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Preface

The goal of this book is to present a unified mathematical treatment of
diverse problems in mathematics, physics, computer science, and engineer-
ing using geometric algebra. Geometric algebra was invented by William
Kingdon Clifford in 1878 as a unification and generalization of the works
of Grassmann and Hamilton, which came more than a quarter of a century
before. Whereas the algebras of Clifford and Grassmann are well known
in advanced mathematics and physics, they have never made an impact
in elementary textbooks where the vector algebra of Gibbs-Heaviside still
predominates. The approach to Clifford algebra adopted in most of the ar-
ticles here was pioneered in the 1960s by David Hestenes. Later, together
with Garret Sobczyk, he developed it into a unified language for math-
ematics and physics. Sobczyk first learned about the power of geometric
algebra in classes in electrodynamics and relativity taught by Hestenes at
Arizona State University from 1966 to 1967. He still vividly remembers a
feeling of disbelief that the fundamental geometric product of vectors could
have been left out of his undergraduate mathematics education. Geometric
algebra provides a rich, general mathematical framework for the develop-
ment of multilinear algebra, projective and affine geometry, calculus on a
manifold, the representation of Lie groups and Lie algebras, the use of the
horosphere and many other areas.

This book is addressed to a broad audience of applied mathematicians,
physicists, computer scientists, and engineers. Its purpose is to bring to-
gether under a single cover the most recent advances in the applications of
geometric algebra to diverse areas of science and engineering. Most articles
in this book were presented at the Special Parallel Session ACACSE’99 of
the 5t* International Conference on Clifford Algebras and their Applica-
tions in Mathematical Physics, held in Ixtapa-Zihuatanejo, Mexico, in July
1999. ACACSE’99 was organized by the editors of this book in the belief
that the time is ripe for the general recognition of the powerful tools of
geometric algebra by the much larger scientific and engineering communi-
ties. Since the First International Conference on Clifford Algebras, held in
Canterbury, England, in 1985, major advances continue to be made in the
application of geometric algebra to mathematics and theoretical physics
and to what has become known as Clifford analysis. The most recent ad-
vances in these more established areas can be found in the Conference
Proceedings (Birkh&duser, Progress in Physics Series 18, 19, Boston 2000)
Volume I: Algebra and Physics, edited by Rafat Ablamowicz and Bertfried
Fauser, and Volume II: Clifford Analysis, edited by John Ryan and Wolf-
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gang Sprossig. See also the Special Issue: Volume 39, Number 7, of the
International Journal of Theoretical Physics, a collection of papers of the
Ixtapa Conference edited by Zbigniew Oziewicz and David Finkelstein. In-
stead of editing a Volume III of the Proceedings, addressed to specialists
in Clifford algebra, we decided that the time had come to introduce the
powerful methods of geometric algebra to the much larger community of
scientists and engineers who are seeking new mathematical tools to solve
the ever more complicated problems of the 21** century. The book consists
of 25 chapters organized into seven parts, each chapter written by experts
in their field of speciality.

Part I Advances in geometric algebra presents a series of four chap-
ters on the most up-to-date work that has been done on the horosphere, the
conformal group, and related topics. The horosphere is a nonlinear model
of Euclidean and pseudo-Euclidean geometry that captured the interest
and imagination of many of the participants at the Ixtapa Conference.
The horosphere offers a host of new computational tools in projective and
hyperbolic geometries, with potential applications in many different areas.

Part II Theorem proving offers perhaps one of the most tantalizing
new applications of geometric algebra and the horosphere. Some of the most
difficult problems of mathematics have been successfully attacked with the
help of the computer. The most striking and well-known success was in the
proof of the 4-color problem. The two chapters in this part present new
approaches to geometric reasoning and automatic theorem proving using
geometric algebra, including solutions to problems formulated by Erdés and
S.S. Chern. Each of the chapters also presents a wealth of bibliographic ma-
terial. The day may come, sooner than most mathematicians realize, when
computers will successfully attack the most intractable and outstanding
problems and theorems in mathematics.

Part III Computer vision researchers still underestimate the impor-
tant role played by geometry in vision. A large amount of accumulated
evidence shows that animals have some kind of internal geometric repre-
sentation of external reality. The first two chapters in this part formulate
the principals of computer vision in geometric algebra and address the key
problems of camera calibration and localization. The third chapter uses
Bayesian inference, showing how estimation can be done using geometric
algebra. Felix Klein in his Erlangen program stressed the role of invariant
theory in characterizing projective geometry. The last chapter in this part
uses invariant theory for the projective reconstruction of shape and motion.

Part IV Robotics the first two chapters discuss kinematics and trajec-
tory interpolation in robot design in a rich geometric language of points,
lines, and planes in dual and double quaternion algebras. The topic of
robotics is an old theme; however it is only in the last decade that re-
searchers have begun to consider multidimensional representations to solve
old problems in the field. The last chapter shows how the representation of
Lie algebras in terms of bivectors can be applied to problems in low-level
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image processing, using Lie filters in the affine n-plane. It also develops an
algebra of incidence for application to problems in robotics.

Part V Quantum and neural computing, and wavelets is de-
voted to the new fields of quantum computers, neurogeometry, and Clif-
ford wavelets, which go beyond Haar wavelets. The concept of a quantum
computer was first introduced by Richard Feynman in the 1970s. The first
chapter in this part explores the use of geometric algebra for analyzing
the quantum states and quantum logic that is necessary to build a quan-
tum computer based on nuclear magnetic resonance. The second chapter
employs the geometric product in a generalization of neural networks that
have been constructed using complex, hyperbolic, and dual numbers. The
third chapter discusses wavelets constructed from multivectors and is a
generalization of the concept of a quaternion wavelet.

Part VI Applications to engineering and physics is aimed at ex-
ploring some of the many applications of geometric algebra to the problems
of engineering and physics. By looking at diverse problems from the per-
spective of a common-language, the problems are often found to be related
at a deeper level. The first chapter explores some of the mathematical as-
pects of geometric wave propagation as applied to objects in collision. The
second chapter explores the hidden symmetries of crystallography that are
only revealed by a geometric analysis in higher dimensions. The third di-
dactic chapter considers optimization problems that commonly arise in en-
gineering using quaternions. The fourth chapter treats the Maxwell-Lorentz
equations in problems of electrical engineering, and shows how a relativis-
tic point of view can be of practical value. The last chapter of this part
seeks to find the common ground that exists between the down-to-earth
problems faced by engineers and the problems of the stars contemplated
by otherworldly cosmologists.

Part VII Computational methods in Clifford algebra explores
some of the new tools made possible by the rich structure of geometric al-
gebra, and the state of the art software that exists today for doing calcula-
tions. The first chapter explores a generalization of fast transform methods
that takes advantage of the richer algebraic structure of geometric algebra.
The second, innovative chapter of this part reports the results of an exper-
iment that tests the feasibility of using the Internet as a forum for settling
disagreements between experts. The last three chapters of this part discuss
the software available for doing computer-aided calculations in geometric
algebra. It is hoped that the inclusion of these chapters will spur the fur-
ther development of urgently needed software to do symbolic calculations
in geometric algebra.

The editors believe that the contributions in this book will prove invalu-
able to anyone interested in Euclidean and non-Euclidean geometries and to
scientists and engineers who are seeking more sophisticated mathematical
tools for solving the ever more complex problems of the 21¢ century.

Eduardo Bayro Corrochano would like to thank the Center for Research
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in Mathematics (CIMAT, Guanajuato, Mexico) and the Consejo Nacional
de Ciencia y Tecnologia (REDII - CONACYT, Mexico) for their support
of this project. We are very grateful to our student Natividad Maria Aguil-
era for her painstaking work on the Latex technical problems of putting
this book together. Sandra Cancino helped us enormously in the cover de-
sign and in the drawing of many of the figures. We thank Lauren Lavery
at Birkhauser, Boston, for her friendly, professional assistance and Louise
Farkas at Birkhduser, New York, for the excellent proofreading. Garret
Sobcezyk thanks CIMAT for their kind hospitality during his sabbatical in
the Fall Semester 1999. In addition, he is grateful to INIP of the Universi-
dad de Las Americas, Puebla, for his sabbatical, which made work on this
project possible.

Eduardo Bayro Corrochano, Guadalajara, Mexico
Garret Sobczyk, Puebla, Mexico October 2, 2000
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Advances in Geometric
Algebra



Chapter 1

Old Wine in New Bottles: A
New Algebraic Framework for
Computational Geometry

David Hestenes

1.1 Introduction

My purpose in this chapter is to introduce you to a powerful new algebraic
model for Euclidean space with all sorts of applications to computer-aided
geometry, robotics, computer vision and the like. A detailed description
and analysis of the model is soon to be published elsewhere [1], so I can
concentrate on highlights here, although with a slightly different formula-
tion that I find more convenient for applications. Also, I can assume that
this audience is familiar with Geometric Algebra, so we can proceed rapidly
without belaboring the basics.

1.2 Minkowski Algebra

Let Rpq = G(RP?) denote the Geometric Algebra generated by a vector
space RP? with non-degenerate signature (p, q), where p is the dimension
of its largest subspace of vectors with positive signature. The signature is
said to be Fuclidean if ¢ = 0 and Minkowski if ¢ = 1. We will be con-
cerned with the Minkowski algebra R,41.1 and its Euclidean subalgebra
R, determined by a designated unit bivector (or blade) E.

First we consider the Minkowski plane R!! and the Minkowski algebra
Ri1 = G(RY!) that it generates. It is most convenient to introduce a null
basis {e, e} for the plane that satisfies

e?=e2=0, e-e =1 (1.1)
This generates a basis {1, ¢, e, E} for Rq 1, where

E=eAe, = E’=1 (1.2)

defines a unit pseudoscalar for the plane. It is of some interest to remark
that the “+” notation has been adopted to indicate that e, is “dual” to

E. B. Corrochano et al. (eds.), Geomerric Algebra with Applications in Science and Engineering

© Birkhiuser Boston 2001
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FIGURE 1.1. Minkowski Plane R!'1.

e in the sense of linear forms. That simplifies comparison of alternative
mathematical representations.
Using the expansion ee, = e-e,+eAe,, we can express the basis relations
in the convenient form
ee, =1+ E, (1.3)

whence
exe=1—E =14 E" = (ee.)'. (1.4)

We can also derive the “absorption property” for null vectors:
Fe=—-eE=e¢, e,FE=—-Fe,=c¢,. (1.5)

The above relations suffice for all our dealings with the E-plane. However,
it is of some interest to compare the null basis with an orthonormal basis

defined by
1

ex = —(Ne+A7le,), A#0. 1.6
+ \/5( ) AF (1.6)

We note that
el =+£1, et -e_ =0, E=cNe.=ey Ne_ =eqe_ (1.7

The two sets of base vectors are in Fig. 1.1 for A = 1. As X varies in
eqn. (1.6), the directions of ey vary, but the orthonormality relations (1.7)
remain fixed. On the other hand, a rescaling of the of the null vectors:

{e;e.} — {Xe, A7 les} does not affect any of the relations (1.1) to (1.5).
Thus, we see that our definition of the null basis fixes directions but not
scale, whereas the orthonormal basis has fixed scale but arbitrary direction.
It is this difference that makes the null basis more suitable for our purposes.
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1.3 Conformal Split

The con formal split was introduced in [2] to relate a Minkowski algebra to
a maximal Euclidean subalgebra. The split can be defined in two different
ways: additively and multiplicatively.

The additive split is defined as a direct sum:

RAHIL = R @ RM. (18)

For those who would like to see this expressed in terms of a basis, we
introduce an orthonormal basis {ex|e; - ex = é;x; 5,k =1,2,...,n} for the
Euclidean vector space R™ and we note that the orthogonality conditions
e. - ex = €-ex = 0 are equivalent to the condition that the null vectors
anticommute with the ey, that is,

exe = —eeg, €LEsx = —ExEk. (1.9)
Alternatively, the multiplicative split is defined as a direct product:
Rn+1’1 =R, ® Rl,l- (1.10)

Here R™ is actually a space of trivectors with a common bivector factor E.
It is related to the vector space R" by

R*=R"E=R" (1.11)
and it generates the Euclidean algebra R, = G(R"™). It has the basis
{ex = exE = Eey} = trivectors in R2+1,1- (1.12)

We still have the orthonormality conditions e; -e; = e; - e; = §;1. However,
in contrast to the eg, the ey commute with the null vectors, that is,

exe = eey, €Ley = €,€. (1.13)

This is one very good reason for preferring the multiplicative split over the
additive split. The latter was employed in [1], but we will stick with the
former.

The multiplicative split R41 = R3 ® R1,1 has significant applications
to computational geometry, robotics, computer vision, crytallography and
molecular geometry. At a more sophisticated level, the split
Ra2 = R3,1 ® R1,1 defines a conformal split of spacetime with potential
applications to twistor theory and cosmological models in gauge gravity.

1.4 Models of Euclidean Space

We can model £™ as a set of points with algebraic properties. A standard
way to do that is to identify each Euclidean point with a vector x in R",
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as expressed by the isomorphism
EM=R™, (1.14)

We call this the inhomogeneous model of £", because the origin O is
a distinguished point in R"™, although all points in £" are supposed to be
identical.

To eliminate that drawback, we represent points in £ by vectors
x € R™"t11 and, to eliminate the extra degrees of freedom, we suppose that
each point lies in the null cone

N = {z]2% =0} (1.15)
and on the hyperplane
PH(e,e.) = {z|e-z =1}, (1.16)
where
e (z—e)=0 &= e z=1 (1.17)

tells us that the plane passes through the point e.. The intersection of these
two surfaces is the horosphere:

NAFL = AFL A prtl(e e,). (1.18)
Thus, we have the isomorphisms
R™ =g = NHL (1.19)

We call the horosphere (Fig. 1.2) the homogeneous model of £". It
was first constructed by F. A. Wachter (1792-1817), but, as will become
apparent, it is only by formulating it in terms of geometric algebra that
it becomes a practical tool for computational geometry. To prove the iso-
morphism (1.19), we employ a conformal split to relate each homogeneous
point £ € N1 to a unique inhomogeneous point x =z A E € R™.

The conformal split proceeds as follows:

r=z2E’=(zAE+z-E)E,
and the constraints on z imply
(z-E)E=(z-(eNen)E=(3xPe+e)E =—3x"e+en.
Whence we obtain an explicit expression for the conformal split:
z= (x+%x2e+e*)E:xE— %x26+e*. (1.20)
From this we calculate

z-y=(zEEy)=xy—-3(x*+y?e-e..
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FIGURE 1.2. Horosphere.
Therefore, the inner product
z-y=—1(x-y)? = —1(Euclidean distance)? (1.21)

specifies an intrinsic relation among points in £™.
Setting x = 0 in (1.20), we see that e, represents the origin in R™. From

z -2 1 1
:sz (;-}—%—e-}—;e*)Ez——’e,

T ey x“—00

we conclude that e represents a point at infinity.
To facilitate work with the homogenous model, we define I as the unit
pseudoscalar for R™*1:1, and note the properties

[I?=-IIT=1, I'=-I% (1.22)

and I' = I for n = 2,3. The dual of a multivector A in Rpt1,1 is defined
by

A=Al V= —Arl (1.23)
Therefore, E = EI™! is the pseudoscalar for R".

1.5 Lines and Planes

Grassmann sought to identify the outer product a A b with the line deter-
mined by two points a and b [3]. However, he succeeded in doing that only
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in projective geometry [4]. The homogeneous model enables us to see why
he failed to do it in Euclidean geometry: In the Euclidean case, it takes
three points to determine a line, and one of them is the point e at infinity.
Grassmann could not discover that because he did not have null vectors in
his algebraic system.

With the conformal split, we can show that a A b A e can be interpreted
as a line segment in €™ or line through points a, b, e. The length of the
segment is given by its square:

(aAbAe)? = (a—b)?=—2a-b= (length)?. (1.24)

Similarly, the outer product a A b A ¢ A e represents a plane segment or
plane in £7, and the area of the segment is given by its square:

0 1 1 1
1 0 a-b a-c
1 ba 0 b-c
1 cca ¢c-b 0

This is known, in a slightly different form, as the Cayley-Menger determi-
nant. Cayley discovered it in 1841 and nearly a century later Menger [5]
used it in a formulation of Euclidean geometry with interpoint distance as
primitive. Dress and Havel [6] recognized its relation to Geometric Algebra.

Using eqn. (1.20), we can expand the geometric product of points a and
b:

(aAbAche)? = = 4(area)?. (1.25)

ab (aE)(Eb) = (a+ a’e+e,)(b—1b%e—¢,)

= —i(a—b)’+aAb+ i(a’b-ba)e+ (b—a)e, — 1(a?—b?)E.

Il

In expanding (1.26) we have used the relation ab = a- b +a A b, which
applies because a and b can be interpreted as vectors in R,,, though they
are trivectors in R,41,1. In other words, we have regraded the elements
of the subalgebra R, to conform to our interpretation of R™ as an inho-
mogeneous model of £™. The use of boldface type should avoid confusion
between the two different versions of outer product: aA b and a A b.

The first term on the right side of (1.26) is recognized as the inner product
a - b, while the remaining terms make up a A b. The profusion of terms
in (1.26) is indicative of the extensive information inherent in the simple
product ab. It is similar to the complexity of a spacetime split in physics
[7].

From (1.26) we derive the projective split of a line (or line segment)
through points a, b, e:

eNaAb=aAbe+ (b-a). (1.27)

The coefficients on the right side of (1.27) will be recognized as the Pliicker
coordinates for a line with tangent b — a and moment aA (b—a) =aAb,
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as depicted in Fig. 1.3. Similarly, the projective split for a plane (or plane
segment) is given by

eNaAbAc=—-aAbAce+ (b—a)A(c—a)FE, (1.28)

where the coefficients are Pliicker coordinates for a plane, as depicted in
Fig. 1.3.

FIGURE 1.3. Line and plane.

1.6 Spheres and Hyperplanes

A sphere in £™ with radius p and center p is represented by a vector s in
R™*+11 with positive signature, where

= =2 1% 1.29
Geg= " P 3P € (1.29)

It is readily verified that p? = 0, so p is a homogeneous point. The constraint
s-e =1 determines s uniquely and simplifies (1.29) to

s2=p">0, p=s—1ip. (1.30)
As depicted in Fig. 1.4, the equation for the sphere is
z-5=0. (1.31)

This is the equation for a hyperplane through the origin in R"**%!  although
only the vectors satisfying 22 = 0 count as homogeneous points.
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The conformal split gives us
s=pE+1(p®-p’e+e. (1.32)

This helps us ascertain that the equation for a circle can be expressed in
the alternative forms:

FIGURE 1.4. Sphere in £" with radius p and center p.

0

FIGURE 1.5. Hyperplane in £".

Like a sphere, a hyperplane in €™ can be represented by a single vec-
tor n of positive signature. The vector can be normalized to unity, but it
necessarily satisfies

n-e=0. (1.34)

As depicted in Fig. 1.5, its conformal split has the form

n=nFE — e, (1.35)

2

where n? =n? = 1.

The homogeneous model of £™ represents all spheres and hyperplanes in
R™ as (n+1)-dim subspaces of R**1! determined by their normal vectors,
as expressed

{z|z-5=0,8>0,5-¢>0,22=0; z,s € R""11}. (1.36)
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For a sphere the normal s satisfies e+ s > 0, but for a hyperplane it satisfies
e-s = 0. Thus, a hyperplane is a sphere through the point e = co.

A sphere determined by n + 1 points ag, a1, ag, - .. an, is represented by
the tangent form

§=agNayNagA---ANay, #0. (1.37)

According to (1.30), its radius p and center p are easily obtained from its
dual normal form

s=—(apAag Aag A---Aay) . (1.38)
It follows that the equation for a sphere can be given in the dual forms:
TAE=0 <<= z-5=0. (1.39)

These equations apply to a hyperplane as a sphere through oo by taking,
say ag = e, to get the dual forms:

n=eAayANax A---Aay, (1.40)

n=—(eNaiAagA---Nay) . (1.41)

Ezxample: Consider Simson’s construction shown in Fig. 1.6. Given a
triangle with vertices A, B, C and a point D in a Euclidean plane. Perpen-
diculars are dropped from D to the three sides of the triangle, intersecting
them at points A, By, Cy.

FIGURE 1.6. Simson’s construction.

The circumcircle of triangle e AAABACiss=AABAC, so wecan
obtain its radius from

s\2_ §%  (CABAA) (ANBAC)
2 (8_5) T (sne? (eAAABAC)YE (1.42)
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The following identity can be derived:

ANBANCAD
2p? ’
It follows that AABACAD = 0 if and only if eA A; A By ACy = 0. In other

words, D lies on the circumcircle if and only if Ay, By, C; are collinear.
This is Simson’s Theorem.

en A1 A Bl A\ Cl = (143)

1.7 Conformal and Euclidean Groups

Orthogonal transformations on Minkowski space are called Lorentz trans-
formations. Any Lorentz Transformation G can be expressed in the cano-
nical form

Glx)=eGzG ! =0od, (1.44)

where G is a versor with parity € = +1. G is the versor representation of
G, usually called the spin representation if € = +1.

Lorentz transformations leave the null cone z2 = z'> = 0 invariant.
However, the condition e-2’ = e-z = 1 is not Lorentz invariant, so a point-
dependent scale factor o has been introduced into (1.44) to compensate for
that.

The Lorentz group on R™* 1! is isomorphic to the conformal group on
R™, and the two groups are related by the conformal split

2

Ge[x + 1x%e + €. |EG™! = o[x' + 1(x')’e + e.]E, (1.45)

where
x' = g(x) (1.46)

is a conformal transformation on R™.

The great advantage of the versor representation is that it reduces the
composition of conformal transformations to versor multiplication, as ex-
pressed by the correspondence

g3(x) = g2o[q1(x)] = G3=GaGy.

Every versor G can be expressed as the product of non-null vectors,
as expressed by G = s ... s3 81. A vector factor may represent either a
hyperplane or a sphere in R"™, as explained in the preceding section.

Reflection in the (hyper)plane specified by a vector n, has the simple

form:

1

n(z) = —nzn~ ' =1, (1.47)

with o = 1. Rotations and translations can be generated multiplicatively
from reflections. Thus, reflections in two planes m and n that intersect at
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a point ¢ (Fig. 1.7), generate a rotation around the line of intersection, as

specified by

G=mn = (mE-em-c)(nE—en-c)
= mn-e(mAn)-c
= R——e(RXC).

C / n
FIGURE 1.7. Generation of a rotation.

A translation by reflection in parallel planes m,n is specified by

G=mn = (mE—eb)(nE+0)
= 1+ jae="T,,

where a = 2né, as shown in Fig. 1.8.

FIGURE 1.8. Generation of a translation.

The group of rigid displacements on £3 is called the (special) Euclidean

group SE(3). Each group element D can be expressed in the form

D(z) = DzD™ 1,

where the displacement versor D = T, R specifies a rotation around an
axis with direction n = RnR' through the origin, followed by a translation

Ta=1+ jea.

(1.48)
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According to Chasles’ Theorem: Any rigid displacement can be ex-
pressed as a screw displacement. This can be proved by finding a point b
on the screw axis so that

D =Ty Ta, R=Ta,Ro (1.49)
where a; = (a-n)n, and
R, =R+ebxR, (1.50)

is a rotation that leaves b fixed. Equation (1.49) can be solved directly for

b=a,(1-R %) '=1 1__Ri (1.51)
=a, ) _iall—(R2)' .
This illustrates the computational power of geometric algebra.
The displacement versor can be put in the screw form
D =35, (1.52)
where
S = —im + en, (1.53)

where i = E is the pseudoscalar for E2, and S is called a screw. The screws
compose se(3), the Lie algebra of SE(3). It is a bivector algebra, closed
under the commutator product:

Si x Sy = L(818; — S251). (1.54)

All the elements of screw theory are natural consequences of geometric
algebra! Each screw has a unique decomposition intc a null and a non-null
part:

Sy = —imy + eng,. (1.55)

The geometric product of two screws has the decomposition
5180 =515+ 81 x Sy + S1 A Ss. (156)
Under a rigid displacement U, the transformation of a screw is given by

S;c =USy = US]CU‘-1 = Ady Sk. (1.57)

This is the “adjoint representation” of SE(3), as indicated by the notation
on the right. The transformation (1.57) preserves the geometric product:

5185 =U(8182) = U(Sy-Sa+ 81 x Sy + 51 AS)U ™!

The invariants
Ue=c¢e, Ui=1 (1.58)
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imply the invariants:
U(Sl A 52) = 51 A Sz = -—ie(ml -ng +ms - nl), (159)

Si . Sé = Sl . SQ = —Inj - MmMo. (1.60)

The latter invariant may be recognized as the Killing Form for se(3).
It is convenient to introduce the notion of a coscrew (Ball’s reciprocal
screw) defined by

S; = (Skie* >2 = %(Skie* + ie*Sk) = ing + Mge,. (1.61)

Then the invariant (57) can be written in the scalar-valued form:

Sf . Sz = S; . Sl = ((S] A Sz)le*) =mj ng-+ms-ny. (162)
For a single screw we get the pitch invariant:

S .S .

h=1 n-m (1.63)

255 =

1.8 Screw Mechanics

Screw theory with geometric algebra enables us to combine the rotational
and translational equations of motion for a rigid body into a single equation.
The kinematics of a body point

x = DzoD™! (1.64)

is completely characterized by the displacement spinor D = D(t), which
obeys the kinematical equation

D=1vD (1.65)

with
V = —iw + ve, (1.66)
where w is the angular velocity of the body and we can take v to be its

center-of-mass velocity. It follows that =V -z and X =w X x+ V.
A comomentum P is defined for the body by

P=MV =ilw+mve, = £+ pe,. (1.67)

This defines a generalized “mass tensor” M in terms of the inertia tensor
I and the body mass m. According to the transformation equations below,
the comomentum is a coscrew.
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The coforce or wrench W acting on a rigid body is defined in terms of
the torque I and net force f by

W =il + fe,. (1.68)

The dynamical equation for combined rotational and translational motion
then takes the compact form:

P=w, (1.69)

where the overdot indicates a time derivative. An immediate consequence
is the conservation law

K=V - W=w-T+v-f (1.70)
for kinetic energy
K=lv.P=lw-£+v-p) (1.71)

A change of reference frame, including a shift of base point, is expressed
by
r — o =Uz=UzU"". (1.72)
We consider here only the case when the spinor U is constant. Then (1.72)
induces the transformations

V' =UV, (1.73)
pP=0P. (1.74)

Thus, the transformation of V is Covariant, while the transformation of P
is Contravariant. Their scalar product is the Invariant

PV =P.V. (1.75)

There is much more about all this in [8], [9] and [10], especially applications.
For more screw theory, see [11] and [12].

1.9 Conclusions

We have seen that the homogeneous model for Euclidean space has at least
three major advantages.

1. Intrinsic properties of E™ are embedded in the algebraic properties of
homogeneous points. In other words we have

This was Grassmann’s great goal, and he would surely be pleased
to know that it has finally been achieved, although the path has not been
straightforward.
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Synthetic integrated Computational
{ geometry with geometry

II. All spheres and hyperplanes in E™ are uniquely represented by vec-
tors in R™11. This unifies and simplifies the treatment of spheres and

hyperplanes, especially with respect to duality properties.

1. { Conformal group ~ { Lorentz group
on £" (or R") - on R™"

~ {Versor group }
_2 in Rm—l,l

This isomorphism linearizes the conformal group and reduces composi-
tion of conformal transformations to versor multiplication.



Chapter 2

Universal Geometric Algebra

Garret Sobczyk

2.1 Introduction

Since Grassmann’s original work “Ausdehnungslehre” in 1844, and William
Kingdom Clifford’s later discovery of “geometric algebra” in 1878, the
mathematical community has been puzzled by exactly how these works
fit into the main stream of mathematics. Certainly the importance of these
works in the mathematics at the end of the 20th Century has been recog-
nized, but there has been no general agreement about where and how the
methods should be utilized. In this chapter, I wish to show how the works
of Grassmann and Clifford can be integrated into the mainstream of ma-
thematics in such a way as to require as little as possible changes to the
main body of mathematics as we know it today. As has been often repeated
by Hestenes and others, geometric algebra should be seen as a great unifier
of the geometric ideas of mathematics.

Some of the opposition to the acceptance of geometric algebra into the
mainstream is without doubt due to the more sophisticated algebraic skills
and identities that must be mastered. Indeed, I have to admit my own
frustration in not being able to do more than a line or two of computations
without making a serious mistake. I believe that what is most needed in
the area today is an efficient computer software package for carrying out
symbolic calculations in geometric algebra. Lounesto’s CLICAL has proven
itself to be invaluable to the researcher for making the numeric calculations
necessary to check theoretical work, and Ablamowicz’s CLIFFOR has been
successfully employed by a number of researchers. But a fully integrated
symbolic computer software package to do geometric algebra is still waiting
in the wings. A partial solution to this problem is to develop the basic
ideas of geometric algebra in such a way that problems can be quickly
reduced to their matrix equivalents for which computer software is readily
available. Thus, one of the major objectives of this chapter is to develop
the main ideas of geometric algebra in such a way that matrix methods can
be employed almost immediately at any step of a calculation.

In section 2, we begin with an n-dimensional real vector space ' which
we call the null cone, since we are assuming that all vectors in N are null
vectors (the square of each vector is zero). Taking all linear combinations of
sums of products of vectors in N generates the 2"-dimensional associative

E. B. Corrochano et al. (eds.), Geometric Algebra with Applications in Science and Engineering
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Grassmann algebra G(N). This stucture is sufficiently rich to efficiently
develop many of the basic notions of linear algebra, such as the matrix
of a linear operator and the theory of determinants and their properties.
We are careful to define and use notation which is fully compatible with
traditional matrix theory, but more general in the sense that we are consi-
dering matrices over the Grassmann algebra G(N). Next, we introduce an
n-dimensional null cone N which is reciprocal or dual to A, and its associa-
ted reciprocal or dual Grassmann algebra G(N'). By demanding that a few
simple additional rules be satisfied, which relates the basis elements of the
reciprocal null cones ' and N, we obtain the 22"-dimensional universal
geometric algebra G(N',N). It seems natural to allow a countable infinite
number of basis elements, and to call the resulting general structure uni-
versal geometric algebra.

In section 3, we extend the familiar addition and multiplication of matri-
ces over the real and complex numbers to more general matrices of elements
over G, . This notation is useful for the compact formulation and proofs
of theorems relating the matrix and geometric algebra formalisms. The
meet and join in projective geometry are incorporated as new algebraic
operations on simple k-blades in the geometric algebra.

In section 4, linear transformations are studied as mappings between
null cones. The generalized spectral decomposition of a linear operator is
presented and the principal correlation is discussed. The principal corre-
lation is one step away from the more familiar polar form and singular
value decompositions of a linear transformation. The principal correlation
also makes possible a compact treatment of the generalized inverse of a
linear transformation. The bivector of a linear operator is defined, making
possible the spinor representation of a general linear transformation.

In section 5, projection operators are defined allowing us to move from
the null cone to various subspaces where rotations and translations in can
be carried out in pseudo-euclidean spaces and affine spaces of arbitrary
signature. After these operations are completed, we can return to the null
cone via an inverse projection operator.

In section 6, basic properties of affine and projective geometries are ex-
plored, including new proofs of Desargues’ theorem and Simpson’s theorem.

In section 7, an introduction is given to a non-linear model of euclidean
space, called the horosphere, and its relationship to the affine plane. Various
applications of the horosphere are discussed in chapters 4, 3 and 17 of the
present volume.

2.2 The Universal Geometric Algebra

By an n-dimensional nuill cone N, we mean a real linear n-dimensional
vector space on which an associative multiplication is defined with the
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property that for each z € N/, 22 = zx = 0. It follows that
@+y)’=a>+oy+yr+y’ =ay+yz=0

or zy = —yz for all z,y € M. Decomposing the geometric product xy into
symmetric and antisymmetric parts, we find that

1 1
xy:5(:L‘y+wy)+§(wy—yx)=:L'-y+9c/\y (2.1)

where the inner product

1
:c~y:§(:cy+yz:)50

vanishes, and the outer product

1
TAY = é(my —yz) = TY

reduces to the geometric product for all vectors z,y € N.

The 2"-dimensional Grassmann algebra Gy of the null cone N is defined
by taking the associative algebra of all geometric sums of products of the
vectors in AV, subject to the one condition that z? = 0 for all z € N. We
write

Gn = gen{N} = gen{ey,...,e,}

The Grassmann algebra Gy of the null cone A is the linear space spanned
by the 2"-dimensional basis of multivectors,

{1; €1,-+-3€n; €125--,€n_1In;--+; €l ks - s En—k+l.n5 -+ €12...n}
where {1 ky.-.,€n_k+1..n} is the k -dimensional basis of k-vectors

€j1jz2...dk = €51€j2 - - Eji

for the ( Z

mann exterior product 1o ...z of k vectors is antisymmetric over the
interchange of any two of its vectors;

) sets of indicies 1 < j; < j2 < ... < jg < n. The Grass-

:L'l...xi...xj...xk:—:L‘l...:cj...:ui...xk

and has the geometric interpretation of a directed k-vector or k-element of
volume. Note that the exterior product of null vectors in the null cone N’
is equivalent to the outer product of those vectors,

T1Z2 ... Tk = TINT2N ... NTg.



2. Universal Geometric Algebra 21

Given the null cone N = span{e} and its associated Grassmann algebra
Gn, we can always define a reciprocal null cone N' = span{e} and its
associated reciprocal Grassmann algebra Gzr. The reciprocal null cone N
of the null cone N is defined in such a way as to encapsulate the familiar
properties of the mathematical dual space of the vector space A. Thus, in
addition to the basic properties

2 _ =2 _ N
e; =0=2¢;, and e;je; = —eje;, €€; = —€;¢;,

we require that
€; - €; = 5@]' =€ € (22)

for all 4,5 = 1,2,...,n. With this definition, the Grassmann algebra G of
the reciprocal cone N becomes the natural dual of the Grassmann algebra
On.

The neutral pseudoeuclidean space IR™™ is the smallest linear space which
contains both the null cones A" and . Thus,

R™" = span{N, N} ={z+7| z e N,G € N}.

Likewise, the 22"-dimensional associative geometric algebra Gn.n is the
smallest geometric algebra that contains both the Grassmann algebras Gn
and Gy, see [6]. We write

Gnn =GN X Gy =gen{ey,...,en,€1,...,En}. (2.3)
Whereas the geometric product (2.1) of the vectors z, y,
zy=2x y+ Ay (2.4)

reduces to the outer product when both = and y belong either to the null
cone NV, or both belong to the reciprocal null cone N, because of the duality
relationship (2.2), this is no longer true for arbitrary z,y € IR™". Indeed, in
the context of the pseudoeuclidean space IR™", the pseudo-inner product
z-y becomes non-degenerate with neutral signature. A very useful geometric
identity that we will need is the inner product of a vector with a bivector,

x - (anb) = (z-a)b~— (z-b)a = ~(anb) - z. (2.5)

We call G, ,, the universal geometric algebra of order 2°". When n is
countably infinite, we call G = G, o the universal geometric algebra, [16].
The universal algebra G contains all of the algebras G, ,, as proper subal-
gebras. In [6], G, ,, is called the mother algebra.
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2.2.1 The standard basis

We have used properties of the Witte basis of null vectors {e,€} to define
the geometric algebra G, . From the Witte basis, we now construct the
standard orthonormal basis {o,n} of G, »,

o; = %(Ci +&), mi= %(ei - &) (2.6)

for i = 1,2,...,n. Using the defining relationships (2.2} of the reciprocal
frames {e} and {€}, we find that these basis vectors satisfy

2 _ _ _ . .
0 =1, 0;-0; =6 0,0; =—0;0; for i # j,

M= =1, m-m5 = —6ij, mm; = ~m; m for i #j,

N0 = —041;, ;- 05 = 0. (2.7)

The basis {c} spans a real Euclidean vector space IR™ and generates
the geometric subalgebra G, o, whereas {n} spans an antieuclidean space
IR®™ and generates the geometric subalgebra Go,n- We can now express the
geometric algebra G, ,, as the product of these geometric subalgebras

gn,n = gn,O ® gO,n = gen{gla sy Oy Ty eeey nn} (28)

2.3 Matrices of Geometric Numbers

In this section, we extend the familiar addition and multiplication of matri-
ces over the real and complex numbers to more general matrices of elements
over G, . This notation is useful for the compact formulation and proof
of theorems, as well as for relating the matrix and geometric algebra for-
malisms.

We begin by writing the frame of basis vectors {e} and the corresponding
reciprocal frame of basis vectors {€} of G,, , in row form and in column form,
respectively,

o ol
N

fe}=(e1 e - - e ), {e}=

We say that the basis {e} spans N and write N' = span{e}. Similarly,
N = span{e}.
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In terms of these bases, any vector or point x € N can be written

T1
T2

L= {6}.’1:{3} = {617 €2,... ,en} . = inei (29)
. =1

Tn
for z; € IR. The column vector
I é1-T
T €y T
Tie} = =\ - ={e} -z
Ty €n- T

consist of the components of & with respect to the basis {e}. Note that in
the basis representation of x, we are employing the natural matrix multi-
plication between a row and a column, and we will do this for matrices of
even more general elements. Since vectors in AN behave like column vec-
tors, and vectors § € N " behave like row vectors, we define the operation
of transpose of the vector z by

2 = ({eJar) =zl & = (o1 @2 .. @a )| - (2.10)

€n
The transpose operation allows us to move between the reciprocal null
cones. The closely related Hermitian transpose will be used later on to
define an Hermitian inner product.
Taking advantage of the usual matrix multiplication between a row and
a column, and the properties of the geometric product listed in (2.1), and
(2.2), we get

eiNe; €éiNey ... €1/en

eoNey €ExNey ... €afen
{eHe} = (e} {e} + {BIA{e} = id+

e,Nep epNes ... epNep

where id is the n x n identity matrix, computed by taking all inner products
€; - e; between the basis vectors of {€} and {e}. Similarly,

{e}{e} = {e} - {e} + {e}n{e} = Zei & + Zei/\éi =n+ Ze,-/\éi,



24 Garret Sobczyk

giving the useful formulas
{e} - {&} 2262' B=n (2.11)
i=1

and

n

{eInM{e} =) ene (2.12)

=1

2.3.1 Reciprocal basis

The basis {e} € N and {€} € N are said to be reciprocal, or dual, because
they satisfy the relationship {€} - {e} = id, where id is the n x n identity
matrix. More generally, given a second basis {a} of N, the problem is to
construct a dual basis {@} of N such that {@}-{a} = id. For the construction
below, we will need the the pseudoscalar I = ejAez ... Ae, of N and the
corresponding reciprocal pseudoscalar element 1T = €,A...A&2AE of N
satisfying I - T = 1.

The new basis {a} of N is related to the standard basis {e} by the
equation

{a} = {e}A={e1,e2,...,en}A (2.13)

where A is called the matriz of transition from the basis {e} to the basis
{a}. Taking the outer product A\]_,{a} of the basis vectors {a}, we get

/\{a} = a1AagA ... Aay = det(A)erAeaA . .. en, (2.14)

=1

where det A is called the determinant of the matrix .A. We see from (2.14)
that the determinant of the matrix of transition between two bases cannot
be zero. Dotting both sides of (2.14) by I, we get the explicit expression

n

det(A) = A{a}-T

i=1
Because the determinant function is so important, we shall also use the
alternative equivalent bracket notation

det(A) = det{a} =[a1 az ... ay] (2.15)

The reciprocal basis {@} is now easily constructed:

i1 (@A NN Aag) - T
[a; az ... ay)

@ = (-1) (2.16)
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Calculating

61-(11 al-ag 61~an
62-(11 EQ-CLQ .. Q20 Ay

{a} - {a} = =1id
Qn-QA1 Gn-Q3 ... Gp-Qap

proves the construction. We have actually found the inverse of the matrix
of transition A! Writing {a} = B{€} for the transition matrix of the dual
basis, we see that

{a}-{a} = B{e} - {e}A=BA=

from which it follows that B = .4~!. From the expression {a@} = A~'{e},

we easily find
ATl = A" e} {e} = {a} - {e}

which is equivalent to the well known formula for the inverse of the matrix

A.

2.3.2 Generalized inverse of a matriz

Let N and N be n-dimensional reciprocal null cones in IR™"™ with the

dual bases {e} and {e}. Let N c N and N C N be n’-dimensional
reciprocal subspaces with the dual bases {e'} and {€'}. Suppose that an
n x n’ matrix A is given such that n’ = rank(A) < n and {e'} = {e}.A. We
can now define what is meant by a generalized inverse of the matrix A.

Definition 1 A matriz A™ is called a generalized inverse of the matriz
A if '

{e'} ={e}A and A™{e} = {¢'}.
If n' > n for the matriz A, then a generalized inverse is defined to be the
transpose of a generalized inverse of the matriz AT.

Whereas the inverse of a matrix exists only for square matrices with

det # 0, the generalized inverse as defined above will exist for non-square
matrices A so long as rank(A) = min{n,n'}. We will see in a later section
that a generalized inverse, although not unique, can be defined for any
nonzero matrix.

Given any n x n' real matrix A with n’ = rank(A) < n, the problem of
finding a generalized inverse of A is equivalent to the problem of construc-
ting a reciprocal dual basis {€'} (not unique!) for the basis {¢'} = {e}.A
of the subspace N = span({e’}) of N. Since the construction is also
important in the next section, we will present it here.

Since I4 = A{e'} = /\{e}A # 0, we can find an n’-vector I 4 in the
geometric algebra G(N") of the reciprocal cone N, with the property that
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IT4-I4# 0. We then use T4 to construct a pseudo-determinant function
on the subspace N,

det(A) =det{e'} =[e} ey ... el)]=Ia-T4#0 (2.17)

The construction of the reciprocal basis {€'} for the subspace now proceeds
exactly as in the previous section. We define

i1 (BIA AN L AeL) T 4

/
n'

e =(-1)

2.18
efey ... e (2.18)

With the reciprocal basis {¢'} in hand, a generalized inverse A™ of A
can easily be found. It will be the matrix which satisfies

@) =A™ ()

Dotting both sides of this equation on right by {e} gives the generalized
inverse of A,

A = 4 (5) . (e} = {2} - {e). (2.19)

2.3.3 The meet and joint operations

Let N™*! and N+1 be (n + 1)-dimensional reciprocal null cones in
R+ Tt is well known that the directions or rays of non-zero vectors
in N™*! can be identified with the points of the n-dimensional projective
plane IT", [9]. To express this idea more precisely, we write

" = N/ R

where IR* = IR — {0}. We are thus led to identify points, lines, planes, . . .,
and higher dimensional k-planes in II™ with 1, 2, 3, . . ., k + 1-dimensional
subspaces S™ of Nt where k < n.

The meet and join operations of projective geometry are most easily
characterized in terms of the intersection and union of the subspaces which
name the objects in II". On the other hand, each r-dimensional subspace
A" can be described by a non-zero r-blade A, € Gpm+1. We say that an
r-blade A, represents, or is a representant of an r-subspace A" of N1 if
and only if

A" = {z € N1 zAA, =0},

With this identification, the problem of finding the meet and join is reduced
to a problem in geometric algebra of finding the corresponding meet and
join of the (r + 1)- and (s + 1)-blades in the geometric algebra G(N™11)
which represent these subspaces.

Let A,, B, and C; be blades representing three subspaces A", B® and
Ct, respectively. We say that
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Definition 2 The t-blade C; = A, N B, is the meet of A, and B; if and
only if C* is the intersection of the subspaces A" and B?,

C'=A"NB°.
We say that

Definition 3 The t-blade C; = A, U B, is the join of A, and B; if and
only if Ct is the union of the supspaces A™ and B?,

Ct+l — AT+l BstL
Suppose that an (r — 1)-plane in II" is reprented by the r-blade
Ay = aihas/. .. Aa,
and an (s — 1)-plane by
B = biAbaA ... Ab.

Considering the a’s and b’s to be the basis elements spanning the respective
subspaces A" and B*, they can be sorted in such a way that

A" U B® = span{ai,az,...as,bx,,- -, b2},

where the A’s are chosen as small as possible and are ordered to satisfy
1§A1<)\2<...<)\k§s, and

A" NB* = Span{boua ) bas—k}’

where
Bs =by, A . AbA Ao AL Ab, -

It follows that
A"UB® = A"Aby A ... Aby,,

and
AN B =by, A...Abg, .

The problem of “meet” and “join” has thus been solved by finding the union
and intersection of linear subspaces and their equivalent (s + k)-blade and
(s — k)-blade representants.

It is important to note that it is only in the special case when A,NB; =0
that the join reduces to the outer product. That is

ArNB;=0 & A,UB;=AAB,

However, after the join I4,.up, = Ar U B, has been found, it can be used
to find the meet A, N B,. The idea is the same as in the previous section.
If T4,0p, is any (r + s)-blade in Q(NHH) for which I4, g, - Ia,uB, # 0,
then

Ar N Bs = Ar : [Bs : TATUBS] = [TA,.UBs ' Ar] : Bs
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2.3.4 Hermatian inner product

We now come to the delicate subject of complexification. Up until now,
we have only considered real geometric algebras and their corresponding
real matrices. Any pseudoscalar of the geometric algebra G, ,, will always
have a positive square, and will anticommute with the vectors in IR™™. If
we insisted on dealing only with real geometric algebras, we might consider
working in the geometric algebra G,, ,,+1 where the pseudoscalar element 4
can be chosen to have the desired i> = —1. In this algebra, i will commute
with all the vectors in IR™™*1, and a complex vector z+1y in Gy 41 would
consist of the real vector part z and a pseudovector or (2n)-blade part iy.

Instead, we choose to choose to directly complezify the geometric algebra
Gn,n to get the complex geometric algebra Go,(€') . Whereas this algebra, is
isomorphic to Gy, 41, it is somewhat easier to work with than the former. A
complez vector z € €™ will have the form z = z+iy where z,y € IR?". The
imaginary unit i, where i2 = —1, is defined to commute with all elements
in the geometric algebra G, ().

The complexified null cone N™(€'), and reciprocal cone N (L), are
spanned by the complex null vectors

1 . _ 1 .
ej = ﬁ(a]’ +10n4;) and & = E(Uj = 10n+;5)

for j = 1,2,...,n. A complex null vector z € N*(C) has the form z =
{e}x{e}, where in this case x; € . For what follows, we shall adopt the con-
vention that z* = xfe} {€}, so Hermitian conjugation is an operation which

takes us from the complex null cone N™(€) to the dual null cone N (L).
Notice that applied to the components T{e}s er} is the usual Hermitian
transpose of the column vector T{e}s

*

iy = (21 22 o o )= - (2.20)

We are now ready to define the Hermitian inner product (x,y) on N™(C).
For all z,y e N™(C),

(fL‘, y> =z y= mze}y{e}

If the components of x and y are all real, the Hermitian conjuation ope-
ration reduces to the tranpose operation, defined in (2.10). The Hermitian
inner product has all of the usual properties.
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2.4 Linear Transformations

Let N*UN™ and N"UN" be (n+n')-dimensional reciprocal null cones in
R™ 7+ with the dual bases {e}U{e’} and {g} U{&'}. Let f : N — N’
be a linear transformation from the null cone A into the null cone . In
light of the previous section, we can consider the null cones N and A’ to
be over the real or complex numbers. Let

Hom(N,N")={f : N = N’| f is a linear transformation}

denote the linear space of all homomorphisms from A to A7, with the usual
operation of addition of transformations. Of course, only when A" = A is
the operation of multiplication (composition) defined.

Given an operator f € Hom(N,N"), v = f(z), the matriz F of f with
respect to the bases {e} and {e'} is defined by

f{e} ={fe} ={fer, fea,..., fen} = {€}, €h,..., e }F ={e}F (2.21)

Of course, the matrix F = (f;;) is defined by its n x n’ components
fij =€ -f(ej) €Clori=1,2,...,n and j = 1,2,...,n. It follows that
fle;) = fe; = Z?;l e; fi;. By dotting both sides of the above equation on
the left by {€'}, we find the explicit expression F = {&'}-{e'}F = {€’}-f{e}.

We wish to pursue this material only far enough to show that tradi-
tional linear algebra fits very nicely into the far richer geometric algebra
framework, which brings to bear both new geometric insight and new com-
putational tools.

The transpose (or Hermitian transpose (2.20)) f*(y'*) of the mapping
y' = f(z) is defined by the requirement that for all z € A’ and y'* € N,

f@)y" =z ") & {€} flet=1({ED {e}

2.4.1 Spectral decomposition of a linear operator

We shall now briefly consider linear operators from the null cone A into
itself. Let

End(N)={f:N — N| f is a linear operator}

denote the algebra of all endomorphisms from A to itself. In this case, the
operations of addition and composition of linear operators are well defined.
Let {e} be a basis of N, and {€} be the corresponding reciprocal basis of
N. Then

fley ={e}7 o F={e} {e}F ={e} f{e}

gives the matriz F of f with respect to the basis {e}.
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Recall that the characteristic polynomial of f is defined by

n

pr(@) =det(z — f) ={\(z - f){e}} - T.

=1

By the well-known Caley-Hamilton theorem, we know that ¢¢(f) = 0, so
that every linear operator satisfies its characteristic equation. The minimal
polynomial 1¢(x) of f is the polynomial of least degree that has this pro-
perty. Taken over the complex numbers £, we can express ¢f and ¥y in
the factored form

os(@) = [[(@ — 2™ and vs(z) = [J(z - 20"

=1 i=1

where 1 <m; <n;<nfori=1,2,.

The minimal polynomial uniquely determmes up to an ordering of the
idempotents, the following spectral decomposition theorem of the linear ope-
rator f.

Theorem 1 If f has the minimal polynomial 4(z), then a set of commu-
ting mutually annihilating idempotents and corresponding nilpotents
{(pi,qi)| i=1,...,7} can be found such that

f= Z(mi + @)pis

=1

where rank(p;) = n;, and the index of nilpotency index(q;) = ms, for
t=1,2,...,r. Furthermore, when m; =1, q; = 0.

Various forms of the spectral decomposition theorem are known, but they
are certainly under-utilized, perhaps because of the clumsey form in which
in which they are often presented. In [17, 18], the spectral decomposion
theorem is used to derive the Jordan canonical form, and other basic canon-
ical forms of a linear operator.

The spectral decomposition theorem has many different uses. Any func-
tion g defined on the spectrum {zi,z2,...,2,} of the operator f, can be
defined on the operator f,

f) = Zg(xi + ¢:)p:
=1

where
mi—1 f(k ZL‘
K3

g(zi+a) = Z

Jj=0

——dlp:
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We say that an operator f is diagonalizable if and only if it has the spectral

form
-
F=) s
=1

If f is diagonalizable, then a generalized inverse of f is defined by

frr=3" %Pi

zi#o v

2.4.2  Principal correlation

The idea of a principal correlation d of a linear transformation

f: N — N, where n/ = dim(N") > dim(N) = n, is basic to the
construction of both the generalized polar decomposition and singular value
decomposition of the transformation f. The transformation d : NV — N’
is a generalization of a unitary operator and becomes a unitary operator

when N = N’ and rank(f) = n.

Definition 4 A transformation d is said to be a principal correlation of a
transformation f if rank(d) = rank(f) and

fd* =df* and d*f = f*d,
where (dd*)? = dd*, and (d*d)? = d*d.

The problem remains to show that given f : N' — N, where n < n/, that
a principal correlation will always exist. Assuming that it does exists with
the specified properties, we will solve for d based upon the existence of the
generalized inverse (2.19).

If it does exists, then

ff* =df*dd fd* = df* fd* = (df*)?
and
frf=d fd*df*d = d* ff*d = (d"f)?

It follows that df* = /ff* or df*f = /ff*f. Multiplying both sides of
this last equality on right by the generalized inverse (f* )™ of f*f gives
the formula for a principal correlation d of f,

d= /ff*f(f*f)inv o Jdf = (f*f)invf* /ff*

The fact that d and d* have the desired properties as given in the definition,
is a simple excercise in linear algebra.

In terms of the principal correlation d of f, a generalized inverse may be
defined by fin? = (d* f)"vd*.
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2.4.3 The bivector of a linear operator

With the help of the geometric algebra identity (2.5), and (2.12), we can
express the vector z in the form

= {e}${e} = ({e}/\{é}) " T,

where x (.} are the column vector components of  introduced in (2.9),

I €1 T
T2 €T

Tle} = . = . = {é} - T (2.22)
Tn, en T

This is the key idea to the bivector representation of a linear operator.
Let f € End(N). Then, we have

f@) = f({e}ziey) = {e}Fzey = [{}IME} -z =F -z (2.23)

where the bivector F € G, ,, is defined by

F={e}F)Me} =) fiene; = {e}A(F{e})

=1 j=1

Thus, every linear operator f € End(A) can be represented in the bivector
form f(z) = F -z, where F = ({e}F)A{€} is a bivector in the universal
geometric algebra G, ,. The components of f(z) = F -z can be directly
recovered from the bivector F,

fij =€ - f(e;) = F - (e;N&).

Consider now f,g € End(IN), f(z) = F -z and g(z) = G - . The
commautator [f, g] of the linear operators f and g is defined by

[f,gl(z) = (fg — g9z)(x) = f(g(x)) — g(f(z)). (2.24)

The linear operators in End(IV), taken together with the commutator pro-
duct, make up the general Lie algebra gl(IN) of the vector space IV.
Using the bivector representation of f and g, we find that

f,9l(x)=F-(G-z)-G-(F-z)=(FxG) -z, (2.25)

where the commutator product of bivectors F x G is defined by

FxG = 1[FG—GF), [7, p.14]. Thus the Lie bracket of the linear operators
f and g becomes the commutator product of their respective bivectors
F and G. The bivectors of all of the linear operators in End(IN), taken
together with the commutator product, make up the Lie algebra spin(IV).
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The significance of the Lie algebra spin(IV) will be discussed in the next
section. We can also express the commutator [f, g] directly in terms of the
matrices of f and g. Writing f{e} = {e}F, and g{e} = {e}G, we get

[f;gl{e} = fo{e} — gf{e} = {e}(FG - GF) = {e}F, 4], (2.26)

where [F, G] is the commutator product of the matrices F and G.

2.4.4 Spinor representation

The set of all linear operators f € End(IN), such that det f # 0, make
up the general linear group GL(IN) with the group operation being the
usual composition of linear operators. Expressed in terms of the bivector
representations (2.23) of f and g,

fogleg)=F-(G-2)=(F:G) -z

where the group operation of composition of bivectors F' : G, the equivalent
of multiplying matrices, is defined by

(F:G)={F |G {e}]In{e}.
In terms of the bivector of a linear operator,
det f#£0 & AL F=FAFA---AF#0,

but we will not prove this fact.

Each bivector in F € spin(IN) defines a corresponding one parameter
group element in gl(IV). Recall that for f € End(N), a one parameter
group is defined by the exponential mapping g;(z) = €'/ z, where the group
operation is the composition of linear operator [5, p.115]. We have

gs(gez) = (e e )z = Tz = g, a

for all s,t € IR. Using the bivector representation (2.23), f(z) = F - z, we
have the following important

Theorem 2 The one parameter group gix = etfx of the skew-symmetric
transformation f(r) = F -z, can be expressed in the spinor form

gr=elr= e3Fpe=3F (2.27)
Proof:
We will prove the theorem by showing that the terms of the Taylor series
expansion of both sides of the equation (2.27) are identical at t = 0.
We begin with

F

etfr=eiFpe3F (2.28)
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Clearly, for ¢t = 0 we have

Next, taking the first derivative of both sides of (2.28), we get
el fr = %Fe%Fwe_%F - %Fe%er_%F
= eiF(F.z)e iF. (2.29)

Setting t = 0 gives the identity f(z) = F - z.
Taking the derivative of both sides of (2.29), gives

etfoxi%Fe%F(Fox)e_%F - %Fe%F(F'x)e_%F
= e%F[F. (F- m)]e—él’,
and setting ¢ = 0 gives the identity f?(x) = F - (F - z). Continuing to take
successive derivatives of (2.28), gives
ef fr(z)=eiF (F* : g)e 5F (2.30)
where F* : x is defined recursively by F!:z = F -z and
Fr.z=F.(FF1:1). (2.31)
Finally, setting ¢ = 0 in (2.30) gives the identity
ffa)y=F*:z

which completes the proof.
Q.E.D.
The expression (2.31) is interesting because it expresses the powers of
a linear operator in terms of “powers” of its defining bivector. It is clear
that each bivector defines a unique skew-symmetric linear operator, and
conversely, each skew-symmetric linear operator defines a unique bivector,
(2.23). Thus, the study of the structure of a bivector is determined by
and uniquely determines the corresponding structure of the corresponding
linear operator. The the proof of the above theorem is due to Marcel Riesz
[15].

2.5 Pseudo-Euclidean Geometries

By construction, the real null cone A’ C IR™™. Slightly more generally, we
define the complex null cone N;,

M={$+2y| x’yEN}an,n-f-l’
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where the pseudoscalar ¢ € G,, 41 commutes with all the elements of G, n41
and 72 = —1. It is natural to work in the geometric algebra Gnn+1 When
working on the null cone over the complex numbers. We have seen in the
previous section that the bivectors in gn n make up the real Lie algebra
spin(n,n) when taken with the Lie bracket operation. A complex bivector
C € Gnnt1 has the form C = A+ iB for A,B € G2 . The complex
bivectors make up the compler Lie algebra spin;(n) under the Lie bracket
operation.

The null cone N should be thought of as a home base. If we wish to do a
rotation in a pseudoeuclidean space IRP*? where p+ ¢ = n, then we project
the null cone N onto IRP%, perform the rotation using the bivectors of
spinor algebra spin(p, q), and then project back to the null cone. Suppose
that £ = {e}x(y = > i zie; € N. The projection P, 4 : N' — RPY is
defined by

t' = Ppy(@)=Ipg-(Ipg- ) szaz + Z z;n; € R™1

j=p+1

where the reciprocal elements are specified by
Ig=01...0pMp41...7n and

Ipg=1(2- \/5)"(@" =) - (Ept1 — Mp+1)(€p + 0p) ... (€1 + 01).
The inverse projection Py , : IRP? — N is defined by

z=P, (@) =1, (Tpq- o),

where I, | =eje;...e, and Ip g is defined as before, as can be verified by
using CLICAL or by hand.

Note that an (p, g)-orthogonal transformation can be performed directly
on z € N using either its matrix representation, or its corresponding bivec-
tor representation B - x.

2.6 Affine and Projective Geometries

Let A € IR™" be the null cone in IR™". It is often very desirable to extend
the theory of linear transformations to include translations. This is most
easily accomplished by introducing the concept of the neutral affine n-plane
A.(N) as a subset of the (n+ 1)-dimensional null cone N"+1 ¢ RPFL+L
We define
AN)={z+e| zeN} N

where 0 # e = e,,41 € N™*1. A slightly different, but equivalent definition
is ‘

AN)={y| yeN"Tlandy-e=1}C N,
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where € = €,,1 € N™*lso that e-€ = 1. This second definition is interesting
because it brings us closer to the definition of the n-dimensional projective
plane .

It is well known that the projective n-plane II™ can be considered to be
the set of all points determined by the directions or rays of nonzero vectors
y € N1, The projective n-plane II" can also be defined to be the set of
all points of the affine plane A.(N), taken together with idealized points
at infinity. Each point y € A.(N) is called a homogeneous representant of
the corresponding point in II™. To bring these different viewpoints closer
together, points in the affine plane A.(N') can be represented by rays in
the space

Al N) ={yl ye N" andy 81 #0 } C N (2.32)

The set of rays A7°Y*(N) is yet another definition of the neutral affine
plane, because each ray y € A7*Y*(N) determines the unique point

e AW),
Y- €ntl
and conversely, each point y € A.(N) determines a unique ray in A7%¥$(N).
Thus, the affine plane of points A.(N) is equivalent to the affine plane of
rays AL%Y*(N). Some of these issues will be further discussed in the next
chapter.

2.6.1 Pseudo-affine geometries

Just as we can move from the null cone N’ (embedded in neutral pseu-
doeuclidean space IR™™) to any of the pseudo-euclidean spaces IRP:9 by
a projection, by using essentially the same reciprocal projection elements,
we can move from the neutral affine geometry A.(A) on the null cone
N7 to the pseudo-affine (p, q)-plane A.(IRP9) C IRP14+1 The under-
lying idea is, once again, the same. Certain kinds of transformations can
be accomplished more easily in the different pseudo-affine planes. Once the
transformation is performed, we can return to “home base” by using the
inverse projection.

The projection from the affine plane A.(A™) to the affine plane A, (RP?)

is specified P, o(x) = Ip q-(Ip,q-x) where the reciprocal elements are defined
by
I,o=01...0pMpt1.. . Mmeny1 and
Ipg = (2= V2)"€nt1(8n =) - - (Epr1 = Tpt1) (€ + 0p) ... (€1 + 01).
We can project the affine plane A (IRP?) back to the affine plane A.(N™)
by replacing the reciprocal element I, , by

!
Ip,q =€1€3...€n41

and using the same element Tp,q defined above. Using these concepts, we
will explore the affine geometry of motion in detail in a later chapter.
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2.6.2 Desargues’ theorem

We will present a simple proof of the classical Desargues’ configuration , a
basic result of Projective Geometry. We do so to emphasize the point that
even though geometric algebra is endowed with a metric, there is no reason
why we cannot not use the tools of this structure to give a proof of this
metric independent result. Indeed, as has been emphasized by Hestenes and
others [1], all the results of linear algebra can be supplied with a projec-
tive interpretation. Another reason for presenting our proof, is to contrast
it with the much more complicated proof that Hestenes has given in [9].
Whereas, it can be argued that Hestenes’ proof is more profound, because it
expresses the relationship as a duality relationship, it also assumes a much
greater algebraic sophistication in its derivation. Also, Hestenes’ proof is
only valid when both triangles lie in the projective plane I12, our proof is
equally valid when the triangles lie in I13.

Recall that points a € II® can be identified with nonzero rays a € IR,
and two rays a and b in JR* represent the same point if and only if aAb = 0.
Two distinct points a, b € 113 define the line aAb # 0, ¢ € II2 lies on this line
(is colinear) if and only if aAbAc = 0. Suppose that a, b, ¢, d € II3 such that
no 3 of them are colinear, but that they are coplanar , aAbAcAd = 0, then
the meet of the projectives lines aAb and cAd is the unique point d € I3
defined by

d = (anb) N (cAd) = (and) - [(anbAc) - (eAd)].
Refering to Figure 2.1, we are now ready to state and prove

Theorem 3 (Desargues’ Configuration:) Let ay, az, a3 and by, ba, b3 be the
verticies of two triangles in 113, and suppose that

(al/\ag) n (bl/\bg) = c3, (0,2/\(13) N (bg/\bg) =, ((1,3/\0,1) N (bg/\bl) = C3.
Then c1AceAcs = 0 if and only if there is a point p such that

al/\bl/\p =0= ag/\bg/\p = a3/\b3/\p.

Proof:
a1 AbiAp =0 p=oqa1 + Fiby
ag/\bg/\p =0 «— P = Qa2 + ﬂzbg
azAbsAp =0 P = azog + [3bz
but this in turn implies that
101 — opag = —(B1by — B2b2) = c3
agag — agaz = —(B2ba — B3bs) = 1
azaz — aja; = —(f3bs — Biby) = c2

Taking the sum of the last three equalities gives c¢1 + ¢o + ¢3 = 0, which
implies that c;AcgAcz = 0. The other half of the proof follows by duality.
Q.E.D.
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FIGURE 2.1. Desargue’s Configuration.

2.6.3 Simpson’s theorem for the circle

‘We have seen in the last section how geometric algebra can be used to prove
theorems of Projective Geometry which do not depend on a metric. In this
section, we will prove Simpson’s theorem for the circle which depends upon
the metric. We will prove this theorem in the affine plane of rays A7%¥* (IR?),
defined in (2.32). The operations of meet and join are defined in the affine
plane of rays in almost the same way that they are in the the projective
plane, with a slight modification to take into account that e? = 0.

For example, suppose that we are give two non-collinear points
a,b € AT®(IR?), then the line L., passing through the points a,b €
AT%5(IR?) is uniquely defined by the 2-direction of the bivector aAb. Su-
ppose that we are given a third point d € A7%*(IR?), as in Figure 2.2, and
we are asked to find the point p on the line £, such that L, is perpendi-
cular to £,4. The point p we are looking for is of the form p = d+ si(a —b)
for some s € IR and lies on the line £,4 which is uniquely defined by the
bivector

pAd = [d + si(a — b)]Ad = s[i(a — b)|Ad.

But the scalar s # 0 is unimportant since the line is uniquely defined by
the 2-direction of the bivector pAd and not by its magnitude. The point
p € AT%S(IR?) is therefore uniquely specified by

p = (anb) N {[i(a — b)|Ad}, (2.33)

where i = 0107 is the bivector tangent to A7%Y*(IR?).
Evaluating (2.33) for the point p € A7%¥*(IR?), we find

p = (anb) N {[i(a — b)]Ad} = {[en(a — b)] - d} - (aAb)

= [eA(a — b)] - (dNha) b— [eA(a — b)] - (dAD) a
=(a—-b)-(b-dya—(a—b)-(a—d) b
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The normalized point

=P Y b (b—d)ya—(a—b)(a—
==l ) b-da—(a-b-(-d) (239

will be in the affine plane A.(IR?).

FIGURE 2.2. a) Perpendicular Point on the Line b) Simpson’s Theo-
rem for the Circle.

Refering to the Figure 2.2, we are now ready to state and prove

Theorem 4 (Simpson’s theorem for the circle.) Three non-conlinear points
a,b,c € A% defines a unique circle. A fourth point d € A? will lie on this
circle if and only if a1 AbijAc; = 0, where

a1 = (bAc) N {[i(b — ¢)]nd}
b1 = (eAa) N {[i(c — a)]Ad}
¢1 = (anb) N {[i(a — b)]Ad}
Proof. Using the above formula above for evaluating the meets, we find that

ag=(Mb—-c)-(d-c)b—(b—c)-(d—b) c

bi=(c—a)-(d—a)c—(c—a)-(d—c)a

and
a=(a—-b)-(d-bla—-(a—b) - (d—a)b.

These points will be collinear if and only if a;Ab;Ac; = 0, but

arAbiAe = {[(b— ¢) - (d - )][(c — a) - (d — a)][(a — b) - (d — )]

—[(c=a)-(d—=c)][(a—=b)-(d—a)][(b—c)-(d—Db)]}anbAc (2.35)
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Note that the right-hand side of the last equation only involves differences
of the points a, b, c, d, and that these differences lies in the tangent plane of
A2 which is IR?. Without loss of generality, we can assume that the center
of the circle is the point e and that the circle has radius p. Using normalized
points (2.34), it is not difficult to show that

2

2
—d
aPAbEACh = 2 > (a"AbPACH) (2.36)

P2 _ d2
& (b —a)N(cg —b) = T(b —a)A(c—a) (2.37)
Since the points a”, b", c¢" are not colinear, a®AbPAc? # 0; it follows that
a? AbP AP = 0 if and only if (d?)? = p2.

Q.E.D.
Whereas the identity (2.37) in the affine plane A? is not trivial, it is
much easier to prove than the corresponding identity used by (1) in his
proof of Simpson’s theorem in the non-linear horosphere H2. The issue of
distance geometry has also been addressed by [4]. It appears correct to say
that it is always easier to carry out calculations in the affine plane, except

when conformal transformations are involved.

2.7 Conformal Transformations

FIGURE 2.3. The affine plane A? and horosphere H2.

We have already noted that translations can be easily effected in any of
the affine planes. There is still another transformation of basic interest, the
conformal transformation which preserves angles between tangent vectors
[12, 14]. The most familiar example of a conformal transformation is that
defined by any analytic function in the complex number plane. There are
also conformal transformations which preserve angles of mappings in the
pseudoeuclidean space IRP'?. In the same way that we linearized a transla-
tion in IRP? by moving up to the affine plane A.(N), we can linearize a
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conformal transformation in JRP? by moving up still further from the affine
plane A.(N) to the (p,q)-horosphere H2 in IRPTLIFL (see, Chapter 3).
The (p, q)-horosphere is most easily defined by

1
HT = {Saiean| an € A(RPY)} C RV,

where e = e,41 and € = €p41.
Let us call the point z, € HPY,

1 1 1
Te = ixhéxh = —2-[(Ih . @)Ih + (CIIh/\é):L'h] = ITp — 5:1:;21@

1 1
= exp(gxé)e exp(—ﬁxé) (2.38)

the conformal representant of both the point x;, =  + e € A (IRP?) and
z € IRPY. Note that given z., it is easy to get back xp by the simple
projection,

xp = (T NE) - €

or to x € IRP?,
x = (z.NEAe) - (ENe).

The expression of the conformal representant z. in the form (2.38) is inte-
resting because it shows that all points on H2? can be obtained by a simple
rotation of e in the plane of 2€. The affine plane A2 and horosphere H?2 are
pictured in Figure 2.3. The horosphere will be discussed in more detail in
later chapters.
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Chapter 3

Realizations of the Conformal
Group

Jose Maria Pozo and Garret Sobczyk

3.1 Introduction

Perhaps one of the first to consider the problems of projective geometry
was Leonardo da Vinci (1452-1519). However, projective geometry as a self-
contained discipline was not developed until the work “Traité des propriés
projectives des figure” of the French mathematician Poncelet (1788-1867),
published in 1822. The extrordinary generality and simplicity of projective
geometry led the English mathematician Cayley to exclaim: “Projective
Geometry is all of geometry” [16]. D. Hestenes in [8] showed how the me-
thods of projective geometry, formulated in geometric algebra, can be effec-
‘tively used to study basic properties of the conformal group. The purpose
of this article is to further explore the deep relationships that exist beween
projective geometry and the conformal group.

In section 2, we review some of the basic ideas of projective geometry that
are needed in this work, and relate the projective plane to the affine plane
by defining what we mean by a point observerin a higher dimensional space.
In section 3, we define a line observer and show how it leads to the concept
of a conformal representant, which is closely related to Hestenes’ idea of
a conformal split [8]. We also give the relationship between the conformal
representant and the more familiar concept of stereographic projection. The
non-linear model of a pseudoeuclidean space, called the horosphere is briefly
discussed. The horosphere has recently attracted the attention of many
workers, see for example, [4, 15, 6].

In section 4, we give a simple proof, using only basic concepts from di-
fferential geometry developed in [7], of the deep result relating conformal
transformations in a pseudoeuclidean space to isometries in a pseudoeu-
clidean space of two higher dimensions. The original proof of this striking
relationship was given by [5]. In section 5, we show that for any dimension
greater than two, that any isometry on the null cone can be extended to
all of the pseudoeuclidean space. In section 6, we discuss the interesting
issue of the conformal compactification of the horosphere for the various
signatures of the underlying pseudoeuclidean space IRP4, [15].

In the final section of the paper, we show the beautiful relationship that

E. B. Corrochano et al. (eds.), Geometric Algebra with Applications in Science and Engineering
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exists between Mobius transformations (linear fractional transformations)
and their 2 X 2 matrix representation over a suitable geometric algebra.

3.2 Projective Geometry

Let IRP? be a real n-dimensional pseudoeuclidean vector space over the
real numbers IR, and suppose that the sums of geometric products of the
vectors in IRP? generate the geometric algebra G, , = gen{IRP?}, where
n = p+q. A point z € IRP? is named by the vector z from the origin
0 € IRP9. Now let A € g};’q be any nonzero simple k-vector, or k-blade. By
the k-direction of A in IRP9, we mean the k-dimensional subspace of IRP>¢
defined by

Sa = {z € RP9| zAA = 0}.

When k = 1, we also say that S, is a line or ray through the origin with
the direction of a € IRP'9. The notation and geometric algebra identities
used in this paper are from [1, p.37-43] and [7].

It is well-known that points in the projective space II*~1 can be identified
with rays in IRP'9; thus we can write S, € II""!. Likewise, the 2-blade
A = anb € G2 determines the projective line S4 C II"~! which passes
through the projective points S,, S, € II"~1. In general, each k-direction
in g,’;q determines a unique (k — 1)-plane in II"!. Note that two nonzero
k-blades A, B € GF = determine the same k-direction in JRP7,

S4=8p iff A= sB for some s € IR",

where IR* = IR — {0}. We say that A and B are representants of the
same k-direction in g]’;, @ This is the strict meaning of the word represen-
tant which will be used throughout this article. Hestenes and Ziegler in [9]
have shown how the basic definitions and theorems of projective geometry
can be efficiently formulated and proved in geometric algebra by the rein-
terpretation of the elements of geometric algebra given above. More details
of the projective interpretation of geometric algebra can be found in that
article, but they will not be needed here.

Let us now extend the pseudoeuclidean space IRP? to the higher dimen-
sional pseudoeuclidean space RPT19 = span{IRP?, 0} by introducing an
orthonormal unit vector ¢ with the properties that 2 = 1 and ¢ is ortho-
gonal to (anticommutes with) all the vectors x € IRP, ie., zo = —oz. It
follows that G, , is a subalgebra of G,41, = gen(IRPT1:9).

By a point observer in IRP*19, we mean any nonzero fized point
a € IRPT14 from which each point in = € IRP? is observed by a ray S,_q
passing through the points a and z. Choosing a = —¢ as our fixed point
observer, the point z is observed by the ray S;—4 = Sz4o- The vector
zp = z+ o0 will be called the homogeneous representant of the ray S, . The
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homogeneous representant of a ray S, is the unique representant y € S,
which satisfies the condition that y - 0 = 1. Each vector y € IRPT17 is a
representant of some point z; = r + o € IRPT19 if and only if y - o # 0.
Conversely, given any representant y € S,,, the homogeneous represen-
tant is obtained from the equation z; = -f; The set of all homogeneous
representants

AP = {zp, =z + 0| z € R”}

is the p + g-dimensional affine hyperplane in IRP*1? which is orthogonal to
o and passes through the point o.

In the Figure 3.1, it is visually evident that each point x € IRP'? deter-
mines and is determined by a unique ray S, in RPT19. Similarly, each
2-direction Sz, Ay, determines and is determined by a unique line passing
through the points z and y in IRP>?. In the same way, the plane defined by
three points z, y and z in IRP'? determines and is determined by the unique
3-direction Sz, aynnz, in IRPTHY) and so on.

FIGURE 3.1. Points and lines in projective geometry.

3.3 The Conformal Representant and
Stereographic Projection

In the previous section, we have seen how the methods of projective and
affine geometry can be used in the study of IRP¢ by choosing a point
observer a = —o in a larger space IRPT1:¢ which contains IRP'Y as a proper
subspace. We now introduce the concept of double projective geometry, by
choosing a second point observer b = —v in a still larger space RPT1:9F1.
The signature of the new orthonormal vector v is chosen according to the
requirements of the application. The appropriate signature for the study of
conformal transformations is ¥ = —1. Thus, two point observers a = —c
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and b= —v in JRPT19*! are chosen to satisfy

2

o2 =1, v*

=—-1l,0.v=0-z=v-z=0,
for all z € IRP9. Tt follows that RP+1-9t1 = gspan{IRP9,0,v}.

The first observer a sees the second observer b as the unique line deter-
mined by the null direction € = b — a = o — v. Recall that for a simple
projection, the point observer a sees each point x € IRP? as the ray S,_g.
The double projective line observer € = b— a “sees” each point ¢ € IRP? as
the 2-direction

S-a)A(e—a) = Sen(z+0)-
Thus the line observer makes each point x € IRP? correspond to the unique

2-direction containing the line observer and intersecting IRP? at the point
x. See Figure 3.2.

FIGURE 3.2. The double projective 2-direction of a point z € RP1.

Let Gpi1,4+1 = gen(IRPT1:9+1) be the geometric algebra of RPHLI+L,
We will also need the hyperbolic unit bivector uw = ov, u? = 1, and the null
vectors e = %(0 +v) and € = 0 — v. We have the following simple but
important relationships

e?=e?=0,e-e=1 u=2re=0Av, u?=1 (3.1)

The bivector K = eA(z + o) of the 2-direction Sep (54, determined by
T is a unit hyperbolic bivector,

K2 =(eNz+0))? = (ehnz+ena)? =u? =1,
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so it uniquely determines two null directions, one of which is Sgz. The second
null vector z. of the null direction S, can be found by factoring the bivector
K, into K; = eAz.. This second null vector is easily found to be

1
To=1T — §x2€+ e € RPH1at!

and is called the conformal representant of the point z € IRP9.

The conformal representant of the null ray S, is characterized as the
representant ¥ € S, which satisfies ¥ - € = 1. The set of all null vectors
0 # y € RPt19+! make up the null cone IN = {y € RPTHI+L| 42 = 0}.
The subset of IN containing all the representants y € S, for any z € IRP?
is defined to be the set

NOZ{yEﬂv'y'E#O}:UzeRp,q Sil"c

Let us summarize what we have accomplished. Each point z € IRPY,
when viewed from the point observer —o, uniquely determines the ray Sy,
of the homogeneous representant z, = z + o in IRP*1:9. When a second
point observer —v is chosen in the still larger space IRPT19T! then each
point z € IRP? determines a unique hyperbolic plane with the direction
of the hyperbolic unit bivector K, = €Axy. Factoring K, into the outer
product of two null vectors, K, = €Az, gives the conformal representant
z. € INg of the unique null ray S;, € INy/IR* corresponding to the point
z € IRPY.

The conformal representant z. = z — $z2€+e € JRPT14*! has many nice
properties. First, it is easily obtained from any other representant; for any
Y€ Se.,

e U
y-e
Second, we can easily recover z from z. by projecting x. into IRP9,

T = (T AU,

Third, the mapping z. : IRPY — IN; C IRPt19+1 is continuous and
infinitely differentiable (indeed, it’s third differential vanishes), and it is
also an isometric embedding,.

dz,=dz —z-dee = (dz.)? = (dz)? (3.2)

Finally, the points z € IRP? are represented by null rays S, in
INy ¢ IRPtLa+L that is by the points of INg/IR*.

The set of all conformal representants HP? = ¢(IRP'?) make up a non-
linear model of the pseudoeuclidean space IRP? called the pseudo-horosphere.
The pseudoscalar I, of the tangent space to HP? at the point z., deter-
mined by (3.2), is given by

I, = IK, = I eAx, (3.3)



3. Realizations of the Conformal Group 47

where [ = 01...0p41V1 - .- Vgt is the unit pseudoscalar of IRPTH9+1. The
horosphere H" for the Euclidean space IR™ was first introduced by F.A.
Wachter, a student of Gauss, [4], [6] and in chapter 1. The pseudohoros-
phere HP+? is pictured in the Figure 3.3 crossing the circles and is a subset
of the null cone Nj.

FIGURE 3.3. Conformal representant and stereographic projection.

The conformal representant x. can be written in the form

1 3 1
Te=2— §x2€ +e= 5(30 +o)e(z+0) = Ewh’éxh, (3.4)

which shows explicitly that x. is null because it is obtained by a reflection
and a dilation of the null vector €. Since a dilation does not change the
direction S,_, another representant z, can be defined by the reflexion,

z,=(z+0o) te(z+0)=(x+0) oz +o)+v , Sz, =Ss,-

The first term z; = (z + o) o (z + o) of the last expression is the usual
stereographic projection and is defined for the space IRP? of any signature.
The representant z, is the image of the stereographic projection z, as
observed by the second point observer —v, z, = x5 — (—v), so clearly

Szr = st"’l"

Evidently, both this representant and the stereographic projection, are not
defined and are discontinuous when (x + o) does not have an inverse, in
the hypersurface defined by 2 = —1. Therefore, they have discontinuities
only for non-euclidian spaces.
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3.4 Conformal Transformations and Isometries

In this section we will show that every conformal transformation in IRP4
corresponds to two isometries on the null cone IV, in JRPT1:91+1,

Definition 1 A conformal transformation in IRP'? is any twicely differen-
tiable mapping between two connected open subsets U and V,

f:U—V, z—1=f(x)
such that the metric changes by only a conformal factor
(df (2))? = Na)(d)?, A(z) #0.

If p # q then A(z) > 0. In the case p = q, there exists the posibility
that A(z) < 0, when the conformal transformations belong to two disjoint
subsets. We will only consider the case when A(zx) > 0.

Recall that INg = {y € IN | y-€ # 0} is the subset of IN that contains all
of the nonzero points on each of the rays S, of the conformal representants
z.. Thus, each point y € IVy can be coordinized by the parameter ¢ € IR*
and z € IRP'?, by writing

1
y=y(z,t) =tz, =t(x — §x2€ +e).
Taking differentials, we immediately find
dy = dtz. + tdz. = dt% +t(dz —z - dx ®).

Note that mg = 0 implies that dz.-x. = 0, from which it easily follows with
the help of (3.2) that

(dy)? = t2(dz.)? = t3(dx)>. (3.5)

Definition 1.1 An isometry F on INy is any twicely differentiable ma-

pping between two connected open subsets Uy and Vy in the relative topology
of INo,
F:U — Vo, yr—y =F(y)

which satisfies (dF(y))? = (dy)? .

Using the “coordinates” y(z,t) = tz., any mapping in IV, can be ex-
pressed in the form

Y = F(y) = 'z, = ¢(z,8)f (=, ).
where t' = ¢(z,t) and =/, = f(z,t). are defined implicitly by F. Using
(3.5), we obtain the result that ¥’ = F(y) is an isometry if and only if
t2

¢(z,1)?

(dy')? = (dy)? < t*(dz')? = t3(dx)? or (df(z,t))? = (da)?.
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Since f(x,t),z € IRP? (non degenerate metric), and the right hand side
of this equation does not contain dt, it follows that f(z,t) = f(z) is inde-

pendent of ¢. It then follows that ¢(z) = @ is also indendent of ¢. Thus,

we can express any isometry y' = F(y) in the form y' = ¢¢(x)f(x)., where
f(z)e € INy is the conformal representant of f(z) € IRP?. This implies that
y' = F(y) is an isometry iff

Yy =tg(2)f(z)c and (df(x))® = (¢(x))"*(dz)”.
Therefore, f(x) is a conformal transformation with

1
Az)’

Az) = 9(2)72>0 o ¢(x) =+

Since the functions ¢(z) and f(zr) are independent of ¢ and F(y) is li-
near in ¢, we can always extend the open subsets Uy and Vj of INy to ¢
independent open subsets

Up = UyetoSy, and Vg = Uyery Sy.
The domain U is defined by U} as the preimage of the mapping S, .

A
U={ z€RP|S,, C U} = {Z—;uly € Us).

To sum up, we have obtained the following results:

e Any isometry in INy defines a unique conformal transformation in
RPA,

e Any conformal transformation ' = f(z) in JRP'? defines two unique
isometries in INy given by

3.5 Isometries in IV,

In this section we will show that, for dimension greater than 2, any isometry
in Ny is the restriction of an isometry in JRPt19+1, The inverse of the
statement is obvious. From the definition of an isometry, (dF(x))? = (dy)%.
Since dF'(y) and dy are vectors in JRPT1:9%1 dF(y) can be obtained as the
result of applying a field of orthogonal transformations to dy,

dF(y) = R(y)dyR(y)" "

where R(y) € Pinpyi,g+1 = {X = @102+ an € Gpy1,941 | a? = £1}.
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Since y2 = 0 for y € Ny, it follows that
0=y dy =tz,- (dtz. + tdz;) = t?z..dz..

This implies that z. - v = 0 for all vectors v in the tangent space of INg
at the point y. The (n + 1)-pseudoscalar I, of the tangent space to INp
at the point y can be defined by I, = Iz, where I is the pseudoscalar of
IRPT19+1 ] given after equation (3.3). We have

zoov=0 % 0=I(zx. v)= Tz )Av=T,Av (3.6)

The fact that the tangent space has dimension n + 1 and a metrically de-
generate null direction z. is sufficient to guarantee that the image of dF(y)
defines a unique orthogonal transformation in JRP*19*1 which determines

(up to a sign) the versor R(y) . Note that R(y)*_1 = :i:R(y)T, where R*
and R' denote the main involution and the reversion respectively.

To better manipulate the vectors in the tangent space of the null cone
INy, let us define the vector eg, with e2 = 1, as the direction of IR orthogonal
to IRP? in the chart IRP?4& IR . In doing so, we have transformed JRP? @ IR
into IRP*19 so that dy(IRP™19) becomes the tangent space of Ny. We will
also use the notation

a=a+aey with a€ RPY and g€ RPTML

Also, let
0=0;+ey0; sothat a-0=a0;+ ad;

With this notation,
dy(a) =a-0tz. = (ab; +a-0;)tr.,=az.+t(a—a- 7€)
and the expression dF' = Rdy R*~! takes the form
a-8F = dF(a) = Rdy(a)R* ™" = Ra-0yR* ™"

Previously, we found that any isometry F(y) = t¢(z) f(z). in INp is linear
in the scalar coordinate ¢. Taking the exterior derivative, we get

dF(y) = %F(y) + td(¢(z)f(z)c)
or
w—1 1

Ry)dyRy) = %R@WRE)'  + tRE)dzRE)'

from which it follows that F(y) = R(y)yR(y)*—1 and R(y) is independent
of t. Our aim now is to show that R(y) = R(z) = R is also independent

of z so that F(y) = RyR*~" will be a global orthogonal transformation in
Ny C JRPTLg+1
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Let us first impose the integrability condition that the second exterior
differential ddF must vanish.

0 = ddF(anb) = 5 (a-d(Rdy()R* ") — b-O(Rdy(@)R* "))

1
2
1

= 3 (dR@ayOR ™ + Riy®aR " @)

~dR®)dy(@)R* ™" — Rdy(a)ar* ™ (b))

- %R(R-ldR(@dy@ ~ dy(b)R~"dR(a)

- RdRB)d0) + )RR | R

We define Q(a) = 2R™'dR(a), which is a linear function of just a € IRP*4,
since R = R(z) is independent of t. It follows that

Qep) =0, and Q(a) = Qa).

Thus, we get

SR(2%)

X

dy(b) — Q(b) x dy@)R*—l -

= %R<Q(g)~dy(b) - Q(b)'dy(g))R*_1

= RQ-dyR* '(aAb) =0 = Q-dy(anb) = 0. (3.7)

Equation (3.7) can then be separated into two parts,

2Q-dy(and) = Q(a)-dy(b) — Qb)-dy(a) =0

20-dy(aheo) = Qa)-dy(eg) = Aa)-ze =0 8

dyant) =0 {

Secondly, we take take the exterior derivative of Q = 2R(x)~'dR(z), to
find the integrability condition,

dQ = 2dR"'dR = 2dR"'RR™'dR = —% (2R—1dR) (2R—1dR)

dQ(anb) = —%QQ(a/\b) = —%Q(a) x Q(b)

= dQ(z) + %Q(a) x Q(b) = 0. (3.9)

Since Q(z,a) - z. = 0, it follows by (3.6) that it is a bivector in the
tangent space of IVy at the point y = tz.. Thus, it can be written in the
form
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Q(z,a) = v(z,a)Az. + B(z,a)

where v(zx,a) is a vector in the tangent space of the horosphere ¢(IRP*?),
v(z,a) € dz.(IRP?), and B(z,a) is a bivector over the same tangent space
B(z,a) € dz.(G2,) = dz.(IRP?)Adz.(IRP9). From now on, we will not
write the dependence on the position z : Q(a) = Qz,a). We will also
write h(a) = dz.(a).

Imposing the first equation (3.8) we get

ma)-dwc(b)—n(b)-dxc(a)=0:'{ ((>)hh((>) (<)'>h§z(2z>=0#

= B(a)- (h(b)/\h(c)) = B(b)- (h(a)/\h(c)) — B(a) =0 Va € IRP¥
= Qa) = v(a)Az.
Imposing the second equation (3.9) we get

dv(anb)Az. =0

v(a)Ah(b) = v(b)Ah(a)

This last equation differentiates between the cases when dimension p+q > 3
or when p + ¢ < 3. Wedging both sides of this equation with h(a) gives

v(a)Ah(a)Ah(b) =0 Va,b € IRP?

p+qg>3 } = v(a)Ah{a) = 0= v(a) = ph{a)

It follows that

ph(a)AR(b) = ph(b)AR(a) = p=0= v(a) =0 Va € R"?
Therefore, R(y) is constant
Qy) =0=dR(y) = 0= R(y) = R = constant

Thus, F(y) is a global orthogonal transformation in JRP+14+1,
F(y) = RyR*™ R € Pinpi1441

Since group of isometries in INy is a double covering of the group of
Conformal transformations Con,, 4 in IRP9, and the group Pingii 441 is a
double covering of the group of orthogonal transformations O(p+1, ¢+1),
it follows that Pingy41,44+1 is a four-fold covering of Cony, .

For dimension p + ¢=2, the equations can also be solved. The resulting
expressions for F(y) and Q(y) can be found explicitly in terms of analytic
and antianalytic functions in the case of complex numbers (with 2 = —1
for R>? and IR%2, or 42 = 1 for IR"!). The expression of {(y) involves
the Schwarzian derivative [3, p.47],[10], and its geometric interpretation is
currently under investigation.
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3.6 Compactification

We have seen how the space IRP'? can be isometrically embedded as the
hypersurface c¢(JRP9) in the higher dimensional space IRPt1:9+! by taking
the conformal representant ¢(z) = z. of each of its points z € IRP9.
However, projective geometry is involved since we are identifying points
x € IRPY with the corresponding rays S, (or points) of the projective
space INg/IR* C TIPT9T1, Whereas the limit

lim z, = lim (z — lmzé—l— e)
T—00 T—00 2
always diverges in IRPT19%1 as a limit of directions lim,_,o Sz, may well
exist in ITP*9. The issue of conformal compactification has been discussed
in [15].

Given 0 # v € IRP?, a reasonable condition for a sequence {z,} € IRP?
to have a defined direction v at infinity is that

lim x, = vy iff {

limy, 00 |2y - b| = 00 for some b € IRP? }
- 00

lim,, 00 Sz, = Sy
For any function f : IRP? — A, where A is a Haussdorf space, we write

lim f(z)=weA

Voo

if lim,,_o f(z,,) = w for any sequence {z,} in IRP*? such that
limy,, o0 Tn = Voo

We will now study lim,_,, S, where z. = c(z) € Rpy1,441 is the
conformal representant. Note that

T Se(z) = S(xe) and Sc: RP? — INo/IR* C IN/IR* C fPtatt

Our objective is to compactify c(JRP>?) in IN, getting

S(c(RP)) = No/IR* = IN/R*

by adding all null directions in IV which are not in INy. There are two cases
to consider, when v? # 0, and when v2 = 0.
Let v,z € IR”?, and v? # 0. We have the two identities

x-v +x/\v (1+x/\v)
r=—v+—5 — v,
12 02 v= v2 T-v
and
1 z/\v
2
= —(z-v+ A SV = /\v — .
x UQ(&: + zAv){x z [ a: - )2

It follows from the first identity that limz_,vw T = Voo if and only if

r-v—o00, and ¥ (.
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These two conditions imply, with the help of the second identity, that

I x? 1
im = =,
oo (T - )2

We now easily find that

1
lim z.= lim (z — —2—332€ +e)

T Voo T Voo
lim (z-v)? [ac v+xzAv 1 2202 . v? e] -
= v— - =
TV U2 (z-v)2 2(z-v)2  (z-v)? <

$0 S;, — Sz whenever T — vy, and v2 # 0.

The analysis of the case £ — ve for nonzero v € IRP? with 2 =0
is more difficult. For such a v, since the pseudoeuclidean space IRP-? is
nondegenerate, we can always find an 7 € IRP? with the property that
72 =0 and 7- v = 1. Then, for any z € IRP9, we have

(zAv) ~5]’

o= (2Dt (@) 7= (0 0) v+ S

and

2 (x.5)2[2(x/w) -_(mv) 4 [(af:/\v)—- 6]2]‘
T (z-7)?
From the first of these identities, it follows that lim,_,,_ T = v if and
only if ~
z-U-00, and (—g—”;\."T)'v—»(J-
These two conditions imply, with the help of the second identity, that

2
T __o.

lim
il (z - 7)?

However,

is indeterminant, as follows by considering the sequence {z,} for
I, =nv+ % Bv, where 8 € IR. For this sequence, we find that

2
lim —n =p

n—oo Iy UV

Indeed, the three possibilities for this limit are

.’L‘2 /6 € R7
lim — = +o0,
PV LU doesn’t exist
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We will now evaluate limg_,,, S;. for each of the three possibilities
above. We find

lim S§; = lim S(z— 1:1026+ e)

T— Voo T— Voo 2
M) 1 z?
= lim S ( [H o) 1o, _])
T—voo v 2z U
1 z2 Sv— e
= lim S (v — ——_E) =< Sz respectively.
T— Vo0 2zv

doesn’t exit

Since each point y € IV, such that y ¢ INy, is of the form y = v + B¢ we
have succeeded in showing that each point in IV which is not in IVy is the
limit point of a sequence {¢(z,)} in Ny, so

S(c(RP9)) = Ny /IR = IN/R*

3.7 Mobius Transformations

The conformal split of y € IRP*1:9%! is made with respect to the bivector
u=ov,
y=(ywu=(y - uvt+yruu=(y u+yu,

where y = yAu. It was introduced by Hestenes in [8] in his study of confor-
mal transformations and has the nice property that the relative components
of y with respect to u commute, that is

(y - u)(yAu) = (yAu)(y - u),

for all y € IRPT19*1 ag is easily verified.
The conformal split has the disadvantage that in dealing with the relative
geometric algebra Gy g of the relative pseudoeuclidean space

RPY — {y - y/\u] ye Rp+1,q+1}’

new inner and outer products must be introduced in Gp q that differ from
the inner and outer products in Gp414+1. For this reason, we choose ins-
tead to deal directly with the subalgebra IRP:? of IRPt1:9+1 a5 discussed in
Section 2. Recall from Section 2 that

JRPTLa+1 span{]Rp’q,o,V} = JRP? @ R

where IR = span{o,v}. The geometric algebras of IRP? and IRL! are
defined by
Gp.q = gen{IR™?} and G, = gen{R"'}.
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We now show how any element y € IRPT19%! can be represented by a
2 X 2 matrix over the module G, ;. To do so, we define the idempotents
Uy = %(1 + u) satisfying u% = u+, and note the additional defining alge-
braic relationships

Uy +u_ =1, uy —u_ =u, uyu_ =0=u_uy, cuy =u_o,

and
UE =€ = —€u, eu=e=—ue, ous =e, 20Uu_ =E€.

Since any y € IRP*1:9%1 can be expressed in the form y = z + ae + e for
a, B € IR, it follows by using these relationships that

y=1xuy +ae+PBe+zu_ =zuy +28uioc+au_o+zu_. (3.10)

The 2 x 2 matrix form of y follows directly from (3.10). We have

y=(1 0)U+<z Ei)(i) (3.11)

as can be easily verified by employing ordinary matrix multiplication of
non-commutative elements, and the algebraic relationships given above.
We define the matrix [y] of y to be the matrix

=(1 %)

By the isomorphism proved below, it follows that any element G € Gp11 g+1,
being a product and linear combination of vectors in IJRPT1:9+1 can be wri-
tten in the form

G=Auy + Buyo+C*u_o+ D*u_,
for A,B,C,D € G, 4, and where Z* = ¢Zo is the main involution in the

algebra Gy 4.
The matrix form of G is specified by

G=Au; +Buio+C*u_oc+D'u_=(1 o )u+(é g)( 1 )

=1 o) 5 ) ()

we calculate the product G1G3 as follows

ae=(1 o)e (3 5 ) (o) (& 5)(5)

For



3. Realizations of the Conformal Group 57

=g o )e(e T)m(E ) (0 )

0w (& B)(E R

which proves the isomorphism [G;G2] = [G1][G2]. Note in the steps above
that the idempotent u; commutes with the elements in the algebra G, ;.
This shows that the geometric algebra Gpi1441 = Gpq ® G1,1 can be
represented by 2 x 2 matrices over the geometric algebra G, 4, even through
the elements in the algebras G;; and G, , don’t commute. Whereas all
the rules of matrix multiplication remain valid over the relative algebra
Gp,q; it must be rememebered that multiplication in Gy 4 is generally non-
commutative.

We will show how the matrix form, defined above, can be used to define
the most general conformal transformation in IRP'? as a linear fractional
transformation of elements of the geometric algebra Gp 4. This beautiful
result is based on the isomorphism between Pingi144+1 and Conf(p,q),
established in the Section 3. Using the matrix form (3.11) of the conformal
representant z. given in (3.4), we get

12__ T '—Zl'z 1
wc:w—ﬁze—l-e:(l 0)u+(1 . ><0>

from which it follows that

[rc]=<91” "_‘f>:<”1”)(1 —z ).

The last equality on the right gives the factored spinor form of z. and is
very interesting because we can write any other spinor factorization in the

T ()0 = () )

-1
= ( "T[:{Iil > ( H -Hzx ),
where H is any invertible element in G, 4.

Each element R in the versor group Pin{p+1,g+1) defines an orthogonal
transformation ¢’ = Ry(R*)™! for y € RP*19t!, where R = vjvy ... v, is
a product of invertible vectors in JRP*19t1 and R* = (—1)"R is the main
involution of the element R. We will also need to define R' by reversing the
order of the products of vectors in R. Thus, RT = v,v,_1 ...vav;. When the
orthogonal transformation, defined by R, is applied to the conformal re-
presentant z. of the point € IRP9, it induces a conformal transformation
in IRPY9. Since Br = RR! = £1 is a scalar, we can write this induced
transformation in the form z, = agRx R, where the scalar ag = ag(z) #
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0 is chosen so that z/, € IRP*19+1 s the conformal representant of a co-
rresponding point z’ € IRP9, i.e., 2, -€ = 1.

Taking the matrix representation, we can express this transformation in
the relative space IRP? as =’ = g(z) in

al= (% ) = enlRindr) = ar () 7000

x —g(z)
, A B
Now suppose for R € Pin{p+ 1,q+ 1}, that [R] = c D)% that

R=(1 o0 )u+( é, g )( i):Au++Bu+a+C*u_a+D*u_,

from which it follows that

R' = u;D""+u,oB +u_oC*t +u_A"
= D*tuy + B*tuyio + (C*)*u_o + (A1) *u_

D*t B 1
o (85)(2)

This leads us to define the transpose-like operation

A B\' (Dt Bt
C D oAt )
Note that t is the operation of reversal in GPT19+1  as well as in the sub-

algebra GP94.
Taking advantage of the factored spinor form of z., we now calculate

@l = (7)1 =)
= (2 ) () = (8n )

_ Az + B
o Czx+D

) H7'H ( ag(D*t —2C*t) ar(B*T —zA*") )

We can now choose H = Cz + D to give the relationships

1

1
- D *t _ .oxt M = -
an (Cz+ DYD zC*"), or D xC an(Cz + D)

and the desired linear fractional form

' = g(z) = (Az + B)(Cz + D)%,
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of the conformal transformation z’' = g(z) in Gp, 4. The linear fraction form,
or Mobius transformation has been studied by many authors, [13, 11, 12],
8], [14],]2], and [15], to name only a few.

From the factored spinor form [z.] = ( Sf ) (1 —z ), we easily cal-
culate
dz z
[da:c]=<0 )(1 —x)—l—(l )(0 —dm),
and

[zedee] = (f)(1 —z)(g“”)(l —z)
($)ir o (;
(f)das(1 —z ). (3.12)

We will use this last relationship to verify that 2’ = g(z) is conformal.
Since [z!] = ar[R][z][R!], we find that

+

|dz] = dag[R][zc][R"] + ar[R][dz][R],

and
[z, dz] = o} Br[R][z.dz][R].

We can now easily calculate

otast) = oall ( § )do (1 =2 ) (R

=a§3,3R( éﬁig )dac( Dt —zCt Bt —zAl)

:a%ﬂR( f >(Cm+D)d:c( Dt —zCt ) (1-4)
A little more work, using (3.12), gives the desired relationship
dz’ = 04Br(Cx + D)dz(D' — 2C") = Br(D' — 2C")~'da(Cz + D).
Squaring this last identity gives (dz’)? = a%(dz)?, which shows that
1’ = g(z) is conformal.
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Chapter 4

Hyperbolic Geometry

Hongbo Li

4.1 Introduction

Hyperbolic geometry is an important branch of mathematics and physics.
For hyperbolic n-space, there are five important analytic models: the Poincaré
ball model, the Poinca
ré half-space model, the Klein ball model, the hemisphere model and the
hyperboloid model. The hyperboloid model is defined to be one branch H™
of the set

{z e R™!

x-x=-—1}.

Every model has its advantages and disadvantages. In hyperbolic geome-
try, some typical geometric entities are points, tangent directions, straight
lines (geodesics), planes, circles, spheres, the distance between two points,
and the angle between two intersecting lines. Lorentz transformations are
typical geometric transformations. Compared with other models, the hy-
perboloid model has the following features in representing these geometric
entities and transformations:

e The model is isotropic in that at every point of H™ the metric of the
tangent space is the same.

e A straight line AB is the intersection of H™ with the plane determined
by vectors A, B and the origin of R™'. When viewed from the origin,
it can be identified with a projective line in P™.

Similarly, an r-plane in H™ can be identified with a projective r-plane
in P* where 0 <r <n-—1.

These identifications enable us to study r-planes in the framework of
linear subspaces of R™!.
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e The tangent direction of a line [ at a point A is a vector orthogonal
to the vector A in the plane determined by ! and the origin of R™!.

The angle between two intersecting lines is the Euclidean angle bet-
ween their tangent directions at the intersection. This is the conformal
property of the model.

e Let A, B be two points, and let d(A, B) be their hyperbolic distance.
Then A - B = —coshd(A, B).

This reduces a geometric problem of distances to an algebraic problem
involving the inner product.

e A generalized circle is either a hyperbolic circle, or a horocycle, or a
hypercycle (equidistant curve). A generalized circle is the intersection
of H™ with an affine plane in R™1.

Similarly, a generalized r-sphere is the intersection of H™ with an
affine (r + 1)-plane.

This enables us to study generalized r-spheres in the framework of
affine (r + 1)-planes in R™1.

e Hyperbolic isometries are orthogonal transformations in R™! which
leave H™ invariant. In particular, they are all linear transformations.

e The model is closely related to the model of an n-sphere in R™*!.

These features make it natural to apply Clifford algebra in hyperbolic
geometry, just as Clifford algebra was applied to projective geometry (Heste-
nes and Ziegler, 1991) and spherical geometry (Hestenes, 1987). Some ap-
plications of Clifford algebra in hyperbolic 3-space can be found in (Iversen,
1992).

In this chapter, we present some of the results of our research on hyper-
bolic geometry with Clifford algebra. In the first section, we discuss our
work on hyperbolic plane geometry with Clifford algebra (Li, 1997). In the
second section we deal with hyperbolic conformal geometry with Clifford
algebra (Li, Hestenes and Rockwood, 1999¢c). In the third section we dis-
cuss a universal model for conformal geometries of Euclidean, spherical
and double-hyperbolic spaces (Li, Hestenes and Rockwood, 1999a, b, c).
We show that with Clifford algebra we can not only reformulate old results
with improvements and generalizations, but also discover new theorems.

4.2 Hyperbolic Plane Geometry with Clifford
Algebra

We are concerned here with generalized triangles and convex polygons.
The concept of a generalized triangle is a natural extension of the concept
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of a hyperbolic triangle. It naturally includes right-angled pentagons and
right-angled hexagons (Fenchel, 1989). This extension is possible because
algebraically these geometric objects have the same representation. Convex
polygons correspond to polygons in Euclidean geometry. Using the spinor
representation, we are able to extend the classical result on representing
the area of a triangle in terms of the lengths of its three sides (Greenberg,
1980), to a nice formula which represents the area of a convex n-polygon
in terms of the lengths of its sides.

4.2.1 Generalized triangles

Definition 4.1. A generalized point is either a point, or a point at infinity
(end), or an imaginary point (tangent direction). A point at infinity is a one-
dimensional null subspace of R™?; an imaginary point is a one-dimensional Eu-
clidean subspace of R™1.

Algebraically, a point at infinity can be represented by a null vector
(vector of zero square); an imaginary point can be represented by a unit
vector (vector of square one), see Figure 4.1.

FIGURE 4.1. Generalized points: A is a point, e is a point at infinity
and o is an imaginary point. ¢~ represents the straight line of H?
normal to a.

Definition 4.2. A generalized triangle is composed of three non-collinear
generalized points and the three lines connecting them, assuming that the lines
exist.

There are all together 16 different kinds of generalized triangles, as shown
in Figure 4.2 and Figure 4.3.
Below we assume that the dimension of the hyperbolic space is 2.



64 Hongbo Li

Corollary 4.1. Let A, B,C be three generalized points. Then they form a
generalized triangle if and only if AANBAC # 0, (A- B}(B-C)(C - A) # 0 and
the three blades A A B, B A C, A A C are all Minkowski.

We can easily recognize that (AA BAC)™ is the magnitude (Greenberg,
1980) of triangle ABC, when A, B,C are points. What is the geometric
meaning of (A - B)(B - C)(C - A)? We shall see that its sign characterizes
the convexity of generalized triangle ABC.

Definition 4.3. A generalized triangle is said to be convex if any two of its
three sides are on the same side of the third side.

VAN
1 o1
Raga

FIGURE 4.2. Convex generalized triangles.

9]

D\D %

Theorem 4.1. Let ABC be a generalized triangle. Then it is convex if and
only if (A- B)(B-C)(C- A) <0.

In Euclidean plane geometry, we have right-angled triangles. In hyper-
bolic plane geometry we have a similar concept.

Definition 4.4. A generalized triangle is said to be right-angled if at least
one of its vertices is a point and the inner angle at a vertex which is a point is
90°, see Figure 4.4.
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A A A

|

AN \
N L
o o =%

FIGURE 4.3. Non-convex generalized triangles.

| | L
B C B C B C
B B
c c c
FIGURE 4.4. Right-angled generalized triangles.

Proposition 4.1. Let ABC be a generalized triangle. Then it is right-angled
if and only if (AAB)-(BAC)((BAC)- (CAA)((CAA)-(AAB))=0.

The sign of ((AAB)-(BAC)H{((BAC)-(CAA)(CAA)-(ANB))
characterizes another geometric invariant described below.

Definition 4.5. A generalized triangle is said to be acute-angled if it is convex
and its inner angle at every vertex which is a point is acute.

Theorem 4.2. Let ABC be a generalized triangle. Then it is acute-angled if
and only if (AAB) - (BAC))((BAC)-(CANA)({(CAA)-(AAB)) <0.
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4.2.2 The area and perimeter of a convex n-polygon

For a convex n-polygon of vertices A1,..., Ay, let K4,...4, be its area and
La,...a, beits perimeter. When n = 3 a convex 3-polygon is just a triangle.

A classical result on representing the area of a triangle in terms of the
lengths of its three sides is the following (Greenberg, 1980)

Proposition 4.2. Let ABC be a triangle. Then

COSKABC _ 1-A-B-B-C-C-A
2 - |A+ B||B+C||C+ A’
sinKABC _ |AABAC]|
2 A+ BB+ CIC+ A

The dual of this result represents the perimeter of a triangle in terms of
its three inner angles (Fenchel, 1989)

Proposition 4.3. For a triangle ABC, let
(AAB)™ (BAC)™ (CAA”~

BETAAB T BAC] BT ICAA
Then
hLABC _ olta-aztaz-aztas-a
la + az||az + as||as + a1| ’
. Lagc |a1 A a2 A as)
sinh 2 = “la1 + asllas + asllas + a1|

We explain (2.1) and (2.2) in terms of hyperbolic trigonometry. From

|[A+B?2 = —(A+B)-(A+B) = 2(1-A-B)
= 2(1+4coshd(4,B)) = 4cosh2@,
we get
d(4, B)

|A+ B| =2cosh —
On the other hand, |A A B A C] is the non-negative square root of
|JAANBAC|?=1—(A-B)?2—(B-C)>*-(C-A)?*-2(A-B)(B-C)(C-A).

The vectors aj,as,as are unit vectors normal to oriented lines A A B,
B AC, C A A respectively. We have

a; -ag = —cos B,

where B denotes the inner angle of the triangle at vertex B. So

B
la1 + az| = 2sin5,
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and |a; A ag A ag| is the non-negative square root of

|a1 Aag A a3|2 = -1+ (a1 . a2)2 + (az . a3)2 + (a3 . a1)2

— 2(a; -ag){az - a3) (as - a1).

(2.1) and (2.2) can be generalized to the case of convex n-polygons in H?2,
by means of spinor representations of Lorentz transformations (Li, 1997c).
For example for n = 4,

Ka a,4344
COS — 5
—9 1—2,;(]» Ai-Aj+(A1-A2) (A3-As)—(A1-A3z) (A2 - Ag)+(A1-Ay) (Az-A3)

[As+Az|| A2+ A3]|As+ Ayl Ag+Ad] ’

. K
sin ,‘111422,43,4g

,(A] /\A2AA3)N+(A1/\A2/\A4)N+(A1 /\A3/\A4)N+(A2/\A3/\A4)~I
[A1+A2[[A2+ As[[As+Aqf[As+Ad| ’

L
COSh __/leéﬂ

1+3, ¢ airaj+(a1-a2) (a3-aa)—(a1-a3) (a2-as)+(a1-a4) (az-as)

la1+azllaz+asllas+asl|as+ai] ?

=2

. L
Slnh _Alﬂ%“‘i"_&

[(@1AazAa3)™ +(a1AazAaq)™ +{asAazAag)™ +(azAazAas)™ |

|a1+az|laz+asz]laz+asllas+ail

4.3 Hyperbolic Conformal Geometry with Clifford
Algebra

For hyperbolic conformal geometry, we need the double-hyperbolic space,
which is a double covering of the hyperbolic space. In the Minkowski space
R™!, the set

D" ={zecR™ |z -z=-1}

is called an n-dimensional double-hyperbolic space. It has two connected
components, H™ and —H".

In Euclidean conformal geometry, spheres and planes are conformally
invariant geometric objects. Similarly, in hyperbolic conformal geometry,
generalized spheres, and planes and spheres at infinity are conformally in-
variant objects which are called total spheres. A Clifford algebraic model
for the double-hyperbolic n-space, called the homogeneous model, is intro-
duced to simplify the algebraic representations and manipulations of total
spheres and hyperbolic conformal transformations. The model in coordi-
nate form can be found in Cecil (1992).
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Bunches of total spheres, which extend and generalize the concept of
pencils of spheres and hyperplanes in Euclidean geometry, are classified
and studied within the homogeneous model. The model also makes possi-
ble the spinor representation of hyperbolic conformal transformations. A
typical conformal transformation, called a tidal transformation, is given as
an example of the spinor approach.

4.3.1 Double-hyperbolic space

The following concepts will be needed: oriented generalized point, plane,
sphere at infinity, generalized sphere, total sphere and double-sphere.

Definition 4.6. An oriented generalized point in D" is either a point, or an
oriented point at infinity, or an oriented imaginary point. A point is an element
in D™. An oriented point at infinity is a one-dimensional null half-space of R™*.
An oriented imaginary point is a one-dimensional Euclidean half-space of R™*.

Definition 4.7. An r-plane of D" is the intersection of D™ with an (r + 1)-
space of R™1.

In G, 1, an r-plane is represented by an (r + 1)-blade corresponding to
the (r + 1)-space of R™!. When r = 0, a 0-plane is a pair of antipodal
points; when r = n — 1, an (n — 1)-plane is called a hyperplane.

Definition 4.8. The sphere at infinity of D" is a set of points at infinity. An
r-sphere at infinity in D" is the intersection of the sphere at infinity with an
(r + 1)-plane of D™.

Any r-sphere at infinity is the sphere at infinity on an (r 4+ 1)-plane in
D™. When r = 0, a O-sphere at infinity is a pair of points at infinity.

Definition 4.9. A generalized sphere is either a sphere, or a horosphere, or
a hypersphere. It is determined by a pair (c,p), where ¢ is a vector in RrR™?
representing an oriented generalized point, called the center of the generalized
sphere, and p > 0 is called the generalized radius.

1. When c is a point, the set {p € D"|p-¢c = —(1 + p)} is the sphere with
center ¢ and generalized radius p.

2. When c¢ is an oriented point at infinity, the set {p € D"|p- ¢ = —p} is the
horosphere with center ¢ and generalized radius p.

3. When c is an oriented imaginary point, the set {p € D"|p-c = —p} is the
hypersphere with center ¢ and generalized radius p. The hyperplane of D™
represented by ¢ is called the axis of the hypersphere.



4. Hyperbolic Geometry 69

Definition 4.10. A generalized r-sphere is a generalized sphere in an
(r+2)-plane, by considering the (r+2)-plane to be an (r+1)-dimensional double-
hyperbolic space.

When r = 0, a O-sphere is a pair of points on the same branch, a
0-horosphere is a point and a point at infinity, and a O-hypersphere is a
pair of non-antipodal points on different branches.

Definition 4.11. A total sphere in D" refers to a generalized sphere, or a
hyperplane, or the sphere at infinity. A total r-sphere is an r-dimensional gene-
ralized sphere, plane, or sphere at infinity.

Definition 4.12. A double-sphere of D" is a hypersphere together with its re-
flection with respect to the axis. An r-double-sphere is an r-hypersphere together
with its reflection with respect to the axis, see Figure 4.5.

sphere at infinity

FIGURE 4.5. Total spheres and a doublesphere.

4.3.2 The homogeneous model of a
double-hyperbolic space

The set D" is in the Minkowski space R™!. We now embed R™! into
R 11 and embed D™ into the null cone of R™11 to obtain the homoge-
neous model of the double-hyperbolic space. This model makes possible a
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useful algebraic representation of total spheres and conformal transforma-
tions.

Let ag be a fixed unit vector in R™*11. The space represented by ay is
a Minkowski (n + 1)-space which we denote by R™!. The mapping

x> ¢ — ag,for x € D", (3.3)

maps the set D™ in a one-to-one manner onto the set N7t = {x € R**1.!|z.
z =0,z a9 = —1}. Conversely, from the orthogonal decomposition

T = P, (z) + Pag‘ (z) (3.4)
of a vector z € N}, we get a unique point P, (z) € D™. (3.4) is called the
projective split of  with respect to ag. The sphere at infinity of D™ is the
set

{reR"™Mz. .2 =0,z ay =0} (3.5)

Definition 4.13. The set N, together with the decomposition (3.4), defines
the homogeneous model of the double-hyperbolic space D™.

Proposition 4.4. Let p,q be two points (null vectors) on the same branch
of D™ in the homogeneous model. Let d(p, g) be the hyperbolic distance between
the two points. Then

p-g¢=1-coshd(p,q).

Corollary 4.2. A point p is on the sphere with center ¢ and generalized radius
p,if and only if p-c = —p.

In the homogeneous model, the oriented points at infinity of D™ are
represented by the null vectors of ag’; the oriented imaginary points of D™
are represented by the vectors of aj” with positive signature.

Corollary 4.3. A point p is on the horosphere (or hypersphere) with center ¢
and generalized radius p, when p is understood to be the null vector representing
the point, if and only if p- ¢ = —p.

Comparing the above two corollaries with the definition (4.9), we can see
clearly the advantage of the unified algebraic representation of thegenera-
lized spheres in the homogeneous model.

We have the following fundamental theorem for the homogeneous model.

Theorem 4.3. Let B,_1,; be a Minkowski r-blade in Gnt1,1, 2 < r < n+1.
Then B;-1,1 represents a total (r — 2)-sphere. We have the following cases.

1. If ap - Br-1,1 = 0, then B,_1,; represents an (r — 2)-sphere at infinity.
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2. If ag - Br_1,1 is Euclidean, then B,_;  represents an (r — 2)-sphere.
3. If ap - By—1,1 is degenerate, then B,_; 1 represents an (r — 2)-horosphere.

4. If ap - Br_1,1 is Minkowski, but ap A By—1,1 # 0, then B,._; ; represents an
(r — 2)-hypersphere.

5. If ap A Br—1,; =0, then B,_; represents an (r — 2)-plane.
The dual form of the above theorem forr =n +1 is

Theorem 4.4. Let s be a vector of positive square in R**%!. Then s™ repre-
sents a total sphere. We have the following cases.

1. If apAs = 0, then s™ represents the sphere at infinity. The sphere at infinity
is represented by ag .

2. If ag A s is Minkowski, then s™ represents a sphere. The sphere with center
c and generalized radius p is represented by (c — pao)”™, where ¢ is the null
vector representing the center.

3. If ao A s is degenerate, then s™ represents a horosphere. The horosphere
with center ¢ and generalized radius p is represented by (¢ — pag)™.

4. If ag A s is Euclidean, but ag - s # 0, then s™ represents a hypersphere.
The hypersphere with center ¢ and generalized radius p is represented by

(c— pao)™.

5. If ap - s = 0, then s™ represents a hyperplane. A hyperplane with normal
direction c is represented by c¢™.

4.8.3 Bunches of total spheres

Various collections of total spheres are important geometric objects in hy-
perbolic conformal geometry.

Definition 4.14. A bunch of total spheres is determined by B, ..., B, is the
set of total spheres given by A1 By + ...+ A-B;, where the X’s are scalars. When
the meet By V-V B, # 0, the integer r — 1 is called the dimension of the bunch.
A pencil is a one-dimensional bunch.

The dimension of a bunch in D" is between 1 and n — 1. When
ByVv---V B, #0, we can use By V ---V B, to represent the bunch.

The concept and classification of bunches are fundamental in the study
of hyperbolic conformal geometry, because total spheres are invariants of
conformal transformations.
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Theorem 4.5. [Classification of bunches] Let By, ..., B be total spheres. Let
An—rg2=B1V---VB. #0.

1. When ag - An—ry2 = 0, the bunch is called a concentric bunch. It is com-
posed of the sphere at infinity and the generalized spheres whose centers
are in the subspace (ag A Ap—ry2)~ of R™!.

For example when r = 2, if A, is Euclidean, it represents the pencil of
spheres centered at & (ao A A,)~/|An[; if A, is null, it represents the pencil
of horospheres centered at +(ag A An)™; if A, is Minkowski, it represents
the pencil of hyperspheres centered at +(ag A An)™, see Figure 4.6.

(AERN

concentric spheres concentric horospheres concentric hyperspheres

FIGURE 4.6. Concentric pencil on one branch of D" (r = 2).

2. When ao A An_r4+2 = 0, the bunch is called a hyperplane bunch, since it is
composed of hyperplanes only. There are three cases (see Figure 4.7):

e When A,_r42 is Euclidean, the bunch is composed of hyperplanes
perpendicular to the (r — 1)-plane ag A Ay_,4o.
For example, when r = 2, hyperplanes in the bunch are ultra-parallel
to each other.

e When A,_.;2 is degenerate, the bunch is composed of hyperplanes
whose representations in the homogeneous model pass through the
subspace An—_r42 of R™H11
For example when r = 2, hyperplanes in the bunch are parallel to
each other.

e When An_r4+2 is Minkowski, the bunch is composed of hyperplanes
passing through the (n — 7)-plane A, _ry2.
For example, when r = 2, hyperplanes in the bunch have a common
(n — 2)-plane.

3. When A,_,4+2 is Minkowski, the bunch is called a concurrent bunch, since
every total sphere in the bunch includes the generalized (n — r)-sphere
An_ri2. There are three cases (see Figure 4.8):
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S
/ kj/

concurrent parallel ultra-parallel

FIGURE 4.7. Hyperplane pencil (r = 2).

e When ao - An—ry7 is Euclidean, An—,12 represents an (n — r)-sphere.

e When ag - An—r+2 is degenerate, An—ry2 represents an (n — r)-horo-
sphere.

e When ao - An—r+2 is Minkowski, A, _r+2 represents an (n—r)-hyper-
sphere, and the bunch is composed only of hyperspheres. In this case,
ao A (ao - An_r42) represents an (n — r)-plane, which is the axis of the
(n — r)-hypersphere A,,_,2 and is the intersection of all axes of the
hyperspheres in the bunch.

B

0-hypersphere concurrenc;
0-sphere concurrency 0-horosphere concurrency ypersp y

on one branch of D"

FIGURE 4.8. Concurrent pencil (r = 2).

4. When A,,_ .42 is degenerate, the bunch is called a tangent bunch. Any two
non-intersecting total spheres in the bunch are tangent to each other. The
tangency occurs at a point or a point at infinity, which corresponds to the
unique one-dimensional null subspace in the space An_r4+2. There are two
cases (see Figure 4.9):

e When ap A An_r42 is degenerate, the tangency occurs at a point at
infinity.

e When ag A A,_r4+2 is Minkowski, the tangency occurs at a point.
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tangency at a point tangency at a point at infinity

FIGURE 4.9. Tangent pencil (r = 2).

5. When A,_,+2 is Euclidean, the bunch is called a Poncelet bunch. Ay 2
represents a generalized (r — 2)-sphere, called a Poncelet sphere. There are
three cases (see Figure 4.10):

e When ag A An—r42 is Minkowski, A;_,,, is an (r — 2)-sphere.
e When ag A An_r42 is degenerate, Ay .o is an (r — 2)-horosphere.

e When ag A An_r42 is Euclidean, Ay_,,, is an (r — 2)-hypersphere.

'
7NN

TN S

Poncelet 0-hypersphere
Poncelet 0-sphere Poncelet 0-horosphere n
on one branch of D

FIGURE 4.10. Poncelet pencil (r = 2).

4.8.4  Conformal transformations

The following theorem is fundamental in the study of conformal transfor-
mations in the homogeneous model.

Theorem 4.6. Any conformal transformation in D™ can be realized in the
homogeneous model of D™ through the conjugation of a versor in Gny1,1, and
vice versa. Two versors realize the same conformal transformation if and only
they are the same up to a nonzero scalar or pseudoscalar factor.
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We now use the versor representation to study a conformal transforma-
tion which is similar to dilation in Euclidean space. The tidal transfor-
mation is defined by the versor 1 + Aage, where A € R, ¢ € R*t! and
C-ap = 0.

This transformation leaves the concentric pencil (agAc)™ invariant. When
c is a point or an oriented point at infinity, the set {¢, —c} is invariant; when
c is an oriented imaginary point, the hyperplane ¢~ is not invariant, but
its sphere at infinity is.

Assume that p is a fixed point in D", and is transformed to a point or
point at infinity ¢. It can be proved that the parameter )\ is a function of
g on line ¢ A p. Below we give some of the properties of this function.

1. When ¢ is a point (see Figure 4.11),

(a) and ¢ is any point or point at infinity ¢ on the line ¢ A p, then

1
for C.(q) = —~c 1qc, AM(—C. = —.
(2) ge, M—=Ce(a)) X3
. . . B (¢—p)?
(b) and g is any point on line cAp, then A(q) =

(g—c)2—(p-0o)?

(c) then \(p — eTd(Pc)e) = e+d(p.c),

FIGURE 4.11. Tidal transformation when c is a point.

2. When c is an oriented point at infinity (see Figures 4.12 and 4.13),

1.1 1
(a) then for any point ¢ on the line ¢ A p, AM(q) = 5(— -—).

gc p-c

(b) and if ¢ # cis a point at infinity on line cAp, then A(q) = — o

3. When c is an oriented imaginary point (see Figures 4.14, 4.15, and
Figure 4.16),



76 Hongbo Li

FIGURE 4.12. A = XA(q) for Figure 4.11. The arrows indicate the in-
creasing direction.

FIGURE 4.13. Tidal transformation when c is an oriented point at
infinity.

2 p-c

FIGURE 4.14. A = A(g) for Figure 4.13.
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(a) and ¢ any point or point at infinity on the line ¢ A p, then

A=Culg) = —;(1(1—)-

. . _ (¢-p)°
(b) and ¢ any point on the line cAp, then A(q) =

(g—c)?—(p—0?*
(c) and p- ¢ < 0, then for d(p,c) the hyperbolic distance from p to

the intersection ¢ of the line ¢ Ap with the hyperplane ¢™ on the
branch of D" containing p, we have

MCu(p)) = —sinhd(p,c), A(t) = — tanh 2229

/\(p + ed(P,C)C) = —ed(p7c)’ A(p + e_d(P:C)c) = e-d(p,c).

(d) and p- ¢ = 0 and q is on the branch of D" containing p, then

d
A(g) = —etanh LDQ’—@, where ¢ is the sign of ¢ - c.

FIGURE 4.15. Tidal transformation when c is an oriented imaginary
point.

4.4 A Universal Model for the Conformal
Geometries of the Euclidean, Spherical,
and Double-Hyperbolic Spaces

Here we introduce the homogeneous models for Euclidean and spherical
spaces, and talk about the connections among these three homogeneous
models. Hyperbolic, Euclidean and spherical geometries can be unified in
such a way that we need only one Minkowski space, where null vectors
represent points or points at infinity in any of the three geometric spaces,
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tanh i(%ﬂ

1
sinh d(p,c)

FIGURE 4.16. A\ = \(g) for Figure 4.15. The arrows indicate its increase
direction.

and where Minkowski subspaces represent spheres and planes. Further-
more, any theorem in one of the three geometries, when represented in the
homogeneous model, is also a theorem in each of the other two geometries.

4.4.1 The homogeneous model of the Euclidean space

Let po be a fixed point in D™. Then in R™*1!, the blade (pg A ap)™ repre-
sents a Euclidean n-space which we denote by R™. Let

—a
€ = po + Ao, e02@"‘2——0- (4.6)
Both e and ey are null vectors and e-eg = —1.
The mapping
m»—>m+eo+%e,form€72", (4.7)

maps R" in a one-to-one manner onto the set
NP ={z e R"*1lz .2 =0,z -e = —1}. Conversely, from the orthogonal
decomposition

T = Ppu/\au (.’1:) + P(pu/\ag)~ (.7:) (48)

of the vector z € N7, we get the unique point Pip,aae)~(Z) € R". Equation
(4.8) is the conformal split of x with respect to pg A ag = eg Ae.

Definition 4.15. The set N, together with the decomposition (4.8), defines
the homogeneous model of the Euclidean space R™.

In the homogeneous model, e represents a point at infinity which is the
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one-point compactification of the Euclidean space. The point eg represents
the zero vector in R"”, and is called the origin.

Proposition 4.5. Let u,v be two points in R™ represented by null vectors in
the homogeneous model. Let d(u,v) be the Euclidean distance between the two
points. Then

d?(u,v)

—s

Theorem 4.7. Let Br_1,1 be a Minkowski r-blade in Gn41,1, 2 <7 <n+ 1.
Then B,_i,1 represents an (r — 2)-dimensional sphere or plane. If e A B,_1,; =0,
B, _;,, represents an (r — 2)-plane, otherwise it represents an (r — 2)-sphere.

When r = n + 1, the dual form of the above theorem is

Theorem 4.8. Let s be a vector of positive square in R™*%! . Then s~
represents a sphere or a hyperplane.

1. If e- s = 0, then s~ represents a hyperplane. The hyperplane normal to
unit vector n and has the signed distance § from the origin in the direction
of n, and is represented by (n + de)™.

2. If e- s # 0, then s~ represents a sphere. The sphere with center ¢ and
radius p is represented by (c — ep?/2)™.

The stereographic projection Ppgr of D", with pole at —pg, to R™ maps
D™ together with its sphere at infinity to R™ together with its point at
infinity. It changes the hyperboloid model H™ into the Poincaré ball model.
In the homogeneous models of D™ and R™, Ppg is just a rescaling of null
vectors, taking —x/(z - ag) into —z/(z - e).

Note that we could have chosen e and eg such that eg - e = X for any
fixed real number, and define V! by the condition that z-e = A. It is only
a matter of convention that we choose A = —1.

4.4.2  The homogeneous model of the spherical space

Let pg be a fixed point in D". Then pj represents a Euclidean
(n+1)-space which we denote by R™*1. The unit sphere of the space R"*!
is the spherical n-space S™.
The mapping
z — T+ pg, for x € ™, (4.9)

maps the set S™ in a one-to-one manner onto the set N} = {z € R"*11|z-
x =0,z -pg = —1}. Conversely, from the orthogonal decomposition

z = Py, (z) + Ppy () (4.10)
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of the vector € NV}, we get the unique point Py (z) € S™. Equations
(4.10) gives the projective split of  with respect to po.

Definition 4.16. The set A}, together with the decomposition (4.10), defines
the homogeneous model of the spherical space S™.

Proposition 4.6. Let a,b be two points in S™ represented by null vectors in
the homogeneous model. Let d(a,b) be the spherical distance between the two
points. Then

a-b=cosd(a,b) ~- 1.

Theorem 4.9. Let B,_1,1 be a Minkowski r-blade in Gnt1,1,2 <r <n+1.
Then Br_1,; represents an (r —2)-dimensional sphere or plane. If poABr_1,1 =0,
B, _1,1 represents an (r — 2)-plane, otherwise it represents an (r — 2)-sphere.

When r = n + 1, the dual form of the above theorem is

Theorem 4.10. Let s be a vector of positive square in R**"! | Then s~
represents a sphere or hyperplane.

1. If po - s = 0, then s~ represents a hyperplane. The hyperplane normal to
the vector c is represented by ¢™.

2. If po - s # 0, then s~ represents a sphere. The sphere with center ¢ and
radius p is represented by (¢ + po cos p)™.

The stereographic projection Pggr of 8™, with the pole ag, to R™ maps
S™ to R™ together with its point at infinity. Let

e=po+ag, e = I%ﬂ~ (4.11)
In the homogeneous models of §™ and R™, stereographic projection is just
a rescaling of null vectors taking —z/(z - po) to —z/(x - €).

The composition of the inverse of the mapping Psg with the mapping
Ppg is denoted by Ppg. It changes the hyperboloid model of H™ into the
hemisphere model. In the homogeneous model this is just a rescaling of null
vectors.

Let Pip denote the stereographic projection of 8™, with the pole ao,
to R™ where by is a point in 8™ normal to ag. This projection changes
the hemisphere model of H" into the Poincaré half-space model. In the
homogeneous model, this is just another rescaling of null vectors.

From the above discussion, we see that the hyperboloid, Poincaré ball,
Poincaré half-space and hemisphere models are all unified in the homoge-
neous model. Changing from one model to another is just a rescaling of
null vectors.
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The derivation of the Poincaré ball model of H™ from the hyperboloid
model, is realized by the diagram

inverse of P, rescaling  Ppgnag)™

HY — - — — — — N, — = — — NJ' —— — Poincaré ball model.

If we go from N, ay 10 R™ by Pponae)~ directly, we get the Klein ball model:

inverse of P, Plpgnag)~

HY -~ ———— — Ng. —— — Klein ball model.

Since N(Z) is not a homogeneous model of R™, the Klein ball model fails to
be conformal.

4.4.8 A universal model for three geometries

As was mentioned before, there are five important analytic models for hy-
perbolic n-space. The relations between these models (with the exception
of the Klein ball model), together with Euclidean and spherical n-spaces,
are realized by stereographic projections. Since the three geometric spaces
correspond to the same null cone of R™*1:! and the stereographic projec-
tions are just rescalings of null vectors, the three geometric spaces, together
with four of the five models of hyperbolic geometry, can be unified in one
Minkowski space, where null vectors represent points or points at infinity,
and where Minkowski subspaces represent spheres and planes in any of the
three geometries.

If a theorem in one of the three geometries is represented in the homo-
geneous model, it will be just as valid in all the three other geometries,
because the three geometries are just different geometric interpretations of
the same null vectors and the same Minkowski subspaces. Thus, a single
theorem in one geometry generates many “new” theorems in the other geo-
metries. We will see below that the homogeneous model also gives many
new interpretations of a given theorem in the same geometry.

We illustrate this with Simson’s Theorem in plane geometry (see Figure
4.17).

Theorem 4.11. [Simson’s Theorem] Let ABC be a triangle, D be a point on
the circumscribed circle of the triangle. Draw perpendicular lines from D to the
three sides AB, BC, C' A of triangle ABC. Let C1, A1, B; be intersections of the
perpendicular lines with the corresponding sides. Then A1, B1,C; are collinear.

When A, B,C, D, A;, By, C; are understood to be null vectors represen-
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FIGURE 4.17. Simson’s Theorem.

ting points in the plane, the hypothesis can be expressed as

AANBANCAD=0 A, B,C, D are on the same circle
eNAANBAC#0 ABC is a triangle

eNA ABANC=0 Ay is on line BC
(eADAA))-(eABAC)=0 Lines DA; and BC are perpendicular
eNANBIANC =0 Bj is on line CA
(eADAB;)-(eACANA)=0 Lines DB; and CA are perpendicular
eNAANBAC; =0 C1 is on line AB

(e ADACY)-(e NAAB)=0 Lines DC; and AB are perpendicular
The conclusion can be expressed as
eNAIAByANC; =0.

Both the hypothesis and the conclusion are invariant under the rescaling
of null vectors, so this theorem is valid for all three geometries, and is
free of the requirement that A, B,C, D, A;, B;,C; represent points and
e represents the point at infinity of R™. Various “new” theorems can be
produced simply by interpreting the algebraic equalities and inequalities in
the hypothesis and conclusion of the theorem differently.

For example, let us interchange the roles played by D and e in Euclidean
geometry. The new constraints become

eNAANBAC=0 A, B, C are collinear
AANBACAD#0 A, B,C, D are neither collinear

nor on the same circle
AiANBACAD=0 Ay, B,C, D are on the same circle
(eADANA)) - (DABAC)=0 line DAy, circle DBC are perpendicular
AANBIANCAD=0 A, B1,C, D are on the same circle
(e ADAB)- (DACAA)=0 line DBy, circle DCA are perpendicular
ANBACIAD=0 A, B,Cy, D are on the same circle

(eADANCL)- (DANAAB)=0 line DCy, circle DAB are perpendicular
The conclusion becomes

AANBiANCTAD=0.



4. Hyperbolic Geometry 83

Using the facts that a line is “perpendicular” to a circle if and only if
it passes through the center of the circle, and that any circular angle on
a diameter is a right angle, we can restate the above “new” theorem as
follows:

Theorem 4.12. Let DAB be a triangle, C be a point on line AB (see Figure
4.18). Let A1 B be perpendicular to DB, A;C be perpendicular to CD, and AB
be perpendicular to AD. Let C; be the intersection of lines AB1, and A1 B. Then
D, A,, B1,C, are on the same circle.

B1 A Ci

FIGURE 4.18. Theorem 4.12.

We can get another theorem by interchanging the roles of A, e. The new
constraints become

eANBACAD=0 B,C, D are collinear
eNAANBAC#0 A, B, C is a triangle

ANAIANBAC =0 A, A, B, C are collinear

(AANDANA))- (ANBAC)=0 circles ADA;, ABC are perpendicular
eNANBINC =0 A, By, C are collinear
(AADAB;p)-(eANCANA)=0 line CA, circle ADB; are perpendicular
eNAABAC; =0 A, B,y are collinear

(AANDACy)-(eAAAB)=0 line AB, circle ADC; are perpendicular
For these constraints the conclusion becomes
ANALANBIACL =0,

Using the fact that two circles are “perpendicular” if and only if the
tangent lines to either one of circles at the points of intersection meet at
the center of the other circle, we can restate the above “new” theorem as
follows:

Theorem 4.13. Let ABC be a triangle, D be a point on line BC (see Figure
4.19). Let EF be the perpendicular bisector of line segment AD, which intersects
lines AB and AC at points F and F respectively. Let C1, B1 be the symmetric
points of A with respect to the points E, F respectively. Let AG be the tangent
line of the circle ABC at A, which intersects EF at G. Let A1G be the other
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tangent line of circle ABC passing through G, and A; the point of tangency.
Then A, A1, B1,C: are on the same circle.

FIGURE 4.19. Theorem 4.13.

There are many new corresponding theorems in spherical geometry as
well. We consider only one of them here. Let e = —D. The “new” theorem
is the following:

Theorem 4.14. Let A, B,C, D be points on the same circle in the sphere
(see Figure 4.20). Let Ay, B1,C1 be the symmetric points of the point —D with
respect to the centers of circles (~D)BC, (—D)CA, (—D)AB respectively. Then
—D, Ay, B1,C} are on the same circle.

FIGURE 4.20. Theorem 4.14.

There are also various theorems in hyperbolic geometry that are equi-
valent to Simson’s theorem. We present one of them here. Let A, B,C, D
be points on the same branch of D?, e = —D. In the hyperbolic plane, a
generalized sphere is usually called a generalized circle, and a hypersphere
is usually called a hypercycle.
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Theorem 4.15. Let A, B,C,D be points in the hyperbolic plane H2, and
let them be on the same generalized circle. Let La,Lp, Lc be the axes of the
hypercycles (—=D)BC, (~D)CA, (—D)AB respectively. Let A;, Bi, C1 be the
symmetric points of D with respect to L4, Lg, Lc respectively. Then the points
—D, A1, By, are on the same hypercycle.

4.5 Conclusion

Clifford algebra appears to play an important role in the study of hyperbolic
geometry. It not only simplifies represention and computation, but also
contributes to discovering and proving new theorems.
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Chapter 5

Geometric Reasoning With
Geometric Algebra

Dongming Wang

5.1 Introduction

Geometric (Clifford) algebra was motivated by geometric considerations
and provides a comprehensive algebraic formalism for the expression of
geometric ideas [11]. Recent research has shown that this formalism may
be effectively used in algebraic approaches for automated geometric reason-
ing [7, 12, 14, 20, 24]. Starting with an introduction to Clifford algebra for
n-dimensional Euclidean geometry, this chapter is mainly concerned with
the automatic proving of theorems in geometry and identities in Clifford
algebra. We explain how to express geometric concepts and relations and
how to formulate geometric problems in the language of Clifford algebra.
Several examples are given to illustrate a simple mechanism for deriving
Clifford algebraic representations of constructed points, or other geometric
objects, and how the representations may be used for proving theorems au-
tomatically. With explicit representations of geometric objects and simple
substitutions, proving a theorem is reduced finally to verifying whether a
Clifford algebraic expression is equal to 0. The latter is accomplished in
our case by the techniques of term-rewriting for any fixed n.

We provide a short review of several coordinate-free approaches for auto-
mated theorem proving in geometry, including the work of White, Richter-
Gebert, and Crapo at the level of bracket algebra [22, 17, 4], Mourrain’s
technique of deriving rewrite rules in Grassmann-Cayley algebra [15, 16],
Li and Cheng’s general approach of combining Clifford algebraic triangu-
larization and reduction with Wu’s coordinate-based method [14, 12], our
study on proving theorems of constructive type using Clifford algebra and
term-rewriting [20, 7, 1], and Havel’s work [10] with Gibbs’ vector algebra.

The above-mentioned approaches have been successful in proving a num-
ber of non-trivial geometric theorems. Clifford algebra approaches have the
advantage of performing symbolic computations directly with geometric
objects, so geometric meanings of the involved algebraic expressions may
be easily interpreted. Geometric interpretation of bracket polynomials is
possible by means of the Cayley factorization [22], but it is much more
difficult to find the geometric interpretations of polynomials using coordi-
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nates. On the other hand, coordinate-based methods such as Wu’s [23] are
computationally more powerful and complete. To evaluate expressions in
Clifford algebra, one cannot avoid the confluence problem and thus coor-
dinates or pseudo-coordinates [1] may still have to be used. Therefore,
coordinate-free techniques, though meriting attention for their geometric
aspect, are unlikely to replace coordinate-based approaches for geometric
problem solving.

The rewrite system that we have developed is independent of geometry
and can be used or extended to prove all identities involving a definite
number of (multi)vectors in any Clifford algebra of fixed dimension. We
would also like to prove identities which involve an arbitrary number of
(multi)vectors in a Clifford algebra of arbitrary dimension. By arbitrary we
mean, for example, the outer product of r vectors and the Clifford algebra
over an n-dimensional vector space, where r» and n are arbitrary. We shall
call such identities indefinite identities. This chapter initiates our investi-
gation on proving indefinite identities in Clifford algebra automatically. We
report an experiment in Maple V, which demonstrates the feasibility and
effectiveness of proving indefinite identities on a computer. The program
the author has written is based on the induction principle with heuristic
simplification and was able to produce machine proofs for several non-
trivial examples. The second part of this chapter is devoted to describing
this work.

5.2 Clifford Algebra for Euclidean Geometry

Consider an n-dimensional Euclidean geometry E™ over the field R of real
numbers. By taking a point O in E™ as the zero vector 0, any other point
P in E™ may be represented by the vector P from O to P. We shall also
call the vector P a point and make no distinction between P and P unless
necessary.

For any two points P and @, the line P connecting P and @ may be
represented by the vector Q — P. In this way, PQ and ) — P represent the
same oriented line.

Let a and b be any two vectors. The geometric meaning of a + b and
a — b is clear as in vector algebra. The outer product a A b is a simple
bivector, which represents the oriented parallelogram spanned by a and b.
The outer product is anti-commutative: aAb = —b Aa. Similarly, the outer
product

r

/\ai:al/\--'/\ar
i=1

of r vectors is a simple r-vector representing the r-dimensional oriented
simplex spanned by a;,...,a, for 3 < r < n. For any scalar A and simple
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r-vector A,
ANA=AAX=)A

An r-vector is a linear combination of simple r-vectors (with coefficients in
R) for 0 < r < n. The outer product of an r-vector A and an s-vector B

AAB = (~1)""BAA

is an (r + s)-vector if r + s < n, and 0 otherwise.

A maultivector is a linear combination of finitely many vectors, bivec-
tors, ..., n-vectors, with coefficients in R. Thus any multivector v may be
written in the form

v=2 (Vs

i=0
where (v); is an i-vector, called the i-vector part of v. The multivector v is

said to be homogeneous of grade r if it has only the r-vector part for some
0 < r < n. The magnitude of v is defined by

n
vl = (ol + D VW) - (V)al-
i=1
The inner product of two vectors a and b is a scalar:

a-b = |a||b|cos8,

where 6 denotes the angle formed by a and b. The inner product can be
extended to any simple r-vector A and s-vector B as follows:

0o _ ifr=0,
(A-B)Ab— (-1)(A-b)B ifl=r<s,

AB:=1 A (a-B) f1<r<s, 2D
(-1)("=DsB. A ifr>s,

where a and b are vectors, A is a simple (r — 1)-vector such that AAa = A
for r > 1, and B is a simple (s — 1)-vector such that BA b = B for s > 1.
This recursive definition will be applied extensively in the inductive proof
of indefinite identities (see Sections 5.4.1 and 5.4.2).

The geometric product Av of a simple r-vector A and a multivector v is
defined as

AAV+A-v ifr<1,
[ (a-AA _
Av := A{[a“ A A Y ifr=2, (2.2)
A{[a- (a'_A),'A} v} if r>2,
A-A
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where a is a vector and A a simple (7 — 1)-vector such that AAa = A for
r>1.

Moreover, for any scalars «,8 and multivectors u,v,w,X, one has the
following associativity, distributivity and linearity rules:

uA(VAW)=(UAV)Aw, u(vw) = (uv)w;
WA (au+0v) =awAu+ BwAv, w(au+ fv)x = awux + Bwvx,
w-(au+fBv)y=aw-u+Bw-v.

Hence, the definitions of the outer, inner, and geometric products can be
extended by using these rules to any multivectors.

The inner product is not associative, but for any r-vector A, s-vector B,
and t-vector C, we have

(A-B)y-C ifr+t<s,

2.3
(AAB)-C ifr,s#0andr+s<it. (2:3)

A-(B.C)={

The above rules are not independent, and from them other rules may be
derived.

All the multivectors under the addition and geometric multiplication
form an associative algebra of dimension 2. It is called a Clifford algebra
or geometric algebra (of positive-definite signature) [11] and may be used to
model n-dimensional Euclidean geometry. There are other Clifford algebra
models for Euclidean and other geometries, but this paper is concerned
only with Euclidean geometry and this Clifford algebra model.

Two (multi)vectors are said to be orthogonal if their inner product is 0.
Let I denote the outer product of n pairwise orthogonal unit vectors in
E™; I is called a pseudoscalar.

For any r-vector V, we define V™, the dual of V, as follows:

n(n—1)

g~ [ EDTERVE =0,
' (-=1)"z V.I otherwise.

This definition extends naturally to an arbitrary multivector v:

v = Z<V>zN
i=0

We shall prove that I~ = 1.

Let us complete our introduction to Clifford algebra by making a few
remarks on the soundness of the recursive definitions (2.1) and (2.2). In
(2.1), the case 1 = r < s may be derived from the identity (1.41a) in [11]
and the relation

bB=bAB+b-B,
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and the case 1 < r < s follows from the second rule in (2.3). The other two
cases in (2.1) and the cases for r < 2 in (2.2) may be easily verified. For
the non-trivial case r > 2 in (2.2), we note that

[(a-A)-AJAA=0 and (A-A)-A=0,

because A is a simple r-vector, a- A is an (r — 2)-vector, and both (a-A)-A
and A - A are vectors (see [11, p. 20]). Moreover, it follows from (1.43) in
[11] that

A-A=(A-Aa—(a-A)-A for r>2.

The equality in (2.2) for r > 2 is thus established by (1.41c) and (1.41d)
from [11]. In fact, our definition of the geometric product in this case pro-
vides a recursive treatment of the orthogonalization process.

We write Clifford operators, identities, expressions, ... for operators,
identities, expressions, etc. in Clifford algebra. The reader is referred to the
fundamental text [11] by Hestenes and Sobczyk for other important Clifford
operators and a variety of Clifford identities relating these operators.

The Clifford algebra introduced above, together with its operators, pro-
vides a rich language for expressing concepts and relations in Euclidean
geometry, and for automated theorem proving. For example:

e The distance between two points A and B is equal to |A — B|; the
area of a triangle ABC is |(A — B) A (A — C)}/2.

o The midpoint of A and B is (A + B)/2; the centroid of a triangle
ABCis (A+B+C)/3.

e Two lines AB and CD are parallel iff (A — B) A (C — D) = 0; they
are perpendicular iff (A — B)-(C — D) = 0.

e Three points A, B, C are collinear iff (A — B)A (A— C) = 0, iff there
exists a scalar A such that C = A4 + (1 — A)B.

e Point P lies on a circle centered at O with radius r iff

(P—0)-(P-0)=r2

5.3 Geometric Theorem Proving

5.8.1 Deriving representations of geometric objects

One contribution of Li and Cheng [14, 12] to Clifford-algebra-based geo-
metric reasoning is a set of solution formulas for systems of multi(vector)
equations. These formulas are independent of any geometric knowledge and
may be used to triangularize Clifford expressions and to establish certain
representations of geometric objects. Here we present a different principle
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to derive formulas representing geometric objects. This simple principle
makes use of geometric knowledge, and may be applied whenever a repre-
sentation needs to be derived.

The idea is to take some basic Clifford representations of geometric rela-
tions in which parameters may be used. For any geometric object (typically
a point) that may be constrained by several such relations, we proceed to
eliminate the parameters in order to obtain an explicit representation for
the object. We illustrate this idea by the following examples.

Example 5.1.

Let A, B, C, D be any four points in the plane. Represent the intersection
point X of AB and CD in terms of A, B,C, D.

Since X is the intersection of AB and CD, X lies on AB. Thus there
exists a scalar A such that

X=X+ (1-XNB. (3.4)
On the other hand, X also lies on line CD, so
(D-C)ANM+(Q-NB-C]=(D-C)AN(X-C)=0.
The expression on the left-hand side may be simplified to gA + f with

g=DANA-DAB-CANA+CAB=(D-C)AN(A-B),
f=(D-C)AB-DAC.

Therefore, A may be formally solved, A = —f/g. However, the meaning of
the formal expression f/g is not clear because one does not know what a
fraction of two bivectors means. For this reason, we take the dual of

gA+f: goA+fT=0.

It follows that A\ = —f~/g™~. By substituting this solution into (3.4), with
simplification and arrangement, we find

_A(C-B)-D¥"+AB-C~+B(A-C)-D~-BA-C~
g~
which is equivalent to int(4, B, C, D) given in {20, 21].

X

k)

Example 5.2.

Let C be the center of a circle, A a point on the circle and B any other
point in the plane. Find the intersection point X of AB and the circle in
terms of A, B, C.

Since X lies on AB, there exists a scalar A such that

X =AM+ (1-)\B. (3.5)
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Since X also lies on the circle centered at C and passing through A, we
have
(A-C) (A-CY=(X-0C)- (X -0). (3.6)

It follows that
A-1)[(A-B)-(A-B)A+A-A-B-B-2C-(A-B)]=0.

The solution A = 1 corresponds to the trivial case X = A. The other
intersection point X is obtained by substituting the non-trivial solution of
A into (3.5):

X int_cir(C, A, B) (3.7)
[2C-(A—B)—A-A+B-B|A+2(A-B)-(A-C)B

(A-B)-(A-B) ’

provided that A and B do not coincide.
Example 5.3.

Find the intersection point X of a circle centered at C and the line passing
through a point A on the circle and perpendicular to a given vector a in
the plane.

Since the line X — A is perpendicular to a, there exists a scalar A such
that X = A 4 Aa™. Substituting this expression into (3.6) and solving for
A, gives the two solutions A = 0 and

)\:2(C—A)-a”.

a-a

The case A = 0 corresponds to X = A. The other intersection point of
interest is

(C—A) a~

X = per.intcir(C,A,a) = A+ 2
a--a

B, (3.8)
provided that the vector a is non-zero.

Using the simple methods given in the above examples, expressions for
many constructed geometric objects can be found. See [20, 7, 21] for more
examples of such geometric constructions.

5.3.2  Ezxamples of theorem proving

The following examples serve to illustrate how geometric theorems may be
proved in the Clifford algebra formalism and how the above representations
are used. They also demonstrate how to linearize geometric statements
involving circles.
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Example 5.4.

Let AB be the diameter of an arbitrary circle and C be any point on the
circle. Then C'A is perpendicular to C'B.

C U

To simplify calculations, let the circle be centered at the origin. Then
we have B = —A. Take a free point U on the plane and let the line AU
intersect the circle at point C. According to (3.7), we have

—A-A+U - U)A+2(A-A-A-U)U
A A_2AU+U0-U '

C =intcir(0,A,U) = (
The conclusion of the theorem is
g=(C—-A)- (C-B)=C-C-—A-A=0.

This is easily proved by substituting the expression of C into g with sim-
plification. The non-degeneracy condition for the theorem is A # U.

The proof of the above theorem is so simple that little algebraic computa-
tion and simplification need be performed. In most theorems in Euclidean
geometry involving circles, the resulting expression cannot be easily re-
duced to 0 without using systematic means. Let us consider a couple of
more examples.

From any point D on the circumcircle of an arbitrary triangle A, one
may draw three perpendiculars to the three sides of A. Simson’s theorem
asserts that the intersections of the three perpendiculars are collinear (see,
e.g., [20, 21]). Let the line determined by the intersections be called the
Simson line of D for A. We have the following theorem.

Example 5.5.

The Simson line of any point D for a triangle ABC passes through the
midpoint of D and the orthocenter of AABC.

Let cir_ctr(A, B, C) and ort.ctr(A, B, C) denote the circumcenter and or-
thocenter of AABC, respectively, and per_ft(A, B, D) the intersection of
the perpendicular from point D to the line AB. Their explicit expressions
in terms of A, B, C, D may be found in [20, 21].

To simplify calculations, let A be located at the origin (i.e., A = 0). Then
the hypothesis of the theorem can be stated constructively as follows:
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O = circtr(4, B,C)
_B-BB-C~B+[B-BB-C—(B-C)* - (B-C~)*|B~

)

2B-BB-C~
D = intcir(0,A,U) = QUO_'[;]U,
H =oncw(,,0) = DO W-CB 4B (C D))
M = midp(D, H) = D"; ,
P = perft(A,B,D) = %B,
Q =perft(C,A,D) = %C,

where U is a free point. The conclusion of the theorem to be proved is
g=(P-Q)A(P-M)=0.

Substituting the expressions of Q, P, M, H, D, O successively into g, one
obtains an expression in B, C, U only. The numerator of this expression is

h={B-BB-C-(B-C)>—(B-C~)}B-U~-B-BB-C~B-U)?
{ [B-C(B-U~®-B-C~B-U(B-U~)?+B-C(B-U?B-U~
~B-C~(B-U®|BAU
+[B-C~(B-U~®*+B-CB-U(B-U~?+B-C~(B-U?B-U~
+B-C(B-U®|BAU~
+[B-C(B-U~)?-2B-C~B-UB-U~
-B-C(B-U2|U-UBAB~}.

The expression h does not automatically evaluate to 0, so it remains to
show that h is identically equal to 0. For proving identities of this kind,
we have developed a term-rewriting system by taking some of the laws for
Clifford operators as rewrite rules. Using this system, the second factor of
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the expression h may be easily rewritten to 0. Therefore, the theorem is
proved to be true provided that B-BC-C B-C~ U-U # 0, i.e., the triangle
ABC does not degenerate to a line and U # A.

Example 5.6.

From a point D on the circumcircle of an arbitrary triangle ABC, draw
three perpendiculars to the three sides BC,CA, AB of AABC to meet the
circle at points A;, By, C; respectively. Then the lines AA;, BBy, CC} are
parallel.

B

The constructions for the hypothesis of the theorem are
O =circtr(4,B,C), D =intcir(O,A,U),
B; = per.intcir(O,D,C — A}, C; = per_intcir(O,D, A - B),

where U is again a free point. One of the conclusions to be proved is
BB; || CCy, which may be expressed as

g=(B-B)AN(C-C1)=0.

Without loss of generality, let A = 0. Substitution of the expressions for
C1, B1, D, O into g results in an expression involving only B, C and U. The
numerator of this expression may then be rewritten to 0 by our system.
Similarly, one may prove that AA; || BB;.

The above examples explicate a simple and efficient approach for proving
geometric theorems automatically using Clifford algebra. The approach
consists roughly of three steps:

(1) Formulate the hypothesis of the theorem in question constructively
so that every introduced dependent point may be expressed in terms
of the previously introduced points.

(2) Substitute the expressions for the dependent points into the Clifford
equation to obtain an equality involving only the free points.

(3) Prove that the equality is an identity by term-rewriting.

A number of other well-known geometric theorems have been proved by
using this approach (see [20, 7, 21]).
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5.3.3 Approaches to geometric reasoning

Now we brieflty summarize some of the available methods and techniques
developed for automated geometric reasoning based on Clifford algebra.
The reader may consult [13] for a more comprehensive review.

The use of geometric invariants in Clifford algebra may be seen in the
early work of White [22] and Richter-Gebert [17]. The former gave a Cay-
ley factorization algorithm for multilinear bracket polynomials that permits
one to prove geometric theorems at the level of bracket algebra, and the
latter developed a method that has proved a number of incidence theorems
in projective geometry. The method of Richter-Gebert, based on bracket
algebra, works by representing incidence relations using biquadratic equa-
tions. This method was extended later in [4] to prove theorems about circles
in Euclidean geometry.

Under the operations of addition and the outer product, the multivec-
tors form a Grassmann algebra of dimension 2". This Grassmann algebra,
equipped with the meet operator, is what we call the Grassmann-Cayley
algebra. Mourrain and Stolfi [15, 16| introduced a method that can gene-
rate a set of substitution rules from a set of constructions for points in
projective geometry with the Grassmann-Cayley algebra formalism.

The Clifford algebra formalism has long been used to solve geometric
problems in mathematics, physics, chemistry, and other areas. In the con-
text of automated reasoning, Li and Cheng {14, 12] first proposed a general
principle for proving geometric theorems and deriving geometric relations.
The principle follows the paradigm of triangularization and reduction de-
veloped in Wu’s coordinate-based method [23]. In order to make triangu-
larization possible for Clifford expressions, Li and Cheng worked out a set
of solution formulas for Clifford equations.

The author in [20] considered a class of constructive geometric theorems
and devised a simple and effective method for their proof. This method
avoids some redundant reductions that may occur in the method of Li
and Cheng. The proof of a concrete theorem is simply to substitute the
explicit expressions of the dependent geometric objects into the conclusion
expression of the theorem and to evaluate the resulting expression A to O
as shown by the examples in Section 5.3.2. Nevertheless, in Clifford algebra
an expression that is identically equal to 0 does not necessarily evaluate
to 0 automatically; it does when coordinates are used. An open question
is how to prove identities in Clifford algebra automatically without using
coordinates.

An approach suggested in [20] and developed in [7, 1] is based on term-
rewriting. The basic idea is to use various fundamental relations and iden-
tities among different Clifford operators to rewrite Clifford expressions to
normal forms systematically. The current version of the rewrite system
for 2D and 3D as described in [1] consists of four major steps: basic sim-
plification, reduction to normal forms, further simplification, and pseudo-
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coordinate expansion. The investigated issues include selection and grou-
ping of rewrite rules, grading, normalization, termination, confluence, and
completion, as well as strategic system design and combination to achieve
efficiency.

The application of Clifford algebra to prove geometric theorems involving
lines, circles, ellipses, parabolas, and hyperbolas has been studied by Yang
et al. [24]. They also considered the normalization problem and presented
several groups of rules to normalize and simplify Clifford expressions.

A Maple package called Gibbs was developed by Havel [10] and a co-
worker for the elementary expansion and simplification of expressions in
Gibbs’ vector algebra. The package was implemented during Havel’s study
of the local deformation problem in chemistry and is applicable to other
reasoning problems in Euclidean geometry. The reader is referred to [10] as
well as [22, 17].

An experiment with Maple V and Objective Caml on combining Clifford
term-rewriting and algebraic computing for geometric theorem proving has
been reported in [8]. Other related work on geometric reasoning using Cli-
flord or vector algebra include the use of distances as coordinates [9], the
application of non-commutative Grébner bases in Grassmann algebra [20],
the study of area in Grassmann geometry [6], the modeling of behavior
of geometric objects using Euclidean ring [5], and the methods based on
vector calculus described in [3, 19].

5.4 Proving Identities in Clifford Algebra

5.4.1 Introduction by examples

The rewrite system [1, 7, 8] we have developed is capable of proving iden-
tities in Clifford algebra of fixed dimension, for example, with n = 2 or 3.
It is independent of geometry and can be used for automated reasoning in
Clifford algebra. However, the system cannot be used to prove any Clifford
identity for an indefinite n, nor any identity involving an indefinite number
of vectors. There is a large number of such identities connecting different
Clifford operators (see, for example, [11]). Our question is how to prove
them automatically or semi-automatically on a computer. This is not an
easy task. We propose to use the induction principle in combination with
algebraic simplification, rewriting, heuristics, and other techniques. In this
section, we present several examples to illustrate how the approach works.
The machine proofs for the identities in these examples are produced au-
tomatically by a computer program that the author has written in Maple
V.

Let us start with the following simple example. The proof is readable
without need of an explanation.
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Example 5.7.

Let ey, ..., e, be n pairwise orthogonal unit vectors, i.e.,
e-e,=1,e-€ =0, i#j 1<i,j<n

Show that
T
em'/\ei:O for 1<r<m<n.
i=1

Proof by induction on r.
Base caser =1:
0=0

reduces to True.
Assume that 1 j r and the following induction hypothesis holds :

r—1
€m ( 6k) =0
k=1
Proof of the induction case r :
em-(/\ek)=0 (%)
k:l

The left-hand side of (*) reduces (by definition of . and/or
simplification) to
1
(—=1)"er A(em - (/\ &)
j=1

T

1

By the induction hypothesis, one gets
(=1)" e A (0)

This reduces to
0

The above expression is equal to the right-hand side of (¥) :
0

Q.E.D.
One sees that in the above example and in what follows, that the recursive
definition (2.1) of the inner product makes induction possible.

Example 5.8.
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Let a and b; all be vectors. Prove that

" i-1 r
/\ Z 1+1ab(/\bj)/\(/\bj) for 1<r<n.
=1 i=1 j=1 j=itl

This identity is numbered (1.38) in [11]. Our program proves it as follows.
Proof by induction on r.
Base caser = 1:
bl Q= bl - a

reduces to True.
Assume that 1 j r and the following induction hypothesis holds :

r—1 r—1 i—1 r—1
a-(N\b)==> (=1)'b-a( Ab)A( A b))
i=1 i=1 j=1 j=i+l

Proof of the induction case r :

T T i—1
a~(/\bi)=—Z 1)°b; - a/\ /\ b;) (%)
i=1 i=1 j=1 j=i+1

The left-hand side of (*) reduces (by definition of . and/or
simplification) to

(@ (A b Abe = (-1 a5 A by

By the induction hypothesis, one gets

r—1

i—1 r—1
=Y (=1bi-a( A b)) /\ b)) Aby — (-1)"a-b. A\ b;
j=1 j=1

1=1 j=i+1

Il

This reduces to

r—1 i—1 r—1
—(=1)"bi-a(-1)"" (A b)) /\ bj) = (=1)"a b ]\ b
i=1 j=1 =i+l j=1

which simplifies to
i-1
S e a(A b ACA )
=1 j=1 Jj=i+1
The above expression is equal to the right-hand side of (*) :

i—1 T

=2 D bea(AB)ACA B)
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Q.E.D.
Example 5.9.

Let a be a vector, B an r-vector, and C an s-vector. Prove that
aA(B-C)=(a-B)-C+(-1)'B-(aAC) for I<r<s<n. (4.9)

This is the identity (1.43) given in [11] and mentioned before. Our machine
proof proceeds by letting
T
B= A b
i=1

be a simple r-vector and making induction on r, where the b; are vectors.

The case in which B is an arbitrary r-vector follows from multilinearity.
Proof by induction on r.

Base caser = 2 :

a/\((bl/\bz)-C’)=a-b1b2-C—a'b2b1~C+(b1/\b2)-(a/\C’)

The difference of the two sides reduces (by definition of . and/or
simplification) to

aA(by-(ba-C))—a-bby-C+a-bgby-C—by-(ba-(anC))
reduces (again by definition of . and/or simplification) to
alA(br-(b2-C))—a-biby-C+br-(an(b2-C))
reduces (again by definition of . and/or simplification) to
ah by (by-C))+ (=1 g A (by - (b2 O))
reduces (again by definition of . and/or simplification) to
0

The base case is proved. Assume that 2 < r and the following induction
hypothesis holds :

@A (A b)) =(a- (A B)-C+ (- (A b)) @AC)

Proof of the induction case r :

aA((/\bi)~C)=(a-(/\bi))~C+(—1)T(/\bi)-(a/\0) (%)
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The left-hand side of (*) reduces (by definition of . and/or
simplification) to

(N b6

By the induction hypothesis, one gets
r—1
@ (A\b:)- (-0 TlAb (@ (br-C))
i=1
This reduces to
r—-1
(@- (/b)) (b--C) /\b (@A (b, - C))
i=1

The difference of the above expression and the right-hand side of (*) reduces
(by definition of .) to

r—1 r—1 r—1
(@ (N b)) (br-C) = (=1)" (A b:) - (@A (b C)) = ((a- (\ b)) Abr)-C
i=1 i=1 =1
r—1 r—1
+(=1)"a b (N b)) C = (=1)" (N b:) - (br - (a A C))
Jj=1 i=1

The above expression is reduced (by definition of . and/or
simplification) to

0
Q.E.D.
Example 5.10.
Let e;,...,e, be as in Example 5.7. Prove that
T T (r=1)
/\ei- /\ei =(-1)"z for 1<r<n. (4.10)

The following proof of (4.10) makes use of the identity shown in Exam-
ple 5.7 as a lemma.

Proof by induction on r.
Basecaser = 1:
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reduces to True.
Assume that 1 < r and the following induction hypothesis holds :

r—1 r—1 )2
(Ae)-(N\e)=(-)=F
=1 =1

Proof of the induction caser :

The left-hand side of (*) reduces (by definition of . and/or
simplification) to

r—1 T
(/\ e;) - (er- (/\ e:))
i=1 i=1

It reduces (again by definition of .) to

ﬂ
|
-
-
|
-

7 (A e ener (A ) = (FI7 (A ) (A )

By the following lemma

T

en (N e =0, r<m
k=1

the expression is redued to

r—1 r—1
—D"(Ae) (Nes)
i=1 j=1

By the induction hypothesis, one gets

(r-1)(z=2)
S DT
This reduces to 1)
(=D~
The above expression is equal to the right-hand side of (*) :
(_ 1) r(rz—l)

Q.E.D.

n(n—1)

105

(*)

With r = n in (4.10), we have I - I = (—1) z . It follows, from the
definition of the dual operator, that I~ = 1, which we have promised to

prove.
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Taking I for C in (4.9), we get
an(B-I=(a-B)-I,
that is,
anB~ =(a-B)".
This is one of the duality rules; the other duality rule is
a-BY=(anB)".

The machine proofs in the above examples are formatted directly from
files automatically generated by our program. The following window dump
shows part of a proof session in Maple V.3.

) Maple v Release S R e e e
File Edit View Options Help

Output _ = I Interrupt | Pause |
a&. b,=a&. b 5

freduces to True.

|Assume that 1< r~ and the following induction hypothesis holds :

a&./\(b,.,l'=1..r~—1)=

—['Z(~1)»’(a&.b,)(/\(bj,j-1..p 1) &M, jmi+1 .1 - 1)))

[Proof of the induction case T~ :

a&‘/\(bl.,i-l..r~)-—(Z(~1)"(a&.b‘.)(/\(bj,j=1A.i~1)&’*/\(bl.,j=i+1 .4r~))}
[The left-hand side of (*) reduces (by definition of . and/or 51mp](.z)fication) to
((@a& Nbyj=1.r~-1))&" b )-(-1y (a& b YINb,j=1.r~~ 1)
By the induction hypothesis, one gets
[[—[Zl (-1Y (&b (N(bypj=1.i~ 1) &b, jmit 1.~ 1))]]&%,‘)

S Cay (ag b Y Nby i1 re - 1)

[Maple Memory: 1727K] [Maple CPU Time: 3103 sec] [Interface Memory: 55.9]

5.4.2 Principles and techniques

The problem is to build an effective prover that can produce machine proofs
for sufficiently many Clifford algebra identities. We propose using mathe-
matical induction because of the nature of identities in Clifford algebra, and
the general applicability of the induction technique. Although induction is
a standard in mathematical reasoning, its computer implementation for
proving non-trivial theorems effectively and automatically is not a trivial
task. In order to make inductive proofs possible, recursive definitions have
to be introduced for Clifford operators and heuristics have to be imple-
mented and used. Moreover, powerful routines of algebraic simplification
and computation need to be incorporated. In what follows, we discuss some
of these issues on the basis of our preliminary experiments.
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The induction principle

Let F(r) = 0 be an identity that we want to prove. The induction scheme
has the following form:

If F(rg) =0, r > rg, and F(r — 1) = 0 implies that F(r) =0
for all 7, then F(r) = 0 holds for all r > ro.

The base case r = rg is determined for the smallest value rg of the induction
variable r satisfying the given conditions, and is proved by expanding defi-
nitions, simplification, and the application of lemmas. Note that the rewrite
system described in [7, 1] may be used in this case when the rewrite rules
are dimension-independent.

For the induction case r, definitions are expanded and simplified or
rewritten in order to search for possibilities to use the induction hypothe-
sis. The program then looks for expressions on the two sides of the identity
that match.

It is possible to use well-developed, general induction theorem provers,
such as the Boyer-Moore prover Nqthm [2], for our special purposes. We
decided to experiment with Maple because of its capability for advanced
algebraic computation and simplification and because of our previous ex-
perience with it.

Expanding definitions

One of the key points to the success of the proofs in Examples 5.7-5.10 is
the recursive definition (2.1) of the inner product, which has been intro-
duced to facilitate the application of induction. Expanding or opening up
the definition of a function/operator is to replace the function call by its
definition. Heuristics must be implemented to determine whether, when,
and where a definition should be opened up. For example, in proving the
induction case of (4.9), a- A_, b; is expanded to

r—1 r—1
(@ N\ b)Ab—(=1)(a b)) \ b
=1 =1

and b, - (a AC) to
(=10 -CYAa+br-aC,

but a - \j_; b; is not expanded to

r—2 r—2
(@ /\ b)) Abp—1— (=)™ (@ br_1) N bi.
=1 i=1

An inappropriate expansion of a definition may lead to a failure in searching
for a proof.
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Simplification

This is one of the most complex and crucial processes in the proof of iden-
tities and other kinds of symbolic reasoning. The purpose of simplification
is to replace terms and expressions by other equivalent and simpler ones.
In our experiment, we take advantage of the powerful simplification mecha-
nisms already available in Maple V. Additional rules are introduced to deal
with some of the special properties of Clifford algebra. Pattern matching
is needed for applying rewrite rules, induction hypotheses, and lemmas.

Manipulating indefinite objects

Although current computer algebra systems are powerful in dealing with
definite symbolic objects, their ability to manipulate indefinite objects is
quite limited. It is thus necessary to amend the computer algebra system in
use for effective and correct manipulation of indefinite objects. Our imple-
mentation of new routines have benefited from our previous work [18] on
the manipulation of indefinite sums and products. However, the enhanced
capabilities of manipulating indefinite objects are still built on the top of
the existing computer algebra systems.

Using lemmas

In order to maintain readability and structure, the proof of an identity
may be shortened by applying lemmas. There is the general question of
how many lemmas should be kept in the database. Using a large database
of lemmas would not only increase the search time and space but also make
proofs less interesting. Our program tests whether the lemmas can be used
in the inductive proof.

The examples given in the preceding section do not involve the geometric
product for multivectors of non-zero grade, nor the dual or other operators.
However, the principles we have explained apply equally to proving identi-
ties involving other operators. Of course, an implementation covering more
general cases will be very sophisticated involving recursive definitions. The
recursive definition of the geometric product introduced in Section 5.2 is
quite complicated. It may help to start with the definition of the geometric
product for a special case, such as

Ba:=BAa+B-a

for any vector a and r-vector B with r > 1. This should make it possible
to prove a good number of other identities. An ideal prover would include
adequate definitions for the most popular Clifford algebra operators.

The induction approach is by no means complete. It is even difficult to
describe precisely which class of identities such a prover can always su-
cceed in proving. In the case of proving definite identities using our rewrite
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system, any identity can be proved when the use of coordinates or pseudo-
coordinates are allowed. Nevertheless, for proving indefinite identities it is
not even clear how coordinates can be applied.

Our induction based approach uses artificial intelligence to imitate hu-
man proofs, by incorporating powerful tools of computer algebra and sim-
plification. Despite its limitations, it would be a success if one could use it
to prove a large number of Clifford algebra identities automatically.

Acknowledgments. This work has been supported by CEC under Reac-
tive LTR Project 21914 (CUMULI).



Chapter 6

Automated Theorem Proving

Hongbo Li

6.1 Introduction

In modern algebraic methods for automated geometry theorem proving,
Wu’s characteristic set method (Wu, 1978, 1994; Chou, 1988) and the
Grobner basis method (Buchberger, Collins and Kutzler, 1988; Kutzler
and Stifter, 1986; Kapur, 1986) are two basic ones. In these methods, the
first step is to set up a coordinate system, and represent the geometric
entities and constraints in the hypothesis of a theorem by coordinates and
polynomial equations. The second step is to compute a characteristic set
or Grobner basis by algebraic manipulations among the polynomials. The
third step is to verify the conclusion of the theorem by using the charac-
teristic set or Grébner basis.

Coordinate representations do not keep geometric meaning and the alge-
braic manipulations of polynomials of coordinates are sometimes too com-
plicated to be carried out on modern computers. For this reason, in recent
years there has been a trend to use geometric invariants for algebraic repre-
sentations, combining Wu’s method or the Grébner basis method with an
algebra of geometric invariants for algebraic manipulations. Among these
methods are those of Crapo and Richter-Gebert (1995) which integrate
Grassmann-Cayley algebra with the Grébner basis method, the method
of Mourrain (1999) which combine Grassmann-Cayley algebra with Wu’s
method, and the area method {Chou, Gao and Zhang, 1994; Yang, Gao,
Chou and Zhang, 1996) which combine a set of high-level geometric inva-
riants with Wu’s method. Proofs based on these methods are often shorter,
more readable and have better geometric meaning.

Because of the general applicability of Clifford algebra to geometry, it is
natural to consider combining Clifford algebra with Wu’s method or the
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Grobner basis method. In Li (1994, 1996), a general framework is proposed
for combining Clifford algebra with Wu’s method. Various applications that
belong to this framework are carried out in automated theorem proving
in Euclidean, non-Euclidean and differential geometries (Li, 1995, 1997a,
1997b, 1999; Li and Cheng, 1997, 1998a, 1998b; Li and Shi, 1997). Research
and applications have also been carried out by Wang (1996, 1998) and his
group in combining Clifford algebra with the Grébner basis method and
term rewriting techniques.

This chapter is composed of three sections. In the first section, we talk
about a general framework of combining Clifford algebra with Wu’s method.
In the second and third sections, we present examples of automated theo-
rem proving in Euclidean and differential geometries.

6.2 A general Framework for Clifford algebra and
Wu’s Method

Given a geometric problem, there are different levels of algebraic repre-
sentations for it. There are corresponding algebraic manipulations for each
level of representation. When changing a high-level representation to a low-
level one, substitutions, expansions and simplifications are usually enough.
However, there is in general no way to reverse this procedure.

For example, given a problem in projective geometry, we can represent it
in the Grassmann-Cayley algebra, and use the algebraic operations of “A”
and “V” for geometric computations. We can also use the projective space
of one-dimensional subspaces of a Euclidean space, and use the inner pro-
ducts for algebraic manipulations, although they do not have a projective
interpretation. Finally, we can use homogeneous coordinates to represent
geometric entities, matrices to represent projective transformations, and
homogeneous polynomials for algebraic manipulations. Among these three
representations, the first is on the highest level, the third is on the lowest
level. From the first representation to the third, there are fewer and fewer
geometric invariance, but more and more abundant algebraic manipulations
to work with.

In automated theorem proving, if we use a low-level representation at
the beginning, for example coordinate representation, then in many cases
the polynomials we need to deal with are of tens of variables and thousands
of terms. Symbolic computations of such polynomials often fail on present-
day computers. On the other hand, if we use a high-level representation at
the beginning, then we have only limited algebraic manipulations, and for
many theorems we cannot derive the conclusions from the hypotheses.

To improve this situation, it should be possible to represent a geome-
tric problem at a suitably high level at the beginning, and carry out the
algebraic manipulations to the hypotheses of the theorem in order to es-



112 Hongbo Li

tablish the conclusion. If the conclusion fails to be proved at this level,
then the level of representation is lowered mechanically for more algebraic
manipulations. At the bottom is the coordinate representation. After every
change of representation, new algebraic manipulations are carried out to
the result of the previous manipulations, so even though the conclusion can-
not be proved after algebraic manipulations of a high-level representation,
simplification of the hypotheses can often be achieved for later algebraic
manipulations.

A general framework realizing the above idea by combining Clifford al-
gebra with Wu’s method is proposed by Li (1994, 1996), Li and Cheng
(1997). For triangulation in Clifford algebra formalism, a new technique
called vectorial equation-solving is proposed. For mechanically changing
Clifford algebra representations by introducing new geometric parameters,
a technique called parametric equation-solving is proposed. The method is
complete because Wu’s method is resorted to at the level of coordinate
representation. The method can be described as follows:

Stage 1. Triangulate the hypothesis using substitutions, pseudo-divisions
and vectorial equation-solving. The result is called a triangular se-
quence. Prove the conclusion with the triangular sequence, and con-
tinue if the proof fails.

By triangulation, we mean obtaining a set of equations AS from
a given set of equations PS such that the leading elements of the
equations in AS follow a strictly ascending order with respect to a
prescribed order of variables. The equations in AS must satisfy the
relation

zero(AS/I) C zero(PS) C zero(AS), (2.1)

where zero(AS) denotes all complex solutions of AS, I is a set of
equations, and

zero(AS/I) = zero(AS) — U zero(i).
iel

The set {i # 0|i € I'} is called nondegeneracy conditions.

Stage 2. Triangulate the triangular sequence with vectorial the equation-
solving method, the parametric equation-solving method, substitu-
tions and pseudo-divisions. The result is called a parametric trian-
gular sequence. Prove the conclusion with the parametric triangular
sequence, and continue if the proof fails.

By the parametric equation-solving method, we mean solving equa-
tions by allowing the solutions to be in parametric form, the parame-
ters can be either free or constrained.
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Stage 3. Select a coordinate system and translate all expressions in the
parametric triangular sequence into polynomials of coordinates. Use
Wu’s method to compute a characteristic set and prove the conclusion
with the characteristic set.

A characteristic set AS of a set of polynomials PS is another set of
polynomials such that each element of AS is reduced by every other
element of AS with respect to a prescribed order of variables, and
the relation (2.1) is satisfied.

We illustrate the method with a theorem in solid geometry:
Theorem 6.1. Let ABCD be a tetrahedron. Let the plane M, N, E, F be
defined by the the respective points on the lines AB, AC, DC, DB. If the plane

moves in such a way that MNEF is always a parallelogram, then the center O
of the parallelogram is always on a fixed straight line.

A

C
FIGURE 6.1. A theorem in solid geometry.

We embed the space in R* as a hyperplane away from the origin. In the
Clifford algebra G4, the hypothesis can be represented by

( M- N=F—-E, MNEF is a parallelogram
AANBAM =0, A, B, M are collinear
AANCAN =0, A,C, N are collinear
) CANDANE =0, C, D, E are collinear (2.2)
BADAF =0, B, D, F are collinear
o= M ; E, O is the midpoint of M E
. AABACAD#0, A, B,C,D are not coplanar
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The conclusion cannot be algebraized.

The order of the variables for triangulation is: A < B<C <D <M <
N<E<F<0.

After triangulation, we get the following triangular sequence:

20-M—-E=0,

F—-FE-M+N=0,

E(ANBACAD)Y —D(ANBACAD)™
~D(AANBADAN)”+C(AANBADAN)™ =0,

N(AANBACAD)Y —C(ANBACAD)™
~C(BACADAM)” +ABBANCADAM)™ =0,

AANBAM=0.

The nondegeneracy condition is A A B A C A D # 0, which is in the
original hypothesis. The conclusion cannot be obtained from the triangular
sequence, as M does not have an explicit expression.

After parametric triangulation, we obtain the following parametric trian-
gular sequence:

20— A—D+XA+AD-AB—-AC =0,
F-D+AD-AB=0,

E-D+AD—)C =0, (2.3)
N-A+XM—-AC=0,

M —A+XA—XB=0,

where A is a parameter generated by the parametric equation-solving pro-
ceedure.
The nondegeneracy conditions are:

ANBACAD, B-—A#0,

which are all guaranteed by the original hypothesis.
The conclusion is obvious from the first equality in (2.3):

A+ D B+C
O=(1-2AX A
=A== +rA—5—
i. e., O is on the line passing through the midpoint of the line segment AD

and the midpoint of the line segment BC.

6.3 Automated Theorem Proving in Euclidean
Geometry and Other Classical Geometries

The method can be used to prove theorems in Euclidean, affine, projective,
non-Euclidean, and differential, geometries, and can be used in mechanics
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and robotics. The proofs produced are often readable because they are
short and have geometric interpretations.

We have successfully applied this method to study a conjecture by Erdos
et al. around 1994. The original problem is from Erdés, Jackson and Mauld-
lin:

Let A;;, 1 < i < j <5 be 10 points in the plane. If there are five points
Ak, 1 <k <5 in this plane, including points at infinity, such that at least
two are distinct and such that A;, A;, A;; are collinear for 1 <i < j <5,
we say that the five points form a consistent 5-tuple. Now assuming that no
three of the A;;’s are collinear, is it true that there are only finitely many
consistent 5-tuples?

FIGURE 6.2. A conjecture by Erdds et al. around 1994.

Erdos et al. proved that if there are only finitely many solutions, then
there are at most 49. They ask Boyer if their theorem prover could solve
it. Boyer in turn sent the problem to Chou and Gao, and Chou and Gao
sent it to us. Chou and Gao proved that generically there are only finitely
many solutions. We proved in Li and Shi (1997), using our method and
techniques from algebraic geometry, that

Theorem 6.2. For 10 generic points A;; on the plane, there are at most 6
solutions.

We further proved that
Theorem 6.3. If no three of the 10 points A;; are collinear, and no three of

the lines connecting two points are concurrent, except those lines meeting at one
of the points, then there are at most 6 solutions.
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6.4 Automated Theorem Proving in Differential
Geometry

In differential geometry, the local theory of space curves and space surfaces
are of fundamental importance. E. Cartan’s moving frame method and cal-
culus of exterior differential forms are two important techniques for dealing
with these theories. In our method, we integrate both techniques with Wu’s
method. When applied to theorems in space curve theory, our method can
produce proofs that are similar to those given in textbooks. When applied
to theorems in space surface theory, our method can often produce proofs
that are simpler than those found in textbooks.

Moreover, the method can be used to prove complicated theorems. Below
we give an example of a theorem first proposed by E. Cartan and later
proved by S. S. Chern (1985).

First, we set up the notation that we will use in the local theory of space
surfaces. Consider a sufficiently small piece of the smooth surface M in
E3. Over M, there is a frame of orthonormal fields {z; e, €2, e3} such that
for each x € M, e3 is the unit normal vector at x, and e, e; are tangent
vectors. These fields make up a first-order frame field. If, moreover, e; and
eo are along the principal directions, the fields make up a second-order
frame field.

The equations of motion of the first-order frame field are

dr = wier  +waeg
de; = wigez twizes (4.4)
de = —wige; +woszes ’
des = —wize;r —wz3er
The Gauss-Codazzi equations of a second-order frame field are
dwy = w12 Awa, dwz = w1 Awiz; (4.5)
dwiz = —Kuwy A wy; (4.6)
da = (a — ¢)(uwy + *w12), dec = (a — c)(vwy — *wia).  (4.7)

Here u,v are two scalars, and “x” is the Hodge dual operator:

*Wp = Wo, *Wp = —Wi.

Theorem 6.4. [Chern’s Theorem] A non-trivial family of isometric surfaces
having the same principal curvatures is either a family of surfaces of constant
mean curvature, or a family of Weingarten surfaces of non-constant mean curva-
ture, assuming that they do not contain umbilics and are c5.

Let a, c be the principal curvatures at a point of a surface in the family.
The non-umbilic assumption is equivalent to a # c. A Weingarten surface
is a surface satisfying da A de = 0 at every point.
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Weingarten surface

FIGURE 6.3. Chern’s Theorem.

Suppose that M* is a surface which is isometric to M. We shall denote
the quantities and equation numbers pertaining to M* by the same symbols
with asterisks. Suppose that 7 is the angle between the principal directions
of M and M™ at their corresponding points with the same parameters, then

w] = CcoSTw) — Sin Twsg (4 8)
wy = sinTw; 4+ cosTwy ’ )
and their principal curvatures are preserved,
a*=a, c"=c (4.9)

The non-triviality assumption for the family of isometric surfaces is
equivalent to the requirement that (4.8) holds for 7 over an interval on
the 7-axis. We do not have an algebraic representation of this assumption
at present.

The hypotheses are (4.8), (4.9) and the above requirement on 7. The
conclusion is

da Ade=0, (4.10)

since surfaces of constant mean curvature are also Weingarten surfaces.
Now we do triangulation. The input for the triangulation is:

(4.5),(4.6), (4.7), (4.5%), (4.6%), (4.7), (4.8), (4.9).
The order of variables for the triangulation is
a,c < U,V < Wi,wy < Wiz, w1z < du,dv < d*xwig <7 <dr <
a*, ¢t <ut, vt < wi,wy < wly, xwi, < dut,dvt < d*wi, < (4.11)
da, dc, dwy, dws, dwia,da*, dc*, dw}, dw}, dw},.
After triangulation, we get the following triangular sequence:
triseq = (4.5), (4.6), (4.7), (4.8), (4.9), and
Wiy = wig — dT
u* = cosTu — sinTv
v* =sinTu + cos Tv
dr = (vwy + uws)sin®7 + (—uw; + vws) sin T cos 7

, (4.12)
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{ du Awy +d* w2 — vwp A *wiz + uvwy Awz =0 , (4.13)

dv Awy — d * wyg — uw A *wig + uvwy Awg =0

sin7{sin 7(du A wa + dv A wy + (uwsz + vw1) A *wi2
—(u? + v?)w; Aws) (4.14)
—cosT{du A wy — dv Awp + (uwr — vwz) A *wi)} = 0.

The conclusion cannot be proved by the above triangular sequence. The
hypothesis of the non-triviality of family does not have an appropriate alge-
braic representation, and therefore cannot participate in the triangulation.

The first key to the automatic proof is the algebraization of this hypo-
thesis, based on the triangular sequence obtained so far. Since (4.14) holds
for 7 over an interval on the 7-axis, the coefficients before sin 7 and cos 7
must be zeroes,

du A ws + dv Awy + (uwa + vwy) A *wia — (U2 + v2)wy Aws =0
du Awy — dv A wg + {(uwy — vwg) A xwiz =0
(4.15)
Thus, we have obtained an algebraic representation of the non-triviality
hypothesis.

Now we do triangulation for set of equations
(4.5), (4.6), (4.7), (4.8), (4.9), (4.12), (4.13), (4.15).

The order of variables is the same as before.
We get the new triangular sequence: new-triseq = (4.5), (4.6), (4.7),
(4.8), (4.9), (4.12), and

dxwiz = 0, (4.16)

du A wy —vwg A *wig + uvwy Awe = 0, (4.17)

dv Aws — uwy A xwig +uvwy; Awy = 0, (4.18)

(uvdu + v2dv) A wy + (wvdv + v?du) Aw; = 0. (4.19)

The conclusion still cannot be proved by the new triangular sequence.

We have reached the stage of parametric triangulation. The following
lemma provides a powerful technique for parametric equation-solving, and
is the second key point of our proof:

Lemma 6.1. [Cartan’s Lemma] Suppose wi,ws,...,wr;01,02,...,0, are 1-
forms in the n-dimensional vector space V, and wi Awa A -+ Awyr # 0. If

>~ wi A6; =0, then there exist scalars a;; = aj3,4,j = 1,2,...,7, such that

i=1

T
0,’: E A Wj.
j=1
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Applying this lemma to (4.17), (4.18), (4.19) we get that there exist
scalars p, ¢, B such that

wiz = pwi+tqws, (4.20)
udu+vdv = B(uw; + vwy). (4.21)

This is the procedure of parameterization.
We are ready to do triangulation again. This time the triangulation is

on the set
(4.5),(4.6), (4.7), (4.8), (4.9), (4.12),

(4.16), (4.17), (4.18), (4.19), (4.20), (4.21).

The variables p,q < B < dp, dq < dB are inserted before wys, *wi2 < du, dv
in the order of the sequence (4.11).

We get the following parametric triangular sequence: par-triseq = (4.5),
(4.7), (4.8), (4.9), (4.12), (4.20),

dv = (up — wv)wy + (B + ug — u?)wy (4.22)

{ du = (B + v? — vp)w; + (uv — vq)ws
dB = ((u— 2¢)B + u(u? + v? + ac)) w1,
+(2p—v)B+v(u? +v¥ +ac))wy | (4.23)
(u? +v?)dp = frwr + fows

where f1, fo are polynomials of a, ¢, u,v, B,p, q, and
pu+qu—uv=0. (4.24)

The conclusion is proved using the parametric triangular sequence by
simple substitution. This finishes the proof.

6.5 Conclusion

Using Clifford algebra, we are able to design and realize fast computer al-
gorithms which challenge geometric experts by the capability of producing
readable computer-generated proofs, discovering new theorems and solving
open problems. Clifford algebra proves to be important and efficient in
doing scientific research for geometers of various groups.
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Chapter 7

The Geometry Algebra of
Computer Vision

Eduardo Bayro Corrochano and Joan Lasenby

7.1 Introduction

In this chapter we present a mathematical approach for the computation
of problems in computer vision which is based on geometric algebra. We
will show that geometric algebra is a well-founded and elegant language for
expressing and implementing those aspects of linear algebra and projective
geometry that are useful for computer vision. Since geometric algebra offers
both geometric insight and algebraic computational power, it is useful for
tasks such as the computation of projective invariants, camera calibration
and recovery of shape and motion. We will mainly focus on the geometry
of multiple uncalibrated cameras

Geometric algebra [15] is a coordinate-free approach to geometry based
on the algebras of Grassmann [10] and Clifford [7]. The algebra is defined on
a space spanned with a multivector basis. A multivector is a linear combi-
nation of basic geometric objects of different order, e.g. scalars, vectors and
bivectors. The system has an associative and fully invertible product called
the geometric product or Clifford product. The existence of such a product
gives the system tremendous representational and computational power.
For some preliminary applications of geometric algebra in the field of com-
puter vision see [2, 3, 4, 18]. We will show that geometric algebra provides
a very natural language for projective geometry and has all the necessary
equipment for the tasks which the Grassmann-Cayley algebra is currently
used for. The Grassmann-Cayley or double algebra [6] is a mathematical
system for computations with subspaces of finite-dimensional vector spaces.
While this algebra expresses the ideas of projective geometry, such as the
meet and join, very elegantly, it lacks an inner (regressive) product and
some other key concepts which are useful both analytically and in reducing
the computational cost in calculations.

The next section will give a brief introduction to the 3-D and 4-D geo-
metric algebras. This section is also devoted to the formulation, in the geo-
metric algebra framework, of those aspects of projective geometry relevant
for computer vision. The reader can consult [13] for a more complete intro-
duction and for other brief summaries see [3, 5]. Given this background, we
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will look at the concepts of projective split and projective transformations.
Section three presents the algebra of incidence and section four the algebra
in projective space of points, lines and planes. The analysis of monocular,
binocular and trinocular geometries is given in section five. Conclusions are
presented in the final section.

In this chapter vectors will be bold quantities (except for basis vectors)
and multivectors will not be slant bold. Lower case is used to denote vectors
in 3-D Euclidean space and upper case to denote vectors in 4-D projective
space. We will denote a geometric algebra G, , . referring to an n-D geo-
metric algebra in which p basis vectors square to +1, ¢ to —1 and r to 0,
so that p+ g+ =n.

7.2 The Geometric Algebras of 3-D and 4-D Spaces

The need for a mathematical framework to understand and process digital
camera images of the 3-D world, prompted researchers in the late seventies
to use projective geometry. Using homogeneous coordinates, we embed the
3-D Euclidean visual space in the projective space P2 or R* and the 2-D
Euclidean space of the image plane in the projective space P? or R3. As a
result, the inherently non-linear projective transformations from 3-D space
to the 2-D image space become linear. In addition, points and directions are
now differentiated instead of being represented by the same quantity. The
choice of projective geometry was indeed a step forward; however, there is
still the need, [14], for a mathematical system which reconciles projective
geometry and multilinear algebra. In most of the computer vision litera-
ture we can indeed see that they are considered as divorced mathematical
systems. When required, it is also common to resort to other systems; for
example, the dual algebra [6] for incidence algebra and the Hamiltonian for-
mulation for motion estimation [23]. Here we suggest the use of a system
which offers all of these mathematical facilities. Unlike matrix and tensor
algebra, geometric algebra does not obscure the underlying geometry of the
problem. We will therefore formulate the main aspects of such problems in
geometric algebra, starting with the modelling of 3-D visual space and the
2-D image plane.

7.2.1 3-D space and the 2-D image plane

To introduce the basic geometric models in computer vision, we consider
the imaging of a point X € R* into a point £ € R® assuming that the
reader is familiar with the basic concepts of using homogeneous coordinates
— these will also be discussed in later sections. The optical centre, C, of the
camera may be different from the origin of the world coordinate system,
O, as depicted in figure (7.1).
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FIGURE 7.1. Pinhole camera model.

In the standard matrix representation, the mapping P : X — x is
expressed by the homogeneous transformation matrix

P11 Pi2 P13 P4
P= | pa1 pa2 pa3 Dpus (2.1)
P31 P32 P33 P34

which may be decomposed into a product of three matrices
P = KPyMj. (2.2)

where Py, K and M§ will now be defined. Py is the 3 x 4 matrix

(2.3)

OO =
O = O
O O
o OO

which simply projects down from 4-D to 3-D, representing a projection
from homogeneous coordinates of space to homogeneous coordinates of the
image plane.

M represents the 4 x 4 matrix containing the rotation and translation
which takes the world frame, Fy, to the camera frame F, and is given
explicitly by

(2.4)
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This Euclidean transformation is described by the extrinsic parameters of
rotation (3 x 3 matrix R) and translation (3 x 1 vector ¢). Finally, the 3 x 3
matrix K, expresses the assumed camera model as an affine transformation
between the camera plane and the image coordinate system, so that K is an
upper triangular matrix. In the case of the perspective (or pinhole) camera
the matrix K, which we now call K, is given by

Qy Y Uo
Kp= 0 Qy Vo . (25)

The five parameters in K, represent the camera parameters of scaling, shift
and rotation in the camera plane. In this case the distance from the optical
centre to the image plane is finite. In later sections we will formulate the
perspective camera in the geometric algebra framework.

One important task in computer vision is to estimate the matrix of in-
trinsic camera parameters, K, and the rigid motion given in Mg, in order
to be able to reconstruct 3-D data from image sequences.

7.2.2  The geometric algebra of 3-D Euclidean space

The 3-D space is spanned by three basis vectors {1, 02, 03} (with o2 = +1
for all i = 1,2,3) and the 3-D geometric algebra generated by these basis
vectors has 2% = 8 elements given by:

1 ,7{01702,03}4, {010270203,Usﬁ};\{éﬁ@%} = { (2-6)

f ~— ~
scatar vectors bivectors trivector

Bivectors can be interpreted as oriented areas, trivectors as oriented volu-
mes. Note that we will not use bold for these basis vectors. The highest
grade element is a trivector called the unit pseudoscalar. It can easily be
verified that the pseudoscalar 010205 squares to —1 and commutes with
all multivectors (a multivector is a general linear combination of any of
the elements in the algebra) in the 3-D space. The unit pseudoscalar I is
crucial when discussing duality. In a space of 3 dimensions we can construct
a trivector aAbAc¢, but no 4-vectors exists since there is no possibility of
sweeping the volume element aAbAc over a 4th dimension.

The three basis vectors {o;} multiplied by I give the following basis
bivectors;

IO’l = 0203 IO’2=0’30’1 IO’3=0'10'2. (27)

If we identify the 1, 7, k of the quaternion algebra with o903, —0301 and
0102, we can recover the famous Hamilton relations

=52 =k*=ijk=—-1 (2.8)
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In geometric algebra a rotor, R, is an even-grade element of the algebra
which satisfies RR = 1. The relation between quaternions and rotors is as
follows, if @ = {qo,q1, g2, g3} represents a quaternion, then the rotor which
performs the same rotation is simply given by

R=q+q(lo1) — g(loz) + g3({o3). (2.9)

The quaternion algebra is therefore seen to be a subset of the geometric
algebra of 3-space.

7.2.83 A 4-D geometric algebra for projective space

For the modelling of the image plane we use Gs 0,0 which has the standard
Euclidean signature. We will show that if we choose to map between pro-
jective space and 3-D Euclidean space via the projective split (see later),
we are then forced to use the 4-D geometric algebra Gy 3,0 for P3. The
Lorentzian metric we are using here has no adverse effects in the opera-
tions we outline in this chapter, however we will briefly discuss in a later
section how a {+ + ++} metric for our 4-D space and a different split is
being favoured in recent research.

The Lorentzian 4-D algebra has as its vector basis 71, 2,73, y4, Where
72 = +1, 42 = —1 for k = 1,2, 3. This then generates the following multi-
vector basis

S v e sy s Y vays, I s L (210)
scalar 4 yectors 6 bivectors 4 trivectors pseudoscalar

The pseudoscalar is I = 7y;1y27y37y4 with

I? = (m1y27372) (M1Y2¥374) = —(1374) (v3va) = —1. (2.11)

The fourth basis vector, 74, can also be seen as a selected direction for the
projective split [3] operation in 4-D. We will see shortly that by taking the
geometric product with 4 we can associate bivectors of our 4-D space with
vectors of our 3-D space. The role and use of the projective split operation
will be treated in more detail in a later section.

7.2.4 Projective transformations

Historically, the success of homogeneous coordinates has partly been due to
their ability to represent a general displacement as a single 4 x 4 matrix
and to linearize non-linear transformations [9].

The following indicates how a projective transformation is linearized by
going up one dimension in the GA framework. In general a point (z,y, 2)
in the 3-D space is projected onto the image via a transformation of the
form:
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;, oz+fyt+hz+ea ;o + Poy+ b2z + €2
T = Yy == " (2.12)
ar+ Py+oz+€ ax + By + 6z + €

This transformation, which is expressed as the ratio of two linear trans-
formations, is indeed non-linear. In order to convert this non-linear trans-
formation in £3 into a linear transformation in R* we define a linear func-
tion ip mapping vectors onto vectors in R* such that the action of ip on

the basis vectors {~;} is given by

ip(’h) = o7+ oy +azys +av

[,(p) = Bini+ Bova + Bavs + B

ip(’Ya) = 6171 + 6272 + 8373 + 8ya

ip(’m) = € tev tev;tén (2.13)

When we use homogeneous coordinates a general point P in £ given by
T = x01 + Yoz + 203 becomes the point X = (Xv; +Yvo + Zy3 + Wry) in
R*, where z = X/W, y = Y/W, z = Z/W. Now using _]fp the linear map of

X onto X’ is given by
3 ~ ~
X' =Y {(X +BY + 62+ W)y} + (aX + BY +6Z + eW)vy(2.14)

i=1

The coordinates of the vector &’ = z'cy + y'o9 + 2’03 in £3 which corre-
spond to X’ are given by

o = aX+6Y+6Z2+aW N z+By+6hz+e6
aX +BY +6Z + W ax+fPy+bz+¢

(2.15)

and similarly

;0o + Poy + 62z + €2 Z,_a3z+ﬁ3y+63z+e3

), = s (2.16)

ar+ pPy+oz+é oax+ By +oz+€
If the above represents projection from the world onto a camera image
plane, we should take into account the focal length of the camera. This
would require ag = fé, 83 = ff3 etc., thus we can define 2/ = f (focal
length) independent of the point chosen. The non-linear transformation in
&% then becomes a linear transformation, [, in R*. The linear function
ip can be used to prove the invariant nature of various quantities under

projective transformations, [5].



7. The Geometry Algebra of Computer Vision 129

7.2.5 The projective split

The idea of the projective split was introduced by Hestenes [14] in order
to connect projective geometry and metric geometry. This is done by asso-
ciating the even subalgebra of G, .1 with the geometric algebra of one di-
mension less, G,,. One can define a mapping between the spaces by choosing
a preferred direction in G, 41, yp+1. If we then take the geometric product
of a vector X € G,,+1 and Y41

X/\'yn+1 )

XYnt1 = X1 + XAYng1 = Xeynpa1 (1 + X
*TYn+1

(2.17)

we can associate the vector x € G, with the bivector —)%:"—: € Gni1-

This result can be projectively interpreted as the pencil of all lines passing
though the point v,4+1. In physics the projective split is called the space
time split which relates the spacetime system G4 with Minkowski metric,
to the observable system Gs with Euclidean metric.

In computer vision, we are interested in relating elements of projective
space with their associated elements in the Euclidean space of the ima-
ge plane. Optical rays (bivectors) are mapped to points (vectors), optical
planes (tricectors) are mapped to lines (bivectors) and optical volumes (4-
vectors) to planes (trivector or pseudoscalar).

Suppose we choose 74 as a selected direction in R*, we can then define
a mapping which associates the bivectors v;74, ¢ = 1,2,3, in R* with the
vectors 05, 1 = 1,2,3, in £3;

01 =774, 02 =724, 03 =73V (2-18)

Note that in order to preserve the Euclidean structure of the spatial vectors
{o:} (i.e. 02 = +1) we are forced to choose a non-Euclidean metric for
the basis vectors in R*. That is why we select the basis v2 = +1, 1, =
—1,4=1,2,3 for G; 3,0. This is precisely the metric structure of Lorentzian
spacetime used in studies of relativistic physics. We note here that although
we have chosen here to relate our spaces via the projective split, it is possible
to use a Euclidean metric {+ + ++} for our 4D space and define the
split using reciprocal vectors [20]. It is becoming apparent that this is the
preferred procedure and generalizes nicely to splits from higher dimensional
spaces. However, for the areas discussed in this chapter, we encounter no
problems by using the projective split.

Let us now see how we associate points via the projective split. For a
vector X = X1v1+Xovy2+ X33+ X4y in R? the projective split is obtained
by taking the geometric product of X and ~4;

X/\’Y4
4

Xy =Xyg + X/\'y4 =Xy (1 + ) = X4(]. + JZ) (219)

According to equation (2.18) we can associate X Avys/X4 in R* with the
vector x in E3. Similarly, if we start with a vector & = z101 + z203 + 303
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in £3, we represent it in R* by the vector X = X17v; + Xa72 + X373 + X4V4
such that

r = XAy Xy +X2 +X3
= X, = —X4 Y174 _X4 Y274 ——X4 Y37Y4
X X X
= M+ X2, Xy, (2:20)

X, X4 X,

which implies z; = %, for i = 1,2,3. The approach of representing « in
a higher dimensional space can therefore be seen to be equivalent to using
homogeneous coordinates, X, for x.

Let us now look at the representation of a line L in R*; a line is given
by the outer product of two vectors:

L = AAB
= (L"mya+ Ly + L¥*y371) + (L2793 + L¥ysm + L)
= (L7 + L7 + L*y37a) — (L7 + L v27a + L y37a)
= n-—Im, (2.21)
the six quantities {n;,m;} ¢ = 1,2,3 are precisely the Pliicker coordi-
nates of the line. {L4 L?* L34} are the coefficients of the spatial part
of the bivector which represents the line direction n. {L?3, L3!, L2} are
the coefficients of the non-spatial part of the bivector which represents the
moment of the line m.
Let us now see how we can related this line representation to an &3

representation via the projective split. We take a line , L, joining points A
and B

L=AAB= <AB>2 = <A’)’4’Y4B>2 (222)

here, the notation (M), tells us to take the grade k part of the multivector
M. Now, using our previous expansions of X<y, in the projective split for
vectors, we can write

L =(An)Bv){(1+a)l-b), (2.23)
where a = %’:—;& and b = 4 are the £3 representations of A and B.
4 4
Writing Ay = A-7v, and B; = B, then gives us
L = A4B4<1 + (a - b) — ab)2
= A4B4{(a — b) + a/\b}. (224)
Let us now ’normalize’ the spatial and non-spacial parts of above bivector
L (a—b) (anb)

U o= - 2.25
A:Baja—b  Ja—b Tla_p| (2.25)
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(nzo1 + nyoy + n,o3) + (Myo203 + Myo301 + M,0102)

(neo1 + nyoa + n,03) + I3(Mmgoy + myos + m,03)
= n'+Im'. (2.26)

Here I3 = 0y0203 = I,. Note that in £2 the line has two components,
a vector representing the direction of the line and the dual of a vector
(bivector) representing the moment of the line. This completely encodes
the position of the line in 3—-D space by specifying the plane in which the
line lies and the perpendicular distance of the line from the origin.

7.3 The Algebra of Incidence

This section will discuss the use of geometric algebra for the algebra of
incidence [16]. Firstly we will define the bracket and consider the duality
principle. We will define the important concept of the bracket, discuss dua-
lity and then show that the basic projective geometry operations of meet
and join can be expressed easily in terms of standard operations within the
geometric algebra. We also briefly discuss the linear algebra framework in
GA indicating how one will be able to use this within projective geome-
try. One of the main reasons for moving to a projective space is so that
lines, planes etc have representations as real geometric objects and so that
operations of intersection etc., can be performed by simple manipulations
(instead of via solutions of sets of equations, as in £3).

7.8.1 The bracket

In a nD space any pseudoscalar will span a hypervolume of dimension
n. Since, up to scale, there can only be one such hypervolume, all pseu-
doscalars, P, are multiples of the unit pseudoscalar, I, P = al, with a a
scalar. We compute this scalar multiple by multiplying the pseudoscalar,
P, with the inverse of I

PI'=all'=a=[P]. (3.27)

Thus, the bracket of the pseudoscalar P, [P], is its magnitude, arrived at
by multiplication on the right by J—!. This bracket is precisely the bracket
of the Grassmann-Cayley algebra. The sign of the bracket does not depend
on the signature of the space and as such it has been a useful quantity for
the non-metrical applications of projective geometry.

The bracket of n vectors {x;} is

[T1@2x3... 0] = [BIATIATIA. AT,
= (;1:1/\:BQ/\:z:;;/\.../\a:n)I_1
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It can also be shown that this is equivalent to the definition of the deter-
minant of the matrix whose row vectors are the vectors x;.

To understand how we can express a bracket in projective space in terms
of vectors in Euclidean space we can expand a pseudoscalar P using the
projective split for vectors:

P = X AXoAX3AXy = (X17474 X2 X37471X4)
= WiWaWsWa((1+ 21)(1 — @2)(1 + 23)(1 — 24))4
where W; = X;-y4 from equation (2.19). A pseudoscalar part is produced by

taking the product of three spatial vectors (there are no (spatial bivector)
x (spatial vector) terms), i.e.

P = W1W2W3W4<—x1$2:l:3 — L1XL3L4 + X1X224 + 1:2:1331134>4
W1W2W3W4<(:132 — :131)(1:3 — 1131)(1134 — 1131»4 (328)
WiWoWsWa{(z2 — z1)A(23 — 21)A(T4 — 1)}

If the W; = 1, we can summarize the above relationships between the
brackets of 4 points in R* and &3 as follows

X1 XoX3Xy] = (XiAXoAX3AX )™
{(1132 - :l:l)/\(:l:3 — 1131)/\(234 - :1:1)}]3_1. (329)

7.3.2  The duality principle and the meet and
join operations

In order to introduce the concepts of duality which are so important in
projective geometry, we should firstly define the dual A* of an r-vector A
as

A* = AT (3.30)

This notation A* relates the ideas of duality to the notion of a Hodge
dual in differential geometry. Note that in general I~! may not necessarily
commute with A.

We see therefore that the dual of an r-vector is an (n — r)-vector, for
example in 3-D space the dual of a vector (r = 1) is a plane or bivector
(n—r=3-1=2).

Using the ideas of duality we are able to relate the inner product to,
incidence operators and we will see this in what follows. In an n-D space
suppose we have an r-vector A and an s-vector B, where B has dual B* =
BI~! = B-I!. Here, since BI"! = B-I"! + BAI™! we can replace the
geometric product by the inner product as the outer product gives zero
(there can be no (n + 1)-D vector). Now, using the identity

AT'(BS'Ct) = (Ar/\Bs)'Ct for r+s< t, (331)
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we can write
A-(BI™YY= A (B-I"') = (AAB)-I"! = (AAB)T . (3.32)
This expression can be rewritten using the definition of the dual as follows
A-B* = (AAB)™. (3.33)

This equation shows the relationship between the inner and outer products
in terms of the duality operator. Now, if r + s = n, then AAB is of grade
n and is therefore a pseudoscalar. Using equation (3.27) it follows that

A-B* = (AAB)" = (AAB)I ! = ([AAB|)I™*
[AAB. (3.34)

We see therefore that the bracket relates the inner and outer products to
non-metric quantities. It is via this route that the inner product, normally
associated with a metric, can be used in a non-metric theory such as pro-
jective geometry. It is also interesting to note that since duality is expressed
as a simple multiplication by an element of the algebra, there is no need to
introduce any special operators or any concept of a different space.

Now, when we work with lines and planes, it will clearly be necessary to
have operations for computing the intersections or joins of such geometric
objects. We require a means of performing the set- theory operations of
intersection, (), and union, (.

If in an n-dimensional geometric algebra the r-vector A and the s-vector
B have no common subspace, one can define the join of both vectors as
follows

J = AAB. (3.35)

So that the join is simply the outer product (an r + s vector) of the
two vectors. However, if A and B have no common subspace , the join
would not simply be given by the wedge but by the subspace they span.
The operation join J can be interpreted as a common dividend of lowest
grade and is defined up to a scale factor. The join gives the pseudoscalar
if (r + ) > n. We will use A for the join only when the blades A and B
have a common subspace, otherwise the ordinary exterior product A will
be used.

If there exists a k-vector C such that for A and B, we can write A = A'C
and B = B'C for some A’ and B’, then we can define the intersection or
meet using the duality principle as follows

(AV B)* = A*AB". (3.36)

A beautiful result telling us that the dual of the meet is given by the join
of the duals. Since the dual of AV B will be taken with respect to the join
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of A and B, we must be careful to specify what space we use for the dual
in equation (3.36). However, in most cases of practical interest this join
will indeed be the whole space and the meet and we are therefore able to
obtain a more useful expression for the meet using equation (3.33)

AV B = ((AV B)*)* = (A*AB*)I = (A*AB*)(I"'I)I = (A*-B) (3.37)

The above concepts are discussed further in [16].

7.3.8 Linear algebra

This section presents the geometric algebra approach to the basic concepts
of linear algebra — it is presented here for completeness. Although it will
not be discussed in this chapter, the treatment of invariants [5] uses li-
near algebra and projective geometry to create geometric entities which
are invariant under projective transformations.

A linear function f maps vectors to vectors in the same space, the ex-
tension of f to act linearly on multivectors is possible via the so called
outermorphism, f, defining the action of f on r-blades by

f(a1 Aag .. ./\ar) = f(a,l)/\f(ag)/\. . ./\f(ar). (338)

[ is called an outermorphism, because f preserves the grade of any r-vector
it acts on. The action of f on general multivectors is then defined through
linearity. f must therefore satisfy the following conditions

i(al /\0.2) = i(al) /\i(ag)
i(AT) <i(Ar)>r (3.39)
i(alal + a2a2) = ali(al) + a2i(a2).

Accordingly, the outermorphism of a product of two linear functions is the
product of the outermorphisms, i.e. if f(a) = f2(fi(a)) we write f = f,f .

The adjoint f of a linear function f acting on the vectors @ and b can be
defined by the property

fla)-b= a-f(b). (3.40)
Iftf= f, the function is self-adjoint and can be represented by a symmetric
matrix, F (F = FT).

Since the outermorphism preserves grade, the unit pseudoscalar must be
mapped onto some multiple of itself ~ this multiple is the determinant of

b
F(I) = det(f)I. (3.41)

This is a particularly simple definition of the determinant from which many
properties determinants follow straightforwardly.
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7.4 Algebra in Projective Space

Having introduced duality, defined the operations of meet and join and
given the geometric approach to linear algebra, we are now ready to carry
out geometric computations using the algebra of incidence.

Consider three non-collinear points, Py, P», Ps, represented by vectors
Zq, T2, 3 in 3 and by vectors X;, Xo, X3 in R*. The line L5 joining
points P, and P, can be expressed in R* by the bivector

L1z = X1 AXo. (4.42)

Any point P, represented in R* by X, on the line through P; and Ps, will
satisfy

XALjz = XAX AX; = 0. (4.43)

This is therefore the equation of the line in R*. In general such an equation
is telling us that X belongs to the subspace spanned by X; and Xy, i.e.
that

X=X, +aXy (444)

for some a1, as. In computer vision we can use this as a geometric cons-
traint to test whether a point X lies on Lq2.

The plane ®,53 passing through points Py, P, P3 is expressed by the
following trivector in R*

P93 = X1 AXHAX 3. (4.45)

In 3-D space there are generally three types of intersections we wish to
consider; the intersection of a line and a plane, a plane and a plane, and
a line and a line. To compute these intersections we will make use of the
following general formula [15], giving the inner product of an r-blade, A, =
aAasA.....Aa., and an s-blade, By = by AbaA.....Ab, (for s <)

Bs-(aiANaz A...Nay)= (4.46)
Ze(jljg....jT)Bs~(ajl ANaj, A... N\ ajs) a; 1 N... ANaj,
J
where we sum over all combinations j = (41, J2, ..., Jr) such that no two ji’s

are the same. €(jyja...jr) = +1 if j is an even permutation of (1,2,3,...,7)
and —1 if it is an odd permutation.

7.4.1 Intersection of a line and a plane

In the space R* consider the line A = X; AX, intersecting the plane
® = Y1,AY3AY3. We can compute the intersection point using the meet



136 Eduardo Bayro Corrochano and Joan Lasenby

operation as follows
AV®=(X1AX2)V (Y1AY2AY3) = AV & = A*- . (4.47)

where we have used equation (3.37) and the fact that in this case the join
is the whole space.

Note that the pseudoscalar, Iy in G; 3 for R?*, squares to —1, commutes
with bivectors but anticommutes with vectors and trivectors and has in-
verse I, ! = —1I,. This therefore leads to

A*® = (A1) = —(AI)- . (4.48)

Now using the equation (4.47) we can then expand the meet as
AV = —(AI)(Yl /\Yg/\Yg) = —{(AI)(YQ/\Yg)}Yl +

+{(AI) (Y3AY1)} Y2 + {(AD)-(Y1AY2)}Ys  (4.49)
Noting that (AI)-(Y;AY) is a scalar, we can evaluate the above by taking
scalar parts. For example, (Al)-(Y2AY3) = (I(X1AX3)(Y2AY3)) =
I(X;AX2AY2AY3). From the definition of the bracket given earlier, we
can see that if P = X;AXoAY2AY3, then [P] = (X1AXoAYAY3) 1 If
we therefore write [A;A3A3A,] as a shorthand for the magnitude of the

pseudoscalar formed from the four vectors, then we can readily see that the
meet reduces to

AV O = [X;Xo Y, Y3|Y1 + [X1 X Y3 Y] Yo + X1 Xo Y Yo Ys (4.50)

giving the intersection point (vector in R*).

7.4.2 Intersection of two planes

The line of intersection of two planes, &1 = X1 AX2AX3 and &3 = Y1 A
Y;AY3, can be computed via the meet of ®; and @,

D VP = (X1AX2AX3) V (Y1AY2AY3). (4.51)
As in previous section, this can be expanded as
P vPy, = &*(Y1AY2AY3)
—{{(®11)-Y1}(Y2AY3) + {(®11)- Y2} (Y3AY1) +
+{(®11)- Y3} (Y1AY2). (4.52)

Again, the join is the whole space and so the dual is easily formed. Follow-
ing the arguments of the previous section we can show that (®,1)-Y; =
—[X1X,X3Y,], so that the meet is

b, v, = [X1X2X3Y1](Y2 /\Y3) + [X1X2X3Y2](Y3 /\Yl) +
X1 X2 X5 Y3](Y1AY2), (4.53)

producing a line of intersection or bivector in R*.
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7.4.83 Intersection of two lines

Two lines will intersect only if they are coplanar. This means that their
representations in R*, A = X;AX;, and B = Y;AY, will satisfy

AAB = 0. (4.54)

This fact suggests that the computation of the intersection should be ca-
rried out in the 2-D Euclidean space which has an associated 3-D projective
counterpart, R3. In this plane the intersection point is given by

AVB = A"-B=—(AL)-(Y1AY3)
= —{((AL3)-Y1)Y2 — ((Al3)-Y2) Y1} (4.55)

where I3 is the pseudoscalar for R%. Once again we evaluate ((Al3)-Y;) by
taking scalar parts

(AIg)Yz = <X1X2]3Yi> = 13X1X2Yi = —[X1X2Yi]. (456)
The meet can therefore be written as
AV B =[X;X,Y,]Y: - [X1X2Y5]Y; (4.57)

where the bracket [A; A3 A3] in R? is understood to mean (A AAAA3) 37"
The above is often an impractical means of performing the intersection of
two lines — see [20] for a method which creates a plane and intersects one of
the lines with this plane. See also [8] for a discussion of what information
can be gained when the lines do not intersect. See also Chapter 13 for
a complete treatment of the incidence relations between points, lines and
planes in the n—affine plane.

7.4.4 Implementation of the algebra

In order to implement the expressions and procedures outlined so far in this
chapter we have used a computer algebra package written for MAPLE. The
program originates from [17] which works with geometric algebras of Gi 3,0
and Gs 0,0; 2 more general version of this program, which works with a user-
defined metric on an n-D algebra is available on [1]. Using these packages we
are easily able to simulate the situation of several cameras (or one moving
camera) looking at a world scene and to do so entirely in projective (4D)
space. Much of the work described in subsequent sections has been tested
in MAPLE.

7.5 Visual Geometry of n Uncalibrated Cameras

This section will give an analysis of the constraints relating the geometry
of n uncalibrated cameras. Firstly the pinhole camera model for one view
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will be defined in terms of lines and planes. In two and three views the
epipolar geometry is defined in terms of bilinear and trilinear constraints.
Since the constraints are based on the coplanarity of lines, we can only find
relationships expressed by a single tensor for up to four cameras. For more
than four cameras the constraints are linear combinations of bilinearities,
trilinearities and quadrilinearities.

7.5.1 Geometry of one view

We begin with the monocular case depicted in Figure 7.2. Here the image
plane is defined by a vector basis of three arbitrary non—collinear points
Aj, A; and A3 with the optical center given by Ag (all vectors in R?%).
Thus, {A;} can be used as a coordinate basis for the image plane ®4 =
A3AA3AA3, so that any point A’ lying in ® 4 can be written as

v

A
2

dp=A1NAyA A3

FIGURE 7.2. Sketch of projection into a single camera — the monocular

case.

A = a1Aq + asAs + azAs. (558)

We are also able to define a bivector basis of the image plane, {Lf‘}, spa-
nning the lines in & 4;

L{ = AsAAs L} = AsnA, L{=AANAy  (5.59)
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The bivectors {L{1} together with the optical center allow us to define
three planes, ¢, as follows;

4 = AgAAAA3 = AgALE
& = AgAA3AA; = AgALY (5.60)
4 = AoAAIAAy = AgALE.

We will call the planes, ¢>34, optical planes. Clearly each is a trivector and
can be written as

¢ = tj1(I71) + tya(I72) + tia(Ins) + tja(Iya) = tie(Iye)  (5.61)

since there are 4 basis trivectors in our 4-D space. These optical planes
clearly intersect the image plane in the lines {Lf}. Furthermore, the in-
tersections of the optical planes also define a bivector basis which spans
the pencil of optical rays (rays passing through the optical centre of the
camera) in R*;

Lay = ¢2Vés=AgAA,

LA2 ¢3 vV ¢1 = Ao/\A2 (562)
Las = ¢1V 2= AoNA;3,

Il

so that any optical ray resulting from projecting a world point X onto the
image plane can be written as

Ao/\x = ijAj-

We can now interpret the camera matrices, used so widely in computer
vision applications, in terms of the quantities defined in this section.

The projection of any world point, X, onto the image plane is  and is
given by the intersection of line AgAX with the plane ® 4

T = (Ao /\X) \ (A1 ANAy /\Ag) = XM{(A()/\’)’M) \2 (A1 NAg /\Ag)}
where 4 is summed over 1 to 4. We can now expand the above meet to give

x = X;{[AoAYjANA2AA3]AL + [AgAY;ANA3AAL]A +
+[A0/\’)’j/\A1/\A2]A3}. (563)

Since = z* A, the above implies & = X, Pjr Ay and therefore that
dtk = ijXj
where

ij = [Ao/\’)’j /\Lf] = [¢k/\’)’j] = —tg; (5.64)



140 Eduardo Bayro Corrochano and Joan Lasenby

since Iy; Ay = —I8;;. The matrix P takes X to & and is therefore the
standard camera projection matrix. If we define a set of vectors {qbﬁ},
j =1,2,3, which are the duals of the planes {qbf}, ie. qbi‘ = qb;-‘I_l, it is
then simple to see that

==t =Tt = —[tj171 + tiave + tizvs + tiaval. (5.65)
Thus, we see that the projected point & = 27 A is then given by
o =X-¢, or z = (X-¢))A; (5.66)

i.e. the coefficients in the image plane are formed by projecting X onto the
vectors formed by taking the duals of the optical planes. This is, of course,
equivalent to the matrix formulation

X
T dh tin tiz tiz fug X;
x = o | = ¢4 | X =| tar taz tas tos X;
x3 % ts1 t32 133 i34 X,
= PX. (5.67)

The elements of the camera matrix are therefore simply the coefficients of
each optical plane in the coordinate frame of the world point. They encode
the intrinsic and extrinsic camera parameters as given in equation (2.2).

Next we consider the projection of world lines in R* onto the image plane.
Suppose we have a world line L = X; AX5 joining the points X; and Xa.
If 21 = (ApAX1) V@4 and @2 = (AgAX2) V &4 (i.e. the intersections of
the optical rays with the image plane) then the projected line in the image
plane is clearly given by

l=x1Ax2

As we can express [ in the bivector basis for the plane, we have

l=0L}

where L = Ay A Ajz etc. as before. From our previous expressions for
projections given in equation (5.66), we see that we can also write [ as
follows

l=a1Azy = (X1-¢%) (X2 ¢5)AjAAL = IPLY (5.68)
which tells us that the line coefficients, {I’}, are

o= (X106%)(Xa¢%) — (X1-6%) (X2 ¢7)
12 (X1-9%)(X2-0) — (X1-0%) (X2 ¢%) (5.69)
Bo= (X194 (Xa %) — (X1:6%) (X2 ¢4).
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Using the identity in equation (3.36) we are then able to deduce identities
of the following form for each of the 1

' = (X3 AXs)-($5A¢5) = (XaAX2)- (¢4 V ¢f)* = L- L

using the fact that the join of the duals is the dual of the meet. We therefore
have the general result

V=LLY =L-IY (5.70)

where we have defined L7, to be the dual of L]A. Thus, we have again
expressed the projection of a line L onto the image plane by contracting L
with the set of lines dual to those formed by intersecting the optical planes.

Below we summarize the two results derived here for the projections of

points (X; and Xj) and lines (L = X;AX3) onto the image plane:
z1 = (Xi-¢)))A, 3 = (Xo-¢)) A,
I = (L-Ly)L{=1FLf (5.71)
(5.72)
Having formed the sets of dual planes, {qbﬁ}, and dual lines, LQ}, for a
given image plane, it is then conceptually very straightforward to project
any point or line onto that plane.

If we express the world and image lines as bivectors, L = a;jo; + &;l0;

and L% = 3,0, + 3,10, we can write equation (5.72) as a matrix equation:

23]
A Q2
Ul U2 U1z U4 U5 Ule as
5 _ _
= l = Ug1 U2 U3 Uq Uy U2 dl = PLl (573)
3
l U3z] U3z U33 U3ge U3s U6 ~
a2
o3

where [ is the vector of Pliicker coordinates, [o1, g, &g, &y, G, &3] and the
matrix P;, contains the 3 and beta’s — i.e. information about the camera
configuration.

When we back-project a point, z, or line, [, in the image plane we produce
their duals, i.e. a line, I, or a plane, ¢;, respectively. These back- projected
lines and planes are given by the following expressions

l. = Aghz = (X-¢)))AgAA; = (X-¢%) L] (5.74)
¢ = AoAl = (L-L))AgNLE = (L-LY))$7. (5.75)

7.5.2  Geometry of two views

In this and following sections we will work in projective space, R*, although
returning to 3-D Euclidean space will be necessary when discussing inva-
riants in terms of image coordinates; this will be done via the projective
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split. Figure 7.3.a shows a world point X projecting onto points A’ and B’
in the two image planes ¢4 and ¢p respectively.

The so called epipoles E 4 and Ep,4 correspond to the intersections of
the line joining the optical centres with the image planes. Since the points
Ap,By, A’ B’ are coplanar, we can formulate the bilinear constraint using
the fact that the outer product of these four vectors must vanish:

Ao/\Bo/\A,/\B, = 0. (576)

Now, if we let A’ = o;A; and B’ = 3;B;, then equation (5.76) can be
written as

Oéi,Bj{Ao/\Bo/\Ai/\Bj} =0. (577)
Deﬁning Fij = {1&0/\B0/\Ai/\Bj}I_1 = [AoBoAiBj] gives us
Fija:8; =0 (5.78)

which corresponds in R* to the well-known relationship between the com-
ponents of the fundamental matriz or bilinear constraint in E3, F, and
the image coordinates [19]. This suggests that F' can be seen as a linear
function mapping two vectors onto a scalar:

F(A,B) = {AjABoAAAB}H ! (5.79)

So that Fy; = F(A,, B;). Note that viewing the fundamental matrix as a
linear function means that we have a coordinate-independent description.
Now, if we use the projective split to associate our point A’ = ;A in the
image plane with its £3 representation a’ = §;a;, where a; = %, it is
Y4

not difficult to see that the coefficients are related by

A’ Y4
= b; 5.80
Ay (5.80)

o7}

Thus, we are able to relate our 4-D fundamental matrix, F' to an observed
fundamental matrix F' by

Fri = (Ak-72)(Bi-74) Fr (5.81)
so that

o, FuB = (A 44) (B’ -74)6x Friey (5.82)

jos|

where b’ = ¢;b;, with b; = —B% F is the standard fundamental matrix
Y4

that we would form from observations.
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By

FIGURE 7.3. Sketch of a) binocular projection of a world point, b)
trinocular projection.
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7.5.8 Geometry of three views

The so called trilinear constraint captures the geometric relationships exis-
ting between points and lines in three camera views. Figure 7.3.b shows
three image planes ¢4, ¢p and ¢c with bases {A;}, {B;} and {C;} and

optical centres Ag, Bg, Cp. Intersections of two world points X; with the
!

planes occur at points A}, B}, C., i = 1,2. The line joining the world points

i
is L1p = X1 AXy, and the projected lines are denoted by L’,, L'z and L.
We first define three planes

'y = AgAAAAL,  ®f = BoABIAB,, &, = CoACIAC,. (5.83)
It is clear that Li2 can be formed by intersecting ®5 and @,
Lip = &5 VO, = (BeALR) V (CoALp). (5.84)

If Ly, = AgAA] and Ls, = AgAA), then we can easily see that Ly and
L, intersect with L;3 at X; and X3 respectively. We therefore have

LiANLi5 =0 and IL;ALip=0 (585)
which can then be written as
(AoAANA{(BoALR) V(CoALL)} =0 fori=1,2. (5.86)

This therefore suggests that we should define a linear function T which
maps a point and two lines onto a scalar:

T(A', L, Lg) = (Ao AA')A{(BoALp) V (CoALp)}- (5.87)

Now, using the line bases of the planes B and C similar as the ones of the
plane A in equation (5.59), we can write

A=A, Lp=1BLF Ly=I{LF. (5.88)

If we define the components of a tensor as Tk = T(A,',LJB,Lg), then if
A', L'y, L}, are all derived from projections of the same two world points,
equation (5.86) tells us that we can write

Tijkoal Pl = 0. (5.89)

T is the trifocal tensor and equation (5.89) is the trilinear constraint. In
in [11, 21] this was arrived at by consideration of camera matrices, here,
however, equation (5.89) is arrived at from purely geometric considerations,
namely that two planes intersect in a line which in turn intersects with
another line. To see how we relate the three projected lines, we express the
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line in image plane ¢4 joining A} and A} as the intersection of the plane
joining A to the world line Lq5 with the image plane ®4 = AjAA3AA3

24 = A’l AAL = (Ao/\ng) V oy (590)

Considering L1 as the meet of the planes ®5 V®,, and using the expansions
of L'y, L'g, L given in equation (5.88), we can rewrite this equation as

AL = (AoAAANPIC{(BoALE) V (CoALL)}) V @4. (5.91)
Using the expansion of the meet given in equation (4.53) we have
LY = [(AoAA)NBIZ{(BoALE) v (Con L) NLS (5.92)
which, when we equate coefficients, gives
I} =Tyl P17 (5.93)

Thus we obtain the familiar equation which relates the projected lines in
the three views.

7.5.4 Geometry of n-views

If we have n-views, let us choose 4 of these views and denote them by A,
B, C and N. As before, we assume that {A;}, {B;} etc. ... j = 1,2, 3 define
the image planes.

Let ®4; = AgAA;AA!, &p; = BoAB,; AB’ etc. where A’, B’ etc are
the projections of a world point P onto the image planes. ® 4; V ®y gives
a line passing through the world point P as does ®¢; V ®n,,. Since these
two lines intersect we have the condition

{PajV OEIN{DPlV Pym} =0. (5.94)

Consider also the world line L = X;AXy which projects down to I, lp, l¢, I,
in the four image planes. We know from the previous sections that it is
possible to write L in terms of these image lines as the meet of two planes
in several ways

L = (Ao/\la)\/(Bo/\lb) (595)
L = (CoAl.)V(NgAl,) {(5.96)

Now, since LAL = 0 and taking I, = KZIL{‘ etc, we can write
GO (AGALL) V (BoALP)A[(CoALE) V (NoALN) =0 (5.97)
which can be written as

B LECT Qijem = 0. (5.98)
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Here, Q is the so-called quadrifocal tensor recently discussed in [12]. The
above constraint in terms of lines is straightforward but it is also possible to
find a relationship between point coordinates and Q. To do this we expand
equation (5.94) as follows

o Bs8emu{[(AoAL$,) V (BoALE,)A(CoALS) V (NoALN, )]} = 0.(5.99)

where we have used the notation L]Ar = A;AA, = eier;“. Thus we can
also write the above equation as

Qr BsOtNu€iy jr€isks€iglt€iamuQiyigigis = 0, (5.100)

for any {i,3,k,m}.

7.6 Conclusions

This chapter has outlined the use of geometric algebra as a framework for
analysis and computation in computer vision. In particular, the framework
for projective geometry was described and the analysis of tensorial relations
between multiple camera views was presented in a wholly geometric fashion.
The projective geometry operations of meet and join are easily expressed
analytically and easily computed in geometric algebra. Indeed it is the
ease with which we can perform the algebra of incidence (intersections of
lines planes etc.) that simplifies many of the otherwise complex tensorial
relations. The concept of duality has been discussed and used specifically
in projecting down from the world to image planes — in geometric algebra,
duality is a particularly simple concept and one in which the non-metric
properties of the inner product becomes apparent.
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Chapter 8

Using Geometric Algebra for
Optical Motion Capture

Joan Lasenby and Adam Stevenson

8.1 Introduction

Optical motion capture refers to the process by which accurate 3D data
from a moving subject is reconstructed from the images in two or more
cameras. In order to achieve this reconstruction it is necessary to know how
the cameras are placed relative to each other, the internal characteristics
of each camera and the matching points in each image. The goal is to
carry out this process as automatically as possible. In this paper we will
outline a series of calibration techniques which use all of the available data
simultaneously and produce accurate reconstructions with no complicated
calibration equipment or procedures. These techniques rely on the use of
geometric algebra and the ability therein to differentiate with respect to
multivectors and linear functions.

Optical motion capture involves the use of multiple cameras to observe
a moving subject. From the 2D data in each camera the goal is to obtain
a moving 3D reconstruction of our subject. This process has applications
in medicine, biomechanics, sports training and animation. The whole mo-
tion capture process starts by calibrating the cameras — i.e. determining
their relative positions and orientations and the internal camera charac-
teristics. In any practical system, we require this process to be easy to
accomplish and the results to be accurate. This paper will look in detail
at this initial stage of the motion capture process, in particular the de-
termination of the relative orientations and positions of any number of
cameras given no special calibration object. The algorithms developed for
this purpose involve the use of geometric algebra and result in an iterative
scheme which does not require any non-linear minimization stage. There
are already many examples of the use of geometric algebra in other com-
puter vision applications a few of which are given in [1, 8, 9]. During the
m-camera calibration process we shall see that two very useful algorithms
emerge: firstly, a straightforward, analytic means of estimating the rela-
tive translations between cameras (not simply their directions) given that
the relative rotations are known, is presented. Secondly, given any number
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of cameras and their relative rotations and translations, we show how to
produce a robust, optimal (in a least squares sense) estimate of the world
coordinates. Both techniques could be useful in a variety of applications
and are each programmed in just a few lines of code.

The setup we use consists of three 50Hz monochrome CCD cameras
each connected to the inputs of a framegrabber card located in a PC — a
synch signal is fed into the cameras so that the digitised data comes from
simultaneous frames, see figure 8.1. The system will shortly be extended to
6 cameras.

FIGURE 8.1. 3-camera motion capture system.

Retroreflective markers are placed on the moving subject and these are
illuminated with IR radiation directed from each of the cameras. Image
sequences of bright blobs are then captured — one for each camera. Storing
only the locations of the bright blobs dispenses with the need for expen-
sive frame-stores. In the subsequent processing, the bright blobs in each
frame are reduced to single points by an algorithm which attempts to find
the ‘centre of mass’ of each blob. We are therefore left with a list of the
pixel coordinates for the points seen in each frame for each image. Assu-
ming we are able to reconstruct 3D data from matched image points, it is
essential that we are able to track and match the points through the se-
quences. For complicated motions, tracking can be the hardest part of the
whole process; points crossing, being occluded, performing abrupt changes
of direction, all add to the difficulties. Experience has shown that one re-
liable means of tracking is to track the points in space, i.e. to track the
3D motion — this enables one to use rigidity and length constraints (i.e.
information from a model) in a simple fashion to improve the prediction
process. Therefore, for reliable tracking it is very important that we have
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a good initial calibration of the system, otherwise the reconstructions will
be poor and the tracking may experience problems. This is one of the main
incentives for developing an accurate user-friendly means of obtaining the
system calibration parameters. The following section will explain what the
calibration parameters are and how we can estimate these using geometric
algebra (GA) techniques. This will be followed by some results showing
the accuracy of the calibrations via simulations and tests on real data.
Throughout the paper we will assume that the readers are familiar with
basic GA manipulations — for simple introductions to GA see [4, 7, 3, 5].
In this paper we will use the convention that where indices are repeated in
the contravariant and covariant positions, i.e. a’b;, they are summed over
unless explicitly stated otherwise.

8.2 External and Internal Calibration

In this section we will explain what is meant by external and internal
calibration and show how we can use GA techniques to determine the
unknown calibration parameters.

8.2.1 FExternal calibration

Suppose that we have m cameras which we label 1 to m — these cameras
are placed about the field of view. The aim is to place the cameras such
that at any point in the image sequence, any given world point will always
be visible in at least two of the cameras — this may not always be possible,
but the tracking software can often make sensible predictions based on the
rest of the tracked sequence when no prediction from the data is possible.
Let us take the first camera, 1, as our reference camera. Then the position
and orientation of camera j will be completely specified by a rotor R; and
a translation ¢; as shown in figure 8.2.

Part of the calibration process will therefore be to determine, as accu-
rately as possible, the m — 1 rotors and the m — 1 translations.

8.2.2 Internal calibration

A world point X = (XY, Z) is projected onto an image plane to give an
image point = (z,y, f) where f is the focal length of the camera (pinhole
camera model), see figure 8.3

However, from the image we will measure pixel coordinates u = (u,v,1).
In order to move between pixel and image coordinates it is easy to show
that there exists a 3 x 3 matrix, C which takes  to u :

u=Ce/f),  @/f=Cu
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FIGURE 8.2. Rotations and translations of cameras relative to refe-

rence, chosen as camera 1.

FIGURE 8.3. Factors determining the internal calibration parameters.
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where C' is of the form

a [ ug
C=| v 6 v
0 0 1

(w0, o) is known as the principal point — it is where the optical axis of
the camera cuts the image plane. «, 83,7, § depend upon the possible scaling
and skewing of the pixel axes and f is the focal length (distance along the
optical axis from the optical centre to the image plane).

The remainder of the calibration process will therefore be to determine
the internal camera parameters. The internal parameters can be found via
a variety of techniques and, once found, are unlikely to vary over reasonable
timescales. In this paper we will mainly focus on how to accurately estimate
the external parameters given knowledge of the internal parameters (in this
case we say we are working with calibrated cameras, although a later section
will indicate how we can include estimation of the internal parameters in
the estimation procedure.)

8.3 Estimating the External Parameters

Suppose first that we know internal calibration matrices C; for each camera,
j=1,..,m. Let the N world points that we observe with our cameras be
X;,i=1,..,N, and define an occlusion field O;; such that O;; = 1 if X;
is visible in camera j and 0 if it is not visible in camera j. In practice, we
would like to be able to do this external calibration without having to track
points (recall the tracking uses the calibration information). This is done
by waving a single marker or light source over the viewing area (usually
a volume of around 2m® should be covered for adequate calibration). In
this way each camera will see no points or only one point and there is no
tracking or matching problem. It is of course possible that some cameras
will see more than one point due to the presence of spurious sources — if
this occurs the frame is not used in the calibration process.

Let u;; be the observed pixel coordinates (of the form (u,v,1)) of the
projection of world point X; in camera j. Since we know the internal cali-
bration parameters of each camera, we can recover the image coordinates,
x;;, for this point via x;; = Cj— luij (from hereon we will take it that
x;; = xi;/f to reduce the complication). If R; and t; are the rotor and
translation which relate the frame and position of camera j to the reference
frame of camera 1 then the following relation holds

X = Rj(X;~t;)R; (3.1)

where X ;; is world point 7 in the coordinate frame of camera j, see [7].
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FIGURE 8.4. Geometric depiction of the meaning of cost function S>.

If the noise occurs in the image planes, we might expect that our es-
timates of the Rs and ts would best be found via minimization of the
following cost function

m . 2
Si=) Y |xi - B(Xim )| g (3.2)
=1 =1 [R; (X — t;)R;]-es
This is effectively minimizing the sum of the squared distances in the
image planes between the observed image points and the projected points.
We should note here that R; = T (the identity), t; = 0, and the presence of
the O;; ensures that if the point X; is not visible in camera j then there is
no contribution from this term. However, we can see immediately that the
presence of the parameters we are trying to estimate in the denominator of
the right-hand term makes this equation a difficult one — we would certainly
have to find the minimum via some non-linear optimization technique.
Now, suppose that instead we consider the following cost function:

Sy = ZZ [Xij3$ij - R](Xz - tj)Rj] 202'_7' (3.3)

j=114i=1

Here X;;3 is the distance we have to move out along the ray joining the
optical centre of camera j to image point x;; in order to minimize the
distance between the world point X; and the point X;;3x;;. The above
cost function is therefore the sum of squared distances between the world
points and their closest points on the camera rays projecting out from the
observed image points. Thus, while S; represents a cost function in the
image planes, S, represents a cost function in the world, see figure (8.4).
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Our observations are the image points in the m cameras, therefore the noise
on our observations occurs in these image planes — if one assumes Gaussian
noise one might therefore want to minimize the cost function S;. However,
it is also true that minimizing S; does not ensure that the reconstructed
world points are in some way ‘as close as possible to the observed rays —
which one might also deem desirable. In fact, both cost functions are likely
to give good results and we choose to optimize S, in order to obtain avoid
a non-linear minimization.

Now, let us try to optimize Sy over our parameters R;,t;, X3, X;.
Although for external calibration purposes we are only interested in the
relative rotations and translations of the cameras, here we shall adopt a
maximum likelihood approach and differentiate with respect to all of our
unknown parameters. We shall show in the following sections that it is po-
ssible to obtain an iterative solution to this minimization problem and that
this procedure converges reliably provided the data is not very poor. This
differentiation will involve differentiation with respect to scalars, vectors
and rotors.

In the following sections we will frequently use the quantities defined
below:

N

nj=Y 05 for j=1,2,.,m (3.4)
i=1
m

mi=Y 0y for i=12.,N (3.5)
j=1

Here, n; is the number of points visible in camera j and m; is the number
of cameras that can see world point <.

8.8.1 Differentiation w.r.t. ty

When we take the derivative, 9,, with respect to (w.r.t.) a vector quantity
a we use the fact that the differential operator 9, can be written (in terms
of a basis {e;}) as

where a=ad'e; (3.6)

Here {e'} is the reciprocal frame to {e;}, and is defined by e;e’ = &, for
,J = 1,2, 3. Note that we do not write vectors in bold when they appear as
subscripts in the vector derivative. We now want to differentiate Sz w.r.t.
ti, where k can take values 2, 3, ..., m. Consider first differentiating a vector
squared, 2, wrt. t =t e;. Taking out a factor of e’ on the left and using
the fact that uv + vu is equivalent to the inner product of the two vectors,
we have that
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O(zx) = ejg{m +elr—

= 2 {%-x} (3.7)

Thus, if we let {Xixs®ix — Ri(X; — tx)Ri} = Yk, then 8, So = 0 gives

N
.0 -
6tk52 = 2Ze]_j{Rkthk}'YikOik

=1 6tk
N . ~

= 2261[(Rk8ij)-Yik]Oik
i=1
N . ~

= 2267 (eJ'-RkYikRk)
i=1
N ~

= 2> RiYyRi =2R:
i=1

N

Z Y

i=1

R,=0

N
= Zyik =0 (38)
i=1

where we have used the fact that (RaR)-b = a-(RbR). Since Ef\il Y is
linear in ty, it is straightforward to solve equation (3.8) for ¢ to give

N
1 .
ty = — [Xi - XikstwikRk] Oik (3.9)
e i
We have m — 1 such equations as k goes from 2 to m. Thus, if we have
the data and have estimates for the world points, the rotors and the X3
values, we can solve for each of the translations.

8.3.2 Differentiation w.r.t. Ry

In geometric algebra we can differentiate w.r.t. any element of the algebra
(for more details on multivector differentiation see [7, 6, 3]) and therefore
w.r.t. rotors. Let us write

N
Or,S2 = OR, Z('vik — ReuikRy)*Ou (3.10)

i=1
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where v;; = Xjr3@®ir and w;x = X; — t;. The RHS has now been put in a
standard form for which the solution (see [7] for details) is as follows

N
Or, Sz = 4R Y vir ARtk Re) O (3.11)

i=1

For a minimum we require dg, S2 = 0, and therefore the Rj must satisfy

N N
szk/\ (Riwir Ri)Our, = Z{szS:sz/\Rk( —t)Re}O0u =0 (3.12)

i=1 =1

or, substituting for t; from equation (3.9)

N
LHS = Z{Xz‘k?;wik /\R;c

i=1

N
- Z [Xj - XjkBRk:l’ijk} Ojk| Ri}Oik

j 1

N L

= Z{szswzk/\Rk (Xz T ZXJ ik | Be}Oik

=1 =1

N

z(ﬁz‘k/\fikﬂikRk) =0 (8.13)

i=1

i

where we now have 0;; = Xjr3xi O and 6, = X — ;11: Z;V:1 X;Oj.
The second line in the set of equations (3.13) is obtained by noting that

Mz

1szk3wzk]/\*_‘ Zng3:BJkOJk =0.
i=1 J =1

We can now solve for Ry, via SVD as outlined in (7] — i.e.

R, = VUT  where FF=USVT
N
with  Fry = > (ea-ii)(es Dix) (3.14)

i=1

This can be done for each k. Thus, we see from the above that provided
we have the data, the world points and the X3 values, we can make an
estimate of the rotations using the maximum likelihood estimator for the
translations.
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8.3.3 Differentiation w.r.t. the Xpg3

Next we would like to differentiate w.r.t. the scalars Xp43 — recall these
represent the distance along the ray we have to move to bring us ‘as close
as possible’ to the world point.

For each X,,3 we have

- 2
aquBS2 = aqus {qu3zpq — Ry(Xp — tq)Rq} Opq
= 2 {qu-‘iwpq - RQ(XP - tq)Rq}"”pqOPq =0
(3.15)

For Oy, # 0 we therefore have

[Rq(xp — tg)Rq|-Tpq - (Xp — tg) [Rype Ry]
a2 N a2
Pq Pa

Xpgs = (3.16)

This equation tells us how to estimate the values of the {X;;3} given we
know the data, world points, rotations and translations.

8.3.4 Differentiation w.r.t. the Xy

If we expand S5 it is easy to see that the derivative w.r.t. X (for & from
1 to N) is given by

m

8Xk52 = an Z {_Qij3(ijijj)'Xk + (Xk _ tj)2} ij
=1
= 2), [—ij:%Rj%Rj + Xk — tj)] Or; =0 (3.17)
j=1

where we have used the fact that 9,(a-b) = b. The above expression can
then be rearranged to give
1 & -
X = m—k Zl[tj + ijgRj:l:ijj]ij (3.18)
]:
if my # 0. k can take the values 1 to N. Thus, we are able to estimate the
world points given values of the rotations, translations and the {X;;3}.

8.3.5 Refining the estimates of t; and Xy

From our data (consisting of one point in many frames viewed by each
camera) it is relatively straightforward to obtain an initial guess at the R;
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— this can be done by taking two cameras at a time and applying some
standard algorithm (e.g. decomposing the Essential matrix [10], Weng et
al’s algorithm [12], etc.). Of course, this will not give a consistent set of
rotations (e.g. Roz3Ro # Ra, where Ry is the rotor which takes the frame
at camera 2 to the frame at camera 3), but it will give a reasonable star-
ting point for the algorithm. Now, it would then be nice if we were able to
estimate a consistent set of translations from these rotations and the data
— but currently equation (3.9) gives t in terms of the other unknown pa-
rameters as well as the rotations. In addition, for reconstruction purposes,
we would like to have an expression for the world points, {X}, in terms of
just the rotations and translations. This is clearly also going to be essential
when we have calibrated our cameras and we are wanting to reconstruct in
an optimal fashion, points in the world from all of our m-camera data. We
will deal with the case of reconstruction first.

8.3.6 Optimal reconstruction from calibrated data

If we substitute equation (3.16) into equation (3.18) to eliminate the {Xpq3}
values, we have

1 « 1
k:"ﬁ;[tj‘kz?g{(x )R:BkJR}R:Bk]

Ok (3.19)

To simplify the notation we write w;; = ijinj. If we take the inner
product of the above equation with e;, 7 = 1, 2,3, we can rearrange to give

m
1 1

Xk . i — —— E 2 wk] €; ’waOkJ =
my -1 k:

—Z[t e —

We have 3 x N such equations (k = 1,..,N and ¢ = 1,2, 3). For each k
we can construct a matrix equation for Xy

(’wa &) (wej - ez)} Ok; (3.20)
kJ

ArXy = by, = Xy = A; by (3.21)

where the matrix Ax and vector by are given by
1
A = G- — > E(wk’ e;)(wi;-€p)0;  (3.22)

1
cl1e; — —Q(wk]--e,-)wkj ij (323)

by-e; = bF
Jj=1 mkj

I
g~
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Thus, if we have a knowledge of the calibration (Rs and ts), we see that
via equation (3.21) we can very quickly reconstruct the 3D world points
with a method that uses all of the available data at once in a sensible way.
More generally the SVD can be used to solve AxXy = by to avoid possible
degeneracy.

8.3.7 An initial estimate for the translations

Suppose we substitute for X3 from equation (3.16) into equation (3.9)
(Stiu using Wwi; = ijinj)

N
1 1
k izl ik

for ny # 0. If we now take the inner product of the above equation with e;
we have

1 N
ty- [ej - ‘7;; Zyijkoik
i=1

. 1 cps
with ¥, = z7 (wik-ej)w;k. Now, writing a,x = [e; — yijk]Oik and
i
N . .
Pjx = €5 — -nlk- i1 Yi;xOir the above equation can be written more con-

cisely as

1 N

= Z X;-[e; — yijk] Oix (3.25)

i=1

N
1
i=1

Recall from the previous section that we can write X; = A7 1, where A;
is a matrix which is a function of the Rs only and b; is a vector which is
a function of both the Rs and the ts. Let us therefore write X; = fl(bi),

where f. is the linear function corresponding to A; !, Using the fact that
f(c)-d = c- f(d), we can now rewrite equation (3.26) as

N
1 —
bk = o > b filaise) (3.27)
i=1
The next step is to note that we can write equation (3.23) as
L s 3.28
bk‘eizm—kztj'akij (3.28)
j=1
Letting f,(ai;x) = a;;xes We can write b;-f;(ai;x) as

- 1, &
biFilain) = —a > (train) (3:29)
v =1
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From this equation we can see that it will now be possible to use equa-
tion (3.27) in order to form a linear equation in the ts. With some mani-
pulation is it possible to obtain, for given j and k, the following expression

- 1L 1
>t { - Z T‘n_i&fjkoikaisl - ijélk} =0 (3.30)
=1 =1

This can be written as a matrix equation of the form QT = 0 where

T = [tg1,t22,t93,t31, ..., tm3]” (since t; = 0) and can therefore be solved
by assigning to T the eigenvector corresponding to the smallest eigenvalue
of the matrix QTQ (alternatively use SVD). Thus, given only an estimate
of the Rs we have been able to formulate an estimate of the ts — again,
using all of the available data simultaneously.

8.3.8 The iterative calibration scheme

Having worked out all of the necessary steps in the previous sections, we
are now in a position to outline the iterative scheme by which the external
calibration is carried out.

1. Guess an initial set of Rs given only the data (use standard 2-camera
algorithms)

Estimate a set of ts given these Rs
Estimate the world points {X;} given these Rs and ts
Estimate the {X,q3}s given all of the above

BANE -l S A

Obtain a new estimate of the Rs using values from (2),(3),(4) and
start the next iteration by returning to step (2).

In practice each step of the procedure can be performed quickly and
convergence is achieved within a few tens of iterations. In estimating the
ts we should note that we are only able to do this up to scale. One may
therefore set a value to unity (say ¢s-e3) and evaluate the other values
relative to this — when doing this however, checks must be made that the
signs of the estimated ¢s do not produce negative depths (if they do, we
will need to take t3-e3 = -1).

The above external calibration routine requires a very simple initial data
gathering stage (waving a single point over a volume representative of where
the world points will be) and utilises all of the image data simultaneously
in order to produce optimal estimates of the relative rotations and trans-
lations of the cameras. In addition the formula for reconstruction given in
equation (3.18) is very simple and gives accurate and robust 3D reconstruc-
tions. The value of the cost function (S2) can also be monitored throughout
the iterations; a final value of Sy which is too large is usually indicative of
poor data and a new calibration should be performed.



160 Joan Lasenby and Adam Stevenson

FIGURE 8.5. Wireframe house (26 points) viewed from 5 cameras —
the optical centre and 4 defining points of the image planes are shown.
The position and orientation of the cameras are such that the house

is in view in each camera.

8.4 Examples and Results

In order to illustrate this calibration procedure we will present some results
on both simulated and real data. While the procedure is routinely used in
the tracking and subsequent reconstruction of real motion capture data, a
quantitative evaluation of its behaviour is more easily obtained from simu-
lations. The real data presented attempts to evaluate the performance of
the calibration by checking that rays from the image planes, from which we
reconstruct the world point, do indeed cross approximately at a single point
in space. Real multiple camera data together with example reconstructions
can be downloaded from http://www.sig-proc.eng.cam.ac.uk/vision.

We use 5 cameras, the first camera placed with its optical centre at the
origin [0,0,0] and with its optical axis along the z-direction, viewing a
wireframe house which is placed about 50 units in z away from the origin.
Cameras 2 to 4 are rotated and translated from camera 1 as shown in
figure 8.5.

R; is the rotor which takes the frame at camera 1 to the frame at camera
j, and the axes, fi;, and angles, §;, which characterise R; (since R; =

exp —I—T-'g—gi) are given in table 1.
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| Rotor | 7l [ 6 ] t ]
Ry [0.7071, —0.7071, O] 51.498° [40, 40, 5]
Ry | [0.7593,-0.6508,0] | 83.810° | [60, 70,40]
Re | [-0.7071,0.7071,0] | 96.721° | [60, 60, 60]
Rs [~1,0,0] 180° [0,0,100]

Table 1 Table showing true values of the rotations and translations of
the cameras.

In order to calibrate the cameras we used 30 points generated at random
from a cube centred at [0, 0, 50] with side length 30 — these points simulated
the calibration process whereby one bright marker is moved around the
scene over a number of frames. Here we will assume that each of the 30
points is visible in all cameras. The 30 points were projected into the 5
cameras and the image points from each image plane were the only data
given to the calibration routines. In the image planes Gaussian noise was
added. Three different levels of noise were tested having standard deviation,
o = 0.001,0.005,0.01 — with the image plane coordinates ranging roughly
from -0.45 to +0.45, at a resolution of 1000 x 1000 this would correspond
to standard deviations ranging from 1 pixel to 10 pixels. To initialise the
algorithm, an initial set of Rs and ts were found by taking two cameras at
a time and performing some simple method to determine the parameters,
e.g. the algorithm of Weng et al. [12] — call these R} and t}. 20 iterations
of the algorithm were allowed in each case, although generally fewer were
needed to achieve adequate convergence. Let the final estimated values be
R} and t{.

Using R,j: and t£ we can then reconstruct the wireframe house. We use
a realistic set of data which consists of the image points in each camera
of those points from the house that were visible in that camera (i.e. we
include the relevant occlusion field). For the case depicted in figure (8.5),
we can see, for example, that the uppermost camera will not see any of
the vertices on the lower side of the house. For these simulations it was the
case that every vertex was visible in at least two cameras. Also the same
data and occlusion field were used to perform the 3D reconstruction using
the initial guesses Rg and t,g. The 3D reconstruction was carried out using
equation (3.21) in both cases.

Figure (8.6) shows 6 different 3D views of the true wireframe house — the
azimuth and elevation ([az,el], in degrees) of the viewpoint for each of the
views is as follows (from top left to bottom right)

[—38,30], [~15,5], [—110,20], [80, —25], [~90,90], [~90,0]

Figure (8.7) shows the reconstructions obtained for the case of added
noise,
o = 0.001 — the left column shows the results from the iterative scheme
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FIGURE 8.6. Six views of the true vertices of the simulated house.

(20 iterations), while the right column shows the results for reconstruction
from the two-camera estimates. The top, middle and bottom views have
azimuth and elevation as for the left column of figure (8.6). Figures (8.8)
and (8.9) show similar plots for o = 0.005 and o = 0.01. We see that with
little noise the reconstruction is very good for both cases. However, as the
noise gets more severe, we see that the iterative scheme tends to give better
reconstructions. Even under higher noise levels the reconstruction remains
acceptable.

As well as comparing the reconstructions it is also instructive to see how
the estimated rotors compare with the true rotors in each of the above cases.
If a rotor R, is written as R = exp(—I7/2), then the bivector describing
the rotation is I718/2, so that a good way of comparing rotors is to compare
the bivector components: i.e. n16, n20, n3, with n; = fi-e;. Figure (8.10)
compares these components for the true rotors, and the two sets of rotors
described above for four noise values, o = 0.001,0.005,0.007,0.01. Similar
comparisons for the translations are shown in figure (8.11).

In order to show the performance of the calibration algorithms on real
data we used three cameras to take a sequence of 300 frames of a person per-
forming a golf swing, with markers placed on shoulders, elbows and wrists.
The cameras were calibrated prior to taking the data by waving a single
bright marker over a representative volume and applying the algorithms
outlined in section 1.3. Figure 8.12 shows an example of the reconstruction
by showing the linked points for frame 3 of the sequence. Although this
plot does not tell us much without detailed information of the real subject,
figure 8.13 gives some idea of the accuracy of the calibration by plotting
the rays from the matching image points (four such points were taken)
through the optical centres of the cameras. The positions of the cameras
are obtained from the calibration. If the calibration is good, we would ex-
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FIGURE 8.7. Results of the reconstruction with ¢ = 0.001. The left

column shows results of iterative algorithm; right column shows results

from taking two-camera estimates.
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FIGURE 8.8. Results of the reconstruction with ¢ = 0.005. The left

column shows results of iterative algorithm; right column shows results
from taking two-camera estimates.
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FIGURE 8.9. Results of the reconstruction with ¢ = 0.01. The left
column shows results of iterative algorithm; right column shows results

from taking two-camera estimates.

pect all matching image points to intersect more or less at a single point
in space. From figure 8.12 we can see that this is indeed the case for the
particular frame chosen, and is also the case throughout the rest of the
sequence.

We can see that on the whole, the iterative algorithm described in this
paper produces good estimates of the bivectors and of the translations
over a wide range of noise cases. The two-camera estimates that we have
compared the algorithm with are, of course, not something that would be
routinely used in practice. However, most calibration schemes would start
with some such estimate and generally proceed via non-linear minimiza-
tion. Such minimizations use gradient descent methods and as such are
crucially dependent on the initial guess as they will tend to find the local
minimum in the vicinity of this initial guess. Other methods of calibration
involve building up the external calibration parameters camera by camera;
such methods have to ensure that the final estimates are independent of the
particular order of estimation and form a self-consistent set. Some calibra-
tion schemes in the literature are given in [11, 2], however, code is generally
not available to compare such algorithms with those discussed here.

8.5 Extending to Include Internal Calibration

The discussion in this paper has assumed that we have the internal cali-
bration of the cameras. Typically, for the motion capture system, this is
done every few weeks or so, and the values are assumed not to change sig-
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FIGURE 8.10. Moving left to right in columns shows results for n;0,
n260, n3f, while moving down rows from top to bottom shows results
for Ry, R3, R4, Rs. In each plot the dashed line gives the true value of
the bivector component, the solid line gives the bivector component
from the iterative algorithm and the dotted line gives that from the
two-camera estimate. The x-axis in each case gives the standard de-

viation of the Gaussian noise added.
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FIGURE 8.11. Moving left to right in columns shows results for the
first, second and third components of the translation vectors, while
moving down rows from top to bottom shows results for cameras 2 to
4. In each plot the dashed line gives the true value of the translation
component, the solid line gives the component from the iterative al-
gorithm and the dotted line gives that from the two-camera estimate.
The x-axis in each case gives the standard deviation of the Gaussian
noise added. Note that the translations are normalised so that t;e3 =1,

hence the graph in the upper right.
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FIGURE 8.12. 3D snapshot at frame 3 of the shoulders, elbows and
wrists of the golfer.

nificantly on this timescale. However, it is possible to adjust the algorithm
presented here to include determination of the internal parameters. If we
return to equation 3.3, but replace z;; by wu;j,

uyj = fi(Ti5) = Oy (5.31)

where the linear function f; represents the 3 x 3 camera matrix C}, our
cost function S, in terms of the observations uw and the internal calibration,
becomes

m - 2
Sp=>"%" [Xijafcj(uz'j) - Ri(X,:— tj)Rj} O;; (5.32)
j=1i=1
where f; = fj_l. We can now minimize over the {f.;} as well as the other
parameters using the ability in GA to carry out functional differentiation.
One must note, however, that the f.s take a particular form (which can be
made equivalent to an upper triangular matrix), so this constraint must be
allowed for. A detailed description of this self-calibration procedure will be
presented elsewhere.

8.6 Conclusions

A means of determining the external calibration parameters (relative ro-
tations and translations) for any number of cameras observing a scene has
been presented. Using geometric algebra to differentiate with respect to
the the unknowns in the problem, we are able to build up an iterative
estimation scheme. In the process, we also produce an efficient and ro-
bust reconstruction algorithm which can be used for estimating the world
points once the calibration has been achieved. The method is essentially a
maximum likelihood technique in which we substitute maximum likelihood
estimators in order to eliminate the parameters we do not want to estimate
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FIGURE 8.13. Reconstructed rays of 4 points (shoulders, one elbow
and one wrist) in randomly chosen frames from a 300 frame sequence
of a golf swing. The reconstruction was carried out using calibration

data determined by the iterative scheme described in section 1.3.
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(e.g. the world points and the {X;;3}s). Another technique which can be
employed is a Bayesian approach, which marginalises over these parame-
ters (nuisance parameters) prior to estimating the Rs and ¢s — a review of
the geometric algebra approach to this procedure is given in this volume 9.
Indeed, if the parameters in question have a multivariate Gaussian distri-
bution then the two techniques should give the same results. Preliminary
tests indicate that, even though the noise is unlikely to be multivariate
Gaussian in real data, the two approaches produce very similar results on
good data.

The calibration scheme presented here is currently used on an optical
motion capture system. The algorithms are used with data from a sin-
gle moving marker to produce the external calibration. This calibration
is then used in the tracking and reconstruction of subsequent data taken
from the subject. The algorithm is relatively quick, robust and is easily
effected, meaning that the cameras can be moved and the system speedily
recalibrated.

In summary, we have presented a technique for external camera cali-
bration which used the ease of expressing geometric entities in geometric
algebra and the ability to differentiate with respect to any element of the
algebra. Using rotors provides a very efficient way of optimizing over a
rotation manifold; it is a minimally parameterized system, does not have
the singularities associated with Euler angles and is less cumbersome and
more easily extendable than quaternions (in the sense that rotors can ro-
tate any geometric object, not just vectors and have the same form in any
dimension). The results presented here can be used alone or used to ini-
tialize algorithms which employ minimization techniques and different cost
functions. The intermediate steps of determining the best estimate of the
world points from known data points and given calibration, and of deter-
mining the relative translations between cameras given the rotations and
data points, are also useful in many reconstruction and tracking scenarios.
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Chapter 9

Bayesian Inference and
Geometric Algebra: An
Application to Camera
Localization

Chris Doran

9.1 Introduction

Geometric algebra is an extremely powerful language for solving complex
geometric problems in engineering [4, 8]. Its advantages are particularly
clear in the treatment of rotations. Rotations of a vector are performed by
the double-sided application of a rotor, which is formed from the geometric
product of an even number of unit vectors. In three dimensions a rotor is
simply a normalised element of the even subalgebra of Gz, the geometric
algebra of three dimensional space. In this paper we are solely interested
in rotations in space, and henceforth all reference to rotors can be assumed
to refer to the 3-d case. Rotors have a number of useful features. They can
be easily parameterised in terms of the bivector representing the plane of
rotation. Their product is a very efficient way of computing the effect of
compound rotations, and is numerically very stable.

Rotors are normalised elements in a 4-d algebra (the even subalgebra
of G3), so they can be represented by points on the unit sphere in 4-d.
This is called a 3-sphere, and is the rotor group manifold [2, 5]. The simple
structure of this manifold makes it very easy to extrapolate between rota-
tions, which is useful in many fields including finite element analysis and
rigid body dynamics. The extrapolation method can be easily understood
in terms of relaxing the normalisation constraint and working with unnor-
malised rotors, and normalising the result at the end of a computation. This
is also the key to simplifying the problem of differentiating with respect to
rotations. Ordinarily, a function of a rotation is viewed as taking its value
on the group manifold. Derivatives of this function take their values in the
tangent space to the group manifold. This is mathematically rigorous, but
rather cumbersome computationally. A better idea is to move off the group
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manifold and work in the 4-d linear space, where the rules of calculus are
much simpler [3, 4, 8]. Used properly, this trick can significantly simplify
optimisation problems involving rotations.

The main applications considered here are to variations of the camera
localization problem in computer vision [7, 8, 10, 11, 13, 14]. Suppose that
a number of cameras are placed in unknown positions and they observe
the same scene. In order to reconstruct the scene, we need to determine
the relative positions and orientations of the cameras. Given a sufficient
number of point matches between the cameras, this information can be
accurately recovered without any external measurements. For most cases
this problem can be reduced to a least squares minimisation over a set
of rotations and translations, and this can be simplified considerably using
the techniques of rotor calculus. The least squares likelihood functions used
here are derived from a simple Bayesian probabilistic model, which helps
to expose some of the underlying assumptions in the choice of likelihood
function [12]. This is useful in pointing the way to constructing improved
models. In this paper we assume a projective camera model, and will further
assume that the internal camera parameters are all known. A preliminary
discussion of how geometric algebra can be used to estimate these internal
parameters is contained in [9]. The basic techniques described here can be
generalised in a number of ways to deal with more complex situations and
at various points we discuss how one might exploit this. In particular, the
extension beyond two cameras is straightforward. This is an area where
more traditional tensor-based approaches run into difficulties.

9.2 Geometric Algebra in Three Dimensions

The geometric algebra of three-dimensional space is generated by a right-
handed orthonormal set of vectors {e;,es,e3}. Their geometric product
satisfies

€ie; = 6ij -+ Ieijkek (21)
where I is the pseudoscalar
I= e; Nex N\ eg = ejeqes. (22)
The full algebra is spanned by

1 scalar 3 vectors 3 bivectors 1 trivector. ’

The dot and wedge symbols have their usual meaning as inner and outer
products, and for vectors

a-b=%(ab+ba) a/\bzé(ab—ba). (2.4)
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The geometric product for general multivectors is denoted simply by jux-
taposition, and throughout inner and outer products take precedence over
geometric products. Angled brackets (), are used for the projection onto
grade operation, and the scalar part of a multivector A is denoted simply
by (A). The scalar part satisfies the cyclic reordering property

(AB---C) = (B---CA). (2.5)

The reverse of a multivector is formed by reversing the order of geometric
products of vectors in the multivector and is denoted with a tilde. An
arbitrary multivector M can be decomposed as

M=a+a+ B+ 3I, (2.6)

where o and [ are scalars, a is a vector and B is a bivector. The reverse
of M is

M=a+a—-B-jI (2.7)

9.3 Rotors and Rotations
A rotor is a normalised element of the even subalgebra,
R=a+ B, (3.8)
where « is a scalar and B is a bivector. The normalisation condition is that
RR=RR=a*>-B%*=1. (3.9)

Rotors generate rotations of vectors via the double-sided transformation
law
a+— a’ = RaR. (3.10)

This same law holds for bivectors, since
(RaR) A (RbR) = 1(RaRRbR - RbRRaR)
= 1R(ab-ba)R
= RaAbR. (3.11)

It is also simple to check that rotors leave inner products invariant,
o' b = (RaRRbR) = (ab) = a - b. (3.12)

The rotor transformation law a — RaR also leaves trivectors invariant, so
has determinant +1 and must be a rotation.
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FIGURE 9.1. Tangent Space. At each point on the sphere one can

attach a tangent plane.

Rotors can be parameterised directly in terms of the plane of rotation
by writing
R = exp(—B/2). (3.13)

The rotor R now generates a rotation through an angle |B| in the plane
specified by B, with the same orientation as B. In three dimensions we can
also write

R = exp(—6I1/2) (3.14)

where § = |B|, and # = —IB/|B| is the unit vector representing the rota-
tion axis. The map between a vector n and the bivector In is called a duality
transformation. Bivectors can only be dualised to vectors in three dimen-
sions, so the concept of an axis of rotation only exists for three-dimensional
space.

9.8.1 The group manifold

Rotors are elements of a four-dimensional space, normalised to 1. They can
be represented as points on a $-sphere — the set of unit vectors in four
dimensions. This is the rotor group manifold. At any point on the manifold,
the tangent space is three-dimensional. This is the analog of the tangent
plane to a sphere in three dimensions (see Figure 9.1).

Rotors require three parameters to specify them uniquely. One common
parameterisation is in terms of the Euler angles (8, ¢, ¢),

R = exp(—ei1e20/2) exp(—eqe30/2) exp(—eiea1p/2). (3.15)
But often it is more convenient to use the set of bivector generators, with
|B% < . (3.16)

The rotors R and —R generate the same rotation, because of their
double-sided action. It follows that the rotation group manifold is more
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complicated than the rotor group manifold — it is a projective 3-sphere
with points R and — R identified. This is one reason why it is usually easier
to work with rotors.

9.3.2 Extrapolating between rotations

Suppose we are given two estimates of a rotation, Ry and R;, how do we
find the mid-point? With rotors this is remarkably easy! We first make
sure sure they have smallest angle between them in four dimensions. This
is done by ensuring that

(RoR;) = cosf > 0. (3.17)

If this inequality is not satisfied, then the sign of one of the rotors should
be flipped. The ‘shortest’ path between the rotors on the group manifold
is defined by

R()\) = Rpexp(AB), (3.18)

where

R(0) = Ry, R(1)=R;. (3.19)
It follows that we can find B from
exp(B) = RoR;. (3.20)

The path defined by exp(AB) is an invariant construct. If both endpoints
are transformed, the path transforms in the same way. The midpoint is

Ry/2 = Roexp(B/2), (3:21)

which therefore generates the midpoint rotation. This is quite general —
it works for any rotor group (or any Lie group). For rotations in three
dimensions we can do even better. Ry and R; can be viewed as two unit
vectors in a four-dimensional space. The path exp(AB) lies in the plane
specified by these vectors (see Figure 9.2).

The rotor path between Ry and R; can be written as

R()\) = Ro(cos M + sin M B), (3.22)

where we have used B = §B. But we know that

exp(B) = cosf +sinf B = RyR;. (3.23)
It follows that
R .
R(\) = 5195 (sin® cos A + sin A\0(Ro R — cos6)) (3.24)
. .
= (sm(l —A)0 Ry + sin \d Rl), (3.25)
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1

1
= R,
FIGURE 9.2. The path between two rotors The rotors can be treated as
unit vectors in four dimensions. The path between them lies entirely

in the plane of the two rotors, and therefore defines a segment of a
circle.

which satisfies R(\)R(\) = 1 for all A\. The midpoint rotor is therefore
simply

Ry = —end (Ro + R1). (3.26)

This gives us a remarkably simple prescription for finding the midpoint: add
the rotors and normalise the result. By comparison, the equivalent matrix
is quadratic in R, and so is much more difficult to express in terms of the
two endpoint rotation matrices.

Suppose now that we have a number of estimates for a rotation and
wanted to find the average. Again the answer is simple. First one chooses
the sign of the rotors so that they are all in the ‘closest’ configuration. This
will normally be easy if the rotations are all roughly equal. If some of the
rotations are quite different then one might have to search around for the
closest configuration, though in these cases the average of such rotations
is not a useful concept. Once one has all of the rotors chosen, one simply
adds them up and normalises the result to obtain the average. This sort
of calculation can be useful in computer vision problems where one has a
number of estimates of the relative rotations between cameras, and their
average is required.

The lesson here is that problems involving rotations can be simplified by
working with rotors and relaxing the normalisation criteria. This enables us
to work in a four-dimensional linear space and is the basis for a simplified
calculus for rotations.

9.4 Rotor Calculus

Any function of a rotation can be viewed as taking its values over the
group manifold. In most of what follows we are interested in scalar func-
tions, though there is no reason to restrict to this case. The derivative of
the function with respect to a rotor defines a vector in the tangent space
at each point on the group manifold. The vector points in the direction of
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steepest increase of the function. This can all be made mathematically rigo-
rous and is the subject of differential geometry. The problem is that much
off this is over-complicated for the relatively simple minimisation problems
encountered in computer vision. Working intrinsically on the group mani-
fold involves introducing local coordinates (such as the Euler angles) and
differentiating with respect to each of these in turn. The resulting calcula-
tions can be long and messy and often hide the simplicity of the answer.

Geometric algebra provides us with a more elegant and simpler alterna-
tive. We relax the rotor normalisation constraint and replace R by ¥ — a
general element of the even subalgebra. There is a very simple derivative
operator associated with 1. We first decompose % in terms of the {e;} basis
as

3
Y=o + Z Yrleg (4.27)
k=1
where the {1y, ...,1%3} are a set of scalar components. We now define the

multivector derivative Oy by

0 E)
Op = — — Tep——. 4.28
Y By ,; o Oy, (4.28)

This derivative is independent of the chosen frame. It satisfies the basic
result

By (pA) = A (4.29)

where A is a constant, even-grade multivector. All further results for 8y
are built up from this basic result and Leibniz’ rule for the derivative of a
product.

The basic trick now is to re-write a rotation as

RaR = yayp~'. (4.30)
This works because any even multivector i can be written as
¥ =p'?R (4.31)

where R is a rotor, p = 1 and p = 0 if and only if ¢ = 0. The inverse of
1 is then 3
W l=p 2R (4.32)

so that 5
Yy~ ' =RR=1. (4.33)

The equality of equation (4.30) follows immediately. If one imagines a func-
tion over a sphere in three dimensions, one can extend this to a function
over all space by attaching the same value to all points on each line from the
origin. The extension R — ¢ does precisely this, but in a four dimensional
space.
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We are now able to differentiate functions of the rotation quite simply.
The typical application is to a scalar of the type

(RaR) - b= (RaRb) = (ay)~'b). (4.34)

We now have
By (ayy™'b) = ayp'b + Dy (agh~'b) (4.35)

where the overdot denotes the scope of the differential operator (i.e. the
term being differentiated). We next require a formula for the inverse term.
We start by letting M be a constant multivector, and derive

0 =By (™" M) = ™" M + by (i~ M). (4.36)

It follows that
Oy (™ M) = —y M. (4.37)

But in this formula we can now let M become a function of 1), as only the
first term, ¥ ~!, is acted on by the differential operator. We can therefore
replace M by M1 ~! to obtain the useful formula

Oy (™ M) = —y My, (4.38)
We can now complete the derivation started at (4.35) to find
Oy (Way~1b) = arp™'b — ' bypar L. (4.39)
It is convenient to premultiply this expression by 1 to get
YOy (Yay 1) = ay1b — bipayy ™! = 2(RaR) A b. (4.40)

The fact that the geometric product is formed between 9 and 8, is impor-
tant. This product is invertible, so no information is lost. The fact that a
bivector is formed here is sensible. Bivectors belong to a three-dimensional
space — the same number of dimensions as the tangent space to the group
manifold. The big advantage of the approach used here is that one never
leaves the geometric algebra of space, and the resultant bivector is evalua-
ted in the same space, rather than in some abstract tangent space on the
group manifold. The result (4.40) is also sensible if one thinks about varying
R in (RaR) - b while keeping the vectors a and b constant. This function
clearly has a maximum when RaR is parallel to b, which is precisely where
the derivative vanishes.

This simple derivation turns out to be very useful in a range of applica-
tions, including rigid body dynamics and point-particle models for fermions.
Here we have chosen to illustrate its use with some applications in computer
vision.
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FIGURE 9.3. The basic two camera setup. The same object is viewed
from two different directions. The cameras are related by a translation
and a rotation. All vectors are expressed relative to some arbitrary
origin O. The relative vector between the camera centres, t = t2 —t1, is

independent of the origin.
9.5 Computer Vision

The main problem of interest in this paper is that of camera localization.
Suppose that we have different camera views of the same scene. Given point
matches with added noise, we want to find the relative translation and rota-
tion between the cameras. Once the camera geometry has been calculated
like this, it is possible to reconstruct the three-dimensional scene. Applica-
tions of this basic idea include fields such as motion analysis, reaching and
neurocontrol, and robot control. Before studying the more realistic case
of a projective camera model (see Section 9.6) we first study a simpler,
toy problem whose solution is well known. This is the case where the full
3-d position is measured for the point matches, including the range data.
This enables us to introduce some of the tools of Bayesian inference in a
simplified setting.

9.5.1 Known range data

Suppose that we know the full three-dimensional coordinates of each point
match (which is not very common in practice). The basic solution in this
case is well known for the two camera case and has been discussed by many
authors [1, 6, 7, 11]. The derivation presented here is slightly different, ho-
wever, in being based on an underlying probabilistic model for the data,
with the rotations and translation recovered via a Bayesian argument. Rel-
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FIGURE 9.4. The camera frame. Each camera has a frame {e;} attached
to it, with the 3-axis representing the optical axis. The camera frame
is related to an arbitrary global frame {f;} by a rotor, with a separate
rotor required for each camera. The rotor taking the camera 1 frame

onto the camera 2 frame is then R,R;, and this is what we aim to find.

ative to an arbitrary origin, O, the camera centres are located at positions
t; and ty, and the point matches at positions X* (see Figure 9.3). Throu-
ghout we use superscript indices to label the point matches, and subscript
Latin indices to label frame vectors, {e;}, or components of a vector, z;.
Which of these is intended should be obvious, as we only use e; and f; for
frame vectors. At various points, subscript Greek indices are used to label
the cameras.

If we write the two camera frames as {ej;} and {es;} respectively, then
the data we assume that we can record are a set of coordinates for the
point matches,

5, = e (X —t1) (5.41)
.'L'Izcz = €2;-" (X - tg). (542)

We now introduce a third, arbitrary reference frame {f;}, which is related
to the two camera frames by

e1;=RifiR1, e = Rafilta. (5.43)

(See Figure 9.4). The advantage of working with separate rotors for the
camera, frames, instead of the mutual rotation between them, is that it
keeps all formulae symmetric in the choice of frame, and ensures that the
equations generalise easily to the n-camera case. This also provides a useful
check on the formalism — we should only obtain equations for the mutual
rotation between the camera frames, and not the absolute rotations between
the camera frames and the {f;}. In terms of storing and manipulating the
data, everything is done in terms of the {f;} frame, which is usually chosen
to coincide with the camera 1 frame. We next define the vectors

of =ab.fi, of =2k 1, (5.44)
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which should be related by
Xk = Rl.’II’lch +t = R2$§R2 + ta, (545)

for all point matches k.

When we measure the position coordinates for a point match the mea-
surements will be subject to various forms of noise due to discretisation
(from the conversion to digital pixel coordinates), camera wobble, inexact
point matches and many other effects. We will assume that all of this
noise can be modeled with a simple Gaussian distribution, centred on the
exact value. This is an enormous simplification and is almost certainly
incorrect. The main advantage in assuming Gaussian noise is that the va-
rious marginalisation integrals can be performed analytically and usually
return simple, least squares functions to minimise. The point of adopting a
Bayesian framework is that these (often hidden) assumptions are brought
out clearly. This in turn suggests various improvements which can lead to
more accurate reconstruction.

Our assumed probability density function (pdf) is (ignoring the norma-
lisation)

P(m’fl) o exp(é%(a:’fi —e1;- (Xk — tl))2) (5.46)
P(xlgi) x eXP(%(ﬂfi — €2 (Xk - tz))2)- (5.47)

The pdf for the vector =¥ is therefore simply
-1 -
P(z%) exp(ﬁ(Rlx’le tt — Xk)2), (5.48)

with a similar result holding for zX. The full joint probability distribution
over all point matches is therefore

P({z},z5}{X*}, R1, Ry, 11, 12) o
__1 ~ ~
eXp(za2 SO (Bazh By 4ty — X) + (Rpzh Ry + 1 — X)?). (5.49)
k

Bayes’ theorem [12] states that

P(Y|X,I) x P(X|I)

P(X|Y,I) = PO

x P(Y|X,I) x P(X|I).  (5.50)

This follows immediately from the product rule of probability theory. The
final term P(X]|I) is called the prior and is chosen to reflect any knowledge
we might have about the quantity to be determined prior to any measure-
ments being made. In our case we have no such knowledge, so we assume
uniform priors for the camera frames and centres, and for the positions of
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the point matches. We can therefore use Bayes’ theorem to invert our pdf
to obtain

P({x},z5}{X*}, Ry, Ry, t1, t2) o P(Ry, Ry, t1,ta, {X*}|{a}, 25}),
(5.51)
where we continue to ignore normalisation factors. The next step is to
marginalise over the actual positions X* to get the pdf for the rotors R; and
positions ¢; in terms of the data. This marginalisation process is performed
by simply integrating out the unwanted degrees of freedom,

P(R17R27tlat2’{xlfax§})
o</d3X1d3X2---d3X"P(Rl,R2,t1,t2,{Xk}|{x’f,z’;}). (5.52)

The marginalisation integrals are straightforward once one employs the
result

(X—a)2+(X—b)2:2(X—%(a+b))2+%(a—b)2. (5.53)
All that remains after the integral is therefore
P(Ry, Ry, 1y, to|{z}, 25}) o
exp(% zk:(le’ffil — RngRQ +t — t2)2). (5.54)
Maximising this function therefore reduces to minimising the least squares

difference 5 3
S =" (RizkRy — Roxk Ry +t1 — 12)?, (5.55)
k

as has been discussed by many authors [1, 6, 7, 11].

9.5.2 Solution

The first point to note is that S of equation (5.55) is a function of t; — ¢3
only, and hence is independent of the absolute origin. This is precisely the
behaviour we expect. It follows that minimisation of S with respect to
either ¢, or t2 lead to the same equation, which is simply that

to — 1) = Rlﬂ_ﬁllél ot Rg.’igRQ (556)
where .
NS k
= — = = . 5.57
T =— kZ:l zf, T =~ kz_l x5 (5.57)

The vector £ — t; is simply the difference in the two centroids of the data,
and depends on the rotors R;.
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Now that we have found ¢, — ¢; we can substitute its value back into S
to express S as a function of the rotors only:

S = Z R] - .’El R1 RQ(.’B’S — fg)Rz)z. (558)

On squaring this only the cross terms remain with any rotor dependence,
and we are left to maximise

S' = ((a¥ - #1) RiRo(ak — Z2) RaRy). (5.59)
k

This is a function of the relative rotor R; Ry only, again as expected. The
same equation is obtained if we differentiate S’ with respect to Ry or Ra.
Using the result of equation (4.40) we see that the equation to solve is

D (Ry(ah — 1) R1) A (Ro(ah — &2)Ry) = 0. (5.60)
k

Taking the inner product with the bivector e;; Ae;; produces the equation
Fij — Fji = 0 (561)

where

Fij = Zfz : ( If - ) fi- (Rle( - fz)Rle). (5.62)
k

This is easily solved with a singular-value decomposition of F;;, as has been
discussed elsewhere [8].

9.5.8 Adding more cameras

The generalisation to n cameras is quite straightforward. Instead of two
terms in the pdf of equation (5.49) there are now n of them. The margina-
lisation integral simply involves completing the square as follows:

(X—aa)2=n<X— % iaay-{—%Z(aa — ag)?. (5.63)

1 a=1 a<fB

NgE

%

1l

The least squares expression to minimise therefore involves the sum over
all n(n — 1)/2 combinations of different cameras,

S=3" (RazkRo — RpzliRs +ta —tp)?, (5.64)
a<f k

where the k sum runs over point matches, and «, 3 run over the camera
pairs. This result is sensible as it is totally symmetric on the camera labels
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FIGURE 9.5. The three camera setup. The relative vectors between the
cameras are given by t;; = t; —t;. The relative rotations are R;; = RjR;.
These satisfy t12 + t2s + t31 = 0 and R31ResRi2 = 1.

and does not depend on relating everything back to a preferred reference
camera.

Minimising S with respect to each of the t, vectors gives the simple
solution for the relative translations

ta —t3 = RaZaRa — ReZgRs. (5.65)
B BLBLL3

Again, the total vector ¢; + - - - + ¢,, is unspecified. Substituting the values
for the relative vectors into S, we are left with the function

§=3"Y (Ra(zk — #a)Ra — Ry(als — 75)Rs)”, (5.66)
a<fB k

which we want to minimise with respect to the n rotors R,. As before, one
only obtains equations for the relative rotations between two cameras, and
not the absolute rotation from the global {f;} frame.

One can get the general feel of this equation structure considering three
cameras (Figure 9.5). The three equations from the three rotors reduce to

2(31(37’f — Z1)Ry) A (Ro(a§ — Z2)Ro + Ra(zh — Z3)Rs) =0 (5.67)
k

and

Z(RQ(.’IZ; — i’z)RQ) A (R3($§ - .’1_73)R3 + Ry (.Z"f - .’1_71)R1) =0. (5.68)
k

The final equation is just the sum of the first two and contains no further
information. Again, this is to be expected as there are always n — 1 relative
rotations to solve for.

This equation structure is more complicated that the 2-camera case,
and cannot by solved simply with a singular-value decomposition. Rather
than removing the anti-symmetric component of a single tensor, one has to
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FIGURE 9.6. Pizel Coordinates. In most applications in computer vi-
sion one only measures the pixel coordinates of a point in the camera
plane. Provided the camera is calibrated, these can be converted to

the image coordinates of z.

minimise the anti-symmetric components of 3 independent tensors, using
2 independent rotors. This problem should be numerically quite straight-
forward to solve, either at the level of the equations, or through direct
numerical minimisation of the S of equation (5.66). This latter approach
is simplified by the fact that the individual pairwise minimisers for two of
the pairs provide good starting points for any minimisation routine.

9.6 Unknown range data

In most computer vision applications we do not have access to the third
coordinate giving the direction to a point. Instead what we measure are
pixel coordinates in the camera plane (see Figure 9.6). Placing the origin at
the camera centre, a world point X has coordinates (X1, X2, X3) expressed
in the camera frame. Adopting the projective pinhole camera model, the
image point x has coordinates (z1,z3, f), where f is the focal length. The
pixel coordinates v = (u1,us, 1) are related to the image coordinates by a
3 X 3 camera matrix C,

u=C(z/f), z/f=C lu. (6.69)

(See [9] for more details). Provided the matrix C is known, we can recover
the vector z/f. For a projective pinhole camera, the components of this are
simply the homogeneous coordinates (X1/Xs, X2/X3,1) of the world point
X.

For the 2-camera setup of Figure 9.3, the two coordinates we measure in
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the Camera 1 system are

ket (X —t) .

o= Ty T 1,2. (6.70)
A simple model would be to assume is that the observed data is taken
from a Gaussian distribution centred on these values. The problem with
this is that the resulting marginalisation integral over the X* cannot be
performed analytically. Instead we will use a different model in which the
marginalisation integrals can be performed. The result is a likelihood func-
tion which can be minimised very quickly and efficiently. The results of this
turn out to be reasonable, and geometrically quite sensible.

Our choice of a simplified model, including modeling the combined effects
of the various sources of noise with a simple Gaussian distribution, is one
of a number of simplifying assumptions we will make in order to find a sim-
ple function to minimise. Each of these assumptions can be challenged and
modified to construct more realistic models and give better reconstruction.
This approach is quite different from the standard alternative, based on the
epipolar geometry and the fundamental matrix [10, 14]. In this approach an
assortment of least-squares optimisers are considered, none with any under-
lying justification from a probabilistic model, and an assortment of linear
algebra techniques are used to find the mutual translation and rotation.
Many of these do not properly account for the structure of the rotation
group, which limits their accuracy. They do have some value, however,
in providing some fast algorithms to give initial points for the nonlinear
schemes developed here.

Our starting point is the pdf of equation (5.49). That is, we start by
treating all three coordinates in the same way. Again, we marginalise over
the positions X* to get the 2-camera joint pdf, but this time we view the
range data as an unknown parameter and assign it a uniform prior. We
therefore arrive at the distribution

P(Rla R?at17t27 {Z{CVzéC}l{x’fﬂm]?cz}) x

-1 ~ -
exp(;ﬂ—2 Z(RlzfxlfR1 - R2Z§$§R2 +t - t2)2)7 (6.71)
k

where i runs over the two coordinates in the camera plane, z* is the un-

known range (o denotes the camera), and the vectors z%,z5 are formed
directly from the measured data by
2
.’EZ = Z .’E];ifi + f3. (672)
i=1

The next step is to marginalise over the unknown ranges z; and zp. Here
we make one final simplification by taking the range of the integrals from
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—00...00. This allows for points behind the camera to be considered, so
is clearly unjustified, but has the advantage that the integrals can be per-
formed analytically. The integral we require has the form

I = / dz1 dzo exp(—(z1a1 — 2202 + 1)?) (6.73)

where a1 = R, :c’le, etc. and t = t; —t5. To carry out this integral we need
the result that

/d"x exp (— ziz; Ty + 2a:b;) = Nexp(bibjTi_jl) (6.74)

where T;; is an n X n symmetric matrix, b; is an n-component vector and N
is a normalisation constant. For the integral (6.73) the matrix T;; is given

by
2
- a1 —a1 - a2
T;; (—a1 - a 152 > , (6.75)
and the vector b; is
o —Qa) -t
b’_(a2~t>' (6.76)
It follows that
det Ty; = a1%as”® — (a1 - a2)? = —(a1 A az)?, (6.77)
and )
_ 1 a ay-a
Tl=c—" (™ 1. 6.78
b (a1 A ag)? (al cay ap? (6.78)
Hence
~ 1
bibjTijl = —m(a12(a2 )2 4+ a%(a1 - t)? — 2a1 -agay - tas ~t)
1
——— " (a1-tas —as-tal)?
(@ A b2 a2 ta)
t- (a1 A a2) 2
= (=7 6.79

which assembles into a simple geometric function. Applying these results
to the pdf of equation (6.71), and remembering the final (t; — t3)? term,
we arrive at the log-likelihood function

(0 = t2) A (B ) A (sz§R2>))2

S = - "
; [(Riz¥ R1) A (Ryzh Ry)|?

n
(6.80)
This is now a simple function of the vectors ¢, and the rotors R,. Again,

only the relative translation (¢, — t2) enters the problem, and the freedom
to choose the f; reference frame means that one of the rotors is arbitrary.
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FIGURE 9.7. Line Distance. Given a point match in the two camera
planes, the vectors are extended out to three-dimensional space, and
the distance between the lines is found. The sum of the squares of

these is minimised to find the best fit translation and rotation.

The function (6.80) has a simple geometric interpretation in terms of the
distance between the projective lines for a given point match (see Figu-
re 9.7). Given a point match, the projective lines from the two cameras are
extended into space. The function then records the square of the distance
between the lines (in units on |t; — £5|), and sums these over all point
matches. This is certainly a sensible error measure for this problem, and it
is instructive to see how it arises from a probabilistic model.

The function (6.80) is scale invariant, since no scale has yet been imposed
on the problem. As it stands, therefore, the function is minimised by setting
t1 — ta = 0. To avoid this we need to impose a scale, which is most simply
achieved by setting

(t; —t2)? = 1. (6.81)

This condition is imposed by including a Lagrange multiplier, so the func-
tion to minimise becomes

S = En: ((tr = t3) - n*)? = A((t1 — 12) — 1), (6.82)
k=1

where
k — I(Rﬂl)"fél) A (R2$’2CR2)
|(Riz¥ Ry) A (Roxb Ro)|

(6.83)

Our final S (6.82) is still quadratic in the relative vector ¢t = #; — t2, and
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minimising gives the simple equation
n
> tenFnk =t (6.84)
We next construct the symmetric, positive definite function
n
= Za -nknk, (6.85)
=1

which is a function of the data and the rotation only. The translation % is
an eigenvector of this function, with the eigenvalue

- Zn:(t n*)? =8 (6.86)

k=1

So to minimise the error function S we need to choose t to be the eigenvec-
tor with smallest eigenvalue. All we need do, then, is minimise the lowest
eigenvalue of F with respect to the rotor R. This is a fairly simple optimi-
sation problem, as we only need to search in the 3-parameter rotor space.
Numerical studies of this function reveal that it contains some local mini-
ma, but the global minimum lies in a fairly deep valley and it is not hard
to find this numerically.

9.7 Extension to three cameras

The Bayesian analysis presented here extends easily to the 3 camera case.
A simpler alternative, however, is to take the log-likelihood function of
equation (6.80) and sum this function over each of the camera pairs. Incor-
porating a Lagrange multiplier to impose a suitable constraint, the function
we need to minimise is
n
S5 =3 ((ts —t2) - ly)" + ((t2 — ta) - ) + ((ts — t2) - k)
k=1

=AMt —t2)* + (b2 — t3)2 + (t3 — t1)? — 1)), (7.87)
where ~ .
n11c2 _ I(Rlx’fﬁ ) A (Rez§ R)
[(RizfR1) A (szszﬂ
We only get independent equations from minimising with respect to two

of the three translation vectors. Taking these to be t; and t the equations
we arrive at are

etc. (7.88)

n

Z(tl - tz) n12 'I’l’fz (tg — tl) . 'I’llgcl TLIBCI = )\(2t1 — 1ty — tg) (789)
k=1
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n
Z tz - t3 n23 n’2“3 (tl - t2) . ’I’L’fz n’fz = /\(2t2 - t3 - tl). (790)
k=1

If we now set

a=2t; —ty —ts, b=2ty —t3—1t1, (791)
then we recover a 6 x 6 eigenvalue problem of the form
Fio +2F3;  F31 — Fig a a
=3 7.92
< Fas —F12  2Fy3 +F12 ) \ b b (7.92)
where
Fiz(a Za n¥,nky, ete (7.93)

As in the 2 camera case, the elgenvalue A returns the value of S5 that we are
trying to minimise. The minimisation problem therefore reduces to finding
a pair of rotors which minimises the lowest eigenvalue of a 6 x 6 matrix.
Numerical implementation of this algorithm will be presented elsewhere.

9.8 Conclusions

Geometric Algebra is an extremely powerful tool for handling rotations in
three dimensions. Vectors and the quantities which act on them are united
in a single algebra, which has a number of computational advantages. Re-
laxing the normalisation condition for rotors provides a simplified calculus
for rotations which avoids having to work in the tangent space to the group
manifold. As a result, many extremisation problems involving rotations can
be studied and solved without ever leaving the geometric algebra of 3-d.

The applications to the camera localization problem given here illustrate
the various advantages that geometric algebra can provide. This is parti-
cularly so when combined with Bayesian inference techniques. The models
considered here are highly simplified, though still quite useful. Much work
remains in order to construct robust, accurate algorithms to use with real
cameras. The effects of the camera matrix must be included, particularly as
the cameras often require re-calibrating after they are moved significantly.
Similarly, more realistic noise models are required. Discretisation errors, for
example, are certainly not well modeled as Gaussian process. In addition,
we need to be able to work with arbitrary numbers of cameras, allowing for
occlusion effects where point matches may only be shared by a subset of
all of the cameras. When tackling each of these problems, however, there
seems little doubt that the combination of geometric algebra and Bayesian
reasoning advocated here will turn out to be the best way to proceed.
Acknowledgments CD gratefully acknowledges the support of the
EPSRC.



Chapter 10

Projective Reconstruction of
Shape and Motion Using
Invariant Theory

Eduardo Bayro Corrochano and Vladimir Banarer

10.1 Introduction

In this chapter we present a geometric approach for the computation of
shape and motion using projective invariants in the geometric algebra
framework [6, 7].

In the last years researchers have developed diverse methods to compute
projective invariants using n uncalibrated cameras [1, 2, 4, 8]. Different
approaches for projective reconstruction have utilized the projective depth
[13, 14], projective invariants [4] and factorization methods [11, 15, 16].
The factorization methods require the projective depth. The contribution
of this paper is the application of projective invariants depending on the
fundamental matrix or trifocal tensor to compute the projective depths.
Using these projective depths we initialize the projective reconstruction
procedure to compute shape and motion. We also illustrate the application
of algebra of incidence for the development of geometric inference rules to
complete the 3D data. The experimental part shows projective reconstruc-
tion of shape and motion using both simulated and real images.

The organization of the chapter is as follows: section two explains the
generation and computation of projective invariants using two and three
uncalibrated cameras. We test their performance using both simulated and
real images. Section three presents the computation of the projective depth
using projective invariants in terms of the trifocal tensor. The treatment
of projective reconstruction and the role of the algebra of incidence to
complete the 3—D shape is given in section four. The conclusion part follows.

E. B. Corrochano et al. (eds.), Geometric Algebra with Applications in Science and Engineering

© Birkhiuser Boston 2001
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10.2  3-D Projective Invariants from Multiple Views

This section presents the point and line projective invariants computable
by means of n uncalibrated cameras. We begin with the generation of geo-
metric invariants using the Pliicker-Grassmann quadratic relation. We give
a geometric interpretation of the cross-ratio in the 3-D space and in the
image plane. We compute then projective invariants using two and three
cameras.

10.2.1 Generation of geometric projective invariants

We choose for the visual projective space P3 the geometric algebra Gi 39
and for the image or projective plane P? the geometric algebra Gs g 9. Any
3D point is written in G1 30 as X, = Xp71 + Yo Y2 + Znys + Wiys and its
projected image point in G300 88 &p = Tno1 + Yn02 + 2,03, Where z, =
Xn/We, yn = Yo /W, 2n, = Z,/W,. The 3-D projective basis consists of
four basis pomts and a fifth one for normalization: X; = [1,0,0, 0] X, =
[0,1,0,0]7, X3 =[0,0,1,0]7, X4 = [0,0,0,1]7, X5 = [1,1,1,1]T and the
2-D projective basis comprises three basis points and one for normalization:
x; = [1,0,0]7, 22 = [0,1,0]7, 3 = [0,0,1]7, &4 = [1,1,1]7. Using them we
can express in terms of brackets the 3D projective coordinates X,,, Yy, Z,,
for any 3D point, as well as its 2D projected coordinates x,,, yn

X, _ [234n)[1235] Y, _ (134n](1235]  Z, _ [124m[1235]
W,  [2345][123n]’ W, [1345][123n]" W,  [1245][123n] (2.1)
Tn o _ [23n][124]  y. _ [13n][124] (2.2)
W, [234][12n]" w, [134][12n] ‘

These equations are projective invariants relations and they can be used
for example, to compute the position of a moving camera.

The projective structure and its projection on the 2-D image is related
according to the following geometric constraint

0 wsYs —ysZs ( )
w5X5 0 —III5Z5 ( )

0 weYs —YeZs ( )

0  weYs —ysZs (yo— we)Ws X5t
w6X6 0 —IGZG ( )

0 wrYr —yrZr )
UJ7X7 0 —.’L‘7Z7 ( )

=0, (23)

where Xg, Yy, Zy Wy are the coordinates of the view point. Since the matrix
is of rank < 4, any determinant of four rows becomes a zero. Considering
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(X5, Ys, Z5 Ws) = (1,1,1,1) as a normalizing point and taking the deter-
minant formed by the first four rows of equation (2.3) we get the geometric
constraint equation involving six points pointed out by Quan [12]

(wsys — T5y6) X6 Ze + (T5ys — 5w6) XeWs + (z5we — yswb) XeYes +

+(ysz6 — w5T6)YsZ6 + (yswe — y526)YsWs +

+Hwsze — w5Ys) ZeWe = 0 (2.4)

Carlsson [3] showed that the equation (2.4) can be also derived using the
Pliicker—Grassmann relations. This can be computed as the Laplace ez-

pansion of the 4x8 rectangular matrix involving the same six points as
above

(X1, X2, X3, X4, X5, X5, X6, X7] =[Xo0,X1,X2, X3] (2.5)
[X 4, X5, X6, X7] — [ X0, X1, X2, X4][ X3, X5, X6, X7] +
+[(Xo, X1, X2, X5][ X3, X4, X6, X7] — [ X0, X1, X2, X
(X3, X4, X5, X7] + [ X0, X1, X2, X7][ X3, X4, X5,X6)] =0.

Using four functions like equation (2.5) in terms of the permutations of six
points as indicated by their sub—indices in the table below

Xo | X, [ Xo | X3 | X4 | X5 | X6 | X5

)
6
)
6

Ry I (WIS WY

)
6
)
6

RS

2 3
2 3
2 3
2 3

[l el Revll Nen)
W=

we get an expression where the brackets that have two identical points
vanish

[0152][1345) — [0153)[1245] + [0154][1235] = 0,
[0216][2346] — [0236][1246] + [0246][1236] = 0,
[0315][2345] + [0325][1345] + [0345][1235] = 0,
[0416)[2346) + [0426)[1346] — [0436][1246] = 0. (2.6)

It is easy to show that the brackets of image points can be written in the
form [z;x;xk] = wyw;we[K][X0X;X,;X] , where (K] is the matrix of
the intrinsic parameters [10]. Now if we express in equations (2.6) all the
brackets which have the point X in terms of the brackets of image points
and organize all the bracket products as a 4x4 matrix we get the singular
matrix

0 [125][1345] [135][1245] [145][1235]
[216][2346) 0 [236][1246] [246][1236] @7)
[315][2345]  [325)[1345] 0 [345][1235) '

[416][2346] [426][1346] [436][1246) 0.
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Here the scalars w;w;wyg[K] of each matrix entry cancel each other. Now
after taking the determinat of this matrix and rearrange the terms conve-
niently, we obtain the following useful bracket polynomial

[125][346] [ 1236] [1246] [1345- [2345: -
[126][345] [ 1235] [1245] [1346] [2346] +
[135][246] [ 1236] [1245] [1346] [2345] —
[136][245] :1235: [12461 [1345' _2346: +

[145][236] [ 1235] P1246] 1346/ [2345] —

[146][235] [1236| [1245] [ 1345] [2346] = 0, (2.8)

Surprisingly this bracket expression is exactly the shape constraint for six
points given by Quan [12]

1101 + i9ly +igl3 + igly + isls + iglg = 0, (29)

where iy = [125][346], i2 = [126][345], ..., 15 = [146][235] and
I, = [1236][1246][1345][2345], I> = [1235][1245][1346][2346], ...,
I = [1236][1245][1345][2346] are the the relative linear invariants in P? and
P3 respectively. Using the shape constraint we are now ready to generate
invariants for different purpose.

Let us illustrate this with an example. As shown in the Figure 10.1 there
is a configuration of six points which indicates whether or not the end—
effector is grasping properly.

X

X3

FIGURE 10.1. Grasping a box.

To test this situation we can use an invariant generated from the cons-
traint of equation (2.8). In this particular situation we recognize two planes:
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[1235]=0 and [2346]=0. Substituting these six points in equation (2.8) we
make some brackets vanish reducing the equation to

[125][346] [1236] [1246] [1345] [2345} -

—[135][246] [1236} [1245} [1346] [2345] =0 (2.10)

[125][346] [1246] [1345] — [135][246] [1245} [1346} =0 (2.11)
or
X AXGAX g AX) TN (X AXGAX A X) !
X1 AXoAX 4 AXe) [T (X I AX3AXGAXS) !

wl/\$2A$5)I§1($3/\$4/\$6)I§1
a:l/\a:3/\:1:5)13_1(:c2/\a:4/\:c6)151.

Inv =

(2.12)

~~| e~ |~

In this equation any bracket of P3 after the projective mapping fulfills

(Xl /\XQ/\X4/\X5)I4—1 =
W1W2W4W5{($2 — 1131)/\($4 - xl)/\(:lig, — 1131)}[3_1, (213)
The constraint (2.8) makes always sure that the W;W,; Wi W, constants are

canceled. Furthermore, we can interpret the invariant Inv, the equivalent
of the , in P3 as ratios of volumes and in P? as rations of triangle areas

~ VioasVizae  ArzsAsas
VigaeVizas  Aizs Az

Inv (2.14)

In other words, we can also see this invariant in P3 as the relation of 4-
vectors or volumes built by points lying on a quadric which projected in
P? represents an invariant build by areas of triangles encircled by conics.

For example utilizing this invariant we can check whether or not the
grasper is holding the box correctly. Note that using the observed 3-D
points in the image we can compute this invariant and see if the relation
of the triangle areas corresponds with the appropriate relation for firm
grasping, i.e. if the grasper is away the invariant has a different value from
the required value when the points X1, X5 of the grasper are near to the
objects points X4, X3.

10.2.2 Projective invariants using two views

Let us consider a 3-D projective invariant derived from the equation (2.8)

(X1 XX 3X 4] [X4X5X2Xe)
XXX, X5 [X3XaX2Xs6]

Invg = (2.15)
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The computation of the bracket

[1234] = (X3 AX2AXSAX I = (X AX)A(X3AX NI

of four points from R*, mapped to the cameras with the optical centers
Ag and By, suggests to use the binocular model based on incidence algebra
as introduced in chapter 7. Defining the lines

Li; = X;AX; = (AgALY) V (BoALL)
Ly, = X3AX, = (AgALS,)V (BoALY)

where lines L% and Lg are mappings of the line L;; to the two image
planes, results in the following expression for the bracket

[1234] = [AOBOA,1234B/1234]~ (2-16)

Here A4, and B,3, are the points of intersection of the lines L{; and
L‘344 or L, and Lﬁ, respectively. These points, lying in the image planes,
can be expanded using the mappings of three points X;, say X1, X3, X3, to
the image planes, i.e. A; and B;, j = 1,2, 3, as projective basis, as follows

/
losa = @1234,1A1 + 02342A0 + 1234 3A3
I

Bloss = B1234,1B1 + B1234,2B2 + B1234,3B3.

Then equation (15.73) from chapter 15 follows
3 ~ —~
[1234] = ) Fijon2s4,81034,5 = a3 FBizaas (217)
1,7=1

where F' is the fundamental matrix given in terms of the projective ba-
; : 4 _
SIS, embedded in R* and 1234 = (a1234‘1,a1234’2,a123413) and ﬁ1234 =

(B1234,1, P1234,2, B1234,3) are corresponding points.
The ratio

(0 1234 F B1as4) (0 4526 F Busas)
(aT 1245 F B1945) (T 3426 F B3426)

is therefore seen to be an invariant using two cameras [2]. Note that equa-
tion (2.18) is invariant whatever values of the 4, components of the vectors
A; B;,X; etc. are chosen. A confusion arises if we attempt to express the
invariant of equation (2.18) in terms of what we actually observe, i.e. the
homogeneous Cartesian image coordinates a}s, bjs and the fundamental

Invgrp =

(2.18)
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matrix F' calculated from these image coordinates. In order to avoid that
it is necessary to transfer the computations of equation (2.18) carried out
in R* to R®. Let us explain now this procedure.

If we define F by

Fu = (Ak-74)(Bi-va) Fiy (2.19)

: N Ay R :
tl}ien using the relationships o;; = ma,«j and B;; = mbij it follows
that

i FuBy = (AL-74) (B 7a)air Fruba. (220

If F is estimated by some method, then an £ defined as in equation (2.19)
will also act as a fundamental matriz or bilinear constraintin R*. Now let us
look again at the invariant Invsr. According to the above considerations,
we can write the invariant as

(@T1234Fb1234) (a7 4526 Fbys06) P1234Pa526
(aT 1245 Fb1245)(aT 3426 Fb3ag6 ) P1245P3426

Invsr = (2.21)

where ¢pgrs = (Apyrs-74)(Bpgrs7va). Therefore we can see that the ratio
of the terms a” Fb which resembles the expression for the invariant in
R* but uses only the observed coordinates and the estimated fundamental
matrix will not be an invariant. Instead, we need to include the factors
¢1234 etc., which do not cancel. It is relatively easy to show [1] that these
factors can be formed as follows. Since a}, ajy and al,34 are collinear, we
can write @{y3y = pi234@l + (1 — p1234)al. Then, by expressing Algs,
as the intersection of the line joining A} and A5 with the plane through
Ay, A5, A we can use the projective split and equate terms so that they
give

(Alo3s7a) (Also6-74) _ p1245( 143426 — 1)' (2.22)
(Af406-74) (Alogsva)  Hasze(pt123a — 1)

Note that the values of u are readily obtainable from the images. The
factors B,,,.,-y4 are found in a similar way so that if bjgs4 = A1234by + (1 -
)\1234)b§ etc., the overall expression for the invariant becomes

(aT234Fb1234) (@750 Fbas26)
(@545 Fb1245)(a3406 Fb3a26)

P1245 (13426 — 1) A1245(A3426 — 1)
pas2e (1234 — 1) Aaso6(Mi23a — 1)

I’n’U3F =

(2.23)

As conclusion, given the coordinates of a set of 6 corresponding points in
two image planes, where these 6 points are projections of arbitrary world
points in general position, we can form 3-D projective invariants provided
we have some estimate of F.
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10.2.8 Projective invariant of points using three views

The technique used to form the 3-D projective invariants for two views can
be straightforwardly extended to give expressions for invariants of three
views. Considering four world points, X1, X3, X3, X4, or two lines X;AX,
and X3A Xy, projected into three camera planes, we can write

XiAX; = (AgALL) Vv (BoALY)
X3AXy = (AoALL)V (CoALS)).

Once again, we can combine the above expressions so that they give to give
an equation for the 4-vector X; AX2AX3AXy,

X AXoAX3AXs = ((AoALS) V (BoALE)A((AoALL,) V (CoALS)))
= (Ao/\A1234)/\((B0/\L{32)V(Co/\Lgl)). (224)

Writing the lines LY, and Lg’:1 in terms of the line coordinates we have

12 = E l12]L and L34— Z l34]

It has been shown in chapter 15 that the components of the trifocal
tensor (which plays the role of the fundamental matrix for 3 views), can
be written in geometric algebra as

Tijk = [(AoANA)A((BoALP) v (CoALY))] (2.25)
so that from equation (2.24) it can be derived:

[Xl /\Xz /\X3 /\X4 Z T”k;011234 zl12 Jl34 T(01234, LlBQ, Lg;l)(226)
1,5,k=1

The invariant Invg can then be expressed as

T(011234a L12» L34)T(a45267 LzB5, ché;)
T(t1245, L1y, L) T (03406, L3y, L)

Invsr = (2.27)

Note that the factorization must be done so that the same line factori-
zations occur in both the numerator and denominator. Therefore we have
an expression for invariants in three views that is a direct extension of the
invariants for two views. Forming the above invariant from observed quan-
tities we note, as before, that some correction factors will be necessary —
equation (2.27) is given above in terms of R* quantities. Fortunately, this
is quite straightforward. Regarding the results of previous section, we can
simply consider the a’s terms in equation (2.27) as not observable quanti-
ties, conversely the line terms like Lﬁ, L:,i are indeed observed quantities.
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As a result, the expression has to be modified using partially the coeffi-
cients computed in previous section and for the unique four combinations
of three cameras their invariant equations read

T(@1234, 15, 15) T (@526, 155, 155) pr1245 (za26 — 1)
T(@1245, 15, 15) T (@3426, 15, 1S;) 1as26(t1234 — 1)

In'v3T = (228)

10.2.4 Comparison of the projective invariants

Invariants using F' Invariants using T

0.000 | 0.590 | 0.670 | 0.460 0.000 | 0.590 | 0.310 | 0.630

0 0.515 | 0.68 0 0.63 | 0.338
0.59 0 0.134 | 0.67
0.69 0.29

0.063 | 0.650 | 0.750 | 0.643 0.044 | 0.590 | 0.326 | 0.640

0.67 | 0.78 | 0.687 0 0.63 | 0.376
0.86 | 0.145 0.192 | 0.67
0.531 0.389

0.148 | 0.600 | 0.920 | 0.724 0.031 | 0.100 | 0.352 | 0.660

0.60 | 0.96 | 0.755 0.031 | 0.337 | 0.67
0.71 | 0.97 0.31 | 0.67
0.596 0.518

0.900 | 0.838 | 0.690 | 0.960 0.000 | 0.640 | 0.452 | 0.700

0.276 | 0.693 | 0.527 0.063 | 0.77 | 0.545
0.98 | 0.59 0.321 | 0.63
0.663 0.643

FIGURE 10.2. The distance matrices show the performance of the

invariants by increasing Gaussian noise ¢: 0.005, 0.015, 0.025 and 0.04.

This section shows simulations with synthetic data and computations
using real images. The simulation was implemented in Maple.

The computation of the bilinearity matrix F' and the trilinearity focal
tensor T' was done using a linear method. We believe that for the test
purposes these are good enough. Four different sets of six points S, =
{X“,Xig,Xig,Xi4,Xi5,Xi6}, where 7 = 1, ..,4, were considered in the
simulation and the only three possible invariants were computed for each
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set {I1,,12,:,13,;}. Then, the invariants of each set were represented as 3—
D vectors (v; = [I14,I2,i,I3,:]T). We computed four of these vectors that
corresponded to four different sets of six points using two images for the F’
case and three images for the T case (first group of images); and for four
of these vectors corresponding to the same point sets we used another two
images for the F' case or another three images for the T case (second group
of images). The comparison of the invariants was done using Euclidean

distances of the vectors d(v;,v;) = Illv iz Ill ; this method was
t 7

used for the same reason by [5].

Since in d(v;, v;) we normalize the vectors v; and v;, the distance
d(v;,v;) for any of them does lies between 0 and 1 and it does not vary
when v; or v; is multiplied by a nonzero constant. The figure 10.2 shows
a comparison table where each (i, j)-th entry represents the distance com-
puted using d(v;, v;) between the invariants of set S; of the points extracted
of the first group of images and the set S; of the points yet using the second
group of images. In the ideal case, the diagonal of the distance matrices
should be zero, that means that the values of the computed invariants
remain constant regardless of which group of images they were used for.
The entries off the diagonal mean that we are comparing vectors composed
of different coordinates (v; = [, 24, Is;]T), thus they are not parallel
and should be bigger than zero and if they are very different the value of
d(v;, v;) should be approximately 1. Now looking at the figure 10.2, we can
clearly see that the performance of the invariants based on trilinearities is
much better than that of those based on bilinearities, the diagonal values
in the T case are in general closer to zero than in the F' case and its entries
off the diagonal are in general bigger values than in the F case.

FIGURE 10.3. Image sequence taken during navigation by the binoc-
ular head of a mobile robot. The upper row shows the left camera

images and the lower one shows the right camera ones.
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In the case of real images we use a sequence of images taken by a moving
robot equipped with a binocular head. The figure 10.3 shows three images
of the left eye in the upper row and below these of the right eye respectively.
We took image couples, one from the left and one from the right for the
invariants using F' and two of one eye and one of the other for the invariant
using 7. From the image we took 38 points semi-automatically and we
selected now six sets of points. In each set the points are in general position.
Three invariants of each set were computed and the comparison tables were
obtained similarly to the previous experiment, see figure 10.4.

using F'

0.04 | 0.79 | 0.646 | 0.130 | 0.679 | 0.89
0.023 | 0.2535 | 0.278 | 0.268 | 0.89
0.0167 | 0.723 | 0.606 | 0.862
0.039 | 0.808 | 0.91
0.039 | 0.808
0.039

using T
0.021 | 0.779 | 0.346 | 0.930 | 0.759 | 0.81
0.016 | 0.305 | 0.378 | 0.780 | 0.823
0.003 | 0.83 | 0.678 | 0.97
0.02 | 0.908 | 0.811
0.008 | 0.791
0.01

FIGURE 10.4. The distance matrices show the performance of the
computed invariants using bilinearities (top) and trilinearities (bot-

tom) for the image sequence.

This shows again that the approach to compute the invariants using tri-
linearities is much more robust than the one using bilinearities, as expected
from the theoretical point of view.

10.3 Projective Depth

In a geometric sense the projective depth can be seen as the relation between
the distance regarding the view center of a 3-D point X, and the focal
distance f as depicted in figure 10.5.

Let us derive the projective depth from a projective mapping. According
to the pinhole model explained in chapter 15 the coordinates of a point in
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Perspective

Projective
FIGURE 10.5. Geometric interpretation of the projective depth.

the image plane is the result of the projection of the 3-D point to the three
optical planes ¢, ¢%, ¢%. They are spanned by a trivector basis i, v;, V&

and the coefficients ¢;;. This projective mapping in a matrix representation
reads

r X

z by t11 ti2 tiz tug v

. = y =104 | X=| ta ta te ta 7

|1 % t31 l32 t3z t3a 1
T F 0 0 i1 T2 T3 g X

= |0 foo||Ta T2 b Y (3.29)

00 1 T3l T3z T3z it A
- 0 0 0 1 1

where the projective scale factor is called X. Note that the projective ma-
pping is further expressed in terms of a f, rotation and translation compo-
nents. Let us attach the world coordinates to the view center of the camera.
The resultant projective mapping becomes

Ax =

il

PX. (3.30)

O O~
O~ O

-0 O
OO O
— N e

We can then compute straightforwardly

A= Z. (3.31)
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The way how we compute the projective depth (= A) of a 3-D point
appears simple using invariant theory, namely using equations (2.1). For
that we select a basis system taking four 3—-D points in general position
X1, X5, X3, X5, the optical center of camera at the new position as the
four point X 4, and X as the 3-D point to be reconstructed. This has been
depicted in figure 10.6.

Since we use the mapped points, we consider the epipole (mapping of
the current view center) as the four point and the mapped sixth point as
the point with the unknown depth. The other mapped basis points remain
constant during the procedure.

L4

Xf:AN%_

xB_ By

FIGURE 10.6. Computing the projective depths of n cameras.

According to equation (2.1), the tensor based expression for computing
the third coordinate or projective depth of a point X; (= X) reads

c
\ = Z;  _ T(a1245, 179, 15;)T (@1235, 115, 155) _ P1245/41235 (3.32)
7 T(a1245,lﬁ,l%)T(alzgj,lle,l?%) H124; 141235

In this way we can successively compute the projective depths A;; of the
J—points referred to the i—camera. The A;; will be used in next section for
the 3-D reconstruction using the join image concept and the singular value
decomposition SVD method.

Since this kind of invariant can be also expressed in terms of the quadrifo-
cal tensor [9], we can compute the projective depth based on four cameras.

10.4 Shape and Motion

The orthographic and paraperspective factorization method for structure
and motion using the affine camera model was developed by Tomasi, Kanade
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and Poelman [11, 15]. This method works for cameras viewing small and
distance scenes, thus all scale factors of projective depth A;;=1. For the
case of perspective images the scale factors A;; are unknown. According to
Triggs [16] all \;; satisfy a set of consistency reconstruction equations of
the so—called join image. One way to compute A;; is by using the epipolar
constraint. If we use a matrix representation this is given by

FipAijTij = € AT (4.33)

which after an inner product gives the relation of projective depths for the
j-point between camera ¢ and k

/ Mej (e Ay;) Fipy

TN lewAmigl?

(4.34)

Considering the i-camera as reference we can norm the Ag; for all k-
cameras and use A} ; instead. If that is not the case we can norm between
neighbor images in a chained relationship [16].

In the previous section we presented a better procedure for the computing
of \;; involving three cameras. The extension of the equation (4.34) in terms
of the trifocal or quadrifocal tensor is awkward and unpractical.

10.4.1 The join tmage

The join image J is nothing else than the intersections of optical rays and
planes at the points or lines in the 3-D projective space as depicted in
figure (10.7). The interrelated geometry can be linearly expressed by the
fundamental matrix and trifocal and quadrifocal tensors. The reader will
find more details about these linear constraints in chapter 7.

In order to take into account the interrelated geometry, the projective
reconstruction procedure should put together all the data of the indivi-
dual images in a geometrically coherent manner. The way to do that is by
considering the observations of the points X ; regarding each i—camera

)\ija:ij = PzXJ (435)

as the i-row of a matrix of rank 4. For m cameras and n points the 3mxn
matrix J of the join image is given by

AT A2z ATz - . . Apin
A21®T21 ATz AsTaz . . - Ao
A31T31 A32T32 ATz - - - A3nan
J = T L . (4.36)

Am1Tml  Am2®m2  Am3Tm3 - - - AmnTmn
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FIGURE 10.7. The geometry of the join image.

For the affine reconstruction procedure the matrix is of rank 3. The matrix
J of the join image is amenable to a singular value decomposition for
finding the shape and motion [11, 15].

10.4.2 The SVD method
The application of SVD to J gives

J3m><n = UBererrVnTxra (437)

where the columns of matrix V. . and Us,x, constitute the orthonormal
base for the input (co-kernel) and output (range) spaces of 7. In order to
get a decomposition in motion and shape of the projected point structure,
Srxr can be absorbed into both matrices VnTXr and Us,,«, as follows

1 1
T3mxn = (U3m><T'S7‘2>(7‘)(S7‘2>(rV77,7;(7‘) = . (X1X2X3~~Xn)4><7(4-38)

P 3mx4

This way to divide S,x, is not unique. Since the rank of 7 is 4 we should
take the first four biggest singular values for S,x,. The matrices P; co-
rrespond to the projective mappings or motion from the projective space
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to the individual images and the point structure or shape is given by X ;.
We test our approach using a simulations program written in Maple. Using
the method of section 10.3 firstly we computed the projective depth of the
points of a wire house observed with 9 cameras and then using the SVD
projective reconstruction method we gained the shape and motion. The
reconstructed house after the Euclidean readjustment for the presentation
is shown in figure 10.8.

FIGURE 10.8. Reconstructed house using a) noise—free observations

and b) noisy observations.

We notice that the reconstruction keeps quite well the original form of
the model.

The next section will show how we can improve the shape of the re-
constructed model using geometric expressions in terms of the operators
of algebra of incidence V (meet) and A (join) and particular tensor based
invariants.
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10.4.3 Completion of the 3-D shape using

geometric invariants

FIGURE 10.9. a) One of the three images, b) reconstructed incomplete
house using 3 images c) extending the join image d) completing in the
3-D space.

The projective structure can be improved in two ways: by completing
points on the images, by expanding the join image and then by calling the
SVD procedure, or, after the reconstruction, by completing points in the 3—
D space like the occluded ones. Both approaches can use geometric inference
rules based on symmetries or concrete knowledge about the scene. Using
three real views of a similar model house with its most right lower corner
missing, see figure 10.9.b , we compute in each image the virtual image
point of this 3-D point. Then we reconstruct the scene as shown in figure
10.9.c. As opposite, using geometric incidence operations we completed the
house employing the space points as depicted in figure 10.9.d. We can see
that creating points in the images yields a better reconstruction of the
occluded point. Note that in the reconstructed image we transformed the
projective shape into an Euclidean one for the presentation of the results.



10. Projective Reconstruction of Shape and Motion Using Invariant Theory 207

FIGURE 10.10. a) One of the nine images, b) reconstructed incomplete
house using 9 images c) extending the join image d) completing in the

3-D space.

We used also lines connecting the reconstructed points only to make visible
the house form. Similarly we proceeded using 9 images, as presented in in
figure 10.10.a—d.

We can see that the resulting reconstructed point is almost similar in
both procedures. As a result we can draw the following conclusion: when
we have few views we should extend the join image using virtual image
points and in case of several images we should extend the point structure
in the 3-D space.

10.5 Conclusions

This chapter focused on the application of projective invariants based on
the trifocal tensor. We developed a method to compute the projective depth
using this kind of invariants. The resulting projective depths were then used
for the initialization of the projective reconstruction of shape and motion.
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Furthermore using incidence algebra rules we completed the reconstruction
for the case of occluded points.

The main contribution of this paper is that in our geometric method
we relate to and extend current approaches regarding projective invariants
and their application for reconstruction of shape and motion, as a result
the procedures gain geometric transparency and elegance. However, the
authors believe that more work have to be done in order to improve the
computational algorithms so that the use of projective invariants will be
more and more attractive for real systems involving noisy data.
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Chapter 11

Robot Kinematics and Flags

J.M. Selig

11.1 Introduction

In robotics the group of proper rigid transformations of 3-dimensional space
is of central importance. The relevant Clifford algebra in this case is a de-
generate one with three generators that square to —1 and a single generator
that squares to 0. The algebra contains a copy of the group’s double cover.

In a previous work [10], it was shown that the algebra also contains
representations of the points, lines and planes of space. Moreover, incidence
relations, meets and joins of these linear elements are represented by simple
formulz in the algebra. Here this work is extended by combining these
linear elements into flags, that is nested sequences of linear elements. These
flags can be used to represent some of the basic joints used in robots. In
particular, a lined plane can be used to represent a prismatic or sliding joint
and either a pointed line or a pointed plane can represent a hinge or revolute
joint. This is because the isotropy group of the flag is the group of rigid body
motions allowed by the joint. This allows us to set up the inverse kinematics
for a serial manipulator with six revolute joints as a problem in the Clifford
algebra. A theorem due to Pieper on the the solubility of such problems is
then fairly straightforward to prove. The theorem states that the inverse
kinematics problem can be solved if any three consecutive joint axes meet
at a point or are parallel. In these cases the methods developed give a
general solution to the inverse kinematics problem. Finally two concrete
examples are given.

11.2  The Clifford Algebra

This work uses a degenerate Clifford algebra, that is the Clifford algebra
associated with a degenerate bilinear form. The algebra has three genera-
tors which square to —1, e? = €2 = e2 = —1 and a single generator which
squares to zero e? = 0. The generators anti-commute in the usual way.
This particular algebra dates back to Clifford himself who concentrated
on its even sub-algebra which he called the ‘biquaternions’, see [2]. The

E. B. Corrochano et al. (eds.), Geometric Algebra with Applications in Science and Engineering

© Birkhiuser Boston 2001



212 J.M. Selig

reason for looking at this algebra is that is contains the group of rigid body
transformations as a sub-group of group of units. More precisely it contains
the double cover of the group of rigid transformations. Moreover, as we will
see below, it also contains several useful geometric representations of the
group, this allows us to turn the geometry of points, lines and planes into
Clifford algebra expressions.

11.2.1 The group of rigid body motions

It is well known that the group of rotations in three dimensional space
SO(3),can be represented by elements of a Clifford algebra as,

T = COS (g + sin %(%6263 + vyege; + v.e1€z)

where ¢ is the angle of rotation and the unit vector (v, vy, v,)T is the axis
of the rotation. It is straightforward to show that these elements form a
group under Clifford multiplication with identity 1 and where the inverse
of an element r is given by the conjugate r*. That is, rr* = 1. The action
of this group on a point g in JR3 can be written as,

q, =rqr* = T(Qzel + qye2 + QZ€3)7'*

Again it is simple to verify that this corresponds to the standard repre-
sentation q’ = Rq, where q is the position vector of the point and R is
the 3 x 3 matrix corresponding to a rotation of ¢ about the axis given by
v = (vg, vy, vz)T.

The group product corresponds to the product of rotations. Notice ho-
wever that both r and —r give the same rotation, so the group found above
is not the rotation group itself but its double cover Spin(3).

In robotics we are interested in the group of rigid body motions, the
rotations and translations. We are not interested in reflections since no
physical machine can reflect an object. So strictly we should refer to the
group of proper rigid motions in IR3. In robotics this group is usually
denoted SE(3).

In order to incorporate translations we look at Clifford algebra elements
of the form,

+ 1
=7+ —tre
g 2

where r is as above and the translation vector ¢t = tze; + tyeq +t.e3. We
expect the rotations to act on the translation, we know that the group of
rigid body motions is a semi-direct product of rotations with translations,
SE(3) = SO(3)xIR3. Combining a pure rotation with a pure translation
reveals this action,

1
r(1+ Ete) =(r+ —;—rte) =(r+ %(rtr*)re)
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FIGURE 11.1. A line in space.

So the action of rotations on translations is rtr* as we expect (Rt).

As before, the group of elements of this form double cover the rigid body
motions as g and —g give the same transformation. Notice that, the group
elements g are all members of the even sub-algebra and that gg* = 1. More
details can be found in [9, Chap. 9].

11.2.2 Points, lines and planes

In this section we detail the representation of points, lines and planes as
elements in the Clifford algebra. Also we show how the group of rigid body
motions acts on these elements.

The most well know of these representations is the representation of lines.
This is because they are represented by grade 2 elements of the Clifford
algebra and hence can be thought of as biquaternions, see for example [5,
section 8.2].

Lines in IR3 can be specified their Pliicker coordinates. Here we think of
these as a pair of vectors, a unit vector v, in the direction of the line and
a moment vector u = q X v, where q is the position vector of any point on
the line, see figure 11.1. These vectors will thus be orthogonal v:-u = 0. In
the Clifford algebra we will represent a line by elements of the form,

£ = (vgeges + vyezer + v e1e2) + (Ugere + uyese + u eze)

but satisfying the relation,
wr=1

This relation combines the requirements that v is a unit vector and that
v and u are orthogonal. These lines are in fact directed lines since —/ is
the same line as £ but with the opposite direction.
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The effect of a rigid body motion on a line is given in terms of the Pliicker
coordinates,
v/ = Rv, u =Ru+txRv

In the Clifford algebra the effect of a rigid body motion on a line can be
represented as,

él — gég*
this can be verified by a simple computation.

We can find the group elements which correspond to rotations about
a line ¢ as follows. First translate the line so that it passes through the
origin using (1 — (1/2)ge), now rotations about a line through the origin
are simply rotations about the line’s axis (cos(¢/2) +sin(¢/2)v), finally we
put the line back where we found it by translating with (1+ (1/2)ge). The
result is a one-parameter subgroup of elements,

9() (1 + (1/2)ge)(cos(¢/2) + sin(¢/2)v)(1 — (1/2)ge)
cos(¢/2) + sin(¢/2)v + (1/2) sin(¢/2)(qv — vg)e
cos(¢/2) + sin(¢/2)¢

Since qu — vg = 2(gyv: ~ qzvy)er + 2(q2Vz — gzVz)e2 + 2(qzvy — GyUz)es.

Next we look at planes in IR3, these are represented by grade 1 elements
of the Clifford algebra and hence cannot be thought of as biquaternions.
A plane can be specified by giving its unit normal vector n and the per-
pendicular distance from the origin, see figure 11.2. As usual, the vector
equation of the plane is given by,

n-q=d

where q is any point on the plane. Notice that these are oriented planes
since reversing the sign of n and d will invert the orientation of the plane.
In the Clifford algebra we can represent planes as elements of the form,

T = Nge1 + nyea +n.e3 +de
These elements must satisfy the quadratic condition,
mnt =1

this ensures that the vector n has unit length. Note that, 7* = —=, hence
we could also write the condition as 72 = —1. Now if we subject the plane
to a rigid body motion the normal vector and distance to the origin will
change as follows,

n' = Rn, d =d+ (Rn)-t

This is most easily seen by considering the effect on the vector equation for
the plane above. In the Clifford algebra this can be represented by,

T(J — gﬂ_g*
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n

FIGURE 11.2. A plane.

Finally here we look at points in JR3, these will be represented by grade
3 elements of the Clifford algebra of the form,

p = e1exe3 + rezesze + yeze1e + ze1€2€

The effect of a rigid body motion is given by,
v =gpg”

Notice that these points satisfy the equation pp* = 1, (or p? = 1, since
p* = p) however, they are not the only solutions. There is another R® of
solutions where the coefficient of ejezez is —1 instead of +1.

This representation is different from the one given in [8] and used in [9].

The representation used there has a slightly different group action and is
not homogeneous.

11.2.8 Some relations

One of the most useful results of the Clifford algebra outlined above is
the fact that many relations between points, lines and planes have simple
expressions in terms of this algebra. Here we look at a couple of these, a
fuller account may be found in [10].

First we look at the distance from a point to a plane. This is the minimum
distance, which will lie along the normal to the plane.

If this distance is [ then in the Clifford algebra we have the relation,

1 * *
5(7rp +pr*) = lejesesze

This enables us to calculate the distance. Moreover, the sign of [ tells us
which side of the plane the point is.
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FIGURE 11.3. Distance from a point to a plane.

We also get an incidence relation:
mp* +prt =0

as the condition for the point to lie on the plane.

Next we look at a line and a plane. In general a plane and a line meet at
a point. In the Clifford algebra the meeting point can be found from the
expression,

1

§(£7r* +ml*) =
—(nzve + nyvy + nyv;)erezes — (Nyu, — nyuy + dvg)esese
—(nyug — ngpu, + dvy)esere — (nguy — Ny + dv,)erea.1)

dividing by the coefficient of the term ejeses gives the Clifford algebra
element representing the intersection point. If the coeflicient vanishes then
the line is parallel to the plane and there is no intersection point, unless
the line lies in the plane. The line lies in the plane if the whole expression
£n* + w€* vanishes. So we have the incidence relation,

bt +7f* =0

which implies that the line lies in the plane.

11.3 Flags

In this section we look at how to represent flags in the algebra. A flag is a
nested sequence of linear spaces, for example a point contained in a line or
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a line lying in a plane. The relevance of these figures is that they can be
used to represent the joints of a robot. Most industrial robots have revolute
or prismatic joints, that is hinges or simple sliding joints. Robots and other
mechanisms can have helical or screw joints but the symmetry groups of
these joints are not algebraic.

11.8.1 Pointed lines

Our first example is the pointed line, that is a point lying on a line. We
may combine the algebra elements found above to represent the flag as,

fi2 = %(p+€)

Notice that this element is not homogeneous. Not all such non-homogeneous
elements represent pointed lines, the line must be a line so we must have
£0* =1 and, to be a point, the coefficient of ejesez must be 1. Finally for
the point to lie on the line the point and line must satisfy, pf* + ¢p* = 0.
Most of these equations can be written in terms of the flag itself,

f12ff2 = ]-7

Comparing coefficients of the various basis elements gives us all the equa-
tions except that we only have that pp* +€¢* = 2. If we include the relation
that the coeflicient of ejeze3 must be 1 then we have that pp* = 1 and hence
that £¢* = 1. Thus, we see that the space of all pointed lines form an affine
algebraic variety, usually called a flag manifold, in this case the (1,2)-flag
manifold.

The action of the group of rigid motions on these flags is simply,

f12 = 9f129”

Since the action is linear, the point and line transform independently. From
this we can find the isotropy group of a particular pointed line. Elements
of the isotropy group must satisfy,

fi2 = gfi129", or equivalently fi29 —gfi2=0

That is, elements of the isotropy group must commute with the flag. The
only even graded elements which commute with both p and ¢ are linear
combinations of 1 and £ itself. The result that ¢ and p commute is, of
course, a consequence of the fact that p lies on £. The elements of the
isotropy group form a line which can be parameterised as,

9(8) = cos g + sin gﬁ
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The parameter # measures the angle turned about the line £, see sec-
tion 11.2.2.

Another way of looking at this one-parameter group is as the exponential
of the line £. That is,

G o 1/6)\° 9 . 8
eXp(ie)_1+§€+ﬁ(§é> +--~—cos§+s1n§€
Recall that ¢2 = —1. This is the exponential map from the Lie algebra

of the group to the group itself. In the Clifford algebra the Lie algebra is
represented by the elements of grade 2, see [9, section 9.3].

11.3.2 Pointed planes

We can treat pointed planes in much the same way as pointed lines. A
general pointed plane will have the form,

fiz = %(IH‘W)

The condition for the point to lie in the plane is pr* + 7p* = 0 and hence
the equations for the (1, 3)-flag manifold are given by,

f13f1*3 =1

and also the coeflicient of e1ese3 must be 1.

There is a homeomorphism between the two flag manifolds defined above.
This can be see by mapping pointed lines to pointed planes and vice versa.
Given a pointed line fi2 = (1/v/2)(p +£) we can find a pointed plane with
the same point but where the plane is perpendicular to the original line.
These flags are oriented so the direction of the plane (the direction of its
normal) will be the same as the direction of the line. In the Clifford algebra
we can write the plane perpendicular to the line £ and passing through the
point p as,

1 * *
T = 5(105 — £p*)

see [10]. So the mapping is,

fiz — fis, %(p+€)k—>%(p+%(pf*—ép*))

The inverse of this map is given by mapping the plane to the line per-
pendicular to the plane passing through the point. This can be written
as,

1 * *
¢ = 5(mp” —p)
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It is simple to verify by direct calculation that ¢+ = ¢, if we remember
that, p? = ~1, £* = —¢ and also, since p lies on £, we have plp* = ¢*.

Because of the homeomorphism, the isotropy group of a pointed plane is
the same as that for the corresponding pointed line. Again a direct calcula-
tion confirms that £ = 7 commutes with 7. So we can use either a pointed
line or a pointed plane to represent a revolute joint. The axis of the joint
is given by the line and the point can be any fixed point on the axis.

Finally here, we note another application in robotics for pointed planes,
(or pointed lines). In many robotic applications the end-effector is required
to trace a path on a smooth surface, an example might be an inspection
task. Often there is an axis in the tool which must remain perpendicular
to the surface, perhaps the tool is an ultrasonic probe. Now the surface
determines a sub-space in the space of all pointed planes, just take each
point on the surface together with its tangent plane (the surface lies in IR3
and so is orientable). The desired trajectory of the end-effector must be a
path in this sub-space. This approach does not seem to have received much
attention to date, but see [6].

11.3.83 Lined planes

To represent prismatic joints we use lined planes. In the Clifford algebra
these correspond to elements of the form,

f23 = %(f-ﬁ-ﬂ')

The condition for the line to lie on the plane is, n* + 7¢* = 0. Hence we
see that these elements certainly satisfy,

f23f§3 =1

There is an involution on the algebra which we can use, this is sometimes
called the main involution, it simply reverses the sign of basis elements of
odd grade. So for lines we have £~ = ¢ and 7~ = —n where the superscript
— denotes the main involution. This means we can write,

(foa + f53)? = (V20> = =2

to ensure that both £* =1 and nr* = 1.
The isotropy group of a lined plane is simple to find, once again the
group elements must commute with the flag,

9f23 — fazg =0

The linear space of elements which commute with the line are spanned
by linear combinations of the set {1, £, ejeseze, fejezeze}. The only basis
elements which commute with 7 are 1 and fejesese,

leresezem — mleyegeze = 2(nyvg + nyvy +nyv,)e =0
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since the line lies in the plane. Hence a general element of the isotropy
group has the form,

gA) =1+ %)\Eelegege

Again, as expected, the exponential of a Lie algebra element:
A 1
exp(geelezege) =1+ 5)\€e16263e

This time the isotropy group is a one-parameter family of translations,
along the axis determined by the line.

11.8.4 Complete flags

Complete flags here comprise a point on a line in a plane,

1
Ji23 73 (p+L+m)

From the discussions above it is not hard to see that the isotropy group
of a complete flag is just the trivial group 1, just take the intersection of
the isotropy groups of the pointed line and lined plane contained in the
complete flag. To each complete flag we can associate a coordinate frame
in space, take the point in the flag as the origin, the line as the z-axis
and the plane as the zy-plane. The positive z-direction will be determined
by the direction of the line and the normal to the plane will determine
the positive z-direction. Hence the positive y-direction may be found u-
sing the vector cross product. These coordinate frames were studied by
Study [12], who called them soma. Now there is a 1-to-1 correspondence
between elements of the group of rigid body motions SFE(3), and the set of
all possible frames(somas). To see this, fix a standard or home frame say
f° = (e1eqe3+eze3+e3)/+/3, then any particular group element is mapped
to the frame obtained by operating on this home element,

g— gf°g*

Remember, the elements g are in fact elements of the double covering of
SE(3), both g and —g map to the same frame, but they represent the same
element of SE(3).

The inverse of this mapping can be found using linear algebra. Suppose
we have a frame f, the corresponding group element satisfies,

gf%¢* = f, or equivalently, gf®—fg=0

This system of equations for ¢ must be solved with the quadratic relation,
gg* =1 and hence we expect two solutions +g.
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In much of the current robotics literature the position and orientation
of a rigid body is specified by giving a frame attached to the body. In the
following it is more convenient to specify the position and orientation of
the body by giving an element of the group of rigid body motions. The
above shows that these two views are equivalent.

Finally here, note that spherical (ball-and-socket) joints can be repre-
sented by points, since both have an isotropy group which is a copy of
SO(3). Planar joints can be represented by planes, they both have isotrpy
group SE(2), the group of planar rigid motions. And finally cylindrical
joints can be represented by lines, the isotropy group here is SO(2) x IR,
rotations about the line and translations along it.

11.4 Robots

11.4.1 Kinematics

Most industrial robot arms consist or six rigid links connected by 6 revolute
joints, that is a 6R robot. One of the central problems in robotics is to relate
the position and orientation of the robot’s last link, end-effector or tool, to
the positions of its joints.

The forward or direct kinematic problem is to determine the position
and orientation of the tool given the angles of the joints. For a serially
connected robot this is relatively straight forward. We begin by choosing a
‘home’ or standard configuration for the robot. In the home configuration
all joint angles will be zero. Now we record the positions of the joint axes
in the home configuration, these will be six lines , #1, 5. .., £g. For each of
these lines the one-parameter group of rotations about the line is given by,

i 0;
a;(0;) = cos % +sin —¢;

2
see section 11.3.1. Now suppose that we set the joint angles to some set
of particular values, 6, 05, ...,60s, what is the rigid body transformation

undergone by the end-effector? If we move the last joint first then the tool
undergoes a transformation ag(fs) but the rest of the joints lower down the
arm are unchanged. So we can move the 5th joint into position giving an
overall transformation as(6s)as(fg). Continuing in this fashion down the
arm it is easy to see that the total transformation is a group element,

g = a1(0h)az(02)a3(63)aq(01)as(65)as(0s)

This group element represents the transformation relative to the home con-
figuration. That is, the transformation which would take the end-effector
in its home position to the configuration determined by the joint angles
01,...,06.
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The inverse kinematic problem for a serial robot is much harder. Given
the desired position and orientation for the end-effector, what should we
set the joint angles to? Effectively this means solving the above equation
for the joint angles given a group element g.

The inverse kinematic problem is often stated in terms of ‘tool-frame’
coordinate. Imagine a coordinate frame rigidly attached to the tool of a
robot, it is often simplest to specify a desired motion of the tool relative to
this frame. For instance, if the z-coordinate of this frame is aligned with
the axis of the end-effector’s gripper jaws say, then we might want to tell
the robot to advance some distance in this direction. Suppose that the
desired motion is given by a group element h relative to the tool-frame, the
corresponding element in the ‘world-frame’ can be found by conjugation in
the group. Let k£ be the group element which transforms the world-frame
to the tool-frame, then in the world-frame the desired motion will be khk*.
It is useful to write the element k as a product k = bg. Here b is a constant
group element which transforms the world-frame to the tool-frame when
the robot is in its home configuration, and ¢ is the group element which
takes the end-effector from its home position to the current position. So in
the tool-frame the inverse kinematic problem can be written as,

a1(0h)az(02)as(03)as(0s)as(0s)as(0s) = bghg™b*

That is, the problem is virtually the same as when the desired motion
was given in the world-frame. In fact the only difference is that g must
be computed and stored at the current position of the robot. The same
methods may be used to solve for the joint angles in both cases.

11.4.2  Pieper’s theorem

In his Ph.D. thesis, Pieper [7] showed that any 6R robot which has 3
consecutive joint axes meeting at a point has solvable inverse kinematics.
Later, Duffy showed [3] that this was also true when any 3 consecutive
joints are parallel.

The exact meaning of solvability is not too important here since cons-
tructive proofs were given. Clearly if non-solvability results were to be
considered the precise meaning of the term ‘solvable’ would be very impor-
tant. It would seem that the intention is to use the same concepts as in
Galois theory, that is solvable by radicals, but with tan8; or equivalently
sin §; and cos 6; as the variables.

The demonstration given here roughly follows the work of Pieper, but
the computations using the Clifford algebra are simpler and hence the un-
derlying geometry is much clearer. We begin with the kinematic relations
for a 6R robot,

a1(61)az(62)as(03)as(b4)as(0s)as(06) = g
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where the g;s are as in the previous section. Now suppose that 3 consecutive
joints intersect or are parallel. For the sake of illustration we assume here
that it is joints 2,3 and 4 which have this property, but it is easy to see
how to proceed in other cases.

1. Rearrange the kinematic equation to isolate the 3 intersecting/parallel
joints,
aza3a4 = a79agas

To simplify notation we drop the explicit dependance on the joint
angles.

2. If joints 2,3 and 4 are intersecting then their common point p will be
preservered by ag, az and a4, so,

* Kk * ok % *
A20304PA4 0309 =P = a1 9ag05pA5069 ai

On the other hand if the joints are parallel there will be a plane 7
preservered by the joints, any plane perpendicular to the parallel joint
axes will do,

(20304TAL0305 = T = a]§agasnasaeg a1

This splits the problem into two pieces, for definiteness we look at
the parallel case,

g a1malg = agapmasas

* % !
a2a3a4 = Q19005 = G

3. The first of these equations only involves the joint angles 8, 5 and
fs. (Once this equation has been solved, we can evaluate ¢’ = a1gagas
and solve the second equation for the remaining joint angles, 62, 83
and 6;.) So our first task is to solve the first of these equations. Notice
that this equation is a relation between planes with the general form,

Ta = GGTRA6

If the plane mg = afmas is rotated about the final joint, the point
where this plane meets the axis of the last joint ¢g will remain fixed.
This common point is a scalar multiple of the Clifford algebra expre-
ssion, Egvrzg +mf%. This allows us to eliminate the last joint angle and
write the equation as,

g armalgly + leg*aimralg = aimasly + Leagm as

In the case where there are three intersecting joint axes, we will obtain
a relation between points. In this case we can find an invariant plane
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to eliminate another joint angle, this plane passes through the point
p given by the equation and is perpendicular to the axis of the joint
£. The Clifford algebra expression for such a plane is proportional to
pl* — £p*. See [10] for more details on these relations.

. Returning to the parallel joints case we observe that since

a; = cos(0;/2) + sin(;/2)¢;, the expressions, a;ma; and asmaj are
linear in cosf1, sinf; and cos s, sin f5 respectively. There are effec-
tively three linear equations here, the final pair of equations are
provided by the trigonometric identities cos®#; + sin?6; = 1 and
cos? 05 + sin?@; = 1. Thus, in general, we must solve a pencil of
conics. This is a classical problem which is well know to be solvable
in terms of radicals and generally has four distinct solutions, see for
example [4, chapter 16].

Having found 8, and 85, ¢ is simple to find using the original equation
g*a1malg = afaimasas. This system of equations gives essentially two
linear equations in the variables cos g and sin f5. Hence, we obtain a
unique solution for #g given particular values for 6; and 6s.

Next we must solve the second of our equations azazas = ¢’, where
¢’ = a1gagai. Notice however, that there are four possible values that
g’ can take corresponding to the four solutions for the angles 6, 85
and fg. The above is a relation between group elements, so we can
eliminate a4 by acting this group element on the 4th joint axis,

* kK * _k ’ 1%
a2a3a4€4a4a3a2 = (12(13@40,30,2 =g £4g

This is now a relation between lines, if the lines ¢, ¢35 and €4 are
intersecting then a2 can be eliminated using the fact that for a pair
of lines £,, £g the expression £, ¢} +£3L} is an invariant, with respect
to the group of rigid body motions. This leads us to the expression,

azlaally + lyaszlial = g'lag’ 5 + bag'Chg”"
Again, this is linear in the variables, cosf3 and sinf3. We expect 2
equations here from the coefficients of 1 and ejezese but the coe-
flicient of ejesege will disappear because the lines are intersecting.
Solving the remaining linear equation with the trigonometric identity
cos? 03 + sin? B3 = 1, gives two solutions.

On the other hand if the three lines are parallel we can eliminate
ay using the expression, (1/2)(€,¢} — £5¢;). Because the lines are
parallel this will give sze1e+ syeze + s,e3e where s = (s¢, sy, sz)T is
a vector from one line to the other, perpendicular to both. The length
of this vector s> = s2 + s2 + s2 is then invariant under an overall

rigid motion and will depend only on f5. In fact the expression we
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get will be the cosine rule for the triangle formed by the three lines
meeting a perpendicular plane. Hence we obtain two solutions for 63
corresponding to the two possible signs for sinf3.

7. In either case we can now retrace our steps and solve,
* ok ! 1%
asazlsazay = g'lsg
to get a unique answer for f5.

8. Finally we use,

* _k _/

a4 = A3099

to recover 0.

Notice that we have shown that these robots a maximum of eight distinct
solutions for their inverse kinematics. For a general 6R robot, where no
three consecutive joint intersect or are parallel, it can be shown that the
inverse kinematic problem has 16 solutions.

In the following two sections a pair of examples is given in order to make
the procedure more concrete.

11.4.83 FEzample—the MA2000

This table-top robot arm was designed as a ‘home-experiment kit’ for an
Open University course in robotics. As can be seen from figure 11.4, joints
2,3 and 4 are parallel.

We begin with a list of the joint axes in their home configuration,

6 = ee

€2 = €32€3

l3 = esez+ lreqe

by = egez+ (Ia+13)eqe

by = ejeq —dgege

s = eges+ (la+ 13+ la)ege

Here the dimensions ls, I3, l4 and d4 are constants, sometimes called the
design parameters of the robot. A plane perpendicular to joints 2,3 and 4
is given by m = e;.

The first equation we have to solve is,

grarmalgls + leg armalg = aimasly + leaim as

Recall that a; = cos(6;/2) + sin(8;/2)¢;, so after some computation, the
right-hand side of the equation becomes,

aimasly + Lgaim*as = —2cosfserezes — 2dy(cosbs — 1)egese
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FIGURE 11.4. The telequipment MA200 robot.

— 2(lag +13+1l4) cosbsereqe (4.2)

The left-hand side requires even more computation since we must include
a general rigid motion g. Let us write this general motion as a rotation
followed by a translation,

1
= —~t
g=r+ 5 re
where
T = COS g + vy sin gegeg + vy sin %egel + v, sin (geleg
and

t= tze1 + tyez +i.e3

see section 11.2.1. It is useful at this stage to write,

g*ai1maig = Nze1 + Nyea + N,e3 + De

where,

N, = (cos¢+v2(1 - cos¢))cos + (v, sin ¢+ vyv, (1 — cos ¢)) sinb;

Ny = (vzvy(l —cos¢) — v, sing)cosby + (cosp + vﬁ(l — cos ¢)) sin 6y

N, = (vysing+ vyv,(1 — cos¢))cosby + (vyv,(1 — cos ¢) — v, sin @) sin 6y
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D = Nit,+ Nyt, + N,t,
Now the left-hand side of the equation can be written as,

g armaigls + Leg*aimalg = —2Ngejesez —2(D — (la + I3+ 14) N, )ezeze
- 2(l2 + l3 + l4)Nx€1€2€ (43)

Comparing the coeflicients of the basis elements gives us just two equations
in the first and fifth joint angles,

N, = cos 05, and D —{(lo+13+14)N, = ds{cosfs — 1)

So we don’t have to solve a pair of quadratic equations here we can eliminate
cos 05 to get a linear equation in the sine and cosine of 6y,

D—(l2+l3+l4)Nz—d4NI+d4:0

Solving this with the trigonometric identity cos? 8; + sin?8; = 1 gives two
solutions in general,

_afy:tﬂ a2+52_72
a? +52

The coefficients «, # and y are functions only of the end-effector’s position

and orientation,

CcoSs 01 = with sin 01 = "“(a Ccos 91 + ’Y)/ﬁ

a = ((1=v2)(te = ds) — vavyty — V0. (ty —lo — I3 — lg)) cos ¢ +
(vy(ts —lp — I3 — 1g) — v,t,) sin @ + vy (v, (ts — dy) +
Uyty — Uz(tz — lz — l3 — 14))

8 = ((1 - UZ)ty — VzUy(te — dg) — vy, (t, — lo — I3 — l4)) cos ¢ +
(Uz(tz - d4) - vz(tz —ly—13— l4)) sin¢ + Vy (’Uz(tz - d4) +
vyty + v, (t; — la — I3 — ly))

Y = ds
For each of the two solutions for 6; we get two solutions for 5 given by,
cosfs = N, and sinfy = +4/1 — N2
To find 65 we solve the linear equations,
(g"armaig) = aj(aimas)a
That is,

(Nge1 + Nyea + N,eg + De) =
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= ag(cosfse; — sinfseq + da(cos b5 — 1)e)ag
= cosfxe; — cos fg sin f5es + sin fg sin Ose3
+(d4(COS 95 — 1) + sin 06 sin 65([2 + l3 + 13))6(44)

Comparing coefficients we have that,
cosfg = N,/ sin 6, and sinflg = N,/sinb;

From the results above we can calculate ¢’ = ai1gagaj, this must be an
element of the sub-group generated by as, az and a4 which is the group
of motions in the yz-plane. Hence we can write ¢’ as a rotation about the
z-axis followed by a translation in the yz-plane,

/ / 1 7 ¢/
g = cos ) + sin Seses + i(t; cos + ¢, sin -2—)626 +
1 / /
+ E(tlz cos % — ty, sin %)636

Now we must solve the second part of the problem
azazay = ¢’

Since the lines 5, £3 and ¢4 are parallel, we eliminate a2 and a4 by com-
puting,

1
5(@3&10%[; - fzd@ZZ(I;) =
= —I3sinfzeze + (I + I3 cos b3)eze

1 * % x* ¥
= 5(9’1349’ 05— lag'lig"") (4.5)

s0 §2 = 13 4 12 + 2lyl3 cos f3. From the right-hand side of the equation we
have,

% = (Iz +13)2 + 2(la + Is)(t, cos ¢’ — t! sing’) + ¢, 2 +¢.”
The two solutions for 83 are thus,
cos B3 = (s? — 12 —12) /21,15, and sinf3 = £4/1 — cos? 03
Stepping back, we can find 6, from,
agazlsazas = g'&;g'*
The right-hand side can be written,

g'0sg"" = eges + ((l2 +13) cos ¢’ +t,)eze + ((l2 + I3) sin ¢’ — tly)€3€
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which we can abbreviate to ¢’f49"" = eses + Xese + Yese, with
X (l2 + 13) cos ¢, + tlz
Y = (la+13)sing’ — t;
The left-hand side is,
azazlyaia; = eges+ (cosby(ly + I3 cosf3) — I3sinf, sinfz)eze +
+ (sin 0 (12 + I3 cos 03) + I3 cos 05 sin 93)636 (46)

So we get a unique solution for 8;,

cosly = (X(lz + I3 cosf3) + Ylizsin 93))/(@ + lg + 213153 cos B3)
sinf, = (Y(lo+l3cos03) — Xl3sinfs)) /(13 + 13 + 255 cos 03)

To finish the solution we must find 64, this can be found from,

* ok _/

a4 = A30a949

By looking at the rotation part of this we get,

0y =¢' — 0 — 03

11.4.4 FEzample—the Intelledex 660

The second example we look at is the Intelledex 660 robot, this is another
small robot intended for use in laboratories, see figure 11.5. The design is
unusual because the three consecutive intersecting joints are the first three
rather than the last three as in a robot with a 3R wrist. Moreover, this
robot also has three consecutive parallel joints, that is joints 3,4 and 5.
This means that we can choose either method to solve the inverse kine-
matics, we choose to use the fact that the first three joints are intersecting
since the other method has already be demonstrated. We will see in a
moment that the fact that three of the joints are also parallel makes the
problem even easier. As usual we begin by listing the joint axes in their

home configuration,

1%
4
3
£y
143
g

€1€9

€2€3

€3€1

esel — lyeqe

ezer — (lg + Is)ere

e1es + dsere
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FIGURE 11.5. The intelledex 660 robot.

again ly, I5 and djs represent design parameters. The point fixed by the first
three joints is the origin, p = ejeses. So we have,

ag*pgag = a5a3pasas
Next we eliminate 85 by finding the plane through p perpendicular to the
fifth joint axis, see section 11.4.2 step 3. In fact, because the fourth and
fifth joint axes are parallel the expression, afajpasasf — {saza3p*asas will
be independant of both 84 and 5. It is not too difficult to see that the

expression will be proportional to ez, the zz-plane. Calculation confirms
that it is 2eq, so the equation reduces to,

asg pgagly — l5a6g™ D" gag = 2e2

As usual we write the general rigid motion as g = r + (1/2)tre with
T = cos(¢/2) + vy sin(¢/2)ezes + vy sin(@/2)ezer + v, sin(¢/2)erez and
t = tze1 + tyea + t,es. This group element transforms the position of the

origin to,
* * ]' * 1
gpg = <r — 57‘ te) e|eses (r + gtre)
= ejeses + (ritr)ejegese
= ejegez —theseze — t;e3ele —thejeqe
where

t; = (v-t)vg + (tz —(v- t)vz) cos ¢ + (tyvz — tzvy) sin ¢
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t, = (v-thy+ (ty — (v-t)vy) cos ¢+ (t-vz — tzv.)sing
t, = (v-t)v,+ (t. — (v t)v,) cosd + (tevy — tyvz)sin¢

This allows us to compute,

p = asg”pgag = ereses + Xegeze + Yezere + Zejege

where
X = (dssinfe +t,sinfe -t cosbe)
Y = (d5(1 —COS@G) —t; COS@(; —t; sin06)
zZ = -t

Hence,

asg*pgagls — lsacg™p*gag = 23 + 2(ds(1 — cos B) — t;, cos b — t;, sin fg)e

Comparing this with the previous calculation gives the linear equation
Y =0,
ds(1 — cos ) — t,, cos g — t, sinflg = 0

Solving this with the trigonometric identity cos? 8 + sin 6 = 1 gives the
two solutions,

ds(ds +1,) + £/, + 1,2 + 2dst,,

cosfg =
° (@2 + .2 + 1,7 + 2dst,)

1

sin 06 = e
tz

(ds — (ds + t;,) cos 66)

Now, for each of the solutions for fg we compute, p’ = agg*pgag. So to
find 64 and 65 we must solve,

ajpas = asp'a;
This is simply a two joint planar manipulator.

erezes + lysinfyeqeze + 14{1 — cosfy)ereze =
= ejege3 + (X cosfs + Zsinfls — (l4 + I5) sin 05)62636 +
+(Z cosfs — X sinfs + (I4 + I5){1 — cos 95))61626

where we have used the fact that ¥ = 0. We now have two linear equations,

lysinfy = Xcosfs+ (Z — 1y - l5) sin 65
—lgcos8y = s+ (Z -y~ l5) cosfs — X sinfs
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we can eliminate 64 from these equations by squaring and adding them. A
little rearrangement using trigonometic identities gives the linear equation,

25(Z — 1y —Is) cosbs — 2s X sinfs =12 — 12 — X2 —(Z — 1y — I5)?

Now we can use the standard solution for a linear equation with the trigono-
metric identity, cos? 85 + sinZ 85 = 1,

AC £ BvV(C? - B% -
A? + B?

cosfy =

1
sin s = E(C — Acosbs)

where,

A = 25(Z -1y —15)
B = 25X
C = B-1-X?>—(Z-1l4-15)?

Having found 85, we can find 84 immedieatly from the relations,

cosly = (X sinfs — (Z — Iy — l5) cosf5 — 15)/14
sinfy = (XcosOs+(Z—1s—1s5)sinbs)/ls

The remaining three joint form a spherical mechanism. For each of the
four possible solutions found above we compute ¢’ = gagaiaj, and then
the equations we must solve are,

A
ayaa3 = ¢

In order that this equation can be solved we must have that ¢’ is a rotation
about the point p, hence we can write,

g’ = cos(¢'/2) + v sin(¢' /2)ezes + v, sin(¢' /2)ezer + v, sin(¢'/2)erer
As mentioned above, we isolate #3 using the equation,
Lraglial + azbzall] = £19'659"" + g'lsg"" 0}

this gives,
sin 0y = v, sin ¢’ + v, v, (1 — cos ¢')

cosfy = £4/1 - sin? 6,

To find 8; we use the equation,

and hence

alazégagai‘ = g’gggl*
expanding this gives two useful equations,

sinfycosfy = v sing’ — v v, (1 —cosd’)
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cosfycosfy = cos¢’ + v'i(l —cos¢')

In general, when cos 3 # 0, this will give a unique solution for 6.
Finally we must find 65, to do this go back to the equation, ajazas = g’
and recast it as,
az = ajaig’

Comparing coefficients as usual we get,

cosa—3 = cosﬂcosa—lcosa +v smﬂcosgl—sma—2+
2 2 2 2 2 2 2
! 0 0, ! 0 0
vysmgsm%smg +v sm%sm%cos—;
0 ! 0 0 ! 7]
sin;3 = —cos%sm?lsm?z—v sm%sm—é—cosg—i-
/ 0 02 ! 0 7}
vysm%cos%cosE+v sm%cosésm—%

JFrom here it is an easy matter find 6s.

11.5 Concluding Remarks

As mentioned at the beginning of section 11.2 the algebra presented here
is very closely related to the original biquaternion algebra introduced by
Clifford and used by Blaschke [1]. It is possible to represent points and lines
by biquaternions. However, the action of the group of rigid transformations
on points is different from that on lines. Hence, flags cannot be simple
combinations of the linear elements. Moreover the relations for meets and
joins will be more complicated, (for the above algebra, these relations are
derived in [10]. So, despite the fact that this algebra has 16 basis elements
rather than only 8 for biquaternions, it is much simpler to use for practical
examples.

An algorithm has been outlined above which derives the inverse kine-
matic relations for any 6R robot with three consecutive intersecting or
parallel joints. This method may not give the most efficient derivation but
this is hardly relevant since for any robot the derivation will only be per-
formed once. The computations in this work were done by hand but the
Clifford algebra is ideally suited to automation using a symbolic algebra
computer program. For example, it would be a simple matter to write a
Mathematica notebook to check the results. The solutions given above in-
troduce several sets of intermediate variables. This reduces the size of the
equations and so makes the problem tractable for hand calculation. From
the results given above it would not be too difficult to write numerical pro-
grams to find the inverse kinematics for these machines, values would have
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to be assigned to the design parameters of course. Care should be taken,
however, because in the above we have not addressed the problem of sin-
gularities. This is not too difficult for these examples since we only need to
look for divisors vanishing or the discriminant of a quadratic dissappearing.

Although in general we have to solve a pencil of conics, in the examples
given above, the problem was in fact simpler in the end, we only had to solve
quadratic equations. The ‘special geometry’ for which these simplifications
happen has been extensively studied by Smith {11].

Can the methods outlined above be used for other types of robots? An
obvious application would be to robots containing prismatic joints. From
the above it is reasonably clear what to do, we must look for sets of con-
secutive joints which form sub-groups of the group of rigid body motions.
If these sub-groups fix a point, a line or a plane then we can eliminate the
corresponding joint angles from the kinematic equation an hence simplify
it.

Suppose we have a robot with no three consecutive joints parallel or
intersecting, it may still be possible to simplify the kinematics and produce
a ‘semi-analytic’ solution. Unfortunately there are good reasons why such
designs do not make good practical robots.

Finally, the algebra and methods described above are directly applica-
ble to the theory of mechanisms, in particular spatial mechanisms. Like
robots, mechanisms consist of links and joints. However mechanisms usua-
lly contain kinematic loops, that is, a ring of links each connected to their
neighbours by a joint. We could characterise the joints by flags as above
and then write down the relationship between pairs of joints at either end
of a link using the Clifford algebra. This would be a simple way to find the
algebraic expressions characterising the configuration space of the mecha-
nism. We could also consider fixing a point, line or more generally a flag in
the coupler link and then set up equations to determine whether or not this
flag could be brought into coincidence with a similar flag fixed in space.



Chapter 12

The Clifford Algebra and the
Optimization of Robot Design

Shawn G. Ahlers and John Michael McCarthy

12.1 Introduction

The goal of this chapter is a computer aided design environment that assists
the inventor to formulate a task and evaluate candidate devices. The task
trajectory of a robot is specified as a set of homogeneous transforms that
define key frames for a desired end-effector trajectory. These key frames
are converted to double quaternions and interpolated by generalizing well
known techniques for Bezier interpolation of quaternions. The result is an
efficient interpolation algorithm.

Our focus here is the design of a five degree of freedom TS robot that
reaches the given task trajectory. The TS robot is constructed by connec-
ting a pair of revolute joints perpendicular to each other as the base pivot
to a spherical (S) joint by a fixed distance, see Figure 12.1. The pair of
revolute joints is also known as a gimbal (T) or universal joint. The set of
reachable positions and orientations of this device is its workspace which
may not include the entire specified trajectory. Our goal is to find the
TS robot minimizes the local error between its workspace and this task
trajectory.

12.2 Literature Review

Bezier interpolation is used in computer drawing systems to generate curves
through specified points (Farin [5]). Shoemake [13] shows that this tech-
nique can be used to interpolate rotation key frames specified by quaternion
coordinates (Hamilton [9]); the result is an efficient animation algorithm.
Ge and Ravani [8] generalize Shoemake’s results to spatial displacements
using double quaternions (Clifford [1]). These results were refined to ensure
smooth transitions at each key frame by Ge and Kang [7].

In this chapter, we apply the results of Ge and Kang to double quaternion
interpolation. Etzel and McCarthy [4] show how spatial displacements can
be transformed to 4 x 4 rotations in E*, and then to double quaternions. A

E. B. Corrochano et al. (eds.), Geomerric Algebra with Applications in Science and Engineering

© Birkhiuser Boston 2001



236 Shawn G. Ahlers and John Michael McCarthy

FIGURE 12.1. TS robot.

benefit of this approach is that the interpolation algorithm can be applied
to the quaternion components separately.

The robot design problem seeks the dimensions of the device that satisfy
geometric constraints (Suh and Radcliffe [14]). The structure of the TS
robot requires the wrist w to lie on a sphere about the fixed gimbal joint
g. Innocenti [10] presents a design algorithm that yields as many as 20 T'S
chains that reach seven arbitrary positions. Our goal is to find the TS robot
that fits our end-effector trajectory with arbitrarily many positions.

12.3 Overview of the Design Algorithm

The design algorithm begins with the specification of the task. The task
is defined by the N+1 user-specified key frames. These key frames are
converted from their representation as homogeneous transforms to double
quaternions. These double quaternions are interpolated to define the task
trajectory of a desired robot. To compute a TS robot, the frames of this task
trajectory are converted back to their homogeneous transforms. By using
four position synthesis, the parameters of a TS robot are computed from
four frames of the task trajectory. The synthesis procedure is repeated for
all combinations of four frames of the task trajectory. The optimization pro-
cedure begins by calculating the closest positions and orientations reachable
by a designed TS robot to the remaining frames of the trajectory. These
new reachable frames are converted to double quaternions. The local error
between a frame from task trajectory and the reachable frame is calculated
as the magnitude of the difference of these double quaternions. This local
error is summed for each frame on the task trajectory and divided by the
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FIGURE 12.2. TS robot design flowchart.

total number of frames to obtain the error. The optimization procedure is
repeated for each TS robot obtained from the synthesis procedure. The TS
robot with the minimum error is the optimum fit of the robot to the task
trajectory, see Figure 12.2. If the optimum TS robot is not satisfactory, the
user may alter the key frames and the design process is repeated to obtain
another robot candidate.

12.4 Double Quaternions

12.4.1 Homogeneous transforms

The transformation equation for a spatial displacement is not a linear trans-
formation. A spatial displacement consists of a 3 x 3 rotation matrix and
a 3x1 displacement vector. A standard strategy to adjust for this inho-
mogeneity is to add a fourth component to our position vectors that will
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always equal 1, then we can introduce the 4 x 4 homogeneous transform

U )=l 4T @

y = [H]x. (4.2)

which we write as

The rotation-translation pairs [H] = [A, d] represent all the spatial posi-
tions of M relative to F, known as the special Euclidean group, SE(3).

12.4.2 The Clifford algebra on E*

A set of hypercomplex numbers called double quaternions may be obtained
from the even Clifford Algebra of four dimensional Euclidean space E*.
Let e;,7 = 1,...,4 be the natural coordinate vectors of E4, then we can
construct the multilinear algebra of points in E*. Introduce the Clifford
product

e;e; +e;e; = —2e; - €, (43)

where the dot denotes the usual Euclidean scalar product. The even sub-
algebra C*(E*) is of the rank 8, and a typical element can be written
as

Q=G +wH, (4.4)

where G and H are Hamilton’s quaternions and w = e;ezeze, satisfies the
identity w? = 1.

Clifford shows that depending on the definition of the scalar product in
equation (4.3) we can also obtain dual quaternions, w? = 0, and complex
quaternions, w? = —1. Using the double quaternion algebra, w? =1, we
now introduce the symbols £ = (1 —w)/2 and n = (1 +w)/2, and construct
the double quaternion

Q=(G-H)+(G+H)p (4.5)

Notice that £€2 = £, n? = 5, and &n = 0. These identities provide a complete
separation of the operations on the quaternions (G —H) and (G + H). For
example, for any two double quaternions P = P1£ + Pyn and

R = Ri£ + Ryn, we have

PR = P;R¢ + P,Ron. (4.6)

Since operations on the quaternions may be done independently, the inter-
polation technique defined for a single quaternion may be utilized for the
individual quaternions of the double quaternions. As we will show in a later
section, this will allow us to interpolate the quaternions independently.
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12.4.8 Homogeneous transformations as a rotations

in E*

The general 4 x 4 homogeneous transform for a spatial displacement can
be written as

clcy) —sOspsyy  —clsp — sfspcyy  sbcgp  d

_ _ cosy cpcy s¢p d
H =14l = | _poi— chsgsy  sOsp — cBspeyp  cBep d, | @ D)
0 0 0 1

where the angles 8, ¢, and v are the longitude, latitude, and roll angles
defining the orientation of the displaced frame, respectively, and ¢ and s
represent the cosine and sine functions.
Now define the angles «, 3, and v be defined such that
dy dy d,
= _—, = -, d = ——
R P=g =R
where R is the radius of the hypersphere to which the translational elements
are computed. We can compute the 4 x 4 rotation matrix [J] composed of
successive rotations of « in the W-X plane, 8 in the W-Y plane, and 7 in
the W-Z plane to obtain

(4.8)

ca 0 0 sa
—sfsa cl 0 sBca
—sycfsa  —sysfB ¢y sycfea
—cycfsa —sfBcy —sy  cycBea

[J] = (4.9)

If we let A(f, ¢, ¥) be the upper left 3x3 submatrix of the 4x4 matrix
[K] and keep a 1 in the fourth diagonal location, we may express a general
rotation in four dimensional space, E*, as the product of two 4 x 4 rotation
matrices [D]=[J(e,8,7)][K(0,6,¥)]. Explicitly written

co 0 0 so
—sfsa cf 0 sfca
—sycfsa  —sysf8 ¢y sycfca
| —cyeBsa —sfey —sy cycfea

[ cOcyp —sOspsyp  —clsp — sfspeyy  sfcp 0
cosyp cpcy sp 0
—~sfcy — cOsgpsyy  sfsyp — chspcy)y  cbep 0
0 0 0 1

If we assume that the angles a, 3, and v are small,
cosa =cosf=cosy =1, and

sina:%, sinﬁ:%, and sin'y:%. (4.11)
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Then the 4 x 4 rotation matrix becomes

[ 1 0 0 %
10 1 0o =
1o o0 1 %
—de _ %y _d.
LR R R
[ cOcy) — sfspsyp  —chsgp — shsdeyp  sbep 0
cosy cocy sp O
—sfcyy — chsgsyy  sfsy) — chspcy  chcp 0O
i 0 0 0 1

If we shift the coordinate frame to W = R to cancel the 1/R terms, the
result is an approximation to a spatial displacement of order O(1/R?).

The parameter R is identified by specifying a maximum length L for the
problem, then the error of this approximation is e < (L/R)?. Specify ¢ and
solve for R in order to define the rotation in E* that approximates a given
spatial displacement.

12.4.4 Double quaternion for a spatial displacement

In this subsection, we will reformulate [H] in terms of double quaternions.
After we have converted a spatial displacement [H] = [A,d] to a 4 x 4
rotation [D], we may use Cayley’s formula (Bottema and Roth, 1979), to
obtain the skew symmetric matrix

0 —uz Uz Vi
_ip_ ~1_ | wus 0 -—u; w
Bl=(D-np+1n7t=| e 0 T (4.13)

-0 —Vy —Us 0

We now define the matrix [B’] by interchanging the u; and v; terms, in
order to obtain the matrices (Etzel and McCarthy, [4])

0 —83 ED) S1
_[Bl+[B] s3 0 —s1 s
ki1[S] = = k; s s 0 s (4.14)
—81 —82 —83 0
and
0 —t3 t2 _tl
_[BI-[B] i3 0 —t -t
ko[T) = 5 ko 4 4 0 —ts (4.15)

t1 to t3 0
where [B] = k1[S] + k2[T] and 3" s? = 3" t2 = 1. We can then compute y
and v by the equations

p = arctan(ky + k2) + arctan(k; — ko)

v = arctan(k; + k2) — arctan(k; — k). (4.16)
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The double quaternion is now given by G = G £ + G2, where

G, = { sin s } and Gy = { sin vt } . (4.17)
cos cosv

where s = (s1,82,53)7 and t = (t;,t2,%3)7 define the axes to which the
angles u and v are to be rotated, respectively. Again, notice that each 4 x 4
rotation matrix defines a double quaternion, that can be separated into a
pair of quaternions that multiply separately.

12.4.5 Spatial displacement from a double quaternion

Assuming we have a double quaternion G of the form of equation (4.17), we
compute the associated spatial displacement as follows. Note that a 4 x 4
rotation matrix can be written in exponential form

[D] = elM] (4.18)

where [M] is a 4 X 4 skew symmetric matrix. The matrix [M] has the form
[M] = u[S] + v[T] (Ge, [6]). Thus

(D] = ISIHATD — culsl 17, (4.19)
The series expansion of e#15] and €¥[7) and the identities [S])? = [T]% = —[I]
yield the formulas
[ cosp —sysing  spsinp sysinp |
HIS] S3sinp COS |4 —s1siny  Spsinp (4.20)
—sgsinp  sysinpy cos sysiny |’ ’

—s18inpy  —sgsinpg  —szsing cosp

and
cos v —t3siny  tpsiny —t;sinv
t3sinv cos v —t1siny —tysinv
e/ = | 3> . ! 2° (4.21)
—tasinv  tysinv cos v —t3siny
t1sinv tosiny tysinv cosv

The result is the 4 X 4 rotation matrix [D] defined by G = G & + Gan.
The 4 x 4 homogeneous transform approximating the rotation is

[H] = [A,d], where A is the upper left 3 x 3 rotation matrix and the

translation vector d = (dz, dy,d.) is given by

dg = duR, dy=duR, d,=dssR, (4.22)

where d;; is the ijth element of the [D] matrix. The longitude, latitude,
and roll angles are

# = arctan(dy3/ds3),
¢ = arctan(dq3 cos 8/d33) = arctan(das sinf/d3), (4.23)
’l,b — arctan(dgl/dgg).
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Thus, a homogeneous transformation may be computed from a double
quaternion.

12.5 The Task Trajectory

The task of the robot is defined in terms of the trajectory of the end-effector.
In order to define this task, we specify a set of key frames and use Bezier
interpolation to generate the trajectory. Consider N + 1 key frames defined
by the homogenous transforms [Hy),k = 0,..., N. The double quaternions
associated with each key frame are denoted as f’k = Py,1£+ Py on. We use
the Bezier interpolation of double quaternions developed by Ge and Kang
[7] to create the task trajectory.

Bezier interpolation for double quaternions follows the principles of Bezier
interpolation for curves, see Farin [5]. There are two main features the ge-
neration of a curve segment between two key frames using the deCasteljau
[2, 3] algorithm, and the joining of these segments together to maintain G*
and G? continuity. These continuity conditions ensure a smooth movement
of the body along the trajectory.

12.5.1 The DeCasteljau algorithm

In order to generate a trajectory segment between the two key frames P;
and PH—I, we need a Bezier polygon Bg,, B32+1, B3,+2, and B31+3 The first
and last double quaternions of the Bezier polygon are identified with the
two key frames,

B3i B f’i and Bgi+3 = f’i+1. (5.24)

The intermediate Bezier double quaternions ﬁ3i+1 and Bgi+2 are calculated
to provide the desired continuity conditions when the complete trajectory
is assembled. We show in the next section how this is done.

Here we show how the DeCasteljau algorithm is used to generate po-
sitions along the trajectory between two key frames for a given Bezier
polygon. The central feature of the algorithm is an interpolation formula
between two double quaternions P; and f’i+1, which is a generalization of
Shoemake’s [13] original results. Let V =¢V, +nV3 and W =W 1 +nWo
be two unit double quaternions, then the great circular arc L{t) between
them is defined by the formula

i) = sin(1 —t)p

sin p sin p

(5.25)

where cos p = V.-W.
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Expanding the double quaternions in this equation, we obtain

sintpq

sin(? —t)p1 v, 48 Wi+ (sin(? - t)p2V 4 si.ntpg W),
sin p; sin p; sin po sin po

(5.26)
Notice that this equation separates to define the interpolation of the quater-
nion components of V and W, individually. Thus our formalism simply
requires us to apply Shoemake’s interpolation formula twice. In fact, all of
our algorithms handle the components of the double quaternions indepen-
dently.

For a particular value of the parameter ¢ we now seek the double quater-
nion D(t) along the Bezier curve segment. The DeCasteljau algorithm uses
equation (5.25) to generate circular arcs between each of the Bezier double
quaternions Bg;, B32+1, Bs; 42, and B31+3 associated with this ¢th segment.
To do this we first compute the double quaternions Xo, X;, and X5 on each
of these arcs by the formula

L(t) = &

~ sin(1 — ), = sintp.
Xomn(t) = ‘(.‘—..—)p_mB&'-}-m + — Pm f
sin P, Sin P,

B32+(m+1), = O, 1, 2 (527)

where m denotes the arc connecting the Bezier double quaternions B32+m
and B31+m+1 Next repeat this process in order to define the double quater-
nions Y, and Y; on the arcs joining Xo, X; and Xl, Xg, defined by the
formula

_ in(1 — )6, ~ inté, -
Vo) = U= Hong SOy 01 (5.28)
sind, sin g,
Finally, we obtain the frame D(t) as
N in(1 — £)7 - int7 -
D) = MUy | sy (5.29)
sin ¥ sin 7

As the parameter ¢ varies from 0 to 1, D(t) will define the trajectory from
P; to P;;,. This procedure can be generalized for Bezier polygons with
more intermediate vertices, see Farin [5].

12.5.2 Bezier interpolation

To define the entire task trajectory, we must compute the Bezier polygon
for each of the N segments. The intermediate Bezier double quaternions,
B31+1 and B31+2 are determined to ensure continuity at each junction.

To ensure G! continuity, Bs;_1 and B32+1 and the key frame P, must lie
the same arc, see Figure 12.3. Therefore, P, is related to B31+1 and Bg;_;
by o o o

sin ¢;P; = sin 9;¢;B3;_1 + sin U;p; B3y (530)
_ The parameter b = arccos(Bgi_l Bsit1) is the double arclength between
B3i—1 and Bgj;1;. The parameters #%; and v; locate P; on this arc, such
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Qi+ 1
FIGURE 12.3. Construction of Bezier double quaternions.

that @;¢; = arccos(]~33i_1 -f’,v), T = arccos(f’,- . B3i+1). These parameters
satisfy the relation
@+ 7 = 1. (5.31)

_To ensure~G2 continuity, the five double quaternions B2, Bs;_1, P,
Bg;i11, and B2 must lie on the same great sphere (see Ge and Kang [7]).
"To do this, we introduce the control double quaternion QZ that is defined to
be the intersection of the arcs through by B3Z 2, B3Z 1, and B32+1, B31+1
These Bezier double quaternions lie on arcs through Ql,1 and Q and Q

and Qz +1- They are located by the parameters x;, y;, 2;, so that

sin éi—lﬁ?n‘—l = sin Zi-léi—IQi_l +sin(z;—1 + yi—l)éi——IQm (5.32)
for i=2,...,N—1, '

and
sin §;B3;1.1 = sin(y; + z,)élQl +sinz;0,Q; 1, (5.33)
for i=1,...,N -2, ’

where the angle 8; = arccos(Qi . QZ +1)- Note, the x;, y;, z; are greater than
zero and satisfy the constraint

Ti+ys+2i=1 for 1<i<N-2 (5.34)

At the endpoints of the trajectory zo = 0 and zy_; = 0.
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To complete the condition for G? continuity, we require the parameters
%; and 9; to satisfy the constraint derived in [7],

U;sin0;¢;  y;—10;1sinx;0;

- — ~ . (5.35)
U; Sin U; @; yib;sinz; _10;_1
This equation together with equation (5.31) can be solved to determine
the parameters 4; and o; in terms of the angles 6; and ¢;. These angles
are computed from the locations of Qz and Bs;+1. The control double
quaternions Q must be found to fit the user-specified P,. The parameters
@; and ¥; are determined by solving equations (5.35) and (5.31) numerically.
Substitute equations (5.32) and (5.33) into (5.30) to define the key frame
double quaternions P; directly in terms of the control quaternions Q,

f)z' = aiQi_l + szz + CiQi+1 (536)
where

sin zi_lﬁi_l sin 172(151

sin éi—l sin qgi
o sin(xi_l + yi_l)éi_l sin 'Di(lgi n sin(yi + Zi)éi sin ai(l;i

sin 6;_1 sin ¢; sin #; sin ¢;

- sin z;0; sin i; qbz

sin ; sin ¢;

This relationship can be written in matrix form as

@, b, &, 0, -+ 0, 0, 0 Q
0, as by & -~ 0 0 0 1
0, 0, 0, 0, --- ay_1, bv_1, én-1 Q-1
P,
= : , (5.38)
Py
or o
M]Q =P, (5.39)
where [M] is defined as the coefficient matrix, Q= (Q,...,Qn_1)7, and
P= (131, ce 15N_1)T. Note, the coefficients a;, b;, and &; are dependent on

the angles 6; and ¢; which, in turn, are dependent on the control quater-
nions Q,. 5 3
Given an estimate for the angles §; and ¢; and the variables 4; and ;,
: S+l
we can compute [M?] and solve equation (5.39) for Q" such that

" = w18 (5.40)
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From QJH, we calculate Bs;_; and Bs;4; from equations (5.32, 5.33). At
this point, we correct the estimates for 6;, ¢;, s, and ¥; and recompute
Q,. The process stops when equation (5.30) is satisfied.

The Bezier interpolation procedure is as follows

Step 1. The special cases of the endpoints are handled by defining
the control quatermons at the boundaries, that is, Q_1 = By = Py and
Q N1 = = B3y = Py. The adjacent Bezier double quatermons are defined
as B1 = Qo and B3N 1= QN However, the choices for QO and QN are
arbitrary. We choose them to lie one-tenth (¢ = 0.1) of the way from the
first and last key frames on the arc-segments passing through Py, Py, and
PN, PN 1, such that

. in(1-0.1)5o~  sin0.15 =
Q= =0V g sin0lho g (5.41)
sin g sin po
and
~ sin{l1 — 0.1)on =~ sin0.1pn ~
QN=—————( —0lpng o Sn0lng (5.42)
sin gy sin gy

where gg = arccos(f’o . f’l) and gy = arccos(f)N . f’N_l).

We also set the variables z; =y, = z; = % fori=1,...,N —2; and near
the ends of the trajectory, we select yo = yny-1 = 0.6 and 2z = zy_1 =04
for equation (5.34). Recall, zg = z2y_1 = 0.

Step 2. Determine the initial [M°] such that j = 0 in equation (5.40).

e Let the initial @; and 9; be defined by

i = (zayi-1)'/?
Y (@ayie1)Y? + (izee1) V2

(5.43)

L \1/2
B = (vizi-1) . (5.44)

C(miyim1) Y2+ (gizie1)Y?

e Compute initial values for the matrix components [M°] by

az = Z;—1V;,
bi = (Tio1 + yio1)vi + (yi + 2i)ws, (5.45)
& =xzu;. for i=1,...,N—-1.

Step 3. Solve (5.40) to determine the control double quaternions Q
Normalize each Q; and compute 6; = arccos(Q Q1)
Step 4. Compute the Bezier quaternions Bg;+1 from equations (5.32)

and (5.33). Determine ¢; = arccos(Ba;_1 - B3t 1), then calculate f’f from
the equation (5.30).
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FIGURE 12.4. Double Quaternion Interpolated Path.

Step 5. Compare the computed key frames 13: to the actual key frames

P; by calculating the angle @; = arccos(lBZ : lsi). We define the error E to
be the sum

N
E=Y (5.46)
=0

The iterative procedure stops when E < 8, where § is the tolerance for
convergence, in our case 6 = 1075,
It E >,

e Calculate parameters i#; and 9; from the G? continuity equations
(5.35) and (5.31).

e Compute the new components of the matrix [M?] using equation
(5.37) for the next iteration, and return to step 3.

The result of this procedure is the set of Bezier polygons for each segment
of the entire trajectory. DeCasteljau’s algorithm is used to determine the
frames along each segment.

12.5.8 FEzample of double quaternion interpolation

To illustrate the double quaternion interpolation procedure, we interpolate
the E3 key frames listed in Table 12.1. The double quaternions associated
with these key frames is listed in Table 12.2. The resulting interpolated
trajectory is shown in Figure 12.4 where the white end-effectors correspond
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X oy z 0 ) 1!)4‘
M; | 00|00 |00]90°]|-45° | 0°
My | 2.0)00]20( 0° | 0° 0°
Mz | 351040 0° | 45° 0°
Mg | 50| 30|3.0]20° | 20° | 22.5°
Ms | 65 |30(20]45°| 0° 45°
Mg | 8.0 | 2.010.0]90° | 30° 0°

TABLE 12.1. The key frame data for end-effector trajectory.

P, P, J
M; | 0.271 | 0.653 | -0.271 | 0.653 | 0.271 | 0.653 | -0.271 | 0.653
My | 0.006 | 0.000 | 0.006 | 0.999 | -0.006 | 0.000 | -0.006 | 0.999
Ms | -0.373 | -0.002 | 0.013 | 0.928 | -0.393 | 0.002 | -0.013 | 0.920
My | -0.119 | 0.205 | 0.232 | 0.943 | -0.149 | 0.197 | 0.205 | 0.947
Ms | 0.165 | 0.355 | 0.364 | 0.845 | 0.128 | 0.352 | 0.342 | 0.862
Mg | -0.165 | 0.683 | 0.201 | 0.683 | -0.201 | 0.683 | 0.165 | 0.683

TABLE 12.2. Double quaternion key displacements.

to the key frames and the black end-effectors are the interpolated frames.
The interpolation procedure converged in four interations.

12.6 The Design of the TS Robot

The TS robot is a five-degree of freedom mechanism that has as its base a
gimbal joint and is connected to a spherical joint by a rigid link, see Figure
12.1.

Let v be the coordinate vector in E® of the wrist center in a frame M
attached to a workpiece. The TS chain constrains a the point v to lie on a
sphere of radius R about the shoulder joint g. The point, v, in the moving
frame, M, takes the position w' = [H;]v in the fixed frame, F. We have
the constraint equation

(w—g) (w-g)=R" (6.47)

For a given w and g, the set of all transformations, [H], that satisfies the
equation (6.47) defines the workspace of the TS robot.

We use this constraint equation to define a TS robot for a given trajec-
tory. Choose v = (0,0,0)7 to be the origin of the moving frame, M. This
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reduces the non-linear design problem to a set of linear equations.
If we choose a reference position M; and subtract equation 1 from the
rest of the equations of the form (6.47), we obtain.

wiowl —wl.owl—2wl.g+owl.g i=2...,n (6.48)
Because their are six unknown parameters, g = (z,y, 2)T and those of
wl = (u,v,w)?, in general, we may obtain exact solutions for up to seven
arbitrary positions (Innocenti [10] and McCarthy and Liao [11]).

For this chapter, we specify w! and solve for the ground pivot g. This
yields a system of linear equations that has a unique solution for four
specified spatial positions (n = 4). Writing the three constraint equations
in matrix form, we have the system

w2 —w)T w? w2 — wl.wl
(w3 —wh)T | g= 3 wd . owd —wl.w! (6.49)
(wh —w)T whwh — wl.wl
or
Wig =c. (6.50)

The solution g may be obtained by inverting the matrix [W]. This unique
solution g = (z,y,2)7 is the center of the sphere that passes through the
four points w',i = 1,2,3,4. The calculation of the armlength R of the TS
chain can be computed from equation (6.47),

R=+(@—-u?+{y—v)?+(z-w? (6.51)

By calculating the base location g and the armlength R, the workspace for
a specific TS chain is defined. Now, we design an optimimal TS chain such
that the workspace of the chain attempts to satisfy the task trajectory.

12.7 The Optimum TS Robot

At this point, we are able to create a task trajectory from user-defined key
positions and orientations. We also can determine a TS robot from four
specified positions. The goal now is to find the best fit of a T'S robot to our
task trajectory.

Select four frames from the task trajectory. These four positions become
wi, i = 1,2, 3,4 in the design equations (6.49) of the TS chain. The physical
parameters of the robot g and R are then calculated. The TS robot will
pass through four positions and orientations of our task trajectory and
approximate the rest of the task frames. To get the closest point w of the
robot’s workspace to an arbitrary pose a from the task trajectory, we define
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Best Fixed Pivot g | (4.49, 0.44, 0.10)
Arm Length R 3.84
Error Agye 0.001

TABLE 12.3. TS robot design parameters.

the unit direction vector v from the fixed pivot g = (z,y, 2) to the point
a=(a,b,c) as
a_
v 278
la—g|

The point w = Rv is the closest point of the T'S robot workspace to the task
frame a. The end-effector of the TS robot can attain the exact orientation
of the task frame. This position and orientation is converted to the double
quaternion W = {W; + nWj. Let the double quaternion A = £A; + nAy
define the task frame. The local error is defined as the magnitude of the
eight-vector

(7.52)

AA, W) =/(A; —W1)2 + (Az — W3)2. (7.53)
The total number of task frames of a task trajectory is given by
T=(N)s+1)+1 (7.54)

where N + 1 is the total number of key frames and s is the number of
interpolations between any two key frames. The error is defined as the
summation of the local errors between the TS robot workspace and each
frame of the task trajectory divided by the total number of task frames for
specific TS design
T—1 AR vi
Agye = k=0 A(TA’“’W’“). (7.55)

This error value is one value of the cost function which must be minimized.
A new set of four task frames is selected and the process is repeated. An
exhaustive search of all combinations of four task frames in the task tra-
jectory is utilized. The TS robot with minimum error is the optimum fit to
the task trajectory.

12.7.1 The optimum TS robot and the task trajectory

The TS robot synthesized to fit the task trajectory obtained from the pre-
vious example is shown in Figure 12.4. The fixed pivot g and the arm length
R are listed in Table 12.3. Figure 12.5 shows the sphere reachable by the
wrist of the TS robot. The grey end-effectors show the closest positions to
the task frames. The center of the sphere is the location of fixed pivot, g.
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FIGURE 12.5. The TS robot and the task trajectory.
12.8 Conclusion

In this chapter, we present a method to design a TS robot that reaches
a specified task trajectory. The task trajectory is defined by interpolating
a set of key frames selected by the designer. The interpolation is done
using a double quaternion representation of the specified key frames to
obtain an efficient formulation. The TS robot that best fits this trajectory
is determined by minimizing local error between the workspace and the
task frames. An example of this design algorithm is presented.

This procedure allows a user to design a TS robot to accomplish a desired
task. If the designed robot is not satisfactory, the user alters the task and
the procedure is repeated. This interactive process helps to formulate a task
as a set of spatial positions and orientations, scan and evaluate candidate
devices, including assessment of range of motion and mechanical advantage,
and, finally, select a TS robot to achieve the desired performance.



Chapter 13

Applications of Lie Algebras
and the Algebra of Incidence

Eduardo Bayro Corrochano and Garret Sobczyk

13.1 Introduction

We present the fundamentals of Lie algebra and the algebra of incidence in
the n—dimensional affine plane. The difference between our approach and
previous contributions, [5, 4, 2] is twofold. First, our approach is easily
accessible to the reader because there is a direct translation of the fa-
miliar matrix representations to our representation using bivectors from
the appropriate geometric algebra. Second, our “hands on” approach pro-
vides examples from robotics and image analysis so that the reader can
become familiar with the computational aspects of the problems involved.
This chapter is to some extent complimentary to the above mentioned refe-
rences. Lie group theory is the appropriate tool for the study and analysis
of the action of a group on a manifold. Geometric algebra makes it possible
to carry out computations in a coordinate-free manner by using a bivector
representation of the most important Lie algebras [5]. Using the bivector
representation of a Lie operator, we can easily compute a variety of inva-
riants useful in robotics and image analysis. In our study of rigid motion in
the n—dimensional affine plane, we use both the structure of the Lie algebra
alongside the operations of meet and join from incidence algebra.

The organization of this chapter is as follows. Section two examines the
basic properties of the general linear group from the perspective of geo-
metric algebra. Section three presents the algebra of incidence in the n-
dimensional affine plane. Section four studies rigid motion in the affine
plane. Section five carries out computations for three typical problems in
robotics, using the incidence relations developed in section 3. Section six
uses the bivector algebra in an experiment involving real and simulated
images for the recognition of visual invariants. Concluding remarks are
given in section seven.

E. B. Corrochano et al. (eds.), Geometric Algebra with Applications in Science and Engineering

© Birkhiuser Boston 2001
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13.2 The General Linear Group

The General Linear Group GL(N) is defined to be the subset of all f €
End(N) with the property that f € GL{N) if and only if det(f) # 0, [10].
The determinant of f is defined in the algebra Gy by

fler)Aflea)N.. . Af(en) = det(F)erAeaA ... Nen,

where det(F) is just the ordinary determinant of the matrix of f with
respect to the basis {e}. Choosing the basis {e} makes explicit the isomor-
phism between the general linear group GL(N') and GL(n,C) the general
linear group of all complex 7 x n matrices F with det F # 0. The theory of
Lie groups and their corresponding Lie algebras can be considered largely
to be the study of the group-manifold GL(n,C), since any Lie group is
isomorphic to a subgroup of GL(n,C), [3, pp.501].

Since we have referred to GL(N') as a manifold, we must be careful to give
it the structure of an n?-dimensional topological metric space. We define
the inner product < f,g > of f,g € GL(N) to be the usual hermitian
positive definite inner product

< f,g>= ZZEgij,

j=14=1

where f;;,gi; € € are the components of the matrices F and G of f and g,
respectively, with respect to the basis {e}. The positive definite norm |f]
of f € GL(N) is defined by

IfP =< ff>= ZZf_ij-fij;

j=1i=1

and is clearly zero if and only if f = 0.

The crucial relationship between a Lie group and its corresponding Lie
algebra is almost an immediate consequence of the properties of the expo-
nential of a linear operator f € End(N). The exponential mapping may be
directly defined by the usual Taylor series

f_ I
“= Z i
=0

where convergence is with respect to the norm | f|. Note that f° = 1 is the
identity operator on A, and f* is the composition of f with itself & times.

The logarithm of a linear operator, f; = log(f), exists and is well defined
for any f € GL(N). The logarithm can also be defined in terms of an
infinite series, or more directly in terms of the spectral form of the £, [20].
Since the logarithm is the inverse function of the exponential function, we
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can write f = €% for any f € GL(N). The logarithmic form f = €%
of f € GL(N) is useful for defining the one parameter group {f;} of the
operator f € GL(N),

fi(z) = etz

The one parameter group {f;} is continuously connected to the identity in
the sense that fo(z) = z, and fi(z) = f(z). Note that

fo@) = 05€'7 |i=o(x) = 04 (2), (2.1)

so 0y is tangent to f; at the identity. The reason why {f;} is called a one
parameter group is because it satisfies the basic additive property that

fo fi= ettt = 00 = f

We can now define the general linear Lie algebra gl(N') of the general
linear Lie group GL(N). As a set, gl(N) = End(N), which is just the
set of all tangent operators 85 = log(f) € End(N) to the one parameter
groups fi = e'%7 defined for each f € GL(N). To complete the definition
of gl(N), we must specify the algebraic operations of addition and multi-
plication which makes End(/N') into the Lie algebra gl(N'). Addition is just
the ordinary addition of linear operators, and multiplication is defined by
the Lie bracket [0y,6y] for 65,0, € gl(N'). An analytic definition of the Lie
bracket, which directly ties it to the group structure of GL(N), is given by

d 1d
[vaog] = mftgtf—tg—thzo = %%ftgtf—tg—tltzm

18, pp.3].
Evaluating the Lie bracket, we find that

1d
0f,0] = ;ta(ftgtf—tg—t)lt:o

= %(Offtgtf—tg—t + fi099: f—29-t — [19:05f 19—+ —
—ftgtf—tegg—t)
= (%tft(efgt - gtaf)f—tg—t)h:o + (%ftgt(ogf—t -
—f—t09)9—¢)le=0
= %(afag —640f) + %(—9.:;9)‘ +050)
= 046, — 0,0; (2.2)
where we have used the Taylor series expansions

gg=1+t0,+..., and f,=1—-t0r+....
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We have thus shown that the Lie bracket, defined analytically above, re-
duces to the commutator product of the linear operators 65 and 6, in gl(N).
As such, it is not difficult to show that they satisfy the famous Jacobi iden-
tity, which is equivalent to the distributive law

(65,189, 6nl] = ([0 0], 6n] + [6g, (65 Onl]-

When we choose a particular basis {e} of AV, the isomorphism between
the general linear Lie algebra gl(n,C) and gl(A') becomes explicit and the
Lie bracket of linear operators just becomes the Lie bracket of nxn complex
matrices (2.26). Alternatively, using the bivector representation (2.23), the
Lie bracket of linear operators is expressed in terms of the Lie bracket of
the bivectors of the operators (2.25).

13.2.1 The orthogonal groups

The most simple example of an orthogonal group is SO(2), which is a sub-
group of the general linear group GL(N?). As a matrix group it is generated
by all 2 x 2 matrices of the form

X, = ( cosf —sinf )

sinf cos@

The matrix Xy generates a counterclockwise rotation in the zy-plane
through the angle 6. Using (2.23), we get the corresponding bivector repre-
sentation

X g = cos(f)e;Ne; — sin(f)e; Aes + sin(f)eaA€; + cos(f)eaNEy

For matrices Xy, , Xg, € SO(2) the group operation is ordinary matrix mul-
tiplication, Xg, Xy, = Xo, +4,. For the bivector representation Xy, , Xy, €
S0(2), the group operation is defined by the generalized dot product, X, :
X,, that is for & € N2,

(X915B2X92)EX92-(X91'SB):X91+92~:12. (23)

Note that the bivectors Xy are in G2 .

Taking the derivatives of Xy and Xy, with respect to § and evaluating
at 8 = 0, gives the corresponding generators of the associated Lie algebra
50(2). As a matrix Lie algebra, under the bracket operation of matricies,

we find the generator
X (0 1
d0 0-—0 — 1 0 .

As a bivector Lie algebra, under the bracket operation of bivectors, we find
the bivector generator
dXg

B = 30 9—0 = —e1\€2 + eaNeéy = —0o12 + M12- (2.4)
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The bivector representation of the Lie group SO(2), as a subgroup of
the larger Lie group SO(2,2), makes possible the spinor representations of
these groups discussed in chapter 3. The spinor group Spin(2) is defined
by taking the exponential of the bivector (2.4),

Spin(2) = {exp(%@B)| 6 R)

The exponential exp(%ﬁB ) can be calculated by noting that the bivector
B satisfies the minimal polynomial

B? + 4B = B(B — 2i)(B +2i) = 0,
which implies the decomposition
B = 0py + 2ips — 2ip3
where the mutually annihiliating idempotents are defined by

B? 4+ 4 1 _ 1 ‘
1= 1 P2=—§B(B+21)a P3=—§B(B—2l)

Using this decomposition, we find that

1 0-6 ) .
exp(50B) = exp(—~)p1 + exp(if)p2 + exp(—if)ps
= p1+ cos(0)(p2 + p3) + sin(8)i(p2 — p3)
B .
= p; +cos(#)(p2 +p3) + 5 sin(6) (2.5)

By using Theorem 2.27 from chapter 2, the group action is given by
) 1 1
T = exp(EGB)a: exp(—ieB)

where * = {e}r(e} = z1€1+22€9. We say that Spin(2) is a double covering
of the orthogonal group SO(2), because the spinors + exp(36B) represent
the same group element. Note that we now have the easy composition rule
for the composition of two group elements exp(16; B) and exp(362B),

1 1 1
exp(iﬁlB) exp(iﬁgB) = exp(§(01 + 62)B)

If we are solely interested in the group SO(2), a more natural place to
carry out the calculations is in the Euclidean space IR2. We project the null
cone N2 down to IR? by using the reciprocal elements I, and I, defined
in chapter 2 by

I, = 0109 and 1_2: (2 - \/5)2(62 -}—0’2)(61 +0’1)
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Thus, for z = {e}zie} = z1€1 + 263 € N?, the projection ' = Pi(x)
gives

x' = Pix)=(x-1) - I =2,0, 4+ 200, € R*.
As noted in chapter 2, this projection is invertible in the sense that we can
find P» such that £ = Py (z’). The projection Pp is specified by

z=Pp(x)=(z'-I)-I' =111 + 1202

where T is defined as before and where I’ = eqes.
In IR?, the generator of rotations is the simple bivector o20;. This bivec-
tor can be obtained from the bivector (2.4) in spin(2,2) by the projection

L' -B=o0y0, =1

onto the Lie algebra so(2). For ' = 210, + 2202 € IR?, the equivalent
rotation is given by

1 1
y = exp(ﬁaagal)m' exp(— 560201)

The above ideas can be immediately generalized to the general Lie group
GL(N™) of null cone N, and the orthogonal subgroups SO(p, ¢), where
P+ g = n. The orthogonal group SO(p, q) acts on the space IR”?. Thus,
if we wish to work in this Lie group or the corresponding Lie algebra, we
first project the null cone N™ onto IRP'? by using the reciprocal elements
given in chapter 2, carry out the rotation, and then return to the null cone
by using the inverse projection.

13.2.2 The Lie group and Lie algebra
of the affine plane

The Lie algebra of the neutral affine plane A, (N?) is useful in analysis of
visual invariants (section 13.6), so we will begin with its treatment here. The
well-known matrix representation of the Lie group of affine transformations
in the plane has six independent parameters or degrees of freedom, and
consists of all matrices of the form

11 aiz a4

g(A,’U)= a21 Q22 b y (26)
0 0 1

where det g(4, ¥) = det A # 0.
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The one-parameter sub-groups are generated by the matrices

1 0 =z 1 00
T,=|0 1 0], T,=|0 1 y|,
0 01 0 01
e 0 cos(8) —sin(f) 0
D,=| 0 e* 0|, Rg=| sin(d) cos(¥) 0 |, (2.7)
0 0 1 0 0 1
e 0 0 cosh(¢) sinh(¢) 0O
Sy=1 0 e 0|, Hy=| sinh(¢) cosh(¢) 0
0 0 1 0 0 1

Using equation (2.1), the matrix representation of the Lie algebra basis
generators are obtained by taking the derivative of the equation (2.7), and
evaluating the parameter at zero

00 1 000
L.={0o00]|, £,={001],
000 000
100 0 -1 0
Lo=|01 0]}, Le={1 0 0], (2.8)
000 0 0 0
1 0 0 010
L,=[0 -1 0], Lo=[1 00
0 0 0 000

The above matrix Lie group and matrix Lie algebra can be directly trans-
lated into the corresponding Lie group and Lie algebra of the affine plane
Aes (NV?). Each of the matrix generators in (2.7) and (2.8) can be replaced
by its corresponding bivector representation (2.23). The bivector represen-
tations of the generators of this Lie algebra are

L, = bivector(L;) = e1Nes, L, = bivector(L,) = eaNeés.

L, = bivector(L,) = e;Neé1+eaNea, Lg = bivector(Ly) = eaNe;—ejNes.
L, = bivector(L,) = ejNeé1—eaNez, L4 = bivector(Ly) = ejNex+eaNE;.

Expanding these bivector generators in the standard basis (2.6), we get

L, = 3}0103— 301m3 — 03m — 3m73,
L, = 3$0003— S0am3— Lazne — 3nams,
L, = —on — o2m,
Lo = —0102+mmn2,

L, = —oim+om,
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Lq& = —O172 — 0211 (2~9)

Let us see how the Lie algebra of the affine plane can be represented as

a Lie algebra of vector fields over the null cone N 3. The vector derivative

or gradient Op = % at the point ¢ = re; + yes + zez € N3 is defined by
requiring that a - 9, is the directional derivative in the direction of a. It

follows that @ - O, = a and e; - 0, = %. We also have

3
8,2=0, ¢+ 0, AT =3+ Zéi/\ei,

=1

where {e} and {€} are reciprocal basis for the reciprocal null cones A’® and
AN3.In terms of the reciprocal basis {€}, 9, = ¥, Eiﬁ%'

Now let @ = a(z) and b = b(x) be vector fields in A3. The Lie bracket
[a, b] is defined by

[a,b]=a-0,b—b-0,a
Since in N3, 9;A0; = 0, we have the important integrability condition
that
(@aAb) - (0:N\0;) = [a,b] -0y — [@ - Oy, b- 0] =0
where
[@-0,,b-0;]=a-0,b-8, —b-0,a-0,

is the Lie bracket or commutator product of the partial derivatives a - 9,
and b - 0;. It follows from this identity that

[a,b]-0; = [a-0,,b-8,]

relating the Lie bracket of the vector fields [a, b] to the standard Lie bracket
of the partial derivatives [a - 0,,b - 0,].

Let us consider in detail the translation of the Lie Algebra of the affine
plane to the null vector formulation in the null cone 2. Recall that the
two dimensional affine plane A.(N?) in N3 defined by

A(N) ={z e N3| = =ze; +ye; +e3}. (2.10)

We have already seen that the Lie algebra of the affine plane can be
defined by a Lie algebra of matricies, or by an equivalent Lie algebra of
bivectors. We now define this same Lie algebra as a Lie algebra of partial
derivatives, and as a Lie algebra of vector fields. We have the following
correspondence:

P _

.CIZ%261-GI=LI~(m/\5I)<—>£Im:LI~a:=el=LI (2.11)
where L, = ey Aes,
Cyzg—zeg-EI:Ly-(z/\EI)<—>L‘ym=Ly~z=eQ=Ly (2.12)
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where L, = esNE3,

L, = +y5%=(w—eg)~gz:Ls-(w/\5I)

"o

— Lix=L;, - x=zre,+yes=x—e3=1L; (2.13)

where L, = e;Ne; + exNeg,

2 =L, (xN0;) < L,z =L, -x = L, (2.14)

L= -y
y8z+$8y

where L, = eaNé; — ejNeéo,

0 5] -
Ebzx% —ya—y :Lb‘(:l:/\az) Ly =Ly, -x =1L, (2.15)

where L, = e;\Ne; — exNeég,

0 0 =
[,B:y%—'—ma—y:LB~(m/\aI)4—>£B:I:=LB-:B=LB (2.16)
where Lg = e;ANés + exNey.
Thus, the Lie algebra of the affine plane is generated by the bivectors

M= {LzaLyaLeraLb,LB}, (2.17)

or, equivalently, by the vector fields of the form L - x for L € M. The Lie
bracket [Ly - @, L2 - x] is given by

[Ll'33,L2~:l!]:L2~(L1'$)—L1~(L2'$):(L2XLl)'w

where L; x Ly = %(Lng — LyL,) is the commutator product of the
bivectors Ly, Ly, € M.

The Lie algebra of the affine plane is useful for the analysis of motion
in the image plane. The vector fields of this Lie algebra are tangent to
their flows, or integral curves of their group action on the manifold, and
are presented in Figure 13.1 as images.

We have found the generators

— o) Jél —
ﬁr——ym-i-xa—y Ly=15;—Yg, (2.18)

Loy
‘C?J

o | Flo

Cs:x%—i—ya% L:B:y%—i-xa%

of the Lie Algebra of the affine plane A., (N?) as vector fields along integral
curves. Taking the commutator products of these infinitesimal differential
generators, gives the multiplication table 13.2.2 for this Lie algebra.
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FIGURE 13.1. Lie Algebra basis in the form of images.

[l £e [ Ly | Lo | Lr | Lo Ls
L. |0 o |L.|L, |£. |L,
L, o o (L, |-L. |-£, |Ls
Lo || Lo |=L, 0 |0 0 0
Lo | -£, | L. |0 |0 —2Lp | 2L,
Ly | =L |L, [0 |2C5 |0 2L,
Lp || -£, | -C. |0 | —2c,] -2, |0

FIGURE 13.2. The Lie algebra of the affine plane.

Using the table, we can verify the Jacobi identity for £,, L, and Ly,
getting

[CalLs Lol +  [LolloLall +  [LolCals]] =
(L0 = [LLy)  + [Lle] = (2.19)
0 + L, - L, =0

Or, equivalently, using CLICAL and the bivector representation for L, L,
and Ly, we calculate
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[Lo[LrLp)) + [Ly]LyL]] + [Ly[L L,]] =
2[L,Lg] - [L,L,) + [LyL,)] = (2.20)
2L, - L, - L, = 0.

13.3 Algebra of Incidence

In various applications in robotics, image analysis and computer vision,
projective geometry and the algebra of incidence are very useful. Fortu-
nately, both of these mathematical systems can be efficiently handled in
the geometric algebra framework. In this section, we show how to apply
the algebra of incidence to problems in robotics.

In Chapter 2, the meet and join operations in II"™ were characterized in
terms of the intersection and union of the subspaces in N™*! which name
the corresponding objects in II". Since each k-subspace can be associated
with a nonzero k-blade of the geometric algebra G(N), it follows that the
corresponding (k — 1)-plane in II" can be named by the k-direction of a
k-blade A.

Suppose that r points a1, as,...,a, € II" are given in general position
(linearly independent vectors in A™*1!). Then an (r — 1)-plane in II" is
specified by the r-blade

Ar = a1hagN ... Aa, #0.
Similarly, an (s — 1)-plane in II" is specified by the s-blade
By =biAbaA .. Abs # 0

determined by the s points b; in general position in II". Considering the a’s
and b’s to be the basis elements of respective subspaces A, and Bs, they
can be sorted in such a way that

A" U B® = span{ai,as,...as,bx,,---,bx }
Supposing that
Bs = by, A...Abx Abg, A ... Aby,_,,
it follows that

ApU B, = A;Aby A .. Aby,

and
AT n BS = Span{bm [ bas—k}‘

The problem of “meet” and “join” of the r-blade A, and s-blade B, has
thus been solved.
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Defining the reciprocal pseudoscalar element I 45 of the join A" U B,
Taug = @AGoA ... AGsAbAA ... Ay,

the (s—k)-blade of the meet can be expressed in terms of the r- and s-blades
A, and B;,

A, NBs= A, (Bs - 14uB). (3.21)

A more complete discussion of these ideas can be found in chapters 2 and

3.

18.3.1 Incidence relations in the affine n-plane

In this subsection, we present very useful incidence relations between points,
lines and planes, and higher dimensional k-planes in the affine n-plane
AT = A (IR") C R™*11. Recall that

A ={zr=z+e| z€R"}

where e = %(anﬂ + Nn+1), and the reciprocal element € = o, — 7y,.
Suppose that we are given k-points a?,af,...,al € A? where each al =
a; + e for a; € IR™. Taking the outer product of these points, we get
afAalA . Al = ah Al — analA L Al =

= ail/\(ag - ai‘)/\(ag’ - ag)/\ . /\(aﬁ - aﬁ_l)

= a’f/\(aQ - al)/\ag — ag)/\ e /\(ak - ak_l)

Projectively speaking, this tells us that the (k — 1)-plane A" in II", which
is the join of the these points, can be expressed in the form

AP = aPnal AL NGl = aghaon .. Aag +
+eA(as — ar1)A(ag — a2)A ... Alag — ag—1). (3.22)

Whereas (3.22) represents a (k — 1)-plane in II", it also belongs to the
affine n-plane A2, and thus contains important metrical information.
Dotting this equation with €, we find that

e A" =% (alAaln ... Aab) = (a2 — a1)A(az — az)A ... A(ak — ak—1).

This result motivates the following: the directed content of the (k — 1)-
simplex A" = a'f/\ag/\ e /\aﬁ in the affine n-plane is given by

g- Ah _€ (afAalA ... Aab) _ (a2 — a1)A(as — a2)A ... Alag — ag—1)
k—1)! (k—1)! (k—1)!
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We shall now give a number of useful results in the affine plane that have
both projective and metrical content.
d[a}f/\...az,bh] =
[{e- (aiA...Aa)} (&-0")] e (afA. .. AapAbh)]
[ag — al) /\((L]C - ak_l)]_l[(ag — al)/\ ce /\(0,]C — ak_l)/\(b — ak)]

(3.23)

represents the directed distance from the (k — 1)-plane a?A...Aal to the
point b".

dlafnaf, biADG] = [{€- (af Aaf)}A{e - (51Ab3)}] 7 e - (alhafAbTABS)]

= [(a2 — a1)A(b2 = b1)] " [(a2 — a1)A(b1 — a2)A(bz — b1)]

represents the directed distance between the two lines a?Aa} and bhABY in
the affine n-plane. More generally,

dla®A.. /\ah WIA.. AR = (3.24)
{e-(a?A...Na )}/\{e (BFA .. AN e - (A AalABEA L ABE)]
= [(a2——a1)/\ /\(ar—ar_l)/\(bg —bl) (bs _bs—l)}

[(ag — al)/\ ce /\(ar . ar_l)/\(bl — ar)/\(bg - bl)/\ L. /\(bs - bs—l)]

represents the directed distance between the (r —1)-plane A* = a?A ... Aa"
and the (s — 1)-plane B"* = b}A ... Ab? in the affine n-plane.
If APAB" =0, the directed distance may or may not be equal to zero! If

(aPA .. AaMIABEA . ABE_) #£0,

we can calculate the meet between the (r — 1)-plane A® and (s — 1)-plane
Bh,
p=(a"A.. AaP) N (BEA. . ABE)
= (a?/\ - /\af) . [(b?/\ R /\bg) . TAUB]
where _
Tavp = {&-[(aPA ... Na®)ABEA ... ABP_)]INE.

The point p = A*N B" may not be in the affine n-plane, but the normalized
point p" = £~ will either be in the affine plane or will be undefined.
Oftentimes in calculations it is not necessary to find the “normalized point”,
but it is always necessary when the metric is important, or as an indicator
of parallel hyperplanes.

18.83.2 Incidence relations in the affine 3-plane

We give incidence relations for the 3D Euclidean space in the affine 3-plane
A2, having the pseudoscalar I = oja3e and the reciprocal pseudoscalar
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T = €031 which satisfy I - T = 1. Similar incidence relations were given
by Blaschke [11] using dual quaternions, and later by Selig using the 4D
degenerate geometric algebra G3 o1 (see chapter 11). Unlike the formulas
given by these authors, our formulas are generally valid in any dimension
and are expressed completely in terms of the meet and join operations in
the affine plane. Blaschke, Selig, and previously Bayro [1], were not able
to exploit the meet and join operations because they are using a geometric
algebra with a degenerate metric. We give here the incidence relations for
the 3D Euclidean space which we will need later.

The distance of a point b" to the line L" = a?Aa} is the magnitude or
norm of their directed distance

d) = |[fe- @rabnfe 6M)] [e-@inagan]|  329)

The distance of a point b" to the plane A* = af Ak Aal is

|d| = ‘ [{é- (ah el nal)}n{(e- (bh)}] -1 [é. (aflz/\ag/\ag/\bh)] ’ (3.26)

The incidence relation between the lines L? = afAa} and L} = b Ab%
is completely determined by their join Ipnypr = LhuLh 1t Tpngpy is a
bivector, the lines coincide and L} = tL} for some ¢ € R. If Iy pp is a
3-vector, the lines are either parallel or intersect in a common point. In this
case the meet

p=LYNLy =L} [(L3 - Tppomy))- (3.27)

If €-p = 0 the lines are parallel, otherwise they intersect at the point
Ph = g% in the affine 3-space A3. Finally, if Ipnyry is a 4-vector, the lines
are skew. In this case the distance is given by (13.3.1).

The incidence relation between a line L" = a? Aal and a plane B* =
bﬁ’/\bg/\bé‘ is also determined by their join L" U B". Clearly, if the join is
a trivector, the line L" lies in the plane B*. The only other possibility is
that their join is the pseudoscalar I = o123e. In this case, we calculate the
meet

p=LrnBr="L". (B"-T). (3.28)

If €. p = 0, the line is parallel to the plane with the directed distance
determined by (3.25). Otherwise, py, = 2 is their point of intersection in
the affine plane.

Two planes A" = alAal Aak and B" = b AbEABE in the affine plane A2
are either parallel, intersect in a line, or coincide. If their join is a trivector,
i.e., AP = tB" for some t € IR*, they obviously coincide. If they do not
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coincide, then their join is the pseudoscalar I = oj23e. In this case, we
calculate the meet

L=A"nB"=[1)- A" B" (3.29)

If e- L = 0 the planes are parallel with the directed distance determined by
(3.25). Otherwise, L represents the line of intersection in the affine plane
having the direction € - L.

The equivalent of the above incidence relations were given by Blaschke
[11] in terms the dual quaternions, and by Selig [17] in a special 4 di-
mensional singular algebra. Whereas Blaschke uses only pure quaternions
(bivectors) for his representation, Selig uses trivectors for points and vec-
tors for planes. In contrast, in the affine 3-plane points are always repre-
sented by vectors, lines by bivectors, and planes by trivectors. This offers
a comprehensive and consistent interpretation, which greatly simplifies the
underlying conceptual framework.

1 -
equation (3.25) = i(ﬁl +Ip) (3.30)
equation (3.26) = %(ﬁ’ﬂ' + 7p) (3.31)
equation (3.28) = —21—(iw + #l), (3.32)

The right sides of the equations gives the equivalent expressions used by
Blaschke and Selig.

13.8.3 Geometric constraints as indicators

It is often required to check a geometric configuration during a rigid motion
in Euclidean space. Simple geometric incidence relations can be used for
this purpose. For example, a point p is on a line L if and only if

pAL =0. (3.33)
Similarly, a point p is on a plane A iff

pAA=0. (3.34)
A line L will lie in the plane A iff

LNnA=A (3.35)

Alternatively, the line L can meet the plane A in a single point p, in which
case
LNA=p,

or, if the line L is parallel to the plane A, LN A =0.
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13.4 Rigid Motion in the Affine Plane

A rotation in the affine n-plane A? = A.(IR™), just as in the Euclidean
space IR"™, is the product of two reflections through two intersecting hy-
perplanes. If the normal unit vectors to these hyperplanes are m and n,
respectively, then the versor of the rotation is given by

6 0
R=mn=¢e?B ———cos(§)+Bsin(§), (4.36)
where B is the unit bivector defining the plane of the rotation.
A translation of the vector zp € A7, along the vector t € IR™, to the
vector z, =z, +t € A7, is effected by the versor

1 1
T= exp(ité) =1+ ité

when it is followed by the projection P4(z’) = (zA€)-e . Thus for z;, € A7,
we get

1 1
=Tz ' = exp(ité)zh exp(—ité)

(]. te)fE (1 ) - xr t t T t
2 h € $h €Th h h

1 1
=z, +t+1t-(eALh) — 5#@ =xp+t—(t-Th+ 55")@. (4.37)
Applying Pa to this result, we get the expected translated vector
1
xh:PA(x'):PA[xh+t—(t-xh+§t2)€] =zxp+1 (4.38)

The above calculation shows the close relationship between a translation
in the affine plane, and its representation in the horosphere as presented
in other chapters. The advantage of carrying out translations in the affine
plane rather than in the horosphere, is that the affine plane is still a linear
model of Euclidean space, whereas the horosphere is a more complicated
non-linear model.

Combining the versors for a rotation and a translation, we get the ex-
pression for the versor M = TR of a rigid motion. For z; € A7, we find

th = Pa[MzpM~'] = P4[TRz,R™'T71). (4.39)

Equivalently, we will often write M—! = M, expressing M~! in terms of
operation of conjugation. Whenever a calculation involves a translation, we
must always apply the projection P4 to guarantee that our end result will
be in the affine plane. In order to keep our notation as simple as possible, we
will assume that whenever a translation is carried out, a projection P4 back
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to the affine plane is aways carried out, even if not always explicitly stated.
The above calculations can be checked with CLICAL 4.0, [8]. Comparisons
can also be made to the corresponding calculations made by Hestenes and
Li [13] on the horosphere.

Note that all of our computations in the affine n-plane are carried out
in a unified manner, regardless of whether we are calculating incidence
relations among points and planes, or calculating rigid motions of points
and planes. In contrast, other authors, using the 4D degenerated algebra
G301 represent points with trivectors and planes with vectors [17], but
when using the motor algebra Q;f 0,1 points, lines and planes are represented
solely in terms of quaternion bivectors, [1].

13.5 Application to Robotics

This section carries out computations in affine 3D space for three problems
in robotics. The difference between our approach and other approaches used
in [17, 1] is that all our calculations, including calculations involving the
meet and join operations, are carried out in the affine plane. Note that we
will always assume that the projection P4 back to the affine plane carried
out following each translation, even if not explicitly mentioned.

18.5.1 Inverse kinematic computing

We illustrate the power of incidence computations in affine 3D space by
computing the inverse kinematics for a robot manipulator. Robot manipu-
lators are designed to satisfy certain maneuvering constraints. In carrying
out computations, it is highly desirable to use a mathematical framework
in which the computations are as simple as possible and clearly reflect
the underlying geometry. We claim that the affine 3D space meets these
objectives.

The transformation M; of a robot manipulator which takes the end—
effector from its home position to a configuration determined by the n—
degrees of freedoms of the joint angles 61,65, ..., 0, is given by

M, = My MyMs... M, (5.40)

where the screw versor of a joint M; = T;R; is dependent on the angle 6.

The inverse kinematics problem is the task of calculating the angles 6;
for a given final configuration of the the end—effector. Robot manipulators
are equiped with a parallel revoluted axis and with some intersecting ones.
The latter can be at the end—effector or at the home position. Two typical
configurations are illustrated in Figure 13.3.a—b. The mechanical characte-
ristics of the robot manipulators can be used to simplify the computations
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by considering the invariant plane ¢”, in the case of three parallel revoluted
line axis Figure 13.3.a , or an invariant point p” in the case of a intersecting
revoluted line axis Figure 13.3.b.

FIGURE 13.3. Manipulators: a) (top) intersect revoluted line axis at

the end effector, b) and at the home position.

We can solve the inverse kinematics problem by breaking the problem
up into a series of separate equations, using the strategy suggested by Selig
[17] (chapter 11). We will illustrate the procedure for a robot with 6 degrees
of freedom. First we rearrange the terms of the equation (5.40)

MaMsMy = My My Mg Ms (5.41)

In the case of three parallel joints, we can isolate them by considering the
common perpendicular plane ¢*, which satisfies

o = MyMsMy ¢" MyMsMy = M, My (Me(Ms ¢" Mz5)Mg)M; M,. (5.42)

If they meet at the point p”, we can isolate the 3 coincident joints by
P = Mo M3 M, p" MyMsMy = My MyMeMs p" MsMeM, M.  (5.43)
In this way, we have separated the problem into the system of two equations

M, M; ¢" My M, = MgMs; ¢" MsMs (5.44)
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or
M, M, p" My M, = MgMs p" MsMs, (5.45)
MyMsM, = My M,MgMs = M'. (5.46)

We can first compute for 8y, 05, 0, with the help of either equation (5.44)
(Fig. 13.3.a) or equation (5.45) (Fig. 13.3.b). Then, using these results and
equation (5.46), we can solve for 85, 83, 4.

Let us see how the procedure works for the case of the three intersecting
revoluted joint axes in the common plane at the end—effector in (Figure
13.3.a). When the plane ¢} (perpendicular to the line axes Iy, I3 and ly) is
rotated about the end joint, the point p? on the line axis of the revoluted
end—joint I} remains invariant. Using the operation of meet and equation
(5.44), the angle g can be eliminated,

pl = (MM " MyM,) N1 = (MeMs ¢" MsMg) N 1L
= (Mso" Ms)n k. (5.47)

In the case of the robot manipulator of Figure 13.3.b, the revoluted joint
axes is the manipulator base. Equation (5.45) shows that the point p” is
an invariant for the fourth parallel and fifth line axis. Thus, we can use the
equation

MM, p" M, Mg = Ms My p" M, M (5.48)

to solve for the angles 4 and 65. Using the line I5 and p", we get the
invariant plane

¢t = MgM, p" M, Mg ls. (5.49)

The 3D coordinates of this plane correspond to the z, z-plane ez, and thus
this equation allows us to solve for the angle fs. Having determined 6, and
using the equations (5.48), we can easily complete the calculations of 8,
and 0Os.

Consider now the three coincident line axis I, 1%, I#, given in Figure
13.3.b. We can isolate the angle 65 by considering the invariant relation
based on the meet of two of these lines

(Mp Uy Mp) N U = (M'1E M) N1 = pl (5.50)

where M’ = M; My Mj and pf! is the invariant intersecting point. When the
lines are parallel, as shown in Figure 13.3.a, we can use the same invariant

relation by considering the intersecting point to be at infinity, giving M’ =
MoM3My.
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13.5.2 Robot manipulation guidance

Consider a robot arm laser welder, see Figure 13.4.a. The welding distance
has to be kept constant and the end—effector should follow a line on the
surface. Again, we will carry out all computations in the affine 3D space.

Since the laser has to be kept at a constant distance from the surface for
proper welding, we need to check if a given point pZ at the end of the laser
cannon is always at the distance d from the welding surface ¢" = afAalAab.
We compute

@ = |[te- @hraknab)iie-pi)] e (abnaknaianh)]|
= [(IQ - (11)/\((13 — ag)]_l[(ag - al)/\(a3 - ag)/\(p - (13)](551)

Note that we use the simple equation (3.24) for computing this distance.
The point of intersection p? on the line I*, aligned with the moving laser
beam and the work surface ¢", is given by

Py = (Mlhﬁ)mqsh:((Mth/\é)e)mph
= (" Mag)e) - (¢ - D). (5.52)

In order to follow the welding line L, on the surface, which is parallel to
the welding curve, the robot arm should fulfill the point constrain

phnih = ((Mlhz\?) ﬂ¢h) Nk

{((MPMAg)e) - (¢" - D)} - (- T) = 0. (5.53)

13.5.3 Checking for a critical configuration

The control of the movement of a robot arm often requires a direct test to
determine whether it has arrived at a prohibited configuration. This can be
computed in a straightforward manner by using a determinant function of
lines. The six lines are operated on by the screw versors M; = T; R;. After
the lines have reached their new position, they have in the affine 3D space
the form

R, shyiF
I = M(z'] Az’ My = 2t Axh,
h h hy 27
I = My(y'TAY5) My =y AYS, ..,
= Mg(W'? A5 Mg = vl Avk.

We compute the determinant function of these six lines, called the super-
bracket, and get

h jh jth 1h jh jh h h ,h h _h h h h , h h .k h
[ll,l2,l3,l4,l5,l6] - [x1A$2,y1/\y2,21/\Z2,wlAW2,U1AU2,UIAUQ]
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FIGURE 13.4. a) Laser welding (top) b) guidance using a critical con-

figuration constraint.

= [Zhabytvs](er B wiul]fwgugoteg] +
+zle gyi‘zf][ghz2w1w2][uf1lugvag] -
~ b byl s wiwbul] [ ufvivy] +
+ahahytwlys 2 25l [wiuf oty (5.54)

Details about bracket algebra is given in chapter 2. The decomposition
of the superbracket, in terms of the bracket polynomial given above, was
done by McMillan and Withe [16].

Let us apply the superbracket to identify a critical configuration of the
six-revoluted—joint robot arm depicted in Figure 13.4.b, where the revo-
luted joints are represented with cylinders. The axis of each joint is deter-
mined by any two distinct points lying on it. The base line of the stereo
system should always be parallel to the target line. Another condition that
must be satisfied is that the plane of the end-effector and the base line
should not be parallel with the plane spanned by the third and fourth
axes. Also, the arm should not move below a given minimun height, or the
end-—effector could be damaged. All these conditions can be simultaneously
tested by using the superbracket. Simplifying the superbracket (5.54) for
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the Figure 13.4.b, we get the final expression

0005, 05, 00,1010 = —[2habyh 2t [ah Bubob][hulultvl)

+Hatahys 2 )laf ot A uf [whuiufvy)
= [aiabysllwiafebos]lzfuiugy].  (5.55)
This equation is just the meet of the four planes, given by

SLNGENPE N gL = (5.56)
(2P AR AZD) O (2 AzB AYRY N (@B AZE AUB) N (W AuB AR).

A critical configuration is reached when at least one of the brackets in
the equation (5.55) is zero. Geometrically, this means that one or more of
the resulting planes have become degenerated, or that the resulting planes
have a nonempty intersection. For example, the superbracket becomes zero
for the Figure 13.4.b, when the third and forth joints and the base line
and the target line lie in the same plane, or whenever the position of the
end—effector is below the minimum height.

13.6 Application II: Image Analysis

This section carries out the computations in the affine plane A, (N?) for
two experiments in image analysis. The first experiment utilizes the Lie
algebra of the affine plane in the design of an image filter. The second
experiment uses the properties of Lie operators for the recognition of hand
gestures. The third experiment shows the meet operation applied to image
filters.

13.6.1 The design of an image filter

In the experiment we used simulated images of the optical flow for two
motions: Figure 13.5.a shows a rotational and a translational motion, and
Figure 13.6.a shows a dilation and a translational motion. The experiment
uses only bivector computations to determine the type of motion, the axis
of rotation, and/or the center of the dilation.

To study the motions in the affine plane, we used the Lie algebra of
bivectors in the geometric algebra A, (N?). The computations were carried
out with the help of a computer program which we wrote in C**. Each
flow vector at any point x of the image was coded x = ze; +yey +e3 € N3,
At each point of the flow image, we applied the commutator product of
the six bivectors of the equation (2.17). Using the resultant coefficients of
the vectors, the computer program calculated which type of differential
invariant or motion was present.
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FIGURE 13.5. a) Rotation (L.) and translational flow (L.) fields. b)
Convolved with a gaussian kernel ¢) Shows the magnitudes of the

convolution.

FIGURE 13.6. a) Expansion (L;) and translational flow (L.) fields.
b) Convolved with a Gaussian kernel c¢) Shows the magnitudes of the

convolution.

In Figure 13.5.b, we depict the result of convolving, via the geometric
product, the bivector with a Gaussian kernel of size 5 x 5. Figure 13.5.c
presents this result using the output of the kernel. The white center of the
image indicates the lowest magnitude. Figure 13.6 shows the results for the
case of a flow which is expanding. Comparing the Figure 13.5.c with the
Figure 13.6.c, we note the duality of the differential invariants; the center
point r of the rotation is invariant, and the invariant of the expansion is a
line.

13.6.2 Recognition of hand gestures

Another interesting application, suggested by the seminal paper of Hoffman
[12], is to recognize key points of an image by using the previous Lie opera-
tors . Figure 13.7.a shows hand gestures given to a robot. Using Lie filters,
a robot can interpret whether it should follow, stop or move in circles, see
Figure 13.7.b. Table 13.1 gives the firing weights for these filters used when
interpreting the various gestures. We can also interpret these Lie filters as
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the basic elements, or perceptrons, of neurocomputing.

FIGURE 13.7. a) Top images: gestures for robot guidance (follow, stop
and explore). b) Lower images: detected gestures by the robot vision

system using Lie operators.

Hand gesture | L, Ly, L, Ls Ly Lp |Tolerance
fingertip 0 0 9 -4 11 -9 10%
stop 0 0 -3 1 1 4 10%
fist 0 0 -2 2 2 -1| 10%

TABLE 13.1. Firing weights of Lie Operators by key points of hand

gestures

13.6.8 The meet filter

The meet operation can be applied to the output of the filters in order to
select the relevant points of the image. The meet operation is computed
using equation (3.21). The basic idea is that the image is first convolved
using two different Lie filters, and then their outputs are combined via the
meet operation

(Fax )N (Fpx1I). (6.57)
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The * of the filters F, and F; are entirely expressed in terms of bivectors.
The result is the intersection of the filter outputs. Figure 13.8 shows the
meet of different Lie filter ouputs. By using a more extensive system of
meet filters, we should be able to extract more complicated contours.

FIGURE 13.8. Top images: meet of Lie filters a) lines b) corners c)
joints d) discs. Lower images: detected intersections by the meet of
the Lie filter outputs.

13.7 Conclusion

We have shown how geometric algebra can effectively be used to carry
out analysis on a manifold which is useful in robotics and image analysis.
Geometric algebra offers a clear and concise geometric framework in which
calculations can be carried out. Since the elements and operations in geo-
metric algebra are basis free, computations are simpler and geometrically
more transparent than in more traditional approaches.

Stereographic projection, and its generalization to the conformal group
and projective geometry, have direct applications to image analysis from
one or more viewpoints. The key idea is that an image is first represented
in the null cone, and is then projected into affine geometries where the
image analysis takes place. Since every Lie algebra can be represented by
an appropriate bivector algebra in an affine geometry, it follows that a
complete motion analysis is possible using their bivector representations.
In a novel application in the 3—dimensional affine plane, we have computed
rigid motion and applied the algebra of incidence for problems in robotics.

Future work is planned in the reconstruction of 3-D affine motion, in
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the design of steerable filters, and in the use of bivector algebras in visual
robot tracking.
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Chapter 14

Geometric Algebra in Quantum
Information Processing by
Nuclear Magnetic Resonance

Timothy F. Havel, David G. Cory, Shyamal S.
Somaroo, and Ching-Hua Tseng

14.1 Introduction

The relevance of information theoretic concepts to quantum mechanics has
been apparent ever since it was realized that the Einstein-Podolsky-Rosen
paradox does not violate special relativity because it cannot be used to
transmit information faster than light [22, 39]. Over the last few years,
physicists have begun to systematically apply these concepts to quantum
systems. This was initiated by the discovery, due to Benioff [3], Feynman
[25] and Deutsch {17], that digital information processing and even univer-
sal computation can be performed by finite state quantum systems. Their
work was originally motivated by the fact that as computers continue to
grow smaller and faster, the day will come when they must be designed with
quantum mechanics in mind (as Feynman put it, “there’s plenty of room
at the bottom”). It has since been found, however, that quantum informa-
tion processing can accomplish certain cryptographic, communication, and
computational feats that are widely believed to be classically impossible
[5, 9, 19, 23, 40, 53],as shown for example by the polynomial-time quan-
tum algorithm for integer factorization due to Shor [45]. As a result, the
field has now been the subject of numerous popular accounts, including
[1, 11, 37, 60]. But despite these remarkable theoretical advances, one out-
standing question remains: Can a fully programmable quantum computer
actually be built?

Most approaches to this problem (loc. cit.) have attempted to isolate
a single submicroscopic system completely from its environment, so that
it can be placed in a known quantum state and coherently controlled, for
example by laser light. Although such precise state preparation will cer-
tainly be needed to implement a quantum computer that can be scaled
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to problems beyond the reach of classical computers, it is not an absolute
prerequisite for the coherent control and observation of quantum dynamics.
The most complex demonstrations of quantum information processing to
date have in fact been achieved by liquid-state nuclear magnetic resonance
(NMR) spectroscopy, using the spin 1/2 nuclei in macroscopic ensembles
of molecules at room-temperature [12, 13, 15, 28]. Under these conditions
the state of the nuclear spins is almost completely random, but informa-
tion can nevertheless be stored in their joint statistics. This information is
processed by combining the intra-molecular spin Hamiltonian with exter-
nal radio-frequency fields. These fields are microscopically coherent, and
can be engineered so as to act coherently across the entire sample. Spe-
cial statistical states, called pseudo-pure states, can be prepared so that
the macroscopic dynamics mirrors the microscopic dynamics of the spins.
Finally, the spin degrees of freedom are remarkably well-isolated from the
motional and electronic degrees of freedom, so that their decoherence times
(i.e. the decay time for a quantum superposition) is typically on the order
of seconds in the liquid state. Such decoherence is not only the chief obsta-
cle to performing nontrivial quantum computations by any technology, but
is increasingly recognized as playing a fundamental role in how quantum
mechanics must be reconciled with classical physics [29].

Nuclear magnetic resonance also provides an experimental paradigm
for the study of multiparticle geometric algebra, as elegantly developed
in [20, 21, 48]. The reason is that the so-called product operator forma-
lism, on which the modern theory of NMR spectroscopy is largely based
[7, 8, 16, 24, 46, 47, 51, 57|, is a nonrelativistic quotient of the multipar-
ticle Dirac (i.e. space-time [33]) algebra. Thus NMR provides a natural
and surprisingly easy way to experimentally verify some of the predictions
of multiparticle quantum mechanics, as derived by geometric algebra. The
existence of a concrete physical application for the theory is also likely to
inspire new problems with a more general significance. In addition, NMR
is perhaps the most broadly useful form of spectroscopy in existence to-
day, and should greatly benefit from the adoption of the algebraic tech-
niques and geometrical insights afforded by geometric algebra methods.
These same benefits have already been shown to apply to the theory of
quantum information processing, regardless of its physical realization [49].
The numerous connections between quantum information processing and
foundational issues in quantum mechanics, particularly those pertaining to
nonlocality and entanglement, bring the circle to a close.

This paper is intended to introduce physicists and mathematicians to the
main ideas behind quantum information processing by liquid-state NMR
spectroscopy, using the language and techniques of geometric algebra. The
first section provides a brief overview of multiparticle geometric algebra,
mainly to set the notation and terminology (more complete accounts may
be found in the above references). The next section gives a quick introduc-
tion to quantum information processing, again referring to the literature for



14. Geometric Algebra in Quantum Information Processing 283

more complete accounts. This is followed by a detailed presentation of the
basics of liquid-state NMR spectroscopy, using the product operator for-
malism, and how NMR can be used to perform universal logical operations
on quantum information. The paper concludes with the results of recent
experiments which show how geometric algebra can be used to “program”
an NMR spectrometer to perform analog information processing, i.e. to
directly simulate general quantum systems.

14.2  Multiparticle Geometric Algebra

Ever since Hestenes’ pioneering work on the applications of geometric al-
gebra to relativistic physics [33], it has been known that the Pauli al-
gebra Gs is isomorphic to the even subalgebra gf: 53 of the Dirac (space-
time) algebra G 3. This isomorphism is obtained by choosing an inertial

frame [vq,71,72,7Y3], where v§ = —% = 1 and 7,7, = —v,7, for all
0 <v < p <3, and defining the Pauli operators as:

O-IL = 7;1,70 (21)

Note that 0,0, = —,0, (1<v<p<3)ando,o, =1(1<p<3),
thus showing that this mapping gives the desired isomorphism.

The multiparticle Dirac algebra Gy sn [20, 21, 48] is designed to model
the internal degrees of freedom of spin 1/2 particles like electrons, protons
and the atomic nuclei typically observed by NMR. It is obtained simply by
taking a different orthogonal copy of space-time for each of the N distin-
guishable particles, with bases

[v6, 75,545 | k=1,...,N] , (2.2)

and considering the geometric algebra that they generate (note the use of
Roman superscripts to label particle spaces). This algebra has dimension
24N, The subalgebra (Gi5)"V of dimension 23V generated by the even sub-
algebras gi 3 from each particle space is endowed with a natural tensor
product structure, since
oL, = Vs = oyl (2:3)
commutes for all 1 < k£ < ¢ < N. This plus the fact that it is the algebra,
rather than just the underlying vector space, which is physically relevant,
explains why the state space of a system of distinguishable particles is the
tensor product (G3)®Y of their individual state spaces Gs.
Nevertheless, this particular tensor product space appears to be larger
than is actually needed, since physicists make do with the compler ten-
sor product of the Pauli algebras, which has real dimension 22¥+1. These
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superfluous degrees of freedom are due to the fact that the multiparticle
geometric algebra contains a different unit pseudo-scalar in every parti-
cle space. They may be removed by projecting everything onto the ideal
generated by the correlator,

C = 1a-J4d8) - %(1—-L1LN) ) (2.4)
where t* = o¥akok is the unit pseudo-scalar associated with the k-th

particle space. This primitive idempotent is easily seen to commute with the
entire multiparticle Pauli algebra, and hence defines a homomorphism into
an algebra (G3)®V /C of the correct dimension. This C-correlated product
of Pauli algebras, in turn, is isomorphic to the algebra of all 2V x 2" complex
matrices, and so capable of representing all the operations of nonrelativistic
multiparticle quantum mechanics.

Interestingly, when restricted to the product of the even subalgebras
of the embedded Pauli algebras, (G5 )®Y, factorization by C acts as an
isomorphism. This C-correlated even algebra is isomorphic to a real tensor
product of N quaternion algebras (G4 )®", and so has dimension 22V —
the same as the real linear space of Hermitian matrices as well as the
Lie algebra u(2V) of the unitary group. Henceforth, the factor of C in all
expressions will be dropped unless there is a specific reason to include it,
and the pseudo-scalars from different particle spaces will be identified with
the single unit imaginary

v =JC =...=.NC. (2.5)

One can further define spinor representations of the rotation group SO(3)
within the multiparticle geometric algebra [20, 21, 33, 48]. This relies upon
the fact that spinors can be regarded as a minimal left-ideal in the algebra,
which is generated by a primitive idempotent E. Including the correlator
C, this idempotent may be written in product form as:

EC = E\E%.--EfC (E} = i(1+0o), k=1,...,N) (26)

The left-ideal itself consists of those elements ¥ € (G3)®V such that
¥ = W EC, which in the Pauli matrix representation of the C-correlated
algebra corresponds to matrices with nonzero entries only in their left-
most column. These may be identified with the usual state vectors | ) of
a (2VV)-dimensional Hilbert space.

Using the relation E = X E for all k, we can redefine our correlator C
in this left-ideal to be

D = %(1_Lo.%bo.2)_..%(1—L0';)LO'§V) , (2.7)

which will be referred to as the directional correlator. It can be shown that,
in contrast to C, right-multiplication by D maps the tensor product of
quaternion algebras (G5 )®" onto a subalgebra of the correct dimension
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2N+1and that the quaternion algebra in every particle space acts by left-
multiplication to give a spinorial representation of the rotation group [21].
Thus this subalgebra provides a covariant parametrization for the space of
N-particle states, and for most purposes one can drop the idempotent E
and work directly in this subalgebra. Its elements ¢ = ¥ D are accordingly
called spinors.

The Pauli operators themselves act on the corresponding one-particle
spinors according to

Uulw) o 0'“0’1/) EO'“’l/Jﬂg (]_Sp,g.?))
1) & Lo = wpoz = Yoz,
where right-multiplication by o3 keeps the results in the Pauli-even subal-

gebra. This can be viewed as a projection of the geometric product times
E, back into the even subalgebra, since

(2.8)

0,03 = o, (B ~E_) = o, WE, +(0,%E), (29

where the hat “~” denotes the main involution or parity operation in Gs,
which changes the sign of the odd components. This action is readily ex-
tended, in a well-defined fashion, to an action of the C-correlated products
of the Pauli operators on the D-correlated products of elements from the
even subalgebras of multiple particles.

The multiparticle Dirac algebra is essential to understanding the geome-
tric origin of the tensor product in multi-spin quantum physics, which in
turn plays a central role in both quantum computing and NMR (vide infra).
The remainder of this paper, however, will make direct use of only the non-
relativistic quotient algebra. In this regard, it is important to note that the
Dirac reverse T of any T" € (gf 3) corresponds to the conjugate (i.e. rever-
sion composed with the main involution) in Gs, whereas the Pauli algebra
reverse corresponds to the frame-dependent operation -y, r “o- Henceforth,
the notation T' will be used exclusively for the Pauli algebra reverse. This
operation is readily extended to the multiparticle Pauli algebra by defining
r'rA))~ = I''I'2, and remains well-defined after correlation. In the usual
matrix representation, this operation is just the Hermitian conjugate.

14.3 Algorithms for Quantum Computers

Because of the tensor product involved, the exact representation of a co-
llection of finite-state quantum systems on a classical computer takes an
amount of memory which grows exponentially with the number of systems.
As first noted by Feynman [25], this implies that it may be possible to
simulate the evolution of one collection of finite-state quantum systems by
another, using only polynomial resources (i.e. time and memory). The idea
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of operating on digital information stored in finite-state quantum systems
originated with Benioff (3], and was extended by Deutsch [17] to show that
discrete problems can also be solved more rapidly on a quantum computer.
At this time, however, very few problems are known which can be solved
exponentially more rapidly, the most notable being Shor’s integer facto-
rization algorithm [45]. A quantum algorithm for solving general search
problems with a quadratic speed-up over linear search is available [30], but
it is now widely believed that the important class of NP-complete problems
[27] cannot be solved in polynomial time even on a quantum computer [4].
The advantages that have been demonstrated are nevertheless significant,
and much remains to be learned.

In its standard form, a quantum computer stores binary information in
an ordered array of distinguishable two-state quantum systems, e.g. spin
1/2 particles. These are usually referred to as “qubits”. In keeping with
their usage, the two orthogonal basis states that represent binary “0” and
“1” are denoted by |0) and |1), respectively. Thus a two-bit quantum
computer stores the integers 0, 1, 2 and 3 in binary notation as |00), |01},
|10) and |11), where

|616%) = |6Y)]62) = |6') ®][62) (3.10)

(6',6% € {0,1}). This extends in the obvious way to an arbitrary number
of qubits N. The interesting feature of qubits is their ability to exist in
superposition states, co|0) + c1|1) (co,c1 € C, |col? + |c1|? = 1). Such a
state is not between |0) and |1), as in an analog classical computer with
continuous voltages, nor is it really in both states at once, as sometimes
stated. It can most accurately be said to be in an indeterminate state,
which specifies only the probability |cg|? and |c;|> with which |[0) and |1)
will be observed on testing it for this property.

By itself, this is nothing that could not be done on a classical computer
with a good random number generator, but things get more interesting
when one considers superpositions over multiple qubits, e.g.

(3.11)

(10) +11N(0) = 11)) .

Let Uy be a unitary transformation of the two qubits, which is defined on
the computational basis by

Us|00) =[0)[f(0)), Uyl01)=]0)|1=f(0)),
Usl10) = [D)[f(1)), Us11) =[1)|1 - f(1)),

where f: {0,1} — {0,1} is one of the four possible invertible boolean func-
tions of a single bit, and extended to all superpositions by linearity. This
implies that the application of U to a superposition over its input (left)
qubit effectively computes the value of f on both inputs at once. Applied

|¥) = 5(/00) —|01) +]10) —|11))

(3.12)
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to the superposition state | ¢ ) above, where the output (right) qubit is also
in a superposition, we obtain after straightforward rearrangements:

Usv) = 3 (07Q0) + (-1/D)) (o) - 11)  (3.13)

Now consider a second unitary transformation of the qubits Ry, which
is called the Hadamard transform and defined on a basis for each bit by

Rul0) = L(10)+]1), Rull) = L(10)=[1).  (319)
This is easily seen to transform the above as follows:
RyU19) = & (<)@ + (1/D)j0) +
(-1)/@ = (-1)/D)|1)) 1)

Thus if f(0) = f(1) (i.e. f is a constant function), testing the “input”
qubit will yield | 0) with probability 1, whereas if f(0) =1 — f(1) (i.e. f is
a “balanced” function), it will yield | 1) with probability 1. The interesting
thing is that this is done with but a single “evaluation” of the function f
(via Uy), whereas distinguishing these two cases classically would require
two evaluations. This quantum algorithm is due to Deutsch & Jozsa [18].

The feature of quantum mechanics that makes this possible is the cohe-
rent mixing of the basis states by the Hadamard transform, so that those
corresponding to the desired solution are amplified and the phase differen-
ces among the remainder result in cancellation. Because this can also occur
when the state of a qubit is correlated with its spatial coordinate, as in
optical diffraction, this is often referred to as interference. By itself, it does
not yield an asymptotic reduction in the computation time required, but
when combined with the exponential growth in the state space with the
number of particles, it becomes possible to cancel exponentially large num-
bers of possibilities and hence attain exponential speed-ups, as in Shor’s
algorithm.

It should be noted that factorizable states, i.e. those that can written as
a product of superpositions over the individual qubits (as in |9 ) above)
are effectively parametrized by the coefficients cg and cf of the qubits.
Taking the constraints |cf|2 + |cF|2 = 1 (1 < k < N) and the fact that
there is but a single global phase into account, this implies that the dimen-
sion of the manifold of such states increases as 2N + 1, not exponentially.
The exponential growth in the dimension thus requires that states can be
created which are nonfactorizable, or entangled. Entangled states are not
only required for efficient quantum computing, but are the source of many
quantum “paradoxes” as well [39)].

The Hadamard transform is a simple example of a quantum logic gate,
which maps basis states to superpositions. Unitary transformations like

(3.15)
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Uy, on the other hand, constitute logical operations with classical boolean
analogues, which must however be reversible (since unitary transformations
are always invertible). The simplest example is the NOT gate: N|0) = |1)
and IN|1) = |0). More interesting calculations require feedback, i.e. opera-
tion on one qubit conditional on the state of another. Although reversibility
precludes operations like AND, which have two inputs but only one output,
the XOR gate, with the second qubit passed through unchanged, can be
realized as a unitary transformation:

S'2100) = [00), S'*|10) = |10),

1
Ss'1201) = [11), 8|11y = |01). (3.16)
For obvious reasons, this is sometimes called a controlled-NOT, or c-NOT,
gate. The corresponding three-qubit analog T2 which NOT’s the first
qubit if the other two are both | 1), is known as the Toffoli gate after the
person who first realized that it is universal for boolean logic [55]. This
follows from the fact that, if one sets the first (target) input bit to 1, the
output is the NAND of the other two inputs.

More generally, the c-NOT gates, together with all one-qubit quantum
gates, generate the entire unitary group U(2") on N qubits [2]. The gene-
ral problem of “compiling” any given gate U whose generator log(U)/(mt)
can be factorized into commuting product operators will be solved cons-
tructively by geometric algebra below. Nevertheless, the important issue is
to characterize those unitary transformations which admit efficient imple-
mentations, meaning that the number of “elementary operations” involved
grows only polynomially in the number of qubits affected. Such elementary
operations are usually required to be “local”, in that they involve only a
few qubits at a time. The natural Hamiltonians of NMR, for example, have
at most two spins in any term, but can only be simulated classically using
exponential resources.

14.4 NMR and the Product Operator Formalism

In liquid-state NMR one deals with ensembles of molecules whose spins are
in a mized state. A concise description of the relevant statistics is given
by the density operator [6]. A matrix for the density operator of a pure
(i.e. single) quantum state is obtained from the corresponding state vector
by forming the dyadic product | ){%| ({(¢|¢) = 1). As shown in Refs.
[32, 48, 49], the geometric algebra analog of the dyadic product is Y Ev
({(#p1p) = 1). The density operator of a general mixed state is a convex
combination of the density operators of its constituent spin states, namely

p =23 pv,Be;, (4.17)
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where p; > 0,3 ;P = 1 can be interpreted as the probabilities of the
spin states in the ensemble. Such a representation is, in general, highly re-
dundant. Because the density operator is necessarily Hermitian (reversion
symmetric in the product Pauli algebra), a nonredundant, real parametriza-
tion can be obtained by expanding it in the product operator basis

p= ) guoohy, (4.18)
.U/E{Oy"'vs}N

where g =1 = 1.
Evolution of a spinor under a time-independent Hamiltonian H is des-
cribed by operation with the corresponding propagator as in Eq. 2.8:

|¥) = % — exp(-teH)|¢) < exp(-ttH)o (4.19)

Since 0kE = E = Ec® for all 1 < k < N, it follows that the density
operator itself evolves by two-sided multiplication with the propagator and
its reverse (i.e. conjugation in the multiplicative group):

p — exp(—teH)pexp(teH) =

. 4.20
2N Zj pj exp(—teH)Y  E v, exp(teH) (420)
Similarly, the expected value of an observable with Hermitian operator
A is given by the average of its quantum mechanical expectation values
(Vi| Al ) <2V ( Ay, E'(l;j ) over the ensemble (where (-) denotes the
scalar part). It follows that these averages may be obtained directly from
the density operator itself as

2Ny P (AY,EY;) =

) (4.21)
oN <Aszj ij¢j> = (Ap).
It may be seen that the factor of 2V in our definition of the density operator
(Eq. 4.17) compensates for the factor of 27V in the idempotent E, so that
(p) = 1. This normalization of p differs from the usual normalization to a
trace of unity in a matrix representation, but saves on factors of 2V when
using geometric algebra.
By our remark following Eq. 2.4, it is also possible to represent the
Hamiltonians of NMR, in product operator notation. The dominant term
in these Hamiltonians is the Zeeman interaction of the magnetic dipoles of

One might hope that one could drop the idempotent in these definitions, as was done
previously for spinors, and work with the convex span of products of the form 'z,b{b. Since
these products are even and reversion symmetric, however, they have no bivector part,

and thus they do not span enough degrees of freedom to encode for density operators.
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the spins with the applied magnetic field Bg. Assuming as usual that the
field is directed along the z-axis, this term may be written as

Hy

1l

N

By Zk a-ek = -5 ok, (422)
where 7 here denotes the gyromagnetic ratio of the k-th nucleus, and
8% <« 1 is an empirical correction called the chemical shift which describes
the diamagnetic shielding of the nucleus by the electrons in the molecule.
In most of what follows, it will be assumed that we are working with a
homonuclear system, wherein 7* =~v¢ =~ forall 1 <k < £ < N.

In accord with the forgoing observations, the density operator of an en-
semble of N-spin systems evolves under the Zeeman Hamiltonian as

p — exp(—teHz)pexp(ttHz) =

Z 0, exp(—twol/2) 11 exp(twéaéﬂ) (4.23)

{03 cexp(~twd ol /2) o N exp(tewd ol /2) .
Thus the vector given by those terms depending on just a single spin index,
e.g. ook + okak + 930'3 (Ql’i,c = 0o..,%..0), brecesses about the applied
magnetic field at a constant rate wf. This so-called Bloch vector describes
the observable macroscopic magnetization due to polarization of the k-th
spin over all molecules of the ensemble [24, 26].

In NMR spectroscopy, the spins are controlled by pulses of RF (radio-
frequency) radiation about the z axis. The corresponding Hamiltonian

Hgr = -4 ;V_l Wk (cos(wt)o® + sin(wt)crg) (4.24)
is time-dependent, which normally makes it impossible to give a closed-
form solution. Fortunately, in the present case it is possible to transform
everything into frame which rotates along with the RF field B, so that if
Fry|| B1|| = w¥ > |wk —w| for all k (i.e. the pulse is strong and hence can be
made short enough that the relative precession of the spins over its duration
is negligible), we can regard Hgg as a time-independent Hamiltonian which
rotates each spin at the constant rate w¥ about the x-axis in the rotating
frame. By changing the phase of the pulse, one can rotate about any desired
axis in the transverse (xy) plane. Henceforth all our transformations will
be relative to such a rotating frame (cf. [34]).

The spins, of course, also interact with one another. This paper is ex-
clusively concerned with the NMR of molecules in liquids, where the rapid
diffusional motion of the molecules averages the through-space interactions
between their nuclear magnetic dipoles to zero much more rapidly than
those interactions can have any net effect. Thus the only effective inte-
raction between the nuclei is a through-bond interaction known as scalar
coupling. Assuming the differences in the resonance frequencies wf — w§ of
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the spins are substantially larger than the scalar coupling constants J*¢
among them, the transverse components J*(o¥a¢ + oko) in each term
of this Hamiltonian are similarly averaged to zero by their rapid differential
precession. It follows that its effects are well-approximated by the remai-

ning terms parallel to the B field, i.e.

H, = 1Y J*okof (4.25)
k<t

(this is known as the secular, or weak-coupling, approximation). This Hamil-
tonian transforms the observable “single quantum” (i.e. single Pauli ope-
rator) terms according to

of  —  cos(tnJ*)o¥ + sin(trJ¥) kol

14

4.26)
= exp(—tirJ¥a¥)otEL + exp(terJ*ak)o b EL (

In terms of Bloch diagrams (see Figure 14.1), this later form also shows
that the magnetization vectors due to spin 1 in those molecules wherein
spin 2is |0) and | 1) turn clockwise and counterclockwise in a frame which

In-phase In-phase Anti-phase Anti-phase
Absorptive Dispersive Absorptive Dispersive
3 — < Ctlf—————

FIGURE 14.1. Bloch diagrams depicting the “single quantum”
in~-phase absorptive (o}), dispersive (3) and anti-phase absorptive
(o103), dispersive (o30?) states of a two-spin system. Vectors with an
empty head represent the magnetization from spin 1 in those molecules
wherein the second spin is “up” (i.e. oLE%, u = 1,2) while vectors
with a filled head represent the magnetization from spin 1 in those
molecules wherein the second spin is “down” (i.e. ath_, p = 1,2).
Under scalar coupling, these two components of the magnetization
counter-rotate at a rate of 2/J, where J is the scalar coupling strength
in Hz, thereby transforming in-phase absorptive into anti-phase dis-

persive and in-phase dispersive into anti-phase absorptive (see text).
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co-rotates with spin 1, respectively, at a rate of J*¢/2 sec™!. It will be
shown shortly how this interaction can be used to perform conditional
logic operations on the spins.

The final issue to be dealt with is how the density operator and Hamil-
tonian are manifest in the spectra obtained by NMR. As mentioned above,
the precessing magnetic dipole of each spin is described by those compo-
nents of the density operator which depend on just that spin index. The
transverse component of this dipole produces an oscillating signal in the
receiver coils, whose Fourier transform contains a peak at the precession fre-
quency w of each spin. According to the usual phase conventions of NMR,
the peak from o has an absorptive shape, while that from o¥ is dispersive
(see Figure 14.2). The frequencies of the spins are further modulated by
the scalar coupling interactions, which split each peak into a multiplet of at
most 2V 1 peaks at frequencies of wE+mJ*¥ £+ 7J*N. By multiplying
Eq. 4.26 through by o4 and using the fact that E{o% = £E%, it can be
shown that transverse-longitudinal correlations (e.g. o¥a%) evolve into ob-
servable terms (e.g. %) at frequencies of £7J*, but with opposite signs.
It follows that the pairs of peaks they generate likewise have opposite sign,
or are anti-phase, as opposed to in-phase peaks with the same signs (see
Figure 14.2).

Thus, in effect, an NMR spectrum enables us to directly readout all terms
of the density operator with just one transverse component. By collecting
spectra following 7 /2 readout pulses selective for each spin, it is possible to
reconstruct the density operator completely. This kind of measurement con-
trasts starkly with measurements on single quantum systems, which induce
“wave function collapse” to a random eigenstate of the observable so that
the density operator can only be reconstructed by collecting statistics over
repeated experiments. That wave function collapse does not occur is due
to the fact that averages over the ensemble contain insignificant informa-
tion on any one system in it. Such ensemble measurements are sometimes
called weak measurements, to distinguish them from strong measurements
on single quantum systems [39].

14.5 Quantum Computing by Liquid-State NMR

Even at the highest available magnetic fields, the energy of the nuclear
Zeeman interaction is at most about 107° of mean thermal energy per
degree of freedom kgT/2 (where kg is Boltzmann’s constant and T the
absolute temperature). Thus in liquid-state NMR, the equilibrium state of
the spins is almost totally random, so that the probabilities of finding a
spin “up” (parallel the field) and “down” are nearly equal. According to
the principles of statistical mechanics, these probabilities are given by 2=V
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In-phase In-phase Anti-phase Anti-phase
Absorptive Dispersive Absorptive Dispersive

FIGURE 14.2. Simulated NMR . spectra for a weakly coupled two-spin
molecule (amplitude of the real part versus frequency). On the left is
the spectrum of the spin state o} + o2, which gives a pair of in-phase
absorptive peaks for spin 1 (left) and a pair of in-phase dispersive
peaks for spin 2 (right). On the right is the spectrum of the spin state
olol+olo?, which gives a pair of anti-phase absorptive peaks for spin
1 (left) and a pair of anti-phase dispersive peaks for spin 2 (right). Fits
to the peak shapes in such spectra after various n/2 rotations of the
individual spins yield sufficient information to uniquely reconstruct

the complete density operator.

times the eigenvalues of

exp(—Hz/(ksT))
(exp(—Hz/(ksT)))
where the right-hand side is known as the high-temperature approzimation.

Expanding the Zeeman Hamiltonian yields the (high-temperature) equili-
brium density operator in product operator notation:

Peg = 1+ whok/(2keT) (5.28)

peq = ~ 1-— Hz/(kBT) , (527)

Since the observables of NMR &% and 0% have no scalar part, it follows
from Eq. 4.21 that the scalar part of any density operator produces no net
NMR signal. It also does not evolve under unitary operations, and hence
NMR spectroscopists usually drop it altogether. Assuming a homonuclear
system (so that wf ~ w§ = wp = hy||By|| for all 1 < k,¢ < N), it is
also common practice to drop the constant factor Ag = wp/(2kgT’) in the
above. Then the eigenvalues of this “density operator” p., are given by
0; = N —2#4, where #i is the Hadamard weight (number of ones in the
binary expansion) of the integer i = 0,...,2" — 1. Their multiplicities are
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the binomial coefficients ( ;;[Z) For example, the Pauli matrix representation

of the homonuclear two-spin equilibrium density operator is:

1 00 O

. 1, 2 000 O

Peq = O3+03 < 2 000 0 (5.29)
0 0 0 -1

The obvious way to store binary information in an ensemble of spin sys-

tems at equilibrium is to regard each chemically distinct type of spin as a
“bit” which represents 0 or 1 as its net polarization is up or down, respec-
tively, so that the integers from ¢ = 0,...,2"Y — 1 are stored in the states
+ol+...+ oL . This is, however, a very different thing than storing these
integers in the pure states | i) (the Zeeman basis vector obtained by binary
expansion of the integer i}, the density operators of which are signed sums
over all possible products of the form a’?f‘ e 0'];"
(1 <k <---<kp,<N), as in Eq. 4.18 with g, = +1 for all ¢ € {0, 3}
and 0 otherwise. The problem is that, without these higher-order (n > 1)
product terms, it is not possible to perform conditional operations on the
state, for the simple reason that by linearity these operations act indepen-
dently on each term of the sum. These higher-order terms are nonnegligible
in the equilibrium state only at temperatures approaching absolute zero —
which is not an option available in liquid-state NMR!

A class of weakly polarized nonequilibrium states nevertheless exists in
which the linear and higher-order terms are all present with equal magni-
tudes, as they are in pure states. These states, usually known as pseudo-pure
states [13, 15, 28, 32, 36], are also characterized by having a single non-
degenerate eigenvalue in the standard matrix representation, so that they
may be written as a trace-preserving rank 1 perturbation on the identity:

pop = (1= D) +2VA[Y ) (9]

o (1=A)+2VNAPYEY (5:30)

The perturbation parameter A is restricted by the requirement that the
density operator be positive-semidefinite to —1/(2Y — 1) < A < 1. Assu-
ming that the pseudo-pure state is at equilibrium versus a Hamiltonian of
the form Hy(E — 27%), this is related to the polarization —1 < A < 1
of a single spin versus Hyoo,/2 by A = Ag/({(1 — Ag)2V 1 + Ay). For e-
xample, the two-spin pseudo-pure ground state is given by the above with

[¢¥) =1]00) « =1, 1ie.
Poo = L+A(22E—1) = 1+A(4ELE] - 1) (531)
= 1+ A (03 + 03 +0}03) . .

Since the identity 1 commutes with everything, pseudo-pure states are nece-
ssarily mapped to pseudo-pure states by unitary operations, and so provide
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a carrier space for a representation of SU(2"V) (modulo phase) just like true
pure states.

In addition, the fact that pseudo-pure states are realized in the statistics
of macroscopic ensembles of identical quantum systems implies that the
available measurements are weak (section 14.4). Thus NMR measurements
on pseudo-pure states actually enable one to directly obtain the expectation
value of any observable A relative to the perturbation spinor 4, i.e.

(pA) = (1-A)(A)+2VA(AYEYP) — A(y|A|Yp), (5.32)

which follows from the fact that NMR observables have no scalar part.
The ensemble nature of NMR also permits certain types of non-unitary
operations to be performed on the system. Since the eigenvalues of the high-
temperature equilibrium and pseudo-pure density operators are different,
the preparation of pseudo-pure states necessarily involves such non-unitary
operations. There are presently four methods of implementing non-unitary
operations in NMR, each of which leads to a physically different (though
mathematically equivalent) type of pseudo-pure state.

The conceptually simplest type is a temporal pseudo-pure state, which
is obtained by averaging the results (signals or spectra) of experiments
performed at different times on different states, such that the sum of their
density operators is pseudo-pure. This is analogous to phase-cycling in
NMR {24, 26]. For example, up to a factor of 2/3, the average of the follo-
wing three two-spin states clearly has the same nonscalar part as the above
pseudo-pure ground state:

Pa = 1+A(0’é+0‘§)
pg = 1+A(o}+oio?) (5.33)
pc = 1+ A (0305 +03)

The first state is the equilibrium state, while the other two may be obtained
by permuting the populations in the equilibrium state by the c-NOT gates
S21 and Stz respectively.

Another way to perform non-unitary operations in NMR relies upon
the fact that the observed signal is an integral over the sample volume.
Thus if one can create a distribution of states across the sample such that
their average is pseudo-pure, one obtains a spatial pseudo-pure state. The
most straightforward way to do this is to apply a magnetic field gradient
across the sample, usually a linear gradient along the z-axis paralle} to the
applied magnetic field Bg. This causes the spins to precess at differing rates,
depending on their z-coordinates, so that the net transverse magnetization
vector perpendicular to the z-axis is wound into a spiral whose average
is zero. The transverse phase information thus rendered unobservable is
exactly that which would be lost in a strong measurement of the spins
along the z-axis, but with the rather striking difference that this phase
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information can be recovered by inverting the gradient. The next section
will present specific RF and gradient pulse sequences for spatial pseudo-
pure states.

A rather different approach is to “label” a pseudo-pure subensemble of
the spins by a specific state of one or more “ancilla” spins. This approach
was used over 20 years ago to demonstrate spinor behavior under rotations
by NMR [54], and was first applied to NMR computing by Chuang et al.
[28, 58]. The correlation with ancilla spin states permits the signal from
the pseudo-pure subensemble to be isolated by filtering based on the fre-
quency shifts induced by scalar-coupling. The simplest example of such a
conditional pseudo-pure state is

p = 1+A(o}+03+0303)03
= (1+AM4ELE% - 1)) E} + (5.34)
(1- A4ELE -1))E® .

It can be shown that this state is related to the equilibrium state by unitary
¢-NOT operations. The latter expression in the equation makes it clear that
in the subensemble wherein spin 3 is “up” (i.e. in its ground state E:j_)
the spins 1 & 2 have a population excess in their ground state (assuming
A > 0). Similarly, in the subensemble with spin 3 “down” spins 1 & 2
have a population deficit in their ground state. Significantly, therefore, on
average across the entire ensemble spins 1 and 2 are entirely unpolarized
(i.e. random). This can be seen in NMR by decoupling spin 3, i.e. by rotating
it rapidly with an RF field so that its interactions with spins 1 and 2 are
averaged to zero. This effectively removes spin 3 from the system, so that
(in the above situation) the spectrum of spins 1 and 2 is reduced to a flat
line.

The general operation of “removing” a qubit from a system is known
in quantum computing as the partial trace. As shown in Ref. [49], this
corresponds to dropping all terms which depend upon the spin over which
the partial trace is taken in the product operator expansion of the overall
density operator. It provides us with our fourth type of pseudo-pure state,
which is called a relative pseudo-pure state. An example in this case is
given by [32]

p = 4((E\+F)E.E, + (E\F} - B' BB E* +
(ELE*> - E\E*)E*E| — (B + E>)E* E*)
(5.35)

2 (o3 + aé) + o3 (of - ag) + (a% + 03 — o303) oios

+ (o3 + 0} +0303) |

wherein it may be seen that tracing over spins 3 and 4 leaves only the
bottom line, which is a two-spin pseudo-pure state. This density operator
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is again related to the four-spin equilibrium density operator by unitary
operations.

The one thing that all these methods of preparing pseudo-pure states
from equilibrium states have in common is a rapid loss of signal strength
with the number of spins in the resulting pseudo-pure state. This can be
understood most simply from the fact that, since the number of Zeeman
basis states grows exponentially with the number of spins, at any fixed po-
larization {specific entropy) the expected population in any one state must
likewise decline exponentially [59]. Nevertheless, current methods should
be able to prepare usable pseudo-pure states on up to ca. 8 — 12 spins.

In addition, it is also at least difficult to study nonlocal effects by NMR,
since that would require allowing the spins to interact by scalar coupling
through a chemical bond, then rapidly breaking the bond, separating the
molecular fragments, and performing further measurements. A more fun-
damental problem lies in the fact that the microscopic interpretation of
experiments on weakly polarized spin systems are always ambiguous, in
that there are many different ensembles whose average yields the same
overall density operator [10]. Although these issues preclude the use of
NMR as a means of studying foundational issues in quantum mechanics
involving nonlocality and entanglement, they do not limit its utility as a
means of developing the engineering principles needed for quantum infor-
mation processing [32]. Indeed, the long decoherence times characteristic of
nuclear spins, together with the superb coherent control available through
modern NMR technology, has enabled demonstrations of many basic fea-
tures of quantum information processing which had previously existed only
in theory. The next section describes how this was done.

14.6 States and Gates by NMR

This section will show how the quantum logic operations introduced in
section 14.3 can be represented in the product operator formalism, how
they can be implemented in NMR by RF pulse sequences, how they act
on density operators in product operator notation, and finally how they
can be used together with gradient pulses to generate pseudo-pure states.
The simplest logic gate is the NOT operation IN on a single qubit (spin).
This is a rotation by 7 about a transverse axis, which in the usual phase

As further discussed in Ref. [32], there are a number of ways in which this loss can
be distributed among the various available resources (i.e. repetitions of the experiment,
sample volume and the number of ancillae used), but within the validity of the high-

temperature approximation no truly scalable method exists.
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conventions is taken as the x-axis:
N = exp(—(7/2)to1) = cos(m/2) —toysin(n/2) = —wor (6.36)

Via the anticommutivity of o; and o3, this is readily verified to flip the
qubit in question, e.g.

N|0)(0|N < NE.N
= (_Lo'l)%(]- + 0‘3)(L0’1) (637)
= %(1—0‘3)(0’1)2 = E_ o |1><1‘

As previously mentioned, such a rotation can be implemented by a single
pulse of RF radiation of amplitude wy = A7||B;|| and duration 7/w;, whose
frequency is on-resonance with that of the target spin.

This can be generalized to a rotation by an arbitrary angle about an
arbitrary transverse axis, which implements a one-bit quantum logic gate.
The one-bit quantum gate most commonly considered in quantum com-
puting, however, is the Hadamard transform Ry defined in Eq. 3.14. By
translating this spinor definition to density operators, it may be seen that
this gate acts on the components of the Bloch vector as

Ryo\Ry = 03, Ryo:Ry = —02, RuyosRy = o1, (6.38)

and so corresponds to a rotation by 7 about the axis (1 + 3)/Vv/2, i.e.
Ry = exp(—(ﬂ/Q)L(al + 03)/\/§> = —i(o1+03)/V2. (6.39)

Although rotations about non-transverse axes are not easily implemented
in most NMR spectrometers, the Hadamard is nevertheless readily obtained
from the following sequence of transverse rotations:

Ry = exp((n/4)tos) exp(—(w/2)to1) exp(—(n/4)to2) (6.40)

A convenient short-hand (similar to the graphical representation of pulse
sequences widely used in NMR) is to just specify the sequence of Hamilto-
nians applied:

[fo2] — [Fon] — [-Fo2] (6.41)

Note that in this sequence, the Hamiltonians are written in left-to-right
temporal order, opposite to that in Eq. 6.40.

Turning now to a two-bit gate, we rewrite the c-NOT defined in Eq. 3.16
as follows:

SU2 = [00)(00|+]10)(10]+ [01){11|+|11)(01]
|00)(00| 4 |10)(10| + o}(|11)(11|4]01){01]) (6.42)
1®|0){0))+ol(1®|1)(1]) —~ E2 +olE



14. Geometric Algebra in Quantum Information Processing 299

This in turn can be expressed in exponential form as
exp((7/2)e(1 — 01)E?)
= exp((1/2)tE?) exp(—(r/2)iol E2)
= (E% +.E%) (E% - w0} E?)
= E? +olE? = §'1?7,

(6.43)

which says that this ¢-NOT can be regarded as a flip of spin 1 conditional
on spin 2 being “down”. Alternatively, by defining the idempotents
Gl = (1 £ o}), we can write this as

st2 = exp(m,Gl_Ez_) = 1-2G E? . (6.44)

This reveals an interesting symmetry: the same ¢-NOT can also be viewed
as inversion of the phase of spin 2 conditional on spin 1 being along —a1.

To implement the c-NOT by NMR, it is necessary to use the scalar cou-
pling to induce a conditional phase shift. The pulse sequence can be derived
simply by fully expanding the propagator into a product of commuting fac-
tors: exp(mGl_Ez_) =

exp((m/4)¢) exp(—(m/4)ta}) exp(—(m/4)eo}) exp((n/4)toiol) (6.45)

The first factor is just a global phase +/¢, which has no effect when a
propagator is applied to a density operator and hence can be ignored. The
last factor cannot be implemented directly, but can be rotated about o2
into the scalar coupling Hamiltonian exp((r/4)tolo3) =

exp((m/4)eo}) exp(—(m/4)toso3) exp(—(n/4)eo}) (6.46)

Making this substitution in Eq. 6.45 leaves two transverse rotations of spin
1 adjacent one another, but their product is equivalent to a single transverse
rotation and a phase shift:

exp(~(7r/4)l,a'%) exp((vr/4)1,a§)
= exp((n/4)to}) exp(—(r/4)o7)

It follows that the c-NOT may be implemented by the NMR pulse sequence:

(6.47)

5ol — [0l — [0l — [5(e3-od)] (649

Pulse sequences for many other reversible boolean logic gates may be found
in Ref. [42].

Even though we are working in a rotating frame, the spins precess at
slightly different rates depending on their chemical shifts 6* (vide supra).
The c-NOT sequence requires that this differential Zeeman evolution be
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“turned off” leaving only the coupling Hamiltonian active during the
1/(2J'2) evolution periods. This can be done by inserting “refocusing” -
pulses in the middle and at the end of the period, as follows from:

exp((r/2)u(o] + 02)) exp(—(n/4)L(o} + 03))
exp(=(m/2)u(0} + o)) exp(~(r/4)u(o} + 73))
= (toiof)exp(—(1/4)(o; + 03))
(—eoio}) exp(—(n/4)e(o} + o3))
= exp((r/4)u(0} + 03)) (o10%)” exp(—(r/4)e(0} + o3))
= exp((r/4)e(o} + 03)) exp(—(m/4)e(o} + o'g)) -1

(6.49)

It also requires that the scalar coupling evolution be turned off during the
Zeeman evolutions at the end of the pulse sequence, which can be done by
applying a selective m-pulse to just one of the spins while the other evolves,
then vice versa, and finally realigning the transmitter phase with that of
the spins. This ability to “suspend time” in one part of the system while
working on another is an essential component of quantum computing by
NMR spectroscopy [35].

Higher-order logic gates can be implemented by analogous sequences. For
example, the c2-NOT or Toffoli gate is:

T'® = 1-E>E®)+0E’E®

6.50
= 1-2G"E’E® = exp(—m,Gl_EzE:i) (650

On expanding the propagator as before, one obtains:
exp(—(n/2) E* E*) exp(—(m/8)to) exp(—(n/8)to}03) (6.51)

exp(—(ﬂ/S)Laiag) exp(—(ﬂ'/S)La}agag)

The last (left-most) factor in this sequence consists of Zeeman and coupling
evolutions, and can be implemented by adjusting their relative rates via
refocusing m-pulses. The transverse rotation and “two-body” factors can
also be implemented in a fashion similar to that given above for the simple
¢-NOT gate. The “three-body” factor, on the other hand, must be built-up
from successive two-body evolutions (since that is all nature provides us
with [56]), for example as exp(—(r/8)tojo3od) =

exp(—(7r/4)1,0'§0'§) eXp((ﬂ‘/S)LO’%O’%) exp((7r/4)l,0'§0'§) (6.52)

Assuming that all the couplings are equal to J, and that the time required
for RF pulses is negligible, this sequence requires approximately 2/J in
time. By neglecting relative phase shifts among the states and allowing
multiple simultaneous evolutions, this can be reduced to 3/(4J) [15]. A
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graphical scheme for designing such pulse sequences, and its application to
the ¢™-NOT for n < 16, may be found in [41].

In the next section, it will be shown that NMR enables Feynman’s idea
of simulating one quantum system by another to be demonstrated, using
however an ensemble of spins in a pseudo-pure state to simulate a quantum
system in a true pure state. This will use the following sequence of RF and
gradient (V) pulses to convert the equilibrium state of a two-spin system
into a pseudo-pure ground state (where the propagator for the Hamiltonian
over each arrow conjugates the preceding expression to get the next):

(-5 (ei+oD)]
_—

1 2 1
o3+ 03 (03 + o3+ 03+ 03)

N

[~ 53] 1 1.2 1 1_2 2
5 (0105 + 03 + 0301 + 03)

&)

[{5(@3+03)]
—_—

=
/™~

V3(ELE? — 1(1-olo?))
+1(01E% + Elo}) )

v
**—*[ ] ‘{—g (O'é +oi+ 0';130'% —olo? - o%ag) (6.53)
[‘%ai] V3 (0,1 —o?—olo?+olo? - 0_10,2)
— —— 15 \O3 3 303 191 202
[v]
———— R (03— 0i-0303)
[%"3] V3 (1 2 1_2
> Yo (03 + 05 +030%)

It will be observed that the first gradient pulse converts o1o? into the pure
zero quantum coherence olo? + ola?, by destroying the corresponding
double quantum component ole? — ala?. This is due to the assumption
of a homonuclear system, wherein zero quantum terms have almost no net
magnetic moment and hence are not rapidly dephased by a gradient. Ne-
vertheless, a 7-rotation selective for only one spin converts this back to a
double quantum term, which the second gradient wipes out. In a heteronu-
clear system zero quantum terms are rapidly dephased by a gradient, and

hence the second gradient would not be necessary.

14.7 Quantum Simulation by NMR

This section describes a méthodology and proof of concept for the simula-
tion of one quantum system by another, as originally envisioned by Feyn-
man [25] and studied in detail by Lloyd [38]. This will also enable us to
illustrate many of the above concepts in quantum information processing.
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Unlike the digital quantum computer envisioned by Benioff and Deutsch,
however, a quantum simulator is an essentially analog device, which maps
the state of the simulated system directly onto the joint states of the qubits
without discretizing the problem. Such an analog encoding is not only pre-
cise in principle, but also more efficient, so that quantum simulations be-
yond the reach of today’s computers could be performed with only 20 to 30
qubits [37, 38]. In addition, since it is usually only the long-term average be-
havior of quantum systems that is of interest, quantum simulations would
be expected to be less sensitive to errors than quantum computations. Fi-
nally, the ensemble nature of NMR allows such averages to be observed
directly, saving the otherwise requisite repetitions of the same simulation
in order to obtain them.

The general scheme used here for quantum simulation is summarized in
the following diagram:

U = exp(—TtHs)

|s) [s(T))

¢ ¢ (7.54)

Vi = exp(—treHp) pr)

Ip)

Here, | s) and |p) denote the states of the simulated system and the phy-
sical system used to implement the simulation, respectively. The simulated
state after a specified amount of time T and the corresponding physical
state are denoted by |s(T)) and |pr), respectively (note T is not the
physical time!). The invertible (generally unitary) linear mapping ¢ encodes
the simulated system’s states in those of the physical system. Finally, H is
the simulated Hamiltonian, while H, is the average physical Hamiltonian
over the time tr required for the simulation. This average Hamiltonian is
obtained by interspersing periods of free evolution under the actual phy-
sical Hamiltonian H |, with a sequence of RF pulses which effect unitary
operations V; (i =1,..., M), so that:

¢~1 eXp(_TLHs) ¢ = exp(_tT" ¢—1Hs ¢)

_ M 7.55
= exp(—treHp) = Hexp(—tiLHp) Vi (7.55)
i=1

A general methodology has been developed by NMR spectroscopists to
permit them to implement arbitrary average Hamiltonians to any desired
degree of accuracy [31].
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The Hamiltonian to be simulated is often given in canonical form (i.e.
in terms of its energy levels). In this case an encoding ¢ which maps the
eigenstates of H to those of H p IS most convenient. Although it is not
strictly necessary, the task of implementing the average Hamiltonian by
NMR is greatly facilitated by converting it into product operator form.
Thus suppose that the simulated Hamiltonian is

N

H, = 3 HIGI (7.56)

where the energies H; are arbitrary real numbers. Because no ordering of
the energies is assumed, by a choice of indexing every eigenstate encoding
can be put in the form

15) 2 8% 8361) (7.57)

where 6{; € {0,1} is the k-th bit in the binary expansion of the integer j.
In terms of density operators, this becomes

|5)i| — E; = E} - ELE, (7.58)
where ei =1- 26{; and E? are the usual idempotents. On expanding these
products and regrouping, one obtains:

2N -1

3 2N 1 5 5
H, = Zg:o H;E; = ijo a; (o)™ - (o3) (7.59)

N . .
Inserting the identity 1 = Zi:g ' E) and using the relation o} Ey = e Eg
now yields:

_ _ 2V 1
H, = H,,Zkzo Ej
oV 1 oN_q . 8l (7.60)
- T e ) )
Comparison of these two expressions for H p shows that
2N & &
o= Y e () (@) = Ma, e
where a = [al’...’aQN‘]_]T and M®Y a matrix whose jk-th entry is

(—1)#3%k (with #;&k being the Hadamard weight of the AND of j and k).

This linear transformation from the o3 product basis for diagonal opera-
tors to eigenstates is known as the Walsh-Hadamard transform. As implied
by the notation, the matrix M®" is a Kronecker (tensor) power of the
2 X 2 matrix

M = [11 _11] . (7.62)
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It is easily seen that M and hence M®¥ is its own inverse up to factors of
2 and 2V, respectively, and hence this transformation is easily inverted to
convert any operator in canonical form into its product operator expansion.
Consider, for example, simulating the first 2V levels of a quantum harmonic
oscillator, with H; = (2§ +1)Q/2 for j = 0,...,2" — 1. The corresponding
product operator form is given by:

Hy = 10 (3203 42" 0d)) (69

Significantly, this expansion contains no product terms, so that evolution
under it cannot induce new correlations among the qubits. This property
depends on the encoding ¢, however, as may be seen by reordering the (first
four) energy levels as Hy = Q/2, H; = 3§2/2, Hy = 7Q/2 and Hjz = 5/2;
this corresponds to a so-called Grey encoding, in which adjacent energy
levels differ by single qubit NOT operations. In this case the propagator of
the desired average Hamiltonian may be shown to be

Vr = exp(—TLI_Ip)

exp(~TeQ((1+0}/2) 03 - 2)) . (7.64)

In order to demonstrate these ideas in practice, NMR. experiments will
now be described which implement the first four levels of a quantum har-
monic oscillator in the above Grey encoding [50]. These experiments were
done on the molecule 2, 3-dibromothiophene, which contains two weakly
coupled hydrogen atoms (see Figure 14.3). Letting K = (w? — w')/(27)
and placing the receiver on the first spin (i.e. choosing a rotating frame
wherein w! = 0), the physical Hamiltonian of this system becomes:

H, = 7 (K +Jo}) o3 = 7(226.0+5.70}) o3 (7.65)

s
Hw .~ \C/Br

N

TN

H Br

FIGURE 14.3. Chemical diagram of the molecule 2,3-dibromothio-
phene used for simulation of a quantum harmonic oscillator (see text).
The two hydrogen atoms were used as the qubits in an analog repre-

sentation of the oscillator’s first four energy levels.
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Up to an overall phase factor, the desired average Hamiltonian is obtained
from the following pulse sequence

[-m (o2 +03)] — [n/20507]

(7.66)

— [r(o2+03)] — [(n/2+m)os03] .
This may be shown by using the fact that o3o% anticommutes with o3,
commutes with o302 and squares to 1 to rearrange the corresponding se-
quence of propagators as follows:

exp(—(11/2 + 7o) H,, )exp(—(w/2)b(aé+a§))
exp(—(71/2)eH,) exp((m/2)e (o + 03))
= exp

exp(—(r1/2)en (K + Jo}) 03) Lojos

(

(

(11/2 + mo)en (K + Jog) o3) (—)o303
(

exp(—(m1/2 + n)er (K + Jo}) o3) (7.67)
exp((—¢)o303 (= (11 /2 (K + Joi) 03) Lojo3)

(T1/24 72) ur(K + J0'3) 03)

(/2 (-K + Jo}) o3)

= exp

(=
(-
p(-
(=
(=
(=

exp
= exp(—ur(roK + (11 + 12) Jo3) 02)

Thus the desired propagator Vr at a simulated time T is obtained (up to
its overall phase) by setting 7 = QT/K and 71 = QT/(2J) — 2.

In order to illustrate the simulation, the spin system was prepared in
a pseudo-pure ground state, as described in Eq. 6.53 above. It was then
transformed into a double quantum superposition (|9 )pq = |0) + ¢|2)),
and evolved for a regularly spaced sequence of 64 simulated times 7" up to
one full period Q7. For each time T, the corresponding double quantum
spin state {¢(] ¥ )pq) = [01) +¢|10)) was transformed via a readout pulse
selective for a single spin back to a single quantum spin state, which gives
rise to a peak in the spectrum whose amplitude could be used to monitor
the simulation. A similar set of experiments was also done on the full super-
position (|0) +---+|3)) over the first four energy levels of the oscillator.
Due to the Grey code used, the single and triple quantum coherences in
this case all give rise to observable peaks whose amplitudes could be mo-
nitored directly. Figure 14.4 shows these peak amplitudes as a function of
simulated time T for each of these cases. Note in particular that a triple-
base-frequency oscillation does not occur naturally in a two-spin system,
thereby confirming that this simulation involves a nontrivial modification
of the system’s physical Hamiltonian. The original reference [50] also shows
data for the simulation of a driven anharmonic quantum oscillator, which
does not rely upon knowledge of the eigenstates, thereby showing that the
simulation methodology of Eq. 14.7 is general.
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FIGURE 14.4. Plots of selected peak amplitudes (x) versus fraction
of harmonic oscillator period simplated for the ground (a), a double
quantum (b) and the single (¢) and triple (d) quantum coherences in
a full superposition over all four energy levels. The solid-lines through

each data set were obtained by three-point smoothing.

14.8 Remarks on Foundational Issues

Using a mathematical formalism based on geometric algebra, we have
shown how quantum information processing can be performed on small
numbers of qubits by liquid-state NMR spectroscopy, where the qubits are
physically realized in the joint statistics of a highly mixed ensemble of
spin systems. There has nevertheless been considerable controversy over
whether or not these experiments are truly “quantum” [10, 43]. The fact
that all of quantum mechanics can be done with the multiparticle Dirac
algebra, together with the implied geometric interpretation, makes an ab-
solute distinction between “quantum” and “classical” seem a little less
profound. Nevertheless, the general consensus now seems to be that liquid-
state NMR should be regarded as “quantum” not so much because the
measurements that can be made on any one state require the formalism of
quantum mechanics for their description, as because the manifold of states
and measurement outcomes generated by the available operations do. Thus,
even if a highly mixed density operator is expressed as an average over an
ensemble of unentangled states, a sequence of RF pulses and evolutions
under scalar coupling can always be applied which converts at least some
of these states into entangled ones.
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Our work also touches upon a number of interesting questions regarding
the emergence of classical statistical mechanics from an underlying quan-
tum description of the system and its environment, and at the same time
provides a readily accessible experimental system within which these ques-
tions can be studied. It is now widely believed that classical statistical
mechanics works because the system and its environment become entan-
gled through their mutual interactions [29, 62], so that the partial trace
over the environment results in an intrinsically mixed state of the system.
If the eigenstates of the resulting density operator are stable under the
environmental interactions, the system’s dynamics can be described by a
classical stochastic process on those eigenstates. This process by which co-
rrelations between the selected eigenstates are lost is known as decoherence.
From this perspective, a pure state is a state of the universe as a whole
in which the system and its environment are mutually uncorrelated. Ne-
vertheless, decoherence remains a theory of ensembles; it does not explain
what happens in any single system, and hence in particular does not resolve
the quantum measurement problem [39).

The potential utility of NMR as a means of exploring some of these issues
experimentally is illustrated by our recent demonstration of a quantum
error correcting code [14]. This extension of the classical theory of error
correction to quantum systems was developed in order to control decohe-
rence in quantum computations [44, 52], which would otherwise destroy the
coherences on which quantum algorithms depend [11, 60]. Such codes rely
upon the fact that the effects of environmental interactions on the system
can be completely described by a discrete stochastic process of the form
p— > PmUn pf]m , where p,, > 0 are the probabilities with which
the unitary operators U,, are applied to the system. Assuming that this
process is known, additional ancillae qubits in a specific state |0) can be
added to the system, such that each distinct “error” (i.e. operator U,,)
maps their joint state into orthogonal subspaces. Thus measurements e-
xist whic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>