
An extended abstract of this paper appears in Lars R. Knudsen, editor, Advances in Cryptology –

EUROCRYPT 2002, Volume 2332 of Lecture Notes in Computer Science, pages 418–433, Amster-
dam, The Netherlands, April 28 – May 2, 2002. Springer-Verlag, Berlin, Germany. This is the full
version.

From Identification to Signatures via the Fiat-Shamir Transform:

Minimizing Assumptions for Security and Forward-Security

M. Abdalla∗ J.H. An† M. Bellare‡ C. Namprempre§

February 2002

Abstract

The Fiat-Shamir paradigm for transforming identification schemes into signature schemes
has been popular since its introduction because it yields efficient signature schemes, and has been
receiving renewed interest of late as the main tool in deriving forward-secure signature schemes.
In this paper, minimal (meaning necessary and sufficient) conditions on the identification scheme
to ensure security of the signature scheme in the random oracle model are determined, both in the
usual and in the forward-secure cases. Specifically, it is shown that the signature scheme is secure
(resp. forward-secure) against chosen-message attacks in the random oracle model if and only

if the underlying identification scheme is secure (resp. forward-secure) against impersonation
under passive (i.e., eavesdropping only) attacks, and has its commitments drawn at random
from a large space. An extension is proven incorporating a random seed into the Fiat-Shamir
transform so that the commitment space assumption may be removed.

Keywords: Signature schemes, identification schemes, Fiat-Shamir transform, forward security,
random oracle model, security proofs.

∗ Departement d’Informatique, École normale supérieure, 45 Rue d’Ulm, 75230 Paris Cedex 05, France. Email:

Michel.Abdalla@ens.fr. URL: http://www.di.ens.fr/users/mabdalla. Part of this work was done while the

author was at University of California, San Diego. Supported in part by the third author’s grants.
† SoftMax, Inc., 10760 Thornmint Road, San Diego, CA 92128, USA. Email: jeehea@cs.ucsd.edu. URL:

http://www.cs.ucsd.edu/users/jeehea. Work done while at University of California, San Diego.
‡ Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. Email: mihir@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/users/mihir. Supported

by in part by NSF Grants CCR-0098123, CNS-0524765, CNS-0627779, a 1996 Packard Foundation Fellowship in

Science and Engineering, an IBM Faculty Partnership Development Award, and a gift from Intel Corporation.
§ Electrical Engineering Department, Faculty of Engineering, Thammasat University, Klong Luang, Patumtani

12121, Thailand. Email: cnamprem@engr.tu.ac.th. URL: http://chanathip.ee.engr.tu.ac.th. Supported in part

by the third author’s grants and the Thailand Research Fund.

Contents

1 Introduction 1
1.1 Main result . 1
1.2 Comparison with previous work . 2
1.3 Generalized transform . 3
1.4 Results for forward security . 4
1.5 Discussion and remarks . 4
1.6 Organization . 5

2 Definitions 5

3 Equivalence Results 7

4 Separations among Security Assumptions 13

5 Extension to forward security 15

6 The Non-Triviality Condition 21

1 Introduction

The Fiat-Shamir method of transforming identification schemes into signature schemes [20] is pop-
ular because it yields efficient signature schemes, and has been receiving renewed interest of late as
the main tool in deriving forward-secure signature schemes. We find minimal (meaning necessary
and sufficient) conditions on the identification scheme to ensure security of the signature scheme
in the random oracle model. The conditions are simple and natural. Below we begin with some
background and discussion of known results, and then move to our results, considering first the
usual and then the forward-secure case.

Canonical ID schemes. The Fiat-Shamir (FS) transform applies to identification (ID) schemes
having a three-move format that we call canonical. The prover, holding a secret key sk , sends a
message Cmt called a commitment to the verifier. The verifier returns a challenge Ch consisting of
a random string of some length. The prover provides a response Rsp. Finally, the verifier applies
a verification algorithm V to the prover’s public key pk and the conversation Cmt‖Ch‖Rsp to
obtain a decision bit, and accepts iff Dec = 1. The length of the challenge is c(k) where k is the
security parameter and c is a function associated to the scheme. A large number of canonical ID
schemes are known (e.g., [20, 24, 11, 29, 36, 14, 21, 32, 31, 38, 33]) and are candidates for conversion
to signature schemes via the FS transform.

The FS transform. The signer has the public and secret keys pk , sk of the prover of the ID
scheme. To sign a message M it computes Cmt just as the prover would, hashes Cmt‖M using a
public hash function H: {0, 1}∗ → {0, 1}c(k) to obtain a “challenge” Ch = H(Cmt‖M), computes
a response Rsp just as the prover would, and sets the signature of M to Cmt‖Rsp. To verify
that Cmt‖Rsp is a signature of M , one first computes Ch = H(Cmt‖M) and then checks that
the verifier of the identification scheme would accept, namely V (pk ,Cmt‖Ch‖Rsp) = 1. Fiat and
Shamir’s suggestion that one model H as a random oracle [20] is adopted by previous security
analyses, both in the standard setting [35, 30] and in the forward-secure setting [5, 1, 25], and also
by this paper.

Target security goal for signatures. Focusing first on the standard setting (meaning where
forward-security is not a goal), the target is to prove that the signature scheme is unforgeable under
chosen-message attack [23] in the random oracle model [8]. This requires that it be computationally
infeasible for an adversary to produce a valid signature of a new message even after being allowed
a chosen-message attack on the signer and provided oracle access to the random hash function.

Non-triviality. Previous works [35, 30] have assumed that the ID scheme has the property
that the space from which the prover draws its commitments is large, meaning super-polynomial.
We refer to a scheme with this property as non-trivial. (A more general definition, in terms of
min-entropy, is Definition 3.2.) We point out in Section 6 that non-triviality of the ID scheme
is necessary for the security of the signature scheme derived via the FS transform, and thus all
discussions related to the FS transform below will assume it. (We will see however that this
assumption can be removed by considering a randomized generalization of the FS transform.)

1.1 Main result

In this work we find simple and natural assumptions on the ID scheme that are both sufficient and
necessary for the security of the signature scheme, and are related to the security of the underlying
ID scheme for the purpose for which it was presumably designed, namely identification.

Statement. We prove the following: The signature scheme resulting from applying the FS trans-

1

form to a non-trivial ID scheme is secure against chosen-message attack in the random oracle model
if and only if the underlying identification scheme is secure against impersonation under passive
attack. A precise statement is Theorem 3.3. Let us recall the notion of security used here, following
[19], and then compare this to previous work.

Security of identification schemes. As with any primitive, a notion of security considers
adversary goals (what it has to do to win) and adversary capability (what attacks it is allowed).
Naturally, for an ID scheme, the adversary goal is impersonation: it wins if it can interact with the
verifier in the role of a prover and convince the latter to accept. There are two natural attacks to
consider: passive and active. Passive attacks correspond to eavesdropping, meaning the adversary
is in possession of transcripts of conversations between the real prover and the verifier. Active
attacks mean that it gets to play the role of a verifier, interacting with the real prover in an effort
to extract information. Security against impersonation under active attack is the attribute usually
desired of an ID scheme to be used in practice for the purpose of identification. It is however the
weaker attribute of security against impersonation under passive attack that we show is tightly
coupled to the security of the derived signature scheme.

1.2 Comparison with previous work

Much work has been done in the past to study the application of the FS-transform to an ID scheme
to obtain a signature scheme. Some of the analyses have identified the sufficient conditions on
the ID scheme for the transformation to yield a secure signature scheme. The pioneering work of
Pointcheval and Stern [35] assumes that the identification scheme is honest verifier zero-knowledge
and also, in their Forking Lemma, assume a property that implies that it is a “proof of knowledge”
[19, 4], namely that there is an algorithm that can produce two transcripts which start with the
same commitment (Cmt,Ch,Rsp), (Cmt,Ch′,Rsp′) such that, if both are accepted by the verifier
V , the underlying secret key can be determined. (This property is called collision intractability in
[18].) We refer to an ID scheme meeting these conditions as PS-secure.

Ohta and Okamoto [30] assume that the identification scheme is honest-verifier (perfect) zero-
knowledge and that it is computationally infeasible for a cheating prover to convince the verifier to
accept. We refer to such an ID scheme as OO-secure.

Relations. Figure 1 puts our result in context with previous works. It considers the three
assumptions made on non-trivial identification schemes for the purpose of proving security of the
corresponding FS-transform based signature scheme: PS-security [35]; OO-security [30]; and the
assumption of security against impersonation under passive attacks. As the picture indicates, all
three suffice to prove security of the signature scheme in the random oracle model. However, the
assumption we make is not only necessary but also sufficient, while the others are provably not
necessary. Furthermore, our assumption is weaker than the other assumptions, shown to imply
them but not be implied by them. Let us discuss this further.

It is well known that PS or OO security imply security against impersonation under passive
attacks. The converse, however, is not true: in Section 4, we present examples that show that a
non-trivial ID scheme could be secure against impersonation under passive attack yet be neither
PS nor OO secure. Thus, our assumption on the ID scheme is weaker than previous ones. On
the other hand, the fact that this assumption is necessary says that it is minimal. A consequence
is that there exist (non-trivial) ID schemes that are neither PS-secure nor OO-secure, yet the
corresponding signature scheme is secure, showing that the previous assumptions are not necessary
conditions for the security of the signature scheme.

In practice, these gaps may not be particularly limiting, because practical ID schemes for the

2

ID scheme
is

PS-secure.

ID scheme is secure
against

impersonation
under passive

attacks.

ID scheme
is

OO-secure.

Signature scheme is secure
against chosen-message
attacks in the random

oracle model.

[30] [34]

easy

Prop. 4.1

easy

Prop. 4.2

Lemma 3.8Lemma 3.5

Figure 1: We depict relations among assumptions on non-trivial ID schemes that have been used
to prove security of the corresponding signature scheme. An arrow denotes an implication while
a barred arrow denotes a separation. The dotted arrows are existing relations, annotated with
citations to the papers establishing them. The full arrows are either relations established in this
paper, or are easy.

most part are PS-secure or OO-secure. However our result can simplify future or even existing
constructions of identification based signature schemes, and clarifies the theoretical picture.

Assumptions related to the problem. Fiat and Shamir [20] suggested that their transform
be applied to an ID scheme. However, previous security analyses have made assumptions that are
in fact not inherent to the notion of identification itself. By this we mean assumptions such as
honest verifier zero-knowledge or that underlying the forking lemma. These types of properties are
convenient tools in the analysis of ID schemes, but not the end goals of identification. In particular,
as we show in Section 4, there exist ID schemes, secure even against active attack, that are not
honest verifier zero-knowledge and fail to meet the conditions of the forking lemma. In contrast, our
necessary and sufficient condition, namely security against impersonation under passive attacks, is
a natural end goal of identification. Our results thus support the original intuition that seems to
have guided [20], namely that the security of the signature scheme stems from the security of the
identification scheme relative to the job for which the latter was intended.

1.3 Generalized transform

As previously mentioned, the non-triviality assumption on an ID scheme is necessary to guarantee
that the FS transform yields a secure signature scheme. We define a randomized generalization of
the Fiat-Shamir transform (described in detail in Construction 3.1). We show that this modifica-
tion allows the non-triviality assumption to be removed. Specifically, we prove that the signature
scheme resulting from our generalized Fiat-Shamir transform is secure against chosen-message at-
tack in the random oracle model if and only if the underlying identification scheme is secure against
impersonation under passive attack. A precise statement is presented in Theorem 3.4.

We note that the process of applying our generalized transform to a given ID scheme can be

3

alternatively viewed as first modifying the ID scheme by enhancing its commitment space and then
applying the FS transform.

1.4 Results for forward security

An important paradigm in the construction of forward-secure signature schemes, beginning with
[5] and continuing with [1, 25], has been to first design a forward-secure identification scheme and
then obtain a forward-secure signature scheme via the FS transform. The analyses in these works
are however ad hoc.

We prove an analogue of our main result that says that the signature scheme resulting from
applying FS transform to a non-trivial ID scheme is forward-secure against chosen-message attacks
in the random oracle model if and only if the underlying identification scheme is forward-secure
against impersonation under passive attack. An extension based on the generalized FS transform,
analogous to that mentioned above, also holds. This brings the characterization described above
to forward-secure signature schemes, and helps to unify previous results [5, 1, 25]. Our result
can simplify future or even existing constructions of identification based forward-secure signature
schemes, saving repetition in the analytical work. (One should note however that non-modular
analyses may have the benefit of yielding better concrete security than is obtained by our general
result [1, 25].)

1.5 Discussion and remarks

The random oracle debate. It is important to be aware that a proof of security in the random
oracle model does not guarantee security when the random oracle is instantiated [16, 22, 3, 26].
The value of the random oracle paradigm, as explained at the time of its introduction in [9],
is that the instantiated protocols are more practical than their competitors while possessing a
security guarantee that, although not formally well-defined, has proven good in practice. (The
counter-examples of [16, 22, 3, 26] are all artificial in one way or another.) FS signatures, more
efficient than any competitors with standard model proofs, are a case in point. Beyond this, our
work is motivated by the desire to understand phenomena as best as one can. The FS transform
is manifestly important. It has been in existence for a long time, is in use, and its use is even
expanding into new domains [13]. The use of the random oracle model in this context, following
Fiat and Shamir’s own suggestion [20], enhances our understanding, and a complete picture of the
properties of the FS transform in the random oracle model is valuable in its own right and also as
a possible basis for future random oracle avoiding steps, as has happened in the past with other
primitives [15, 12].

Other transforms. There are other methods of transforming ID schemes into signature schemes.
A variant of the FS transform suggested by Micali and Reyzin [28] applies only to a subclass of
canonical ID schemes. A transform suggested by Cramer and Damg̊ard [18] has the advantage of not
requiring random oracles in the analysis, but is relatively inefficient. Overall the FS transform has
remained the most attractive, due to its wide applicability, the efficiency of the resulting signature
scheme, and its robustness in the face of extra goals such as forward security, and thus is our focus.

The proofs. Our proofs appear to be simpler than previous ones even though our results are
stronger. We believe that this is true because our assumptions, although weaker, have extracted
more of the properties of the ID scheme that are truly relevant to the security of the signature
scheme, thereby leaving less to be proven.

An (almost) analogous result for identity-based systems. In [6], Bellare, Namprempre,

4

and Neven show that, for a certain class of secure identity-based identification (IBI) schemes, the
corresponding identity-based signature (IBS) schemes obtained through the standard FS transform
are secure. They show that this result does not hold in general, however: there exists a secure IBI
scheme whose corresponding IBS scheme is insecure. We note that, although this result is stated
with respect to the standard FS transform, with a small modification to the proof, the same result
holds with respect to the generalized FS transform presented here as well.

1.6 Organization

Section 2 recalls the formal definition of the following: security of an identification scheme against
impersonation under passive attacks; and security of a signature scheme, in the sense of unforgeabil-
ity against chosen-message attacks, in the random oracle model. Section 3 presents our generalized
FS transform, of which the FS transform itself is a special case, and then recalls the definition of
min-entropy, on which the definition of non-triviality is based. It states two equivalence theorems,
one for the FS transform and one for the generalized FS transform. It then states and proves
lemmas used to derive these. Section 4 justifies the separations among security requirements made
in previous works and the security of identification schemes. Section 5 presents the formal defini-
tions for forward-secure identification and signatures, and states and proves the forward-security
equivalence result. Section 6 explores the security implications of the presence and absence of the
non-triviality condition.

2 Definitions

Notation. If A(·, ·, . . .) is a randomized algorithm, then y ← A(x1, x2, . . . ; R) means y is assigned

the unique output of the algorithm on inputs x1, x2, . . . and coins R, while y
$
← A(x1, x2, . . .) is

shorthand for first picking R at random and then setting y ← A(x1, x2, . . . ; R). We let CoinsA(k)
denote the space from which R is drawn —it is a set of binary strings of some appropriate length—

where k is the underlying security parameter. If S is a set then s
$
← S indicates that s is chosen

uniformly at random from S. If x1, x2, . . . are strings then x1‖x2‖ · · · denotes an encoding under
which the constituent strings are uniquely recoverable. It is assumed any string x can be uniquely
parsed as an encoding of some sequence of strings. The empty string is denoted ε.

Canonical identification schemes. We use the term canonical to describe a three-move
protocol in which the verifier’s move consists of picking and sending a random string of some
length, and the verifier’s final decision is a deterministic function of the conversation and the pub-
lic key (cf. Figure 2). The specification of a canonical identification scheme will take the form
ID = (K, P,V , c) where K is the key generation algorithm, taking input a security parameter
k ∈ N and returning a public and secret key pair (pk , sk); P is the prover algorithm taking input
sk and the current conversation prefix to return the next message to send to the verifier; c is a
function of k indicating the length of the verifier’s challenge; V is a deterministic algorithm taking
pk and a complete conversation transcript to return a boolean decision Dec on whether or not to
accept. We associate to ID and each (pk , sk) a randomized transcript generation oracle which
takes no inputs and returns a random transcript of an “honest” execution, namely:

Function TrIDpk ,sk ,k

RP
$
← CoinsP (k)

Cmt← P (sk ; RP) ; Ch
$
← {0, 1}c(k) ; Rsp← P (sk ,Cmt‖Ch; RP) ;

return Cmt‖Ch‖Rsp

5

Prover Verifier
Input: sk Input: pk

Cmt
-

Ch
$
← {0, 1}c(k)

Ch
¾

Rsp
-

Dec← V (pk ,Cmt‖Ch‖Rsp)

Figure 2: A canonical identification protocol.

The scheme must obey a standard completeness requirement, namely that for every k, we have

Pr[V (pk ,Cmt‖Ch‖Rsp) = 1] = 1, the probability being over (pk , sk)
$
← K(k) and Cmt‖Ch‖Rsp

$
←

TrIDpk ,sk ,k.
Security against impersonation under passive attacks considers an adversary —here called an

impersonator— whose goal is to impersonate the prover without the knowledge of the secret key. In
practice, such an adversary generally has access not only to the public key but also to conversations
between the real prover and an honest verifier, possibly via eavesdropping over the network. We
model this setting by viewing an impersonator as a probabilistic algorithm I and giving to it
the public key and the transcript-generation oracle defined above. This oracle gives I the ability
to obtain some number of transcripts of honest executions of the protocol. After reviewing the
transcripts, the impersonator must then participate in the three-move protocol with an honest
verifier and try to get the verifier to accept.

Definition 2.1 [Security of an identification scheme under passive attacks] Let ID =
(K, P,V , c) be a canonical identification scheme, and let I be an impersonator, st be its state, and
k be the security parameter. Define the advantage of I as

Advimp-pa
ID,I (k) = Pr[Expimp-pa

ID,I (k) = 1] ,

where the experiment in question is

Experiment Expimp-pa
ID,I (k)

(pk , sk)
$
← K(k) ; st‖Cmt

$
← ITr

ID
pk,sk,k(pk) ; Ch

$
← {0, 1}c(k)

Rsp
$
← I(st,Ch) ; Dec← V (pk ,Cmt‖Ch‖Rsp) ; return Dec

We say that ID is polynomially-secure against impersonation under passive attacks if Advimp-pa
ID,I (·)

is negligible for every probabilistic poly(k)-time impersonator I.

Signature schemes. We recall the standard definition of security of a digital signature scheme
under chosen-message attacks (cf. [23]) adapted to the random oracle model as per [8].

The specification of a digital signature scheme has the form DS = (K, S,Vf , c) where K is
the key generation algorithm, taking input a security parameter k ∈ N and returning a public and
secret key pair (pk , sk); S is the signing algorithm taking input sk and a message M ∈ {0, 1}∗ to
be signed and returning a signature; Vf is the verification algorithm taking input pk , a message
M and a candidate signature σ for M and returning a boolean decision. The signing and verifying
algorithms have oracle access to a function H: {0, 1}∗ → {0, 1}c(k) (which in the random oracle
model will be a random function) so that c in the scheme description is a function of k whose value

6

is the output-length of the hash function being used. The signing algorithm may be randomized,
drawing coins from a space CoinsS(k), but the verification algorithm is deterministic. It is required
that valid signatures are always accepted.

The adversary F —called a forger in this setting— gets the usual signing oracle plus direct
access to the random oracle and wins if it outputs a valid signature of a new message. Below, we

let [{0, 1}∗→{0, 1}c] denote the set of all maps from {0, 1}∗ to {0, 1}c. The notation H
$
← [{0, 1}∗→

{0, 1}c] is used to mean that we select a hash function H at random from this set. The discussion
following the definition clarifies how this random selection from an infinite space is implemented.

Definition 2.2 [Security of a digital signature scheme] Let DS = (K, S,V, c) be a digital
signature scheme, let F be a forger and k the security parameter. Define the experiment

Experiment Expuf-cma
DS,F (k)

H
$
← [{0, 1}∗→{0, 1}c]

(pk , sk)
$
← K(k) ; (M, σ)

$
← FSH

sk
(·),H(·)(pk) ; Dec← Vf H(pk , M, σ)

If M was previously queried to SH
sk (·) Then return 0 Else return Dec

Define the advantage of F as

Advuf-cma
DS,F (k) = Pr[Expuf-cma

DS,F (k) = 1] .

DS is polynomially-secure against chosen-message attacks if Advuf-cma
DS,F (·) is negligible for every

probabilistic poly(k)-time forger F .

A special convention is needed with regard to how one can measure the time taken by the first step
of Expuf-cma

DS,F (k) where one picks at random a function H from an infinite space. This selection of
the hash function is not viewed as being performed all at once. Rather, the hash function is built
dynamically using a table. In particular, for each hash-oracle query M , we check if the entry H(M)
exists. If so, we return it. Otherwise, we pick a random element y from {0, 1}c, make a table entry
H(M) = y, and return y.

Concrete security issues. In addition to our main results which speak in the usual language
of polynomial security, we make concrete security statements so as to better gauge the practical
impact of our reductions. Below, we discuss the parameters and conventions used.

When we refer to the running time of an adversary such as an impersonator or forger, we mean
the time-complexity of the entire associated experiment, including the time taken to pick keys,
compute replies to oracle queries, implement a random hash function as described above, and even
compute the final outcome of the experiment.

For identification, the parameters of interest are the running time of the adversary and the
number of queries q it makes to its transcript oracle. For signatures, the parameters of interest
are the forger’s running time, the number of sign-oracle queries, denoted qs, and the number of
hash-oracle queries, denoted qh. All of these are functions of the security parameter k.

All query parameters are bounded by the running time, so if the adversary is polynomial time,
all the other parameters are poly(k)-bounded. Thus, they can be ignored in the polynomial-time
setting.

3 Equivalence Results

To save space (and avoid repetition), we present straightaway our randomized generalization of
the Fiat-Shamir transform. The standard Fiat-Shamir transformation is the special case of the
construction below in which the seed length s(k) is 0.

7

Construction 3.1 [Generalized Fiat-Shamir Transform] Let ID = (K, P,V , c) be a canoni-
cal identification scheme and let s: N→ N be a function which we call the seed length. We associate
to these a digital signature scheme DS = (K, S,Vf , c). It has the same key generation algorithm
as the identification scheme, and the output length of the hash function equals the challenge length
of the identification scheme. The signing and verifying algorithms are defined as follows:

Algorithm SH(sk , M)

R
$
← {0, 1}s(k) ; RP

$
← CoinsP (k)

Cmt← P (sk ; RP)
Ch← H(R‖Cmt‖M)
Rsp← P (sk ,Cmt‖Ch; RP)
return R‖Cmt‖Rsp

Algorithm Vf H(pk , M, σ)
parse σ as R‖Cmt‖Rsp
Ch← H(R‖Cmt‖M)
Dec← V (pk ,Cmt‖Ch‖Rsp)
return Dec

Note that the signing algorithm is randomized, using a random tape whose length is s(k) plus the
length of the random tape of the prover. Furthermore, the chosen random seed is included as part
of the signature, to make verification possible.

We use the concept of min-entropy [17] to measure how likely it is for a commitment generated by
the prover of an identification scheme to collide with a fixed value. This is used to provide a more
precise definition of what in the Introduction was referred to as a non-trivial ID scheme.

Definition 3.2 [Min-Entropy of Commitments] Let ID = (K, P,V , c) be a canonical iden-
tification scheme. Let k ∈ N, and let (pk , sk) be a key pair generated by K on input k. Let
C(sk) = {P (sk ; RP) : RP ∈ CoinsP (k)} be the set of commitments associated to sk . We define the
maximum probability that a commitment takes on a particular value via

α(sk) = max
Cmt∈C(sk)

{

Pr
[

P (sk ; RP) = Cmt : RP
$
← CoinsP (k)

]}

Then, the min-entropy function associated to ID is defined as follows:

β(k) = min
sk

{

log2

1

α(sk)

}

,

where minimum is over all (pk , sk) generated by K on input k. We say that ID is non-trivial if
β(·) = ω(log(·)) is super-logarithmic.

We remark that for practical identification schemes, the commitment is drawn uniformly from some
set. If the size of this set is γ(·) then the min-entropy of the scheme is log2(γ(·)). Non-triviality
means that this set has super-polynomial size.

The following theorem considers Construction 3.1 above in the special case where s(k) = 0.
This case is exactly the Fiat-Shamir transform.

Theorem 3.3 [Equivalence Under Standard Fiat-Shamir Transform] Let ID = (K, P,V ,
c) be a non-trivial, canonical identification scheme, and let DS = (K, S,Vf , c) be the associated
signature scheme as per Construction 3.1 with s(k) = 0. Then DS is polynomially-secure against
chosen-message attacks in the random oracle model if and only if ID is polynomially-secure against
impersonation under passive attacks.

The non-triviality assumption above can be removed if one applies the generalized FS transform
with a seed length that is not zero but which, when added to the min-entropy, results in a super-
logarithmic function.

8

Theorem 3.4 [Equivalence Under Generalized Fiat-Shamir Transform] Let ID = (K, P,
V , c) be a canonical identification scheme, let s(·) be a seed length, and let DS = (K, S,Vf , c)
be the associated signature scheme as per Construction 3.1. Let β(·) be the min-entropy func-
tion associated to ID. Assume s(·) + β(·) = ω(log(·)). Then DS is polynomially-secure against
chosen-message attacks in the random oracle model if and only if ID is polynomially-secure against
impersonation under passive attacks.

Theorem 3.3 is the special case of Theorem 3.4 in which s(·) = 0 and β(·) is super-logarithmic.
Accordingly, it suffices to prove Theorem 3.4. The proof of Theorem 3.4 follows easily from the
two lemmas below. The first lemma relates the exact security of the signature scheme to that of
the underlying identification scheme.

Lemma 3.5 [ID⇒ SIG] Let ID = (K, P,V , c) be a canonical identification scheme, let s(·) be a
seed length, and let DS = (K, S,Vf , c) be the associated signature scheme as per Construction 3.1.
Let β(·) be the min-entropy function associated to ID. Let F be an adversary attacking DS in
the random oracle model, having time-complexity t(·), making qs(·) sign-oracle queries and qh(·)
hash-oracle queries. Then there exists an impersonator I attacking ID such that

Advuf-cma
DS,F (k) ≤ (1+qh(k)) ·Advimp-pa

ID,I (k) +
[1+qh(k)+qs(k)] · qs(k)

2s(k)+β(k)
. (1)

Furthermore, I has time-complexity t(·) and makes at most qs(·) queries to its transcript oracle.

Games. Our proof will use code-based game-playing [10]. We recall some background here. A
game —look at Figure 3 for an example— has an Initialize procedure, procedures to respond to
adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary A as
follows. First, Initialize executes and its outputs are the inputs to A. Then, the latter executes,
its oracle queries being answered by the corresponding procedures of G. When A terminates, its
output becomes the input to the Finalize procedure. The output of the latter, denoted GA, is
called the output of the game, and we let “GA⇒ y” denote the event that this game output takes
value y. The boolean flag bad is assumed initialized to false. Games Gi, Gj are identical until

bad if their code differs only in statements that follow the setting of bad to true. For examples,
games G1, G2 of Figure 3 are identical until bad. The following is the Fundamental Lemma of
game-playing of [10].

Lemma 3.6 [10] Let Gi, Gj be identical until bad games, and A an adversary. Then

Pr[GA
i ⇒ 1]− Pr[GA

j ⇒ 1] ≤ Pr[Gi sets bad] .

The following was stated in [7] and its proof is implicit in [10].

Lemma 3.7 [7] Let Gi, Gj be identical until bad games, and A an adversary. Let Goodi, Goodj be
the events that bad is never set in games Gi, Gj , respectively. Then,

Pr[GA
i ⇒ 1 ∧ Goodi] = Pr[GA

j ⇒ 1 ∧ Goodj] .

Proof of Lemma 3.5: We first transform F into a forger A with the following properties. The
forger A has time-complexity t(·)+O(qs), makes at most 1+qh(·) hash queries, makes at most qs(·)
sign queries, has advantage no less than that of A, and additionally has the following properties:

(1) All of its hash queries are of the form R‖Cmt‖M for some R ∈ {0, 1}s(k) and Cmt, M ∈
{0, 1}∗.

9

Initialize Game G0

000 (pk , sk)
$
← K(k) ; hc ← 0 ; sc ← 0

001 fp
$
← {1, . . . , 1+qh(k)}

002 Ch∗ $
← {0, 1}c(k)

003 For i = 1, · · · , qs(k) do

004 Ri
P

$
← CoinsP (k)

005 TCmti ← P (sk ; Ri
P)

006 TChi
$
← {0, 1}c(k)

007 TRspi ← P (sk ,TCmti‖TChi; R
i
P)

008 Return pk

On H-query x

010 If HT[x] = ⊥ Then
011 hc ← hc + 1 ; QT[hc]← x
012 If hc 6= fp Then

013 y
$
← {0, 1}c(k) ; HT[x]← y

014 Else HT[x]← Ch∗

015 return HT[x]

On Sign-query M

020 sc ← sc + 1 ; R
$
← {0, 1}s

021 x← R‖TCmtsc‖M
022 HT[x]← TChsc

023 return R‖TCmtsc‖TRspsc

Finalize(M, σ)

030 Parse σ as R‖Cmt‖Rsp
031 Let i be such that QT[i] = R‖Cmt‖M
032 If i 6= fp Then bad← true

033 return V (pk ,Cmt‖Ch∗‖Rsp)

Initialize Games G1 / G2

100 (pk , sk)
$
← K(k) ; hc ← 0 ; sc ← 0

101 For i = 1, · · · , qs(k) do

102 Ri
P

$
← CoinsP (k)

103 TCmti ← P (sk ; Ri
P)

104 TChi
$
← {0, 1}c(k)

105 TRspi ← P (sk ,TCmti‖TChi; R
i
P)

106 Return pk

On H-query x

110 If HT[x] = ⊥ Then
111 hc ← hc + 1 ; QT[hc]← x

112 HT[x]
$
← {0, 1}c(k)

113 return HT[x]

On Sign-query M

120 sc ← sc + 1 ; R
$
← {0, 1}s

121 x← R‖TCmtsc‖M
122 HT[x]← TChsc

123 return R‖TCmtsc‖TRspsc

Finalize(M, σ)

130 Parse σ as R‖Cmt‖Rsp
131 Let i be such that QT[i] = R‖Cmt‖M
132 Ch∗ ← HT[QT[i]]

133 fp
$
← {1, . . . , 1+qh(k)}

134 If i 6= fp Then

135 bad← true ; Ch∗ ← HT[QT[fp]]

136 return V (pk ,Cmt‖Ch∗‖Rsp)

Figure 3: Games G0, G1, and G2.

(2) Before outputting forgery (M, R‖Cmt‖Rsp), the forger A has made a hash query R‖Cmt‖M .

(3) If A outputs (M, R‖Cmt‖Rsp), then M was never a sign query.

Let us briefly describe A. On input pk , it runs F (pk). When F makes a hash query x, forger A
answers using its own hash oracle if x parses as R‖Cmt‖Rsp. Otherwise, it answers with a point
chosen at random from {0, 1}c(k). For a sign query M , it stores M in a set S before answering with
the answer from its own sign oracle. Once F outputs a forgery (M, R‖Cmt‖Rsp), the forger A
makes a hash query R‖Cmt‖M . It then checks whether M ∈ S. If so, A returns (M ′, R‖Cmt‖Rsp)
for some M ′ 6∈ S. Otherwise, it returns F ’s forgery as its own. This does not decrease the advantage
because if M ∈ S then F would not win anyway.

Now, we define an impersonator I against ID. It has input pk and access to a transcript oracle
TrIDpk ,sk ,k. It begins with the initialization

10

hc ← 0 ; sc ← 0 ; fp
$
← {1, . . . , 1+qh(k)}

For i = 1, · · · , qs(k) do TCmti‖TChi‖TRspi
$
← TrIDpk ,sk ,k

Then, it runs A on input pk .

When A makes a hash query x, the impersonator I returns HT[x] if this value is defined. Otherwise,
it increments hc by one. If hc 6= fp, it simply picks HT[x] at random from {0, 1}c(k) and returns it
to A. Otherwise, it parses x as R‖Cmt∗‖M and sends Cmt∗ to the verifier as the first move of a
protocol execution, receiving back a challenge Ch∗ which it stores as HT[fp] and also returns to A
as the response to hash query x.

When A makes a sign query M , the impersonator I increments sc, picks R at random from {0, 1}s(k),
sets HT[R‖TCmtsc‖M] to TChsc and returns R‖TCmtsc‖TRspsc to A as the signature. Note that
it might overwrite HT[R‖TCmtsc‖M] in case the latter was defined, which could make the simu-
lation erroneous, but our analysis will show this seldom happens. With the hash of R‖TCmtsc‖M
defined as TChsc , however, the signature is valid.

Finally, A halts with output a forgery (M, R‖Cmt‖Rsp). The impersonator I now sends Rsp to
the verifier as its final protocol move and halts.

We claim that

Advimp-pa
ID,I (k) ≥

1

1+qh(k)
·

(

Advuf-cma
DS,F (k)−

[1+qh(k)+qs(k)] · qs(k)

2s(k)+β(k)

)

. (2)

Then, Equation (1) follows.

The analysis uses games G0–G5 of Figures 3 and 4. For 0 ≤ i ≤ 5, let Goodi denote the event that
Game Gi never sets bad. We now state a chain of inequalities which we will justify below:

Advimp-pa
ID,I (k) ≥ Pr[GA

0 ⇒ 1 ∧ Good0] (3)

= Pr[GA
1 ⇒ 1 ∧ Good1] (4)

= Pr[GA
2 ⇒ 1 ∧ Good2] (5)

= Pr[GA
2 ⇒ 1] · Pr[Good2] (6)

Game G0 simulates the execution environment of I. The interaction with the verifier is not explicit.
Instead, the verifier’s challenge Ch∗ is chosen in line 002 of Initialize. Lines 004–007 generate
the transcripts that play the role of the ones that I obtains from its oracle, but G0 generates
them explicitly using the secret key chosen at line 000. Parsing QT[fp] as R‖Cmt∗‖M , the value
Cmt∗ plays the role of the commitment sent by I to the verifier, but is not made explicit. If i
(generated at line 031) equals fp, then I’s conversation with the verifier is Cmt‖Ch∗‖Rsp. (In this
case, Cmt = Cmt∗.) So I succeeds when V (pk ,Cmt‖Ch∗‖Rsp) = 1. (We do not have to check
whether M in the forgery is new due to the property 3 above.) We have just justified Equation (3).

Since Ch∗ in G0 is just a random value, game G1 does not choose it in Initialize, but instead
assigns it the value HT[fp] in Finalize. Lines 132, 134, and 135 do this because the boxed code
is included in G1. Since fp is now not used in replying to hash queries, G1 delays its choice until
line 133. This explains Equation (4).

Games G1, G2 are identical-until-bad, so Equation (5) follows from Lemma 3.7. However, in Game
G2, the boxed statement at line 135 is absent. So fp is not used in determining the game output.
This means the events Good2 and “GA

2 ⇒ 1” are independent, justifying Equation (6).

11

Initialize Games G3 / G4

300 (pk , sk)
$
← K(k) ; hc ← 0 ; sc ← 0

301 Return pk

On H-query x

310 If HT[x] = ⊥ Then
311 hc ← hc + 1 ; QT[hc]← x

312 HT[x]
$
← {0, 1}c(k)

313 return HT[x]

On Sign-query M

320 sc ← sc + 1 ; R
$
← {0, 1}s

321 Ri
P

$
← CoinsP (k)

322 TCmtsc ← P (sk ; Ri
P) ; TChsc

$
← {0, 1}c(k)

323 x← R‖TCmtsc‖M
324 If HT[x] 6= ⊥ Then

325 bad← true ; TChsc ← HT[x]

326 TRspsc ← P (sk ,TCmtsc‖TChsc ; R
i
P)

327 HT[x]← TChsc

328 return R‖TCmtsc‖TRspsc

Finalize(M, σ)

330 Parse σ as R‖Cmt‖Rsp
331 Let i be such that QT[i] = R‖Cmt‖M
332 Ch∗ ← HT[QT[i]]
333 return V (pk ,Cmt‖Ch∗‖Rsp)

Initialize Game G5

500 (pk , sk)
$
← K(k) ; hc ← 0 ; sc ← 0

501 Return pk

On H-query x

510 If HT[x] = ⊥ Then
511 hc ← hc + 1 ; QT[hc]← x

512 HT[x]
$
← {0, 1}c(k)

513 return HT[x]

On Sign-query M

520 sc ← sc + 1 ; R
$
← {0, 1}s

521 Ri
P

$
← CoinsP (k)

522 TCmtsc ← P (sk ; Ri
P)

523 x← R‖TCmtsc‖M

524 If HT[x] = ⊥ Then HT[x]
$
← {0, 1}c(k)

525 TChsc ← HT[x]
526 TRspsc ← P (sk ,TCmtsc‖TChsc ; R

i
P)

527 return R‖TCmtsc‖TRspsc

Finalize(M, σ)

540 Parse σ as R‖Cmt‖Rsp
541 Let i be such that QT[i] = R‖Cmt‖M
542 Ch∗ ← HT[QT[i]]
543 return V (pk ,Cmt‖Ch∗‖Rsp)

Figure 4: Game G3, G4, and G5.

Now from lines 133–135 of G2, it is clear that

Pr[Good2] =
1

1+qh(k)
.

The Finalize procedure of G3 has the same output as that of G2 but drops lines 133–135 that
are now redundant. The other change it makes is to delay the choices of lines 101–105 until they
are needed in answering sign queries. But given that the boxed code of line 325 is included, these
replies are the same as in G2. The setting of bad does not affect the game output. So, we have

Pr[GA
2 ⇒ 1] = Pr[GA

3 ⇒ 1]

≥ Pr[GA
4 ⇒ 1]− Pr[GA

4 sets bad] (7)

where Equation (7) follows from Lemma 3.6 because G3, G4 are identical-until-bad. The probability
that the i-th sign query sets bad in G4 is at most

1+qh(k) + (i− 1)

2s(k)+β(k)
.

12

So,

Pr[GA
4 sets bad] ≤

qs(k)
∑

i=1

1+qh(k) + (i− 1)

2s(k)+β(k)

=
qh(k)qs(k) + qs(k)(qs(k)+1)/2

2s(k)+β(k)

≤
[1+qh(k) + qs(k)]qs(k)

2s(k)+β(k)
. (8)

Given that the boxed code of line 325 is not present in G4, the code to reply to sign queries is
equivalent to that in G5 barring no longer setting bad. The latter does not affect the game output,
so

Pr[GA
4 ⇒ 1] = Pr[GA

5 ⇒ 1] .

But G5 captures the experiment defining the advantage of A and so

Pr[GA
5 ⇒ 1] = Advuf-cma

DS,A (k) (9)

≥ Advuf-cma
DS,F (k) (10)

the last by the properties of A stated above. Putting together Equations (3), (4), (5), (6), (7), (8),
(9), and (10) yields Equation (2).

Going in the opposite direction, the following lemma relates the security of the identification scheme
to that of the signature scheme derived from it. In fact, it says that if the signature scheme is secure
then so is the identification scheme (regardless of the min-entropy of the ID scheme).

Lemma 3.8 [ID⇐ SIG] Let ID = (K, P,V , c) be a canonical identification scheme, let s(·) be a
seed length, and let DS = (K, S,Vf , c) be the associated signature scheme as per Construction 3.1.
Let I be an adversary attacking ID, having time-complexity t(·) and making q(·) queries to its
transcript oracle. Then, in the random oracle model, there exists a forger F attacking DS such
that

Advimp-pa
ID,I (k) ≤ Advuf-cma

DS,F (k) . (11)

Furthermore, F has time-complexity t(·), makes at most q(·) queries to its sign-oracle and at most
q(·) + 1 queries to its hash-oracle.

Proof of Lemma 3.8: Forger F is presented in Figure 5. It runs the impersonator I as a
subroutine, answering the latter’s transcript oracle queries via its signing oracle. When I outputs
(some state information and) a commitment, F increments M , picks a random seed R, and defines
the verifier’s challenge via a hash query. It provides this to I, obtains a response Rsp, and uses the
latter in its forgery. The messages used in the algorithm are generated by incrementing a counter
and interpreting its value as a string. This ensures that the messages are always new, and thus,
the forgery is that of a message that has never been queried to the signing oracle before.

4 Separations among Security Assumptions

In this section, we justify the claimed separations among the security conditions in Figure 1. Specif-
ically, we give an example of an ID scheme that is secure against impersonation under passive attack

13

Algorithm F SH
sk

(·),H(·)(pk)
M ← 0 . Initialize the message

run I(pk) answering to its transcript queries as follows:
M ←M + 1 . Generate a new message

x
$
← SH

sk (M) . M is interpreted as a string

parse x as R‖Cmt‖Rsp
Ch← H(R‖Cmt‖M)
return Cmt‖Ch‖Rsp to I

until I outputs st‖Cmt . Phase 1

M ←M + 1 . Generate a new message

R
$
← {0, 1}s(k)

Ch← H(R‖Cmt‖M)
give (st,Ch) to I . Phase 2

get Rsp from I . Phase 3

return (M, R‖Cmt‖Rsp) . Output a forgery

Figure 5: The forger algorithm F for the proof of Lemma 3.8.

but is not honest-verifier zero-knowledge, and also an example of an ID scheme that is secure against
impersonation under passive attack and is not a proof of knowledge. (In this section, proof of
knowledge means proof of knowledge of the secret key. More precisely, it refers to some underlying
witness-relation R(pk , sk) depending on the protocol.) Since the PS and OO assumptions include
either an assumption of honest verifier zero-knowledge or an assumption of proof of knowledge, this
implies that there exists an identification scheme secure against impersonation under passive attack
that is not PS secure, and there exists an identification scheme secure against impersonation under
passive attack that is not OO secure, justifying two of the claimed separations in Figure 1, and
showing that our assumption on the ID scheme is strictly weaker than previous ones used to prove
security of the signature scheme.

Furthermore, this also justifies two more separations claimed in Figure 1, namely that the
signature scheme could be secure even if the ID scheme is not PS secure or OO secure. This
follows simply by logic, because if we assume that security of the signature scheme implies, say,
PS-security of the ID scheme, the existing arrows say that security against impersonation under
passive attack implies PS-security, which we know from the above to not be true. The analogous
argument applies in the case of OO.

We now proceed to the examples. Shoup notes that the 2m-th root identification (a special
case of the identification scheme of Ong and Schnorr [32]) is provably not a proof of knowledge if
factoring is hard [37]. However, he shows that this scheme is secure against impersonation under
active (and hence certainly under passive) attacks if factoring is hard. Since 2m-th root scheme is
a non-trivial canonical identification scheme, this yields the following:

Proposition 4.1 If factoring is hard, then there exists a non-trivial canonical identification scheme
that is secure against impersonation under passive attacks but is not a proof of knowledge.

Similarly, we show that there exists an identification scheme that is secure against impersonation
under passive attacks yet is not honest verifier zero-knowledge. We take the following approach in
constructing such an identification scheme. We begin with a canonical identification secure against

14

impersonation under passive attacks and modify it so that it remains secure against impersonation
under passive attacks but is not zero-knowledge. A detailed construction is presented in the proof
below. The example we construct, though contrived, makes the point that zero-knowledge is not
strictly necessary in a secure identification scheme. The following proposition states this more
precisely.

Proposition 4.2 If factoring is hard, then there exists a non-trivial canonical identification scheme
that is secure against impersonation under passive attacks but is not honest-verifier zero-knowledge.

Proof of Proposition 4.2: Given a secure, non-trivial canonical identification scheme ID = (K,
P,V , c) which has been proven secure, we modify it as follows. We extend the given scheme’s key
generation algorithm K so that, upon input of the security parameter k, it generates an additional
value which we call N ′, which is the product of two large random primes p′ and q′, each of length
k bits. The values p′ and q′ are now part of the secret key, and their product N ′ is added to the
public key. Finally, we modify the prover algorithm P so that in addition to any other values sent
in the response step, the values p′ and q′ (that is, the factorization of N ′) are also revealed. We
refer to this modified identification scheme as ID′.

We claim that the scheme ID′ is a secure identification scheme. Since revealing the factorization of
N ′ does not interfere with the security of the underlying scheme, the security of ID′ follows directly
from that of ID. Furthermore, ID′ is not a zero-knowledge scheme. The knowledge revealed in the
scheme is the factorization of N ′. Based on the assumption that factoring is hard, it is clear that
any computationally bounded adversary could not generate a transcript for the scheme without
knowledge of the secret key.

5 Extension to forward security

We prove an extension of Theorem 3.4 to the case where the security requirement is forward security.

Background. Forward-secure signature schemes [5, 2] evolve the signer’s secret key with time
while leaving the public key fixed. Exposure of the secret key in some time period should not
aid the adversary in forging signatures of new messages relative to previous time periods. The
designs of forward-secure signature schemes of Bellare and Miner [5] and Abdalla and Reyzin [1] are
obtained by first designing forward-secure identification schemes and then applying the Fiat-Shamir
transform. The result we prove here generalizes and modularizes such transforms, facilitating the
design and analysis of further constructs of this type.

Canonical forward-secure identification schemes. We consider key-evolving identification
schemes. The operation of the scheme is divided into time periods, where a different secret is used in
each time period. The public key remains the same in every time period. A canonical key-evolving
identification scheme is a three-move protocol in which the verifier’s only move is to pick and send
a random challenge to the prover. Unlike canonical identification schemes with fixed keys, the
verifier’s final decision, though still deterministic, is not only a function of the conversation with
the prover and the public key, but also a function of the the index of the current time period.
We say that a canonical key-evolving identification scheme is forward-secure if it is infeasible for
a passive adversary, even with access to the current secret key, to impersonate the prover with
respect to an honest verifier in any of the prior time periods.

As pointed out by Bellare and Miner [5], forward-secure identification schemes are artificial
constructs since, due to the online nature of identification protocols, the kind of attack we withstand

15

in this case cannot exist in reality. Nevertheless, the schemes are still very useful in the design
of efficient forward-secure signature schemes. We present a formal definition of a key-evolving
identification scheme and what it means for it to be forward-secure below.

The specification of a canonical key-evolving identification scheme has the form FID = (K,
P,Vid ,Up, c, T). T is a function of the security parameter k ∈ N indicating the total number
of time periods for which the scheme will operate. K is the key generation algorithm, taking
input k and T (k) and returning a pair (pk , sk) consisting of the public key and the base (initial)
secret key. P is the prover algorithm taking input the current secret key sk j , the index j of the
current time period, and the current conversation prefix to return the next message to send to the
verifier. Vid is a deterministic algorithm taking input pk , the current time period index j, and a
complete conversation transcript to return a boolean decision Dec on whether or not to accept. The
probabilitic algorithm Up is an update algorithm taking input the old secret sk j−1 and time index
j and returning the new secret key sk j . The old secret key is erased after the new one is computed.
c is a function of k indicating the length of the verifier’s challenge. As in standard canonical
identification schemes, we also assume that pk and each sk j contain the security parameter k. To
FID and to each triple (pk , sk j , j), consisting respectively of the public key, secret key for time
period j and time index j, we associate a randomized transcript generation oracle which takes no
inputs and returns a random transcript of an “honest” execution, namely:

Function TrFID
pk ,skj ,j,k

RP
$
← CoinsP (k)

Cmt← P (sk j , j; RP) ; Ch
$
← {0, 1}c(k) ; Rsp← P (sk j , j,Cmt‖Ch; RP) ;

return Cmt‖Ch‖Rsp

Let (pk , sk0) be the base secret-public key pair initially returned by K on inputs k and T (k) and
let sk j be the secret key in time period j obtained via j iterations of the update algorithm, Up.
The scheme must still obey a standard completeness requirement, namely that for every triple
(pk , sk j , j), obtained as above on input k, we have

Pr
[

Vid(pk , j,Cmt‖Ch‖Rsp) = 1 : Cmt‖Ch‖Rsp
$
← TrFID

pk ,skj ,j,k

]

= 1 .

In the forward-security model, the adversary I —also called an impersonator in this setting—
against the forward security of a key-evolving identification scheme operates in three phases: passive,
the passive phase; breakin, the break-in phase; and imp, the impersonation phase. In the passive
phase, the adversary I is given the public key pk , the index j of the current time period, and the
ability to obtain some number of transcripts of honest executions of the protocol for that time
period. At the end of each time period, the impersonator can choose to remain in the passive phase
or switch to a breakin phase. When it decides to do so, it then receives the secret key sk j for the
current period j and then switches to the impersonation phase, imp. In this last phase, it must then
try to impersonate the prover for some time period b prior to that of the break-in. The adversary
I is considered successful if the verifier accepts at the end of the protocol.

Definition 5.1 [Forward security of an identification scheme under passive attacks] Let
FID = (K, P,Vid ,Up, c, T) be a canonical key-evolving identification scheme, and let I be an
impersonator and k be the security parameter. Define the experiment

Experiment Expfs-imp-pa
FID,I (k)

(pk , sk0)
$
← K(k, T (k)) ; j ← 0

repeat

j ← j + 1 ; sk j
$
← Up(sk j−1, j)

16

(d, st)
$
← I

Tr
FID
pk,skj ,j,k(passive, pk , st)

until d = breakin or j = T (k)

(st,Cmt, b)
$
← I(imp, sk j , st)

Ch
$
← {0, 1}c(k)

Rsp
$
← I(st,Ch)

If 1 ≤ b < j and Vid(pk , b,Cmt‖Ch‖Rsp) = 1
Then Dec← 1 Else Dec← 0

return Dec

Define the advantage of I as

Advfs-imp-pa
FID,I (k) = Pr[Expfs-imp-pa

FID,I (k) = 1] .

We say that FID is polynomially-forward-secure against impersonation under passive attacks if
Advfs-imp-pa

FID,I (·) is negligible for every probabilistic poly(k)-time impersonator I.

Forward-secure signature schemes. A forward-secure signature scheme is in essence a key-
evolving signature scheme in which the secret key is updated periodically. As in standard signature
schemes, the public key remains the same throughout the lifetime of the scheme. In each time
period, a different secret key is used to sign messages. The verification algorithm checks not only
the validity of a signature, but also the particular time period in which it was generated. At the
end of each time period, an update algorithm is run to compute the new secret key from the current
one, which is then erased. Informally, we say that a key-evolving signature scheme is forward-secure

under chosen-message attack if it is infeasible for an adversary, even with access to the secret key
for the current period and to previously signed messages of its choice, cannot forge signatures for
a past time period. For a formal definition of a key-evolving signature scheme and what it means
for it to be forward-secure, see below

We recall the definition of forward security of a signature scheme under chosen-message attack
in the random oracle model (cf. [5]). The specification of a key-evolving digital signature scheme

has the form FSDS = (K, S,VSig ,Up, c, T). T is a function of the security parameter k ∈ N

indicating the total number of time periods for which the scheme will operate. K is the key

generation algorithm, taking input a k and T (k) and returning a pair (pk , sk 0), consisting of the
public key and base secret key. S is the signing algorithm taking input sk j , the index j of the
current time period, and a message M ∈ {0, 1}∗ to be signed and returning a tuple 〈σ, j〉 consisting
of the signature and the time index. VSig is the verification algorithm taking input pk , a time
index j, a message M , and a candidate signature σ for M with respect to time period j and
returning a boolean decision. The probabilistic algorithm Up is an update algorithm taking input
the old secret sk j−1 and time index j and returning the new secret key sk j . The old secret key is
erased after the new one is computed. As in the case of standard signature schemes, the signing
and verifying algorithms have oracle access to a function H: {0, 1}∗ → {0, 1}c(k) so that c in the
scheme description is a function of k whose value is the output-length of the hash function being
used. The signing algorithm may be randomized, drawing coins from a space CoinsS(k), but the
verification algorithm is deterministic. It is required that valid signatures are always accepted.

In the forward-security model, the adversary —also called forger— knows the total number
T (k) of time periods, the current time period j, and the public key pk and runs in three phases:
cma, the chosen message attack phase; breakin, the break-in phase; and forge, the forgery phase.
Like in standard signature schemes, during the cma phase, the adversary is given access to a signing
oracle for the current time period. At the end of each time period, the adversary chooses to either

17

remain in the cma phase or switch to a breakin phase. In the latter case, the adversary is then given
the secret key sk j for the current time period j. We consider the adversary successful if it outputs
a valid signature of a new message with respect to some time period b < j.

Definition 5.2 [Forward security of a digital signature scheme] Let FSDS = (K, S,V,
c, T) be a digital signature scheme, let F be a forger and k the security parameter. Define the
experiment

Experiment Expfs-uf-cma
FSDS,F (k)

H
$
← [{0, 1}∗→{0, 1}c]

(pk , sk0)
$
← K(k, T (k))

j ← 0
repeat

j ← j + 1 ; sk j
$
← Up(sk j−1, j)

(d, st)
$
← F

SH
skj

(·),H(·)
(pk , T (k), j)

until d = breakin or j = T

(M, 〈σ, b〉)
$
← FH(·)(forge, sk j , st)

Dec← VSigH(pk , M, σ, b)
If M was not previously queried to SH

skb
(·) and 1 ≤ b < j Then return Dec Else return 0

Define the advantage of F as

Advfs-uf-cma
FSDS,F (k) = Pr[Expfs-uf-cma

FSDS,F (k) = 1]

We say that FSDS is polynomially-forward-secure against chosen-message attacks if Advfs-uf-cma
FSDS,F (·)

is negligible for every probabilistic poly(k)-time forger F .

The Equivalence. Our transformation of key-evolving ID schemes into key-evolving signature
schemes follows the same paradigm of Construction 3.1, in which the challenge becomes the output
of a hash function H. The main difference with respect to that construction is that the secret key
is no longer fixed but varies according to the time period. As a result, the current time index j
is also given as input to the signing algorithm and attached to the signature to allow for correct
verification. The current time index j is also added to the input of the hash function, which now
becomes j‖R‖Cmt‖M . The update algorithm of the key-evolving signature scheme is exactly the
same as that of the identification scheme on which it is based. The following theorem, where min-
entropy is defined in a manner similar to that for canonical identification schemes, states precisely
the equivalence with regard to forward security of the key-evolving ID scheme and the associated
key-evolving signature scheme.

Theorem 5.3 [Forward security equivalence theorem] Let FID = (K, P,Vid , c, T) be a
canonical key-evolving identification scheme, let s(·) be a seed length, and let FSDS = (K, S,VSig ,
c, T) be the associated key-evolving signature scheme as per the new construction described above.
Let β(·) be the min-entropy function associated to FID and assume s(·) + β(·) = ω(log(·)). Then
FSDS is polynomially-forward-secure against chosen-message attack in the random oracle model
if and only if FID is polynomially-forward-secure against impersonation under passive attacks.

As in the standard case, we prove each direction of the “if and only if” statement separately. The
following lemma says that if the key-evolving identification scheme is forward-secure then so is the
key-evolving signature scheme in the random oracle model.

18

Lemma 5.4 Let FID = (K, P,Vid , c, T) be a canonical key-evolving identification scheme, let s(·)
be a seed length, and let FSDS = (K, S,VSig , c, T) be the associated key-evolving signature scheme
as per the new construction described above. Let β(·) be the min-entropy function associated to
FID. Let F be an adversary attacking FSDS in the random oracle model, having time-complexity
t(·), making at most qs(·) sign-oracle queries per time period and at most qh(·) hash-oracle queries
overall. Then there exists an impersonator I attacking FID such that

Advfs-uf-cma
FSDS,F (k)

≤ (T (k) + 1) · [1+qh(k)] ·Advfs-imp-pa
FID,I (k) +

[1+qh(k)+qs(k)T (k)] · qs(k)T (k)

2s(k)+β(k)
.

Furthermore, I has time-complexity t(·) and makes at most qs(·) transcript-oracle queries per time
period.

Proof of Lemma 5.4: The proof we present here is a generalization of the proof given in [5]
to the case of randomized transformations of ID schemes into signature schemes. Let F be an
adversary against the forward security of signature scheme FSDS. Our goal is to construct an
impersonator algorithm I against the forward security of FID, using F as a subroutine, and relate
its advantage to that of F . Recall that F runs in three phases: cma, breakin, and forge. During
the chosen-message attack, cma, F has access to a hash oracle as well as a signing oracle for the
current time period. Hence, we need to simulate these oracles. We should also be prepared to feed
F with the secret key of the current time period when it decides to break in, switching to breakin

phase.

Our algorithm I works in three phases: the passive phase, passive; the break-in phase, breakin; and
the impersonation phase, imp. Similarly to the proof of Lemma 3.5, our strategy in constructing I
is also to guess which of F ’s hash queries contains the message on which F will attempt to forge
and use that to impersonate the prover. There is one important difference, though, in our case. I
cannot wait for F ’s decision to break in to decide itself when to break in. This is so because all
hash queries can be done at the very beginning of F ’s cma phase and imp needs to interact with
the verifier in order to get a challenge Ch to answer the crucial hash query. But that can only be
done after imp phase is over. Hence, besides guessing which one is the crucial hash query, I also
needs to guess which time period F will break in to be able to feed it the correct secret key.

I will work as follows. It picks b′ at random from {1, . . . , T (k)}. It then advances up to stage b′+1,
getting and storing qs(k) transcripts in each stage. Here it breaks in to obtain sk b′+1. That is, it
is now in its imp stage with sk b′+1 as input. It picks fp at random from {1, . . . , qh(k) + 1} and
initializes a counter hc to 0. Only now does it start running F .

When F makes a hash query x, impersonator I returns HT[x] if the value is defined. If not, it
increments hc by one and sets QT[hc]← x. If hc 6= fp, it picks HT[x] at random from {0, 1}c(k) and
returns it to F . If hc = fp, it parses x as c‖R‖Cmt∗‖M . I now sends Cmt∗ to the verifier, receiving
back a challenge Ch∗. (That is, it outputs Cmt, b′ and then receives Ch∗.) It sets HT[fp] ← Ch∗

and returns HT[fp] to F as the response to the oracle query.

When F makes a sign query M , the impersonator I does the following. For phases 1, . . . , b′, it
answers using its stored transcripts, appropriately programming the random oracle as in the proof
of Lemma 3.5. (This might lead to overwriting an existing hash value but again the analysis will
show this is unlikely.) For phases j ≥ b′ + 1, it uses sk j , which it can obtain from sk b′+1.

Eventually, F enters the breakin phase in some period j. If j ≥ b′ + 1 then I can provide F with
sk j . If not, it aborts. Now F outputs a forgery (M, 〈R‖Cmt‖Rsp, b〉) for some period b < j.

19

(In this phase, it may continue to make hash queries, which continue to be answered as above.)
We assume the hash query b‖R‖Cmt‖M was made prior to the forgery and let i be such that
QT[i] = b‖R‖Cmt‖M .

If b 6= b′, then I aborts. Otherwise, it sends Rsp to the verifier as the final move.

The analysis in our case is similar to that of the proof of Lemma 3.5. The only difference is that
now we also have to take into account I’s guess for F ’s break-in time period. Note that j ≥ b + 1,
so if b = b′, then it must be that j ≥ b′ + 1, meaning if b = b′, then neither of the two possible
aborts occur. But the chance that b = b′ is at least 1/(T (k) + 1). The chance of guessing correctly
the crucial hash query , meaning that fp = i, is still 1/(1 + qh(k)). Since there are now qs(k) sign
queries per time period rather than in total, the chance of mis-programming the random oracle is
at most

[1+qh(k) + qs(k)T (k)] · qs(k)T (k)

2qs(k)+β(k)
.

Hence,

Advfs-imp-pa
FID,I (k)

≥
1

(T (k) + 1)(1+qh(k))
·

(

Advfs-uf-cma
FSDS,F (k)−

[1+qh(k)+qs(k)T (k)] · qs(k)T (k)

2s(k)+β(k)

)

.

The lemma follows directly by transposing terms.

As a side note, Bellare and Miner proved in [5] that the deterministic transformation of key-evolving
ID schemes into key-evolving signature schemes preserves forward security in their particular case.
Their proof relies on the fact that the given ID scheme is honest-verifier zero-knowledge and that
the commitment is chosen at random from a large enough space. While the former is needed in
order to allow a successful simulation of the signing oracle, the latter is required to avoid a high
probability of collision between the simulations of the signing and hashing oracles. In our case,
both requirements are no longer necessary.

The following says that if the key-evolving signature scheme is forward-secure in the random
oracle model then so is the key-evolving identification scheme.

Lemma 5.5 Let FID = (K, P,Vid , c, T) be a canonical key-evolving identification scheme, let
s(·) be a seed length, and let FSDS = (K, S,VSig , c, T) be the associated key-evolving signature
scheme as per the new construction described above. Let I be an adversary attacking FID, having
time-complexity t(·) and making q(·) transcript-oracle queries across all time periods. Then, in the
random oracle model, there exists a forger F attacking FSDS such that

Advfs-imp-pa
FID,I (k) ≤ Advfs-uf-cma

FSDS,F (k) .

Furthermore, F has time-complexity t(·), makes at most q(·) sign-oracle queries and at most q(·)+1
hash-oracle queries across all time periods.

Proof of Lemma 5.5: The proof of this lemma is similar to the proof of Lemma 3.8. F initializes
M to 0 and then runs I. When I requests a transcript in a time period i, forger F increments
M and requests a signature of M in time period i. Obtaining 〈R‖Cmt‖Rsp, i〉 in response, it lets
Ch ← H(i‖R‖Cmt‖M) and returns the transcript Cmt‖Ch‖Rsp to I. When I breaks in to get
the secret key sk j of stage j, forger F breaks in too, obtains the key, and returns it to I. Now I will
provide Cmt and b < j where Cmt in the first move in a protocol with the verifier. F chooses R at
random, increments M , lets Ch← H(b‖R‖Cmt‖M), and returns Ch to I as the verifier challenge.
When I returns a response Rsp, forger F outputs forgery (M, 〈R‖Cmt‖Rsp, b〉).

20

Theorem 5.3 follows easily from Lemma 5.4 and Lemma 5.5. In both lemmas, the adversaries run in
poly(k)-time, and it is evident from the bound of the advantages that the if and only if relationship
in the theorem follows.

As in the case of standard signature and ID schemes, if we consider key-evolving ID schemes in
which the commitment is chosen from a large space (i.e., β(·) = ω(log(·))), then the key-evolving
signature scheme resulting from the Fiat-Shamir transform (i.e., s(k) = 0) is forward-secure against
chosen-message attack in the random oracle model if and only if the underlying identification
scheme is forward-secure against impersonation under passive attacks.

6 The Non-Triviality Condition

We show that applying the FS transform to a trivial identification scheme can result in an insecure
signature scheme, which supports our claim in the Introduction that non-triviality of the ID scheme
is necessary for security of the signature scheme obtained via the FS transform. This is implied by
the following, whose proof is presented below.

Proposition 6.1 If factoring Williams integers is hard, then there exists a trivial, canonical iden-
tification scheme that is secure against impersonation under passive attacks, but the signature
scheme resulting from applying the standard Fiat-Shamir transform is insecure.

This example also shows why the generalized FS transform that we have introduced is useful. Since
the ID scheme is secure against impersonation under passive attacks, the generalized transform
does yield a secure signature scheme, even though the triviality of the ID scheme prevented the FS
transform from doing so.

Our approach to the proof is as follows. We specify a canonical identification scheme that is
trivial. First, we prove that it is indeed secure against impersonation under passive attacks. Then,
we prove that the signature scheme obtained by applying the standard FS transform to it is insecure
against chosen-message attacks.

Before moving on to the proof, we provide here some number theory basics and introduce
relevant notation. Suppose N = pq, where p and q are two distinct odd primes, is a Williams
integer (i.e. p ≡ 3 (mod 8) and q ≡ 7 (mod 8)), then the following holds: for any x ∈ Z∗

N ,
exactly one of x,−x, 2x,−2x is a quadratic residue modulo N . We denote this unique square out
of the set {x,−x, 2x,−2x} by SQN (x). Also, if y is a square modulo N , we denote the set of
all four square roots of y by SQRN (y). It is well-known that, given the prime factors of N , the
task of computing SQN (·) and SQRN (·) can be performed in time polynomial in the length of the
inputs [27].

Now, we describe the identification scheme IDnc = (K, P,V , c) illustrated in Figure 6. The
key generation algorithm K is a usual one: it returns a secret key sk = (p, q) and a public key
pk = N = pq where N is a k-bit Williams integer, and k is a security parameter. The secret key
is given to the prover whereas the public key is published. In this scheme, we set the length of
a challenge string to k. During the commitment phase, the prover sends an empty string to the
verifier. In return, the verifier sends a value randomly chosen from Z∗

N to the prover as a challenge
Ch. The prover’s task is to multiply Ch with 1,-1,2 and -2 modulo N , see which multiplication
yields a quadratic residue w, and randomly choose and return one of the four corresponding square
roots of w as a response Rsp. The verifier accepts Rsp as valid only if its square is equal to any
of the values Ch,−Ch, 2Ch, and −2Ch. Note that we allow the challenge to be chosen from Z∗

N ,
as opposed to {0, 1}k, for simplicity. Strictly speaking, the scheme is then not canonical as per our
definition in Section 2. However, it can be easily made so, for example, by choosing random values
from {0, 1}k many times to increase the probability that at least one of the values is in Z∗

N .

21

Prover Verifier
Input: N, p, q Input: N

ε
-

Ch
$
← Z∗

N

Ch
¾

y ← SQN (Ch)

Rsp
$
← SQRN (y)

Rsp
-

If Rsp2 ∈ {Ch,−Ch, 2Ch,−2Ch},
Then accept Else reject

Figure 6: A canonical identification scheme IDnc . The commitment space is of size 1.

We claim that the scheme IDnc is secure against passive attacks based on the assumption that
factoring is hard. Specifically, given a successful impersonator, one can construct an adversary that
can factor the modulus N used in the identification scheme. But before discussing security analysis
of the scheme, we define precisely what it means for the factoring problem to be hard.

Definition 6.2 [Hardness of Factoring] Let K be the key generation algorithm described pre-
viously. Let Fct(·) be an algorithm. Consider the following experiment.

Experiment Expfac
Fct(k)

(N, (p, q))
$
← K(k)

(p′, q′)
$
← Fct(N)

If p′q′ = N and p′ 6= 1 and q′ 6= 1 Then return 1 Else return 0

We define the advantage of Fct via

Advfac−w
Fct (k) = Pr[Expfac

Fct(k) = 1] .

The factoring problem is said to be hard if the function Advfac−w
Fct (·) is negligible for any adver-

sary Fct whose time-complexity is polynomial in the security parameter k.

The following claim states explicitly the security of the identification scheme in relation to hardness
of factoring.

Claim 6.3 Let IDnc = (K, P,V , k) be the identification scheme described above. Then, if factor-
ing is hard, the scheme IDnc is secure against passive attacks. Concretely, for any impersonator I
with time-complexity polynomial in k, there exists an adversary Fct that can factor N so that

Advimp-pa
IDnc ,I(k) ≤ 2 ·Advfac−w

Fct (k)

and Fct has time-complexity polynomial in k.

Proof of Claim 6.3: The goal of an adversary Fct is to factor a modulus N into two distinct
odd primes p and q using impersonator I. The adversary Fct runs I answering to its queries by
simulating the transcript oracle TrIDnc

N,(p,q),k where pq = N . Then, Fct picks a value, squares it, and

22

Algorithm Fct(N)
α← 2−1 mod N . α is the inverse of 2 in the group Z∗

N

run I(N) answering to its transcript queries as follows:
when I asks for a transcript,

v
$
← Z∗

N . Pick a response

w
$
← {v2,−v2, αv2,−αv2} . Then compute a corresponding challenge

return ε‖w‖v to I
until I outputs st‖ε . Phase 1

x
$
← Z∗

N ; y ← x2 mod N

Ch
$
← {y,−y, αy,−αy}

give (st,Ch) to I . Phase 2

get Rsp from I . Phase 3

If Rsp2 = y and Rsp 6≡ ±x mod N . Check if Rsp is a non-trivial square root of y

Then p← gcd(Rsp− x, N) ; q ← N
p

Else abort

return p, q . Successfully factor if the response is non-trivial

Figure 7: The factoring algorithm Fct for the proof of Claim 6.3.

gets I to give it a square root of the square. With luck, this square root will be “non-trivial”, i.e.
it is not simply a negation of the square root already known to Fct. Once it obtains two non-trivial
square roots of a single value modulo N , Fct can easily factor N . The details are in Figure 7.

The algorithm Fct runs I in the same environment as that of the experiment Expimp-pa
IDnc ,I(k). In

particular, the challenge in phase 2 is a random element of Z∗
N . Furthermore, the transcripts that

Fct generates are correct and form the same distribution as that of the transcripts generated by
actual runs of IDnc . First, they are correct because if the challenge Ch = w is randomly chosen
from {v2,−v2, αv2,−αv2} where α is the inverse of 2 in the group Z∗

N , then the response Rsp = v2

is either w,−w, 2w, or −2w. Thus, the verifier will always accept. Second, the challenges are
random elements from Z∗

N , and thus, the distribution of the transcripts is correct.

The adversary Fct is successful in factoring as I is successful in its impersonating the prover
provided that Fct completes the execution without aborting. This occurs with the probability of
1
2 of the success probability of I. Thus, the probability of success of Fct is at least half of that of
I. Furthermore, the running time of Fct is clearly polynomial in the security parameter k plus the
running of I which is also polynomial in k. Thus, Claim 6.3 is justified.

Now, we show that the signature scheme obtained from applying the standard FS transform to
IDnc is completely insecure as stated in the following claim.

Claim 6.4 Let DS be the signature scheme obtained via the standard Fiat-Shamir transformation
from the identification scheme IDnc described above. Then, DS is not a secure signature scheme.
Specifically, there exists a forger F that runs in time polynomial in the security parameter k such
that Advuf-cma

DS,F (k) = 1
2 .

Proof of Claim 6.4: A forger F simply queries the signing oracle on a single message M twice.
With probability 1

2 , the returned signatures σ1 and σ2 will be non-trivial square roots of the same
square, namely H(M). Using these two signatures, the forger can factor N , and then forge a

23

Algorithm F SH
sk

(·),H(·)(pk ; RF)
M ← 0

σ1
$
← SH

sk (M) ; σ2
$
← SH

sk (M)
If σ1 ≡ ±σ2 mod N Then abort

p← gcd(σ1 − σ2, N) ; q ← N
p

M ′ ← 1
v ← SQN (H(M ′))

σ
$
← SQRN (v) mod N

return (M ′, σ)

Figure 8: The forger for the proof of Claim 6.4

signature of any message of its choice. The details are in Figure 8. Note that the forger F does
not make use of the random oracle in any special way other than using it as a given oracle.

On input (M ′, σ), the verification algorithm computes σ2 and checks if it is in the set {H(M ′),
−H(M ′), 2H(M ′),−2H(M ′)}. Since σ is a square root of the unique square in this set, the verifi-
cation algorithm accepts this forgery as valid. It is well-known that, given the prime factors p and
q of N , one can compute both the element SQN (H(M ′)) and the set SQRN (v) in time polynomial
in the security parameter k.

Thus, Claim 6.3 proves that the modified trivial, canonical identification scheme remains secure
while Claim 6.4 proves that the corresponding signature scheme per the standard FS transform is
insecure, and the proof for Proposition 6.1 is complete.

References

[1] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes

in Computer Science, pages 116–129, Kyoto, Japan, December 3–7, 2000. Springer-Verlag,
Berlin, Germany.

[2] Ross Anderson. Two remarks on public-key cryptology. Manuscript. Relevant material pre-
sented by the author in an invited lecture at the 4th ACM Conference on Computer and
Communications Security, CCS 1997, Zurich, Switzerland, April 1–4, 1997, September 2000.

[3] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-oracle-
model scheme for a hybrid-encryption problem. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-

puter Science, pages 171–188, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin,
Germany.

[4] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer

Science, pages 390–420, Santa Barbara, CA, USA, August 16–20, 1992. Springer-Verlag, Berlin,
Germany.

24

[5] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Com-

puter Science, pages 431–448, Santa Barbara, CA, USA, August 15–19, 1999. Springer-Verlag,
Berlin, Germany.

[6] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-
based identification and signature schemes. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer

Science, pages 268–286, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Ger-
many.

[7] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Christian Cachin, editor, Automata, Languages and Programming, 34rd International Col-

loquium, ICALP 2007, Lecture Notes in Computer Science, Wroclaw, Poland, July 9–13, 2007.
Springer-Verlag, Berlin, Germany.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM CCS 93: 1st Conference on Computer and Communications

Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[9] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM CCS 93: 1st Conference on Computer and Communications

Security, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[10] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EU-

ROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426, St.
Petersburg, Russia, May 28 – June 1, 2006. Springer-Verlag, Berlin, Germany.

[11] Thomas Beth. Efficient zero-knowledged identification scheme for smart cards. In C. G.
Günther, editor, Advances in Cryptology – EUROCRYPT’88, volume 330 of Lecture Notes

in Computer Science, pages 77–86, Davos, Switzerland, May 25–27, 1988. Springer-Verlag,
Berlin, Germany.

[12] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture

Notes in Computer Science, pages 443–459, Santa Barbara, CA, USA, August 15–19, 2004.
Springer-Verlag, Berlin, Germany.

[13] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer

Science, pages 41–55, Santa Barbara, CA, USA, August 15–19, 2004. Springer-Verlag, Berlin,
Germany.

[14] Ernest F. Brickell and Kevin McCurley. An interactive identification scheme based on dis-
crete logarithms and factoring. In Ivan Damg̊ard, editor, Advances in Cryptology – EURO-

CRYPT’90, volume 473 of Lecture Notes in Computer Science, pages 63–71, Aarhus, Denmark,
May 21–24, 1990. Springer-Verlag, Berlin, Germany.

[15] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial informa-
tion. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of

25

Lecture Notes in Computer Science, pages 455–469, Santa Barbara, CA, USA, August 17–21,
1997. Springer-Verlag, Berlin, Germany.

[16] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
30th Annual ACM Symposium on Theory of Computing, pages 209–218, Dallas, Texas, USA,
May 23–26, 1998. ACM Press.

[17] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. In 26th Annual Symposium on Foundations of Computer

Science, pages 429–442, Portland, Oregon, October 21–23, 1985. IEEE Computer Society
Press.

[18] Ronald Cramer and Ivan Damg̊ard. Secure signature schemes based on interactive protocols.
In Don Coppersmith, editor, Advances in Cryptology – CRYPTO’95, volume 963 of Lecture

Notes in Computer Science, pages 297–310, Santa Barbara, CA, USA, August 27–31, 1995.
Springer-Verlag, Berlin, Germany.

[19] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. Journal of

Cryptology, 1(2):77–94, 1988.

[20] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer-Verlag, Berlin, Germany.

[21] Marc Girault. An identity-based identification scheme based on discrete logarithms modulo
a composite number. In Ivan Damg̊ard, editor, Advances in Cryptology – EUROCRYPT’90,
volume 473 of Lecture Notes in Computer Science, pages 481–486, Aarhus, Denmark, May 21–
24, 1990. Springer-Verlag, Berlin, Germany.

[22] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
In 44th Annual Symposium on Foundations of Computer Science, pages 102–115, Cambridge,
Massachusetts, USA, October 11–14, 2003. IEEE Computer Society Press.

[23] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April
1988.

[24] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in Cryptology

– CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages 216–231, Santa
Barbara, CA, USA, August 21–25, 1990. Springer-Verlag, Berlin, Germany.

[25] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes

in Computer Science, pages 332–354, Santa Barbara, CA, USA, August 19–23, 2001. Springer-
Verlag, Berlin, Germany.

[26] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In Moni Naor,
editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in

Computer Science, pages 21–39, Cambridge, MA, USA, February 19–21, 2004. Springer-Verlag,
Berlin, Germany.

26

[27] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-

tography. The CRC Press series on discrete mathematics and its applications. CRC Press,
2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[28] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature schemes.
In Rainer Baumgart, editor, International Exhibition and Congress on Network Security –

CQRE’99, volume 1740 of Lecture Notes in Computer Science, pages 167–182, Dsseldorf, Ger-
many, November 30 – December 2, 1999. Springer-Verlag, Berlin, Germany.

[29] Silvio Micali and Adi Shamir. An improvement of the Fiat-Shamir identification and signature
scheme. In Shafi Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume 403 of
Lecture Notes in Computer Science, pages 244–248, Santa Barbara, CA, USA, August 21–25,
1990. Springer-Verlag, Berlin, Germany.

[30] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures derived from
identification. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 354–369, Santa Barbara, CA, USA, August 23–27,
1998. Springer-Verlag, Berlin, Germany.

[31] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92,
volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa Barbara, CA, USA,
August 16–20, 1992. Springer-Verlag, Berlin, Germany.

[32] H. Ong and Claus-Peter Schnorr. Fast signature generation with a Fiat Shamir–like scheme.
In Ivan Damg̊ard, editor, Advances in Cryptology – EUROCRYPT’90, volume 473 of Lecture

Notes in Computer Science, pages 432–440, Aarhus, Denmark, May 21–24, 1990. Springer-
Verlag, Berlin, Germany.

[33] David Pointcheval. A new identification scheme based on the perceptrons problem. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology – EUROCRYPT’95,
volume 921 of Lecture Notes in Computer Science, pages 319–328, Saint-Malo, France, May 21–
25, 1995. Springer-Verlag, Berlin, Germany.

[34] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M.
Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in

Computer Science, pages 387–398, Saragossa, Spain, May 12–16, 1996. Springer-Verlag, Berlin,
Germany.

[35] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

[36] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[37] Victor Shoup. On the security of a practical identification scheme. In Ueli M. Maurer, edi-
tor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer

Science, pages 344–353, Saragossa, Spain, May 12–16, 1996. Springer-Verlag, Berlin, Germany.

[38] Jacques Stern. A new identification scheme based on syndrome decoding. In Douglas R. Stin-
son, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer

Science, pages 13–21, Santa Barbara, CA, USA, August 22–26, 1994. Springer-Verlag, Berlin,
Germany.

27

	Introduction
	Main result
	Comparison with previous work
	Generalized transform
	Results for forward security
	Discussion and remarks
	Organization

	Definitions
	Equivalence Results
	Separations among Security Assumptions
	Extension to forward security
	The Non-Triviality Condition

