp{2ni2~n}, 

n=O 

N 
m = 0, ... , 2-1. 

Then, "partial spectra" 

l'{ -1 

xo(m) = t xo(n) exp{2ni 2~n}, 
n=O 

can be found from 

2xO(m) = z(m) + z( -m), 2ixl (m) = z(m) - z( -m). 

The full spectrum reconstruction is realized by the relation 

x(m) = xo(m) + Xl (m) exp{2ni 2;}. 

Note that the transition to the complex-conjugate does not require addi­
tional arithmetic operations. 

It is known that the majority of fast algorithms (of the Cooley-Tuckey 
type) of the discrete Fourier transform (DFT) have the complexity 

W(N) = AN log2 N + O(N), (3.11) 

where the constant A characterizes a particular scheme of the algorithm 
[4]. The complexity of the "ovelapped" FFT is 

1 
W(N) = 2ANlog2 N + O(N). 

If the DFT is multi-dimensional (in particular, a 2-D transform), the use 
of the techniques discussed above has the problem that the field C has 
"too few" automorphisms for the 

separation of spectra. This leads to the necessity of embedding the field 
C into an algebraic structure possessing a sufficiently large number of 

trivially implemented automorphisms over R In the papers [7], [8], [6], 
[10], [9], I developed this approach to solve the problem of DOTs fast 
algorithms. 

Tasks similar to those of DOTs FA complexity reduction 
(the task for a multichannel signal) can be solved using similar methods. 

We 
consider the following 
examples of how the technique described above can be applied. 

22.3.2 Fast algorithms for five Fourier spectra calculation in 

the algebra A(R, S3) 
Let S3 = T2 = 10, 0'3 = 10, TO' = 0'2T be the six-element permutation 
group with the neutral element E. The elements T,O' satisfy the multiplica-
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tion rules 

Lemma 2 Let a, f3,p, q E F, where F is a field. For the elements X and 
Y given by 

X = ap + f3q, Y = f3q + ap, 

only two multiplications in the field F are required. 

Proof It is easy to show that 

X (a + (3) (p; q) + (a - (3) (p; q) , 
Y = (a+ f3 )(p;q)-(a- f3 )(p;q) .• 

Lemma 3 The multiplication of Z E A(F, S3) : 

Z = Ac + Cu + Du2 + BT + FTU + HTU2 (3.12) 

by the element w = xu + yu2, requires 8 multiplications of elements in the 
field F. 

Proof The direct calculation gives 

zw alc + a2T + a3U + a4u2 + a5TU + a6Tu2 

[(Dx + Cy)c + (Hx + FY)T] 

+ [(Ax + Dy)u + (Cx + Ay)u2] 

+ [(Bx + Hy)m + (Fx + BY)TU2] . 

As shown in Lemma 1, four multiplications are required to calculate 

f33 = Ax + Cy f35 = Bx + Hy 
f34 = Cx + Ay and f36 = Fx + By 

Since the following relations are also true 

and 

a3 = f33 + y(D - C) = f33 + 1'3, a4 = f34, 
a5 = f35 - y(F - H) = f35 -1'5, a6 = f36, 

al = D(x + y) -1'3, a2 = H(x + y) + 1'5· 

the Lemma is proved .• 
The following Lemma is easily established: 
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2~ 

Lemma 4 Let w = a + bi E C, "/ = e 3"". Then there exist A, BEe 

such that 

(3.13) 

Lemma 5 Let g, hE S3, and let the automorphism Revg be defined by 

and 

Then, 
ReVc(S3) = {c,a,a2,T,Ta,Ta2}, 

Reva(S3) = {c,a,a2,Ta2,T,Ta}, 

Reva2 (S3) = {c, a, a 2, Ta, Ta2, T}, 

Revr (S3) = {c,a2,a,T,Ta2,Ta}, 

Revra (S3) = {c,a2,a,Ta2,Ta,T}, 

Revra2(S3) = {c,a2,a,Ta,T,Ta2}. 

Proof The proof is a direct verification. I 

Note that automorphisms 

do not permute the elements a and a 2 , while automorphisms 

permute these elements. 

Lemma 6 Let Z E A(R, S3) be given as in (3.12), where A = O. Then the 

system of equations 

Revg(z) = ~g, g E S3 \ {c} 

has a unique solution for any ~g E A(R, S3)' 

Proof The proof is a direct verification. I 

Let a five-channel input signal 

X(n) = (xl(n), ... , x5(n)) 

(3.14) 

and the complex roots wq = expe~q} be represented in the form (3.13): 

q- +/3 2 w - D;q"/ q"/, q = O, ... ,N-1. 
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Let us consider now the auxiliary transform (ADOT) 

N-1 
'",,", 2 B(m) = ~ B(n) (O:mnO" + f3mn O" ), m=O, ... ,N -1, 

n=O 

where 

The ADOT-spectrum is calculated by the canonical Cooley-Tuckey FFT 
scheme [4]: 

-'; -1 

L B(2n) (O:2mn O" + f32 mn0"2) + 
n=O 

-'; -1 

+( -1)O(O:mO" + f3m 0"2) L B(2n + 1) (O:2mn'Y + f32mn'Y2), 

n=O 

where 8 = 0,1; m = 0,1, ... , ~ - 1. 
According to Lemma 2, the multiplicative complexity MB(N) of calcu­

lating the array B(m) satisfies the recurrent relation 

Thus, 
MB(N) ~ 4Nlog2 N. 

The application of Lemma 5 to the system of equations 

{ 
( N-l 2 ) , Revg 2::n=O B(n) (O:mnO" + f3mnO") = Revg(B(m)), 

( N-1 2 ) , Revg 2::n=O B(n) (O:mnO" + f3mnO") = Revg(B( -m)), 

gives the arrays of the partial auxiliary spectra: 

if Revg E £+; 

if Revg E £-, 

(3.15) 

j = 1, ... ,5. 

The homomorphism W : A(R, 8 3 ) -+ rc defined by the condition that 

2" 
0" f---+ 'Y = e T 

transforms the partial auxiliary spectra Bj (m) into the complex Fourier 
spectra 

(3.16) 
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Since the solution of the system (3.15) and the calculations of the mapping 
(3.16) have a linear complexity, the multiplicative complexity M(N) of 
calculating all five spectra is equal to 

M(N) = 4N log2 N + O(N). (3.17) 

Note that the real multiplicative complexity of the separate calculation of 
the five spectra via the Cooley-TUckey FFT is (see [4]) equal to 

The algorithm of the ADOT calculation, just considered, did not use the 
decomposition schemes similar to DFT which employ the trivial multipli­
cations by ±i (e.g. Radix-4, Split-Radix FFT [17], etc.). Actually, we have 
the following equality, 

i = h _,2) v;. 
Thus, multiplications in the algebra A(R, S3) by the inverse image of i are 
equivalent to the non-trivial multiplications by the element 

In the next subsection we give an example of an overlapped calculation 
of three complex Fourier spectra, which are free of the above-mentioned 
drawbacks. 

22.3.3 Fast algorithm for three complex Fourier spectra with 

overlapping 

Let D4 = D4 = {E,CT,CT2 ,CT3 ,T,TCT,TCT2 ,TCT3 }. be the 8-element dihedral 
group with the neutral element E. The generating elements T, CT satisfy the 
multiplication rules 

Lemma 7 The computation of the product zw, for 

z = aT + bTCT + CTCT2 + dTCT3 , w = x + yCT 

requires no more than five real multiplications. 

Proof. Since 
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where 

a3 = dx + ay - y(a - c), a1 = bx + cy + y(a - c,) 
ao = ax + dy, a2 = cx + by, 

the calculation of zw is reduced to the repeated application of Lemma 1 
and to the calculation of product y(a - c) .• 

Lemma 8 The mapping W of the group D4 into group C 4 of complex 4th 

roots of unity, defined by 

W(c) = W(TO"2) = 1, W(O") = W(TO") = i, 
W(0"2) = W(T) = -1, W(TO"3) = W(0"3) = -i 

(3.18) 

is a homomorphism. 

Proof The kernel of the mapping (3.18) is the two-element subgroup 
Go = {c, T0"2}, which is normal in D4 and C4 ~ A(R, D 4 l/Go . The homo­
morphism W can be R-linearly extended to the algebras homomorphism 
W :A(R, D 4) ---+ C .• 

Lemma 9 Given any 6,6,6 E A(R,D4 ), the elements 

b, c, d E A(R, D 4) are uniquely determined by the relationships 

{ 
Rev,,(cT + bTO" + dT0"3) = 6 
Revr(cT + bTO" + dT0"3) = 6 . 
RevTl7 (cT + bTO" + dT0"3) = 6 

Proof The system (3.19) can be rewritten in the form 

{ 
CT + bTO" + 0 . T0"2 + dT0"3 = 6 
CT + dTO" + 0 . T0"2 + bT0"3 = 6 
o . T + bTO" + CT0"2 + dT0"3 = 6 

which can easily be solved .• 

(3.19) 

Theorem 2 There is an algorithm of overlapped calculations of three dis­

crete Fourier spectra, which requires no more than 

15 
M(N) = SNlog2 N + O(N) (3.20) 

real multiplications. 

Proof. Let R(n), G(n), B(n) be three N-periodic real sequences. Let 
the auxiliary A(R, D 4 )-valued sequence be defined by 

Z(n) = R(n)T + G(n)TO" + B(n)TO"3, 
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and let 

27rmn 
a mn =cos~, 

. 27rmn 
f3mn = sln~, 

We will use the auxiliary transform defined by 

where 

N-I 

Z(m) = L Z(n)Wmn , 

n=O 

Wmn = { ~' a, 
for 
for 

mn -!{. 
- 4' 

mn= 3f 

(3.21) 

The transform (3.21) can be realized by a scheme similar to the Radix-4 
FFT [4]: 

3 If-I 

Z(m) = L wam L Z(4n + a)W4mn . (3.22) 
a=O n=O 

This requires (see Lemma 6) 

real multiplications. 
The A(R, D4 )-valued spectra R(m), G(m), B(m) are calculated similarly 

to the algorithm described in the previous subsection, using O(N) non­
trivial real multiplications. The reconstruction of complex Fourier spectra 
is the substitution for T,Ta,Ta2,Ta3 of the complex numbers (-1),i, 1,i, 
respectively, and does not require any non-trivial real multiplications .• 

Corollary 1 There exists an algorithm for calculating the three discrete 
2-dimensional Fourier spectra for the RG B -image, which requires no more 
than 

M*(N) = ~N21og2 N + O(N2 ) 

multiplications for each spectrum R(ml, m2), G(ml, m2), B(ml, m2). 

In [27], a similar task was solved using the quaternionic DFT (QDFT): 

N-I 

Q(ml,m2) = L e27rinl;;lQ(nl,n2)e27rjn2;;2, (3.23) 
nl,n2=O 

where 
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The transform (3.23) is introduced in [7J as an auxiliary transform, and is 
analyzed separately as an independent transform in [13], [12J. The applica­
tions of QDFT to "anisotropic" tasks is discussed in [5J. The RCB-spectra 
calculation method, proposed in [27J requires 

M*(N) = ~N2log2 N + O(N2) 

real multiplications. This is two-times worse than the method considered 
above. 

Remark: Corollary 1 assumes that the two-dimensional ADOT is rea­
lized by a row-column method. The use of the more complicated schemes 
of 2D - DFT reduction results in better estimates of the multiplicative 
complexity. In particular, the 2D - DFT with "multicovering" [11], in 

the version considered here, has the multiplicative complexity 

M*(N) = ~~N2l0g2 N + O(N2). 

22.3.4 Fast algorithms for discrete Fourier transforms with 

maximal overlapping 

The examples considered above show that the increase in the size of the 
algebra A results in a greater complexity in the complex spectra recons­
truction. For very large dimensions this complexity dominates. The "over­
lapped" algorithm of the DFT calculation considered below illustrates the 
limits of our method. 

Detailed proofs of the following statements can be found in [10J. 
Let N = 2r , q = 28 , T = 2r - 8 , and G be a q-element cyclic group 

with the generating element g, and A(R, G) = A be a group R-algebra. 

Lemma 10 There exists a set of A-valued functions 

H(m.n) (0::; m, n < T - 1), 

H(m + aTq-l, n) = gan H(m, n), (a E Z) 

and a homomorphism p : A ---+ Cover lR. , such that 

(3.24) 

p(H(m, n)) = wmn , p(g) = " where w,' are primitive Tth and qth roots 

of unity, respectively. 

In other words, the function H(m, n) behaves like the exponential function, 
while not being such indeed. 

Lemma 11 Let {b(n)} be the T-periodic A-valued sequence defined by 

q-l 

b(n) = I>v(n)gV 
V=O 
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and bv(n) = ° for even //. Let B(m) be the auxiliary transform 

T-l 

B(m) = L b(m)H(m, n), (m = 0,1, ... , T - 1). (3.25) 
n=O 

Let {Bv(m)} be the set of "partial spectra" defined by 

T-l 

Bv(m) = L bv(m)H(m, n), (// = 0,1, ... , q - 1) 
n=O 

of the auxiliary transform. Then there exists a set £ of automorphisms of 

the algebra A, such that the calculation of the "complex partial spectra" 

T-l 

bv(m) = L bv(n)wmn , (m = 0,1, ... , T - 1) 
n=O 

from the system 

(3.26) 

requires at least 0(28 N) real multiplications. 

The multiplication of the elements of the algebra A by the element gk 
does not require real multiplications; it is reduced to a permutation of the 
components of the group algebra elements. It follows that the complexity 
of the transform calculation, by the "radix-q scheme" 

T-l q-l ~-1 

B(m) = Lb(n)H(m,n) = L9am L b(qn+a)H(qm,n), 
n=O a=O n=O 

satisfies the following lemma. 

Lemma 12 For every positive integer s there exists an absolute constant 

Al and an algorithm for computing the auxiliary transform (3.25) which 

requzres 

real multiplications. 

Let the input N -periodical sequence x(n) be given as a union of the 
subsequences 

1-1 ~-1 

{x(n)} = U {x(~n + a)} = U {xa(n)}. 
a=O a 
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Introducing the new auxiliary A-valued sequence 

b(n) = 0· gO + xl(n)gl + 0· g2 + ... + X '1-1 (n)gq-\ 
2 

(3.27) 

we have the following lemma. 

Lemma 13 Let W be a primitive Nth root and let the ''partial spectra" be 

already computed. Then, the computation of the transform 

N-1 2 8 - 1 _1 

x(m) = L x(n)wmn = L wamb2a+1 (m), (m = 0, 1, ... , N - 1) 
n=O a=o 

requires no more than 0(28 N) real multiplications. 

From the above, we see that the calculation of the overlapped DFT con­
sists of the following steps. 
Step 1. The input sequence is broken down into subsequences that form 
the auxiliary sequence (3.27). 
Step 2. The A-valued auxiliary transform of the T-periodic sequence is 
calculated (T = q-1 N). 
Step 3. The projections of the partial spectra of the auxiliary transform (i.e. 
of the "complex partial spectra") are found from the system of equalities 
(3.26) generated by the automorphisms of algebra A. 
Step 4. The array x( m) is reconstructed according to Lemma 10. 

As a consequence, we have the following 

Theorem 3 For any positive integer s, 2 :::; s < r, there exist constants 

AI, A2 and an algorithm for computing the transform 

N-l 

x(m) = Lx(n)wmn, (m=0,1, ... ,N-1, N=2r) (3.28) 
n=O 

that requires 

(3.29) 

real multiplications. 

For s = s(N), 28 rv log~ N, ° < () < 1, N -> 00, we have that (3.28) 
is dominated by the first term. As a consequence, we have 

Corollary 2 For any () (0 < () < 1), there exist constants 81,82 depending 

only on (), and an algorithm for computing (3.28), whose multiplicative 

complexity M(N), with N = 28 > No(()), satisfies the asymptotic relation­
ship 

(3.30) 
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The algorithms described in this subsection are applicable not only for 
the algebra A over lR but also for the algebras over finite fields F p, see 
the number-theoretical transforms (NTT) [24]. We have 

the following interesting example. 
In [28] the NTT was first applied to the fast multiplication of large 

integers. The most popular "school-method" of multiplication uses O(N2) 
operations to multiply N -digit integer, while the method introduced in 
Ref. [28] uses O(N log2 N) operations. 

The algorithm introduced in this subsection uses 

o ( Nlog2 N ) 
log2log2 N 

operations to multiply "very large" integers. 

22.4 Conclusion 

An analysis of the structure of the described fast algorithms for the discrete 
orthogonal transforms allows us to isolate the following three "hidden" 
steps. 
Step 1. The values ofthe input array x(n) are mapped into a set of elements 
of a group algebra A(F, G), together with the basic functions hm(n) into 
a set of A-valued functions. 
Step 2. The auxiliary transform is computed in A(F, G) using to great 
advantage the algebraic properties of the group G, of the field F and the 
algebra A(F, G)). 
Step 3. The projection of A(F, G) into a Clifford algebra reduces the cal­
culations to operations in the Clifford algebra. 

I believe that the capabilities of the approach described in the article are 
not limited to the applications considered here. We have only 

considered the case of group algebra projections to the algebra C. This 
method can be for C(p, q)-valued DOTs (in particular, H-valued DOTs). 
Significant emphasis should be placed on the development of multiplication 
rules like those of Lemmas 1 and 6 and the development of an appropriate 
mathematical formalism. One of the main goals of this article has been 
to attract the reader to the development and the possibilities of such a 
formalism. 



Chapter 23 

Counterexamples for Validation 
and Discovering of New 
Theorems 

Pertti Lounesto 

23.1 Introduction 

This chapter describes an experiment which took place over the two year 
period 1997-1999. The chapter consists of an adaptation of excerpts from 
the two Web Pages 

http://www.hit.ii/-lounesto/counterexamples.htm 
http://www.hit.ii/-lounesto/sci.math.htm. 

The first Web Page is itself a part of a previously published article in 
which published theorems were falsified by counterexamples. The posters 
of an Internet discussion group, sci. math, were challenged to validate, or in­
validate, my counterexamples. The purpose of the challenge was to test the 
suitability of this new electronic media as a forum for scientific dialogues. 
Particular attention was paid to exploring whether this new media could 
replace scientific journals and conferences as a forum for settling disagree­
ments between experts on a special topic, in this case Clifford algebras. 

The second Web Page presents the conclusions of this study. It turned 
out that an Internet discussion group cannot come up with substantial or 
competent feedback for reasons which we will discuss below. 

23.2 The Role of Counterexamples in Mathematics 

MOTTO: In research, counterexamples show us that we are going the wrong 
way. They tell us where not to go in exploring a new domain. 

The purpose of the author of this chapter is to demonstrate that many 
statements, published in mathematical literature as theorems, are false, by 
providing counterexamples. In mathematics, a theorem is either 

1. a true statement. or 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering
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2. a statement with proof. 

By either definition, a theorem cannot be falsified. In the following, I 
show that many statements published as theorems are not theorems, but 
rather just false statements. 

In practice, a mathematician finds a proof for a statement. He evaluates 
his proof with a few colleagues and publishes his theorem in a refereed 
journal. The purpose of publication is to expose the theorem to public 
scrutiny. There follows a critical debate, which might result in a revision 
of the theorem in the literature. Mathematics is universal and effectively 
applied to the real world. This often leads mathematicians to a cognitive 
illusion: When several members of a research group have accepted a new 
statement as a theorem, the statement becomes unfalsifiable (in the minds 
of the members of the research group). 

I informed almost all of the mathematicians about their errors, prior to 
exhibiting on my Web Page (www.hit.fi/lounesto/counterexamples.htm). 
The mathematicians have mostly admitted their mistakes, after some rea­
soned dialogue, lasting for a few months or sometimes years. The course 
of events was usually as follows: I find that a theorem does not hold and 
work out the simplest non-trivial counterexample. I pay special attention 
to interpreting the text in the way the author has intended so as to make 
sure that my counterexample reveals an inner inconsistency. Then I send a 
letter to the author enclosing a detailed description of my counterexample. 
I also enclose a photocopy of the theorem in the envelope, underlining the 
false parts in red and marking in the margin the word WRONG. At first, 
the authors usually defend their theorems. After a few letters have been 
exchanged, most of the authors accept the validity of my counterexam­
ples and admit their mistakes. When the mistake has been understood, the 
author usually explains the error away as casual and insignificant. 

I argue that some of my findings are significant, according to the following 
criteria: 

1. How important did the authors regard their "theorems" prior to rea­
lizing their mistakes? 

2. How long did it take for the authors to understand and admit their 
mistakes? 

The mistakes occurred at the frontiers of joint explorations of mathema­
ticians, who still had inaccurate cognitive charts of the new domains they 
were exploring. Some mistakes were confined to individuals, who could 
be easily convinced about their mistakes. Some mistakes were commOn 
to groups of mathematicians, who had a collective cognitive illusion of 
"mathematical reality" . Such groups often used a poor language to describe 
"mathematical reality". To break the cognitive illusions, I often had to 
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learn the poor language and culture of the groups. Sometimes such groups 
defended their cognitive bugs vigorously. 

The falsified "theorems" were seldom used in subsequent deductions and 
did not have an impact on the works of other researchers. Nevertheless, 
other researchers often repeated the same mistakes. From this observation, 
I come to the following main result of my findings: 

Creative research mathematicians, exploring the frontiers of our common 
body of knowledge, tend to make similar mathematical mistakes. 

This leads to collective cognitive bugs. In the realm of such bugs, state­
ments collectively held true, although later proven to be false, cannot be 
distinguished from the correct ones. In other words, there is no practical 
possibility to make a distinction between 

1. a theorem, and 

2. a statement labelled as a theorem by all experts. 

If there were, experts could just agree on classifying all statements labelled 
as theorems, in their speciality, into the above two classes. 

Some of the counterexamples stem from the failure of the authors to 
check their statements for small numbers of indices or in low dimensions 
(typically 2). Quite a few of the counterexamples consist of exceptional 
cases in lower dimensions (typically 4,7,8). Counterexamples are also given 
in the cases where the author failed to notice a general pattern after some 
dimension (typically at and above 4,6). 

Informing colleagues about their errors is more subtle. It offers them an 
opportunity to learn more mathematics. It might also result in a feeling of 
insufficiency, a cognitive conflict, and instigate a learning process, and thus 
indirectly lead to cognitive growth. See Ginsburg and Opper 1988 [18]. 

In order to benefit from the mathematical arguments presented, the 
reader should have the given references at hand, and follow the reasoning 
of the counterexamples line by line. 

23.3 Clifford Algebras: An Outline 

We first will give some preliminary notation, since some readers might be 
unfamiliar with Clifford algebras. 

23.3.1 The Clifford algebra of the Euclidean plane 

Consider the Euclidean plane IR2 with a quadratic form sending a vector 
xel + ye2 to the scalar x 2 + y2. The Clifford algebra Cl2 of IR2 is a real 
associative algebra of dimension 4 with the unit element 1. It contains 
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copies of IR and IR2 in such a way that the square of the vector xel + ye2 

equals the scalar x 2 + y2. As an equation, 

It follows that Cl2 has the basis {l, el, e2, e12}. The orthonormal unit 
vectors ell e2 in IR2 satisfy 

and are anticommutative 

We write e12 = ele2. Computing the square of e12, we find 

The basis element e12 cannot be a scalar (in I R) nor a vector (in IR2), 

nor even a linear combination of a scalar and a vector. It is a new kind of 
object, called a bivector. The basis elements 

1 
el, e2 

e12 
span, respectively, the subspaces of scalars, vectors and bivectors (in Cl2 ). 

The Clifford algebra Cl2 has a faithful matrix image, the matrix alge­
bra Mat(2, IR) of 2 x 2-matrices with entries in I R. The basis elements 
1, el, e2, e12 of Cl2 can be represented by the matrices 

o 
-1 

In comparing Clz and Mat(2, IR), which are isomorphic as associative 
algebras, it should be noted that Clz has more structure: in the Clifford 
algebra Cl2 there is a distinguished subspace, isometric to the Euclidean 
plane R2. No such privileged subspace exist in Mat(2, IR). 

23.3.2 The Clifford algebra of the Minkowski space-time 

The Clifford algebra Ch,l of the Minkowski space-time IR3,l, with the 
quadratic form x 2 + y2 + Z2 - c2t 2 , is a real associative algebra of dimension 
16 with unit element 1. It has the basis elements 

1 
el, e2, e3, e4 

e12,e13,e14,e23,e24,e34 

e123, e124, e134, e234 

e1234 
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which span, respectively, the subspaces of scalars, vectors, bivectors, 3-
vectors and 4-vectors. The vectors el, e2, e3, e4 satisfy the following multi­
plication rules: they are unit vectors with squares 

ei = e~ = e~ = 1 and e~ = -1 and they anticommute eiej = -ejei for 
i i= j. We denote eij = eiej for i i= j, and e1234 = ele2e3e4' These rules 
and conventions fix the computation rules of Cb,l, 

for example 
ele2e le3 = -eie 2e3 = -e23' 
The Clifford algebra Cb,l of the Minkowski space-time IR3,1 is isomor­

phic, as an associative algebra, to the real 4x4-matrix algebra Mat(4, IR). 
This isomorphism allows us to view Cb,l through its faithful matrix image 
Mat(4, IR). 

For the convenience of readers unfamiliar with Clifford algebras, I shall 
present the first counterexamples by means of a matrix algebra, namely 
Mat(4, IR), and then translate the presentation into the corresponding Cli­
fford algebra Cb,l. 

23.3.3 Clifford algebra viewed by means of the 

matrix algebra 

The orthonormal basis el, e2, e3, e4 of IR3,1 can be represented by the ma-
trices 

('0 0 n u 1 0 0 ). El = 
o -1 0 

E2 = 
0 0 0 

o 0 -1 0 0 1 
o 0 0 0 1 0 

CO 1 0 

). ( 
0 0 -1 0 

) o 0 0 -1 
E4 = 0 0 0 1 

E3 = 1 0 0 0 1 0 0 0 
o -1 0 0 0 -1 0 0 

satisfying the multiplication rules 
Ei = E~ = E§ = I,El = -I and EiEj = -EjEi for i i= j. 
Take an element a = (1+ed(1+e234) in CI3 ,1, represented by the matrix 

( ~ ~ ~ ~) o 0 0 0 . 
o 0 -2 2 

The so-called Clifford conjugation sending a in C13 ,1 to a- corresponds in 
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M at( 4, JR) to the anti-automorphism sending A to 

A- d 4 ATEi' ~ 0 ~ ~2 n 
A C~~:t:: t:: p,:u(ct'( f r A ~ )ill :i:"::tf:::e~:e ~::ut eveu 

o 0 -8 0 
diagonal, that is, it is not a scalar multiple of I. After this excursion into 
matrix algebra, the reader is hopefully prepared for Clifford algebra. Next, 
I will present some preliminary counterexamples by rewriting the above 
observation in terms of the Clifford algebra Cb,l. 

23.4 Preliminary Counterexamples in Clifford 

Algebras 

Consider the Clifford algebra Cl3,1 = Mat(4, JR) of the Minkowski space­
time JR3,1. Take an element 

a = (1 + ed(l + e234) = 1 + e1 + e234 + e1234, 

and apply Clifford-conjugation (the anti-automorphism of Cl3,1 extending 
the map x -7 -x in JR3,1) 

Computing the products of a and a-in different orders gives: a-a = 0 
although aa- = 4( e234 + e1234) is not zero, nor even a scalar in I R. 

Harvey 1990 [20] claims on p. 202, in Lemma 10.45, that the following 
statements are equivalent: (c) aa- E JR, (d) a-a E JR. Compare the above 
result to the Lemma, claimed to have been proven by Harvey, and you have 
a counterexample to Harvey's lemma. In other words, my counterexample 
falsifies a result of Harvey 1990, Lemma 10.45, (c,d), p. 202, since a-a = 0 
if' in I Rbut aa- = 4(e234 + e1234) is nonzero and not in I R. (Harvey 
illtroduces the Clifford-conjugation a- on p. 183; he calls it a hat involution 
which he denotes by a.) 

Gilbert and Murray 1991 [17] denote 8(x) = x-x and prove in The­
orem 5.16 that for all x such that 8(x) is in I R, it necessarily follows 
that 8(x-) = 8(x) [po 41, 1. 19] and in particular that 8(x) = 0 forces 
8(x-) = 0 [p.42, II. 2-3]. Choosing x = a to find 8(a) = 0 in I R, al­
though 8(a-) = (a-)-a- = 4(e234 + e1234) is not 0, and therefore not in 
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I R. Compare this result to Theorem 5.16, claimed to have been proven 
by Gilbert and Murray [17], and you have a counterexample to Gilbert 
and Murray's theorem. In other words, Gilbert and Murray's Theorem 
5.16, stating that 8(x-) = 8(x), has been falsified by my counterexample. 
(Gilbert and Murray's conjugation is the Clifford-conjugation, see p. 17.) 

The element a- also serves as a counterexample to Knus 1991 [24], page 
228, line 13, since (a-)- a- = 4( e234 +e1234) is not in Cit 1> the even sub al­
gebra of Cb,l' A simpler counterexample is x = el +e23 in' Cl3 = M at(2, C), 
the real algebra 2x2-matrices with complex numbers as entries, for which 
xx = -2e123 is not in CIt. (Knus introduces the Clifford-conjugation x­
on p. 195; he calls it standard involution o-(x).) 

In particular, xx = -2e123 is not in I Rfor x = el + e23 in C13 , and 
we have a counterexample to Dabrowski 1988 [8], page 7, line 12. In the 
Clifford algebra Cb of the Euclidean space IR3 there are elements whose 
exponentials are vectors, like e3 = exp[n/2(e12 - e123)]. Therefore, the 
multivalued inverse of the exponential satisfies 

This shows that vectors can have logarithms in a Clifford algebra, and 
serves as a counterexample to Hestenes 1986 [22], p. 75 (the error is correc­
ted in Hestenes 1987). 

All the above counterexamples are trivial, in the sense that an expert 
will recognizes the mistakes right away, except for maybe the last one. The 
detection of the last mistake, concerning functions in Clifford algebras, 
requires a knowledge of idempotents, nilpotents and minimal polynomials. 
A good place to start studying them is Sobczyk 1997 [40]. 

23.5 Counterexamples About Spin Groups 

The Lipschitz group Lp,q, also called the Clifford group although invented 
by Lipschitz 1880/86, can be defined as the subgroup in Clp,q generated by 
invertible vectors x E IRp,q, or equivalently by either of the following ways 

L = {s E Cl . for all x E IRp,q sxs- 1 E IRp,q} p,q p,q, , , 

L = {s E Cl+ u Cl- . for all x E IRp,q sxs- 1 E IRp,q}. p,q p,q p,q' , 

Note the presence of the grade involution: s --+ s (the automorphism 
of Clp,q extending the map x --+ -x E IRp,q) , and/or restriction to the 
even/odd parts Cl:'q. The Lipschitz group Lp,q has a subgroup, normalized 
by the reversion: s --+ S (the anti-automorphism of Clp,q extending the 
identity map x --+ x E IRp,q), 

Pin(p,q) = {s E Lp,q;sS = ±1}, 
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with an even subgroup 

Spin(p, q) = Pin(p, q) n Cl:'q, 

which contains as a subgroup the two-fold cover 

Spin+(p,q) = {s E Spin(p,q);ss = I} 

of the connected component SO+(p, q) of SO(p, q) c O(p, q). 
Although SO+(p, q) is connected, its two-fold cover Spin+(p, q) need not 

be connected. In particular, 

has two components, two branches of a hyperbola (and so the group 

Spin(l, 1) = {x + ye12;X,Y E JR.,x2 - y2 = ±1} 

has four components). This serves as a counterexample to Choquet-Bruhat 
et a1. 1989 [6], p. 37, 11. 2-3, p. 38, n. 22-23 (see also p. 27, n. 4-5). Al­
though the two-fold covers Spin(n) = Spin(n,O) c::: Spin(O, n), n > 2, and 
Spin+(n-l, 1) c::: Spin+(I, n-l), n > 3, are simply connected, Spin+(3, 3) 
is not simply connected, and therefore not a universal cover of SO+(3, 3), 
since the maximal compact subgroup SO(3) x SO(3) of SO+(3, 3) has a 
four-fold universal cover Spin(3) x Spin(3). The two-fold cover Spin+ (3,3) 
of SO+(3, 3) is doubly connected, contrary to the claims of Lawson and 
Michelsohn 1989 [26], p. 57, 1. 22, and Gockeler and Schucker 1987 [19], 
p.190, 1. 17. Lawson and Michelsohn 1989 [26] give also correct information 
about the connectivity properties of the rotation groups SO+(p, q), see p. 
20, 11. 6-8. 

As a consequence, Spin+(3, 3) c::: SL(4, JR.), and so Spin+(3, 3)/{±1} i=­
SL(4, JR.) contrary to the claims of Harvey 1990 [20], p. 272,1. 24, and Law­
son and Michelsohn 1989 [26], p. 56, 1.21. Moreover, the element ele2'" e6 E 

Spin(3,3) \ Spin+ (3,3) is not in Spin+ (3,3), since it is a preimage of 
-1 E SO(3,3) \ SO+(3, 3), contrary to the claims of Lawson and Michel­
sohn 1989 [26], p. 57, 11. 29-30. 

23.5.1 Comment on Bourbaki 1959 

The groups Pin(p, q) and Spin(p, q), obtained by normalizing the Lipschitz 
group Lp,q, are two-fold coverings of the orthogonal and special orthogonal 
groups, O(p, q) and SO(p, q), respectively. If one defines, instead of the 
Lipschitz group, a slightly different group 

G = {s E Cl . 't:/x E JR.p,q sxs- 1 E JR.p,q} p,q p,q, , , 

one obtains, only in even dimensions, a cover of O(p, q). Furthermore, for 
odd n = p + q, an element of Gp,q need not be even or odd, but might 
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have an inhomogeneous central factor x + ye12 ... n E JR+ 1\ n JRp,q. Thus 
Bourbaki 1959 [2], p. 151, Lemme 5, does not hold, as has been observed 
by Deheuvels 1981 [9], p. 355, Moresi 1988 [33], p. 621, and by Bourbaki 
himself (see Feuille d'Errata No. 10 distributed with Chapters 3,4 of Algebre 
Commutative 1961). The confusion about a proper covering of O(p, q) in 
Clp,q pops up frequently. 

In the Lipschitz group, every element s E Lp,q is of the form s = pg, where 
p E JR \ {O}, 9 E Pin(p, q). The group Gp,q does not have this property 
in odd dimensions. For instance, the central element z = x + ye123 E Ch, 
with non-zero x, y E JR, satisfies z E G 3 , but z i= pg, 9 E Pin(3). This 
serves as a counterexample to Baum 1981 [1], p. 57, 1. -1. (Baum's Cn,k 
means Clk,n-k, see p. 51, and her Pin(n, k) means Pin(k, n - k), see p. 
53. Note that the two-fold cover of 0(3), 

Pin(3) = Spin(3) U e123Spin(3) '::' SU(2) U iSU(2), 

is a subgroup of G 3 , but since the actions are defined differently, G 3 does 
not cover 0(3). 

For all s E G 3 , SS > O. Therefore, if we normalize G 3 by the reversion, 
the central factor is not eliminated, but instead we get the group {s E 
G 3 ; SS = I} '::' U(2), which does not cover 0(3) but covers SO(3) with 
kernel {x + ye123;X,Y E JR,x2 + y2 = I} '::' U(I) i=- ±1. Compare this to 
Figueiredo 1994 [13], p. 230, 11. -4. 

23.5.2 Exponentials of bivectoTs 

There are two possibilities to exponentiate a bivector B E 1\2JRP,q : the 
ordinary/Clifford exponential exp( B), and the exterior exponential expB, 
where the product is the exterior product. If the exterior exponential expB 
is invertible with respect to the Clifford product, then it is in the Lips­
chitz group Lp,q. For the ordinary exponential we always have exp(B) E 

Spin+(p, q). 
All the elements of the compact spin groups Spin(n, 0) '::' Spin(O, n) are 

exponentials of bivectors (when n > 1). Among the other spin groups the 
same holds only for Spin+(n -1,1) '::' Spin+(I, n -1), n > 4, see M. Riesz 
1958/1993 [37] pp. 160, 172. In particular, the two-fold cover Spin+ (1,3) '::' 
SL(2, C) of the Lorentz group SO+(I, 3) contains elements which are not 
exponentials of bivectors: take ho + I'dl'2 E 1\2JR1,3, rho + I'd1'2]2 = 0, 
then 

- exp[ho + I'd1'2] = -1 - ho + I'dl'2 i= exp(B) 

for any B E 1\2JRl,3. 
Note, that in Spin+(4, 1) '::' Sp(2, 2) we have 

- exp((el + e5)e2) = -1 - (el + e5)e2 = exp((el + e5)e2 + 7re34). 
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However, all the elements of Spin+ (1,3) are of the form ± exp(B), B E 
;\2IR1,3. Therefore, the exponentials of bivectors do not form a group, con­
trary to a statement of Dixon 1994 [10],p. 13, 11. 8-10. 

Every element L of the Lorentz group 50+(1,3) is an exponential of an 
antisymmetric matrix, L = exp(A),gAT g-l = -A; a similar property is 
not shared by 50+(2,2), see M. Riesz 1958/1993 [37], pp. 150-152, 170-
171. There are elements in Spin+ (2,2) which cannot be written in the 
form ± exp(B), B E ;\2IR2,2; for instance ±e1234 exp(,8B) , B = e12 + 2e14 + 
e34,,8 > O. This serves as a counterexample to Doran 1994 [11], p. 41, l. 
26, formula (3.16). 

Riesz also showed, by the same construction on pp. 170-171, that there 
are bivectors which cannot be written as sums of simple and completely 
orthogonal bivectors; for instance B = e12 + 2e14 + e34 E ;\2IR2,2. 

The above mistakes are not serious, in the sense that they could be 
rectified by stipulating the assertions, although such a correction is not 
obvious in the last examples. The above counterexamples should be easy 
to understand also for a non-expert, except maybe the last one by M. 
Riesz, which does require some knowledge of minimal polynomials of linear 
transformations. Good places to start studying minimal polynomials are 
Sobczyk 1997 [40, 41], and M. Riesz 1958/1993 [37], pp. 150-152, 170-171. 

23.5.3 Internet as a scientific forum 

Scientific knowledge is a result of public discussion/debate and scrutiny. 
In order to guarantee that serious scientists will participate in the discu­
ssion, it is essential that the author cannot alter or withdraw his writings 
after publication. The requirement of immutable dialogue, enabling later 
inspection, is not fulfilled in the media of Web Pages, which the author can 
modify, or Usenet newsgroups, where articles expire and can be cancelled. 

23.5.4 How did I locate the errors and construct 

my counterexamples? 

First, in trying to get a picture of what is new in a published work, I 
find something fishy. Then, I try to make sure that I have interpreted the 
text the way the author has intended. Then I make sure that there is an 
inner inconsistency and that the author has contradicted himself. Often 
I then checked formulas with CLICAL, a computer program designed for 
Clifford algebra calculations. Evaluating the left hand side with arbitrary 
arguments satisfying all the assumptions, and comparing the result to the 
right hand side, sometimes reveals a discrepancy. The next step is to find 
the simplest non-trivial counterexample in the lowest dimension and degree 
and with the smallest number of components. In discussions with authors 
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about the fine points of their works, CLICAL has helped me to follow, verify 
or disqualify, the arguments presented, and to penetrate more quickly into 
the topic. 

23.5.5 Progress in science via counterexamples 

Ideally, scientists publish papers for the purpose of testing and evaluating 
their ideas by public scrutiny. This ideal has been somewhat obscured by 
the peer review /refereeing system, which pretends to guarantee correct­
ness of ideas - prior to a public scrutiny, and the tendency to publish in 
order to get a position in academia. Traditionally, science has progressed 
through public debates about new ideas: statements, counterexamples, re­
fined statements and new counterexamples, etc. 

In mathematics, proving theorems, finding gaps and errors in the proofs, 
correcting the theorems, detecting errors in the corrected theorems, etc. is 
a normal activity. This is even more so in advanced mathematics because 
our cognitive charts are less accurate in the new frontiers of knowledge. See 
Lakatos 1976 [25]. 

In evaluating the validity of a mathematical theorem, one should either 
check every detail of its proof or point out a flaw in the chain of deductions 
or line of thoughts. After a counterexample has been presented, it is often 
easier to settle whether it fulfills all the assumptions than to check all the 
details of the proof. Just as in science, in mathematics we are faced with the 
fact that a single counterexample can falsify a theorem or a whole theory. 
See Popper 1972 [34]. 

The role of counterexamples in mathematics has been discussed by La­
katos 1976 [25], Dubnov 1963 [12] and Hauchecorne 1988 [21]. Lakatos 
focuses on the historical development of mathematics and Dubnov on va­
rious levels of abstraction. Both restrict themselves to a specific topic within 
mathematics. Hauchecorne gives counterexamples in almost all branches of 
mathematics. He also elaborates on virtues of counterexamples in teach­
ing and in research: A theorem often necessitates several hypotheses - to 
chart out its domain of applications it is important to become convinced 
about the relevancy of each hypothesis. This can be done by dropping one 
assumption at a time, and giving a counterexample to each new 'theorem'. 
Counterexamples cannot be ignored on the basis that 'they do not treat 
the general case'. Counterexamples are not 'exceptions that confirm the 
rule'. In mathematical research, the negation of a theorem, the affirmation 
that it is false, is demonstrated by the existence of a case, where all the 
hypotheses are verified without the conclusion being valid. The mathema­
tical justification for the falsity of a theorem is completed by presenting a 
counterexample; after verification of such a presentation further study in 
the same line at whatever generality is a useless and erroneous activity. 

There are several books listing counterexamples in various branches of 
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mathematics: Capobianco and Molluzo 1978 (graph theory)[3]' Gelbaum 
and Olmsted 1964 (analysis) [15], Fornress and Stens~;nes 1987 (several 
complex variables) [14], Khaleelulla 1982 (vector spaces) [23], Romano and 
Siegel 1986 (statistics) [38], Steen and Seebach 1970 (topology) [42], Sto­
yanov 1987 (probability) [43] and Wise and Hall 1993 (real analysis) [44] . 
Similarly as Lakatos, Dubnov and Hauchecorne these authors do not point 
out errors of contemporary mathematicians. My Web Pages differ from 
those studies in the respect that counterexamples are given to the works 
of living mathematicians, who can then participate themselves in a public 
debate about the correctness of my counterexamples. 

23.6 Counterexamples on the Internet 

Internet discussion groups are dominated by non-experts, sci.math by gra­
duate students and young mathematicians who do not yet have their own 
speciality. Fallacies are common in sci.math. But, since many competent 
mathematicians regularly post in sci.math, it was reasonable to test its 
suitability for settling scientific debates. A test with seemingly controversial 
material, such as my counterexamples to proven theorems, was proposed 
by a friend. Thus came my challenge. The posters were given adequate 
time, two years, to digest the mathematical material outside of their own 
domains of expertise. The posters were given adequate guidance for rele­
vant literature, such as my own book on Clifford algebras and spinors, and 
possibility to download a computer program, CLICAL, designed to check 
identities of Clifford numbers. 

It was anticipated that the controversial issue would get attention and 
spark discussion. After all, my work seems eccentric: I claim that there are 
more mathematical mistakes in the literature than generally admitted and 
that the mistakes are more serious and significant. In addition, it is unu­
sual to discuss openly about mistakes of living mathematicians. Although 
mathematicians do admit general fallibility, they are reluctant to admit 
specific mistakes and even to participate in discussions about mistakes of 
living mathematicians. Thus, I anticipated a lot of opposition and repre­
hension, in spite of the fact that open critics is the very nature of a public 
and self-correcting science. 

However, in revealing that in my own research field that there were lots 
of mathematical mistakes, somebody might claim that my field consists of 
poor mathematicians. If such a claim was presented, I had to be prepared 
to challenge the poster in a competition over knowledge about Clifford 
algebras, and then nullify the claim by either winning the challenge or 
enticing the claimer into making a mistake about Clifford algebras. This 
actually happened. 

During the two years of my challenge, sci.math was able to clear out only 
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1 of my 30 counterexamples, by Keith Ramsay on Dec 27, 1997. Ramsay 
scrutinized and verified one counterexample and mentioned verifying a few 
others. However, one swallow does not make a summer: although the overall 
performance of sci.math might have been more promising, if there had been 
more posters like Ramsay, the fact remains that only one counterexam­
ple was scrutinized by the users of sci.math during the two years of my 
challenge. 

Instead of checking my counterexamples any further, the posters focused 
on explaining why the users of sci.math had not proceeded further in che­
cking my counterexamples. The newsgroup sci.math ventilated its failure 
and frustration by the following arguments: 

• Attack the person, instead of the argument, called an ad hominem 
attack. A typical ad hominem attack was to claim that by bringing 
forth math-mistakes I try to show off my greatness and superiori­
ty over mistake-makers. Those who appealed for ad hominem often 
compensated their failure to present relevant arguments. 

• One cannot falsify theorems. But those who escaped by this diversion, 
failed to pick out the correct theorems from the whole of the published 
mathematical literature. 

• My counterexamples are not valid. But those who took this position, 
failed to point out a single invalid counterexample in my list. 

• I deal only with trivial mistakes/counterexamples. But those who 
choose this argument, could not scrutinize the presumably trivial 
counterexamples (with the exception of Keith Ramsay, who verified 
one trivial counterexample. Admittedly my list contains also trivial 
counterexamples, which were included to make the list also accessible 
to beginners). 

• The errors I have detected are not significant. But those who claimed 
this, were not qualified on Clifford algebras and thus could not give 
an expert opinion about the significance or impact of my counter­
examples. 

• A specialized discussion should be carried out in a news group geared 
toward research (on Clifford algebras). Debating in a newsgroup spe­
cializing on Clifford algebras would not have tested the possibility of 
neutral outsiders (= non-experts) being able to help to settle debates 
between disagreeing experts. 

• The purpose of mathematics is to prove theorems, not to falsify theo­
rems (= police out mistakes). 

• The ultimate put-down: 
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Clifford algebraists are not good mathematicians, because they 
make so many mistakes. This argument was presented repea­
tedly. I waited until it was used by one of the best mathemati­
cians in the forum. Then, during a competition over Clifford 
algebras, I caught the poster of a math mistake which he could 
have avoided had he known Clifford algebras. Thus, the poster 
nullified his own agenda. 

- Posters are not interested in examining my counterexamples or 
proofs. But, several posters had already presented their opi­
nions about the math-content of my counterexamples prior to 
announcing their disinterest, and I did not impose but was rather 
challenged to present the proofs. 

Soon the discussion in sci.math deteriorated to a repetition and a reeling 
out of the above responses. In sci.math strangers, who do not read Journal 
articles of the other posters, often participate in the discussions. Posters 
seldom engage in literature searches or detailed computation before posting, 
rather they just key in something which shows off their present state of 
"knowledge". Personal insults are common, because posters believe that 
they can attack others without being identified or harmed in return. 

As a final remark, we believe that the newsgroup sci.math could not 
come up with substantial and competent critics in a matter requiring spe­
cialized knowledge of mathematics. This shows that the newsgroup sci. math 
cannot be used to settle scientific debates between disagreeing mathemati­
cians. Thus, in our search for the scientific truth, scientific conferences and 
journals cannot be replaced by Usenet newsgroups. 

Web-pages presenting articles of dialogues in sci.math: 
http://www.hit.fi/-lounesto/David.Ullrich 
http://www.hit.fi/-lounesto/Robin.Chapman 
http://www.hit.fi/-lounesto/Zdislav.Kovarik 
http://www.hit.fi/-lounesto/Lynn.Killingbeck. 
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Chapter 24 

The Making of GABLE: A 
Geometric Algebra Learning 
Environment in Matlab 

Stephen Mann, Leo Dorst, and Tim Bouma 

24.1 Introduction 

Geometric algebra extends Clifford algebra with geometrically meaning­
ful operators with the purpose of facilitating geometrical computations. 
Present textbooks and implementation do not always convey this geo­
metrical flavor or the computational and representational convenience of 
geometric algebra, so we felt a need for a computer tutorial in which re­
presentation, computation and visualization are combined to exhibit the 
intuition and the techniques of geometric algebra. Current software packa­
ges are either Clifford algebra only (CLICAL [11] and CLIFFORD [3]) or 
do not include graphics [2], so we decided to build our own. The result is 
GABLE (Geometric AlgeBra Learning Environment), a hands-on tutorial 
on geometric algebra that is suited for undergraduate students [7]. 

The GABLE tutorial explains the basics of geometric algebra. It starts 
with the outer product (as a constructor of subs paces ), then treats the inner 
product (for perpendicularity), and moves via the geometric product (for 
invertibility) to the more geometrical operators such as projection, rotors, 
meet and join, and ends with the homogeneous model of Euclidean space. 
When the student is done he/she should be able to do simple Euclidean 
geometry of flat subspaces using the geometric algebra of homogeneous 
blades. For instance, the intersection between lines can be easily expressed 
in the basic operators: 

e = e3; % the homogeneous embedding 

P e+ e1/3+e2; % point P 

Q e+ e1+e2/2; % point Q 

R e+ e1/2-e2/4; % point R 

PQ join(P,Q); % line PQ 

QR join(Q,R); % line QR 

E. B. Corrochano et al. (eds.), Geometric Algebra  with Applications in Science and Engineering

© Birkhäuser Boston 2001
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name user group platform type Cfp,q,r nature graphics 

CLICAL mathematics CA Cfp,q,r numeric no 

CLIFFORD mathematics Maple CA Cfp,q,r symbolic no 

Cambridge math. physics Maple V GA mostly Cf3q,q symbolic no 

Clados math. physics Java CA Cfp,q numeric no 

GABLE CS students Matlab GA Cfp ,q,3-p-q numeric yes 

TABLE 24.1. Four packages in Clifford algebra/geometric algebra com­

pared. Note that although Maple can do graphics, these two Maple 

GA/CA packages provide no direct display of GA/CA objects. GA = 
geometric algebra; CA = Clifford algebra. 

meet(PQ,QR) % intersection of those lines 

Drawing the objects of geometric algebra is an important part of GABLE. 
Using them appropriately in this example produces Figure 24.1, clarifying 
the relationship between the 3-D blade-based computations in the homo­
geneous model and their geometric semantics in 2-D Euclidean space. 

It is mainly with such illustrations in mind that we designed GABLE, 
and limited it to the 3-dimensional algebras CRp ,q,3-p-q (although CR3 ,o,o is 
somewhat better supported than the other 3-dimensional algebras). Since 
this software is meant for a tutorial, we did not have great efficiency con­
cerns (though we did have some), and were most interested in ease of im­
plementation and the creation of a software package that could be made 
widely available for teaching purposes. We therefore chose to implement 
GABLE in the student version of Matlab. We now find that GABLE's use 
extends beyond the purely tutorial, since the easy access to visualization 
helps build up intuition into Euclidean geometry (see also Section 24.6) 
and differential geometry. Thus the tutorial package may serve as a spring­
board towards a more professional 'GA toolkit' in the future, with a diffe­
rent focus than existing packages, see Table 24.1. But for now, we do not 
intend GABLE to be more than an accessible, visual implementation of 
3-dimensional geometric algebra. 

This chapter describes our experiences in developing the GABLE packa­
ge. We obviously needed to decide on basic implementation issues such as 
representation, computational efficiency and stability of inverses; but we 
also ran into issues that stemmed from the insufficiently resolved structure 
of geometric algebra itself. Among these are the various inner products, 
and the precise definition and semantics of the meet and ~ operators in 
Euclidean geometry (an issue also treated in Chapter 2). This chapter mo­
tivates our decisions in these matters. 

Our representation of geometric objects is a refinement of the 8 x 8 repre­
sentation that has been presented by others, along the lines suggested by 
Lounesto and Ablamowicz [8](page 72), [3]. We compare this representa­
tion of geometric algebra to matrix representations of Clifford Algebras 
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FIGURE 24.1. Intersection of lines in 2D as the meet of blades in a 3D 

homogeneous model of Euclidean geometry. 

in Section 24.2. For the important but potentially expensive operation of 
inversion (or geometric division), we settled on a variation of a method 
proposed by Lounesto for Cf3 ,o, which we extend in Section 24.3 to work 
for arbitrary signature (in 3 dimensions). At the higher level, Section 24.4 
gives some detail on our implementation of the meet and ~ operations, 
extending them to the non-trivial cases of partially overlapping subspaces. 
Section 24.5 briefly discusses the graphics aspects of GABLE. The tutorial 
itself [7] is available on the World Wide Web!. The webpages contain both 
the Matlab package GABLE and the tutorial textbook. 

24.2 Representation of Geometric Algebra 

We first needed to decide on a representation for geometric algebra. In 
Matlab, a matrix representation would be most natural. Matrix represen­
tations for the geometric product in the Clifford algebras of various sig­
natures are well studied [9]; for each signature a different matrix algebra 
results. That is slightly unsatisfactory. Moreover, our desire to make our 
algebra a proper geometric algebra implies that we should not only rep­
resent the geometric product, but also the outer and inner products, and 
preferably on a par with each other. These issues are discussed in more 
detail in Section 24.2.4; in brief, we ended up using a modified form of the 

1 Available at http://wvw.wins.uva.nl/-leo/clifford/gable .html 

and http://wvw.cgl.uwaterloo.ca/-smann/GABLE/. 
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8 X 8 matrix representation. 

24·2.1 The matrix representation of GABLE 

In GABLE, we represent a multivector A as an 8 x 1 column matrix giving 
its coefficients relative to a basis for the Clifford algebra: 

Ao 
Al 
A2 
A3 

AI2 
A 23 

A3I 

A I23 

where {el' e2, e3} form an orthogonal basis for the vector space of our 
algebra. We will use bold font for the multivector, and math font for its 
scalar-valued coefficients. The multivector A is thus represented by an 8 xl 
column matrix [AJ, which we will denote in shorthand as 

A ;=: [Aj. 

Now if we need to compute the geometric product AB, we view this as 
a linear function of B determined by A, i.e., as the linear transformation 
A G(B), the 'G' denoting the geometric product. Such a linear function can 
be represented by an 8 x 8 matrix, determined by A (and the fact that we 
are doing a geometric product) acting on the 8 x 1 matrix of [Bj. We thus 
expand the representation [Aj of A to the 8 x 8 geometric product matrix 
[A GJ, and apply this to the 8 x 1 representation[Bj of B: 

AB ;=: [A Gj [Bj. 

The result of the matrix product [A G][Bj is the 8 x 1 matrix representing 
the element AB. The matrix entry [A Gj",,B (so in column a and row /3, 
with a and /3 running through the indices {O, 1,2,3,12,23,31, 123}) can 
be computed in a straightforward manner from the multiplication table of 
the geometric product. This table depends on the signature. We denote the 
coefficients occurring in it by c",,B;'Y (they are known as the structure coeffi­
cients defining the algebra). The matrix [A Gj is then computable through: 

e" e,B == c",B;'Y e'Y {==} [A Gj'Y,,B = cn,,B;'Y An· (2.1) 

This 8 x 8 matrix [A Gj can then be used to evaluate the (bilinear) product 
AB by applying it to the 8 x 1 column matrix [Bj using the usual matrix 
multiplication: 
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So for example the identity el e2 = el2 leads to the matrix entry 
[A Gh2,2 = Ali this is the only non-zero entry in column (3 = 2. In matrix 
multiplication between A = Al el and B = B2e2 this yields 

which is the correct contribution to the el2 component of the result. 
Both the outer and the inner product can be implemented as matrix 

multiplications, since A 1\ B and A J B are also linear functions of B, de­
termined by A. So we implement 

AI\B 

The 8 x 8 matrices [A 0] and [AI] are given below, and they are constructed 
according to Equation 2.1 for the outer product and inner product, respec­
tively. 

2.4..2.2 The representation matrices 

Using the recipe of Equation 2.1, we can compute the actual matrices. 
The structure coefficients ccx,{3;'Y of Equation 2.1 contain signed products of 
(JiS. These represent the signature (and metric) through their definition as 
(Ji == eiei· We abbreviate (Jij == (Ji(Jj and (Jijk == (JiO"j(Jk. 

Geometric product matrix: 

lAG] = 

AD O"lAl 0"2A2 0"3 A 3 -O"l2 A l2 -0"23 A 23 -O"l3 A 3l -0"123 A 123 

Al AD 0"2Al2 -0"3 A 3l -0"2A2 -0"23 A l23 0"3 A 3 -0"23 A 23 

A2 -O"lAl2 AD 0"3 A 23 O"lAl -0"3 A 3 -0"3l A l23 -0"13 A 3l 

A3 O"lA3l -0"2A23 AD -O"l2Al23 0"2 A 2 -O"lAl -O"l2A12 

A12 -A2 Al 0"3Al23 AD 0"3A3l -0"3 A 23 0"3A3 

A 23 O"lAl23 -A3 A2 -O"lA3l AD O"lA12 O"lAl 

A3l A3 0"2Al23 -Al 0"2A23 -0"2 A l2 AD 0"2A2 

A 123 A 23 A3l Al2 A3 Al A2 AD 

(2.2) 
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Outer product matrix: 

AD 0 0 0 0 0 0 0 

Al AD 0 0 0 0 0 0 

A2 0 AD 0 0 0 0 0 

[AO) = 
A3 0 0 AD 0 0 0 0 

(2.3) 
Al2 -A2 Al 0 AD 0 0 0 

A 23 0 -A3 A2 0 AD 0 0 

A3l A3 0 -Al 0 0 AD 0 

A l23 A23 A3l Al2 A3 Al A2 AD 

Inner product matrix: 

AD O'lAl 0'2A2 0'3 A 3 -O'l2A12 -0'23 A 23 -0'3l A 3l -O'l23 A 123 

0 Ao 0 0 -0'2A2 0 0'3A3 -0'23 A 23 

0 0 Ao 0 O'lAl -0'3 A 3 0 -O'l3A3l 

[AI] = 0 0 0 Ao 0 0'2A2 -O'IA l -O'l2 A l2 

0 0 0 0 Ao 0 0 0'3 A 3 

0 0 0 0 0 AD 0 O'lAl 

0 0 0 0 0 0 Ao 0'2A2 

0 0 0 0 0 0 0 Ao 

(2.4) 

Note the relation between these matrices: the inner product matrix and 
the outer product matrix both have all non-zero elements taken from the 
geometric product matrix. Note also the lack of signature in the outer 
product matrix; this is in agreement with the fact that it forms a (non­
metric) Grassmann algebra that may be viewed as a geometric algebra of 
null vectors, for which all O'i equal O. 

The reader may realize from this matrix description that we have imple­
mented an inner product that differs from Hestenes' inner product [6]: we 
prefer the contraction defined in [1], since we found that its geometric se­
mantics is more straightforward (see [7, 10]). We have implemented other 
inner products as well (see the next section), but the contraction is the 
default. 

24.2.3 The derived products 

It is common to take the geometric product as basic, and define the other 
products using it by selecting appropriate grades. This can be the basis 
for an implementation; the Maple package at Cambridge [2] has been so 
constructed. For our comparative discussion below, we state the defini-
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tions; these can be used in a straightforward manner to derive the matrix 
representations. 

• Outer product 

(2.5) 
r,s 

where Or is the grade operator taking the part of grade r of a mul­
tivector. 

• Contraction inner product 

(2.6) 
r,s 

where the grade operator for negative grades is zero (we thank Sven­
son [12] for this way of writing the contraction). Note that this implies 
that 'something of higher grade cannot be contracted onto something 
of lower grade'. For scalar 0: and a general non-scalar multivector A 
we get 
o:JA = o:A and AJo: = O. 

• Modified Hestenes inner product 
This is a variation of the Hestenes inner product, which fixes its odd 
behavior for scalars: 

r,s 

For scalar 0: and a general non-scalar multivector A we get 
O:'M A = o:A = A'M 0:. 

• Hestenes inner product 

(2.7) 

The original Hestenes product in [5] differs from Equation 2.7 in that 
the contributions of the scalar parts of A and B are explicitly set to 
zero. 

Note that mixed-grade multivectors require expansion of a double sum in 
all these products. 

24.2.4 Representational issues in geometric algebra 

For non-degenerate Clifford algebras of arbitrary signature (p, q) (which 
means p + q spatial dimensions, of which p basis vectors have a positive 
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/I q=OI q=l I q=2 I q=3 

p=O lR(l) C(l) IH(l) 2IH(1) 
p=l 2ut(1) lR(2) C(2) IH(2) 
p=2 lR(2) 2ut(2) lR(4) C(4) 
p=3 C(2) lR(4) 2lR( 4) lR(8) 
p=4 IH(2) C(4) lR(8) C(8) 

TABLE 24.2. Matrix representations of Clifford algebras of signatures 

(p, q). 

square, and q have a negative square) linear matrix representations have 
long been known. 2 

Those relevant to our discussion are repeated in Table 24.2, from [9]. In 
this table, lR(n) are n x n real matrices, C(n) are n x n complex-valued ma­
trices, IH(n) are n x n quaternion-valued matrices. The 'dual real numbers' 
2lR( n) are ordered pairs of n x n real matrices, and similarly for the other 
number systems. 

The various representations are non-equivalent, so the table can be used 
for arguments on unique representations. Note that the Clifford algebras for 
a 3-dimensional space can have many different representations depending 
on the signature. Though this is not a problem for implementations, it 
makes it harder to obtain a parametric overview on the metric properties 
of the various spaces, and a representation that contains the signature as 
parameters (Ji has our slight preference. 

The outer product is linear and associative, and in each case isomorphic 
to a rather involved subalgebra of a matrix algebra, which we will not 
specify further. The inner product is not associative, and is therefore not 
isomorphic to a matrix (sub )algebra. 

Our initial exclusive interest in ce3,o suggested the representation C(2), 
with elements represented as 

[ (Ao + A3) + i(Al2 + Al23 ) 

(Al - A3d + i(A2 + A23 ) 
(AI + A3d + i( -A2 + A23 ) ] 
(Ao - A3) + i( -Al2 + A l23 ) , 

but this works only for the geometric product; the other products would 
then have to be implemented using the grade operator. We prefer a re­
presentation in which all three products are representable on a par, and 
in which signatures are parameterized. This desire to represent arbitrary 
signatures parametrically necessitates viewing ce3,o as a subalgebra of ce3,3, 

2Less is known about degenerate Clifford algebras and their representations. In our 

preferred choice they are handled as easily as the non-degenerate algebras, so we will 

not discuss them in detail. 
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and therefore to choose a representation in IR(8). 
This algebra IR(8) also contains a representation of the outer product 

as a certain kind of lower-triangular matrices (in fact, Equation 2.2 works 
nicely: the matrix product of two such matrices faithfully represents the 
outer product). For arbitrary signatures, there cannot exist a change of 
representation in which both the outer product matrices and the geometric 
product matrices could be reduced to a smaller size (i.e., brought onto a 
block-diagonal representation of the same kind), since we need the full IR(8) 
to handle those signatures anyway. 

Now the need to represent the inner product as well indicates that we 
can not represent the elements of the algebra by matrices in their function 
as both operator (i.e., first factor) and operand (i.e., second factor). We 
therefore switch to the view where each product is seen as a linear function 
of the operand, parameterized by the operator, as detailed in Section 24.2.l. 
We maintain the IR(8)-representation of these linear functions, but they 
now operate on 8-dimensional vectors representing the operand (rather 
than forming an algebra of operators). Thus we arrive at the representation 
we have chosen (also for the geometric product), with the operator matrices 
naturally defined as in Equation 2.l. 

It should be clear that the same reasoning suggests an IR(2n) representa­
tion of the geometric algebra of n-dimensional space of arbitrary signatures, 
with matrices defined for the three products in the same way. 

24.2.5 Computational efficiency 

If we would represent our objects as 8 x 8 matrices of reals, the resulting 
matrix multiply to implement the geometric product would cost 512 multi­
plications and 448 additions. Further, using the 8 x 8 matrix representation, 
to compute the outer product and/or inner product, we would have to use 
the grade operator (or, for the outer product, pay the expansion cost to 
convert to the outer product 8 x 8 matrix representation). Addition and 
scalar multiplication of elements in this form require 64 additions and 64 
multiplications respectively. This method is extremely inefficient and we 
will not discuss it further. 

The computational efficiency of the 8 x 1 format is better and is su­
mmarized in Table 24.3, where the notation (a, m) denotes the number of 
additions and multiplications required. With the 8 x 1 format, the cost of 
computing a product is the computational cost of having to expand one of 
the one of the 8 x 1 matrices to an 8 x 8 matrix and then multiply it by an 
8 x 1 matrix at a cost of 64 multiplications, 56 additions, and the cost of 
expansion. When we include the cost of signatures in the expansion cost, 
then the total cost is increased by 48 multiplications. 

It is of course possible to use the table of Clifford algebra isomorphisms 
as a literal guide to the implementation. Let us consider the costs of imp le-
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menting the special case of the 3-dimensional Clifford algebras; Table 24.2 
shows that this involves implementation of C(2), 2IR(2) and 2m(1). In all 
representations the operations of addition and scalar multiplication have 
take 8 floating point additions and 8 floating point multiplications, respec­
tively (in the IR(8) representation, these operations are performed on the 
8 x 1 matrices representing the objects). 

To compute the geometric product we need to multiply elements. The 
cost of the basic multiplications is: one complex multiply is (4,2); one 
double real multiply takes (2,0); one quaternion multiply takes (16,12). 
For a full matrix implementation to produce the geometric product this 
yields for C(2) a cost of (32,16); for 2IR(2) a cost of (16,8); for 2m(1) a 
cost of (32,24). Depending on the structure of the algebra, one may thus 
be fortunate by a factor of two. These should be compared to our IR(8) 
implementation acting on 8 x 1 matrices, which has a cost of (110,56), 
for general signatures. This is a factor of 3 worse than 2m(1), the most 
expensive of the other three representations. If we consider only ce3 ,o, then 
we have no signature cost, and IR(8) costs (64,56) compared to (32,16) 
for C(2). Table 24.3 compares the cost of several operations of our IR(8) 
implementation (without signature cost) to a C(2)-based implementation. 

To implement a full geometric algebra, these specific geometric product 
implementations need to be augmented with a grade operation to extract 
elements of the grade desired, according to Equations 2.6 and 2.5. For C(2) 
it takes (0,8) to extract the eight separate elements, and presumably the 
same for 2m(1) and 2IR(2). For simplicity of discussion, when extracting a 
single grade, we will assume that it costs 3 additions (although for scalars 
and trivectors, the cost is only 1 addition). 

This process of a geometric product followed by grade extraction is simple 
if the objects to be combined are blades (rather than general multivectors). 
Such an operation requires a geometric product followed by grade extrac­
tion, which for C(2) has a total worst case cost of (32,19), although there 
may be some additional cost to test for the grade of the blade, etc., which 
would add (0,16) to the cost ((32,35) total) if we need to perform a full 
grade extraction of each operand. 

When taking the outer or inner product of multivectors that are not 
blades, the use of the geometric product and grade extraction becomes quite 
expensive, since we must implement a double sum (see Equations 2.5, 2.6, 
and 2.7). A naive implementation of this formula would require 16 geome­
tric products and grade extractions, an additional 12 additions to combine 
the results for each grade, and 8 additions to reconstruction the result, for 
a total cost of (512,324). However, looking at Table 24.4, we see that that 
six of these geometric products will always be 0, and we can easily rewrite 
our code to take advantage of this. This modification to the code reduces 
the cost to (320,210). 

By unbundling the loop and simplifying the scalar cases (i.e., multiplying 
B by the scalar portion of A reduces 4 geometric products to one floating 
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Operation 8 x 1 C(2) 
addition (0,8) (0,8) 
scalar multiplication (8,0) (8,0) 
grade extraction (0,0) (0,8) 
geometric product (64,56) (32,16) 
other products of blades (64,56) (32,19) 
other products of multivectors (64,56) (111,79) 

TABLE 24.3. Comparison of costs for 8 x 1 and C(2). Notation: (a, m) 

denotes number of additions a and multiplications m. 

al\b a 1 2 3 

a a 1 2 3 
1 1 2 3 (4) 
2 2 3 (4) (5) 
3 3 (4) (5) (6) 

TABLE 24.4. Grade of the outer product of blades. If the grade is 

greater than 3, then the result will be O. 

point addition (to extract the scalar) and 8 floating point multiplies, and 
multiplying A by the scalar portion of B reduces 3 more geometric products 
to one addition and 7 floating point multiplies) we can get the cost down 
to (32 * 3 + 15,19 * 3 + 2 + 12 + 8) = (111,79). Further special casing of 
the vector and bivector terms can reduce this cost to (33,45) (details of 
the analysis can be found in [10]), but note that in doing this (a) we have 
left the complex representation for computing these products and (b) each 
product will need its own special case code. 

The above discussion is on the cost of writing special case code for the 
outer product only. If we choose this route, we would also need to write 
special case code for each of the inner products and possibly for each di­
mensional space in which we wish to work. A reasonable compromise of 
special cases versus general code for the complex representation would be 
to handle the scalars as special cases and write the loops to avoid the 
combinations that will always give zero. 

24.2.6 Asymptotic costs 

If we are interested in arbitrary dimensional spaces, then we need to look 
at the asymptotic costs. Table 24.5 summarizes the costs of the complex 
and of the 2n x 1 representation (where n = p+q+r is the dimension of the 
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Geometric Other products Other products 

Product on blades on multivectors 

Complex 2(3n+l)/2 2(3n+1)/2 n 22(3n+1)/2 

2 n x 1 2 2n 22n 22n 

TABLE 24.5. Comparison of costs of various methods, with n being 

the dimension of the underlying vector space. 

underlying vector space) for the geometric product and for the other pro­
ducts (e.g, inner and outer products) on blades and for the other products 
on general multivectors. In this table, we only give the top term in the cost 
expression, ignoring grade extraction, etc., for the complex representation 
of other products. Use of only this top order term also ignores the savings 
achieved for the complex representation by not computing the products 
whose grade is higher than n and special casing the scalar products; such 
optimizations roughly equate to savings of a factor of two. Note that we use 
the complex representation as a coarse representative of the other repre­
sentations; in the other cases we would use the quaternion or double-real 
representation, which cost roughly a factor of two less than the complex 
representation. 

From the table, we see that asymptotically the complex representation is 
always best. However, substituting numbers in these equations shows that 
for small n, the 2n x 1 representation is best when performing inner or outer 
products of general multivectors, with the cross-over point being around 
n = 14. But when n equals 14, the cost of even the geometric product in 
the complex representation is extremely large, requiring roughly 3 x 106 

multiplications, so this is unlikely to be used at all. 
For smaller n, the complex representation is better than the 2n x 1 re­

presentation for the geometric product and the products of blades, while 
the 2n x 1 representation is computationally less expensive than the com­
plex representation for the other products of general multivectors. However 
the other products of general multivectors are rarely (if ever) performed 
in our present understanding of what constitute geometrically significant 
combinations. Thus, in general the complex/ quaternion/ double-real repre­
sentation will be more efficient than the 2n x 1 representation by a factor 
of 2n/2. The conclusion must be that once one has decided on a particular 
geometry for one's application, reflected in a particular signature, it makes 
sense to implement it literally using the isomorphism of Table 24.2. 

For our tutorial in 3 dimensional spaces, the cost of the 8 x 1 represen­
tation is only a factor of three more expensive than the complex represen­
tation. Since we were writing tutorial code, we felt this cost was more than 
offset by the explicitness of the signature and ease of implementation. 
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24.3 Inverses 

In Matlab, the obvious way to compute the inverse of a geometric object M 
is to express it in the 8 x 8 geometric product matrix representation, [M]. 
Then inversion of [M] may be done using the Matlab matrix inverse routine, 
and the first column of [M]-l will be the representation of the inverse of 
M. However, when we implemented this method for computing the inverse, 
we found that it introduced small numerical errors on even rather simple 
data, and thus was less stable than we would like. We investigated a method 
by Lounesto [8] to compute inverses in 3-dimensional Clifford algebras. 
This method proved more stable in our testing, and it is computationally 
considerably more efficient than a matrix inverse. We discuss it now, and 
extend it slightly. 

Lounesto's trick is based on the observation that in three dimensions 
(and that is essential!) the product of a multivector M and its Clifford 
conjugate M only has two grades, a scalar and a pseudoscalar (the Clifford 
conjugate is the grade involution of the reverse of a multi vector). Let Mi 
denote the part of M of grade i, though we will write Mo for the scalar 
part. Then we compute 

MM (Mo + M1 + M2 + M3)(Mo - M1 - M2 + M 3 ) 

(M5 - Mi - M~ + M~) + 2(MoM3 - M1 A M 2), 

and the first bracketed term is a scalar, the second a trivector. 
Further, at least in Euclidean 3-space, if such an object of the form 'scalar 

plus trivector' No + N3 is non-zero, then it has an inverse that is easily 
computed: 

(N. N )-1 _ No - N3 
o + 3 - N,2 _ N2 . 

o 3 

Please note that not all multivectors have an inverse, not even in a Eu­
clidean space: for instance M = 1 + e1 leads to MM = 0, so this M 
is non-invertible. In a non-Euclidean space, the denominator may become 
zero even when No and N3 are not, and we need to demand at least that 
NS i=- N~. When it exists, the inverse is unique. This follows using the asso­
ciativity of the geometric product: if A and A' are left and right inverses 
of B, respectively, then A = A(BA') = (AB)A' = A'. Therefore any left 
inverse is a right inverse, and both are identical to the inverse. 

These two facts can be combined to construct an inverse for an arbitrary 
multivector M (still in Euclidean 3-space) as follows: 

The following two lemmas and their proofs demonstrate the correctness of 
Lounesto's method in 3-dimensional spaces of arbitrary signature. 
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Lemma 24.1. M-1 exists if and only if (MM)-1 exists. 

Proof: First, assume that M-1 exists. Then 1 = M-1 M = (M-1M-1)(MM), 

so that (MM)-1 = M-1 M-1, which exists. 

Secondly, assume that (MM) -1 exists. Then we have 

1 = (MM)(MM)-1 = M(M(MM)-1), so that M-1 = M(MM)-I, which 

exists. 0 

Lemma 24.2. Let N = No + N 3. Then iff N5 =I- N~, N- 1 exists and equals 

(N N )-1 = No - N3 
0+ 3 N2 N2 

0- 3 

Proof: Assume N5 =I- N~, then 

(N5 + N3NO - NoN3 - N~)/(N5 - N3)2 

(N5 - N~)/(N5 - N~) = 1, 

so N- 1 is as stated. Now assume that N- 1 exists. Then if N3 = 0 the result is 

trivial. If N3 =I- 0 and No = 0 the result is trivial. So take N3 =I- 0 and No =I- O. 

Let K be the inverse of N = No + N 3 . Then it needs to satisfy 

so, written out in the different grades 

Straightforward algebra on the terms of grade 0 and 3 yields 

and since N3 =I- 0 this gives N5 =I- N~. Then the case above shows that the inverse 

is N-1 = (No - N 3)/(N5 - N~). 0 

Table 24.6 summarizes the costs to compute the inverse for both the 8 x 1 
representation and for the C(2) representation. In this table, we give three 
algorithms for each representation: a naive algorithm that does not try to 
exploit any extra knowledge we have about the terms we are manipula­
ting; a good algorithm that exploits the structure of (MM)-l, which is a 
scalar plus a pseudo-scalar, and thus does not require a full product when 
multiplied by M; and a scalar version that can be used when (MM)-l is 
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8 x 1 C(2) 

Term Naive Good Scalar Naive Good Scalar 

M (0,0) (0,0) (0,0) (0,8) (0,8) (0,8) 

MM (64,56) (64,56) (64,56) (32,16) (32,16) (32,16) 
MM-1 (4,1) (4,1) (0,0) (4,1) (4,1) (0,0) 

M(MM)-l (64,56) (16,8) (8,0) (32,16) (16,8) (8,0) 

Total (132,113) (84,65) (72,56) (64,41) (52,33) (40,24) 

TABLE 24.6. Cost of Lounesto's inverse. 

a scalar. This last case occurs when M is a blade, a scalar plus a bivector, 
or a vector plus the pseudo-scalar, which covers most of the geometrically 
significant objects we manipulate. 

Note that in this table we have omitted the cost of the six negations 
needed to compute the Clifford conjugate. Also note that the complex 
representation requires 8 additions when computing the Clifford conjugate 
because it has to separate and recombine the scalar and pseudo-scalar part 
of the geometric object. 

Lounesto's method is computationally much cheaper than the matrix in­
verse method, with a good implementation of Lounesto's method requiring 
149 Matlab floating point operations for the 8 x 1 representation, while 
the Matlab matrix inverse routine on 8 x 8 matrices requires 1440 Matlab 
floating point operations. Lounesto's method really makes convincing use 
of the special structure of our matrices. While a faster matrix inversion 
routine may be available, it is unlikely that there will be a general routine 
capable of inverting our special 8 x 8 matrix in fewer than 149 floating point 
operations (which is after all little more than twice the number of matrix 
elements!). Further, in practice we found our modified Lounesto inverse to 
compute a more numerically stable inverse than the matrix inverse rou­
tine provided by Matlab (perhaps not surprisingly, since it involves fewer 
operations) . 

Had we used the C(2) representation of elements in our geometric algebra, 
the cost of matrix inversion would have dropped dramatically, with Matlab 
requiring only 260 floating point operations to invert a 2 x 2 complex ma­
trix. However, Lounesto's method using the complex representation only 
requires 85 floating point operations. Thus Lounesto's inversion method is 
also less expensive in the C(2) representation. 
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24.4 Meet and Join 

The geometric intersection and union of subspaces is done by the meet 
and ~ operations. These have mostly been used by others in the context 
of projective geometry, which has led to the neglect of some scalar factors 
and signs (since they do not matter in that application). This issue was 
partly treated in [4], but the development of the tutorial required more 
investigation of those scalar factors. This section reports on that. 

24.4.1 Definition 

The meet and ~ operations are geometrical 'products' of a higher order 
than the elementary products treated before. They are intended as geome­
trical intersection and union operators on (sub )spaces of the algebra. Since 
subspaces are represented by pure blades, these operations should only be 
applied to blades. 

Let blades A and B contain as a common factor a blade C of maximum 
grade (this is like a 'largest common divisor' in the sense of the geometric 
product), so that we can write 

A = A' 1\ C and B = C 1\ B' 

(note the order!). We chose A' and B' to be perpendicular to C, so that 
we could write the factorization in terms of the geometric product: 
A = A' C and B = CB' (but note that A' and B' are in general not 
mutually perpendicular!). If A and B are disjoint, then C is a scalar (a 
O-blade). We now define meet and ~ as 

~ (A, B) = A' 1\ C 1\ B' and meet(A, B) = C. 

Note that the factorization is not unique: we may multiply C by a scalar 
"(. This affects the ~ result by l/r and the meet by "(, so meet and ~ are 
not well-defined blades. (Since "( may be negative, not even the orientation 
of the results is defined unambiguously.) So these operations are hard to 
define in a Clifford algebra; but in an algebra intended for practical geome­
try, they are definitely desired. Fortunately, many geometric constructions 
are insensitive to the magnitude and/or sign of the blade representing the 
subspace. (A prime example is the projection (xJA)/A onto the subspace 
represented by A - there is not problem using for A the outcome of a meet 
or ~.) All we need to guarantee is that meet and ~ of the same subspaces 
can be used consistently. Therefore we need to base both operations on the 
same factorization. 

It is straightforward to make the computational relationships between 
meet and ~ explicit. The definition gives for the ~, given the meet, is 

A 
~ (A,B) = 1\ B, 

meet(A,B) 
(4.8) 
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where the fraction denotes right-division.3 

By duality relative to ~ (A, B) and symmetry of a scalar-valued con­
traction (or inner product) it follows from Equation 4.8 that 

1- A J B 
- meet(A, B) ~ (A, B) 

B A 
~ (A, B) J meet(A, B) 

The division by meet(A, B) can be factored out (this is due to the contain­
ment relationship of the factors of the contraction and easy to prove using 
the techniques in [4]) and we obtain 

B 
meet(A, B) = ~ (A, B) J A. (4.9) 

Thus we can start from either meet or ~ and compute the other in a 
consistent manner. The symmetry of the equations means that either way 
is equally feasible. 4 Algorithms for meet and ~ are discussed in [7]. For a 
more detailed discussion on the algebra of incidence see Chapter 13 and 
Chapter 7. 

24.5 Graphics 

Since we wanted a visual tutorial, we created graphical representations 
for all blades, and used Matlab rendering commands to draw them. The 
following table summarizes our representations: 

Type 
scalar 
vector 
bivector 
trivector 

Representation 
Text above window 
Line from origin 
Disk centered at origin 
Line drawn sphere 

Orientation 
Sign 
Arrow head 
Arrows along edge 
Line segments going out or in 

Figure 24.2 illustrates the vector, bivector, and trivector; the axes are put 
in automatically by Matlab. 

3 If e is a null blade (i.e., a blade with norm 0, non-invertible) then we cannot 

compute A' in terms of A from the factorization equation A = A'e, and therefore not 

compute ~ (A, B) = A' A B from the meet (or vice versa, by a similar argument). We 

thus have to limit ~ and meet to non-null blades; which means that we restrict their use 

to (anti- ) Euclidean spaces only. 
4Equation 4.9 is frequently extended to provide a 3-argument meet function relative 

to a general blade I: meet(A, B, I) == (B/I). A. However, since the geometric significance 

of using anything but ~ (A, B) as third argument is unclear, we will not use it. Also, 

beware that some writers may switch the order of the arguments in this formula! 
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FIGURE 24.2. Graphical representation of vector, bivector, and trivec­

tor. 

We chose the disk as our representation for bivectors since with our 
matrix representation of the geometric objects, we do not necessarily have 
the defining vectors for the bivector (which may not even exist , as is the 
case if the bivector was created as the dual of a vector). Without such 
vectors, we can not use the standard parallelogram representation of the 
bivector. There is a similar issue with the trivector (i.e., we were unable 
to use a parallelepiped as its representation) and thus we used the sphere. 
However, we also provide demonstration routines to illustrate the more 
standard representations of bivectors and trivectors; the user must then 
provide the basis on which to decompose them. 

Objects of mixed grade presented a more difficult problem. While it is 
easy to draw the scalar, vector, bivector, and trivector components inde­
pendently, this is not particularly illustrative. In particular, we needed to 
find a way to illustrate the operations of the inner , outer, and geometric 
products. The first two are fairly easy to demonstrate: we have two sub­
windows, in the former we draw the operands and in the latter we draw the 
result. The geometric product is more difficult to illustrate. So in addition 
to providing a routine to show the operands and result of the geometric 
product, we presented examples of using the geometric product as an ope­
rator to perform rotations and interpolation between orientations, rather 
than as a (composite) object by itself. 

24.6 Example: Pappus's Theorem 

As a more complete example of GABLE, we present an illustration of Pa­
ppus's theorem, which says take any two lines and three points on each line 
(Pi P2 P3 and Qi Q2 Q3) , cross-join the point (i.e. , build the line segments 
PiQ2 , PiQ3, P2Qi, P2Q3, P3Qi, and P3Q2) and compute the intersection of 
the three cross-joined pairs of segments (i.e., intersect PiQ2 with P2Qi, P2Q3 
with P3Q2, and P3Qi with PiQ3), and then these three points of intersection 
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will be collinear. 
To illustrate this theorem, we first need to construct six points and draw 

the relevant line segments. We choose to e3 as the homogeneous coordinate: 

» Pi = e3+el; P2 = e3+2*el; P3 = e3+4*el; 

» Ql = e3+e2; Q2 = e3+el+2*e2; Q3 = e3+2*el+3*e2; 

» DrawPolyline({Pl,P3},'r'); DrawPolyline({Ql,Q3},'r'); 

» DrawPolyline({Pl,Q2},'k'); DrawPolyline({Pl,Q3},'k'); 

» DrawPolyline({P2,Ql},'k'); DrawPolyline({P2,Q3},'k'); 

» DrawPolyline({P3,Ql},'k'); DrawPolyline({P3,Q2},'k'); 

The DrawPolyline calls draw the line segments of Pappus's theorem. Next 
we want to compute the intersection of corresponding line segments. As 
a first step, we need to compute each line segment (the M of two points 
on the segment) and as a second step we need to intersect pairs of line 
segment (the meet of the two segments). Note that the meet will give us 
a homogeneous point, and we need to normalize its coordinates to put the 
point back in the homogeneous plane: 

» % ... 
» H3 meet(join(Pl,Q2),join(P2,Ql)); 

» H2 meet(join(Pl,Q3),join(P3,Ql)); 

» Hi meet(join(P2,Q3),join(P3,Q2)); 

» DrawHomogeneous(e3,Hl,'n' ,'g'); 

» DrawHomogeneous(e3,H2,'n','g'); 

» DrawHomogeneous(e3,H3,'n' ,'g'); 

» DrawPolyline({Al,A3},'b') 

A3 

A2 

Ai 

H3/inner(H3,e3); 

H2/inner(H2,e3); 

Hl/inner(Hl,e3); 

The resulting GABLE drawing appears in Figure 24.3. Two other examples 
that appear in our tutorial are an illustration of Napoleon's theorem and 
an illustration of Morley's triangle. 

24.7 Conclusions 

In GABLE, our Matlab package for the geometric algebra tutorial, we 
have chosen an 8 x 1 representation of multivectors, to be expanded to 
an 8 x 8 matrix representation when they are used as operands in the 
elementary products (geometric product, inner product, outer product). 
In our detailed comparison of the complexity of this representation with 
representations based on the isomorphisms of Clifford algebras with matrix 
algebras, this choice appeared not always the most efficient for software 
used in an actual application (rather than a tutorial), especially if the 
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FIGURE 24.3. Illustration of Pappus's theorem created by GABLE. 

signature of the space required could be known beforehand, and if one 
would deal mostly with pure blades. Further developments in the practical 
use of geometric algebra should show whether blades are indeed sufficient 
for Our needs. If applications would require many inner and outer products 
of multivectors of mixed grade, then our explicit representation of these 
products by matrices should be considered. 

GABLE is an implementation of 3-dimensional Clifford algebras with 
arbitrary signature. The generalization to arbitrary dimensions is readily 
obtained from Equation 2.1. However, as noted earlier in this chapter, high 
dimensional Clifford algebras are computationally expensive, and rather 
than use Our 2n x 1 representation, a specific complex, etc., representation 
may be preferred. 

For the geometric division, we have extended Lounesto's method to com­
pute inverses in 3-dimensional spaces of arbitrary signatures; but it should 
be emphasized that the method does not work in spaces of higher dimen­
sions since it is based on properties of the Clifford conjugation that do not 
generalize to such spaces. In those spaces, an inversion of the geometric 
product matrix might be required. 

The need to make geometrical macros for intersection and connection 
of geometrical objects necessitated a detailed study of the txI and meet 
operations and their relationship. We have now embedded them properly 
into the geometric algebra of blades, even though each is only determined 
up to a scalar factor; the key is to realize that both are based on the 
same factorization of blades. The tutorial shows that despite this unknown 
scalar, geometrically significant quantities based on them are unambiguous­
ly determined. We noted that the GABLE meet and txI operators only 
work for Euclidean signature; further research is needed to extend these 
operations to arbitrary signature. 

At the start of this project, we thought it would be straight-forward to 
implement this software using results in the literature. However, we found 
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the literature lacking in several areas, which we have partly addressed in 
this chapter. As a result of our work, we now have GABLE, a Matlab 
package and tutorial that should facilitate learning geometric algebra by 
people new to the subject. Moreover, we have found the package useful for 
testing out ideas and verifying results in our own research. 
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Chapter 25 

Helmstetter Formula and Rigid 
Motions with CLIFFORD 

Rafal Ablamowicz 

25.1 Introduction 

CLIFFORD is a Maple package for symbolic computations in Clifford al­
gebras GC(B) of an arbitrary symbolic or numeric bilinear form B. The 
purpose of this paper is to show usability and power of CLIFFORD when 
performing computer-based proofs and explorations of mathematical as­
pects of Clifford algebras and their applications. It is intended as an invi­
tation to engineers, computer scientists, and robotics to use Clifford alge­
bra methods as opposed to coordinate/matrix methods. CLIFFORD has 
been designed as a tool to promote and facilitate explorative mathema­
tics among non Clifford-algebra specialists. As an example of the power of 
CLIFFORD, we restate a formula due to Helmstetter which relates the 
product in GC(g), the Clifford algebra of the symmetric part of B, to the 
product in GC(B). Then, with CLIFFORD, we prove it in dimension 3. 
Clifford algebras of a degenerate quadratic form provide a convenient tool 
with which to study groups of rigid motions in ]R3. Using CLIFFORD 
we will actually explicitly describe all elements of Pin(3) and Spin(3). 
Rotations in ]R3 can then be generated by unit quaternions realized as 
even elements in Gct 3' Simple computations using quaternions are then 
performed with CLIFFORD. Throughout this paper we illustrate actual 
CLIFFORD commands and steps undertaken to solve the problems. 

A first working version of a Maple package CLIFFORD was presented in 
Banff in 1995 [1]. From a modest program capable of symbolic computations 
in Clifford algebras of an arbitrary bilinear form, CLIFFORD has grown 
to include 96 main procedures, 21 new Maple types, over 4,000 lines of 
code written in the Maple programming language, and an extensive on­
line documentation [4]. There is a number of special-purpose extensions 
available to CLIFFORD such as GTP for certain computations in graded 
tensor products of Clifford algebras, OCTONION for computations with 
octonions considered as para-vectors in GCO•7 , CLI4PLUS for computations 
in and conversions to a Clifford basis rather than a Grassmann basis. In 
fact, anyone who uses Maple can easily write additional procedures to tackle 
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specific problems. 
There are major advantages in using CLIFFORD with its symbolic ca­

pabilities over, for example, CLICAL, a semi-symbolic calculator for com­
putations in Clifford algebras of a quadratic form [14]. One is its ability 
to solve algebraic equations in any Clifford algebra. This feature is useful 
when looking for the most general element satisfying certain conditions. 
We will use it in Section 25.3 where we will systematically search for all 
types of elements in Pin(3). Five general types, not entirely exclusive, 
are eventually found through a systematic search and analysis. Then, the 
elements of Spin(3) are computed and related to unit quaternions. The 
package was also extensively used in [5] where Young operators in the Hecke 
algebra HIF (3, q) were found by solving systematically equations which de­
fine them. Rotations in coordinate planes and in a plane orthogonal to an 
arbitrary non-zero axis vector are described using quaternions realized as 
elements of c£t 3' A symbolic formula describing the most general rota­
tion is derived. 'Finally, using the ability of CLIFFORD to compute in 
Clifford algebras of a degenerate quadratic form, the semi-direct product 
Spin(3) ><I]R3 is shown to generate rigid motions on a suitable subspace of 
the Clifford algebra C£1,O,3 1. 

The second advantage of using symbolic program like CLIFFORD is 
its ability to compute with expressions containing totally undefined sym­
bolic coefficients. It is possible, like in Section 25.3, to impose additional 
conditions on these coefficients when needed (by defining aliases for roots 
of polynomial equations). In Section 25.2 we verify one of Helmstetter's 
formulas [12] that relates Clifford product in C£(B), the Clifford algebra 
of an arbitrary bilinear form B, to the Clifford product in C£(g) where 
9 = gT is the symmetric part of B. We re-word the Helmstetter formula 
and explicitly show the form of a bivector element F needed to relate the 
two products. In fact, while this problem turned up to be a challenge for 
CLIFFORD in view of its complexity, it also has helped to fine-tune the 
program to make such computations feasible. We will only prove our result 
in dimension 3; however, similar proofs in dimension up to 9 have been 
successfully completed with CLIFFORD and are left for the Reader. 

25.2 Verification of the Helmstetter Formula 

In his paper [12] Helmstetter studies canonical isomorphisms between Cli­
fford algebras C£( Q) and C£( Q') of two quadratic forms Q and Q' defined 
on the same (real or complex) vector space V. The forms are related via 

1 C€d,p,q denotes the Clifford algebra of the quadratic space (V, Q) = V'.l V ~ 

where V' is endowed with the non-degenerate part of Q of signature (p, q) and 

dim V~ = d. When d = 0 we will write C€p,q instead of CfO,p,q' 
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the identity Q'(x) = Q(x) + B(x,x) for every x E V and some bilinear 
form B on V. Helmstetter constructs a deformed Clifford product * on 
Gl(Q) by extending the Clifford product xy of two elements x and y in 
V ~ Gl(Q) 

x*y = xy + B(x,y) 

to all elements in Gl(Q). Together with the new product *, the Clifford 
algebra Gl(Q) becomes a deformed Clifford algebra Gl(Q, B). Given now 
two different bilinear forms Band B' on the quadratic space (V, Q) such 
that B(x,x) = B'(x,x) for every x E V, Helmstetter proves only that 
there exists F E 1\2 V such that 

B'(x,y) - B(x,y) =< F, x/\y > 

and that the mapping 

¢: Gl(Q,B) ~ Gl(Q,B'), U f---+ eAF -'u (2.1) 

gives an isomorphism from Gl(Q, B) to Gl(Q, B') which acts as an identity 
on V. In the above, eAF -' u denotes the left contraction of u by the exterior 
exponential of F (see [7], [15]). A special case of (2.1) occurs when B is 
symmetric, that is, B = g = gT and B' = g + A for some antisymmetric 
form A. 

Thus, with a slight change of notation, let 

B = g + A, gT = g, AT =-A 

and let us consider two Clifford algebras Gl(g) and Gl(B) on the same 
vector space V. We have therefore three left contractions: 
x -' y = B(x, y), x -' y = A(x, y), and x -' y = g(x, y) with respect to 
BAg 

B, A, and g respectively. Then, the B-dependent Clifford product uv of 
B 

any two elements u and v in Gl(B) can be written [16] solely in terms of 
the operations in GR(g) as 

(2.2) 

where u LeAF denotes the right contraction of u by eAF with respect 
9 

to g. The product of u LeAF and v LeAF in (2.2) is taken in Gl(g). 
9 9 

Let dim JR (V) = n. We claim that the element F E 1\2 V may be chosen 
as 

F = L( -1)17r(K,L)IAK eLr 1 (2.3) 
K,L 

where j -1 denotes the inverse of the unit pseudoscalar j = e1 /\ e2 /\ ... /\ en 
in GR(g) , the product ed-1 is taken in Gl(g), and the summation is 
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taken over all multi indices K = [kl' k2] and L = [h, l2, ... , ls] satisfying 
the following relations: 

KnL=@, KUL={1,2, ... ,n}, n=2+s, Kand L ordered by <. 

7r(K, L) denotes a permutation which puts the list [kl' k2' h, l2, ... , ls] in 
the standard order [1,2, ... , n] and 17r(K, L)I equals 0 or 1 depending 
whether 7r(K, L) is an even or odd element of Sn. In (2.3) we have also 
adopted notation eL = eh I2 •.. l s = eh A el 2 A ... A el s • 

Before we proceed to verify formulas (2.2) and (2.3) with CLIFFORD 
[4], let's observe the following properties of the left and right contraction: 

uLv=rl((ju)AV), u.Jv=(uA(vj))rl, rl=d j( )' (2.4) 
9 9 et 9 

where tilde - denotes the g-dependent reversion in Ce(g) 2. Observe also 
that since F E /\ 2 V, we have 

N F/\k 
e/\F = L k!' N = In/2J 

k=O 

(2.5) 

where F/\k = F A FA· .. A F is the exterior product of F computed k­
times and l·J denotes the floor function. For example, for different values 
of n, F has the following form: 

n = 2, F = -A12 e121, 

(2.6) 

n = 4, 
F = -(A12 e34 - A13 e24 + A14 e23 + A23 e14 + A34 e12 - A24 e13) elA4' 

and so on. We will verify the validity of (2.2) and the choice for F in 
a numeric and a symbolic case. In the Maple symbolic language, formula 
(2.2) becomes: 3 

cmul(u, v) = 

RCg( cmulg(RCg(u, wexp(F, N)), RCg(v, wexp(F, N)), wexp( -F, N))) 

with the CLIFFORD procedures cmulg and RCg representing the Clifford 
product and the right contraction in C£(g) and wexp giving the exterior 
exponential in /\ v. We limit our two examples to n = 3. Computations 
presented in the following two sections have been extended by the author 
to higher dimensions but will not be shown. 

2 From now on in this section we assume that det(g) oF O. 
3 In CLIFFORD, the Clifford product uv of two elements u and v can be entered 

as u &c v (the infix form) or as cmul(u, v) . 
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25.2.1 Numeric example when n = 3 

Let's first assign an arbitrary matrix to B, split B into its symmetric 
and antisymmetric parts 9 and A, and compute the bivector F with a 
procedure makeF : 
> dim:=3:eval(makealiases(dim,'ordered')): 

B:=matrix(dim,dim, [4,8,3,0,9,5,-2,1,7]); 

> g,A:=splitB(B); 

g, A:= 

> F:=makeF(dim); 

B- [j ~ n 

2 86 
F := 91 e13 + 455 e12 

4 

o 
-2 ~ 1 

Notice that F displayed above has the form (2.6). We find next the exterior 
exponentials of F and - F which we assign to the Maple variables F1 and 
F2 respectively. 
> N:=floor(dim/2):F1:=wexp(F,N);F2:=wexp(-F,N); 

2 86 2 86 
Fl := 1 + - e13 + - e12 F2:= 1 - - e13 - - e12. 

91 455' 91 455 
Let u and v be two arbitrary elements in C/!(B) : 
> u:=2+e1-e23+e123;v:=3-e3+e12+e23; 

u := 2 + el - e23 + e123, v:= 3 - e3 + e12 + e23. 
The Clifford product uv of u and v in C/!(B) displayed in the left hand 

B 
side of (2.2) can be computed with a procedure emul: 4 

> emul ( u , v) ; 

-48 e3 + 79Id + 13 e13 - 6 e12 + 81 e2 - 8 e123 - 81 el 
while the right hand side of (2.2), as expected, gives the same result: 
> RCg(emulg(RCg(u,F1),RCg(v,F1)),F2); 

-48 e3 + 79Id + 13 e13 - 6 e12 + 81 e2 - 8 e123 - 81 e1 

25.2.2 Symbolic computations when n = 3 

A purely symbolic verification of (2.2) when n = 3 will look as follows. 
Matrix B will be now defined as an arbitrary symbolic 3 x 3 matrix with a 

4 In the following, fd denotes the unit element in CR(B). 
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symmetric part 9 and an antisymmetric part A, and F is again computed 
using the procedure makeF. The exterior exponentials of F and -F are 
again denoted in Maple by F1 and F2 respectively. All symbolic parameters 
in B are assumed to be real or complex. 
> dim: =3 : eval (makealiases (dim) ) : 

B:=matrix(dim,dim, [g11,g12+A12,g13+A13, 

g12-A12,g22,g23+A23, 

g13-A13,g23-A23,g33]): 

> g,A:=splitB(B); 

g, A:= [~~~ ~~; ~~~] [-112 
g13 g23 g33 -A13 

> F:=map(normal,clicollect(makeF(dim))); 

F := _ (A23 gll A12 g13 - A13 g12) e23 
%1 

(-A23 g13 + A13 g23 - A12 g33) e12 
+ %1 

(A23 g12 - A13 g22 + A12 g23) e13 
+ %1 

A12 
o 

-A23 

A13] 
A23 
o 

%1:= -g33 g22 gll + g22 g13 2 - 2g13 g23 g12 + g33 g122 + g23 2 gll 
> N:=floor(dim!2):F1:=wexp(F,N):F2:=wexp(-F,N): 
We will now define two general elements U and v in C£(B) by decomposing 
them over the Grassmann basis of C£(B) provided by a procedure cbasis. 
Coefficients UUi and VVi, 1, ... ,8, in these two expansions are assumed to 
be real or complex. 

> cbasis(dim); #Grassmann basis for Cl(B) 

[Id, el, e2, e3, e12, e13, e23, e123] 

> u:=add(uu[k]*cbasis(dim) [k],k=1 .. 2-dim); 
U := UUl Id + UU2 el + UU3 e2 + UU4 e3 + UU5 e12 + UU6 e13 + UU7 e23 
+ UU8 e123 

> v:=add(vv[k]*cbasis(dim)[k] ,k=1 .. 2-dim); 
v := VVI Id + VV2 el + VV3 e2 + VV4 e3 + VV5 e12 + vv6 e13 + VV7 e23 
+ VV8 e123 

The Clifford product of U and v in C£(B) is then collected and assigned 
to a constant res1 which we won't display due to its length. 

> res1:=clicollect(cmul(u,v)): 
As before, we finish by computing the right hand side of (2.2). By assigning 
it to res2, we can then easily find that res1 - res2 = 0 as expected. 
> res2:=clicollect(RCg(cmulg(RCg(u,F1),RCg(v,F1)),F2)): 

res1-res2; 

o 
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Therefore we have proven that formula (2.2) is valid in the case when n = 3. 
Similarly, using CLIFFORD, one can prove its validity for n ::; 9. 

25.3 Rigid Motions with Clifford Algebras 

Clifford algebras Cfi(V, Q) on a quadratic space (V, Q) endowed with a 
degenerate quadratic form Q and associated groups Spin, Pin, Clifford, 
etc., were studied in [3, 6] and [2,8,9]. In contrast to the Clifford algebras 
of a non-degenerate quadratic form, these algebras possess a non-trivial 
two-sided nilpotent ideal called Jacobson radical. The Jacobson radical J 
is generated by the null-vectors in V which are orthogonal to the entire 
space V (that is, J is generated by the orthogonal complement V.l of V). 
It is known [11, 13] that J contains every nilpotent left and right ideal in 
Cfi(V, Q). From the point of view of the spinorial representation theory of 
Clifford algebras, an important difference is that Cfi(V, Q) does not possess 
faithful matrix representation when Q is degenerate. 

Let V = V'..l V.l where V'is endowed with a non-degenerate part Q' 
of Q of signature (p, q). Let dim V.l = d, hence p + q + d = dim V. 
Let's denote Cfi(Q) as Cfid,p,q' Then we have a direct sum decomposition 
Cfid,p,q = Cfip,q EB J into two Cfip,q -modules. It was shown in [2] that when 
d = 1 this decomposition is responsible for a semi-direct product structure 
of the group of units Cfii,p,q of Cfi1,p,q and of all of its subgroups such as 
the Clifford group r(l,p, q) and the special Clifford groups 
r±(l,p, q) = r(l,p, q) n Cfi~p,q, where Cfit,p,q (resp. Cfil,p,q) denotes the 
even (resp. odd) part of Cfi1,p,q. The Clifford group is defined as r(l,p, q) = 
{g E Cfii,p,q I gvg-1 E V, v E V}, that is, without a twist. 5 Let N : 
r(l,p,q) -> Cfii,p,q be defined as N(g) = 99. Then we define the reduced 

Clifford groups as r~(l,p,q) = kerNnr±(l,p,q). The Pin(l,p,q) and 
Spin(l, p, q) groups are then: 

Pin(l,p,q) = {g E r(l,p,q) IN(g) = ±1}, 

Spin(l,p, q) = {g E r+(l,p, q) I N(g) = ±1}. 
(3.7) 

In preparation for our computations below, from now on we assume that 
p + q is an odd positive integer. Let G = {1 + vellv E V', ei = O} be a 
subgroup of Cfii,p,q' Then it was proven in [2] that 

Pin(l,p, q) = G ><l r~(p, q), Spin(l,p, q) = G ><l Spin(p, q). (3.8) 

5 See Crumeyrolle [10] for a definition of the Clifford group with the twist given 

by a: in Crumeyrolle's notation a denotes the principal automorphism or the grade 

involution in CC(Q). Then the twisted Clifford group is defined as r,,(l,p,q) = {g E 

CCi,p,q I a(g)vg- 1 E V, v E V}. 
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In the above, symbol )<J denotes a semi-direct product with the group on 
the right acting on the group on the left. For example, it will be of interest 
to us to note that the homogeneous Galileian group of rigid motions G = 
]R3 )<J SO(3) in ]R3 is isomorphic to SO+ (1,0,3) and it is doubly covered 
by Spin+(1,0,3), the identity component of Spin(I,0,3). For a similar 
result to (3.8) when one considers the twisted Clifford group r o(l,p, q) and 
a twisted map No: ro(l,p,q) --+ C£i,p,q defined as No(g) = gg where -
denotes the conjugation in C£l,p,q, see [8, 17]. In the following two sections 
we will use approach and notation from Selig [18] where the author denotes 
the degenerate Clifford algebra C£d,p,q as C(p, q, d). Furthermore Selig 
uses twisted groups and defines the Pin and Spin groups as follows: 

Pin(n) = {g E C(O, n, 0) : gg* = 1 and o:(g)xg* E V, x E V}, (3.9) 

Spin(n) = {g E C+(O, n, 0) : gg* = 1 and gxg* E V, x E V}, (3.10) 

with * denoting the conjugation - in the Clifford algebra C(p, q, d). It is 
implicit in the definitions above that the actions of Pin and Spin on V 
are x f-+ o:(g)xg* and x f-+ gxg* respectively. 

25.3.1 Group Pin(3) 

In this section we will perform some computations with Pin(3). It is known 
[17] that elements of the Clifford group r(p, q) of a non-degenerate finite 
dimensional real quadratic space V are representable as the product of a 
finite number of non-isotropic vectors in V. In particular, the same is true 
of the elements of Pin(3) while in the case of the spin groups the number 
of elements in the product is obviously even. Using our computer-based 
approach, we will find explicitly all forms of the elements in Pin(3) and 
later in Spin(3). This will illustrate how one can find the most general 
elements in any Clifford algebra satisfying certain conditions. The same a­
pproach was used in [5] where Young idempotents of prescribed symmetries 
in a deformed Clifford algebra were found. 

We begin by assigning a diagonal matrix to the bilinear form B. Grass­
mann basis for C£O,3 will be stored in the variable clibas. Following Selig 
we re-name Clifford conjugation as a procedure star and define a Eu­
clidean norm on V =]R3 as a procedure Enorm. We will also define some 
additional Maple procedures that will be useful below. 
> B:=diag(-1$3);eval(makealiases(3)):clibas:=cbasis(3); 

B:= [-~ -~ ~ 1 
o 0-1 

clibas := [Id, el, e2, e3, e12, e13, e23, e123] 
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> star:=proc(x) conjugation (x) end: #conjugation 

Enorm:=v->simplify(scalarpart(v &c star(v))): #norm in V 

alpha:=proc(x) gradeinv(x) end: #grade involution 

scalprod:=(x,y)-> 

scalarpart(1/2*(x &c star(y) + star(y) &c x)): 

Pin_action:=(x,g)-> 

clicollect(simplify(alpha(g) &c x &c star(g))); 

Pin_action := (x, g) ---+ clicollect(simplify((o:(g) '&c' x) '&c' star(g))) 
> Spin_action:=(x,g)-> 

clicollect(simplify(g &c x &c star(g))); 

Spin_action := (x, g) ---+ simplify ( (g' &c' x) '&c' star(g)) 
Let v, VI, v2 be three arbitrary vectors in ~3 with some undetermined 
coefficients expressed in a pseudo-orthonormal basis {el, e2, e3} : 
> v:=ci*ei+c2*e2+c3*e3: 

vi:=cii*ei+c12*e2+c13*e3:v2:=c2i*ei+c22*e2+c23*e3: 
Then the Euclidean norm in ~3 is: 

> Enorm(v); 

c1 2 + C22 + c32 

The action of Pin on C£O,3 is realized as the procedure Pin_action defined 
above. Let's verify Selig's claim ([18], page 153) that when x, g are both in 
V, then the product of three elements gxg* automatically belongs to V : 

> Pin_action(v,vi); 

(cll2 c3 - c132 c3 - 2 c13 c12 c2 + c12 2 c3 - 2 c13 c1l c1) e3 

+(-c1l 2 c1-2cll c13c3+c122 c1 +c132 c1-2c1l c12c2)el 

+ (c1l2 c2 - 2 cl2 cll c1 - 2 c12 c13 c3 + c132 c2 - c12 2 c2) e2 
As we can see from the above, the output of Pin_action(v, vi) belongs 
to V. In order to check that indeed the action of Pin in V preserves the 
scalar product in V, we will first find all possible forms of g E Pin(3). 
Recall that according to (3.9) every element g E Pin(n) must satisfy two 
conditions: 

(1) gg* = 1, and (2) o:(g)vg* E V for any V E V. 

Let g be any element in C£O,3 expressed in the Grassmann basis. 6 

> g:=add(x.i * clibas[i],i=i .. nops(clibas)); 

g := xl Id + x2 e1 + x3 e2 + x4 e3 + x5 el2 + x6 e13 + x7 e23 + x8 e123 

6 Recall that e12, e13, e23, e123 are aliases for the wedge products el /\ e2, el /\ 

e3, e2 /\ e3, el /\ e2 /\ e3. They are defined in CLIFFORD with the command 

makealiases . 
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We will now attempt to find conditions that the coefficients Xi, i = 1, ... ,8, 
must satisfy so that gg* = 1. We will again use the command clisolve2. 
In order to shorten its output, it is convenient to define additional aliases 
/'i,j, j = 1, ... ,5, which have been collected in Appendix 25.4. The first 
condition (1) gives: 
> sol:=clisolve2(cmul(g,star(g))-Id,[x.(i .. 8)]); 

sol := [{xl = -x7/'i,5 - x5 x4 + x6 x3, x8 = x8, x4 = x4, x7 = x7, 
x8 

/'i,4 
x6 = x6,x5 = x5, x2 = /'i,5,x3 = x3},{x8 = 0, xl = -, x4 = x4, 

x7 
-x5 x4 + x6 x3 

x7 = x7, x6 = x6, x5 = x5, x3 = x3, x2 = x7 }, {x7 = 0, 

/'i,3 x4 x5 
x8 = 0, xl = x6,x3 =~, x2 = x2, x4 = x4, x6 = x6, x5 = x5}, 

{x4 = 0, x7 = 0, x6 = 0, x8 = 0, x2 = x2, x5 = x5, x3 = x3, xl = /'i,2}, 

{x7 = 0, x6 = 0, x5 = 0, x8 = 0, x2 = x2, x4 = x4, x3 = x3, xl = /'i,1}] 

Thus, there are five different solutions to gg* = 1, three of which requiring 
respectively that X6, X7 and X8 be non-zero. Let's substitute these solu­
tions into g. This way we will have five different expressions for g satisfying 
condition (1). 
> for i to nops(sol) do g.i:=subs(sol[i],g) od; 

(-x7/'i,5 - x5 x4 + x6 x3) Id 
91 := - + /'i,5 el + x3 e2 + x4 e3 + x5 e12 

x8 
+ x6 e13 + x7 e23 + x8 e123 

/'i,4Id (-x5 x4 + x6 x3) el 
92 := -- + + x3 e2 + x4 e3 + x5 e12 + x6 e13 

x7 x7 
+ x7 e23 

/'i,3Id x4 x5 e2 
93 := -- + x2 el + + x4 e3 + x5 e12 + x6 e13 

x6 x6 
94 := /'i,2Id + x2 el + x3 e2 + x5 e12 

95 := /'i,1 Id + x2 el + x3 e2 + x4 e3 
> for i to nops(sol) do simplify(cmul(g.i,star(g.i))) od; 

Id, Id, Id, Id, Id 
We need to make sure now that each gi, g2, g3, g4, g5 above satisfies also 
the second condition (2). We begin with the simplest element g5. Its action 
on an arbitrary vector v E V gives: 
> Pin_action(v,g5); 

(2 /'i,1 c3 x4 + 2 /'i,1 c1 x2 + 2 /'i,1 c2 x3) Id 

+ (-2 x3 x4 c2 - 2 x4 x2 c1 - 2 x4 2 c3 + c3) e3 

+ (-2 x4 x2 c3 - 2 x3 x2 c2 - 2 x22 c1 + c1) el 

+ (-2 x32 c2 - 2 x4 x3 c3 - 2 x2 x3 c1 + c2) e2 
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It should be clear from the above that in order for a(g5)vg5* to be in 
V, the coefficient of I d must be zero for any Cl, C2, C3. Thus, either X2 = 
X3 = X4 = 0, which would imply v = 0, or "'1 = O. Let E = ±1 which will 
appear in the following Maple outputs as eps. 7 Then, g = "'II d = ±I d = 
±1 when X2 = X3 = X4 = 0, 

> g51: =subs ({x2=O ,x3=O, x4=O} ,g5) ; 

g51 := eps Id 
or, g = X2el + X3e2 + >'le3 
> g52:=subs({kappal=O,x4=lambdal},g5); 

g52 := x2 e1 + x3 e2 + >'1 e3 
where >'1 = ±V~l---x"~'-----x"~. 8 We will collect all Pin group elements in a 
set Pin_group beginning with g51 and g52. 

> Pin_group:={g51,g52}: 
Similarly, we consider g4. We assign the identity coefficient of the Pin 
action a(g4)vg4* to a variable eq and find a solution to the resulting two 
equations that will be parameterized by Cl, C2 : 

> a:=Pin_action(v,g4); 
a := (2 x3 ",2 c2 - 2 x5 x2 c2 + 2 x5 x3 c1 + 2 x2 ",2 c1) Id + c3 e3 

+ (-2x22 c1 - 2x5 ",2 c2 - 2x3 x2 c2 + c1 - 2x52 c1) e1 

+ (-2 x52 c2 - 2 x2 x3 c1 + 2 ",2 x5 c1 - 2 x3 2 c2 + c2) e2 
> eq:=collect(coeff(a,Id),{cl,c2}): 

eql:=coeff(eq,cl):eq2:=coeff(eq,c2): 

sol:=[solve({eql,eq2},{x2,x5,x3})] ; 

sol := [{x5 = 0, x2 = >'2, x3 = x3}, {x3 = 0, x2 = 0, x5 = x5}] 
In the above, >'2 = ±V1 - x~. Likewise, we set >'3 = ±y'1 - x~. 9 The two 
new elements g41, g42 of Pin obtained this way we add to Pin_group. 
> for i to nops(sol) do g.4.i:=simplify(subs(sol[i] ,g4)) od: 

Pin_group:=Pin_group union {g41,g42}: 
In order to continue with g3 displayed above, we must make the assumption 
X6 =I=- 0 known to Maple. Then, the action of g3 on a vector can be again 
computed with the procedure Pin_action as before (we won't display it 
due to its length). 

> assume(x6>O,x6<O):a:=Pin_action(v,g3): 
As before, the quantity a is expressed in terms of {I d, e1, e2, e3}. We will 
isolate the coefficient of the identity element in a, assign it to a variable eq, 
and then determine for which values of X2, X4, X5, X6 it will be automatically 
zero for every choice of Cl, C2, C3. This will require that the coefficients of 

7 In Maple one way to make c = ±l is to define alias (eps=RootDf CZ-2-1» : . 
8 In Maple we define alias (lambdal=RootDf CZ-2+x2-2+x3-2-1»: . 
9alias(lambda2=RootDf(~-2-1+x3-2»:,alias(lambda3=RootDf(_Z-2-1+x5-2»:. 
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Cl, C2, C3 in eq all be zero. We assign these three coefficients to three Maple 
constants eq1, eq2, eq3, set them all equal to zero, and solve the resulting 
equations for X2, X4, X5, X6 10 . 

> cliterms(a); 

{Id, el, e2, e3} 

> eq:=collect(coeff(a,Id),{c.(1 .. 3)}); 

e ._ -2 (x6- 3 x2 - ,\4 x4 x6-) c3 _ 2 (-,\4 xS x4 + x2 xS x6-2) c2 
q .- x6- 2 x6- 2 

_ 2 (-,\4 x2 x6- - XS2 x4 x6- - x4 x6-3 ) c1 
x6- 2 

> for i to 3 do eq.i:=coeff(eq,c.i) od: 

sol:=solve({eq.(1 .. 3)},{x6,x4,x5,x2}); 

sol := {x2 = 0, x6- = x6-, xS = xS, x4 = O} 
This time we only have one solution which we call g31 : 

> g31: =subs (sol, g3) ; 

.\5Id 
g31 := x6- + xS e12 + x6- e13 

where .\5 is another alias displayed in Appendix 25.4. 

> Pin_group:=Pin_group union {g31}: 
By continuing in the similar fashion with g2 and g1, one can find all five 
explicit forms of all elements in Pin(3). These forms are: 

> 'Pin_group'=Pin_group; 
. .\5Id_ 

Pm_group:={.\3Id+xSe12, x6- +xSe12+x6 e13, 

.\7Id 
xT + xS e12 + x6 e13 + xT e23, >'9 el + x3 e2 + x4 e3 + xS- e123, 

,\1 e3 + x2 el + x3 e2, ,\2 el + x3 e2, eps Id} 
where, to shorten the output, we have defined >'7 and >'9 as some additional 
aliases (see Appendix 25.4). It is a simple matter now to verify that all 
elements of Pin displayed in Pin_group satisfy both conditions (1) and 
(2) from the definition (3.9). 

> for g in Pin_group do evalb(cmul(g,star(g)=Id)) od; 

true, true, true, true, true, true 
> for g in Pin_group do 

evalb(Pin_action(v,g)=vectorpart(Pin_action(v,g),1)) od; 

true, true, true, true, true, true 
We are now in position to verify Selig's claim [18], page 153, that the 

10 In the following outputs Maple reminds us that the assumption X6 f= 0 has been 

made by displaying X6 as x6 - rather than as x6. 



524 Rafal Ablamowicz 

scalar product in V =]R3 defined in GCd,p,q as 

is preserved under the action of the Pin group. Let VI, v2 be the two 
arbitrary I-vectors defined earlier and let scalprod be a simple Maple 
procedure that gives the scalar product in V: 
> scalprod:=(x,y)-> 

scalarpart(1/2*(x &c star(y) + star(y) &c x»: 

for g in Pin_group do 

simplify(scalprod(Pin_action(v1,g),Pin_action(v2,g» 

-scalprod(v1,v2» 

od; 

0, 0, 0, 0, 0, ° 
Thus, Pin(3) preserves the scalar product in ]R3 and, therefore, we have 
a homomorphism from Pin(3) to 0(3) which is known to be a double­
covering map. In the process, we have found all types of elements in Pin(3). 

25.3.2 Group Spin(3) 
In this section we will perform a few computations with Spin(3). After 
finding all general elements in Pin(3) it is much easier to find elements in 
Spin(3). Recall from (3.10) that 

Spin(3) = {g E GCt,3 : gg* = 1 and gxg* E ]R3 for all x E ]R3}. 

Let's find g, a general element in Spin(3). Since Spin(3) C Gct 3' we will 
begin by decomposing g over even basis elements in GCO,3 : ' 

> clibaseven:=cbasis(3,'even'); 

clibaseven:= [Id, e12, e13, e23] 
> g:=cO*Id+c3*e12+c2*e13+c1*e23; 

9 := cO Id + c3 e12 + c2 e13 + c1 e23 
Notice that under the action of the Spin group defined as a procedure 
Spin_action 

> Spin_action:=(x,g)-> simplify(g &c x &c star(g»; 

Spin_action := (x, g) --4 simplify ( (g' &c' x) '&c' star(g)) 
I-vectors are automatically mapped into I-vectors since the action of g 
on a vector v E V contains only the I-vector part, or, in another words, 
it belongs back to V: 
> Spin_action(v,g)-vectorpart(Spin_action(v,g),1); 

° 
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We just need to make sure that gg* = 1 for each g E Spin(3). To simplify 
Maple output, we define Ii = JI - cr - c§ - c~ as a Maple alias. 
> alias(kappa=sqrt(-cl-2-c2-2-c3-2+1)): 

sol:=clisolve2(cmul(g,star(g))-Id, [c.(O .. 3)]); 

sol:= [{el = el, c2 = c2, c3 = c3, cO = Ii}, 
{el = el, c2 = c2, c3 = c3, cO = -Ii}] 

> g:=eps*kappa*Id+c3*e12+c2*e13+cl*e23; 

g:= epslild + c3 e12 + c2 e13 + el e23 
where eps = E = ±l. Thus, the most general element in Spin(3) is just 

Notice, that the defining properties of g are easily checked: 
> simplify(cmul(g,star(g))); 

Id 
> evalb(Spin_action(v,g)=vectorpart(Spin_action(v,g),l)); 

true 
In fact, element g E Spin(3) could be identified with a unit quaternion 
spanned over the basis {I, e12, e13, e23}. Then, the * conjugation becomes 
the quaternionic conjugation. It can be easily checked by hand or with 
CLIFFORD that the basis bivectors anticommute and square to -l. 
> quatbasis:=[e12,e13,e23]; 

quatbasis:= [e12, e13, e23] 
> M:=matrix(3,3,(i,j)->cmul(quatbasis[i] ,quatbasis[j])); 

M:= [~e~3 ~% ~~~3l 
e13 -e12 -Id 

We have, therefore, that unit quat ern ions on a unit sphere in ]R4 are iso­
morphic to Spin(3) while the even part of CfO,3 is isomorphic with the 
quaternionic division ring 1HI. Spin(3) acts on ]R3 through the rotations. 
In Appendix 25.4 one can find a procedure rot which takes as its first 
argument an arbitrary vector v in ]R3 while as its second argument it 
takes a quaternion. For example, a counter-clockwise rotation in the plane 
spanned by {el' e2} is accomplished with a help of a unit quaternion 
cos(~) + sin(~) e12 : 
> rot(el,cos(theta/2)+sin(theta/2)*e12); 

rot(e2,cos(theta/2)+sin(theta/2)*e12); 

rot(e3,cos(theta/2)+sin(theta/2)*e12); 

cos(B) el + e2 sin(B), -el sin(B) + cos (B) e2, e3 
Let's now take a general element from Spin(3) and act on all three unit 
vectors el, e2, e3. We can easily verify that the new elements ell, e22, e33 
provide another orthonormal basis with the same orientation: 
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> ell:=rot(el,g):e22:=rot(e2,g):e33:=rot(e3,g): 
> ell &c e22 + e22 &c ell, ell &c e33 + e33 &c ell, 

e22 &c e33 + e33 &c e22; 

0, 0, ° 
> el &w e2 &w e3,ell &w e22 &w e33; 

e123, e123 
Length of any vector v under the action of Spin(3) is of course preserved: 

> Enorm(v) = Enorm(Spin_action(v,g)); 

c1 2 + c2 2 + c3 2 = c1 2 + c2 2 + c3 2 

Example 1: Rotations in coordinate planes. 
Let's define unit quaternions responsible for the rotations in the coordi­

nate planes. These are counter-clockwise rotations when looking down the 
rotation axis. In CLIFFORD, a pure-quaternion basis will be denoted by 
{qi = e2 1\ e3, qj = el 1\ e3, qk = el 1\ e2} in place of traditionally used 
{i, j, k}. 
> qi:=e23:qj :=e13:qk:=e12: 

q12:=cos(alpha/2)*Id+sin(alpha/2)*'qk';#xy-plane 

1 1 
q12 := cos(2 0:) Id + sin(2 0:) qk 

> q13:=cos(beta/2)*Id+sin(beta/2)*'qj' ;#xz-plane 

q13 := cos(~ 13) Id + sin(~ 13) qj 

> q23:=cos(gamma/2)*Id+sin(gamma/2)*'qi';#yz-plane 

1 . 1 . 
q23 :=cos(2'"Y)Id+sm(2'"Y)q~ 

Notice that to rotate by an angle no: it is enough to find the n-th Clifford 
power of the appropriate quaternion and then apply it to the given vector. 

> q12 &c q12; #rotation by the angle 2*alpha 

cos(o:) Id + e12 sin(o:) 

> q12 &c q12 &c q12; #rotation by the angle 3*alpha 

3 . 3 
cos(2 0:) Id + sm(2 0:) e12 

Let's see now how these basis rotations in the coordinate planes act on an 
arbitrary vector v = ael + be2 + ce3 : 

> v:=a*el+b*e2+c*e3; 

v := a el + b e2 + c e3 
The norm of v is Ilvll = vvv* and it can be defined in CLIFFORD as 
follows: 

> vlength:=sqrt(scalarpart(v &c star(v))); 

vlength := V c2 + a2 + b2 
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Certainly, rotations do not change length. For example, let's rotate v with 
the product of two quaternions q13 and q12 : 

> v123:=rot(v,q13 &c q12); #rotation q12 followed by q13 
v123 := (-bsin(iJ) sin(a) + asin(iJ) cos(a) + ccos(iJ)) e3 

+ (-b sin( a) cos(;3) - c sin(iJ) + a cos (;3) cos( a)) el 

+ (bcos(a) + asin(a)) e2 
> vlength:=sqrt(scalarpart(v123 &c star(v123))); 

vlength := V c2 + a2 + b2 

Thus, the length of Vl23 is the same as the length of v. However, rotations 
do not commute. We will show that by applying quaternions q12 and q13 
to v in the reverse order and by. comparing the result with q123 : 

> v132:=rot(v,q12 &c q13); #rotation q13 followed by q12 
v132 := (a sin (;3) + ccos(iJ)) e3 + (acos(iJ) cos(a) - csin(iJ) cos(a) 

- b sin( a)) el + (b cos( a) - c sin(;3) sin( a) + a sin( a) cos(iJ)) e2 
> clicollect(v123-v132); 

(-b sin(;3) sin( a) + a sin(iJ) cos( a) - a sin (;3) ) e3 

+ (-bsin(a) cos(;3) - csin(iJ) + csin(iJ) cos(a) + bsin(a)) e1 

+ (a sin( a) + c sin(;3) sin( a) - a sin( a) cos(iJ)) e2 
As it can be seen, Vl23 i= V132. 

Example 2: Counter-clockwise rotation by an angle a around the given 
axis. 

In this example we will find a way to rotate a given vector v E ]R3 by 
an angle a in a plane orthogonal to the given axis vector axis = al el + 
a2e2 + a3e3. This rotation will be counter-clockwise when looking down the 
axis towards the origin (0,0,0) of the coordinate system. In order to derive 
symbolic formulas, we will assume that the symbolic vector axis has been 
normalized by defining A = ±Jl - at - a~ and axis = aIel +a2e2+Ae3· 
> alias(lambda=RootOf(-al-2-a2-2-_Z-2+1)): 

axis:=a1*e1+a2*e2+lambda*e3; 

axis := al el + a2 e2 + A e3 

> simplify(axis &c star(axis)); 

Id 
Thus, in the symbolic case, we always have Ilaxisil = 1. Notice that in 
order to represent a rotation around axis we need to find a dual unit 
quaternion which we call qaxis. It will need to be defined in such a way 
as to give the desired orientation for the rotation. Since we have opted for 
counter-clockwise rotations, we define qaxis = -axis e123 where e123 is 
a unit pseudoscalar in C£O,3. In the following we will refer to the axis = 
aIel + a2e2 + a3e3 as the triple (aI, a2, a3). 
> qaxis:=axis &c (-e123); 

qaxis := A e12 + al e23 - a2 e13 
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In Appendix 25.4 Reader can find procedure qrot which finds the dual 
quaternion qaxis. The first three arguments to qrot are the (numeric or 
symbolic) components of the axis vector in the basis {el' e2, e3} while the 
fifth argument is the angle of rotation. For example, we can define various 
rotation quaternions: 

> ql00:=qrot(1,0,0,theta);#rotation about the axis (1,0,0) 

1 1 
qi00 := cos(2 0) Id + sin(2 0) e2S 

> qOl0:=qrot(0,1,0,theta);#rotation about the axis (0,1,0) 

1 1 
qOi0 := cos(2 0) Id - sin(2 0) eiS 

> ql0l:=qrot(1,0,1,theta);#rotation about the axis (1,0,1) 

111 1 
qi0i := cos(2 0) Id + sin(2 0) (2 e12 V2 + 2 V2 e2S) 

> qlll:=qrot(l,l,l,theta);#rotation about the axis (1,1,1) 

qiii := cos( ~ 0) Id + sine ~ 0) (~ e12 J3 - ~ J3 eiS + ~ J3 e2S) 
22333 

For example, let's rotate the first basis vector el around various axes 
listed above by some angle 0'. In the next example we will find a general 
formula for the components of the rotated arbitrary vector v. 
> v:=el: 

vnew:=rot(v,ql00); #rotation around the axis (1,0,0) 

vnew := ei 
> vnew:=rot(v,qOl0); #rotation around the axis (0,1,0) 

vnew := -sine 0) eS + cos( 0) ei 
> eval(subs(theta=Pi/2,vnew)); 

-eS 
> vnew:=rot(v,ql0l); #rotation around the axis (1,0,1) 

vnew := -~ (-1 + cos(O)) eS + ~ (cos(O) + 1) ei + ~ V2 e2 sin(O) 

> eval(subs(theta=Pi/2,vnew)); 

1 1 1 
- eS + - ei + - e2 V2 
222 

> vnew:=rot(v,qlll); #rotation around the axis (1,1,1) 
1 1 

vnew := -:3 (J3 sin(O) - 1 + cos(O)) eS + :3 (2 cos(O) + 1) e1 

1 . + :3 (J3sm(O) + 1 - cos(O)) e2 

> eval(subs(theta=Pi/2,vnew)); 

1 1 1 
-:3 ( J3 - 1) eS + :3 ei + :3 (J3 + 1) e2 

> eval(subs (theta=Pi, vnew)) ; 
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212 
- e3 - - ei + - e2 
333 

Example 3: General rotations. 
Finally, we derive a general formula for a rotation of an arbitrary vector 

v = VI el + V2e2 + V3e3 around an arbitrary axis = al el + a2e2 + a3e3 and 
by an arbitrary angle a. In the purely symbolic case we assume that axis 
is of unit length, that is, a3 = A = ±Jl - ai - a~. 
> v:=v1*e1+v2*e2+v3*e3; #an arbitrary vector 

V := vi ei + v2 e2 + v3 e3 

The rotated vector will have the following components: 

> qnew:=clicollect(rot(v,qrot(a1,a2,lambda,theta))); 

qnew := (-A vi ai cos( 0) - A v2 a2 cos( 0) + a1 2 v3 cos( 0) - vi a2 sin( 0) 

+ A vi ai + A v2 a2 + a22 v3 cos(O) + v2 ai sin(O) + v3 - a22 v3 

- a12 v3) e3 + (vi cos( 0) - ai v2 a2 cos( 0) - A v3 ai cos( 0) + A v3 ai 

+ a12 vi - a12 vi cos(O) - v2 Asin(O) + v3 a2 sin(O) + ai v2 a2)ei 

+ (a22 v2 + ai vi a2 - v3 ai sin( 0) - a22 v2 cos( 0) + A v3 a2 
+ vi A sin( 0) - A v3 a2 cos( 0) + v2 cos( 0) - ai vi a2 cos( 0)) e2 

For example, let's rotate v = el - 2e2 + 4e3 around the axis (2, -3,4) by 

an angle a = 1r /4. 

> clicollect(rot(e1-2*e2+4*e3,qrot(2,-3,4,Pi/4))); 

1 10 96 2 48 19 
( - 58 v'29 y'2 + 29 y'2 + 29) e3 + (- 29 v'29 y'2 + 29 - 58 y'2) ei 

7 2 72 
+ (29 y'2 - 29 v'29 y'2 - 29) e2 

Thus, in this section we have shown how easy it is to derive vector rotation 

formulas from vector analysis using elements of Spin(3) considered as unit 

quaternions. It has been very helpful to be able to embed Spin(3) in CCO,3 

and consider quaternions IHl as isomorphic to the even subalgebra of CCO,3. 

25.3.3 Degenerate Clifford algebra and the proper 

rigid motions 

In this final section we will use the ability of CLIFFORD to perform 

computations in Clifford algebras of an arbitrary quadratic form includ­

ing, of course, degenerate forms. We will consider the semi-direct product 

Spin(3) ~ lR.3 that double covers the group of proper rigid motions SE(3). 

We will follow notation used in [18], page 156, except that our basis vector 

that squares to 0 will be e4 and not e. We begin by defining B as a 
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degenerate diagonal form diag( -1, -1, -1, 0) of signature (1,0,3). Recall 

from the previous section that the procedure star gives conjugation in 

C£1,O,3. In [18], the Clifford algebra C£\O,3 is denoted as C(O, 3, 1). 

> dim:=4:n:=dim-l:eval(makealiases(dim)):B:=diag(-1$n,O); 

[ ~~ 
0 0 0 

-1 0 0 
B'-.-

0 -1 0 

0 0 0 

Let the vector basis in ~3 be stored in vbasis and let t an arbitrary 

vector in ~3. 

> vbasis:=cbasis(n,l):t:=add(t.i*vbasis[i] ,i=l .. n); 

t := t1 el + t2 e2 + t3 e3 

Elements of the form 1 + t e4 are invertible in Cf\O,3 since u e4 and e4 u 

are nilpotent for any u in CC1,O,3. That is, the Jacobson radical J in CC1,O,3 

is generated by e4. The symbolic inverse of 1 + t e4 can be computed with 

the procedure cinv. 

> cinvCl+t &c e4);#symbolic inverse of 1+te4 

Id - tl e14 - t2 e24 - t3 e34 

Let K, = vi -ci - c§ - c~ + 1 and c = ±1 as before. We will verify now 

statements made on page 156 in [18]. We know from the previous section 

that the most general element g in Spin(3) has the form: 

> alias(kappa=sqrtC-cl-2-c2-2-c3-2+1)): 
alias(eps=RootOfC_Z-2-1)): 
g:=eps*kappa*Id+c3*e12+c2*e13+cl*e23; 

9 := eps K, Id + c3 e12 + c2 e13 + cl e23 

We consider a subgroup G of the group of units of CC1,O,3 of the form 

g+ ~tge4 where g belongs to Spin(3) and t is a I-vector in ~3. Elements 

in G will be given by the procedure ge. 

> ge:=procCg,t) clicollect(simplifyCg+l/2*t &c g &c e4)) end: 

For the most general g E Spin(3) and t E ~3, procedure ge gives: 

> 'ge(g,t)'=geCg,t); 
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111 
ge(g, t) = (2 t2 Ii eps - 2 t1 c3 + 2 t3 c1) e24 

1 1 1 1 1 1 
+ (2 t3 Ii eps - 2 t2 c1 - 2 t1 c2) e34 + (2 t2 c3 + 2 t3 c2 + 2 t1 Ii eps) e14 

1 1 1 
+ (-2 t2 c2 + 2 t3 c3 + 2 t1 c1) e1234 + epslild + c3 e12 

+ c2 e13 + c1 e23 
First, let's verify that 

(3.11) 

Notice that the left-hand-side in (3.11) is just the conjugation of ge(g, -t) 
while the right-hand-side is equal to ge(g*, -t) where g* denotes the 

conjugate of g. 
> L:=clicollect(star(ge(g,-t))): 

R:=simplify(star(g)+1/2*star(g) &c t &c e4):simplify(L-R); 

o 
Thus, (3.11) has been verified. 

Next, we define the action of the group G on the subspace of 0\'0,3 
consisting of the elements of the form 1 + x e4 as follows: 

(3.12) 

where x, t E IR3 and g E Spin(3). The identity (3.12) can be shown as 

follows. We define a procedure rigid which will give this action on IR3 : 

Xf---+gxg*+t. 
> rigid:=proc(x,g,t) local p; 

if not evalb(x=vectorpart(x,l)) or 

fi: 

not evalb(t=vectorpart(t,l)) then 
ERROR('x and t must be vectors') 

if not type(g,evenelement) then ERROR('g must be even') fi; 
RETURN(clicollect(simplify(cmul(g,x,star(g))+t))) 
end: 

This action will be the rigid motion on IR3. We can compute the right-hand­

side of (3.12) by using rigid while the left-hand-side will be computed 

directly. 

> x: =add(x. i*vbasis [i] ,i=1. . n) ; 

x := xl el + x2 e2 + x3 e3 
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> LHS:=simplify(ge(g,t) &c (1 + x &c e4) &c star(ge(g,-t))): 
RHS:=simplify(Id+rigid(x,g,t) &c e4): 
simplify(LHS-RHS); 

o 
Finally, we will verify directly that the action x f---+ g X g* + t is a rigid 

motion. If we denote by x P ' Yp the images of x, Y under this action, we 

will need to show that Ilxp - Ypll = IIx - yll in the Euclidean norm. We 

can compute the norm IIx - yll by taking J(x - y)(x - y)* in Cl\'O,3, or 

by using a procedure distance. 
> y:=add(y. i*vbasis [i] ,i=1. .n): 

distance:=proc(x,y) 
sqrt(simplify(scalarpart(cmul(x-y,star(x-y))))) end: 

xp:=rigid(x,g,t):yp:=rigid(y,g,t) : 
evalb(distance(x,y)=distance(xp,yp)); 

true 

Thus the action of G defined on ~3 as x f---+ g X g* + t is a rigid motion. 

In view of the presence of the non-trivial radical in C£1,O,3, this group G 
is in fact a semi-direct product of Spin(3) and ~3 that are responsible 

for rotations and translations respectively. It is well known of course that 

Spin(3) )<l ~3 doubly covers the group of proper rigid motions SE(3). We 

leave it as an exercise for the Reader to check in CLIFFORD that the 

composition of two rigid motions is a rigid motion. 

25.4 Summary 

The main purpose of this paper has been to show a variety of computational 

problems that can be approached with the symbolic package CLIFFORD. 

Relation between the Clifford products in C£(g) and C£(B) through the 

Helmstetter's formula appears more clear once we proved with CLIF­

FORD our choice for the bivector F. Applications presented in Section 

25.3 show that CLIFFORD is a convenient tool to carry out practical 

computations in the low dimensional algebras such as C£O,3 and C£1,O,3 

needed in vector rotations and rigid motions in ~3. In addition, we found 

the explicit form of the most general elements in Pin(3) and Spin(3). 
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Appendix A 

Aliases needed in Section (25.3.1): 

> alias(kappal=RootOf(_Z-2-1+x3-2+x2-2+x4-2)): 
alias(kappa2=RootOf(_Z-2-1+x5-2+x3-2+x2-2)): 
alias (kappa3=RootOf (-x6-2+x5-2*x6-2+x4-2*x5-2+x6-4+x2- 2*x6-2 

+x4-2*x6-2+_Z-2)): 

> alias (kappa4=RootOf (-x7-2+x5-2*x7-2+x3-2*x7-2+x6-2*x7-2+x7-4 
+x4-2*x5-2-2*x4*x5*x6*x3+x6-2*x3-2+x4-2*x7-2+_Z-2)): 

alias (kappa5=RootOf «x7-2+xS-2)*_Z-2+(2*x5*x4*x7-2*x3* x6*x7)*_Z 
-xS-2+x6-2*x3-2+xS-4+x4-2*x5-2-2*x4*x5*x6*x3+x6-2*xS-2 
+x7-2*xS-2+x5-2*xS-2+x3-2*xS-2+x4-2*xS-2)): 

alias(eps=RootOf(_Z-2-1)): 
alias (lambdal=RootOf (_Z-2+x2-2+x3-2-1)) : 
alias(lambda2=RootOf(_Z-2-1+x3-2)): 
alias(lambda3=RootOf(_Z-2-1+x5-2)): 
alias (lambda4=RootOf (-x6-2+x5-2*x6-2+x4-2*x5-2+x6-4+x2- 2*x6-2 

+x4-2*x6-2+_Z-2)): 
alias(lambda5=RootOf(_Z-2-x6-2+x5-2*x6-2+x6-4)): 
alias (lambda6=RootOf (-x7-2+x5-2*x7-2+x3-2*x7-2+x6-2*x7- 2+x7-4 

+x4-2*x5-2-2*x4*x5*x6*x3+x6-2*x3-2+x4-2*x7-2+_Z-2)): 
alias (lambda7=RootOf (_Z-2-x7-2+x5-2*x7-2+x6-2*x7-2+x7-4 )): 
alias (lambdaS=RootOf «x7-2+xS-2)*_Z-2+(2*x5*x4*x7-2*x3* x6*x7)*_Z 

-xS-2+x6-2*x3-2+xS-4+x4-2*x5-2-2*x4*x5*x6*x3+x6-2*xS-2 
+x7-2*xS-2+x5-2*xS-2+x3-2*xS-2+x4-2*xS-2)): 

alias (lambda9=RootOf (_Z-2*xS-2-xS-2+xS-4+x3-2*xS-2+x4-2 *xS-2)): 

Appendix B 

Procedure elisol ve2 was used extensively throughout this paper to 
solve linear equations in the Clifford algebra CC(B). 

> clisolve2:=proc(eq,indet) local i,T,vars,sol,sys; 
if type(indet,list) then 

fi; 

vars:=convert(indet,set) else 
vars:=select(type,indets(indet),indexed) 

T:=cliterms(eq); 
sys:={coeffs(clicollect(simplify(eq)),T)}; 
sol:=[solve(sys,vars)] ; 
if type(indet,list) then RETURN(sol) else 

RETURN([seq(subs(sol[i] ,indet),i=l .. nops(sol))]); 
fi; 
end: 

We display the code of two procedures rot and qrot that were needed in 
Section 25.3.2. Procedure rot performs a rotation of a vector by a quater­
nion through a certain angle. 
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> rot:=proc(v,q) local qs; 
qs:=star(q): 
RETURN(map(factor,clicollect(simplify(cmul(q,v,qs))))) 
end: 

Procedure qrot finds a unit quaternion that is dual to the rotation axis 
vector axis. 
> qrot:=proc(p1,p2,p3,theta) local bas,c,e,k,l,i,q,n; 

global qaxis; 
if type(p1,name) or type(p2,name) then 

RETURN(cos(theta/2)*Id+sin(theta/2)*qaxis) fi; 
if evalb(simplify(p1-2+p2-2+p3-2)=1) then 

q:=simplify(subs({al=pl,a2=p2},qaxis)) fi; 
n:=sqrt(p1-2+p2-2+p3-2): 
if n=O then ERROR('axis vector must be a non-zero vector') 

elif has(n,RootOf) then n:=max(allvalues(n)) fi; 
q:=simplify(subs({al=pl/n,a2=p2/n},qaxis)); 
bas:=[Id,e12,e13,e23] :c:=[] :k:=O: 
for i to 4 do l:=coeff(q,bas[i]); 

od: 

if has(l,RootOf) then k:=i fi: 
c:=[op(c) ,1] 

if k<>O then e:=allvalues(c[k]); 
if p3>O then c:=subsop(k=max(e) ,c) elif 

p3<O then c:=subsop(k=min(e) ,c) else ERROR('p3=O') fi; 
fi; 
q:=add(c[i]*bas[i] ,i=1 .. 4); 
RETURN (cos (theta/2)*Id+sin(theta/2) *q) 
end: 
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