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Preface 

This volume represents the refereed proceedings of the "Sixth International 
Conference on Finite Fields and Applications (Fq6)" held in the city of 
Oaxaca, Mexico, between 22-26 May 200l. The conference was hosted by the 
Departmento do Matermiticas of the U niversidad Aut6noma Metropolitana
Iztapalapa, Nlexico. This event continued a series of biennial international 
conferences on Finite Fields and Applications, following earlier meetings at 
the University of Nevada at Las Vegas (USA) in August 1991 and August 
1993, the University of Glasgow (Scotland) in July 1995, the University of 
Waterloo (Canada) in August 1997, and at the University of Augsburg (Ger
many) in August 1999. The Organizing Committee of Fq6 consisted of Dieter 
Jungnickel (University of Augsburg, Germany), Neal Koblitz (University of 
Washington, USA), Alfred }.lenezes (University of Waterloo, Canada), Gary 
Mullen (The Pennsylvania State University, USA), Harald Niederreiter (Na
tional University of Singapore, Singapore), Vera Pless (University of Illinois, 
USA), Carlos Renteria (lPN, Mexico). Henning Stichtenoth (Essen Univer
sity, Germany). and Horacia Tapia-Recillas, Chair (Universidad Aut6noma 
l'vIetropolitan-Iztapalapa. Mexico). 

The program of the conference consisted of four full days and one half 
day of sessions, with 7 invited plenary talks, close to 60 contributed talks, 
basic courses in finite fields. cryptography and coding theory and a series of 
lectures at local educational institutions. 

Finite fields have an inherently fascinating structure and they are im
portant tools in discrete mathematics. Their applications range from com
binatorial design tlwory, finite geollletries, and algebraic geometry to coding 
theory, cryptology. and scientific computing. A particularly fruitful aspect is 
the interplay between theory and applications which has led to many new 
perspectives in research on finite fields. This interplay has been a dominant 
theme in earlier FC] conferences and was very much in evidence at Fq6. Ap
plied or applications-oriented topics accounted for a significant part of the 
program. 

These proceedings reflect the wide variety of topics represented at the con
ference. Most invited talks and a good proportion of the contributed talks 
are on permanent record here. All contributed talks were screened before the 
conference and all full papers were carefully refereed. We would like to take 
this opportunity to thank the members of the Organizing Committee and 
all referees who helped in these tasks. These colleagues contributed enor
mously to the quality of the conference presentations and to guaranteeing 
high standards for these proceedings. 

We greatly appreciate the generons financial support received for the con
ference. A fair portion of the funds were provided by a grant from the Consejo 
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Nacional de Ciencia y Tecnologfa (CONACYT), Mexico and from various of
fices of the host institution. We also thank Universidad Benito Juarez de 
Oaxaca, Instituto Tecnol6gico de Oaxaca, Direcci6n General de Servicios 
do C6mputo Academico-UNAM, Instituto Politecnico Nacional, Sociedad 
Matematica Mexicana, Certicom Corp., Institute of Combinatorics and Ap
plications, and Red de Criptologfa (CONACYT-UAM) for diverse kinds of 
support. 

We are grateful to various offices of the state of Oaxaca who helped with 
additional funds and organizational issues. Thanks are also due to the Gov
ernor of the state of Oaxaca, who gave a reception for the participants in the 
splendid setting of the Centro Cultural Santo Domingo in the city of Oax
aca. Last but not least, the highly efficient and friendly manner in which the 
conference took place would not have been possible without the enthusiasm 
and hard work by the assistants, secretaries and students who saw to many 
details involved in such a major event; we are grateful to all of them. 

Regarding the present proceedings, we thank Dr. Martin Peters of Sprin
ger-Verlag who gave us the opportunity to edit this volume with a top 
publisher and in an attractive form. Working with him and all the staff at 
Springer-Verlag is always a pleasure. 

Finally, we are pleased to confirm that the Fq series will continue with 
Fq7 in Toulouse, France in May 2003. We expect another lively and stim
ulating meeting there, which should, like the previous conferences, serve as 
an important meeting place for theoretical as well as applied aspects of finite 
fields. We hope to see you there! 

May 2002 Horacio Tapia-Recillas 
Gary Mullen 

Henning Stichtenoth 
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Commutative Semifields of Rank 2 
Over Their Middle Nucleus 

Simeon BallI * and Michel Lavrauw2 

1 Queen Mary, University of London, London, El 4NS, United Kingdom 
2 Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands 

Abstract. This article is about finite commutative semifields that are of rank 2 
over their middle nucleus, the largest subset of elements that is a finite field. These 
semifields have a direct correspondence to certain flocks of the quadratic cone in 
PG(3, q) and to certain ovoids of the parabolic space Q( 4, q). We shall consider 
these links, the known examples and non-existence results. 

1 Semifields 

A finite semifield S is a finite algebraic system that possesses two binary 
operations, addition and multiplication, which satisfy the following axioms. 

(S1) Addition is a group with identity o. 
(S2) a(b+c) = ab+ac and (a+ b)c = ac+be for all a, b, e E S. 
(S3) There exists an element 1 oJ 0 such that 1a = a = a1 for all a E S. 
(84) If ab = 0 then either a = 0 or b = O. 

Throughout this article the term semifield will refer to a finite semifield. The 
additive group of a semifield must be commutative. By (S2), 

(ae + ad) + (be + bd) = (a + b)(e + d) = (ae + be) + (ad + bd). 

Hence, ad + be = be + ad and any elements that can be written as products 
commute under additioll. By (84) and finiteness, any element of S can be 
written as a product and so it follows that the additive group is abelian. 
Moreover it is not difficult to show that the group is elementary abelian. 
Let a oJ 0, and let p be the additive order of a. If p is not prime then we 
can write p = rs for rand s integers not equal to 1, and by observing that 
o = (pa)a = (rsa)a = (ra)(sa) we get a contradiction from (S4). The fact 
that every nonzero element has prime order suffices to show that the group is 
elementary abelian. and that all nonzero elements have the same prime order 
p. This number p is the characteristic of the semifield. An elementary abelian 
group can be viewed as a vector space over a finite field. In particular S has 
pn elements where n is the dimension of S over the field GF(p). There are 

* The author acknowledges the support of an EPSRC (UK) Advanced Research 
Fellowship AF /990 480. 
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many examples of semifields known and some standard constructions can be 
found in Knuth [19]. If the order is p, the semifield must be GF(p). If the 
order is p2, the semifield is G F (p2). This is not difficult to see. Let {I, x} 
be a basis for the semifield. Multiplication is determined by x2 = ax + b 
and the polynomial x2 - ax - b has no roots in GF(p) else we would have 
x2 - ax - b = (x - r)(x - s) = ° contradicting (S4). Thus x2 - ax - b 
is irreducible and the multiplication is GF(p2). This short argument comes 
again from [19] where it is also determined that the only semifield of order 
8 is GF(8). And completing the question of existence Albert [1] and Knuth 
[19] construct semifields that are not finite fields for every other order q = ph, 
that is h ;::: 3 if p is odd and h ;::: 4 if p = 2. 

The major motivation to study semifields in the 1960's was their use in 
the construction of projective planes, see Hughes and Piper [16] or Hall [15]. 
Every semifield determines a projective plane and the projective plane is 
Desarguesian if and only if the semifield is a field. The incidence structure 
constructed from a semifield S with 

Points: (0,0, 1) Lines: [0,0, 1] 
(O,l,a) [O,l,a] aES 
(l,a,b) [l,a,b]a,bES 

such that the point (Xl, X2, X3) is incident with the line [Yl, Y2, Y3] if and only 
if 

YIX3 = X2Y2 + XIY3 

is a projective plane 7r(S) of order lSI. It is a simple matter to check that 
any two points of 7r(S) are incident with a unique line and dually that any 
two lines of 7r(S) are incident with a unique point and hence that 7r(S) is a 
projective plane. However it is harder to determine when two semifields S 
and S' determine the same projective plane, i.e. 7r(S) ~ 7r(S'). In [19] Knuth 
defines an isotopism from S to S' and shows that an isotopism is equivalent 
to a set of three 1-1 maps (F, G, H) linear over GF(p) from S to S', such 
that 

(ab)H = (aF)(bG) 

for all a, b, c E S. Two semi fields Sand S' are isotopic if there is an isotopism 
from S to S'. We have the following theorem due to Albert, a proof of which 
can be found in [19]. 

Theorem 1. Two semifields coordinatize the same projective plane if and 
only if they are isotopic. 

In his original work on semifields Dickson [12] considered constructing 
commutative semifields, that is semi fields that satisfy 

(S5) ab = ba for all a and b in S. 
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We define the middle nucleU8 of a commutative semifield to be 

N:= {x I (ax)b = a(xb), Va, bE S}. 

It is clear that N contains the field GF(p) where p is the characteristic 
and that N is itself a finite field. Moreover, S can be viewed as a vector 
space over its middle nucleus. Dickson [13] gave a construction of a com
mutative semifield of rank 2 over its middle nucleus. It is as follows. Let 
S := {(x, y) I x, Y E GF(q)} and let a be an automorphism of GF(q) where 
q is odd. Addition is defined component-wise and multiplication by 

(x, y)(u. v) = (xv + yu, yv + mxaua) 

where m is a non-square in GF(q). The only axiom that requires much 
thought is (S4) and we shall check this in a more general setting shortly. 
In this article we shall only be concerned with commutative semifields that 
are of rank 2 over their middle nucleus which have a correspondence with 
certain useful geometric objects. 

Cohen and Ganley [10] made significant progress in the investigation of 
commutative semifields of rank 2 over their middle nucleus. They put Dick
son's construction in the following more general setting. Let S be a com
mutative semifield of order q2 with middle nucleus GF(q). Then there is an 
a E S \ GF(q) such that {I, a} is a basis for S. Addition in Sis component
wise and multiplication is defined as 

(x, y)(u, v) = (xa + y)(ua + v) = xua2 + (xv + yu)a + yv (1) 

= (xv + yu + g(xu), yv + f(ux)) 

where xa2 = g(x)a+ f(x), f and 9 are functions from GF(q) ----) GF(q). The 
distributive laws are satisfied if and only if both f and 9 are linear maps, in 
other words, J(x + y) = J(x) + J(y) and g(x + y) = g(x) + g(y) for all x, y 
in GF(q). Thus we must check (S4). Suppose that 

(xa + y) (ua + v) = 0 

and that x, y, u and v are non-zero. It follows that 

g(xu) + xv + yu = 0 

and 
f(xu) + yv = 0 

and eliminating y that 

xv2 + vg(xu) - uf(xu) = o. 

Writing xu = z and vlu = w 

zw2 + g(z)w - J(z) = o. 



4 Simeon Ball and Michel Lavrauw 

If one or more of x, y, u or v is zero it follows immediately that at least one 
of (x, y) or (u, v) is (0,0). Hence we have proved the following theorem which 
comes from [10]. 

Theorem 2. Let S be a commutative semifield oj rank 2 over its middle 
nucleus GF(q). Then there exist linear Junctions J and g such that multipli
cation in S is defined as in (1) and zw2 + g(z)w - J(z) = ° has no solutions 
Jar all w, z E GF(q) and z -I 0. 

If q is odd then this quadratic in w will have no solutions in GF(q) if and 
only if 

g(Z)2 + 4zJ(z) 

is a non-square for all z E GF(q)*. Cohen and Ganley [10] prove the following 
theorem for q even. 

Theorem 3. For q even the only commutative semifield oj rank 2 over its 
middle nucleus GF(q) is the finite field GF(q2). 

In light of this theorem we restrict ourselves to the case q is odd. 
Let us consider again the example of Dickson. We have g = ° and J(z) = 

mza where m is a non-square. We had only to check that (S4) is satisfied and 
this is clear since g(z)2 +4zJ(z) = 4mza+1 is a non-square for all z E GF(q)*. 

2 Flocks of the Quadratic Cone 

Let q be an odd prime power and let K be a quadratic cone of PG(3, q) with 
vertex v and base a conic C. The quadratic cones of PG(3, q) are equivalent 
under the action of PG L( 4, q) so we can assume that v is the point (0, 0, 0, 1) 
and the conic C in the plane 7r with equation X3 = 0, is the set of zeros of 
XOXI = X~. 

A flock F of K is a partition of K \ {v} into q conics. We call the planes 
that contain conics of the flock the planes oj the flock. A flock F is equivalent 
to a flock F' if there is an element in the stabiliser group of the quadratic 
cone that maps the planes of the flock F to the planes of the flock F'. If all 
the planes of the flock share a line then the flock is called linear. 

Let 
aoXo + a1X1 + a2X2 + a3X3 = ° 

be a plane of the flock. Since (0,0,0,1) is disjoint from any plane of the flock 
a3 -I ° and hence we may assume that a3 = 1. The point (1,0,0, -aD) is 
incident with the quadratic cone and this plane and hence the coefficients of 
Xo in the planes of the flock are distinct. Hence we can parameterise by the 
elements of GF(q) so that the planes of the flock are 

7rt : tXo - J(t)X1 + g(t)X2 + X3 = ° 
where t E GF(q) and J and g are functions from GF(q) ---> GF(q). 
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The points that are incident with the line that is the intersection of two 
planes of the flock 'lrt and 'Irs are incident with the plane 

(t - s)Xo - (J(t) - f(s))XI + (g(t) - g(S))X2 = O. 

The points that are incident with the cone J( satisfy the equation XOXI = X~. 
If the equation 

(t - s)X~ - (J(t) - f(s))X~ + (g(t) - g(S))XIX2 = 0 

has a solution then we can find a line on the cone, by choosing the Xo 
coordinate appropriately, that would be contained in the plane above, and 
hence a point on the cone and incident with both the planes 'lrt and 'Irs. The 
flock property implies that no such point exists and hence that this equation 
has no solutions. There is no solution with Xl = 0 as this would imply that 
X2 = 0 and that t = s. Hence we can put w = X2/X I and we have the 
forward implication of the following theorem which is due to Thas [26]. 

Theorem 4. Let:F be a flock of the quadratic cone with vertex (0,0,0,1) and 
base XOXI = X~. Then there exists functions f and 9 from GF(q) ---+ GF(q) 
such that the planes of the flock are 

tXo - f(t)XI + g(t)X2 + X3 = 0 

where t E GF(q) and:F is a flock if and only if 

(t - s)w2 + (g(t) - g(s))w - (J(t) - J(s)) = 0 

has no solution Jar all sand t E GF(q), s -I- t. 

If J and 9 are additive then the condition of the theorem says that :F is a 
flock if and only if 

zw2 + g(z)w - J(z) = 0 

has no solutions for w E GF(q) and z E GF(q)*. A flock with this property 
is called a semifield flock as such a flock is in one-to-one correspondence with 
a commutative semifield of rank 2 over its middle nucleus. This is clear from 
Theorem 2. The commutative semifield S = {(x, y) I x, Y E GF(q)} where 
addition is defined component-wise and multiplication is defined by 

(x, y)(u, v) = (xv + yu + g(xu), yv + f(xu)) 

is the semifield associated to the flock F. 
The known examples of semifield flocks up to equivalence are listed in Ta

ble 1. In all relevant cases m is taken to be a non-square in GF(q) and a is a 
nontrivial automorphism of GF(q). Some of the links between the commuta
tive semifields, certain ovoids of Q(4, q), semifield flocks of the quadratic cone 
and semifield translation planes were not known until recently and hence in 
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Table 1. The known examples of semifield flocks up to equivalence 

name g(x) f(x) q = ph 

linear 0 mx all 
Dickson [12] Kantor [18] Knuth [19] 0 mxa 

Cohen-Ganley [10] Thas-Payne [28] x 3 m-1x + mx9 3h 

Penttila-Williams [24], Bader-Lunardon-Pinneri [4] x:l X 27 35 

most cases more than one person or persons is accredited with the discovery 
of the functions f and g. In fact in the second case Dickson [12] discovered the 
semifield, Kantor [18] the ovoid and Knuth [19] the semifield plane. In the 
third example Cohen and Ganley [10] discovered the semifield while Thas 
and Payne found the ovoid [28]. And in the fourth example Penttila and 
Williams discovered the ovoid [24] and details concerning the corresponding 
flock were investigated by Bader, Lunardon and Pinneri [4]. We shall discuss 
these equivalent objects in the following sections and explain the links be
tween them and how this can be of use. Firstly however we shall check that 
the last two examples in Table 1 do indeed satisfy the condition of Theorem 2 
and Theorem 4. In the Cohen-Ganley Thas-Payne example 

which is a non-square for all x E GF(3h )*. 
The Penttila-Williams example is somewhat more difficult to prove. The 

following comes from [2]. We have that 

and since 35 - 1 = 242 = 2.112 we need to show that 1 + E is a non-square 
for all f such that fll = 1. Now (q -1)/2 = 121 = 1 + 3 + 32 + 33 + 34 and 
in GF(35 ) 

The set {I, 3, 9, 27. 81} are the squares modulo 11 and each non-zero inte
ger modulo 11 can be written exactly 3 times as the sum of elements of 
{1,3,9,27,81} modulo 11. Hence in GF(35 ) 

and 1 + f is a non-square for all f such that fll = 1. 

The following theorem comes from [14]. 

Theorem 5. The projective planes obtained from the flocks F and F' are 
isomorphic if and onl:1J if the flocks F and F' are equivalent. 
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The projective planes in Theorem 5 are constructed, via the Bruck Bose 
Andre method, from the spread 

{((y, x, 1,0), (f(x), Y + g(x), 0,1)) I x, Y E GF(q)} U {((1, 0, 0, 0), (0, 1,0, O))}. 

This plane is a semifield plane. Following [11, (5.1.2)] the spread comes from 
the spread set 

D={(y+g(X)X) IXYEGF(q)} f(x) y , 

which has the property that the determinant of M - N is non-zero for all 
distinct M, NED. The plane is coordinatised by the semifield whose multi
plication is defined by 

( x) . (u) = (v + g(u) u) (x) = (xv + yu + xg(u)) . 
y v f ( u ) v y yv + x f ( u ) 

We can check that this multiplication defines a semifield. It is only condition 
(S4) that requires some work. If 

xg(u)+xv+yu=O 

and 
xf(u)+yv=O 

then 
xv2 + xg(u)v - xuf(u) = O. 

If x = 0 one can check that then one of either (x, y) or (u, v) is equal to (0,0). 
If x =I- 0 then, since g(U)2 +4uf(u) is a non-square for all u E GF(q)*, u = 0 
and it follows that (u, v) = (0, 0). Hence this is a semifield. Note that this 
means we can construct a not necessarily commutative semifield from the 
functions f and g. Now semifields that we get from the above multiplication 
will be isotopic if there corresponding flocks are equivalent by Theorem 1 and 
Theorem 5. However we have not proved that the commutative semifields that 
we get from the functions f and g are isotopic if and only if their associated 
flocks are equivalent. 

The following theorem which we prove in Section 6 shows that there is an 
isotopism between two commutative semifields if their associated flocks are 
equivalent. 

Theorem 6. F and j are equivalent semifield flocks if and only if there 
exists a linear one-to-one map F from S to S and a GF(p)-linear map H 
from S to S such that 

(ab)H = (aF).(bF) 

for all a, b E S where. is multiplication in Sand F and j are the semifield 
flocks associated to the commutative semifields Sand S of rank 2 over their 
middle nucleus GF(q), q = pn, respectively. 
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Let us consider for the mOlncllt a flock that is linear, i.c. with the property 
that all the planes of the flock contain a common line. The points that are 
dual to the planes of the flock 

{(t, - f(t), g(t), 1) I t E GF(q)} 

are collinear and so (f(t) - f(8))/(t - 8) and (g(t) - g(8))/(t- 8) are constant 
for all 8 =f. t. Hence f and 9 have polynomial degree 1. The following theorem 
is from Thas [26]. 

Theorem 7. A flock wh08e planes are all incident with a common point is 
either linear (in wh'lch ca8e the planes of the flock 8hare a common line) or 
equivalent to a semifield flock of Dickson, Kantor, Knuth type. 

Remark 1. It follows from this theorem that the semifield flocks we obtain 
directly from the Cohen-Ganley so-called sporadic example of a semifield 
and the semificlds from [25] are equivalent to a semi field flock of Dickson, 
Kantor, Knuth type. In [25, Theorem 1] g(t) = t0i and f(t) = ct and it is 
a simple matter to check that the planes of the flock are all incident with 
the point (c, 1,0.0) and in [25, Theorem 2] g(t) = at + bt0i and f(t) = t 
and the planes of the flock are all incident with the point \1, 1,0,0). As 
mentioned in [14] the sporadic example of Cohen and Ganley over GF(52 ) 

with g(t) = [5 and f(t) = 2/2t5 + t the planes of the flock are all incident 
with the point (1, 1,2/2,0). By Theorem 6 their associated commutative 
semifields are isotopic to a Dickson, Kantor, Knuth semifield. All known 
examples of commutativc semifields rank 2 over their middle nucleus are 
isotopic to one of the commutative semifields rank 2 over their middle nucleus 
constructed from the pairs of functions in Table 1. 

Tn the following argument we are going to use the so-called linear repre
sentation of PG(2, q) so let us recall what we mean by this (for more details 
see [22]). Let GF(qo) be a subfield of GF(q), q = qT). Let V be the vector 
space of rank 3 over GF(q). The projective plane PG(2, q) is the incidence 
geometry whoi"lc pointi"l arc the subi"lpaces of rank 1 of V and whose lines are 
the subspaces of rank 2 of V. However V is a vector i"lpace of rank 3n over 
GF(qo) and the points of PG(2, q) are subi"lpaces of rank n which are mutu
ally disjoint and cover V \ 0, i.e. they form a i"lpread A. The spread A induces 
a i"lpread in the subspacc generated by any two elements of A (since this 
subspace is a line of PG(2.q)). We call a spread with this property normal. 

Let us consider a semificld flock :F. The points 

{(t, - f(t), g(t), 1) I t E GF(q)} 

that are dual to the planes of the flock project on to the plane X3 = ° the 
i"let of points 

W := {It, - f(t), g(t), 0) I t E GF(q)}. 
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Since the functions f and g are additive, they are linear over some subfield 
GF(qo) of GF(q). The maximum subfield with this property is often called 
the kernel of the flock. This kernel is equal to the left nucleus of the semifield 
(and hence equal to the right nucleus since the semifield is commutative). 
If we look at the linear representation of the plane X3 = 0 the set W is a 
subspace of rank n over GF(qo) . 

The vertex of the quadratic cone is the point (0,0,0,1) and this point is 
dual to the plane X3 = 0 and the q + 1 lines on the quadratic cone are dual 
to a set of q + 1 lines in the plane X3 = 0 that are tangents to some conic C'. 
The definition of a flock implies that the points in Ware not incident with 
a tangent to this conic C', i.e. the set W is contained in the internal points 
of the conic C'. If the flock is linear then the set W is a point of the plane 
X3 = O. Theorem 7 implies that the flock is of Dickson, Kantor, Knuth type 
if and only if the set W is contained in a line of the plane X3 = O. In all other 
cases the set W in the linear representation contains a subplane PG(2, qo) 
that is contained in the internal points of a conic in PG(2, q). However this 
cannot always occur. The following is from [5]. 

Theorem 8. If there is a subplane of order qo contained in the internal 
points of a conic in PG(2, q) where q = qo then qo < 4n2 - 8n + 2. 

The above argument leads immediately to the following corollaries. 

Corollary 1. A semifield flock of the quadratic cone of PG(3, q) whose defin
ing functions f and g are linear over the subfield GF(qo) where q = qo and 
qo 2': 4n2-8n+2 is either a linear flock or a Dickson, Kantor, Knuth semifield 
flock. 

Corollary 2. A commutative semifield of rank 2 over its middle nucleus 
GF(q) that has defining junctions j and g which are linear over the subfield 
GF(qo) where q ~ qo and qo 2': 4n2 - 8n + 2 is either the finite field GF(q2) 
or isotopic to a Dickson, Kantor, Knuth semifield. 

Remark 2. We may expect something much stronger than this bound to hold. 
Indeed we can see that the theorem hypothesis requires that their is a sub
plane in the internal points of the conic. However in fact the set W is con
tained in the internal points of a conic and in the linear representation of 
PG(2, q) it is a subspace of rank n over GF(qo). 

The bound in the theorem for n = 3 gives go < 14 and by computer 
Bloemen, Thas and van Maldeghem [7] have checked that there are no other 
semifield flocks other than the linear flock and the Dickson, Kantor, Knuth 
flocks. Note also that the only other known examples have qo = 3. 

The following nice result of Bader and Lunardon [3] shows that in some 
sense the Pentilla-Williams example is sporadic, and any other examples yet 
to discovered. 
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Theorem 9. If til e T'lc is a polynomial h(t) over' GF(q) such that foT' (L fi;r:ed 
non-squar'em in G F( q) the equ.ality 

g(t) + 4tf(t) = rnh(t) 

is a polynomial identit:y then f and g are one of the first three examples in 
Table 1, 

3 The Generalized Quadrangle T(£) 

A genemlized quadmngle is a set of points and a set of lines with an incidence 
relation that satisfies the following axioms. 

(QI) Every two points arc incident with at most one line. 
(Q2) For all anti-flags (p.L) (the point p is not incident with the line L) 

there is exactly one point incident with L and collinear with p. 

(Q3) There is no point collinear with all others. 

Let G be a generaliL\ed quadrangle in which there is a line incident with 
at least three points and a point incident with at least three lines. It is 
not difficult to prove that the number of points incident with a line, and the 
number of lines incident wit h a point. are constants. \Ve say G is a generalized 
quadrangle of order 8. t if every line is incident with .9 + I points and every 
point is incident with t + I lines. 

An egg [m,n of PG(2n + TTl - l,q) is a set of qm + I (n - l)-subspaces 
with the properties that any three clements of [m,n span a (3n - I)-space 
and every element of [m,n is contained in a (n + m - I)-subspace called a 
tangent space t.hat is skew from all other elements of [m,n' We write [ for 
[rn,n when no confusion is possible. 

The following construction of the generalized quadrangle T([m,n) from 
an egg is based on a construction due to Tits and comes from Payne and 
Thas [23]. Let [m,T! be an egg of 7'1 = PG(2n + m -1, q) and embed the space 
7'1 in PG(2n + m, q). Points are defined as 

(i) the points of PG(2n + m, q) \ 7'1, 

(ii) the (n + m)-spaces of PG(2n + m, q) that contain a tangent space of 
[m,,, but are not contained in 7'1, 

(iii) a symbol (x). 

Lines arc defined as 

(a) the n-spaces of PG(2n+m"q) which contain an element of [m,n but are 
not contained in 7'1. 

(b) the elements of [m,n' 



Commutative Semi fields 11 

Incidence is as follows. A point of type (i) is incident with a line of type (a) 
if they are incident in PG(2n + m, q). A point of type (ii) is incident with 
the lines of type (a) which it contains and the unique line of type (b) which 
it contains. The point of type (iii) is incident with all lines of type (b). 

T(Em,n) is a generalized quadrangle of order (qn, qm), [23, Theorem 8.7.1] 
or [20, Theorem 3.3.1]. Let C be a non-singular conic in PG(2, qg). In the 
linear representation described in the previous section the qg + 1 points of C 
become qg+ 1 (n-l)-subspaces of PG(3n-l, qo) which form an egg Ec whose 
tangent spaces correspond to the set of tangent lines of C. The generalized 
quadrangle T(Ec) is the Tits generalized quadrangle T2 (C) of order (qg,qg). 

An ovoid 0 of a generalised quadrangle is a set of points with the prop
erty that every line is incident with exactly one point of O. An ovoid of a 
generalised quadrangle of order (s, t) contains st + 1 points. 

Let us consider an ovoid 0 of T2 (C) that contains the point (00). The set 
o \ {( oo)} is a set of q2n points of type (a) with the property that the line 
of PG(3n, qo) spanned by any two of them meets Jr in a point not contained 
in an element of the egg Ec. 

Let us consider again the set W from the previous section which is con
tained in the internal points of a conic C'. In the linear representation W is 
a (n - I)-subspace of a (3n - I)-space Jr' disjoint from all elements and all 
tangent spaces of the egg EC'. In the dual space the space W* dual to W is a 
(2n - I)-subspace of a (3n - I)-space Jr disjoint from the (n - 1)-subspaces 
dual to the tangent spaces. In the dual setting we have an egg Ec where C is 
the dual of the conic C'. Embed Jr in a (3n)-space and let P be any point of 
PG(3n, q) \ Jr. The (2n)-subspace (W*, P) has the property that any two of 
its points span a line that meets Jr in point not in the egg Ec. Hence 

( (W* , P) \ Jr) U {( 00 ) } 

is an ovoid of the generalised quadrangle T2(C), 
The above argument was first explained by Thas [27]. 

4 Ovoids of Q( 4, q) 

In this section we shall see that T2 (C) is isomorphic to the classical generalised 
quadrangle Q( 4, q) and hence that commutative semifields of rank 2 over their 
middle nucleus imply certain ovoids of Q(4, q). 

A quadratic form Q(x) on a vector space V over a field F satisfies the 
axIoms 

Q(,\x) = ,\2Q(x) for all x E V 

Q(x + y) = Q(x) + Q(y) + b(x, y) 

where b(x, y) is a bilinear form. A totally singular subspace S is a subspace 
with the property that Q(x) = 0, Q(y) = 0 and b(x, y) = 0 for all x, YES. 
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We restrict ourselves to the case where the field F = GF(q) and the max
imum rank of a totally singular subspace is 2. The classification of quadratic 
forms over a finite field says that there are three such inequivalent non
singular quadratic forms (for more details on the equivalence and singular
ity of quadratic forms see [8]). Let Q denote the geometry whose points 
are the totally singular subspaces of rank 1 and whose lines are the to
tally singular subspaces of rank 2 for one of these quadratic forms. Let (x) 
and S be totally singular subspaces of rank 1 and 2 respectively such that 
x rt S, i.e. a non-incident point and line of Q. The rank of S n x~ where 
x~ : = {z E V I b( x, z) = o} is 1 since x~ is a hyperplane not containing 
S. In terms of the geometry this implies that for a non-incident point P and 
line l of Q there is a unique point pI incident with l and collinear with P. 
Hence from the three quadratic forms we obtain three generalised quadran
gles which are called the classical orthogonal generalised quadrangles. These 
are listed in Table 2 in which g is an irreducible homogeneous quadratic form. 

Table 2. The classical orthogonal generalised quadrangles 

name label n Canonical form 
Hyperbolic Q+(3, q) 4 Q(x) = XOXI + X2X3 

Parabolic Q(4,q) 5 Q(x) = XOXI + X3X4 - x§ 
Elliptic Q-(5, q) 6 Q(x) = XOXI + X2X3 + g(X4' X5) 

An ovoid 0 of a classical orthogonal generalised quadrangle of order (8, t) 
is a set of 8t + 1 totally singular subspaces of rank 1 with the property that 
for all distinct (x), (Y) E 0 the bilinear form b(x, y) oJ 0. 

Let the generalised quadrangle Q(4,q) of order (q,q) be defined by the 
quadratic form 

Q(x) = XOXI + X3X4 - x§. 

An ovoid 0 of Q( 4, q) has q2 + 1 points. We may assume that (0,0,0,0, 1) E O. 
The associated bilinear form to Q is 

b(x, y) = XOYI + YOXI + X3Y4 + X4Y3 - 2X2Y2. 

For any (x) E 0 ° oJ b(x, (0,0,0,0,1)) = X3 

and hence we can assume that X3 = 1. Moreover if x = (XO, Xl, x2, 1, X4) and 
y = (xo, YI, X2, 1, y,d where (x) and (y) EO then 

b(x, y) = XOYI + XOXI + Y4 + X4 - 2x§ = Q(x) + Q(y) = ° 
and so the first and third coordinate pair are distinct pairs for distinct points 
of the ovoid. Hence there is a polynomial F(x, y) such that the ovoid 

0= {(x, F(x. Y), y, 1, y2 - xF(x, y)) I x, Y E GF(q)} U {(O, 0, 0, 0,1)}. 
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Table 3. The known examples of ovoids of Q(4, q) 

name F(x, y) q restrictions 
elliptic quadrics mx all 
Kantor [18] mxo< odd a E Aut(GF(q)) 

Thas-Payne [28] m-1x + (mx)1/9 + yl/3 3h 

Penttila-Williams [24] x9 + y81 3 5 

Ree-Tits slice [18] x~O<+;j + yO< 3~h+l a = y'3q 
Tits [29] Xo<+l + yO< 22h+ 1 a = ,j2(j 

In the article of Penttila and Williams [24] the stabiliser group of each 
of the known ovoids is calculated. Note that in four examples of Table 3 
F(x, y) = f(x) + g(y) where f and 9 are linear over some subfield of GF(q). 
In the previous section we constructed an ovoid of T2 (C) from a semifield 
flock. However the generalised quadrangle T2 (C) is isomorphic to Q ( 4, q). Let 
¢: Q(4,q) -+ T2(C), where C is the conic XOXI = xi, be the map 

(0,0,0,0,1) r+ (00) 
(a,b,c, 1,c2 - ab) r+ (a,b,c,l) 
(a2,1,a,0,b) r+ ((a2 ,1,a,0),(-b,0,0,1)) 
(1,0,0,0, a) r+ ((1,0,0,0), (0, -a, 0,1)). 

This is indeed an isomorphism since collinearity is preserved. The points 
(x) = (a, b, c, 1, c2 - ab) and (x') = (a', b', c', 1, c,2 - a'b') are collinear in 
Q(4,q) if and only if b(x,x') = ab' + ba' - ab - a'b' + c2 - 2cc' + C,2 = 
(c - c')2 - (a - a')(b - b') = ° if and only if the point (a - a', b - b', c - c') 
lies on the conic XOXI = xi. One can check that the other incidences are 
preserved. 

Hence from the ovoid ofT2 (C) that was constructed in the previous section 
we get an ovoid of Q ( 4, q). In the next section we shall use explicit coordinates 
to calculate F(x, y) from the functions f and 9 that determine the semifield 
flock. The following theorem is from Lunardon [22]. 

Theorem 10. If F and :F' are semifield flocks of the quadratic cone then 
the ovoids that come from the flocks are equivalent if and only if the flocks F 
and F' are equivalent. 

5 Correspondence Between the Ovoid and the Flock 
U sing Coordinates 

As in [20] we follow the argument of Thas [27] using coordinates. Let us see 
how this works. It may help to refer back to end of Section 3. 

The lines on the quadratic cone with vertex (0,0,0,1) and base defined by 
the equation XOXI = xi dualise with respect to the standard inner product 
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to lines in the plane X3 = 0 with equation 

2 T Xo + a Xl + aX2 = O. 

These lines are tangents to the conic whose points are the zeros of the 
quadratic form Q' = 4XOX1 - Xr The associated bilinear form is 

b'(x,y) =4XOY1 +4YO:Z:1-2x2Y2' 

We wi:sh to view the vector space of rank 3 over GF(q) as a vector space of 
rank 3n over GF(qo) and the bilinear form b' over this vector space is 

b(x. y) = TTq->q" (4XOY1 + 4YOX1 - 2X2Y2). 

In Section 3 the set W is contained in the hyperplane X3 = 0 and is the set 
of points {(t, - f(t), g(t)) It E GF(q)}. The functions f and g are linear over 
some subfield GF(qo) and so we can write 

n-1 n-1 

f(t) = L Ci tqb and g(t) = L b;tqb. 
;=0 i=O 

We follow the argument at the end of Section 3 and dualise with respect to 
the bilinear form b. A point (XO, Xl. X2) E W* if and only if 

TTq->qU ( -4xof( t) + 4X1 t - 2X2g( t)) = 0 

for all t E GF(q) if and only if 

n-1 

TTq->qO (( - 4coxo + 4X1 - 2boX2)t + L (-4c;xo - 2b;X2Wb) = 0 
i=l 

if and only if 

n-1 

TTq->qO (( - 4coxo + 4X1 - 2bo:Z: 2 + I: (-4c;xo - 2biX2)q~'-' )t) = 0 
i=l 

for all t E GF(q). Hence 

The set 

n-1 

4X1 = I: (4c,.1:0 + 2biX2)q(~-'. 
;=0 

Now if we were to cone W* to the set (W*, P) where P is a point not on the 
hyperplane X3 = 0 we would have q2 points of an ovoid of the 72(C) defined 
with conic 4XOX1 = X? However we wish to have an ovoid of the 72(C) 
defined by the conic XOX1 = X? and so we use the map 'Ii) that takes 



Xo f---+ Xo 
Xl f---+ Xl 
X 2 f---+ ~X2 
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and maps the subspace W* to the subspace 

{(x,F(x,y),y) I x,y E GF(q)} 

where 
n-l 

F(x, y) = 2) -CiX + biy)q;-i. 
i=O 

We take the point P to be the point (0,0,0,1) so that the set 

{(x, F(x, y), y, 1) I x, y E GF(q)} 

is a set of q2 points of an ovoid of T2(C). We apply the isomorphism ¢-l 
from the previous section to give the explicit points of an ovoid of Q(4, q) 
that comes from the semifield flock defined by the functions J and g, 

(] = {(x, F(x, y), y, 1, y2 - xF(x, y) I x, Y E GF(q)} U {(O, 0, 0, 0,1)}. 

6 Correspondence Between the Commutative Semifield 
and the Flock 

In this section we look at the correspondence between the commutative semi
fields of rank 2 over their middle nucleus and the associated semifield flocks. 
This is a proof of Theorem 6. 

Let S and oS be commutative semifields of rank 2 over their middle nucleus 
GF(q), q = pn, constructed from the pairs of functions (I,g) and (j,g) 
respectively. The functions J, g, j, fJ are linear over GF(p) so we can write 
them as 

n-l n-l 

J(x) = L Ji XPi , g(x) = L gixPi , 
i=O i=O 
n-l n-l 

j(x) = LjiXPi, fJ(x) = LfJixPi. 
i=O i=O 

Let us assume that there exists a one-to-one GF(p)-linear map H from S to 
oS and a one-to-one linear map F from S to oS such that 

((x, y)(u, v))H = ((x, y)F).((u, v)F) 

for all (x,y) and (u,v) E S. Expanding the left-hand side we get 

((x, y)(u, v))H = ((xv + yu + fJ(ux), yv + j(ux))H 
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~ (~h;(XV + yu + g(ux))"' + ~ m,(yv + j(ux))P', 

~ k,(xu + yu + !i( UX))p' + ~ I, (yv + j( ux))") , 

for some hi, mi, ki and li. Expanding the right-hand side we get 

((x, y)F). ((u, v)F) = (aox + a1Y, ;3ox + ;31Y)· (aou + a1V, ;3ou + ;31V) = 

(2ao;3oxu + 2aI!31yv + (a0;31 + a1;30) (xv + yu)+ 

g((aox + a1y)(aOu + a1v)), 

;35XU + ;3ryv + ;30;31 (xv + yu) + f((aox + a1y)(aOu + a1v))) , 

for some ao, aI, ;30 and ;31. Equate the coefficient of (YV)pi to get 

(i > 0) mi = aipi gi (i = 0) mo = 2a1;31 + aIgo, 

(i > 0) li = aipi fi (i = 0) lo = ;3r + aUo. 

Equate the coefficient of (yu )pi to get 

(i > 0) hi = (aoadpigi (i = 0) ho = a0;31 + a1;30 + aoa1go, 

(i > 0) ki = (aoa1)pi fi (i = 0) ko = ;30;31 + aoado. 

Equate the coefficient of (xu )pj to get 

n-1 n-1 
" "A 2

j (j > 0) 6 hi!h-i + 6 mdj-i = al gj, 
i=O i=O 

n-1 n-1 "A" A 2 (j = 0) 6 hi9n-i + 6 mdn-i = 2ao;30 + aogo, 
i=O i=O 

n-1 n-l 

(j > 0) L ki!h-i + L ldj-i = a~pj fj, 
i=O i=O 

n-1 n-l "A "A 22 (j = 0) 6 kign- i + 6ldn-i =;30 + aofo, 
i=O ;.=0 

where all indices are taken modulo n. Substitute the expressions for the hi, 
mi, ki and li in the previous four equations and get the equations Aj for 
j = 1, ... , n - 1 

i=O i=O 



the equation Ao 

20:0,130 + 0:6go, 

the equations Bj for j = 1, ... , n - 1 

n-l n-l 
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L (0:00:1 )pi fdh -i + !3o!31rh + L o:ipi fdj -i + !3i jj = o:~pj fj, 
i=O i=O 

and the equation Bo 

i=O i=O 

N h ~n-l A tpj d ~n-l B tpj • ow t e sums L..j=O j an L..j=O j gIve 

and 

The functions f and g are additive and so these equations can be written as 

and 
f( -0:6t + o:U(t) + O:lO:Og(t)) = !3gt - !3U(t) - !30!3lg(t). 

Put U = -0:5t + o:f}(t) + 0:00:19(t) and rewrite the above equations in matrix 
form as 

The matrix is an element of the stabiliser group of the quadratic cone defined 
by the equation 4XOXI = xi with vertex (O, 0, 0, 1). Dualising as in the 
previous section this implies that there is an element of the stabiliser group of 
the quadratic cone defined by the equation XOXI = xi with vertex (O, 0, 0,1) 
that maps the set of planes 

{tXo - j(t)Xl + g(t)X2 + X3 = 0 It E GF(q)} 
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to the planes 

{UXll - J(u)X1 + g(IL)X2 + X3 = 0 III E GF(q)}. 

The converse argument works following the above argument in reverse. 
Note that the determinant of the matrix is -(nllf11 - CtdJo)3 and the deter
minant of map F is 1l0,[)1 - iYl!30. Therefore F will be a non-singular map 
and hence H will be non-singular too. 

7 q-clans and Translation Generalised Quadrangles 

A q-clan is a set {At It E GF(q)} of q two by two matrices with entries from 
GF(q) with the property that the difference of any two distinct matrices is 
anisotropic. i.e. 

T n(At - As)n = 0 

,5 =I- t implies a = (0.0). A q-clan is additive if At + As = At+s. 
Consider the set of matrices 

{( t g(t) ) } 
O-J(t) ItEGF(q) 

where J and g are linear over some subfield GF(qo). Let (v, IL) be such that 
(v, IL)(At - A8 )(v, uf = 0, 8 =I- t. It follows that 

(u, IL) (~ ~j(l)) (v, uf = 0 

where z = t - 8. This implies that zu2 + uug(z) - 1L2 J(z) = 0 and z =I- O. 
If either 11 = 0 or v = 0 then (v. 1') = (0,0). Ifu =I- 0 then making the 
substitution z = v lu 

zw2 + wg(z) - f(z) = O. 

If this quadratic has no solutiomi for w, z E GF(q) and z =I- 0 this set of 
matrices is a q-clan. However this is the same condition as in Theorem 2 and 
so to a commutative semifield of rank 2 over its middle nucleus GF(q) there 
is an associated additive q-clan. The following theorem is from [21]. For the 
definition of an egg sec Section 3. 

Theorem 11. The set {At It E GF(q)} of 2 x 2 matrices over GF(q) is an 
additive q-clanif and only if the set [; = {E, I , E G F( q)2 U {oo}}, with 

E, = {(t, -rAnT, -r(At + An) It E GF(q)}, 

Eoc = {(O, t, 0, 0) It E GF(q)}, 

and tangent spaces T[ = {TE-y I, E GF(qJ2 U fool}, 

TEo = {(t. (hT + ,AT ,T. (J) It E GF(q), (3 E GF(q)2}, 

TE~ = {(O, t, (J) It E GF(q), (J E GF(q)2} 

is an egg of PG( 471 - L go) where q = qQ'. 
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The construction of a generalized quadrangle T(E) in Section 3 from an egg E 
implies that from a commutative semifields of rank 2 over its middle nucleus 
one can construct a generalized quadrangle of order (q, q2). This is a special 
case of a more general construction of generalized quadrangles due to Kantor 
[17]. If a generalized quadrangle 9 has an abelian collineation group that acts 
regularly on the points not collinear with a base point P while fixing every 
line incident with P then 9 is called a translation generalized quadrangle. The 
following theorem is from [23, (8.7.1)]. 

Theorem 12. The incidence structure T(E) is a translation generalized 
quadrangle of order (qn) qm) with base point (00) and conversely every trans
lation generalized quadrangle is isomorphic to a T(E) for some egg E of 
PG(2n + m - 1, q). 

For more details and other results concerning eggs and translation generalized 
quadrangles refer to [20] or [21]. 

8 Concluding Remarks 

It was the intention of this article to show how useful pairs of functions f 
and g from GF(q) ----) GF(q) linear over a subfield with the property that 
g2(X) + 4xf(x) is a non-square for all x E GF(q)* are. Of course it would be 
of great interest to have more examples. The recent geometrical construction 
of the Penttila-Williams ovoid by Cardinali [9] from a Cohen-Ganley Thas
Payne flock and a Dickson Kantor Knuth flock gives hope that there may be 
a geometrical way to construct new examples. 

The fact that the set W is a subspace of rank n contained in the internal 
points of a conic is not necessarily required in the hypothesis of Theorem 8. 
The theorem only requires that W contains a subplane. One might expect 
that a much stronger bound should hold in Corollary 1 and Corollary 2 if 
one could utilise the fact that W is a much larger subspace for n ~ 4. 

We have seen that the functions f and g allow us to construct not just 
a commutative semifield of rank 2 over its middle nucleus but other semi
fields as well. A geometrical explanation of these semifields (including the 
commutative semifield of rank 2 over its middle nucleus) will appear in [6]. 
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Abstract. The purpose of this paper is to design a private key cryptosystem that 
uses error correcting codes in an efficient way. 

A secret key variant of the McEliece public key cryptosystem [5] was introduced 
by Rao and N am in [7]. 

One of the practical drawbacks of the Rao-Nam system is that it needs to keep 
in memory the set of error vectors and syndromes in order to remove the errors in 
the decryption process. 

Our proposal is to use the product of random error-correcting linear codes, and 
to take advantage of the product structure in order to tag the positions in error. 
The cryptosystem we present will have two main advantages: 

• There are no memory requirements. 
• The decryption process is easy. 

1 Introduction 

The well known McEliece Public Key Cryptosystem (PKC) (see [5], [1]) is 
based on error correcting codes. The private key of each user of the system 
is the generator matrix G of a linear [n, k, d] code with a good decoding 
algorithm (in the original proposal by McEliece it was a binary classic Goppa 
code), which is disguised as G' = SGP, where S is an invertible matrix and 
P a permutation matrix. G', being the generator matrix of a linear code 
with the same parameters as the one generated by G, but supposedly hard 
to decode, is the public key of the user. The sender encrypts a k-bit message 
vector m into an n--bit ciphertext vector c as 

c = mG' + e 

where e is a random n-bit error vector of weight less than or equal to the 
correcting capability t. 

Jordan [4] and Rao [6] propose to use the same idea for a private key 
cryptosystem (by also keeping G' secret). They at first thought that it would 
allow a drastic reduction in the size of the keys used. Nonetheless, as van 
Tilburg points out in [8], the small weight of the error-vectors permits, by 
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means of an easy Majority Voting (MV) analysis, the recovering of the G'
matrix (bringing the problem back to McEliece's PKC but with an easily 
breakable parameter size). 

The only case in which the MV attack is not successful is when the average 
weight of the error vectors is 71,/2 in the binary case (n(q - l)/q in the q-ary 
case). That kind of error vectors is beyond the correcting capability of any 
linear code. To overcome the problem, Rao and Nam in [7] propose choosing 
the error vectors among the elements of a (secret) set Z of predefined error 
vectors of average weight 71,/2 and each with a different syndrome. 

The RN-ciphering is as follows: y = (xSG + z)P, z E Z, and Sand P 
as above. At the deciphering end the user computes y' = yP- 1 and the syn
drome of y'. Looking up in the syndrome-error table (Z, HZT) he identifies 
z and removes it. 

The two main drawbacks of RN-system are the linearity of the whole 
process and the need to store in memory, as part of the key, the syndrome
error table, which in practice results in a limited size of such table. 

Struik and van Tilburg, in [8], take advantage of both features pointed out 
before and cryptanalize the equivalent scheme y = xG + z (let us note that 
the matrices S, P do not playa relevant role in the RN-scheme because it does 
not make use of any actual decoding algorithm for G). That cryptanalysis 
relies strongly on the fact that in the binary case the sum of two encryptions 
xG + Zl, xG + Z2 of the same plaintext x is an element Zl + Z2 E Z + Z, 
and this, together with the limited size of Z (limitation forced by the need 
to store Z), allows the breaking of the system. 

To avoid that kind of attack, which makes use of the linearity of the 
cryptosystem, Struik and van Tilburg propose a modification consisting of 
breaking the linearity by means of introducing invertible non-linear functions 
fs indexed by the syndrome, that scramble the space of message vectors. 

Still that system has the other weakness, namely, the need to store the 
syndrome-error table. Making use of the limited size of the set of error vectors 
Z, it can be broken as Barbero and Ytrehus show in [2]. 

Hence, in order to build a secure Rao-Nam-like cryptosystem one should 
fight against both characteristics at once. 

Assuming that the problem with linearity is already solved in the way pro
posed by Struik and van Tilburg, we still need to design a system in which 
the errors used must have enormous average weight on the one hand, but on 
the other hand they must be in some sense correctable by the code so that 
there is no need to stem' them and, on a third hand, the total number of dif
ferent errors used must be large enough to avoid attacks like that of Barbero 
and Ytrehus that make use of the feasibility of retrieving all cryptograms 
associated to a given plaintext. 

All together it seelllS an impossible task, since random errors of enormous 
weight are non correctable by a linear code, but here we can make use of an
other characteristic of the system, that is, the errors do not appear randomly, 
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but are introduced on purpose by the sender, hence he can control the type 
of errors introduced. Now the idea is to use some family of codes that can 
correct errors of enormous weights provided they have a certain structure. 

This paper presents a variation of the RN system that can solve the 
problem. We propose the use of some nice properties of the product codes in 
order to be able to avoid the need to store any set of errors. The idea is to 
make use of the structure of a product code in order to remove certain errors, 
that can be of considerably high weight, provided the errors satisfy certain 
conditions. The errors do not need to be stored since they can be generated 
randomly, just paying attention to satisfying the required conditions, and 
this can be done by a simple checking. Also the codes used as factors do 
not need to be of any special kind, since we do not need to use them for 
actual decoding. Hence random linear codes can be used, paying attention in 
principle only to their lengths and dimensions. 

Besides, the total number of errors for suitable parameters can be made 
large enough so as to make computationally infeasible attacks like that of 
Barbero and Ytrehus, described in [2]. 

Regarding the problem with linearity, we follow the idea used by Struik 
and van Tilburg. 

The only practical problem that affects this system is the fact that, as we 
will see later, the information rate can be poor, that is, the plaintext will in 
general experiment a large expansion before being sent through the channel. 

The paper is organized as follows. In Section 2, we give the definition 
and some properties of product codes as well as some results, both of general 
linear codes and of product codes, that will be used in the design of our 
cryptosystem. Section 3 contains the description of our scheme together with 
a small example to illustrate it. Section 4 is for some considerations about the 
cryptosystem presented, specially regarding the set of errors used and also 
some suggestions about the choice of parameters in order to achieve good 
performance of the system. The last section is for the conclusions. 

2 Product Codes 

Let C1 and C2 be two linear codes over the finite field F q with parameters 
(11,1, k1' dd and (11,2, k2' d2) respectively. The definition of the product code is 
as follows: 

Definition 1. The product code C of C1 and C2 , denoted C1 ® C2 , is the set 
of all the n1 X 11,2 matrices over F q , whose columns are in C1 and whose rows 
are in C2 • 

The set so defined is itself a linear code over F q, with parameters 
n = n1n2, k = k1k2 and d = d1d2. 

If G1 and G2 are generator matrices of C1 and C2 respectively, then the 
Kronecker product matrix G = G1 ® G2 is a generator matrix of the product 
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C. However, not every generator matrix of G can be expressed in this way. 
It should also be remarked that the property of being susceptible to being 
expressed as a product code is not invariant under equivalence, that is to say, 
an equivalent code of a product code does not have to be a product code (See 
[3]). 

Thus, a permutation P of the columns of a generator matrix G of a 
product code of sufficiently large length, plus a change of basis (i.e. taking 
G' = SGP) will make the recovering of the original factorization of the given 
code infeasible. 

Remark 1. For words of a product code of length 71, = 71,171,2 we will denote the 
coordinates or positions with just one index 1 ::; j ::; 71" or with a pair (i, j), 
1 ::; i ::; 71,1, 1 ::; j ::; 71,2, depending on whether we are considering the word 
as a vector of length 71, or as a matrix of size 71,1 x 71,2. This will be clear from 
the context and we hope it will not lead to confusion. 

Also, to pass from one notation to the other is immediate, since we will 
always consider the same deterministic way of passing from an n-vector 
to an 71,1 x n2 mab'ix and viceversa. Namely, the vector will be split in 71,1 

consecutive portions of length 71,2 and these will be placed one under another 
as the rows of an 71,1 x n2 matTix. and reciprocally, the rows of an n1 x 71,2 

matrix will be placed consecutively one after another to fOTm a vector of length 
n. 

As has already been said, the product code C = C1 @C2 is a linear code and 
consequently it has a correcting capability t = [(d1d2 - 1)/2]. Nonetheless, 
its structure of product code enables the correction, and specially in the case 
that interests us, the detection and location of error configurations of weight, 
in most cases, much larger than its capability as a linear code. 

In what follows supp(v) will denote the support of a vector v, that is the 
set of coordinates ill which v is not zero. In the same way we will denote the 
support of a matrix. 

We will make use of the following result: 

Theorem 1. Let Y = X + E be the Teceived wOTd (matrix), wheTe X E C is 
the sent word. 

When the error matrix E is such that none of the non zero columns of E 
is a codeword of C1 and none of the non zero rows of E is a codeword of C2 , 

then thf. f.rrOT E ran bf. lora ted, in the 8f.nSe that the minimum rectangle of 
positions R such that R :-2 supp(E) can be determined. 

Proof. Let Hi be a parity check matrix for the code Ci , i = 1,2. Taking into 
account the hypotheses that the error matrix E satisfies, we have that H 1Y 
shows the columns of Y affected by errors, and analogously Y Hi shows the 
rows of Y that have errors. Hence we can determine the minimum rectangle 
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of positions, R. that contains the support of E as follows, 

{ 
ith row of Y Hi is non zero } 

R = (i,j) I and 
j-th column of H1Y is non zero 

It is well known that a certain set of positions J = {jl, ... , j d that are 
information positions in a generator matrix C of a linear (n, k)-code C ( i.e., 
such that the matrix CdJ), formed considering the columns corresponding 
to the positions in J, has rank k), can be taken as information positions 
in any other generator matrix C' of the same code C. Hence, one can talk 
about information positions (or coordinates) in a code C as those that are 
information coordinates in any generator matrix of C. 

Another well known fact regarding linear codes is that the information 
positions determine any codeword. Therefore, given a a linear (n, k )-code C 
over F q' if e E F~, e i Q, is a vector such that {I, ... , n} \supp(e) contains 
k information positions in C then e tf. C. This is clear because any codeword 
which has zeros in a set of information positions can only be the all-zero 
word. 

Now, more specifically about product codes, let us recall some facts that 
we will use in the sequel. 

We will call the next one lemma in order to refer to it more easily when 
we need it. 

Lemma 1. Lei C k ; be an invertible matrix of size ki' i = 1,2. Then the 
Kronecker product Ch, Xk2 = Ch, ®Ck2 is invertible and C k,\k2 = Ck,l ®Ck21 

As a consequence of the previous result one can see that the product of 
information positions for the factor codes will give a rectangle of information 
positions for the product code. 

3 The Proposed Scheme 

Let Ci , i = 1,2, be linear codes of parameters (ni, ki ). These codes do not 
need to be "good" linear codes in the usual sense, in fact we are not going to 
use any of the main characteristics of good codes, like the minimum distance 
or the existence of a good decoding algorithm. In fact we can even generate 
these factor codes in a random way by simply taking two matrices Cil i = 1,2 
with the corresponding sizes and ranks. Let C be the product code C = C1 ®C2 

with parameters n = nln2 and k = klk2 and let C = C 1 ®C2 be a generator 
matrix of C. We also choose matrices 5, P as in the McEliece PKC, that is, 
5 is an invertible scrambling matrix of size k and P a permutation matrix of 
size n. The role played by these matrices here is to hide the product structure 
of C. Finally let us denote by Hi a parity check matrix of Cil for i = 1,2. 
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Encryption: Let rn be the c1eartext, a vector oflength k1k2 over F q' Let E be 
a 111 x 112 error-matrix with support contained in a rectangle R as in the 
setting of Theorem 1 and such that the complementary of the positions 
in R contains k1 x k2 information positions. This can be constructed as 
follows. 
Supposing we first want to choose the rows with errors, then we can 
proceed in the following steps: 

• Choose k1 information positions I = {iI, ... ,ik1 } in G1 . 

• Choose a vector e1 oflength 111 and such that supp( e1) ~ {I, ... ,11I} \I 
(note that this guarantees that e1 H '[ -I Q). 

• Choose another vector e2 of length 112 such that e2H! -I Q. 

• Construct E = ei ® e2 

Analogously one could start by choosing the columns with errors and 
by exchanging the roles played by rows and columns in the description 
above. 
Let us note that this gives us a very simple procedure to construct errors 
that verify the hypotheses needed in Theorem 1. But still many other 
error matrices that meet the required conditions can be constructed by 
slightly modifying the above procedure, that is, choosing, for instance, a 
set I = {iI, ... , ik1 } of k1 information positions in C1, and then placing 
random non zero values in any random set of positions (i, j) chosen among 
those with i rt I. Finally use H2 to check that every non zero row of the 
error matrix is not a codeword of C2 • In case some row turns out to be a 
codeword just make a new choice of values for the positions in that row 
until the resulting 112-vector is not a codeword of C2 • 

E can now be written as an 111112 vector e just by putting the rows one 
after another. 
The ciphertext will then be 

c = (fR(rn)SG + e)P 

where fR is a non linear invertible function fR : F~lk2 ---t F~lk2 indexed 
by R. Such a function can consist, for instance, of a permutation of the 
elements of F~l k2 depending on the positions in R. 

Decryption: 

• The receiver starts by computing c' = cp~l = fR(rn)SG + e. 
• The next step is to write c' as a matrix C' of dimensions 111 x 112 as 

explained in the remark in the previous section. 
• Determine the rectangle of errors R as in the proof of Theorem 1. 
• Next choose k1 x k2 information positions in G outside R and compute 

the inverse of the submatrix Gk1 Xk2 corresponding to the columns of 
G in those positions. The way in which E was generated, guarantees 
the existence of k1 x k2 information positions outside R. It is also 
clear that c' and fR(rn)SG coincide in all the positions outside R, 
and hence coincide in the positions corresponding to G kl X k 2 • Then 
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fR(rn )SG!,:, Xk2 will be computed by simply sdecting the coordinates 
in (i in the corresponding positions . 

• Compute fR(m)SG!.:, Xk2G!;'\'2S-1 = fR(m) . 
• Finally rccoverrn as fn \lR (m)). 

Let us point out lIOW sOllie characteristics of the design of the cryptosys
tem: 

l. As we remarked previously, the factor c()(lt~s C1 and C2 can be chosen 
randomly, just payillg attention to their lengths and dimensions in order 
to achieve suitahle parameters of the product code in the way we will 
precise jwlmv (see Section 1). 

2. The private key the users llecd to exchange consists of the matrices G1 

and G2 , the matrix S and the permutation P. The matrix G and the 
parity check matrices HI and H2 can be cOlllPuted froIl! Gland G2 . 

The two legal users do not even llCcd to arrive to the samc parity check 
matrices. since they only need to use them to characteri",e which vectors 
are in the corresponding factor codes. so any parity check matrix Hi will 
work. 

:3. There is no need to store any set of errors. In the first procedure described, 
the -factor' errors ('1 awl e2 can be generated randomly after selecting the 
set I, and therl. checking whether they verify the required conditions or 
not can be done llluitiplying b.v the corresponding parity check matrix. 
In case the vector e i does not verify ei HT # Q it can be rejected and 
another e i can be generated randomly until one is fOlllld that verifies 
thc condition. III the more gelleral procedure, describcd afterwards, the 
checking mnst be dOll(' oyer all the non z:ero rows (or columns). 

4. The choice of k1 x 1.:2 information positions in G and the computation 
of the illnen-;p of Gk , Xk2 is dOllc according to Lelllma 1. Hence the com
putational ('olllplexity of those parts of the encryption and dccryptioll 
processes depends on the parameter" 711,712, kl and k2, and not on the 
parameters nand k. 

3.1 Example 

Here we give a little example to illnstrate the processes of encryption and 
decryption with our cryptosystem. The parameters llsed in the example are 
small to allow a fnll description of the whole system in a limited space. but 
do not pretend to be suggcstions for the si",c of the parameters in a real 
application. For that we refer the reader to the llcxt SC('tiOll. 

In our example we will consider over the field F2 the codcs C1 and C2 

generated b.y the following matrices: 

, [110l] 
(q= 0111 [

11000] 
awl G2 = 0 1 0 1 1 

() () 1 () 1 
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The product code C will have parameters n = 20 and k = 6 so the rate is 
aproximately 1/3. 

\Ve will consider any couple of parity check matrices HI and H 2 • for 
instance: 

[ OIOl] . [00111] 
HI = I] 1 0 ane! H2 = 1 1 1 0 1 

The generator matrix of the product. code is G = G1 G2 . 

\Ve will take also the scrambling matrix 

And a permutation 

11(J000 

011000 

001010 

000100 

000011 

000001 

P = (2.15.12.14.5.4.3.10.8,19.16,7.6,18.17,11,1. 13,20,9) 

Now recall that the actual private key is GI , G2 • 5 and p. hence the total 
size of the key it) 8 + 15 + 36 binary symbols to represent the matrices G 1, G2 

and 5, and 69 bits to represent a permutation of order 20 (Sec [2]). 
Now suppose Alice wants to send the message Tn = (1.1. 0, L 0, 1). 
Encryption: 

• First she chooses an error vector e 1 of length 4 whose support leaves 
out kl = 2 inforlllation pm;itions of C1 . Since in this case the code C1 

is snch that mrv two positions arc information positions, that means she 
can choose any vector 1'1 with w(ed :::; 2. for instance ('I = (0,1, 0.1). 
Now as e2 she can choose all:-: vector in F~\C2' for instance (;2 = (1. L L 1.1) 
( T H2 (;2 i- Q). 
The error matrix is 

E= 11111 [
000001 

00000 
1 1 1 1 1 

or. written as a vector of length Hi. 

e = (0.0.0.0.0.1.1.1,1.1.0,0.0.0.0,1.1.1.1.1). 

Let us note that 11'( p) = 8 = n/2. 
The IIllllllllll111 rectangle that contains the support of E IS 

R = {(2.1). (2. 2). (2.3). (2.4). (2.5). (4.1), (4,2). (4.3). (4.4). (4, 5)}. 
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• Now suppose that the non linear function fR : Fg ---> Fg is defined as the 
r-th cyclic permutation acting over thc numbers 0,1, .... 26 - 1 (written 
as G-uplcs of binary Humbers), and where T is the sum modulo 26 of all 
the indices that appear in the positions in R (let us remark that we have 
chosen this fmlction here for the sake of simplicity in the example. In a 
real application a 'wiser' choice of fR should be made, considering the 
non linearity and also a reasonably even distribution of its outputs over 
the set F~11,;2). 
In our case T' = 2+1+2+2+·· ·+4+5 = GO and fR(:X;) = x+60 mod 26. 

3 5 rn=(1.1.0.1,0.1)=1+2+2 +2 =43, 

hence 

fR(rn) = 4:{ + 60 mod 26 = 39 = 1 + 2 + 22 + 2.5 = (1,1,1, 0, 0.1) 

• Finally the encrypted text will be 

c = (fR(rn)SG + elP = (1,0.1.1. 0, 0, 0.1. 0, O. 0.1,0,0,1,0,1.1.1,0) 

At the other end Bob receives c and proceeds to decrypt it. 
Decryption: 

• (:' = cp~l = fR(rn)SG+e = (1.1.0.0,0.0.1,0,0,1,0,1.1,1,0,0,1,0,0,1). 

l11000] 
G' = 01001 

o 1 1 1 0 
o 1 001 

Wc will now denote by G i and ('i the i-th column aud row of G' respec
tively. 

• Now Bob will use the parity check matrices to compute the syndromes, 
by colulllns 

and by rows 

Hencc R = {(2, 1), (2.2), (2,3), (2,4), (2,5), (4, 1), (4,2), (4,3), (4,4), (4, 5)}, 
and fR(X) =;r; + 60 mod 26 and so fi11(X) = X - 60 mod 26. 

• The next step is to choose kl k2 = 6 information positions of C outside R. 
To achieve that, Bob should first consider 2 inforlllation positions in C1 

outside {2.4}, so there is only one option, those positions must be I = 
{I, 3}. Then he should choose 3 information positions in C2 . For instance 
J={1.2.3}. 
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Hence 

110000 
010000 
001000 
000110 
000010 
000001 

• The vector fR(m)SG k1 Xk2 (I x J) is the vector oflength III·IJI obtained 
from c' by selecting only those positions corresponding to I x J, so in 
this case 

• 

• And finally 

4 About the Set of Errors. 
How to Choose Parameters 

Let us call [; the set of admissible error vectors in our cryptosystem, that is, 
the set of errors e such that, once written as nl x n2 matrices E, and denoting 
by R = I x J the minimum rectangle of positions such that R:2 supp(E), it 
verifies either 

• {I, ... , nd \I contains kl information positions of C1 and no nonzero row 
of E is in C2 , or 

• {I, ... , n2} \ J contains k2 information positions of C2 and no nonzero 
column of E is in C1 . 

The weight of the error vectors considered in [; is ::; max{ (nl - kl )n2, (n2-
k2)nl}. Large k i will result in acceptable information rates, while small k i 

will allow the use of error vectors of high weight. The introduction of the non 
linear functions f R that scramble the messages fades the immediate threat 
of MV on each coordinate, since it is in principle impossible for the attacker 
to recover, or better, to recognize, encryptions that differ only in the error 
vector used, but still it would be safer to count on the possibility of using 
error vector of high weight in order to avoid other hypothetical attacks that 
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could take advantage of the weakuess that error vectors of low weight might 
suppose. 

Hence, to have a balance between both desirable characteristics one pos
sibility would be to combine two different codes, one with low and the other 
with high rate. 

Also the range of weights that the error vectors can have is wide, and this 
avoids the weakness of having error vectors of constant or almost constant 
weight, which could allow other kinds of attacks. 

Besides, the next lemma guarantees that the error vectors are evenly 
distributed in the vector space F~l "2. which in turn avoids attacks that could 
take advantage of the fact of the error vectors being concentrated in some 
particular coset of the code C. 

Lemma 2. Two different error vectors in £ will always belong to different 
cosets of C 

Proof. Let us consider two error vectors e1, e2 E £, and let us consider the 
corresponding matrices El and E2. Let Ri = Ii X Ji be the minimum rectangle 
such that Ri :;2 supp(Ei ), for i = 1, 2. And suppose that, for instance, h leaves 
out kl information positions of Cl (analogously for 12)' 

Let R = I x J be the minimum rectangle such that R:;2 SUPP(EI - E2)' 

• If {I, ... , Ttl} \I contains kl information positions. Each column of E1 - E2 
will belong to Cl if and only if it is the allzero vector, that is, El - E2 
will belong to C if and only if El = E2 • 

• On the contrary. if {1. ... , nl } \I does not contain kl information posi
tions of Cl . then it is clear that there exists io E 12 \h. And then the 
io-th row of El - E2 will be the io-th row of E2 multiplied by -I, and 
hence, not a vector in C2 . Thus El - E2 cf- C. 

Regarding the cardinality of £, the exact formula cannot be given in 
general since it depends strongly on the factor codes chosen in each particular 
case. But some bounds can be given specially in the case where we do not 
consider all the possible error vectors in £, but only those that result from 
the construction first described in the encryption process in Section 3. We 
will denote by £' the' set of those error vector". 

Let us contiuue with the saIlle notations as before, and consider all the 
possible choice" of ('1 such that the complementary of its support contains 
kl information position" ill Cl . How many different c] can be considered? It 
depends on the particular code C1 we are using; to be precise, it depends 
on how many ways there are to choose kl information positions in Cl . One 
extreme case is that any kl positions in Cl are information. For instance, 

[ 110] the code generated by 0 1 lover F 2 has that property. In that case, for 

i :S nl - 1.:1 • the number of error vector" ('1 of weight i that can be taken is 
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(:~ (q - 1)i, amI the totalll11111bcr of ,'cctors ('1 would be 

and for cach Pl one can choose a vector £:2 with the only condition that 
e2Hi # Q, that is, there are q"2 - qk2 possible choice8 for C2. 

The same call be done exchanging the roles played by ('1 and e2. 
Finally we have to discount the patterns that have been counted twice, 

that is, those of the form eT ('2 where ei leaves out k; information positions 
for both i = 1 and 2, so we have a total number of errors given by 

U(n1. k1,Tl2,k2 ,q) = 

('~ (;J (q -l)}'l"' - q") + (~' (:, (q -l)}q" - 'l") 

C~' (:J (q 1)') C~' (';, (Q-1)') -

~ -D[ C~' (:, (q 1)') (q"'- 'lk')] + D ('In, - qk,) 

On the other ham!, the other extreme case would be that there is only 
one p08sible choice of k i information coordinates in Ci . but this require8 Ci to 
be degenerated. that is, to have some all-7,ero column in its generator matrix. 

P . lie . 1 1 1 11' PL; - k i + 1\ ( rovlc PC i IS not C egCllPratp( . t It' worst case wou c gIve us " j ) q-

l)j choices of a vector (i of weight j whose 8Upport leaves out ki information 

.. F' lilt [IDOD] positlons. or lIlstance. t Ie coe e generatec )y () 1 1 1 corresponds to that 

worst ('a8(,. 

In this case the total number of possible error choices is 

2 

+ II (q"J _q"J) 
j=1 

In a general case the carriillality of the set of possible error vectors [' will 
be 
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\V(, should remark here that ill t he case of using arbitrarily chosen ma
trices. with 110 particular structure. the actual number of possible error vec
tors tends to be closer to the upper bound U(nl. k1 . 712. k2' q) than to the 
lower one £(1/.1. k1 , 112, "'2. q). Just to show a little example, for the matrix 

G1 = 0 1 0 1 0 lover F2 the actual number of choices of error vectors [
110110] 

001011 
whose support. leaves out k1 = 3 information positions is 33, while the best 
case would give 41 different choices and the worst case only 14 different pos
sibilities. 

Nonetheless. the actual cardinality of [. is in general much larger than the 
cardinality of [.'. Just to show a little unreal example, if we consider over F 2 

the codes C1 and C2 • generated by (,\ = G2 = (~) ~ ~ ~ ). we have 1[.1 = 1307, 

while for [.' we have £(4.2,4,2,2) = 108::; ~([.')::; 140 = U(4,2,4,2,2). 
Finally. to illustrate the fact that the set of error vectors can have enor

mous sifle, eWIl for small parameters of the factor codes. let us consider 

[ 125510] 0 1 = G2 = 
012551 

over F 7 . In this case we have 

1[.'1 = U(6. 2. 6, 2, 7) = 5131586304 

and the cardinality of [. will be in fact much larger. 

4.1 The Choice of Parameters 

According to the remarks pointed out ahove, it would be wise to consider 
parameters that allow a large number or error vectors, but taking care not 
to reduce the rate of the code and. consequently, increase the costs too dras
tically. In order to achieve this we would suggest considering a balanced 
combination of field size and rates of the factor codes. 

For im;tnnce, if one of the factor codes has parameters (711, n1 ~ 1), while 
the other has parameters (n2.772/T) we can achieve a code of rate approx
imately l/T. which will allow us thv use of error vectors of weights up to 
n(T ~ l)/T (in case F;;2\C1 contains some vector of weight 712). So, these 
parameters conveniently chosen, together with a suitable field size, can give 
1110 an cnormom; cardinality of the set of errors for each code used aH private 
key, and also a really large number of different private keys to choose with 
the same parameters. which will avoid attacks based on exhaustive search of 
the key used. 

As an example. if we consider over F 16 factor codes of parameters (10,9) 
and (HI, 3) we will obtain a cryptosystcm with rate approximately 1/3. Even 
if we do not conHicler all the possible error vectors, but only those that can 
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be constructed with the first procedure described, we still have that 1£'1 is 
between L(10, 9, 10.3,16) and U(lO. 9.10,3,16), and a simple computation 
shows that these numbers are enormous. Also we remark that the actual 
number of admissible errors 1£1 will be much bigger. Hence an attack like 
that of Barbero and Ytrehus that needs the computation of all cryptotexts 
associated to one chosen plain text will be infeasible here. 

Besides, provided Fig\C1 contains vectors of weight 10 this will give us 
error vectors of weights up to 70. Certainly the average weight will not be 
that high, but still this shows that we can use errors in a window of weights 
large enough to avoid attacks that could take advantage of the weakness 
of using errors of low weight or errors of weight kept constant or almost 
constant. Even when the immediate threat of a majority voting attack is 
now less important since the non linearity of the functions used to scramble 
the space of messages protects against such attack, it should not be discarded 
that the use of errors of low weight can allow some other kind of attack. 

The size of the private key for such a code will be: 10·9·4 bits to store one 
of the generator matrices, 10 . 3 . 4 bits to store the other generator matrix, 
27·27·4 bits to store the scrambling matrix Sand 473 bits to represent a 
permutation P of order 100. Hence the total size of the key is 3869 bits. Less 
than 0.4 Kb to encrypt 1627 different messages. 

And finally, the llumber of different private keys that correspond to that 
particular choice of parameters is the number of different matrices with 
10 columns and 9 rows and rank 9 over F16 times the number of differ
ent matrices with 10 columlls and 3 rows and rank 3 over the same field. 
Just computing the number of 9 x 10 matrices of rank 9 over F16 gives us 
(2::~==o (169 - 16i )) (2::;==0 16i ) and this amounts to 0.5.1023 different matrices 
with those characteristics, and still this number should be multiplied by the 
number of matricet-: 3 x 10 with rank 3 over F 16 . This simple example of a 
possible choice of parameters gives us the idea of the enormous size of the 
set of different private keys that can be chosen by the two parties. This is 
possible precisely because the system do not need of any particular kind of 
code to be used as component of the product. Even those with very poor 
performance as usual linear codes can be used here, since the process does 
not make use of any decoding algorithm in the usual sense. 

5 Conclusions 

We have presented a variation of the Rao-Nam cryptosystem that, with a 
reduced key size, is strong against known attacks that can break the Rao
Nam original cryptosystem and some of its modifications. 

The construction is based on profitting from properties of the product 
codes. 

The only drawback of our system when compared with the previous ver
sions of private key cryptosystems that make use of error correcting codes 
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may be the low information rate that can be achieved in general with our 
system. 

On the other hand, the possibility that product codes offer to locate errors 
very easily when they are placed in some particular configuration, together 
with the idea of leaving free of errors a sufficient number of information 
positions allows us to recover the original message with neither the need to 
use any actual decoding algorithm for the code C nor the obligation to store 
in memory large error-syndrome tables. Also the whole process of ciphering 
and deciphering requires low complexity, since it simply consists of matrix 
multiplications. And for the more complex tasks like inverting some matrices, 
this can be done by means of working with the factor components, so the 
complexity, even in those steps, depends only on the small parameters of the 
factor codes and not on the actual parameters of the product code. 

Also in the last section we have shown how even reasonably small pa
rameters will provide enough number of different private keys, and once a 
particular private key has been chosen, enough number of different error 
vectors to make our system resilient. against attacks that need some kind 
of exhaustive search like those that have been designed against the original 
Rao--Nam system and some of its variations. 
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Pseudorandom Sequences from Elliptic Curves 
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Abstract. In this article we will generalize some known constructions to produce 
pseudorandom sequences with the aid of elliptic curves. We will make use of both ad
ditive and multiplicative characters on elliptic curves. Keywords are: Artin-Schreier 
extension, Kummer extension, elliptic cHr\·e. exponential SUIll, correlation, balance, 
linear recurrencies. 

1 Introduction 

Nowadays, many applications call for random numbers. One of the most 
preferable ways to generate those would be to take a monkey, give him a coin 
to flip. and write down the result of each coin flip. Unfortunately this process 
is quite slow. and we would like a faster way to generate random numben,. 
On second thought, a sequence of nmllbers that appears random would be 
just as good who could tell the difference'? We will call such a sequence 
pseudorandolll. 

Many people have constructed pseudorandom number generators using 
many. diverse methods (sec for example Chap. 5 of [7] for all overview). 
The first study of using linear congruences on elliptic curves to generate 
pseuciOl'ancioIll S('qllcnccs vvas done in [6]. Further results on these generators 
were obtained in [:~.4.8.15]. We will generalize some of these constructions and 
introduce another cOllstructioll using linear recurrence relations on elliptic 
curves. An instance of t his last construction was investigated in [5]. 

2 Some Properties of Elliptic Curves 

As we will usc elliptic curves throughout this article, we will start by fixing 
some notation and giving some elelllentary properties of elliptic curves. V{e 
will denote the Galois field of q dements by IF q and an elliptic curve by [;. 
The group of IF q-ratiollal points on the curve [; will be denoted by [; (IF q) and 
the fnllction fielel of all algebraic cmve C by F( C). or by Fq (C) if we only 
want the fnnctions V'iit h cocificients ill lFq . The algebraic closnre of a field F 
will be denoted b.y F. Scalar lllllltiplicatioll of a point P OIl an elliptic curve 

* This author was supported by STW ill the project 8tmng Authentication Meth
ods. number EvVI.45:36. 
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by n will be denoted by [n]P. We denote the n-torsion subgroup of E(lFq ) by 
E[n]. 

For the following proposition, see p.145 of [11]. 

Proposition 1. Let E be an elliptic curve defined over the finite field IF q' 

There exist numbers k and l such that as abelian groups 

Furthermore, k divides (q - 1). 

We will denote the k and l from the above proposition respectively by 
k(E) and 1(E) or, if we want to stress the field of definition, by k(E, lFq) and 
l(E,fq) respectively. 

Since k = k(E.lFq ) divides q - 1, we see that the multiplication by k map 
from E to E is unramified of degree k2 . Further note that E [k] c E (IF q). 

3 Pseudorandom Sequences 

In this section we will give some basic definitions concerning pseudorandom 
sequences. 

Definition 1. Let S = {s(O), s(I), ... , s(N - I)} be a sequence of elements 
of f q and let a E f~. Denote the characteristic of f q by p. We define the 
balance with respect to a in the following way: 

with (p the pth root of unity exp(27ri/p). Further we define the balance to be 

Bs = max{IBs(a)l}. 
nEIF; 

Now we introduce a similar concept for sequences defined over Z/mZ. We 
will assume that m divides q - 1. Then it is possible to identify Z/mZ with 
(f~)(q-l)/m. Thus there exists a surjective homomorphism of groups Xm : 
f~ --+ Z/mZ. 

If S = {s(O), 8(1) .... , s(N -I)} is a sequence of elements of (lF~)(q-l)/m, 
then we define the balance with respect to a to be 

N-l 

Bs(a) = ~ L (;'m(ns(i)), 

i=O 

with a E f~ and (m = exp(27ri/m). 
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'We now define the autocorrelation of a sequence. 

Definition 2. Let {8(O), 8(1), ... , s(N - I)} be a sequence S of period N 
defined over the finite field IF q' Write p for the characteristic of this field. 
Furthermore, let n. {j E lF~. 
We define the autocondation with respect to nand {3 of a sequence as follows: 

N-l 

( ) _ ~ ~ TrFqIFp(as(i+d)-Bs(i)) 
Cs d, 0', (3 - N L (p , 

;=0 

with 0 :; d < Nand (p = exp(27rijp). For a seqnence S defined over 
(lF~)(q-l)/m we define 

N-l 

( : ,( l . • , .(1) = ~ ~ (Xm(as(i+ d )-!3s(i)) 
5 (. (x, .• J Iv L "m , 

i=(J 

with (m = exp(27rijrn). 

Note that in the above definitioni + d should be read modulo N. Also note 
that for binary sequences this definition amounts to 

N-l 

Cs(d) = ~ ~ (_1)s(i+d)+8(i) 
NL ' 

i=O 

which is the usual definition of the autocorrelation (see for example Chap. 5, 
Sect. 4 of [7]). 

Another useful object is the crosscorrelation of two sequences. It is defined 
as follows: 

Definition 3. Let S = {s(i)} and T = {t(i)} be two sequences defined over 
IF q having the same period N. Denote the characteristic of IF q by p and let 
0:, (J E lF~. We defilH' the CTOS8COTTelation of Sand T with respect to (1 and {3 
by 

N-l 

C .( 1 'J) _ ~ ~ rTrFqlFp(as(i+d)-/1i(i») 
5.7 (,n,!J. - N L "1' , 

';=CJ 

with (p = exp(27rijp) and 0 :; d < N. For sequences Sand T defined over 
(lF~)(q-l)/m we define 

N-l 

C .,(d Cl 3) = ~ ~ (Xm(as(i+d)-/1t(i» 
5.1 •. '. N L Tn • 

';=0 

with (m = exp(27rijm). 

The problem is to find a family of sequences E = {Si Ii E I} such that for 
all i, j E I the crosscorrelations Cs, .5) d, a,;3) are small. 
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4 Pseudorandom Sequences from Elliptic Curves Using 
Additive Characters 

Some generalizations of known constructions of pseudorandom sequences 
from elliptic curves will be givcn in this section. 

Let £ be all elliptic curve riefined over a finite field IF qe of characteristic 
]i. Suppose for now that this group is cyclic of order N and has generator 
P. Let f E f"q' (£) he a function on £ defined over lFqc. We can define a 
pseudorandolll scquence 8 = {s(i)} as follows: 

with 0 :s: i < N. Here Trw", liF" denotes the trace map from lFq' to IF q defined 
by 

2 ('-1 

TrF ,'IF (.r) = .1: + J.. q + :rq + ... + .Tq . 
'1 !J 

We see that the conriition that £(lFqe ) is a cyclic group is a natural one, since 
we need all ordering of thp points in £ (IF qe ). In the literature this assumption 
is often made. J\Ioreover, the field lFq is usually assumed to be lFp . We will 
remove both restrictions. First we need some definitions. 

Definition 4. Let C be an algebraic curve of genus 9 defined over lFq . Let 
f E f"q (C) be a rational function on C defined over IF q as well. We define 
CAS (J.lF q) to be the set of all lFq-rational points Q on C such that there 
exists agE f"q(C) (depending on Q) with the property that f - 91' + 9 is 
defined at Q. 

Note thai for every function f E f"q(C) and point Q E C(lFq ) there exists 
a function 9 E f"q (C) such that either Vq (J - gp + g) :::: 0 or vQ (J - gp + g) < 0 
and p ~ l)Q (J - .rl + g). \Ve define TIIQ = -1 ill the forIller case and mQ = 

-VQ (j - Il' + g) in the latter. Of comse TnQ depends on f as well. When 
we want to make this cxplicit we will write TnQ(f) imltead of mQ. For more 
detail:" see p.1l4 of [12]. 

Also obserw that the quautity TrF"iFl'((J - gP + g)((2)) does not depend 
on 9 as long as the function f - gP + 9 is defined at Q. This is why for 
Q E CAS(J, lFq ) \,.(' will write TrJFqIFJl(Q)) for this quantity even if f itself 
is not defined ill CJ. 

\Ve will now clefilH: the sequcnce we want to :-;tudy. 

Definition 5. Let £ bc an elliptic clll"ve defined over lFq,. Suppose that P 
is a gcnerator of the group [k (£, IF q' )] £ (IF (1') and denote its orcler by N. Let 
f E f"q' (£). \Yc define the sequCllcc SAS(J, F) = {,~(i) }U:::;i<N by 

8(1) = TrF'I' IF" (J([i]F)). 

Here we use the convention that TrF'l' wJl( C2)) = 0 if Q rf. [AS (J, IF q' ). Of 
course this sequcnce depends on the elliptic curve as well, but we do not make 
thi:-; explicit in the notatioll. 
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Note that in the above notation N = 1([, IF qe) and that if [(IF qe) is cyclic, 
we are back in the situation that has already been studied in the literature 
[4,15]. 

From the point of view of coding theory we do not need an ordering of 
the points in [(IF qe ). In this case any change of ordering gives rise to an 
equivalent code. Indeed there is in that case no need of restricting oneself to 
elliptic curves. The resulting codes are called trace-codes. They have been 
studied in for example Chap. VIII of [12] and [14]. 

Before we give SOUle estimates for the parameters of the pseudorandom 
sequences defined above, we need some theory. The key to the results is the 
proposition about the following exponential sum. 

Definition 6. Let C be an algebraic curve defined over IF q' Let f E Fq (C). 
We define the following exponential sum: 

with (p = exp(27ri/p). 

We will now give a known upper bound for this exponential sum. 

Proposition 2. Let C be an algebraic curve of genus g defined over IF q' Let 

f E Fq (C) and suppose that f -=I- zP - Z for all z E F( C). Then the following 
holds: 

IESAS(C, f)1-::; (29 - 2 + ~ (mp + 1)) ;q. 
PEC(lFq) 

Proof. This proposition was proven in [2,8,15]. We give the gist of the proof 
for the convenience of the reader. We can rephrase the proposition by consid
ering the curve D defined over IF q whose function field is given by Fq (C) (z) 
with zP - z = f. Denote its genus by h. The L-function of D is the product 
of the L-function of C with the following p - 1 expressions (1 -::; i -::; p - 1): 

(
'" Te '" riTrWqe IFP(Pl) 

exp ~- ~ '-,P . 

e2:1 e PEcAS(j,lFqel 

As a matter of fact the above expressions turn out to be polynomials. By 
Hasse-Weil's theorem these polynomials have roots of length 1/;q and hence 
we find for all e 2:: 1 

Tr,' "I" (P) 2(h - g) R r 'q 'I' < qe. 
'-,p - 1 p-

PECAS(j.lF,,, ) 

Using the theory for Artin-Schreier extensions we can find an explicit expres
sion for the genus h (see for example Chap. III, Sect. 7 of [12]). This leads to 
the upper bound given in the proposition. 
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\Ve will limv apply the above result to give an estimate for the parameters 
of the sequences SASU. Pl. 

Lemma 1. Let E be an elliptic curve defined over the finite field IF' q' of char
actcTistic p. Set k: = k( E. IF' q")' FUTtherrnore, let f E Fqe (E) be a function and 
P be a generator of the gmup [k]E(Fq')' 

iIuppose that for all :: E F( E) the relation zP - z f:: f 0 [k] holds and that 

Then BSAS(f.F) is bounded from above by 

~ (N - 1f(£ASIf 

with N = #(P). 

) n \P)) + k(~)2 'I)rnQ(f 0 [k]) + 1)#) . 
Q 

Pmo.f. Denote by,,) the sequencE' {TrlFqelJF''lU(Q))} with Q E EASU,IFqe) n 

\P). Further denote by T the sequence {TrJF'qe IJFq U 0 [kj( Q))} with Q E [ASU 0 

[kJ, IF' q')' We know that EASU 0 [k].IF' q') = [All ([AS(j, IF' q') n (P)). Hence, 
for each point R in [AS U.IF' q') n (P). there exist exactly A;2 points Q in the 
set [ASU 0 [k].IF'q.) sHch that [k]Q = R. Hence for any a E IF'; 

Hence 

Br(et) = Bs(o:). 

Since 

we see that an upper bound for BT ( (} ) results in an upper bound for B BAS (f,P)' 

Howl'ver. sincl' #[ASU 0 [k], IF'q. )Br(ex) = ESAS([ . .f 0 [k]), such an upper 
bound is availahle from Proposition 2. This concludes the proof. 

Note that the technical condition 

is fulfilled if k = 1. A Iso note that the righthandside set is always contained 
in the lcfthandside set. 

We consider a special case of the above lemma. Denote by wdeg(.f (:r:, y)) 
the weighted degree of a polynomial in two variables defined by wdeg(:z;) = 2 
and wdeg(y) = 3. 



Pst'lldorandom Sequt'llces from Elliptic Curves 43 

Theorem 1. Let [; be an elliptic cur'ue defined over' the finite field IF qe of 
characteristic p given by a Weierstrass equation. Let f be a polynomial in 
the coordinate functions :r and y such that degy (f) ::; 1. Further let P be a 
generator of the gmup [k([;)][;(lFq,) and define N = #(P). Suppose that p 
does not divide wdeg(f). Then 'We have 

1 
BSAS(f,P) ::; N (1 + (1 + wdeg(f))R) . 

Note that the above theorem also follows from Theorem 1 of [8] or the 
work of Bombieri [2]. Also note that the condition degy(f) ::; 1 is not a 
real restriction, because we can use the Weierstrass equation to reduce this 
degree if degy(f) :::0: 2. Further note that if this condition is met, we have 
vo(f) = -wdeg(f) with 0 the point at infinity [0 : 1 : 0]. For the proof of 
the above theorem note that [; AS (f. IF q") = [; (IF q') \ {O} and that [; AS (f 0 

[k([;)],lFqe) = [;(lFq,) \ [;[k([;)]. 
In the same way we can investigate the autocorrelation of the sequences 

SAS(f, P). We do this in the following theorem. First we state a lemma. 

Lemma 2. Let [; be an elliptic curve defined over the field IF qe of character
isticp. Let f E :Fq,(E) and choose Ct.j1 E lF~. Write k = k([;,lFqe) and choose 
a generator P of the group [k][;(lFqe) and a number d satisfying 1 ::; d < N 
with N = #(P). Define h E :Fqe([;) by 

h(X) = Ctf(X ttl [d]P) - (Jf(X). 

Denote by S the sequence {TrJFqeIJFp(h 0 [k](Q))} with Q E [;AS(h 0 [k],lFqe). 
Finally suppose that [;As(h 0 [k],lFqe) = [k]-l ([;AS(h,lFqe) n (Pl). We then 
have 

Here 
'" Tr, ,wp(h(Q)) 

c= ~(p q , 

Q 

where the sum is over' points Q such that Q E (P) and Q rf. [;AS(h, lFqe). 

Proof. Note that CSAs(f,p)(d, Ct, (J) = BSAs(h,p)(l). Using similar tricks as in 
the proof of Lemma 1 we obtain the result. 

Using an upper bound for exponential sums we can derive an upper bound 
for the autocorrelation, if some technical conditions are met. More explicitly 
we find the following theorem. in the case that f is a polynomial in the 
coordinate functions. 

Theorem 2. Let [; be an elliptic curve defined over the field IF qe given by a 
Weierstrass equation. Let f be a polynomial in the two coordinate functions x 
and y, such that degy(f) ::; 1. Choose Ct,(3 E lF~. Further choose a generator: 
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P of the group [k(£)]£(lFq,) and a nv,rnber d satisfying 1 ::; d < N with 
N = # (P). Suppose that the characteristic does not divide wdeg(J). We 
then have 

1 
ICSAS(fp) (d, ct, (3)1 ::; N (2 + 2(1 + wdeg(J))R) . 

Analogous to the autocorrelation, we can derive properties about the 
crosscorrelations of sequences. We state some results in the following the
orem. 

Theorem 3. Let £ be an elliptic curve defined over the finite field IF qe of 
characteristic p, given by a Weierstrass equation. Let P be a generator of the 
group [k(£)]£(lFqc) and wr'ite N = #(P). Let hand 12 be two polynomials 
in the coordinate functions x and y such that degy (Jd ::; 1 for i = 1, 2, and 
such that for all (0:, (3) E IF;e \ {(O, On we have p ~wdeg(o:h - 1312). Write 

Sl = SAs(h.P) and S2 = SAS(,hp). For all 0:,13 E lF~ and 0::; d < N we 
have 

1 
ICs j ,s2(d, 0:, (J)I ::; N (2+(2+wdeg(h)+wdeg(12))R), 

unless d = 0 and o:h = /312. 
Proof. This is a straightforward generalization of the proof of Theorem 2. 

We now give an example of a family of sequences having good crosscorre
lations. We assume in this example that the characteristic is 2, since this is 
the most interesting case for applications. 

Example 1. Let £ be an eUi ptic curve defined over the finite field IF 2e. Denote 
by P a generator of the group [k(£)]£(lFqe) and write N = #(P). Let a be 
defined by a = (ao.··· , am) E lF~;1+1 and let Sa be the binary sequence 
SAS(ja, P) with defining function fa = aoy + ... + arnxmy. 
For any number 0 ::; d < N and a, b E IF;+ 1 \ {O} we have 

ICSa,Sb(d)1 ::; it (2 + (2 + wdeg(ja) + wdeg(jb))J2€) 
::; it (2 + (8 + 4m)J2€) , 

unless d = 0 and a = b. 

5 Pseudorandom Sequences from Elliptic Curves Using 
Multiplicative Characters 

We will now give results which are similar to those of the previous section, 
but depend on the use of Illultiplicative characters and Kummer extensions, 
instead of additive characters and Artin-Schreier extensions. Codes have been 
obtained using this approach in [9]. Sequences have been constructed in this 
way using the projective line in [1]. We will construct sequences using elliptic 
curves. 
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Definition 7. Let C be an algebraic curve defined over IF q' Choose 1 < 
m < q -1 a divisor of q - 1 ancllet f E Fq(C). Define CK(f,IFq) to be the 
set of IFq-rational points on C such that there exists agE Fq(C) such that 
vp(f . gm) = 0. 

Note that if ¢ : IF~ -j 'lllm'll is a homomorphism of groups, the quantity 
¢((f . gm)(Q)) does not depend on g, as long as vQ(f . gm) = 0. Hence 
for Q E CK (f, IF q) we will write ¢(f( Q)), even if vQ(f) =I- O. In particular 
we see that the quantity f(Q)(q-l)/m is well-defined for Q E CK(f,IFq). If 
Q tf. CK(f,IFq), we can always find 9 E Fq(C) such that (f. gm)(Q) = 0. 
Hence we define f(Q)(q-l)/m = ° for Q tf. CK(f,IFq), even if f has a pole in 
Q. In the same way we define ¢(f(Q)) = 0 for Q tf. CK(f,IFq). 

Definition 8. Let £ be an elliptic curve defined over IFq . Fix a natural num
ber 1 < m < q - 1 dividing q - 1. Denote by Xm : IF~ -j 'lllm'll some fixed, 
surjective homomorphism of groups. Let P E £(IFq) and f E Fq(£). Define 
SK (f, P) = {s( in by 

s(i) = Xm(f([i]P)). 

We need the homomorphism Xm to define the balance and correlations 
of the sequence SK (f, P) (see Section 3). Note that Xm(f(Q)) = 0 if Q tf. 
£K(f,IFq). 

Example 2. Let IF p be a prime field with p odd. Let (X be a generator of 
the multiplicative group IF;. Let J[X] be a polynomial in IFp[X] of degree 
m. By evaluating this polynomial in all elements (x, (X2, ••• of IF; we obtain a 
codeword from a Reed-Solomon code (RS-code). We obtain a binary sequence 
from this codeword by applying coordinatewise the map X2 : IF p -j 'll/2'll, 
defined by 

{ 
0 if a = ° or (~) = 1, 

X2(a) = . (a) 
1 If - =-1 

p 

If we take for example p = 13, J[X] = X 2 + X, and (X 

codeword 

(2,6,7.7,12.3,0,2,12,4,6,4) 

and corresponding binary sequence 

(1,1,1,1,0,0,0,1,0,0,1,0). 

2 we find the 

As we said before it is possible to obtain codes using this construction. 
This was done in [9]. In that article non-linear codes were found and investi
gated. It is possible to find interesting linear codes as is shown in the following 
example. After the example we return to the study of sequences. 
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Example S. Choose C to be the projective line defined over some finite field IB' q 

of odd characteristic. For M C IB'I! (:e) / (IB' q (x)) 2 we choose the group generated 
by the residue classes of :r - ;3 with (] in some non-empty subset 5 of IB' q' 

Then every element of iI/I has a representative of the form TI6ES(X - .BY# 
with f.j3 E {a, I}. As a vector space over IB'2, the group M has dimension #5. 
Define X2 as in example 2. Evaluating X2 0 f in the set IB' q \ 5 for all functions 
f EM, yields a binary linear code C of length # (F q \ 8). Its dimension is 
less than or eqnal to min( #8, #(F q \ S)). 

Equality need not hold in this equation. Suppose for example that q is a 
square. The evaluation of the polynomial f(X) = XVii + X in an element 
a of IB' q is either zero or a square. To see this note that for a E IB' q we 
have f(a)Vii = f(a), and hence either f(a) = 0 or f(a)(q-l)/2 = l. Hence 
if we choose S = {a E IB' q I a Vii + a = O}, then the polynomial X Vii + x 
will correspond to the all-zero codeword. This means that in this case the 
dimension of the code cannot equal the cardinality of 5. 

Note that. the curve given by the equation y2 = XVii + X has maximum 
number of IB' q-rational points for it.s genus. As a matter of fact the number 
of IB'q-rational points can he seen to be 2q - Vii + 1. while its genus equals 
(Vii - 1) /2. The fact that it is maximal also follows from the fact that it can 
be covered by the Hermitian curve which has equation Y Vii+ 1 = X Vii + X. 
Using the Hasse-Weil hound and investigating the curve y2 = f(X), one 
can show t.hat for sets S with cardinality strictly smaller than Vii, only the 
zero-polynomial can give the all-zero codeword. This means that in this case 
the dimension of t he resulting codes equals the cardinality of the set 5. 

Refining this argument, we see that for the minimum distance d of these 
codes we have the statelllPnt 

q - (#5 - l)(Vii -1) 
d 2: 2 - #5, 

which is a non-trivial lower bound if #8 < Vii, 

In a similar way as in the previous section we give statements about the 
balance, autocorrelation and crosscorrelation of the sequences 5K (f, P). 

Definition 9. Let C be an algebraic curve defined over IB' q' Let 1 < rn < 
q - 1 be a divisor of q - 1 and denote by Xrn : lF~ -+ 'iZ/rn'iZ some surjective 
homomorphism of groups. Let .f E Fq(C). We define the following exponential 
sum: 

( Xm(f(P)) 
111 " 

with (rn = e:rp(2rri/rn). 

For this exponential sum a bound exists similar to that of the exponen
tial sum defined in Definition 6. See for example [9], where similar upper 
bounds are derived. The proof of the following proposition is analagou::l to 
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that of Proposition 2. Instead of Artill-Schreier extensions we use Kummer 
extensions (see for example Chap. III, Sect. 7 of [12]). 

Proposition 3. Let C be an algebraic curve of genus g defined over IF q' Let 
f E Fq(C) and s'uppose that f =I- zl for all z E F(C) and all divisors l > 1 of 
m. Write rp = gcd(m, vp(.f)) > O. Then the following holds: 

The r p occurring in the above proposition are standard in the theory 
of Kummer extensions. When we want to stress the role of f, we will write 
rp(.f). 

Theorem 4. Let £ be an elliptic curve defined over the finite field IF q of 
characteristic p. Let f E Fq(£) be a function and write k = k(£,lFq). Let P 
be a generator of the group [k]£(lFq). Suppose that the polynomial Tm - f 0 [k] 
is absolutely irreducible. Then we have 

with N = #(P). 

Proof. Note that vQ(.f 0 [k]) = V[kJQ(.f) and hence rQ(.f 0 [k]) = r[kJQ(.f). 
Moreover, note that for Q E £(lFq ) we have rQ = m if and only if Q E 

£K (.f, IF q). Hence we see that £ K (.f 0 [kJ, IF q) = [k]-l£K (.f, IF q) n (P). The rest 
of the proof is similar to that of Lemma 1. 

In the following corollary we again use the weighted degree of a polynomial 
in two variables defined by wdeg(x) = 2 and wdeg(y) = 3. 

Corollary 1. Let the notation be as in the above theorem and suppose that £ 
is given by a Weierstrass equation. Suppose that f is a non-trivial polynomial 
of total degree ,1 in the coordinate functions x and y satisfying degx(.f) S; 2. 
Suppose that gcd(wdeg(.f), m) = 1. Then we have 

If we additionally demand ((P) \ {O}) c £K(.f,lFq), we find 

1 
BSK(.f.P) S; N (1 + (3,1 + l)JQ). 
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Proof. This follows from the above theorem by remarking that by Bezout's 
theorem (see for example Sect. 83 of [13]) f has at most 3..1 zeros on E. 
Further note that the point 0 is the only pole f has on E. These zeros and 
poles are the only points Q for which it can happen that rQ < m. Using 
that rQ 2:: 1 for these points Q, the result follows. Note that ra(f 0 [k(E)]) = 
ra(J) = gcd(wdeg(f), m) = 1. Hence the polynomial Tm - f 0 [k(E)] is 
absolutely irreducible by the theory of Kummer extensions. 

Note that it can be useful to rewrite f, using the equation of E, in such 
a form that the total degree is minimal. This explains why we now assume 
degx(J) ~ 2 instead of assuming degy(f) ~ 1 as we did before. 

We will now give some statements about the autocorrelation and cross
correlations of these sequences. We omit most of the proofs, since they are 
analogous to the proofs in the Artin-Schreier case. 

Theorem 5. Let E be an elliptic CUTve defined oveT the field lFq of chamcteT
istic p. Let f E Fq(E) and choose a./3 E lF~. Wr'ite k = k(E,lFq) and choose 
a genemtor P of the gmup [k]E(lFq ) and a number d satisfying 1 ~ d < N 
'With N = #(P). Define h E Fq(E) by 

h(X) = nf(X ED [d]P) - f3f(X). 

Suppose that the polynom'ial TTl! - h 0 [k] is absolutely irTeducible. We then 
have 

Corollary 2. Let the notation be the same as in the above theorem. Sup
pose that [; is given by a WeieT'stmss equation. FuTtheT assume that f is a 
non-tTivial polynomial in the cooTdinate functions of total degTee ..1 satisfying 
degx(f) ~ 2 and gcd(wdeg(f). m) = 1. Then 'We have 

CSK(f,p)(d, a,8) ~ ~ (N - #(EK (h.lFq) n (P)) + (3..1 + 3wdeg(f) + 2)Jq) , 

rr 'We additionally demand ((P) \ {O. [-d]P}) C [;K (h, lFq), 'We find 

1 
C SK (f,P) (d, 0, ;3) ~ N (2 + (3..1 + 3wdeg(J) + 2) Jq) . 

Proof. Again we want to use Bezout's theorem to estimate the number of 
zeros of the function h. Using the addition formula (see for example Chap. 
III, Sect. 2 of [11]) we find that (:r, y) tfl (a, b) can be written as (gl (x, y) / (x
a)2, g2(X, y)/(:r - a)3) with gl (respectively g2) a polynomial in x and y 
of total degree less than or equal to 2 (respectively 3). This means that 
ai( (:r, y) EP (a. b)) can be written as k(:r, y) / (:r - a )wdeg(f) with k a polynomial 
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of total degree less than or equal t () \Hlcg(f). Hence, after IIlultiplying the 
rational fUl1ctioll h wit Ii (.1' - 0) wdq;(f ,I. we gpt a polynomial of total degree 
less than or equal to L1 + wdeg(f). This gives an upper bound for the total 
number of zeros of the fUW:tiOll Ii while its poles are a and -[d]P. The rest 
of the proof is analogous to the proof of Corollary 1. 

Theorem 6. Let E be an elliptic ClLTt'e defined over the finite field lFq of 
characteristic p. T"ci P be (J .r;encTIl.tor of the gnJUp [k(E)]E(lFq) and wTite 
N = # (P). Let.1'1 and h be two functions and choosc n, /) E lF~ as well as 

0. natnral number 0 :S d < N, Write 8 1 = 8 K (h. P) and S2 = SK(h,P). 
Define h E Fq(E) by 

h(X) = nfdX [el]P) - ;Jh(X) 

and suppose that the polynomial Til' - h 0 [k(E)] is absollLtelyirn;ducible. We 
have 

Corollary 3. Let the notation be the same as 'in the above theorem. Supposc 
that E is given by (J WeieTstmss eqlLation. FlLTther assume that hand hare 
non-trivial pol:1J7I.oIr),ials in the coordinate jlLnciions of total degTee L11 and L12 

with L11 :;:, L12 and satish/ing deg,r (f;) :S 2 with i = 1,2. FILTther suppose that 
gcd(wdeg(h),rn) = 1 lfd ic () l1r1d gcd(wdeg(oII - (lh),m) = 1 ifd = O. 
We then have 

If we additionally dem.and ((P) \ {O, [-el] P}) c E K (17, IF q), we find 

1 
CS, ):h (d, 0:, rJ) S; N (2 + (:3L1 2 + 3wdegUd + 2)yiq). 

6 Pseudorandom Sequences Using Linear Recurrence 
Relations on Elliptic Curves 

In this sectioll we will illvestigat.e the balance and tIl(' I)('riod of a family of 
sequences obtained by using linear recurrence relations on the points of E. 

SUPPOSE' that G is a cyclic: subgroup of E of order N generated by a point 
PEE. In this sectioll we will assumE' that N is a prime number. 

Let T(X) = X" + T'1l_1X,,-1 .'. + TO be a monic polynomial of degree 
n> lover ZINZ with gcd(ro, N) = 1 Clwllet n(T, G) he the vector space over 
'1.,1 NZ of bi-infillite sequellces of points ill G that satisfy the linear recurrence 
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relation with characteristic polynomial r(X). This vector space has dimension 
n. 

We suppose from now on that the characteristic polynomial r(X) of the 
recursion is irreducible over Z/ NZ. It is known from the theory of linear 
recurrencies (for example, Chap. 7 in [10]) that if r(X) is irreducible, every 
sequence, apart from the zero sequence, has the same period k(N, r). As a 
matter of fact k(N, r) is the smallest positive integer k such that for every 
root a of r(X) we have ak = 1. 

Define l}/(r, G) to be the set of sequences D(r, G) modulo cyclic shifts. 

Lemma 3. Every point Q E G occurs the same number of times in sequences 
in l}/ (r, G), i. e. the n71,mber of pairs 

# {(i,1/J) IO:S i < k(N,r);1/J(i) = Q;1/J E l}/(r,G)} 

is independent of the choice of Q. 

Proof. Since we demanded that gcd(ro, N) = 1 in the choice of the recursion 
polynomial r and this polynomial has degree n, each sequence in l}/(r, G) is 
uniquely determined by the choice of n consecutive points. Conversely, each 
n-tuple of points occurs exactly once in l}/(r, G) (note that this is modulo 
cyclic shifts). Since each point Q occurs equally often in the set of all n
tuples of points, we have that this is the case in l}/(r, G). 

Let f E Fq , be a function on E. Now look at the sequence SAS(f, P) 
which was defined earlier by 

Furthermore, define the set of sequences l}/j(r, G) by applying the function f 
to each point in each sequence in l}/(r, G), and then taking the trace to the 
ground field lB' q of the result: 

Hence each sequence of points in l}/(r, G) corresponds with a sequence in 
l}/j(r, G). 

Here we use the same convention as before, namely that TrIFqeIIFq(f(Q)) = 

o if Q rf- EAS(f, lB''l')' 

Theorem 7. Choose a point PEE. Let G be the subgroup of E generated 
by P and suppose that its order is a prime N. Furthermore, let r be a monic 
recursion polynomial of degree n whose tail coefficient is coprime to N. Then 
the average balance of a sequence in l}/j(r, G) is the same as the balance of 
the sequence SAS(f, P). 
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Proof. Start by defilling the HeqncllC(, T by concatenating all sequences of 
IjIf(r, G). Since the order of points is not important in the definition of bal
ance and because according to Lemma 3 each point occurs an equal number 
of times, we can reorder the points of T such that we get a number of copies of 
the sequence SAS(f. P). Of course, this is the same sequence as SAS(f, P) it
self. Thus the average balance of sequences in IjIf(r, G) is equal to the balance 
of the sequence SAS(f, P). 

It is well known from the theory of linear recurrencies that the period 
of a sequence can be larger than the group order. So sequences defined in 
the above way can have a larger period than the sequences described in the 
previous sections. But this only applies to the sequences of points on E. The 
next theorem links this period to the period of the generated pseudorandom 
sequence. We still suppose that r(X) is irreducible. 

Theorem 8. Let rand G be defined as in the above theorem. Suppose that 
the order of G is a prime N and that the degree of the recursion polynomial is 
n. Denote by Tf (a) the number of points Q in G for which TrIF qe IIF q (f ( Q)) = a. 
Suppose that all sequences in IjIf(r" G) have period dividing k(N, r)/d. Then d 
is a divisor of gcd(N -k(N, r), Tf(a), N"-1) for all a E lFq \ {TrIFqe IIFq (f( O))}. 

Proof. We know that all non-zero sequences in IjIf(r, G) have as period a 
divisor of k( N, r) / d. Hence the number of times a occurs in the corresponding 
sequences is divisible by d. Write b = TrIF qe IlI<'" (f (0)). Then d divides N"Tf (a) 
with a E lFq \ {b}, and d divides N"Tf (b) - k(N, r). Since k(N, r) divides 
N n - 1, we see that Ii divides gcd(NnTf(b) - k(N, r), Tf(a), N n - 1) for all 
a E lFq \ {b}. Using 2.:=aEIFq Tf(a) = N, we find for all a E lFq \ {TrIFqe IIFq (f(0))}, 
after eliminating Tf(b), that d divides 

gcd(N,,+l - k,(N, 1"), Tf(a), N n - 1). 

The result follows directly from this. 

Example 4. Let E be the elliptic curve defined over lF2 given by the equation 

y2 + Y = X 3 + X + 1. 

Let G be a prime-order subgroup of E(lFq) with q an odd power of 2. Using 
the addition formulas on E, one can derive that for this curve Tx(O) - 1 = 
Tx(l) = (N - 1)/2. Hence, according to the above theorem, we find that d 
divides gcd((N - 1)/2, k(N, r) - 1). Take for example r(X) = X 2 - X-I, 
the Fibonacci-recursion. The polynomial r(X) is irreducible if and only if 
N == 2,3 (mod 5). Assuming this, we find that k(N, r) divides 2N + 2, since 
for any root p of r(X) we have p2N+2 = (p. pN)2 = (-1)2 = 1. Here we used 
that r(X) is absolutely irreducible and hence that its roots are given by p 
and pN. Let us further assume that k(N,r) = 2N + 2. In this case we find 
that d divides 3. 
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of Boolean Functions 

Claude Cadet* 

GREYC, University of Paris IS and INRlA 

Abstract. Cryptographic Boolean fllnction~ must be complex to satisfy Shannon's 
principle of confusion. Two main criteria evaluating, fWIlI crytpographic viewpoint, 
the complexity of Boolean functiolls on Ff have been studied in the literature: the 
nonlinearity (the minimulll Hamming distance to affine functions) and the alge
braic degree. \lVe consider two other criteria: the minimulll numbpf of tenns ill the 
algebraic normal forms of all affinely equivalent functions (we call it the algebraic 
thickness) and the nOll-normality. \lVe show that, asymptotically, almost all Boolean 
functions have high algebraic degrees. high nonlinearities, high algebraic thicknesses 
and are highly non-normal. 

1 Introduction 

Let n be any positive integer. We denote by B" the set of all Boolean (i.e. 
F2-valuecl) functions OIl F2'. We denote by C{J the additions in F2. in F2' 
and in Bn- Every !inolcan function f admits a unique representation (cf. 
[11]) called its algebTaic nOTmal fOTm (A.N.F.) as a polynomial over F2 in n 
binary variables of the form: 

The degn:e of the A.N.F. is called the algebmic degTee of the function. It is 
an affine invariant: the degree of any function .f equals that of any afjinely 
equivalent function f 0 A (A e kmcllt of the general affine group). The Boolean 
functions whose algebraic degrees do not exceed 1 are called affine. 

The Hamming weight of a Boolean function f is the size of its support 
{:x: E F2): f (.1:) = I} and the Hamming distance hetween two functions f 
and g is the Hamming weight of the Boolean function f g. The nonlin
ear·ity lv £(f) of a Booleau fUllctioll f is its minimum Hamming distance to 
affine functions. [t is all affiue iuvariant and can be expressed by means of 
the discrete FouricJ"-\Valsh-Hadamard transform of the function. The discrete 
F(YUrier- Walsh-Hadamard transforTn of f is by definition the integer-valued 

* INRJA Projet CODES, Domairw de Volnceau, BP 105, 7815:3 1,e Chesnay Cedex, 
France 
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function f defiIH'd by 

whereu . :1: denotes the usual inner product u . :r = U1I1 G3 ... EEl UnIn· 

Fourier-Walsh-Hadamard transform corresponds to the expression of f in 
the orthogonal hasis of the so called Walsh functions I f---+ (-1 )u,x. We will 
also have to consider the Fourier-\Nalsh-Hadamard transform of the "sign" 
function Xi = (-l)i: 

xr(u) = 2...: (_l)f(£)ffi ux = 2noo(u) - 2!(u)) 
,rEFll 

where Do is the Dirac symbol (Do (u) equals 1 if u. = 0 and 0 otherwise). We 
have: 

(1) 

Because of Parsevals relation: 

'" ~ 2 () 22n ~ Xi 11 = , 

any Boolean function f in n variables satisfies N £(f) ~ 2,,-1 - 2,,/2-1. This 
upper bound call only be achieved for even values of n. The functions for 
which equality holds are called bent functions. 

In this paper. we are interested in those cryptographic criteria on Boolean 
functions (used in conventional cryptosystems) which are related to Shan
non's principle of cunfusion. This principle [22] has been introduced in 1949 
(with another principle. called diffusion, that we do not study in this paper). 
and since then. its relevance to modern cryptography has always been veri
fied. Concerning the Boolean hmctiom; involved in the cryptosystems (stream 
ciphers, block ciphers). this principle is related to the cornple:rity of the func
tions. The complexity criteria and the corresponding complexity measures 
which arc relevant to cryptography being related to the attacks on the cryp
tosystems where Boolean functions playa role, they are different from those 
used in circuit complexity (s('e e.g. [24]). 

Nonlinearity is the most important of these criteria. It is related to attacks 
on stream ciphers (d. [1]) anel block ciphers as well (d. the linear attack by 
l\latsui [13]). Two ot her criteria play also important role,,: the algebraic degree 
and the num!wl' of monomials in the A.N.F. (i.e. the number of nonzero au's). 
TIll' complexity of the "higher Ol'der differential attack" on block ciphers 
due to Knudsen and Lai [8.D] depends on the highest algebraic degree of the 
Boolean functions inyohwl ill t he system. The linear complexity of a sequence 
generated by several Lincar Feedback Shift Registers (LFSRs) combined by a 
nonlinear function depends on the degree of the function ami 011 the number 
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of terms in its A.N.F. (these parameters condition therefore the resistance to 
Berlekamp-Massey algorithm, cf. [12,20]). The nonlinear functions selected 
for filtered LFSR's must also have high degrees and include many terms in 
their A.N.F.s (cf. [15] page 208). 

As already pointed out by W. Meier and O. Staffelbach in [14], the general 
complexity criteria which are mostly interesting in cryptographic framework 
are affine invariants because the attacks on cryptosystems using Boolean 
functions (e.g. filtered Linear Feedback Shift Registers, block ciphers) often 
work with the same complexity when the functions are replaced by affinely 
equivalent ones. This is why we shall consider an affine invariant related to 
the number of terms, and not the number of terms itself. 

Recall that, asymptotically, almost all Boolean functions have high cir
cuit complexities. Lupanov [10] calls this the Shannon effect: Shannon [23] 
observed in 1949 that Boolean functions with high circuit complexity must ex
ist because of the double-exponential increment of the number of all Boolean 
functions. 

In this paper, we study to what extent this Shannon effect applies to 
cryptographic complexity criteria (the nonlinearity, the algebraic degree and 
the affine invariant, denoted by T(f) and called algebraic thickness, which 
is related to the number of terms). We also study another criterion, called 
normality, whose definition will be given later. We show that, asymptotically, 
almost all Boolean functions on Fr have high degrees (greater than (3 n where 
(3 is any positive number smaller than 1), high nonlinearities (greater than 
2n-l_na2~-1 where a is any number greater than ~), high algebraic thick
nesses and are highly non-normal. We can also require that these functions 
admit no linear structure (i.e. that there does not exist a f= 0 in Fr and E in 
F2 such that, for every :r E Fr. f(.r E8 a) = f(x) EEl E. cf. [6]). Our method is 
very similar to the methods used in circuit complexity: counting the functions 
which do not match the above constraints. 

We finally generalize our study to q-ary functions (i.e. functions from F;j 
to Fq where q is a power of a prime). 

2 The Number of Terms in the A.N.F.s 
of Boolean Functions 

The number of terms (i.e. of monomials with nonzero coefficients) in the 
A.N.F. of a Boolean function can obviously be any integer between 0 and 2n. 
But as explained by Meier and Staffelbach [14], a Boolean function having 
many terms in its A.N.F. can be nevertheless inadequate for cryptographic 
use if it is affinely equivalent to a function with few terms in its A.N.F .. They 
take the example of the function whose A.N.F. contains all monomials: this 
function is equal to IT'=l(.7:i ltI1). 

This is why we are interested in an affine invariant related to this param
eter of the function: 
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Definition 1. We call algebmic thickness of a Boolean function f and we de
note by T(f) the minimum number of terms (i.e. of monomials with nonzero 
coefficients) in the A.N.F.s of the functions f 0 A, where A ranges over the 
set of all affine automorphisms of F2'. 

Examples: 
-- For every nonzero affine function f ( Xl, ... , Xn) = a 1 x 1 EEl· .. EEl an Xn EEl aO , 

where a = (a1,···, an) E F2" and ao E F2, we have T(f) = 1, since the 
constant function 1 has one term in its A.N.F. and since every non-constant 
affine function is equivalent to Xl (for instance). 

- More generally, let E be any flat (affine subspace) of Ff and let k be its 
dimension. E is the intersection of (n - k) independent affine hyperplanes. 
Thus, the indicator of E (defined by 1E(x) = 1 if x E E; 0 otherwise) is 

equivalent to I17:1k J:i and thus T(l E ) = l. 
- We know (d. [11]) that every non-affine quadratic function (i.e. any 

function of degree 2) is equivalent to X1X2EEl·· ·EElx2k-1X2kEElx2k+1 (where 2k+ 
1 ::; n) if the function is balanced (i.e. if its output is uniformly distributed) 
and to X1X2 EEl ... EEl X2k-1X2k or to X1X2 EEl ... EEl X2k-1X2k EEl 1 (where 2k ::; 
n) otherwise. Thus, T(f) ::; In/2J + 1, where l J denotes the integer part. 
Moreover, two functions of two different forms, or of the same form but with 
different values of k are affinely inequivalent. Thus the maximum of T(f) 
when f ranges over the set of all quadratic functions equals l n/2 J + l. 

We see that classical Boolean functions have small algebraic thicknesses. 
The question addressed in this section is an approximation of the maximum 
possible value of T(f) when f ranges over Bn. Clearly, the number of terms 
in the A.N.F. of any Boolean function f, and a fortiori T(f), is smaller than 
or equal to 2". But is maxfEB" T(f) polynomial or exponential in n? If it was 
polynomial, then this would indicate a potential weakness of many ciphers 
using Boolean fuuctions. 

2.1 A Lower Asymptotic Bound on maxfEBn{T(f)) 

We show in the next proposition that maxfEB" (T(f)) is exponentially large, 
since lim infn-->oo maxfE~~ (T(.f)) ;::: ~. Moreover, for almost all Boolean func
tions f, the number T(f) is not substantially smaller than 2n - 1 . 

Theorem 1. For every number).. < 1/2, the density in Bn of the subset 
{f E Bn I T(f) ;:::).. 2n} is greater than 1_22" H2 (,x)-2"+n 2 +n where H2(x) = 
-:1; log2 (x) - (1 - :r) log2 (1 - ;r) is the entropy function. This density tends to 
1 when n tends to infinity. Thus, there exists N such that for every n ;::: N, 
a Boolean function f such that T(f) ;::: ).. 2n exists. We can take N = 9 for 
).. = 1 and N = 12 for)... = i. 
Proof. Let k be any positive integer. The number of Boolean functions on 
Ff whose A.N.F.H have at most h; terms equals 1 + e1") + ... + (~"). 
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The number of affine autolllorphisms on F2' equals (2n - 1)(2" - 2)(211 -
4) ... (211 _21/-1) 2". 
Thus, the Ilumber of Bookall functions f such that T(f) ~ k is smaller than 
or equal to 

which is smaller than: 

( ( 211) (277,)) N(n. k) = 1 + 1 + ... + k 2 n2 +71. 

We know (d. for instance [11]. page 310) that for every positive A < ~ 
and every positive integer N: 

Thus the density of the set {J E Bn I T(f) 2.: A271} is greater than 1 -
N(~;~2n) 2.: 1 - 22" (H 2(>-)-I)+n2+n. The entropy function is strictly increas

ing on [0; 1/2] and its value at 1/2 is 1. Thus for A < 1/2, the expression 
277, (H2 (A) - 1) + fl2 + /I tends to -::xJ when n tends to infinity and the density 
tends to 1. 

We have checked tlmiP values N = 9 allCl N = 12 by computation. 

. (_' n-.I) _ ('" II-I 1 ( 2" )) 2 '(/2+n 1'1 ' lId' Remark. N /I" 2 - 2 + '2 2 n - 1 • ms, our met IO( oes 

not work for A = 1/2. \'Ve do !lot know if there exist functions f such that 
TU) > 2,,-1. 

2.2 An Upper Bound 

Proposition 1. FOT eveTY Boolean function f 'in Bn. T(f) is smaller than 
or equal to ~ 2n. 

PTOOf. The proof is by induction 011 n. The assertion is clearly valid for n = 1. 
Let n be any integer greater than 1 and assume that the assertion is valid 
for n - 1. Let f be any Boolean fUllction in Bn and let fo and h be the 
Boolean functions on F~'-l snch that f(:1:], .. ·. :1;n) = fo(:J:l, .. · .. rn-l) e 
;};n./"J (.7:1, ... , :1:1/-] ). 'Ve shall c\Cllote by If I the number of terms in the A.N.F. 
of.f. We have If I = IflJl + Ifll. By hypothesis. there cxists an affine isomor
phi'illl A on F;'-] snch that I fl 0 A I ~ ~ 2"- I . Thus, we can assume without 
loss of generality that Ihl ~ ~ 2,,-1. Assume that If I = Ifal + Ih I is greater 
than ~ 27). Let r be the 1l111111JE'r of terms which are ill both A.N.F.s of fa and 
./"J. We have I fa I + I h 1-- r ~ 2"- 1 . since 2"- 1 is the total number of monomials 
;1: 11 (:r, '11 E F~'-]). Thus T is greater than ~ 211 - 217 - 1 = ~ 2,,-1. Changing Xn 
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into Xn If I 1 in the A.N.F. of f keepH h unchanged and replaces fa by fa EEl h· 
We have If a ffi hi + Ihl = Ifni + 21hl- 2, = (Ifol + Ihl- ,) + Ihl-, < 
2n - 1 + ~ 2n - 1 _ ~ 2n - 1 = ~ 2/t. 

Remark: All the affine isomorphisms we use in the proof above are in fact 
translations. 

2.3 Relationship Between T and the Other Complexity Criteria 

We shall say that a function f has high thickness if T(f) equals A 2n where 
A is near 1/2: this is coherent with Theorem 1. We shall say that f has high 
nonlinearity if N .c(f) is greater than 2n - 1 - tin 2n / 2 - 1 where the sequence 
tin is under-linear in n: we know that for every n, there exist (e.g. quadratic) 
functions on F:£ with nonlinearity greater than or equal to 2n- 1 - 2 r n/21-1, 
but the number of such functions seems very small (this has never been proved 
but it can be verified for small values of n with computer help). We shall say 
that f has high algebraic degree if its degree is greater than (3n where (3 is 
near 1. 

We also consider that f has low thickness if T(f) is polynomial in n (for 
some values of the exponent and of the coefficient), that f has low nonlinearity 
if N .c(f) is smaller than 2n A where A < 1/2, and that f has low algebraic 
degree if its degree is smaller than /3n where (3 is small. 

All those functions whose algebraic thicknesses are high have degrees not 
substantially smaller than n/2, since for every Boolean function of algebraic 
degree d we have 

(2) 

and L.~=o C) is polynomial. T(f) is small if d is small, but the converse is 
false: recall that T(f) equals 1 when f is the indicator of any fiat. If this fiat 
is a singleton, then the degree of f equals n. 

There exist functions with low algebraic thicknesses and with highest pos
sible nonlinearity (e.g. quadratic bent functions). There also exist functions 
with high algebraic thicknesses and low nonlinearities, since there exist func
tions with high algebraic thicknesses and low weights: take A < A' < 1/2; 
the number of functions of weights smaller than or equal to 2n ,AI equals 

2n
),' (2n) 22" H2 (),') 

" . 2 J (cf. [11], page 310) and we have seen above 
~ ~ 2n +3A'(1-A') 
that the number of functions f such that T(f) ::::: 2n A is smaller than or equal 
to 

(1 + C1n) + ... + C:') ) 2 n2 +n ::::: 22" H 2 ()')+n 2 +n; 

thus, the latter is asymptotically smaller than the former and there exist 
functions of weights smaller than or equal to 2n ,AI satisfying T(f) > 2n A. 
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But the most interesting question is clearly: "does there exist functions 
with high degrees, high nonlinearities and high algebraic thicknesses?". The 
answer is yes, according to Theorem 1 and to the following results: 

Theorem 2. Let a and 0" be two numbers such that ~ < a' < a. Then, 
asymptotically, the density of the set {f E l3n , N C(j) ~ 2n - 1 - n a 2¥--1} is 

greater than 1 - 2-n2,;' and tends to 1 when n tends to infinity. Thus, there 
exists N such that for every n ~ N, a majority of Boolean functions fare 
such that N C(j) ~ 2,,-1 - n a 2¥--1. For instance, for a = 0.55 we can take 
N = 11. 

Proof. The number of affine functions is 2n+1. For a given affine function 
l, the number of Boolean functions f such that dH(j, l) ::; 2n - 1 - na 2¥--1 

equals L" Cin)::; 22nH2(!-n"T~-1). Thus, the number of 

0::;i::;2n-1-n" 22- 1 

those Boolean functions which have nonlinearities smaller than or equal to 
2n- 1 _ na 2¥--1 is smaller than 2n+1+2" H2(!-n" 2-~-1). Since H2(1/2) = 1, 

H~(1/2) = 0, and H~'(1/2) = -1~2' Taylorformula gives H2( ~_na 2-~-1) = 
1- n;~~;n + 0(n2a 2-n ). Thus, asymptotically, we have (n + 1)2-n + H2( ~ -
na 2- ~ -1) < 1 - n2a' 2-n (indeed, take 0" < a" < a; then n + 1 is negligible 

2 2 " /I 20." 
with respect to n C> - n " ,since 2a > 2a > 1, and ~ln2 is asymptotically 

greater than n2a') and the density of the set of those Boolean functions 
which have nonlinearity greater than 2n - 1 - n a 2¥--1 is greater than 1 -

22n (l-n 2(/ Tn)-2" = 1 _ 2-n2"" and tends to 1 when n tends to infinity. We 
have checked the last sentence by computation. 

Since the density of the set of those functions whose nonlinearities exceed 
2n - 1 - n a 2¥-1 and of the set of those functions whose algebraic thicknesses 
exceed A 2n with A near 1/2 both tend to 1, we deduce that the density of 
those functions which have both properties tends also to 1. We have seen 
that these functions cannot have low degrees since relation (2) and the fact 
that T(j) exceeds A 2n imply that d cannot be significantly smaller than ~. 
But we can in fact require that these functions have high degrees: 

Theorem 3. Let /3 and ;3' be two positive numbers such that fJ < fJ' < 1. 
The density of the set of all functions on F:J: whose degrees are greater than 
.. 2" H2(1-/3') fJ n zs asymptotzcally greater than 1 - 2- and tends to 1 when n 

tends to infinity. 

Proof. The number of all functions on F2' of degrees smaller than or equal to 

fJ n equals 2T n where Tn = L (7) = 2n - L (7)· We have (d. 
O::;i::;;3 n O::;i::;n-;3 n-l 

[ 1 ) 2" H2(1-/3-1/n) 
11 , page 310 Tn < 2n - vi . Thus, assuming without loss - 8n(l-;3-1/n)(;3+1/n) 
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of gPIll'ralit,v that /J> 1/2, the dellsit.v of the set of all functions on F2' whose 
211 1-i 2 (1 rl-1/nl 

degrees are greater than i3 II equals 1 - 2T n _2n 2:: 1 -- 2 - JXn ('-,; 1/n )(3+)! n 1 . It 

is asymptotically greater than 1 - 2- 2n 112(1-.J'1 and tends to 1 when II tends 

to infinity. 

So, to conclude this section, we can say that, for every Q such that ~ < Q and 
every /3 such that 0 < ;3 < 1, there exist functions with degrees greater than 
/3n. nonlinearitics greater than 2"- 1 - nl> 2~-1 and with T(f) near 2"-1. 

3 Normality of Boolean Functions 

Tlw complexity criterioll on I3oo1ean functions we shall now consider is not yet 
related to explicit attacks on ciphers. But it is a natural criterion to consider. 
The situation of th(' three other criteria when t.hey were first considered was 
similar. For instance. at the tillle D.E.S. was designed. only the differential 
attack was known (awl kept secret). but the notion of nonlinearity had been 
already intl'Ociuced h.v Rothaus [10]. The linear attack has been discovered 
sixteen years later (cf. [1:3]). 
There is a relation (d. Propositioll 2) between the criterion we shall introduce 
and nonlinearity which shows t hat to have a chance to be highly nonlinear, 
a function must satisf~- this criterion at a reasonably high level. 

Hans Dobbertill has iutrodnceci ill [4] the following notion: a Boolean 
function clefiucd OlJ F!/ (n even) is normal if it is const.ant on at least one 
n/2-ciirnP11sional flat. \Ye generalize this notion and extend it to any n: 

Definition 2. Let k ~ n. A 13001ea11 function .f on }'2' is called k-normal 
(resp. k-weakly-normal) if there pxists a k-dilllC'llsional flat 011 which .f is 
constant (rcsp. affine). 

The cOlllpkxit.,v criterion we are interested in is non-k-norlllality with slllall k. 
Philippe Langevin calls index of f the maximum value of k such that f is k
normal. (,leadv. k-llonllHlity implil's k-wcak-nonllality and k-weak-nonnality 
implil's (k - 1 )-l1onllalit~T. 

Examples: 
- Ever,v symmetric Boolean function (i.e. every function whose output is 
invariant uuder pel'llmtation of its input bits, i.e. whose output depends only 
on the weight of t11l' input) is l ~ J -nonnal and 1 ~ l-wenkly-norl1lal since its 
restriction to the 1 ~ l-climcllsional flat: 

{('!'1' - ... 1',,) E F~' I .ri+~ = .r; 'B 1. Vi ~ g} 
is constant if /I is even and affi ue if n is odd. Indeed, if n is even, all the 
elerneuts of this flat haw SHme weight l ¥ J and .f (;r;) takes therefore const.ant 



On Crypt ograpltic C()lIlplexity of Boolean FUllction~ 61 

value; ifn is odd. we have f(:I') = f(.l'l.···.:rn-l.O)EBxn[f(Xl, .. ·.J;n-l,O) 
EBf(x1,"', xn-l.1)] where the fUllctiolls f(Xl,···. Xn-l. 0) and f(Xl,"', 
xn -l,l) are constant on this Hat. 
- Every Boolean function on F3' with n :::; 7 is l ~ J -normal. as proved by S. 
Dubuc [5]. 

There is a mutual upper bound on k and on the nonlinearity of the func
tion: 

Proposition 2. Let f be a k-weakly-normal Boolean function on F:f. Denote 
by N C(J) its nonlinear·ity. Then 

N £(J) :::; 2n - 1 - 2k-l, 

or equivalently 

Proposition 2 is a direct consequence of a known property of Fourier-Walsh
Hadamard transform. This property is interesting by itself: 

Proposition 3. Let f be any Boolean function on F:f, E any vector subspace 
of Flj and a, b two vector's of F2'. Then 

L (-l)"'uX;(u) = lEI (_l)a.b L (_l)!(x)EIlb.x, 
uEbEilE xEaEllE~ 

where lEI denotes the size of E and El. = {x E F3'; 'l/y E E, X· Y = O} is its 
orthogonal. If fEBb·x is constant on the fiat aEBEl., then LUEbEllE( -l)a.uXf( u) 
= ±2n . 

Proof. Let i.p be any real-valued function on Flj and if) its Fourier-Walsh
Hadamard transform. We have: 

i.p(x)(_l),,·UEIlX'U = 

L i.p(.T) ( -1) (aEllx)·(bEllu) . 

uEE;xEF.;' 

Since the sum LUEE( _l)(aEllx).(bEllu) is null for every x ~ aEBEl., we deduce: 

L (-l)a,uif)(u) = lEI L (_l)(aEllx).bi.p(.T). 
uEbEilE .I;EaEllE~ 

Applying this result to i.p = Xf implies 

L (-l)"'uX;(u) = lEI (_l),,·b L (_I)!(x)EIlb.x. 
uEbEilE xEaEllE~ 

If the restriction of f to the Hat a EB El. equals b· x EB f (f E F2 ), then applying 
this last equality gives L"EbffiE(-I)a·"x;(u) = ±2n . 
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Proposition 3 implies that, if f EEl b . x is constant on the flat a EEl E.L, then 
the mean of (_l)a.uXj(u) when u ranges over bEEl E equals ±I~I = ±IE.LI. 

Thus the maximum magnitude of Xi (u) is greater than or equal to IE.LI. This 
implies Proposition 2, according to relation (1). 

Remark: Proposition 3 also implies a more general result due to Zhang, 
Zheng and Imai, but proved in a complex way in [25]: let A be any k
dimensional flat (k ~ n). Let f be a Boolean function on F2 and f' its 
restriction to A. Denote by N CU') the nonlinearity of f' (i.e. the minimum 
Hamming distance between f' and any affine function on A). Then we have 

Indeed, according to Proposition 3 with A = aEElE.L, we have: maxbEFk lXi, (b) I 
2 

~ maX(b,u)EF~' IXj(b, u)1 which completes the proof. 

Let us see now the consequences of Proposition 2 on the properties of 
Boolean functions with specified degrees. 

1. Every quadratic Boolean function f on F2 is ~-normal if n is even 
and "tl-weakly-normal if n is odd, according to the properties of quadratic 
functions recalled in the previous section. 

2. According to Proposition 2, this implies that the maximum possible 
nonlinearity of quadratic functions (known by coders as the covering radius 
of the Reed-Muller code RM(l, n) in the Reed-Muller code RM(2, n)) is 
upper bounded by 2,,-1 - 2 n~2 if n is even and by 2,,-1 - 2 n~' if n is odd 
(these values are in fact the exact ones). 
We know that, at least for n ~ 15, n odd, properties 1 and 2 above do not 
generalize to all Boolean functions. Indeed we know (cf. [16]) that for these 
values of n, there exist Boolean functions with nonlinearities greater than 
2,,-1 - 2 "~'. According to Proposition 2, these functions cannot be ntl_ 
weakly-normal (and a fortiori they cannot be ntl-normal). S. Blackburn 
and Hans Dobbertin have also shown in [4] that for every even n ~ 12, there 
exist non-~-normal Boolean functions on F2. We investigate now the values 
of k (depending on n, whatever is its parity) for which these results extend. 

Theorem 4. Let a be greater than 1. Let (kn)nEN* be a sequence of positive 
integers such that 0 10g2 n ~ kn ~ n. The density in f3n of the set of all 
Boolean functions on F2 which are not kn -weakly-normal (and thus which 

are not kn-normal) is greater than 1 - 2n (k"+l)-2 k
,,. This density tends to 

1 when n tends to infinity. Therefore, there exists a positive integer N such 
that, for every n ~ N, non-kn -normal functions exist. For kn = l ~ J we can 
take N = 12. 

Proof. Let An be the number of kn-dimensional flats in F2. Fix such a flat 
A. Let fJn be the nnmber of Boolean functions whose restrictions to A are 
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affine (clearly, thiH number does not depend on the choice of A). The number 
of kn-weakly-nonnal functions on F2n is smaller than or equal to An JLn. 

The number of kn-dimensional vector subspaces of F:f equals (cf. [1l]) : 

[ n] (2n -1)(2n - 2)(2n - 22 ) •.• (2n - 2kn - l ) 
kn - (2kn -1)(2kn - 2)(2kn - 22 ) ... (2kn - 2kn-l) 

and the number of kn-dimensional flats in F:f is: 

We choose now as particular kn-dimensional flat the set F;" x {(O, ... ,On. 
The restriction to F;n x {(O, ... ,On of a Boolean function on F:f is affine if 
and only if the algebraic normal form of the function contains no monomial 
of degree at least 2 involving the coordinates Xl, ... ,Xkn only. The number of 
such functions is JLn = 2v", where Vn = 2n - 2kn + 1 + kn. The number of kn-

weakly-normal functions on F2' is smaller than or equal to 2n- kn [~] 2Vn. 

The number of Boolean functions on F2' being equal to 22", the density of 
the subset An of B" containing all Boolean functions on F:f which are not 
kn-weakly-normal is greater than or equal to 

We have [~] < 2n "" -k" 2+k n , since every factor in the numerator of 

[ ::,,] is smaller than 2" and every factor in its denominator is greater than 

or equal to 2kn -1. Thus, the density of An is greater than or equal to 

The exponent n(kn + 1) - 2kn is smaller than or equal to 2kn /Ci (kn + 1) - 2kn 
and thus tends to -00 when n tends to +00. 

The last sentence of the proposition can be checked by computation (the 

sequences 1 - 2n- k" [{:] 2Vn _2n, 17, even and n odd are increasing and pos

itive respectively for 17, 2: 12 and n 2: 13). 

k 

Remark: Theorem 4 remains valid if we only assume that ;k: tends to infin-
ity. It also remains valid (except "N = 12") if, in the definition of k-weakly
normal functionH, we replace "there exists a k-dimensional flat on which it 
is affine" by "there exists a k-dimensional flat such that the restriction of 
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the function to this flat has degree::; 1", where l is some fixed positive inte
ger: the value of lin has then to be changed into 2n - 2kn + 1 + (kI') + ... + (kr). 

X.-D. Hou has shown in [7] that, for any odd n ::; 13, the maximum 
nonlinearity of all functions of degree 3 is the same as for quadratic functions: 
2n - 1 - 2n~1 . So we could hope that Boolean functions of degree 3 behave for 
every n as quadratic functions with respect to nonlinearity or to normality. 
For nonlinearity. this is an open problem. But for normality, we will show 
the existence of non-kn-normal Boolean functions of degree 3. where kn is 
negligible with respect to n. This confirms the feeling that these functions 
behave merely as general functions. considering their combinatorial properties 
(cf. [2]). 

Proposition 4. Let A > ~. Let (kn)nEN* be a sequence of positive integers 
such that n A ::; kn ::; n. The density of the set of all Boolean functions of 
degrees at most 3 on FJ) which are not kn -weakly-normal (and thus which 
are not kn -normal) in the set of all Boolean functions of degrees at most 3 
is greater than or equal to 1 - 2n(k,,+1)-kn2-C~,)_(kl'). This density tends 
to 1 when n tends to infinity. Therefore, there exists a positive integer N 
such that, for ever'y n ;::: N, such functions exist. For kn = I ~ 1 we can take 
N= 15. 

Proof. Let tL~ be the number of Boolean functions of degrees at most 3 whose 
restrictions to F;" x {(O .... ,On are affine. The number of kn-weakly-normal 
functions of degrees at most 3 on F2 is smaller than or equal to An tL~" where 
An is the number of kn-dimensional flats in FJ). 

The number of functions whose restrictions to F;n x {(O, .... O)} are affine 
equals tL~ = 2V ;, , where 1/;, = 1 + n + G) + G) - (k2n) - (k;). The number 
of kn-weakly-nonnal functions of degree at most 3 on FJ) is smaller than or 

equal to 2"-/;" [{:,] 2v ;, and the density of this set in the set of all Boolean 

functions of degree at most 3 is greater than or equal to 

1 - 2n - k " [~.] 2v ;, -t<n 

where "'n = 1 + n + G) + G) and is therefore greater than 

1 _ 2n +nk" -k" 2_(k2" )_(k;). 

Since the binomial coefficient (~,n) has degree 3 with respect to kn and since 

the sequence h;~ 2 tends to infinity. the exponent n + nkn - kn 2 - (k;;,) - (k:i') 
tends to -00 when '1/ tends to 00. 

For kn = I ¥ 1, it is a simple matter to check that, for n ;::: 16, we have 

n+,~2 < (n~2) + C'{2) (n even) and n + n24-1 < (Cn+;)/2) + ((n+i)/2) (n odd). 

For n = 15 (and 11 = 13) we checked that 1- 2n - k" [~] 2v;,-t<" > O. 
kn 
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Remark: Proposition 4 remains valid if we assume only that the sequence k;; 2 

tends to infinity. It also remains valid (except "N = 15") if, in the definition 
of k-weakly-normal functions, we replace ''there exists a k-dimensional flat 
on which it is affim;' by .. there exists a k-dimensional flat on which it is 
quadratic" (we then just have to withdraw the term (k2') from the proof). 
Obviously, Proposition 4 can also be generalized to all other fixed degrees. 

3.1 Relationship Between Normality 
and the Other Complexity Criteria 

We have seen in Proposition 2 that if f is k-(weakly)-normal, then N £(f) ::; 
2n-1_2k-1. Notice that, since every Boolean function has nonlinearity upper 
bounded by 2n - 1 - 2"/2-1, this gives no information if k ::; n/2. But the high 
nonlinearity of bent functions (2n - 1 - 2n / 2- 1 ) implies that they cannot be 
(~ + 1)-weakly-normal. 

Anyway, k-normality with large k implies low nonlinearity, but we do not 
know whether the converse is true or not. 

Low degree of Boolean functions does not imply their normality: we have 
seen in Proposition 4 that there exist functions of degree 3 which are non-k
normal with low k. 

k-normality does not imply either low degree: take a function of high 
degree on F;-l (considered as a subspace of F:;:) and complete it by 0 to 
obtain a function on F2'. 

There exist functions f with low algebraic thicknesses (e.g. functions of 
degree 3) which are non-k-normal with small k according to Proposition 4; 
and there exist functions with high algebraic thicknesses which are k-normal 
with large k: take a function g on F;-l with high T(g) and complete it by 0 
to obtain a function.f on F:;:; it is a simple matter to check that T(f) ;::: T(g). 

The most interesting point is that almost all functions have high de
grees, high nonl'lnear'ities, high algebraic thicknesses and are non-k-normal 
with small k's. since we have seen at subsection 2.3 that the density of those 
functions which have high degrees (greater than f3 n where f3 < 1), high 
nonlinearities (greater than 2n - 1 - nO! 2~-1 where ~ < a), high algebraic 
thicknesses (more than approximately 2n - 1) tends to 1 and we know that 
the density of the set of those functions which are non-k-normal with k log
arithmic in n tends also to 1. 

Remark: We can also require that these functions admit no linear structure. 
This can be necessary because, if the function used in a cipher admits a linear 
structure, the complexity of an exhaustive search of the key may be reduced 
[6]. Thus the non-existt'nce of a linear structure can also be considered as 
a complexity criterion (of a different kind, since functions either satisfy this 
criterion or do not satisfy it, while all the other criteria are satisfied at levels 
quantified by numbers). A linear structure of a Boolean function f is any 
nonzero word a E F2' ~mch that the function Daf(x) = f(x EB a) EB f(x) 
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is constant. The existence of a liuear structure for a function f is equiv
alent to the existence of a Boolean function g on F2n - 1 and of an affine 
function I on FT such that f( ;['1 •.... :r,,) is affinely equivalent to the func
tion g(:r1 .... "r,,-d 31(.7:1 .... ,;);,,) (d. for instance [5]). Thus, the number 

of functions admitting linear structnH'S is smaller than or equal to 22"-', 

times the rlUlllbcr of affine automorphisms. times the number of affine func
tions. and is therdore smaller thaI] 22"-I+,,2+2n+ 1 . The density of the set 
of functions admitting no linear structure is then greater than or equal to 
1 - 2,,2+2,,+1-2,,-1 and tends to 1. 

l\Ieier and Stafidbach introduced in [14] a complexity criterion (in their pa
per. they wrote "nonlinearity criterion") satisfied at levels quantified by num
bers and related to this notion: a Boolean function on F2! being given, its 
"distance to linear structures" is its distance to the set of all Boolean functions 
admitting linear structures (aIllong which we have all affine functions). Let p 
be a positive number smaller than 1/2. The llUIllber of Boolean functions on 
F2' which lie at distance smaller thall or equal to p 2rl from this set is smaller 
than or equal to 22 " 1+,,2+211+1 Lj;~ ein),,~ 22n-1+n2+2n+l+2"H2(P). Thus, 

this number is llcgligible with respect to 22 if H2(P) < 1/2 and, asymptoti
cally. almost all fnnctions lie thell at distance greater than p 2" to the set of 
all Boolean functions admitting liuear structures. 

General remark: 
l. \V'e see that all complexity citeria studied in this paper arc not contra
dictory to each others. This is difi'erent when we also consider criteria more 
related to the principle of diffusion. such as correlation immunity, resilience, 
d. [3]. However, all the Tesults aboue aTe essentially valid if we Testrict our
sPives to balanced functions. Indeed. the number of balanced functions on Fr 
equals C~~I) = (-9(22"-11/2) (cf. [11]. page 309) and all our arguments can be 

used. replacing the number of fUllctions, 22", by C;,~ I)' 
2. There is the same "Shannon effect" with (linear) error correcting codes, 
Boolean functions from circuit viewpoint. and Boolean functions from cryp
tographic viewpoint: we know by combinatorial arguments that, asymptot
ically, good codes (resp. good functions) exist: moreover. we know that, for 
sufficiently large values of their lengths (resp. of their numbers of variables) 
almost all of them are good, hut the values of the length (resp. of the number 
of variables) for which we can assert that many are good make impossible the 
verification of the quality of such codes (resp. functions) chosen at random. 
We know very few examples of non- r ~ l-normal functions: the functions ob
tained by Patterson and \Viedmann [16] and a few functions obtained for n 
even 2 8 by Sylyie Dubuc in her thesis [5]. 
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4 On q-ary Functions 

Since the motivation of this paper was cryptographic, we have focused on 
Boolean functions. But our main results generalize to functions from F; to 
Fq , where q is any power of a prime. We denote by B~ the set of such q-ary 
functions. The algebraic normal form of any function in B~ has the form: 

where Zq = {O, ... ,q -I}. It exists and is unique (see [18]). 
We denote by T(f) again the minimum number ofterms (i.e. of monomials 

with nonzero coefficients) in the A.N.F.s of the functions foA, where A ranges 
over the set of all affine automorphisms of F;. A Boolean function f on F; 
is called k-normal (resp. k-weakly-normal) if there exists a k-dimensional flat 
on which f is constant (resp. has degree at most 1). 

Theorem 5. For every A such that HI 2(>") + A < 1, the density of the subset 
og2 q 

of B~ which contains all functions such that T(f) :::: A qn is greater than 

1- 2qn H 2 (>") q>..q"+n 2 +n_ qn . This density tends to 1 when n tends to infinity. 

Proof. Let k be any positive integer. The number of functions in B~ whose 
A.N.F.s have at most k terms equals 1 + (q;)(q -1) + ... + (q:)(q _1)k. 

The number of affine automorphisms on Y:; equals (qn - 1)(qn _ q)(qn -
q2) ... (qn _ qn-l) q". 

Thus, the number of functions f such that T (f) Skis smaller than or equal 
to 

< (1+ (ql
n

) + ... + (q:))qk+ n2 +n . 

Thus the density of the set {f E B~ I T(f) 2 Aqn} in B~ is greater than 
n H (>..) >.." . 2 n n H 2 (A) +>.. n_ n+n2+n) 1- 2q 2 q q +n +n-q = 1 - qq log2 q q q and tends to 1 since 

H2(>") + A < l. 
log2 q 

Theorem 6. Let n be greater than 1. Let (kn)nEN* be a sequence of positive 
integers such that n logq n S kn S n. The density of the subset of B~ con
taining those Boolean functions on F:; which are not kn -weakly-normal (and 

thus which are not kn-normal) is greater than l_qn(kn+l)+kn-k~+l-qkn. This 

density tends to 1 when n tends to infinity. 
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Proof. The number of kn-dimensional fiats of F: equals: 

The number of q-ary functions whose restrictions to a given kn-dimensional 
fiat (e.g. F;" x {(O,···,O)}) have degrees at most 1 equals qqn_qkn+l+kn. 

Thus, the number of kn-weakly-normal functions on F: is smaller than or 

equal to qqn_qkn +n(kn+l)+kn-k~+l and the density of the subset of B~ con
taining all Boolean functions on F: which are not kn-weakly-normal is greater 
than or equal to 

and tends to 1. 
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On Divisibility of Exponential Sums 
over Finite Fields of Characteristic 2 

F.N. Castro and O. Moreno 

Department of Mathematics. University of Puerto Rico, PO Box 23355, SJ, PR, 
00931-3355 

Abstract. Moreno-Moreno's result and the covering method give estimates on the 
2-divisibility of the number of solutions of a system of polynomial equations. Let us 
call p, the order of the 2-divisibility given by Moreno-Moreno's result and p,' that 
of the covering method. In 2000 we proved that p,' ;:::: p,. In this present paper we 
give general conditions under which p,' > p,. We also give some results concerning 
the tightness of the covering method. 

1 Intoduction 

In [12] and [8], Moreno et al. introduced the covering method. This is a combi
natorial technique that give a lower bound for the 2-divisibility of exponential 
sums over finite fields of characteristic two. In [12] and [8], they proved that 
the covering method improves the binary Ax's theorem. In [9], we introduce a 
generalization to the covering method, and prove the Moreno-Moreno's theo
rem for finite fields of characteristic two. In [10], we give a survey of the best 
methods to obtain divisibility results. Let J.L be the order of the 2-divisibility 
given by Moreno-Moreno's result and p,' be the order of the 2-divisibility 
given by the covering method. In [9], we proved that J.L' ;:::: J.L. In the present 
paper we give general conditions under which J.L' > J.L. Another theorem of 
this paper is a tight lower bound on the 2-divisibility of the number of so
lutions of a system of polynomial equations over lF2 . Our bound is tight in 
the following sense: if the EIX~" ... x~'n, ... , ENX~Nl ... x~Nn monomials are 
fixed and the coefficients Ei varied, then there is a choice of coefficients which 
yield a polynomial for which the lower bound is tight. Since a polynomial 
over IF 2 is a Boolean function. our result can be stated as follows: Consider 
the following set Q = {EI;f~" ... x~ln + ... + ENX~Nl ... x~Nn : Ei E lF2 } of 
Boolean functions. if the minimum number of monomials that cover all the 
variables Xl, .... f n is r, then there is a Boolean function F E Q such that 
the exact 2-divisibility of the number I{(al,"" an) : F(al,"" an) = O}I is 
2r-l. 

Finally we want to point out that the divisibility of exponential sums of 
characteristic two is very important and has been used many times in coding 
theory(see [12], and [5]). 
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2 On the Divisibility of the Number of Rational Points 

In this section, we are going to state some definitions and results about the 
divisibility of the number of solutions of a system of polynomial equations 
over lFq. Let Fl(:rl, .... X,,) .... ,Ft(Xl .... ,X,,) be polynomials over lFq, and 
let N (Fl' ... , Ft ) be the number of solutions of the system of polynomial 
equations: Fl = 0 ..... Ft = O. Without of lost of generality, we assume 
throughout the rest of the paper, that the Fi'S are not polynomials in some 
proper subset of the variables {Xl .... , :r,,}. 

In 1935, Chevalley proved a conjectured by E. Artin. 

Theorem 1 (Chevalley). If F(Xl,'" .x,,) is a homogeneous polynomial of 
total degree d over a finite field lFq having q = pi elements and n > d, then 
F has a nontrivial zero. 

Ax obtained an improvement of the Chevalley's theorem(see [2]). Now we 
state the Ax's theorem. 

Theorem 2 (Ax). With the notation of Theorem 1. If JL is equal to I n/dl-
1, where I a l is the smallest integer larger or equal to a, then the number of 
zeros of F is divisible by qll. 

In 1971, N. Katz improved Ax's theorem(see [4]). Now we state the Katz's 
theorem: 

Theorem 3 (Katz). Let Fl . ... ,Ft be polynomials in n variables with coef-
ficients in Fq of total degree.s (h, ... , dt , respectively. Let JL be the least integer 
that satisfies 

n - 2:::-1 di 
JL> . 

- maXi di 

Then qll divides N (Fl , ... , Ft). 

Example 1. Let F1 (Xl ..... X5) = xi + ... +x~, and F2(Xl, ... ,X5) = Xl + 
... + X5 be polynomials over lFq. Applying Katz's theorem, we have that q 
divides N(Fl' F2)' 

Moreno and Moreno gave in [11] an improvement to the Ax-Katz's the
orem. Before we state the Moreno and Moreno result, we need to give a 
definition. 

Definition 1. For each integer n with I)-eXpansion 

n = aD + alP' .. + a"ps where 0 :::; ai < p, 

we denote its p-weight by O"p(n) = 2:::=0 ail The p-weight degree of a mono
mial xd = Xf' ... ;r~n is wp(:rd) = O"p(dl ) + ... + O"p(d,,). The p-weight degree 
of a polynomial F(Xl' ... ,:cn ) = 'L,d adxd is wp(F) = maxxd, adr'owp(xd) 
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The ~Ioren()- J\ [orcno 's result is the following: 

Theorem 4 (Moreno-Moreno). Let F I , ••• , Ft be polynomials in 11 vari
ables with coefficients in IFI]' a jinitf field with q = pi elements. Let Wp(Fi) 
be the p-11!eight deqTt:e of Fi and let i' be the smallest integer such that 

(
71 - L 1=l11!P(Fi)) 

112: f ' . 
TrUL1:i wp(F;) 

Then pf! divides N (F\ ..... Ft). 
Example 2. Let Fl(J:l .... ,J:~tl = :d + ... + :rl, and F2 (Xl, ... ,X4) = Xl + 
... + X4 be polynomials over IF 2 f . Applying Moreno-Moreno's theorem, we 
have that 2rf121 divides N(FI . F2)' 

Remark 1. Theorelll 3 improves Theorem 4 whenever the characteristic is 
small with comparison to the degrees, i.e., we need, say p < maXi d; in order 
for an improvement to occur. 

Now we are gOillg to describe the Adolphson-Sperber's method(see [1]). 
Let F(Xl, ... ,:fn ) = L(d, ..... dn)ED(1dl ..... dn.Tfl ···:r~n be a polynomial over 
IFq . The Newton pol.vhedroll L1(F) is defined to be convex hull in an of the 
set D U{ (0, ... ,O)}. Let w(F) he the smallest positive rational number such 
that w(F)L1(F) contains at least one point with positive integral coordinates. 
Now, we state thc Adolphson and Sperber's theorem: 

Theorem 5 (Adolphson-Sperber). With the above notation and ass'ump
tions, we luL'l'f' 

([I' divides N(Fl, .... Ft ). 

when: Ills the sTT/aliest intcqcr qn:atcr than OT equal to w(L:=l YiF;) - t. 

Let us ilIustratf' Theorem 6. computing w(vF) for a polynomial. 

Example S. Let F(:I'..I} . .::) = .r3 + !l + Z7 + .fY + xz + yz be it polynomial 
over IFq . The conYE'X hull a:-;sociatcd to F is the convex set generated by the 
following points: 

111 = (:~. o. O. 1 ). 1'2 = (0. Pi. O. 1). 1'3 = (0. O. 7, 1). VJ = (1, 1, O. 1), 
115 = (1,0.1.1).116 = (0.1, 1, 1).1'7 = (0,0.0,0). 

Then w(F) = 2. HCllce q divides NCr:; +;I/' + z7 + :ry + :rz + yz). 

3 On 2-Divisibility of Exponential Sums; 
Method of Covering 

Let IF 2 be the binary field aud F(.r:) . ... , :rn) be a polYllomial ill n variables 
over IF 2. Let C (F) be a nlillimal set of the monomials of F covering all vari
ables. that is, evcr~' variable Xi is ill at least one monomial ill C(F) and C(F) 
is minimal with that property. We call this set C(F) a m'inirnal covering of 
the vaTiables of F awl we ,,:-;smne that it:-; cardinality i:-; ,.. 
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Exa'mple 4. Let F(:c] .... pc,,) = .l"1.1·2.l";l+J',J:5+:r:l + .. '+;1::; be a polynomial 
over lF2. In this case C(F) = {J'].r2.C;j .. efTS }. 

The following lelllma establishes divisibility properties of an exponential 
sum which will determine the divisibility of the number of zeros of a system 
of polynomial eqnatiolls(SCl' [8]. [12]). Lemma 1 is an improwUlent to the 
binary Ax's theOT'('lll. 

Lemma 1 (Moreno et al). Let F(J:) = F(XI •.... x 77 ) be a polynomial in n 
var-iables over- lF2 . Let C(F) be a minimal set of monomials of F(:r) rovenng 
all the var-iables and 7' be the card'inality of C (F). Then 

2' (HI'ides S (F) = 

For the proof set~ [8]. [12]. 

Example 5. Let F(.l'l .. .. , :r:G) = .1:1X2 + J'2:r:3 + X;,X4 + J·4:1:.') + :r:5:r:G + :I:I:r:G + 
Xl'" + J'G be a polynomial over lF2. vVe have C(F) = {J:IX2.X3.L!.:r5:r:G}, 
hence 8 eli vides S ( F). 

In [9], we proved that Lemma 1 is an improvement to the Adolplltlon
Sperber's theorem for polynomial equations over lF2 • i.e .. r ~ w(F). 

Now. we state an imlllediate consequence of Lemma 1: 

Theorem 6. Let F(.I'] ..... :1',,) be a polynomial of degr-ec dover- lF2 . fr ther-e 
e:rists a variable :rj that docs not appear 'in the leader- monomials of F, then 

2[n/dl+1 divides S(F) = 
Xl '···.:rn Ef2 

Remo:rk 2. If d divideH n. Theorem G gives an extra two factor when it IS 

compared to th(' binary Ax's theorem. 

Let Fl (:r] , .... J·2) . .... Fi (1:1 , ... , .1' n) be polynomials over IF 2. vVc denote 
the number solutions of the system of polynomial equations Fl (Xl, ... , .r n ) = 
O •.... Ft(:r:l, .... ~rn) = 0 by N(FI ..... Ftl. Now we state the identity that 
associated exponential S1lIllS awl the number of solutions of a system of poly
nomial equatiollH: 

fl' I n 

Y I'" . .11/ 

\"here!i} is an additive character. 

t 

4}(LYi Fi(X 1· ...• :r71 )), 

1=1 

Combining LeIlmw 1 and the above identity, we haw the following theo
rem: 



74 F.N. C'a,;t1"O awl O. 1\[0]"(,110 

Theorem 7. Let FI (:rl' ... ,.r,,), .... Ft(XI, ... , xn) be polynomials over lF2. 
Let C(FI , ... ,Ft ) be a minimal set of monomials of L~=l YiFi(X) covering all 
the variables and r be the cardinality of C(FI , ... , Ft). Then 

Example 6. Let FI(XI, ... ,X5) = XIX2 + Xl + ... + X5, and F2(XI, ... ,X5) = 
XIX2X3 + X4X5 + XIX6 be polynomials over lF2. In this case, we have that 
IC (FI , F2) I = 3, hence 2 divides N (FI' F2)' In particular, the system FI (Xl, 
""X5) = 0 and F2(XI, ... ,X5) = 0 has a nontrivial solution. Note that 
Theorem 3 and 4 do not give any information about N(F,F2). 

As preparation for the statement and the proof of the main result of this 
section, we note the following lemma. 

Lemma 2. Let flX~ll ... X~l", ... , fNX~Nl ... x~Nn be monomials over lF2' 
and let r be the minimal number of monomials of {fIX~l1 ",x;/", ... , 
fNX~Nl ... X~N" } that covers :rl,"" :rn . If 9 is the class of polynomials gen
erated by the monomials 

where fi E {O, I}. 

Then there is one polynomial F' in 9 such that N(F') is divisible by 2r - 1 

but not divisible 2T. 

Proof. Let YF(XI .... ,Xn) = L~lEiYX~i1 ... X~in. We are going to use the 
following identities (-1 )EiYX~i1 ···x;!n = 1 - 2EiYX~i1 ... x~in and x; = Xi for 
1 > 0, throughout the proof. 

2N(F) = IT (1 - 2Eiyx~il ... x~in). 

If we expand this equation, we get 

(1) 

where the g).. 's are monomials. In [12] and [8], Moreno et al. proved that 

mlnord2(2n()..) L g)..(EI, ... ,fN,Xl,""Xn,y)) =r. (2) 
:rl, .... I nlyEIF2 
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Recall that if a is a positive integer. then ord2 (a) = r {:} T' I a but 21'+1 A a. 
Note that 

2n + 2:>- 2n(>-) 2:(XI ..... x", .Y)ElF2 g>- (c1, ... , CN, Xl, ... , Xn, Y) 
21' 

is an integer. Moreover 

(3) 

is an integer. If we apply reduction modulo 2 to (3), yields a polynomial in 
the variables EI •... . EN (E'i = C mod 2). Let 

N t th t 'f eill eiJ" ei", I ei'r n • .• 1 . h o e a 1 Cil Xl ... :1"n , .... ci"X1 ... Xn IS a ml111ma covermg, t en 

is one of the term of P(El, ... , EN ) (Note that (2) is attained when 
g>-(Cl, ... ,cN,XI, .. "Xn,y) = Cil "'Ci r )' Hence there is a term Eil "'Ei r 

whose coefficient is 1. Therefore there is at least a nonzero coefficient in 
P(El' ... , EN)' Hence P(El, ...• EN) =j:. O. Recall that the degree of each Ei is 
less than or equal to 1. If P(El • ... ,EN) = 0 for all (E1, ... , EN) E lF2', then 
P has 2n solutions. By lemma 10.2 in [3], we have that P(EI, ... , EN) is the 
zero polynomial. This is a contradiction. Therefore there is aN-tuple E =f. 0 
of zeros and ones such that P( E) =f. O. Then ord2 (N (Fe)) = r - 1 for the 
polynomial Fe that has coefficients given by E. This completes the proof of 
Lemma 2. 

Example 7. Let 

9 = {ClXlX2X3X4X5+c2XlX2X3+ L CijX~iX? : CI, C2, Cij E lF2 and i,j ::; 1O}. 
i,j 

In this case r = 4. Hence there exists a polynomial F E 9 such that 
ord2 (N(F)) = 3. Taking F(:rl •... , XlO) = Xl ... X5 +XIX2X3 + XlX2 +X2X3 + 
... + X9XlO + .TlXlO, we obtain ord2 (N(F)) = 3, i.e., N(F) = 8 x 67. 

L t F ( " ) - ,\,Ni eijl eijn b 1 . 1 IF C e i Xl,··· .:I n - uj=l CijX l ... Xn e a po ynomm over 2 lor 
i = 1, ... , t. Let 9 be the dass of polynomial generated by monomials 

Note that these are the monomials of Fi for i = 1 .... ,t. 
Now we state the main theorem of this section. 
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Theorem 8. With the above notation. If 9 is the class of polynomial gen
erated by the monomials fi.i;r~;/l ... ;l'~e,'l" for i = 1, ... , t and j = 1, ... , N i , 

then there are polynomials F{ , ... ,F; in 9 sllch that N (F{ , ... ,Ffj is divisible 
by 2r~t but not divisible by 2/'+1~t. 

Proof. The proof follows taking F(:l:l, ... , xn) = L~=l YiFi(Xl, ... , xn) and 
repeating the same argument of Lemma 2 with the new F. 

Theorem 8 is equivalent to Theorem 8.1 in [10] for the case lF2 • For poly
nomials of one variable Theorem 8.1 in [10] is equivalent to the theorem of 
McEliece(see [7]). 

4 Application of the Covering Method 

In this section we will combine the covering method and the reduction to 
the ground field method to obtain improvements to the Moreno-Mareno's 
theorem. For details of the reduction to the ground field method see [8]' [10] 
and [11]. 

In [9], combining Lemma 1 and the reduction to the ground field method 
we obtained the Moreno-Morena's result for finite fields of even characteris
tic. We denotes by Xi the variable taking value in IF 2f. and Xi the variable 
taking value in lF2 . Let F(X1, ...• Xn) be a polynomial over lF2f' and let 
F'(Xll, ... , :rlf."" ;};nf) be the polynomial over lF2 associated to F(X1, ... , 

X n ), i.e., 

(_l)Tr(F(X' .... ,X,,)) = 

Recall that F'(Xll, ... ,:rnf) is a polynomial in nf-variables over lF2 • 

The following theorems give improvements to the Moreno-Moreno's result 
for finite fields of even characteristic. 

Theorem 9. Let F (X 1, ... , X,,) be a polynomial over IF 2f, and let W2 (F) = 
l. If there exists a variable Xj that does not appear in the monomials of 
2-weight degree 1. then 

2/1 divides N (F), 

where 
n 

fL > f( T - 1). 

Moreover 'zf there are k variables do not appear in the monomials of F of 
2-weight degree l, then 

211 divides N(F), 

where 
n-k k 

J1 > f(- + - - 1). 
1 1 - 1 
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Proof. Let 0:1 .... . 0:f be a basis oflF2f over lF2· Then Xi = L:J=l Xij0:i, and 

Y = L:J=l Yj0:j· Now we are going to apply the reduction to the ground field 
to P(Xl •...• Xn). 

where 
f 

P ' (Xl1 •.... :Cnf) = LYiPI(xl1, ... , Xn f)· 
i=l 

Note that W2(Pf) ::; l for i = 1 .... , f. We have that IC(PI)1 > "/ by 
Theorem 6 since the variables :1:)1,"" :rjf do not appear in the monomials 
of 2-weight degree I of P'. Hence 2[nf/1J divides N(P). 

For the second part of Theorem 9. we assume that the variables Xl,"" 
X n- k appear in the monomials of P of2-weight degree l, and Xn+l-k, ... , Xn 
do not appear ill the monomials of P of 2-weight degree I. Let r be the 
cardinality of the minimal covering C(PI) of the variables of P'. Then 

n- k kf 7'>--+--- I 1-1' 

since the polynomial pi can be written 

I ""(' /I) F (xu, .... Xnj) = L-- l}i Pi (Xl1 . .... Xn-k,f) + Pi (XU, ...• Xnj) , 
i. 

where W2(Pf) ::; I. and W2(P;') ::; 1-1 for every i. Note that PI is a polyno
mial in the variables :C1] •...• xlf .. ·.· :rn-k,J. Recall that Xu,.·., Xn-k,J are 
variables over lF2 corresponding to Xl .... . X r1 - k . In the above argument, we 
cover the first (n - k)f variables with monomials of 2-weight degree I, and 
the other k-variables are cover with monomials of 2-weight degree < l. This 
completes the proof. 

Example 8. Let P(X1 • X 2 , X;l) = xl + x; + x!l + G(XI' X 2 , X 3 ) be a poly
nomial over lF2f, where W2(G)::; 2, and G(O,O,O) =. By Theorem 9, we have 
that P has a nontrivial solution (2 divides N(P)). 

Example 9. Let F(XI .X2 ,X3 .X4 ) = xl +X; +x!l+xl+xl x 2 +X3 X 4 be 
a polynomial over IF 21. By Theorem 9. we have that 2ft divides N(P), where 
{l ~ 21 + 2/ - f = ~{. Moreno-Ivloreno implies that {l ~ i. 
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Theorem 10. Let Fi(Xl , ... , Xn) be a polynomial over lF2f , and let w2(Fi ) 
= I for i = 1, ... , t. If there exists a variable Xj that does not appear in the 
monomials of Fi of 2-weight degree I for i = 1, ... , t, then 

2~1 divides N (F), 

where 
f(n - tl) 

f.L> I . 

Proof. The proof of Theorem 10 is similar to the proof of Theorem 9. Apply
ing the reduction to the ground field method to I:~=l YiFi (Xl, ... , Xn), we 
obtain a polynomial in (n + t) f variables over IF 2. Then applying Theorem 6, 
we obtain the desired result. 

Note that Theorem 10 implies Theorem 9. Combining Theorem 7 of [9] 
and Theorem 10, we obtain the following result: 

Theorem 11. Let Fl(Xl , ... , Xn),"""" Ft(X, ... , Xn) be polynomials in 
n-variables with coefficients in IF 2f, and let Ii be the 2-weight degree of 
Fi(Xl, ... ,Xn). Let F[(X11, ... ,xn f) be the polynomial over lF2 associated 
to Fi(Xl, ... ,Xn) fOT i = 1, ... ,t. Let C(F{, ... ,Ff) be a minimal set of 
monomials of I:~= 1 Yi F[ (X11, ... , xnf) that covers all the variables 

:1:11,···, xlf,"" Xnl,···, xnf· 

If T is the cardinality of C (F{, ... , F{), then 

r - tf > f(n - I:~=lli). 
- maxi Ii 

Moreover, if I = h = ... = It, and a variable Xj does not appear in the 
monomials of Fi of 2-weight degree l for i = 1, ... ,t, then 

r - tf > f(n - F~=lli) . 

Example 10. Let 

Fl (Xl, ... , XlO) = XlX2X3 + G l (Xl, ... , XlO), 

F2 (Xl,"" XlO) = :r3·T4X5 + G2(Xl, ... , XlO) 

and 
F3(Xl,.·., XlO) = X6X7X8X9 + G3(Xl, ... , XlO) 

be polynomials over lF2f , where w2(Gd < 3, W2(G2) < 3 and W2(G3) < 3 and 
Gi(O, ... , 0) = ° for i = 1,2,3. Applying Theorem 6 and the reduction to the 
ground field method, we obtain that the system of polynomial equation has 
nontrivial solution. Note that the Ax-Katz's and Moreno-Moreno's theorems 
do not give any information about N(Fl' F2 , F3)' 
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Abstract. We provide a lower bound for the cardinality of the value set of a 
polynomial over a finite field which improves upon several earlier bounds. 

1 Introduction 

Let f(x) be a polynomial over Fq , the finite field of order q and characteristic 
p. Numerous papers have been written concerning the cardinality Wil of 
the value set Vf = {J(a) : a E Fq} of f(x). If f(x) has degree n, since a 
polynomial cannot have more than n roots in any field, it is easy to see that 

q-l 
l-J + 1 ::; Wil ::; q. 

n 

Polynomials achieving the lower bound are said to be minimal value set poly
nomials while those with value sets achieving the upper bound q are known 
as permutation polynomials, see Chapter 7 of Lidl and Niederreiter [2]. 

In general it is very difficult to determine the cardinality Wf I of the value 
set Vi of a polynomial f(:1:) over the finite field Fq . This has only been done 
for several classps of polynomials, including the power polynomials xn whose 
value set has cardimdity Wr" I = (q - 1)/d + 1, where d = (q - 1, n), Dickson 
polynomials Do (;r, a) see [1], linearized polynomials all of whose nonzero 
terms involve exponents which are powers of the characteristic p of Fq , and 
a few othpr small classes, see for example [3] and [4]. 

2 Main Result 

In Theorem 2.1 of [4] it was shown that if up (f) is the smallest positive integer 
i such that LouJ! (a)) i -I 0, then IVr I 2: up (f) + 1. 

Notation: Let f(x:) bf' a polynomial of degree n over Fq . Since f(x) and 
f(x) + a both have values sets of the same cardinality, we may assume that 
f(O) = O. By the Lagrange Interpolation Formula [2] page 369, we can assume 
that n ::; q - 1. Thus for each i = ], ... , q - 1, we may write (f(X))i = 

q 1 . Lj:O (LijXJ mod (;rq - x:). 
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Let Af be t he matrix At = (a;,I). for 1 ::; i,:j ::; q - 1 so that the 
entries of Aj consist only of () ami 1. III particular. the (i,j) entry of Aj 
is 1 if the coefficient of :r j ill (f(:r))i lIlod (:rq - .r) is nonzero. If f(.r:) is 
not the zero polynomial. the matrix Af has at least one nonzero column. If 
the j-th colullln of Aj consists entirely of O's or entirely of 1 's, set lj = O. 
Otherwise for a nonzero j-th column, arrange the entries in a circle and define 
Ij to be the maximum 111llnlwr of consecutive zeros appearing in this circular 
arrangement. Let LI be the maximulll off he values of l j , where the maximum 
is taken over all of the !j - 1 coluIllns of the matrix AI 

For example. if f (.r) = .r:l + G;r over F7 . then 

1 () 1 0 () 0 
o 1 () 1 () 1 

Af 
1 0 () () 1 () 
o 1 () 101 
001 () 1 0 
010101 

and so [1 = h = Is = ;).12 = l.'j = Ir; = l. Note 15 = 3 because of our 
circular arrangement. III the fifth column of Af the zero in the last row and 
the two zeros ill the first two rows are counteci as consecutive zeros. Hence 
L f = 3, and as we will show in Theorelll 1 below. IVfl :;:, L f + 2 = 5. For this 
particular example. Tlworeltl 2.1 of [4] shows that IVII :;:, 3. III fact IVII = 5. 

Theorem 1: \Vith notation as above. we have: 

l1/t l :;:, L f + 2. 

Proof: First ol)s(']'ve that 

1'~I[·rl/(/1 -;r) = E9 Fq[x]/(.r: - ad· 
(\/',EF(l 

This follows from til(' Chinese H.emaindcr Theorem since over Fq , :r'l - :r = 

[LIEFq (:r: - aA). It follows that for eachi with 1 Si ::; q - 1. (J(.r))i mod 

Ceq - :r) is the Ull ique polynomial of degree at most q - 1 which represents 
the function 9i : Fq -7 }~ given hy ~)i((\:k) = (J(ak))i. 

Assume that 1 =--= lj i 0 for the j-t11 colulIlll of the matrix AI Then there 
arc three possihilities: 

1) Senne a,.) = 1 alld Uk-I.} = ... = (JI.-l.j = (l, 

or 

2) some 0kj = 1 ami a,:+1.) = ... = ak+l.j = (l, 

or 

3) (}k+l..i = ... = O'1-1.j = 0 for r consecutive zeros, and al..l 

(/.s.j = 0 for " COll"CClltiVl' zeros with I' + 8 = I, anel Os-H.) eft O. 
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\Yithollt loss of gellerality, we fin.;t assume that (lk-l,j = ... = a":-I.) = 0 
and 0kj = 1. 

Then (J (:1: ) )" mod (1:q - 1') has a nonzero coefficient of 1;] and the co
efficient of :r j iCi ~ero in U (:1'))' mod (:rq - .T) for the previous I values, 
i=k-l, ... ,k-l. 

If the Ciet of 1I0mero elements of Fq is denoted by {O'I,"" O'q-d, the 
polynomial (J (1:))" mocl (.r'! - .r) is the interpolating polynomial for the set 
of values {(.f(oIl)"' .... , U(nq-Il)"}. Hence we have 

(.f (.r))A mod (J"l - :r) 
= L CL" (f(oh))"'(l - (:r - Oh)q-I) 

C\ h '- r (1 • 

= Lo;,#DEF;,(.f(Oh))I.:(l- (:r - Oh)q-I) 

-" (f( ))"'(1 ,,'1-1 (q-I). n( )q-l-n) - ~nl,cpOEF". °li - ~n=O 11 .r -ah . 

Since 0kj = 1 we have 

L (.f(Oh))k a i,-I- j Ie O. (1) 
o;,cpOEF'I 

Moreover, (LA-I.] = ... = (lk-1.j = 0 implies that 

L U(ah))'ar 1 - J =O,,.,=k-l, .... k-1. (2) 
Ct" cpOEF'J 

Assume the 11umber of distinct HOllzero elements in the image of .f (1:) is 
Tn ::; l. Then the image of .f (:r) is .f (Fq) = {O. (31 .... Jim}, where (3; Ie (3j. 
Then (1) implies that C1 :3i' + ... + em !3;;, Ie O. where Ci E Fq • and not all 
Ci = O. 

From (2) we haY(' the system of equations 

. ,Jk-m + + [jk-rn - 0 (li)] ... Cm m -

3"-1 + + (3"-1 ° ('1./ 1 . . . ern I 1;1 == 

Sillce by assumption m ::; l. and c] •... ,ern are not all 0. we have 

Hence 

( 

JI, -1/' 'J!, -rn ) 
1'1. . .. "J rn. 

det. . = O. . . 
)!, -1 JA-l 

dj ( rn 

( 'J J )(k-m)1II 1 t 'ul ... Urn (e) 

(3) 



But this is impossible Silll'(' the]i's are nonzero and distinct and the Van

dermoucie determinant can bE' evaluated m; II (!3.; - ;Jj). 
lS';.<jSm 

Heuce the flluuber of distinct nonzero dementH ill the image of f (:1;) must 
be at leaHt I + l. Siner 0 lies ill the image of f(l:) we have IVII 2: 1+2. 
Similarly this is tnw for the maxinlllm value L f of I. 

A similar argument works ill the case when some 0,:.7 = 1 and Ok+l,j 

... = Ok+l.j = O. 

In the case when we have T consecutive zeros in the last T rows and 8 

consecutive zeros ill the top" rows in the j-th column of the matrix At, if 
m > T, then we have a system like (3), except the exponents on the /3i run 
through the valu('s k + 1. k + 2, ... ,q - 1. 1. .... k + Tn - q + 1. In this case 
also the argument is the same' as abovr, and so the proof is complete. 

Remark 1) \,y'c llote that IVII 2: lj + 2 for each value j = 1, ... ,q - 1. In 
particular. this holds for the last colnnm when j = q - 1 and hence as a 
corollary, we have Theorem 2.1 from [4]. 

Remark 2) \Ve also note that our result extends the Hermite/Dickson cri
terion for permutatioll polynomials, see [2, Thm. 7.4, page 349]. This is due 
to the fact that t he Hermite/Dickson criterion is essentially equivalent to the 
first q - 2 cOllsecutive dements of the last column of the matrix A I being 
0, with the last element of that colulllll equal to l. In particular. f(x) is a 
permutation POIYllOlllial if and only if L I = q - 2. 

Example 1) vVe now provide a larger example which shows that our method 
yields a hetter bound than the \,y'an, Shiue, and Chen boulld from [4]. Con
sider the polynomial f(:r) = :r7 +.r over F lg . After forming the matrix At we 
fiud that the first six cntries of the last column of A f contain 6 consecutive 
zeros, with a 1 in row 7 so that the bound from [4] is IVII 2': G + 1 = 7, while 
for .1 = 3, we have a string of 11 cons('cutivE' zeros in the third column of A f 
and so from Thcorem 1. we have !VI I 2: 11 + 2 = 1:). In fact, our bound is 
sharp since lVi I =-c 1:3. 

Example 2) vVhell considcring polyuomials f (x) over extension fields Fq of 
prime power order q = pC with e > 1, there are examples where there is no 

i such that LaO:! U(a))' i 0, and so in these cases the bound IVII 2:i + I, 
from [4] canHot 1)(' applit'cl. However ill these cases, our bound from Theorem 



1 still applies. For example. if f(.l') = .1'2 +:1' ovcr the field F~. thcn 

1100000 
o 1 0 1 000 
0011110 

Af = 1001000 
0111100 
1 () I () 1 1 0 
1111110 

and hence L f = 2. awl frOlll Theorelll L IVI' I ~ 4. In this case we actually 
have IVI'I = 4. 

Example 3) The following example shows that our method, while providing 
an improvement of Theorem 2.1 of [-fl. is still not best possible. i.e. that the 
condition is not necessary and sufficient for a polynolllialf(.T) to have a value 
set of cardinalit.\, L f + 2. Consider the polynomial f(:r) = :r9 + :];5 + 7;r2 + .r 
over the field FIf). III this case Lf = :3 and so Theorem 1 predicts a value set 
of cardinality WI I ::;> 5. \vhilc ill reality. we have Wf 1 = 10. 

Example 4) vY(' now iuc:luclc a table which shows that our Theorem 1 im
prove" the valups cited ill Table 1 of [4] for Illany values of (1. 

Table 1: f(1') = ;1:1 + a:r over FIg 

0 ld;(~(~)j + 1 1I1'(.f) + 1 L f + 2 WII 
3 7 13 13 

2 ;3 7 13 13 
:3 :3 7 13 13 
4 :{ 7 7 7 
G :3 7 7 7 
7 :3 7 13 13 
8 3 7 13 1:3 
9 3 7 7 7 
10 3 7 1:3 13 
11 :3 7 13 13 
12 ;3 7 13 13 
13 :3 7 13 13 
II :3 7 13 1 ;3 
1.3 :3 7 1:3 1:3 
18 3 7 1:3 1:3 

\Ve note that om Theorem 1 improves upon 12 of the values in Table 1 of 
[4]. vVe also point out that for a = 6.8.9. the cardinalities of the value sets 
are given in [4] as B. 7. 1;3. \vhen they should have been given as 7.13,7 as 
indicated above. 



Valm' Sets of Pol,vnomiab over FinitE' Fields 85 

References 

1. W.-S. CHOU. J. GOMEZ-CALDERON, AND G.L. MULLEN, Value sets oEDickson 
polynomials over finite fields, J. Number Theory. 30(1988), 334-344. 

2. R. LIDL AND H. NIEDERREITER, Finite Fields, Encyclo. Math. Appl., Vol. 20, 
Cambridge Univ. Press, 1997. 

3. D. WAN AND R. LIDL, Permutation polynomials oEthe form xr !(X(q-l)/d) and 
their group structure, Monatsh. Math. 112(1991), 149-163. 

4. D. WAN, P.J.-S. SHIUE, AND C.-S. CHEN, Value sets of polynomials over finite 
fields, Proc. Amer. Math. Soc. 119(1993), 711-717. 



Bounds for Completely Decomposable 
Jacobians 

Iwan Duursma 1 and Jean- Y vps Enjalbcrt 2 

1 University of lIlinois at U-C, Urbana IL 61801, USA 
2 Universitc de Limoges, F-870GO Limoges Cedex, France 

Abstract. A curve ove[ the field of two elements with completely decomposable 
Jacobian is showlJ to have at most six rational points and genus at most 26. The 
bounds a[e sharp. The previous upper bound for the genus was 145. We also show 
that a curve over t he field of q elements with more than qTrl /2 + 1 rational points has 
at least one Frobenius angle in the open interval (7T/m,:'J7T/rn). The proofs make 
llse of the explicit formula method. 

1 Introduction 

The Jacobian of an (absolutely irreducible. projective, non-singular) alge
braic curvc is said to be completely decomposable if it is isogenous over the 
base field to a product of elliptic cmves. Many examples are known of curves 
with completely decomposahle Jacobian [E893], both in characteristic zero 
and in finite characteristic. For a cmve over a finite field Fq • the genus of 
a C1lJ've with COltlpletely decomposahle Jacobian is bounded [TV97], [8er97]. 
For q = 2. Serre [8er97] gives a first order estimate g < 146. We use the 
explicit formula method developed in [8er83] to obtain g <:::: 26. The upper 
houlld is sharp and is attained by the modular curve X (11) for which Heeke 
showed that the Jacobiall dccomposes as EY x E1° x EP [Lig77]. 

For all algebraic cmvc (absolutely irreducible, projective. non-singular) of 
genus g over a finite field of q elellll'llts. the Hasse-\Veil bound gives that the 
number of rational points N does not exceed !j + 1 + 2g;q. For the explicit 
formula method, the number of rational points is expressed in terms of the 
Frobenius eigenvalucs as 

9 

N = q + 1 - 2) OJ + () j ). 

)=1 

By \Veil's theorem, we lllay write a) = ;qed);. for elements ej in [0,7f] for all 
.J. The ()j are called the F'robellius angles. Over an l'xtension field of size qTn, 
the number of ratio1lal points Nrn is given by 

9 9 

~T III + 1 "( In + 'In) m + 1 ,Tn "2 ' () hili = Ij - L (};J OJ = Ij - r L cos TTl, .i' 
J~1 j=1 
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where r = yfri. For curves of large genus, the distribution of the Frobenius 
angles is restricted by the constraints Ndm 2: N m, for all m, d. This allows 
one to obtain upper bounds of the form N :S ag + b for the number of 
rational points that are better than the Hasse-Weil bound when the genus 
is large [Iha81], [Ser83]. Asymptotically, the Drinfeld-Vladuts bound gives 
limsuPg---+oo Nig :S yfri - 1 [VD83], where the limit is over an infinite family 
of curves of increasing genus. In Section 2.1, we recall the main steps of the 
explicit formula method. 

Tsfasman-Vladuts [TV97] and Serre [Ser97] study the distribution of the 
Frobenius angles for families of curves of increasing genus. It is easy to see 
that any infinite family of curves of increasing genus contains a subfamily for 
which Nml 9 approaches a limit, for each m, when the genus increases. Such 
subfamilies are called asymptotically exact in [TV97]. For curves in an asymp
totically exact family, the distribution of the Frobenius angles approaches a 
limit distribution that is given by a continuous measure on [0, 1r]. In particu
lar, the Frobenius angles in an asymptotically exact family are dense in [0,1r]. 
This shows that any family of curves for which the Frobenius angles are not 
dense in [0,1r] is finite. We consider the following problem. 

(Problem 1) Given a discrete subset 8 of [0,1r], maximize Nand 9 for a 
curve over Fq with all Frobenius angles in 8. 

The elliptic curves over the field of two elements have Frobenius angle () 
such that 2V2cos() E {-2,-1,0,1,2}. The corresponding Frobenius eigen
values are of degree at most two. As a special case of the previous problem 
we have 

(Problem 2) Maximize Nand 9 for a curve over Fq with all Frobenius 
eigenvalues of bounded degree at most d. 

The case d = 2 corresponds to curves with completely decomposable 
Jacobian. In Section 2.3 and Section 2.4, respectively, we show that a curve 
over F2 with completely decomposable Jacobian has N :S 6 and 9 :S 26, 
respectively. Similarly, the family of curves with no Frobenius angle in a 
given interval is finite. And we can ask for the largest number of rational 
points or the largest genus for curves in the family. 

(Problem 3) Given a (small) subset I of [0,1r], maximize Nand 9 for a 
curve over Fq with all Frobenius angles outside I. 

In Section 3, we prove that any curve over Fq with N > qm/2 + 1 has a 
Frobenius angle in the open interval (1r 1m, 31r 1m). We formulate one other 
problem along the same lines. It will not be considered in this paper however. 

(Problem 4) Given D, maximize Nand 9 for a curve over Fq such that 
[0,1r] ct Uj «()j - D, ()j + D). 
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2 The Explicit Formula Method 

We first recall the explicit formula method and its use in obtaining general 
upper bounds for the number of rational points on a curve [8er83], [Han95]. 
Then we present three variations of the method that yield better bounds 
for curves whose Frobenius angles are restricted to a subset 8 of [0, Jr]. In 
particular, curves that exceed one of the latter bounds, necessarily have at 
least one Frobenius angle outside 8. 

2.1 General Upper Bounds for the Number of Rational Points 

For an algebraic curve X of genus 9 over the finite field Fq of q elements, let 
the Frobenius angles be e1 , e2 , .... ego 80 that the number of rational points 
N n over Fqn satisfies 

g 

Nn = q" + 1 - qn/2 L 2cosne j • 

j=l 

With r = j?i, we rewrite the equation as 

g 

Nl r--n + (Nn - Ndr-n = rn + r-n - L 2 cosnej . (1) 
j=1 

Let f be an auxiliary cosine polynomial with real coefficients Un, 

Define 

f(e) = Uo + L Un cos ne. 
n21 

1jJ(.T) = L Un.Tn . 

1721 

The equations (1) scaled bYlLnl for n = L 2, ... , add up to 

N l 1jJ(r- 1) + L11nOVn - Ndr-n = 
n22 

g 

(2) 

(3) 

= 21109 + ~)(r) + 1jJ(r- 1 ) - 2 L f(e j ). (4) 
j=1 

The equation (4) leads to upper bounds for the number of points. As III 

[88r83], choose {11 n } such that 110 = 1 I and 

(a) Un 2 O,vn 2 1 
(b) f(e) 20, for all e E [0. Jr]. 
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Then Equation (4) yields 

N'I/J(r-l) ~ 2g + 'I/J(r-1) + 'I/J(r). 

As an example, the choice 

2 57r 2 
f( 0) = cos 0(1 - cos 0/ cos( 6 )) 

7 V3 1 
= 1 + V3 cos 0 + 6 cos 20 + 3 cos 30 + 6 cos 40 

gives, for q = 3, the upper bound 

54 
N ~ 41 (g - 15) + 28 < 1.317 g + 8.244. 

This is better than the Hasse-Weil bound N ~ 2V3 g + 4 for all g 2': 2. A 
curve attains the upper bound above only if Nl = N2 = N3 = N4 and if 
all its Frobenius angles are among {7r /2, 57r /6}. The unique such curve is 
the Deligne-Lusztig curve associated to 2G2 (3) [HP93j. The curve is of genus 
g = 15 and has N = 28. Its zeta function Z(T) = P(T)/(1 - T)(1 - 3T) has 
numerator P(T) = (1 + 3T2)7(1 + 3T + 3T2 )8. 

2.2 Restricted Upper Bounds for the Number of Rational Points 
(uo = 1) 

The upper bound in the previous subsection generalizes as follows. Choose 
{un} in Equation (4) such that 

(a) Uo = 1 and Un 2': 0, Vn 2': 2. 
(b) f(O) 2': 0, for all 0 E (9 C [O,7rj. 

Then, for a curve that has all its Frobenius angles contained in 8, 

The converse yields that a curve with 

has a Frobenius angle outside (9. For ° < a < (3 < 7r, let 

h(O) = (cosO - cos a) (cosO - cos (3) , 

1 1 
= :2 + cos a cos (3 - (cos a + cos (3) cos 0 + :2 cos 20. 

Then h(O) is non-negative on (9 = [0, 7rj\(a, (3). For q = 2, and for a = 7r/3 
and (3 = 37r / 4, we obtain 

8 - 2V2 
N > 7 (g - 1) + 5 =} 

7r 37r 
:l() E (- -). 

J 3' 4 
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The inequality on the left applies in the range 2 <::: 9 <::: 38. In that range 
the inequality holds for a curve that meets the Oesterle upper bound for the 
number of points. For another example, let 

f(fJ) = (1 + v2cosfJ)(l- 2v2cosfJ)2, 

= 1 + 312 cos fJ + 212 cos 3e. 

We obtain, for a curve over F2 , 

1 
N> 2(g - 1) + 5 

2.3 Uniform Upper Bounds for the Number of Rational Points 
(uo = 0) 

By choosing Uo = 0, we obtain upper bounds for the number of rational 
points that are independent of the genus g. Choose {un} in Equation (4) 
such that 

(a) Uo = 0 and Un ~ O,'v'n ~ 2. 
(b) f(e) ~ O,for all e E e c [O,lf]. 

Then the number N of rational points on a curve with all Frobenius angles 
contained in e satisfies 

If, moreover, the coefficients Un have the following symmetry property, for 
some positive integer Tn with m > deg(1jJ). 

(c) Un = Urn-no for n = 0,1, ... , rn. 

then the upper bound becomes 

The function 

",m n 
N ~ 1 + L.m=o UnT = Tm + 1. 

,""""ffi n m 
L .. m=O Um-nT -

/2 f(e) = - cose(l - 2cos2 e)(l- 8cos2 e) 
5 
7 1 1 

= 10 12 cos e + 2 12 cos 3 e + "5 12 cos 5 e 

cancels at the Frobenius angles of the five different elliptic curves over F2 . 

It leads to the bound N <::: 6 for any curve X over F2 with completely 
decomposable Jacobian. The bound is tight only when Nl = N3 = N 5 . The 
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smallest feasible zeta function is of genus 3 with uniquely determined zeta 
polynomial P(T) = (1 + 2T + 2T2)2(1- T + 2T2). It is realized by the curve 

2 x2 + X 

Y +Y=(x2+x+1)3' 

We give two examples that use Condition (c). The choice f (B) = cos B yields 
that a curve with N > r2 + 1 has a Frobenius angle in (7r/2,37r/2) (indeed 
the Frobenius trace can only be negative if at least one Frobenius angle has 
cos B < 0). The choice f (B) = cos B + cos 2B yields that a curve with N > r3 + 1 
has a Frobenius angle in (7r /3, 7r). In both cases, the bound on N is sharp. The 
projective line with N = r2 + 1 has no Frobenius angle in (7r/2,37r/2), and 
the Hermitian curve (see [RS94]) over Fr 2 with N = r3 + 1 has no Frobenius 
angle in (7r/3,7r). The latter example confirms that the Hasse-Weil bound is 
not sharp for curves with N > r3 + 1. In Section 3, we show more generally 
that a curve with N > rm + 1 has a Frobenius angle in (7r/m,37r/m). 

2.4 Uniform Upper Bounds for the Genus (uo = -1) 

By choosing Uo = -1, we obtain upper bounds for the genus g. Choose {un} 
in Equation (4) such that 

(a) Uo = -1 and Un 2: 0, \In 2: 2. 
(b) f(O) 2: 0, for all 0 E 8 C [O,7rj. 

Then the genus of a curve with all Frobenius angles contained in 8 satisfies 

If, moreover, the coefficients Un satisfy 

then the upper bound becomes 

2g ::; 'IjJ(r). 

The function 

4 7 26 16 
f(O) = -1- 3 cosB + '9 cos2B +"9 cos3B +"9 cos40 

is of minimal degree such that it cancels at the Frobenius angles of the three 
elliptic curves over F4 that are defined over F2 and such that Condition (d) 
holds. It leads to the bound 2g ::; 52 for any curve X over F2 with completely 
decomposable Jacobian. A previous estimate showed that 9 ::; 145 [Ser97j. 
The bound is tight only when Nl = N2 = N3 = N4 for the base field F4. It 
is attained by the modular curve X(ll), which has 9 = 26, N = 55 over F4 , 

and zeta polynomial P(T) = (1 + 4T + 4T2)5(1 + 3T + 4T2)1O(1 + 4T2)11. 
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3 An Asymptotic Example 

Let m :::0> 4 and let (x = 7r /rn. Conditions (a)-( c) in Section 2.3 hold with 
e = [0,7r]\(7r/rn.37r/m) for coefficients {lLn} that are defined by 

m-2 

'(e) . 1 +. c.:os r.ne .. '" e j = = ~ 'Un cos n . 
4(cos e - cos ex) (COS e - cos 3ex) 

n=2 
(5) 

So that 

sin( n - l)ex sin no sin( n + 1 )ex 
'Un = 

sin (t sin 2n sin 30 
n = 0,1, ... . m. (6) 

Thus, a curve with number of rational points N > rm + 1, for m :::0> 4, has 
at least one Frobenius angle in the open interval (7r /m, 37r / m). For f (e) we 
may write 

nt-I 

f(e) = 2m -:l II (cose - cos(2k + 1)0), 
/;=2 

which justifies writing the right hand side of (5) as a cosine polynomial. To 
see that the coefficients of the cosine polynomial are those given by (6), we 
use a generating function for gaussian polynomials [And98] 

1 = '" [i + 3] Ti 
(1 - T)(l - yT)(l - iPT)(l - y3T) ~ 3 ' 

where 

[
i + 3] = (yi+:l - 1)(yi+2 - l)(yi+l - 1) 

3 (y3 - 1)(y2 - l)(y - 1) . 

For y with ynl = 1, the right hand side is periodic and, for n = i + 2, 

T2(1 - Til) m-2 (y,,+l _ l)(yn - l)(yn-l - 1) n 

(1 - T)(l - yT)(l - y2T)(1 - y:3T) =?; (y3 - 1)(y2 - l)(y _ 1) T. 

Let x = eia , so that xtn = -l. With y = x2 and t = x3T, we obtain 

(1 + t m ) 'L,,-2 sin(n - l)ex sin nn sin(n + l)ex, ____ ~----------~---------- = t f 

(t + t- I - 2 cos o)(t + t- 1 - 2 cos 3ex) sin ex sin 2ct sin 3ex .. 
n=2 

Now sum the two equations with t = eiIJ and t = e- itl , respectively, and 
divide by 2. 

The casesm = 2 and m = 3 were considered in Section 2.3, so that the 
claim extends to all TTl ~ 2. For Tn = 4 and m = 6 the bounds are sharp, as can 
be seen by considering curves of Suzuky type or Ree type, respectively. The 
Suzuki curve over Fs hac; N = 65 but has no Frobenius angle in (7r / 4, 37r /4). 
The Ree curve over F:3 has N = 28 but has no Frobenius angle in (7r/6,7r/2). 
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4 Conclusion 

Results by Tsfasman-Vladuts and Serre led us to consider Problems (1)
(4) in the Introduction. For Problems (1)-(3) we have given methods that 
yield partial results. One result is a sharp upper bound for the number of 
points (N ::; 6) or the genus (g ::; 26) for a curve over F2 with completely 
decomposable Jacobian. We also showed that a curve over Fq with N > 
qm/2 + 1 has at least one Frobenius angle in the interval (7r/m, 37r/m). No 
results were obtained towards Problem (4). 
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Abstract. We discuss a finite field polynomial analogue of the twin primes con
jecture. 

1 Introduction 

One of the most famous conjectures of classical number theory is the Twin 
Primes Conjecture, which asserts that there are infinitely many pairs (p,p+2) 
of primes. For example, Hardy and Wright [3] conjecture a specific formula 
for the number of such pairs below an integer x as x goes to infinity. In this 
paper we discuss an analogue to the Twin Primes Conjecture in the domain 
of monic polynomials (in one variable) over the finite field F q. We first (in 
Section 2) define the notion of twin irreducible polynomials and consider the 
case (which is not the true analogue of the Twin Primes Conjecture) of a 
fixed degree r but growing field order q, showing that in this case there are 
indeed arbitrarily many pairs of twins (indeed also triples, quadruples, and so 
on) as q goes to infinity. However, again, we observe that the true polynomial 
analogue of the famous conjecture is rather in the case where the order q 
of the base field is fixed and the degree r goes to infinity. This much more 
challenging case is studied analytically in Section 3, resulting in a specific 
formula (Conjecture 2) for the expected number of pairs of twin irreducibles 
of degree rover F q. We then turn to a sieving technique, which supplies us 
both with an alternate theoretical framework in which to predict the numbers 
of pairs of twin irreducibles (Section 4), and also with actual counts of such 
pairs for specific small values of q and r (Section 5). We shall see that both 
frameworks (Sections 4 and 5) give excellent predictions of the computed 
actual counts of pairs of twins. Though proof of the classical Twin Primes 
Conjecture has eluded mathematicians to this point, perhaps this paper can 
point us toward a solution to our analogous Twin Irreducibles Conjecture 
(Conjecture 1 of Section 3). 
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2 Definitions and the Fixed Degree Case 

For q a prime power, let F q denote the finite field of order q. All polynomials 
over F q considered herein are monic, for these are the correct polynomial 
analogues to positive integers. Among the positive integers, two primes are 
called twins if they differ by as little as possible, meaning (except for 2 and 
3) that they differ by 2. Hence it make sense to call two irreducible polyno
mials "twins" provided that they differ by as little as possible. Consider first 
polynomials over the field F 2 . By how little can they differ? We observe that 
a polynomial Y(x) over F2 is divisible by x if its constant term is 0 and is 
divisible by x+ 1 if it has an even number of nonzero terms. Hence if P is irre
ducible over F2 (of degree;::: 3), then none of P(x) + 1, P(x) +x, P(x) +x+ 1, 
P(x) + x2 , or P(x) + x2 + 1 can be irreducible. Hence the smallest possible 
gap between two irreducibles of degree;::: 3 over F2 is x2 + x. However, if 
q > 2, then two (or more) irreducibles can differ by just a constant, so thl 
at is the smallest gap possible. For example, for p a prime, the polynomials 
xP - x - a with a = 1, ... , p - 1, provide a set of p - 1 consecutive nonlinear 
irreducibles over the field F P' see Corollary 3.79 of [8]. We now formalize 
these observations regarding twin irreducibles in the definitions which follow. 

Definition 1. The absolute value of a polynomial Y of degree r over the 
finite field Fq of q elements, denoted !Y!, is qT. 

Definition 2. Two irreducible polynomials PI and P2 , both of degree rover 
F q, are said to be twin irreducible polynomials, or simply twin irreducibles, 
provided that !P2 - PI! = 4 if q = 2 or !P2 - PI! = 1 otherwise. More 
generally, the members of a collection of k distinct irreducible polynomials 
PI, P2 , ... , Pk , all of degree rover F q, are said to be a k-tuplet of twin irre
ducibles provided that each pair of them are twin irreducibles. 

Again, in the cases when q > 2, this means that Pi and Pj ' i -# j, differ 
only in their constant terms, whereas in the single case q = 2, they differ only 
in their linear and quadratic terms. 

Throughout this paper the reader will notice many analogues in the poly
nomial ring over the finite field F q of well studied ideas and results in the 
ring of integers. While we would like to continually remind the reader of these 
incredible similarities, we would also like to avoid any possible confusion and 
so we will refer to twins in the integer setting as twin primes, while in the 
polynomial setting we will refer to twins as twin irreducibles. 

Example 1. Over F 2 , x3 + X + 1 and x3 + x2 + 1 are twin irreducibles. Over 
F 5 , the polynomials x2 + 2 and x2 + 3 are twin irreducibles. Over F 7 , x2 + 1, 
x 2 + 2, and x 2 + 4 form a 3-tuplet (i.e., triplet) of twin irreducibles. 
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Definition 3. Let Nq(r) denotc thc number of monic irrcducible polynomi
als of degrcc rover F q so that 

where J1 is the l'vIobius function, 

see Theorem 3.25 of [8]. 
We can now immediately obtain a result on the existence of k-tuplets of 

twin irreducible polynomials provided that we fix the polynomial degree r. It 
comes as no surprisc that for fixed r, as we increase q, we increase the odds 
of finding k-tuplets of twin irreducibles. The result is as follows: 

Proposition 1. Por every degree r 2': 2 and every k 2': 2 there exists at least 
one k-t'Uplet of twin irreducible polynomials of degree rover F q provided that 
q 2': 2(k - l)r. 

Proof: We observc that if q 2': 2 (k - l)r 2': 21', then 

Dividing through by r, we obtain that if q 2': 2(k - l)r, then 

(k - l)ql'-l < Nq(r). 

But now just suppose that among irreducible polynomials of degree rover 
Fq there cxist only (k - l)-tuplcts, then for each of the qr-l combinations 
of coefficients of all but the constant term, there could be at most k - 1 
irrcduciblcs, so the total number of irreducibles Nq(r) would be less than or 
equal to (k - 1 )qr-l. contradicting the above result. Hence if q 2': 2(k - 1)1', 
we are guarantecd at least one k-tuplct of twin irreduciblcs of degree rover 
F q . 

Corollary 1. In the collection of all polynomials over all finite fields, the1'e 
e:rist infinitel:lJ many k-tuplets of twin irreducible polynomials for every k 2': 2. 

Impressive as this corollary may sound, it stems simply from the fact that 
if you have cnough constant coefficients, you will be able to obtain k-tuplet 
twin irreducibles. This however, is not the true analogue of the classical Twin 
Primes Conjecture that there are infinitely many primes p with the property 
that p + 2 is also prime; the correct analogue is the case where the base field 
is fixed. \Ve now consider this Illuch more prohlelnatic case. 
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3 The Fixed Base Field Case 

We start by stating the desired re:mlt: 

Conjecture 1. For ewry finite field F if' there exist infinitely many twin irre
ducible polynomials over F q' 

One can see immediately that this result is much more difficult than that 
of the previous section. For with the base field fixed. the number of constant 
coefficients stays fixed as the degree T goes to infinity, and so the density 
of twin irreducibles (and of course k-tuplets of twin irreducibles for all k) 
decreases rapidly. 

Definition 4. Let N2 •q (r) denote the number of twin irreducible polynomi
als of degree rover F q' 

In what follows we shall attempt to make an argument, following one 
made for the classical case in. for example, [3]. for the plausibility of an af
firmative answer to our con.iectun~. Specifically, we put forward the following 
conjecture. 

ConjecinTe 2. As the degree T goes to infinity, we have 

,(q-l)qrrr( 1) 
N2 ,q(r) cv fJ -2- r2 P 1 - (IPI _ 1)2 ' 

where by cv we Illean that the ratio of the quantities on the two sides ap
proaches L where fJ = 4 if q = 2 and 1 otherwise. and where the product is 
over all irreducible polynomials P over F q provided that q > 2, but over all 
irreducibles of degree 2: 2 when q = 2. 

To obtain this conjecture. we mimic the argument presented in Section 
22.20 of [3], adapting it to the polynomial setting as needed. In particular, 
we require a polynomial version of Mertens' Theorem (Theorem 429 in [3]), 
which states that as :1: -+ x. 

-1 e 
cv --

log:r; , 

where. as throughout the remainder of this paper, log denotes the natural 
logarithm. 

We start theH with the analogue of this result. 

Theorem 1. (Mer-tens' TheoTf;m for' Polynomials) As n -+ 00, 

rr (1 -_1 ) cv e-' . 

cleg P<;n IFI n 

wher-e P Tnns oVe'r morl'ic lTn;dw:ible polynomials and r is Enler-'s Constant. 
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The following proof was shown to us by K. Conrad. 
Proof: We consider the reciprocals of the quantities in the statement, i.e., we 
show that as n ----t 00, 

1 II rv e'Yn. 
I-ljlPI 

degP'5cn 

(1) 

The left side of (1) is a finite product. Taking logarithms of both sides 
and expanding the log, the asymptotic (1) is equivalent to 

1 L L klPl k = logn + 'Y + 0(1) 
degP'5cnk21 

(2) 

with 0(1) an expression tending to 0 as n ----t 00. 

We will prove (2), thus obtaining (1) by exponentiation. 
The key idea in proving (2) is to observe that on the left side we can 

replace the double sum, whose inner sum has infinitely many terms, with a 
single finite sum over prime powers pk of degree up to n. The change from 
deg P :::; n and all k to deg pk :::; n is a negligible change in the following 
sense: 

1 1 L L klPlk = L klPl k + 0(1). 
degP'5cnk21 degp k '5cn 

(3) 

To see why (3) holds, subtract the sum on the right from the sum on the 
left. Every term in the right sum is a term in the left, so after subtraction we 
are left with 

"'" "'" 1 "'" "'" deg P ~ ~ klPl k :::; ~ ~ nlPl k 
deg P'5cn k> de~ p deg P'5cn k> de~ p 

"'" deg P "'" _1_ 
~ n ~ IPl k 

deg P'5cn k> de~ P 

< "'" deg P ( 1 ) ( 1 ) 
def-:'5cn n IPln/ deg P 1 - IjlPl 

< L degP 1 ( 1 ) 
n qn 1 - 1jq 

deg P'5cn 

= ~ ( 1 ) "'" deg P 
qn I-ljq ~ n 

deg P'5cn 

:::; q~ C _\jq)#{P: degP:::; n} 

:::; q~ (1 _11 j q ) 0 ( ~ ) 
which evidently goes to 0 as n ----t 00. 
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This verifies (3), which means the desired identity (2) is equivalent to 

1 L klPl k = logn + 'Y + 0(1). 
deg pk:::,n 

(4) 

To show (4), we write the left side as 

where 

L 1 L 1 (m) L d 1 '"' qm bm = - = -Nq - = -Nq(d) = - ~dNq(d) =-. 
k d d m m m 

deg pk=m dim dim dim 

Thus 

by the definition of 'Y. This establishes (4), so we are done. 

Remark. This argument, as Conrad first found it, applies to any function 
field K over a finite field F q, as follows. For any place v on K, let its residue 
field have size N v = qdeg v. Then as n ----+ 00, 

II __ 1-:-- '" L(llq) e'n 
1 - 1 IN v 1 - 1 I q , 

degv:::,n 

(5) 

where the product runs over all places of K and where L(T) is the numerator 
of the zeta function of K. The analogue of (5) for number fields has a zeta 
residue in place of L(l/q)/(l - l/q). For a discussion of Mertens' Theorem 
in both the number field and function field cases, see [11]. 

We are now in a position to develop Conjecture 2 by employing an appro
priate translation of the argument made for the classical case in [3], Section 
22.20. 

Fix a degree r. Define 

M= II P 
degP:::,r/2 

where the P are irreducible. (One could call M a "primorial" polynomial 
since it is the product of some initial segment of irreducible polynomials with 
degree ~ (r/2). We note that M is not the same as Mk given in section 4 of 
this paper.) 
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Let us denote the degree of M as m. Following [3], we call a polynomial 
Y special if it is relatively prime to M. For any degree k, let S(k) denote the 
number of special polynomials of degree k. Then by equation (4.30) of [2] 
and by our Theorem 1, we have 

( 1 ) 2 -~ 
S(m) = ifJq(M) = IMI II 1 -1Pf '" IMI~, 

degP-::::r/2 

where ifJq is the function defined for nonzero polynomials f in Fq[x] which 
counts the number of polynomials in F q [x] that are of smaller degree than 
the degree of f and which are relatively prime to f. Lemma 3.69 of [8] shows 
that the function ifJq is multiplicative and if f = P;' ... p;r where each Pi is 
irreducible of degree ni, then 

r 

ifJq(f) = II (qnie i - qni(ei-l)). 

i=l 

Now, the total number of monic polynomials whose degree is m is qm = 

IMI, so the proportion of special polynomials of degree m is of order 

Now we consider S(r), noting that r is much smaller than m. In fact, 
by the definition of M, we see that S(r) is just the number of irreducible 
polynomials of degree equal to r. Hence 

Because the total number of polynomials having degree r is qr, the pro
portion of special polynomials of degree r is then of order ~. 

Let us denote by R the ratio of the calculated proportions of special 
polynomials of degree rand m respectively. We obtain 

Now we turn our attention to twin irreducible polynomials. It is reasonable 
to conjecture that the ratio R2 of special pair proportions of degree rand m 
respectively should in fact be R2, i.e., 

2 1 
R2 = R '" --. 

4e-2~ 

This is reasonable because if the probability that a polynomial Y(x) (of 
degree either m or r) and Y(x) + a (or Y(x) + x2 + x when q = 2) are 
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irreducible is assumed be independent, then the probability that both are 
irreducible is just the product of the separate probabilities. 

We observe that this assertion about R2 is the only point at which are 
unable to provide proof, exactly as with the classical case as argued in [3]. 

Continuing, recall that we seek an asymptotic formula for N2 ,q(r), the 
number of twin irreducible polynomial pairs of degree r. But given our con
jecture on R2 , we can now obtain our goal by finding the proportion of special 
pairs of the large degree m. Let us first assume that q > 2. Consider a special 
pair Y and Y + oo. How many of these are there of degree m? For each P (ir
reducible) of degree less than or equal to r /2, we must have Y =t 0 (mod P) 
and Y =t -a (mod P), so we get IPI- 2 residue classes for each P, giving a 
count of 

II (IPI - 2) = IMI II (1 - ~ ) 
degP:Sr/2 degP:Sr/2 I I 

such pairs of degree m for a given oo. 
Suppose first that q is odd, so that a and -a are distinct. We observe 

that if Y and Y + a are a special pair, then so are the exact same pair Y + a 
and Y + a - oo. Hence we can obtain distinct special pairs by using half of 
the non-zero elements of F q when q is odd. On the other hand, if q is even 
(and greater than 2), then each non-zero a has the property that if Y and 
Y + a are a special pair, then Y + a and Y + a + a are the same special pair. 
Hence again we obtain a factor of (q - 1) /2. We conclude then that the total 
number of special pairs of degree m for q > 2 is 

q-1 II ( 2) -2- IMI 1-iPI . 
degP:Sr/2 

The case q = 2 is somewhat different. Recall that here twins differ by 
x 2 + x rather than by a constant. If Y (of degree m) satisfies Y == 1 (mod x) 
or Y == 1 (mod x + 1), then Y + x 2 + x satisfies these same conditions. 
Now if P3 = x2 + X + 1 is the unique quadratic irreducible (P3 is the "third" 
irreducible over F 2 ), then it's easy to check that if Y == x (mod P3 ) or 
Y == x + 1 (mod P3 ) then Y + x 2 + x is also relatively prime to P3 , but 
that if Y == 1 (mod P3 ), then P3 divides Y + x 2 + x. Thus P3 provides 2 
(= IP3 1-2) residue classes producing special pairs. Now for all irreducibles P 
of degree 3 or greater, as in the q > 2 case, we require that Y =t 0 (mod P) 
and Y =t x 2 + X (mod P), so we get IPI- 2 residue classes for each P. Finally, 
we note that the special pair Y and Y + .r2 + x is identical to the special pair 
Y +!x2 + x and (Y + x 2 + x) + (x 2 + x), so we must divide our count by 2 
to eliminate this duplication. We obtain then in the case q = 2 a count of 
special pairs of degree m of 
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where the extra factor of 4 in the denominator on the right occurs because 
the two linear irreducibles (each of absolute value 2) are missing from the 
product as each IPI is factored out. 

We now have all the information we need to obtain our desired asymptotic 
formula. The basic equation is 

and so 

R _ proportion of special pairs of degree r 
2-

proportion of special pairs of degree m 

J\T () R2 (total of degree r)(number of special pairs of degree m) 
1V2,q r rv 

total of degree m 

Recall that by Merten's Theorem, 2e-' Ir rv I1P,degP::or/2(1- I~I)' Hence 
we can compute 

1 qr m q - 1 II ( 2 ) 
N2,q(r) rv 4e-2, qm q (~) 1 -IPT 

A::odegP::or/2 

where f3 is 4 if q = 2 and is 1 otherwise, A is 2 if q = 2 and is 1 otherwise, 
and {j is 4 if q = 2 and is 1 otherwise. {j = 4 arises in the q = 2 case because 
we must remove the factors of (I1P,degP:5r/2(1- 1~1))2 corresponding to the 
two linear irreducibles over F2 from the product, and each contributes 1/4 to 
the denominator. Then one of those factors of 4 (in the numerator) cancels 
with f3 = 4. 

This completes the argument for Conjecture 2, which has been the goal of 
this section. We now turn in a different direction, using a sieving technique 
both to provide an alternate framework to understand (and predict counts 
of) twin irreducibles and to obtain exact counts (Section 5). 

4 The Polynomial Wheel Sieve 

The wheel sieve for integers was first described by Pritchard [9] as a fast 
algorithm for computer prime number sieve routines. In [5], this technique 
was used to study the distribution of primes in sets of arithmetic progressions 
of the form a+nmk, where the multiplier mk is the k-th primo rial number Pl' 
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P2 ... Pk and a < mk-l is any number relatively prime to mA:. The heuristics 
in [5] suggest that the primes are distributed binomially among the arithmetic 
progressions a + mnk, using a binomial probability given by the asymptotic 
value from Dirichlet's Theorem. Similarly, the heuristics from [5] suggest that 
twin primes in pairs of arithmetic progressions a + nmk and (a + 2) + nmk 
are also distributed binomially, with a binomial probability given from the 
twin prime conjecture [3]. 

An analogue of Dirichlet's theorem on the distribution of primes in an 
arithmetic progression also holds for polynomials over the finite field F q' see 
[7]. In [6], the authors considered a polynomial version of the wheel sieve, and 
discussed the distribution of irreducibles over the field F 2 . In particular, they 
discussed the distribution of irreducibles in arithmetic progressions, and made 
several conjectures, the most important of which (Conjecture 1) postulates 
that the irreducible polynomials in the progressions from the wheel sieve are 
distributed so as to asymptotically approach a binomial distribution using a 
binomial probability given by the asymptotic value from a theorem of Artin 
[8]. 

For the sake of completeness, we now briefly describe the polynomial wheel 
sieve and provide an example for purposes of illustration. For an integer k :::: 1, 
let Mk(X) = P1(x)··· PA:(x) be the product of the first k monic irreducibles 
in Fp[x]. The polynomial MA:(x) corresponds to the k-th primorial number 
Pl' .. PA:, and will be called the k-th pTimorial polynomial. For each value of 
k :::: 1, the wheel sieve generates a sequence of polynomials, using an iterative 
process with polynomials from the previous cycle as seeds. 

Definition 5. Over F q, let WI = F~ U {x}. Given Wk for k > 0, let Sk = 

{S E WA:IPA:(x) ~S} be the I:let after sieving the set Wk by the irreducible 
Pk. Let Wk+l = {S(x) + N(x)Nh(x)IS(x) E Sd, where N(x) varies over all 
polynomials of degree less than the degree of Pk (x). 

Note if q is a prime, WI may be taken as 1,2, ... ,q - 1, x. 

Let (wfj) be the matrix containing the set Wk. The first column is the 
set Sk-l, and the remaining columns as we move from left to right, contain 
successive multiples of the primorial polynomial Nh-l (x). The set Sk, by 
construction, is pre-sieved for the first k irreducibles. This reduces the work 
necessary to sieve using the remaining irreducibles of degree (deg( M k ) + 1) /2. 
(The addition of 1 is necessary only if deg(Mk) is odd.) After sieving Sk by 
these irreducibles, the remaining set is examined for twin irreducibles. This 
procedure is carried out on a computer, using a program written in the C 
language. 

We now illustrate the wheel sieve ill the case when q = 3. We note that 
an example for q = 2 is given in [6]. 

Example 2. The first four irred uci ble polynomials over F 3 are PI (x) = x, 
P2 (x) = x + I, P3(:r) = x + 2, P4(X) = J;2 + 1, and the first three primorial 
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polynomials are M1(:r) = :r. M2 (;r·) = .r"2 +x, lvh(x) = :r3 + 2J:. Then we have 

H/1 = {1,2.:1;},Sl = {1,2}, 

W = { 1 .r + 1 2x, + 1 } 
2 2 J: + 2 2x + 2 ' 

5 = {I 2x + I} 
2 2x+2 ' 

or using more compact notation, where the polynomial anx" + an~lXn~l + 
... + ao is abbreviated in the form anan~l ... ao, we have 52 = {I, 2,12,21}. 

For the next case, 

{
I 111 221 } 

, 2 112222 
T1';) = 12 122 222 ' 

21 101 211 

{
I 221 } 
2 112 

53 = 122222,' 
101 211 

Note that exactly 1 polynomial is removed per row, because each row spans 
a complete set of residues when sieved by Pk(X). 

The number of polynomials in SA is easily shown to be 

k 

cf>q(Mdx )) = II(IPi l-1) 
i=l 

because these polynomials are all relatively prime to the first k irreducibles. 
(cf> q was defined in the previous section, but the form given here is specific to 
operation on lvh(x), and emphasizes the similarity with the Euler ¢-function 
from number theory.) Note that the polynomials have, by construction, degree 
less than that of lvh(x) and so there will be deg(Mk) -deg(Mk~d = deg(Pk) 
different degrees in Sk beyond those degrees found in Sk~l' This leads to an 
awkward counting oflllonic irreducibles in Sk, since we are interested in these 
counts for a particular degree r. I t will be useful Lo define the number of monic 
polynomials of degree r ::;, Tn in ~Vk. which is denoted by 

k~l 

<Pq(Jth~l. r) = q'~m II (IPil - 1) 
i=a 

where Tn = deg(Jth~l(:r:)), and a = 3 when q = 2 and a = 1 otherwise. 
When r = m, this reduces to cf>(Jth~l(.1:)), which is the number of elements 
in Sk~l and hence the number of rows in the matrix representation of H'k. 
For example, when q = 3 and k = 3 then <P3(M:l ) = 8, which is the number 
of dements in S:l (see the above example). The nUIllber of monic polynomials 
in Wi of degrees r = 3 and r = 4 are respectively 8 and 3 . 8 = 24. 

In analogy. the nUlllber of J"lIonic "special ,. pair polynomials in SA, is given 
by 

(IJ-1) Ilk cf>2.q(Mx{:r)) = b -2- , (IPil- 2) 
l=a 
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where a = 1 when q > 2 and a = 3 when q = 2 (to avoid zeros in the 
product when q = 2). Our use of the term "special "in this context means 
the polynomials are relatively prime to Mk. The function if>2,q(Mk) plays a 
role in finite fields similar to the integer function ¢2 given in [5]. The function 
if>2,q(Mk(X)) counts the number of twin irrducible pairs that are relatively 
prime to Mk(x), and the factor in front, 6(q - 1)/2 comes about from the 
same counting arguments as given in Section 3 (which were applied to the 
product M but are equally valid with regard to the product Mk above). 

Similarly, the number of monic special pairs of degree r 2: m in Wk is 

where m and a are the same as above and 6 was defined in Conjecture 2. As 
an example, over F 3 , 6 = 1 and (q -1)/2 = 1 so the number of monic special 
pairs in W4 of degrees 3 and 4 are respectively 1 and 3 . l. 

The following is a generalization of Conjecture 1 in [6]: 

Conjecture 3. The monic irreducible polynomials of degree r in the progres
sions of the wheel sieve are distributed so as to asymptotically approach a 
binomial distribution in the parameter p = (if>q(Mk_1(x),r))-1(qT /r), for r 
in the range deg(Mk-d ~ r < deg(Mk). 

Analogously we make 

Conjecture 4. The monic twin irreducible polynomials of degree r in the pro
gressions of the wheel sieve are distributed so as to asymptotically approach 
a binomial distribution in the parameter p = (( if>q(Mk-1 (x), r) )-1 (qT /r))2, 
for r in the range deg(iVh-d ~ r < deg(Mk). 

Numerical calculations support Conjectures 3 and 4. In particular, Fig
ures 1 and 2 from [6] provide numerical evidence for the q = 2 case. These 
conjectures are formulated in a similar way to Conjecture 2. The probability 
of obtaining two irreducibles with a minimum gap next to each other is as
sumed independent, and hence this twin probability is just the square of the 
probability to find a single irreducible in Sk (compare the binomial parame
ters from Conjecture 3 and 4). This heuristic shows that the distribution of 
irreducibles in the rows of the sieved matrix are binomial, as shown in Figure 
1 of [6], which is reminiscent of Bernoulli trials. It is now a small step to show 
that this conjecture is equivalent to the Conjecture 2 in Section 3. 

The analog of the twin prime conjecture is obtained by combining Con
jectures 3 and 4. The average probability that a given element in Wk of 
degree r is an irreducible is just the number Nq (r) of irreducibles, divided by 
the number if>q(A'h-l' r) of polynomials of degree r in the set Wk. Similarly, 
the average probability that a special pair in Wk is a twin irreducible pair 
is given by the number N 2 ,q(r) of twin irreducibles, divided by the number 
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P2,q(Ah-l.T) of special pairs in tlIP set Wk. Under the assumption that the 
probabilities areuncoTTelated. the latter probability is equal to the square of 
the former. and so we obtain 

where again deg(l\!h-d <::. T < deg(l\!h). Solving for N2,q('r) and using the 
definitions for Nq(r), Pq and P2,q, one finds a similar asymptotic form as 
Conjecture 2. In particular. 

and upon expanding the products and using qm = 11\!h-ll, we obtain 

( 1) r k-l ( 1) 
Wpredict rv /) q; ~2 II 1 - (IPil _ 1)2 

z=a 

as the prediction for N 2 ,q(r), where a = 3 when q = 2 and a = 1 otherwise. 
It is no surprise that Conjecture 2 and Wpredict have similar asymptotic 

forms (differing only in where the product is truncated), since they were 
formulated with similar assumptions. The predictions from both conjectures 
will be compared with numerical data in the next section. 

We note that the product has a very similar form to the integer twin 
prime constant, C2 . In analogy, we define the constant 

(q_l)k-l( 1) 
C 2 ,q = D -2- II 1 - (IPil- 1)2 

l=a 

as the twin irreducibles constant, where as before, a = 3 when q = 2 and 
a = 1 otherwise. This constant converges quickly, and for example when q = 2 
it has the value C2 ,2 = 0.8328783 .... 

Contrasting Sections 3 and 4, Section 3 used analytic techniques whereas 
Section 4 used probabilistic estimates based on the binomial distribution. We 
leave it to the reader to determine whether either approach will eventually 
yield a proof rather than a conjecture. 

5 Numerical Data 

In this section we provide some data related to the distribution of twin irre
ducibles over finite fields of small orders. In particular, we compare estimates 
given from the analytic theory developed in Section 3 and estimates arising 
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from the wheel sieve theory described in Section 4. We compare these es
timates with actual counts of the number of twin irreducibles over fields of 
orders 2,3,4,5 and 7. 

In the following tables, 

Nq(r) denotes the number of monic irreducibles of degree rover Fq, 
N2 ,q(r) denotes the number of pairs of monic twin irreducibles of degree 

rover F q , 

cJ> q (Mk - I , r), abbreviated as cJ> q (k, r), denotes the number of monic poly
nomials of degree rover F q which are relatively prime to the first k - 1 
irreducibles, 

cJ>2,q(Mk-l, r), abbreviated as cJ>2,q(k, r), denotes the number of special 
pairs of monic polynomials in Sk of degree rover F q with minimal gap, 

Apredict denotes the predicted number of twin irreducibles of degree rover 
F q obtained from Conjecture 2 in Section 3, 

Wpredict denotes the predicted number of twin irreducibles of degree r 
over F q obtained from Conjecture 4 in Section 4. 

In Tables 1, 2, 3, 4, and 5, we provide numerical data on the distribu
tion of twin irreducibles over fields of orders 2, 3, 4, 5, and 7. Thus in the 
table for the field F q, one can compare the actual number N2 ,q (r) of twin 
irreducibles of degree r obtained by machine calculation with the estimate 
Apredict from the analytic method by comparing the values in columns 3 and 
6 for a given r. Similarly, one can compare the actual number N2 ,q(r) of 
twin irreducibles of degree r with the estimate Wpredict from the wheel sieve 
method by comparing columns 3 and 7. 

Armed with the conjectures, the analog of Brun's constant (the recipro
cal sum of the twin primes) is easily calculated. The calculation is slightly 
different for q = 2, since the smallest "gap" is x 2 + x, except for the first 
2 irreducibles, PI = x and P2 = X + 1. We decide that PI is the analogue 
of "2" in the integer case, and should not be included in the sum. Hence, 
for q = 2, the first irreducible pair (x3 + x + 1, x 3 + x 2 + 1) has degree 3 
and contributes 1/8 + 1/8 = 0.25 to the sum. Continuing in this manner, 
the wheel sieve can be used to calculate the exact value of B2 ,2 up to degree 
26, giving an intermediate sum of 0.9350. Using Conjecture 4 to estimate the 
sum up to degree 65190, the sum becomes 1.0585. Using analytic estimates 
to extrapolate as the degree goes to infinity, we obtain B2,2 = 1.0591 ... for 
the analog of Brun's constant over F 2 . The calculation of B2 ,q for q > 2 
can be done in a similar manner. In the cases for q = 3,4,5,7, we obtain 
B2,3 = 2.2724 ... , B2,4 = 4.0647 ... , B2,5 = 5.5058 ... , B2,7 = 8.7025 .... 

We note that while the two predictors Apredict and Wpredict are based 
upon quite different methods (one analytic and the other probabilistic), they 
give very similar estimates for the number N2,q(r) of twin irreducibles of 
degree rover F q • 
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Table 1. Distribution of twill irreducibles over F2 for degree r, 

l' N 2 (r) N2,2(1') cf>2(k. r) cf>2.2(k,1') APTCdir:l WpTcdict 

2 1 0 0 0 0 0 
3 :2 1 2 1 2 1 

4 3 1 3 1 2 1 

5 6 2 6 2 2 1 

6 9 2 12 3 3 2 
7 18 4 21 6 4 4 
8 30 7 42 12 7 6 
9 .56 8 84 24 11 10 

10 99 16 147 36 17 16 
11 186 28 294 72 28 29 
12 :335 55 588 144 47 47 
13 6:30 76 1176 288 81 83 
14 1161 142 2205 504 139 140 
15 2182 224 4410 1008 243 247 
16 40RO 414 8820 2016 427 431 
17 7710 758 17640 4032 756 770 
18 14532 1340 33075 7056 1348 1362 
19 27594 2456 66150 14112 2420 2456 
20 52377 4436 132300 28224 4367 4424 
21 99858 7926 264600 56448 7922 8040 
22 190557 14362 496125 9R784 14436 14573 
2:3 364722 26638 992250 197568 26416 26693 
24 698R70 48358 1984500 395136 48520 49005 
25 1342176 89048 3969000 790272 89431 90372 
26 2580795 165368 79:38000 1580544 165367 167067 

As mentioned earlier. both approaches are hased on the idea of special 
polynomials, however in Section 3 the e:-;timate:-; are ba:-;ed on lvI (a primorial 
product up to deg P :s; (1'/2)) and in Section 4 the estimates are based on 
lvh (a primorial product up to the k-th irreducible). Perhaps a deeper exam
ination of these two methods will help elucidate the ideas behind the twin 
prime conjecture for finite fields. 

There is a remarkably :-;imilar comparison between the forms of primes 
(over Z) and irreducibles (over F q). This is best illustrated by putting these 
side-by-side. For the primes and irreducibles, 

T ql' 
71'(:r) "" -'- : N (1') 

log:r q T' 

and for the twin primes and twin irreducibles, 
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Table 2. Distribution of twin irreducibles over F3 for degree r. 

r N3(r) N2,3(r) <P3(k,r) <P2,3(k, r) Apr edict Wpredict 

2 3 0 4 1 1 0 
3 8 1 8 1 1 0 
4 18 0 24 3 2 1 
5 48 6 64 7 4 1 
6 116 6 192 21 8 2 
7 312 15 512 49 18 18 
8 810 36 1536 147 41 41 
9 2184 105 4096 343 96 97 

10 5880 216 12288 1029 234 236 
11 16104 585 36864 3087 580 589 
12 44220 1506 106496 8575 1462 1478 
13 122640 3747 319488 25725 3737 3791 
14 341484 9510 958464 77175 9666 9796 
15 956576 25555 2768896 214375 25261 25586 
16 2690010 66606 8306688 643125 66606 67445 
17 7596480 177561 24920064 1929375 177001 179285 

Table 3. Distribution of twin irreducibles over F4 for degree r. 

r N4(r) N2,4(r) <p4(k,r) <P2,4(k, r) Apredict Wpredict 

2 6 3 9 6 4 3 
3 20 4 27 12 7 6 
4 60 18 81 24 15 13 
5 204 36 324 96 37 38 
6 670 130 1215 336 103 102 
7 2340 312 4860 1344 303 311 
8 8160 1008 18225 4704 928 943 
9 29120 2836 72900 18816 2933 3002 

10 104754 10158 273375 65856 9502 9670 
11 381300 31116 1093500 263424 31410 32030 

Table 4. Distribution of twin irreducibles over F5 for degree r. 

r N5(r) N2,5(r) <P5(k,r) <P2,5 (k, r) Apredict Wpredict 

2 10 5 16 18 7 7 
3 40 20 64 54 20 21 
4 150 45 2,'56 162 56 56 
5 624 196 1024 486 178 180 
6 2580 520 5120 2430 616 617 
7 11,160 2280 24576 11178 2264 2305 
8 48,750 8825 122880 55890 8662 8797 
9 217000 34530 589824 128547 34221 34799 

10 976248 138394 2949120 642735 138585 140863 
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Table 5. Distribution of twin irreducibles over F7 for degree r. 

r N7(r) N2,7(r) ifh(k,r) <P2,7(k, r) Apr-edict Wpredict 

2 21 21 36 75 30 26 
3 112 84 216 375 94 101 
4 588 336 1296 1875 366 386 
5 3360 1680 7776 9375 1641 1750 
6 19544 7770 46656 46875 7969 8225 
7 117648 41847 279936 234375 40982 41396 

where C2,q and the twin prime constant C2 are also similar, both being con
vergent products. In particular 

where for C2 the product is over all primes p ~ 3, and for C2 ,q it is over 
all monic irreducibles of degree two or greater for q = 2 but over all monic 
irreducibles for q > 2. 

6 Generalizations and Extensions 

In this final section we briefly discuss several extensions and generalizations 
of the previolls work. We say that two polynomials f, g over F q have rank 
qm, m ~ 0, if f - g is a polynomial of degree m. Thus for q = 2, we obtain 
the twin irreducible case when m = 2, while if q > 2, when m = 0 we obtain 
our earlier notion of twin irreducibles. 

We begin by noting that in the fixed degree case, Proposition 1 can be 
generalized from twins to rank qTn. 

Proposition 2. Let m ~ O. For every degree r ~ 2 and every k ~ 2, there 
exists at least one k-tuplet of twin irreducible polynomials of degree rover F q 

of rank qm, provided that q ~ (2(k - l)r)l/(m+l). 

We also then have 

Corollary 2. In the collection of all polynomials over- all finite fields, there 
exist infinitely many k-tuplets of twin irr-educible polynomials of rank qm for 
every k ~ 2. 

As indicated in Section 3, the case of a fixed base field F q is much more 
difficult. In this case we propose 

Conjecture 5. For each m ~ 0 and for every finite field F q, there exist in
finitely many irreducible polynomials over F q of rank qm. 
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Conjecture 2 postulates an asymptotic form for N2,q(r), the number of 
twin irreducibles of degree rover F q. It would be of interest to have an 
asymptotic formula for the number of rank qm irreducibles over F q of degree 
r. For q > 2 this appears to be 

( qm+1 _ 1) qT ( 1) 
2 r2 I] 1 - (IPI- 1)2 . 

We close by asking, more generally, can one obtain an asymptotic formula 
for the number of k-tuplets of twin irreducibles among rank qm irreducibles 
over F q of degree r? 

References 

1. G. EFFINGER, A Goldbach Theorem for Polynomials of Low Degree over Odd 
Finite Fields, Acta Arithmetica, 42:329-365, 1983. 

2. G. EFFINGER AND D. HAYES, Additive Number Theory of Polynomials over a 
Finite Field, Oxford University Press, Oxford, 1991. 

3. G.H. HARDY AND E.M. WRIGHT, An Introduction to the Theory of Numbers, 
5th Edition, Oxford Science Publications, Oxford, 1979. 

4. D.R. HAYES, The distribution of irreducibles in GF[q, x], Trans. Amer. Math. 
Soc. 117(1965), 101-127. 

5. K. HICKS AND I. SATO, Heuristics of arithmetic progressions in the framework 
of the wheel sieve, submitted. 

6. K.H. HICKS, G.L. MULLEN, AND I. SATO, Distribution of irreducible polyno
mials over finite fields, published in these proceedings. 

7. H. KORNBLUM, Uber die Primfunktionen in einer arithmetischen Progression, 
Math. Z. 5(1919),100-111. 

8. R. LIDL AND H. NIEDERREITER, Finite Fields, Cambridge Univ. Press, 1997. 
9. P. PRITCHARD, Explaining the wheel sieve, Acta Informat. 17(1982),477-485. 

10. P. Ribenboim, The New Book of Prime Number Records Springer-Verlag, 
New York, 1995. 

11. M. ROSEN A Generalization of Mertens' Theorem, J. Ramanujan Math. Soc. 
14(1999),1-19. 



Invariants of Finite Groups over Finite Fields: 
Recent Progress and New Conjectures 

Peter Fleischmann 

Institute of Mathematics and Statistics, 
University of Kent at Canterbury, 
Canterbury, CT2 7NF, England 
email: pflO@ukc.ac.uk 

Abstract. Let G be a finite group acting on a polynomial ring A := IF[Xl, ... ,Xnl 
by graded algebra automorphisms. If IF is a field of characteristic zero, then due 
to classical results of Emmy Noether one knows that the invariant ring AG can be 
generated in degrees less or equal to IGI. If IF is a field of positive characteristic p 
dividing the group order IGI, this is no longer true. The situation in characteristic p 
not dividing IGI has been clarified recently after being open for several decades. This 
paper presents an account on these developments, including some related questions 
and conjectures dealing with constructive and structural properties of modular 
invariant rings. 

1 Introduction 

Let IF be a field and let IF[Xl' X2, ... ,xnl be a polynomial algebra on which 
the group G acts by graded algebra automorphisms. The ring of invariants 
consists of all polynomials unchanged by elements of G and is the major 
object of study in classical invariant theory. One major motivation comes from 
algebraic geometry, where more general 'affine' algebras and group actions 
occur. Assume for the moment that IF is algebraically closed and let X be 
an affine algebraic variety with A := O(X) the corresponding algebra of 
regular functions, such that X can be identified with the set of maximal 
ideals in A. For a group G of automorphisms of X let XIIG denote the 
categorical quotient. Then a natural question is, whether XIIG is again an 
affine algebraic variety. A necessary condition for this is, that the invariant 
ring 

AG := {a E A I g(a) = a V 9 E G} 

is a finitely generated IF - algebra. III this case the maximal ideal spectrum 
max - spec AG of the invariant ring is a natural candidate for XIIG and one 
might hope that XIIG coincides with the set - theoretic quotient, namely the 
orbit space XIG. In general neither does AG have to be finitely generated, 
nor does the categorical quotient XIIG have to coincide with the 'geometric 
quotient' XIG, but if G is a finite group, then due to a fundamental theorem 
of Emmy Noether, the situation is much better (see e.g. [1]1.4.4). 
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Theorem 1. (Emmy Noether (1926){14j) If IGI < 00, then AG is finitely 
generated and X / / G ~ max - spec A G is in bijection with the orbit - space 

X/G. 

Therefore the natural questions arise 

• how can A G be constructed ? 
• what are the geometrical properties of AG? 

When invariant theory was created in the middle of the 19'th century, 
the main interest was focused on the situation where IF is the field of com
plex numbers and G is a classical (infinite) group. Therefore invariant theory 
'in characteristic zero' is highly developed. Recent applications in geometry, 
algebraic topology and cohomology theory ask for results in the situation 
where IF is of positive characteristic, in particular a finite field, and G is a 
finite group (see [21]). As I pointed out in my talk at the Fq4 - conference 
in Waterloo ([4]), much less is known in this sitnation, becanse many of the 
methods developed for characteristic zero do not carryover, and some results 
on 'classical invariant rings' are known to be false in positive characteristic. 
Since 1997 considerable progress has been achieved, in particular with respect 
to constructive methods. For example the problem of Emmy Noether's degree 
bound which was addressed in [4], has in the meantime been resolved to full 
satisfaction ([6], [8]). The experience gained in this process has led to various 
new questions and conjectures which also deal with geometrical and struc
tural properties of invariant rings. In this paper I want to give an account on 
these developments and will present an admittedly subjective outlook into 
the nearer future. 

Notation: Throughout the paper No denotes the set of nonnegative in
tegers; for n E N, '!l denotes the set {I, 2, ... ,n} and N~ denotes the set of 
functions from '!l to No. 

2 Constructive Aspects 

Noether's proof of Theorem 1 was one of the first major applications of her 
newly developed theory of rings and modules with ascending chain condition. 
The price one has to pay for the generality of Theorem 1 is, that its proof is 
not constructive. 

Definition 1. Let R be a commutative ring, A := R[al, a2, ... ,ak] a finitely 
generated R - algebra with generators al, ... ,ak and G a finite group acting 
on A as R - algebra automorphisms, stabilizing the R - module L:~=l Rai. 
For 0: E N~ we denote with flo the power product ar' a~2 ... a~k E A and 
with MR((ai)) we denote the R - module spanned by 

k 

{flO I 10:1 := L O:i ~ £} <:;;; A. 
i=l 
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For a subalgebra or ideal B of A we define the Noether number 

to be the infimum of the set of all £ EN such that {bl , ... , bm} ~ M£((ai)), 
satisfying B = R[bl , ... , bm] if B is a subalgebra, or B = (b1, ... , bm)A if B is 
an ideal. If there is an obvious set of chosen generators (ai) or the choice does 
not matter, we will simply write (3(B). For example, if A = R[XI,'" ,Xk] is 
a polynomial ring generated by variables Xi of degree 1 and B is a finitely 
generated graded subring or a homogeneous ideal, then (3(B) := (3(B, (Xi)) 
will be the minimal number k such that B is generated by homogeneous 
elements in A of degree less or equal to k. 

Remark 1. By Theorem 1, (3:= (3(AG,(al, ... ,ak)) < 00, ifG is finite and 
R is Noetherian, but the proof does not give any bound for (3. 

Obviously the Noether number (3(B) is a measure for the algorithmic 
complexity of a subring or ideal. In particular if R is a field and B := A G, 

then invariants in M£((ai)) can be computed by solving linear equations of 

size increasing with £. Since (3(AG) is an upper bound for the £ needed to 
generate A G, it also bounds the overall size of linear systems to solve. 

In 1916 Emmy Noether gave two different proofs for the fact that 

if G is a finite group and R = IF is a field of characteristic zero. This is usually 
referred to as the 'Noether bound' in invariant theory. Both of these proofs 
fail in positive characteristics. On the other hand it is known from [16], that 
,B(AG) can be arbitrarily large, if the characteristic of IF divides IGI. After 
Emmy Noether's general result (Theorem 1), the question of degree bounds 
somewhat fell into oblivion, until it resurrected again with the upcoming of 
constructive invariant theory in conjunction with new powerful methods in 
computer algebra. In particular the so called 'Noether gap', i.e. the conjecture 
that the Noether bound (3(lF[XI"" ,Xk]G) ~ IGI holds if char IF does not di
vide IGI, has de facto been open since 1916, but was considered more seriously 
during the past decade (see e.g. [19], [15], where the conjecture was shown 
to hold for solvable groups). This question has recently been answered to 
the affirmative by the author and J Fogarty independently and with slightly 
different approaches (see [6], [8]). In the following I will present a 'combined 
version' of these proofs, incorporating an essential observation by D Benson 
which makes the combinatorics in [6] more transparent. 

The fact that Noether's degree bound does not hold in general can be 
seen already in the simple example A := lF2 [Xl,'" ,Xk, YI,'" ,Yk] with G = 
E2 = (g) acting by swapping the 'variable types' Xi +--+ Yi. It is an easy 
exercise to show that the invariant ~ := (Xl' .. Xk)+ := Xl ... Xk + YI ... Yk is 
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indecomposable, i.e. cannot be written as a sum of products of invariants of 
smaller degree. Therefore 

It is interesting, though, to observe that 

i.e. ~ decomposes in the Hilbert - ideal AG,+ A, generated in A by all invariants 
of positive degree. Hence one can easily see that ,8(AG,+ A) = 2 for all k ::::: 2. 
In fact a generalization of this observation led to the proof of Noether's bound 
in [6]. 

Let H ::; G be a subgroup of index n with coset - decomposition G := 

l±J''i:=lgiH. The homomorphism of AG - modules given by 

t~: AH ---t A G , a f---t L g(a) 
gEG:H 

is called the relative transfer map with respect to H; its image is an ideal in 
AG , called the relative transfer ideal (w.r.t. H). The following lemma gives a 
useful decomposition in A of high degree relative transfer elements: 

Lemma 1. For b, b1, b2 ,'" ,bn E AH we have 

t~(bb1 '" bn ) = L (-It-III+! t~(b II bj ) II gj(bj ). 
IC~, I#~ jEI j~I 

Proof. By Benson's trick we have for each fixed i the obvious equality: 

n 

II ( gi(bj ) - gj(bj ) ) = O. 
j=l 

Expansion and multiplication with gi(b) for fixed i gives: 

Now summation over i E 11 yields the claimed identity. 

Theorem 2. Let A be as in Definition 1 and H a subgroup of G such that 
either IGI invertible in R or H <l G a normal subgroup with index [G : H] 
invertible in R. Then 

In particular, if IGI E JF*, then Noether's degree bound holds, i.e. 

,8(JF[X1' ... ,Xk]G) ::; IGI. 
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Proof. Under both assumptions on H, the relative transfer map tC§ is surjec
tive. Also note that the elements gj (b j ) appearing in the previous lemma are 
in AH, if H is normal in G. Now suppose that (3 := (3(AH) = (3(AH, (ac)) 
with A:= R[al,'" ,ac] and AH = R[bl ,··· ,bk] with bi E AH nM{3((ac)). If 
H :::; G and IGI invertible, we have tC§(bbl ... bn) = Ibl tf(tC§(bbl ... bn)) = 

1 I:: (_l)n- II I+1 tC§(b IIbj )1Gi tr(II gj(bj )) E R[AG nMn{3((ac))]. 
Ie!!, N!! JEI jft.! 

If H <l G and IG / HI invertible, we replace IGI by IG / HI and tf by tC§ to 
conclude in a similar way that tC§(bbl .. ·bn) E R[AG nMn.{3((ac))]. Now an 
iterative application of this result finishes the proof. -

One might hope to remove the requirement H <l G for subgroups of in
vertible index: 

Conjecture 1. : If H :::; G with index [G : H] invertible in R, then 

If A = IF[XI' ... ,Xk], the formula in Lemma 1 describes a decomposition 
of relative transfer elements in the Hilbert - ideal AG,+ A. Extensive sample 
calculations done by Harm Derksen and Gregor Kemper led them to the 
following far reaching conjecture: 

Conjecture 2. [Noether bound for Hilbert ideals] (H. Derksen / G. Kemper): 
Let G be a finite group, IF a field and A := IF[XI'''' ,Xk] a polynomial ring, 
such that G acts by graded algebra automorphisms. Then 

In the next section we will show that in special cases this conjecture can 
be verified using the techniques of the proof of Theorem 2, which we are now 
going to refine. 

From now on for the rest of the paper let R := IF be a field of characteristic 
p I IGI and V a finitely generated lFG - module. We consider the symmetric 
algebra A := Sym(V*) of the dual module V*. Choosing a basis {Xl,'" ,Xd} 
for V*, the ring A can be viewed as a polynomial ring IF[XI'''' ,Xd] with 
induced graded G -action. Let P be a fixed Sylow p - group of G with nor
malizer NG(P) and N := NG(P)/ P. For subgroups U :::; H :::; G we define 
the (homogeneous) relative transfer ideal 

Ilju := I:: t~(AY) <lAH. 
y<u 

Lemma 2. 

(3(AG,+ . A) :::; max{(3(AQ /I~Q) . [G : Q] I Q :::; Pl. 
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Proof. Let f E AG ,+ be indecomposable in AG ,+ A, Since n := [G : P] is 
invertible, f is of the form t~ (h) for some h E A P'+, which itself can be 
written as 

h = L t~(bQ,lbQ,2'" bQ,RQ ) 

Q'5.P 

with bQ,j +I~Q E AQ /I~Q and bQ,j homogeneous of positive degree ~ (3Q := 

(3(AQ /I~Q)' Moreover we can assume that every nonzero transfer element 

is indecomposable in AG ,+ A as well. But from lemma 1 we see that this 
requires CQ ~ [G : Q], hence 

f E L A~~:[G:Ql . A. 
Q 

Hence Noether's bound in case of relative transfer quotients for p - groups 
implies Conjecture 2: 

Corollary 1. If (3(AQ /I~q) ~ IQI for all Q ~ P E Sylp(G), then conjecture 
2 holds, i.e. (3(AG,+ A) ~ IGI. 

To obtain degree bounds for AG rather than AG,+ A one can make use 
of the Brauer homomorphism from representation theory, i.e. is the canoni
cal homomorphism AG ~ AG := AG /I~p. Using Mackey's formula for the 
relative transfer, we get 

t~(b) = L t~n gp(gb) == L gb == tf (b) mod I~p, 
gEP\G/P gEN/P 

where P\G/P denotes a chosen system of double cosets of Pin G. It is easy 
to see that I~p n AG = I~p, hence we get 

Since p does not divide INI, Theorem 2 gives 

Lemma 3. 
(3(AG) ~ (3(AP) ·INI. 

(j(AG) ~ max{(3(I~p), (3(AP) ·INI}. 
It has been conjectured by several experts that 

(j(Sym(V*)G) ~ max{IGI, dim V· (IGI- 1)} 

is a 'natural degree bound' for modular invariant rings of type Sym(V*)G. 
Using the above technique this certainly would follow from the next two 
slightly sharper conjectures: 
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Conjecture S. Let P be a Sylow p - group of G. Then 

l. p(AG /I~p) ~ INC(P)I. 
2. If A = Sym(V*) with lFG - module V, then 

(3(I~p) ~ max{ IGI, dim V· (lGI ~ I)}. 

3 p-permutation Modules 

In this section we present some evidence for the previous conjectures, based 
on the analysis of a special type of invariant rings. An lFG - module V in 
characteristic p is called a p - permutation module or trivial source module, 
if its restriction to any Sylow p - subgroup is an ordinary permutation module, 
or in other words, if a basis b of V can be found, which is permuted by some 
Sylow p - group. Note that, since any two Sylow p - groups are conjugate, the 
property of being a p - permutation module does not depend on the choice 
of the Sylow group. Note also that V is a p - permutation module if and 
only if so is the dual V*. The following lemma is a known fact in modular 
representation theory (e.g. see [18]): 

Lemma 4. The lFG - module V is a p - permutation module if and only if 
it is a direct summand of a permutation module for G. 

Now choose a Sylow p - group P and assume that 'lP is a permutation 
module of dimension d. Then for any subgroup Q ~ P the restricted module 
"IQ is also a permutation module. Moreover for every integer Tn, the homo

geneous component An = Sym(V*)m of degree Tn is generated as a vector 
space by power products xa := X~l X~2 ... X~d of exponent sum Tn, which 
themselves are permuted by Q. In particular an element 

,t:= L caxa 

aENg 

is Q - invariant, if and only if Ca is constant on the orbit a Q := {aog I g E Q}, 
where Q is viewed as permuting the set r1 and therefore acting naturally on the 
set of functions N~. In other words, each Q - invariant is a linear combination 
of orbit - sums of the form 

(xa )+:= L xao9 , 

gEQ/Qa 

where Q / Qa is a chosen cross section for the cosets of the stabilizer subgroup 

Qa in Q. In particular (xa )+ E I~Q if and only if Qa < Q. On the other 
hand, the Q - stable power products are products of 'norm - like elements' 
of the form ni := fL,EOi Xi, where {Oi I i = 1"" ,s} is the set of all Q -
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orbits on a chosen permutation basis {Xl, ... ,Xd} of V. From this it is easy 
to see that 

1. 

In particular AQ /I~Q ~ IF[nl,''' ,ns ] is a polynomial ring generated by 
elements of degree:::; IQI. This together with Lemma 2 gives: 

Proposition 1. If V is a p - permutation module and P is a Sylow p -
group of G, then ,8(AQ /I~Q) :::; IQI for each subgroup Q :::; P. In particular 
conjecture 2 holds for A = Sym(V*). 

To show that the second degree bound of conjecture 3 holds in this case, 
we can argue in a similar way as in the proof of Lemma 2: Let f E I~'+ be 
indecomposable; by the transitivity ofrelative transfers (t{fIAu = (t{! otij)IAU 
for U :::; Y :::; H) we can in fact assume that f is ofthe form tg(h) with h being 
a power product in the n/s. Each polynomial I19EG/Q (T - g(ni)) E AG[T] 

has ni as a zero, showing that nlG:Q, E l:o~j<IG:QI AGn{. This allows for 

reductions of exponents in h and since the operator tg is AG - linear, we can 
assume that these exponents do not exceed IG : QI-1. Hence the total degree 
of f can be assumed to be less or equal to s· (IG : QI-1). Since s :::; d = dim V 
and deg ni :::; IQI we conclude that ,8(I~p) :::; max{IGI, d· (IGI- I)}. Hence 

Proposition 2. If the lFG - module V is a direct summand of a permutation 
module, then 

,8(Sym(V*)G) :::; max{IGI, dim V· (IGI-1)} 2. 

Note that the modular group algebra lFP in characteristic p is a local 
Frobenius - algebra and therefore finitely generated projective, injective and 
free lFP - modules coincide. Since the restriction Vip of any f.g. projective or 
injective lFG - module is free and hence a permutation module (viz. a sum of 
copies of the regular module), any such module is a p - permutation module. 
Moreover every lFG - module appears as submodule and factor module of 
a suitable projective one. This adds to the evidence for (2) to be a natural 
modular degree bound, even though no general result seems to exist about 
Noether numbers for invariant rings of sub representations or quotients. If 
the group G is cyclic, then W :::; V implies ,8(Sym(W*)G) :::; ,8(Sym(V*)G), 
due to a recent result of R J Shank and D Wehlau [17]. If moreover G is of 
order p then the bound (**) has been proved by D Hughes and G Kemper 
[9]. 

4 Structural Aspects 

Let B be a positively graded IF - algebra with Bo ~ IF, M a finitely generated 
B - module and 1<1 B an ideal. Recall that a sequence aI, a2, ... ,aT of homo-
geneous elements in I is called a regular M - sequence if B( aI, ... ,aT)M < M 
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and for every 1 :s: i :s: T' the lIlultiplication with ai is an injective operator 
on the quotient M/(al, 02,··· ,0i-dM. It is a known fact that all maximal 
regular M - sequences in I have the same length, which is called the grade of 
Ion M. The grade of B on M is called the depth of M and the module M 
is called Cohen - Macaulay, if its depth coincides with its Krull - dimension 
Dim M = Dim (B/AnnB(M)). Here AnnB(M) := {a E B I oM = O} is 
the annihilator of AI in B. The ring B is called Cohen - Macaulay, if the 
regular module BB is Cohen - Macaulay. It can be shown that B is Cohen 
- Macaulay if and only if B is a finitely generated free module over some 
polynomial subring of B (see [1] 4.3 or [2]). 

It has been known for quite some time that rings of polynomial invariants 
of the form Sym(V*)G are Cohen - Macaulay, if G is a finite group whose 
order is coprime to the characterioltic of IF'. This is known to be false in general, 
once p = char IF' divides IGI (see [10] and the references there). The degree 
to which it fails is measured by the defect def A G := Dim A G - depth A G. 
Clearly if A = Syrn(V*) and G is finite, then Dim A = Dim AG = dimlF V, 
because A is a finite extension of A G . 

In 1980 G. Ellingsrud and T. Skjelbred proved the celebrated result that, 
if P is a Sylow p - group P of G with fixed point space V P, one has 

depth Sym(V* f 2: 2 + dim V P 3 

if dim V 2: dim v P + 2, with equality if G is a cyclic p - group (see [3]). 
For almost two decades this has been the only general result on the depth of 
modular invariant rings, which remains to be one of their most interesting, 
but difficult to determine parameters. In particular the classification of mod
ular Cohen - l\Iacaulay - invariant rings is an open problem. The result of 
Ellingsrud and Skjelbred was achieved using homological algebra, in partic
ular a Grothelldieck spectral sequence. During the last five years or so, these 
techniques havc been revitalized (sec c.g. [lO]' [22], [12]), most notably by 
Gregor Kemper who was able to claflsify all groups, whose modular regular 
representation has a Cohen - Macaulay ring of invariants. 

With regard to the techniques laid out in the previous sections of this 
paper, some recent results show that the relative transfer ideal I~p and 

its radical V I~ p can shed some new light on the problem of determining 

the depth of modular invariant rings. Let P :s: G be a chosen Sylow p -

group of G and assume for technical reasons, that IF' is algebraically closed 
of characteristic p > o. This allows us to consider A := Sym(V*) as the 
algebra of polynomial functions on V, and AG as the algebra of polynomial 
functions on the orbit space V / G. Hence for an ideal I <l A G, the variety 
V(I) consists of all orbits pG in V such that f(x) = 0 for every f E I 
and :£ E vG . On the other hand for each subset S ~ V there is the ideal 
I(S) := U E A I f(8) = 0 '1/8 E S} and IG(S) := I(S) nAG. In [5] relative 
transfer ideals have been illvefltigated geometrically, which led to the following 

def)criptioll of VI~p in terms of its variety in the orbit space V/G: 
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Theorem 3. (P. Fl. [5}) 

1. V(I~p) = {vG E VIC I p llvGI}. 
2. !I~p = IG(V P ), wheTe v P denotes the space of P - fixed po'ints 'in V. 
3. If the action of P on V is defined over- IF p' then 

AG I !I~p is Cohen - Macaulay of Krull dimension dimlF V p. 

Note that for a permutation module of a p - group Q, the previous result 

implies that !I~Q = I~Q with 

being even a polynomial ring. Hence Theorem 3 3. is a natural generaliza

tion, which indicated that the ideal !I~p might 'measure the depth' of 

Sym(V*)G: the formula (3) of Ellingsrud - Skjelbred shows, that dim vP is 
a lower bound for the depth of A G, so it was conceivable that the 'missing 
part' of the depth is provided by regular elements in the ideal I~ p l . In the 
case of p - groups this follows from a result of C. Kemper (see [11], Theorem 
1.5) and for general groups it is a consequence of the following 

Theorem 4. (P. Fl., R.J. Shank, ['l}) 

Moreover, if V is defined over IF q' one can at least in principle use the 
'Dickson invariants' d; E Sym(V*)GLn (q) ~ Sym(V*)G to determine the grade 
of I~p on AG. 

Theorem 4, in connection with Lemma and Conjecture 3, shows that the 
relative transfer ideal I~p contains the clues for some of the most important 
structural and constructive properties of modular invariant rings. Therefore 

an efficient algorithm to find minimal generating sets for the ideal !I~p is 

very much needed as an important step to determine its grade and henceforth 
the depth of A G . 

1 note that the grade of an ideal always coincides with the grade of its radical. 
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Abstract. In this paper I will give an introduction to elliptic curves on Hesse 
form. The embedding of these curves in the projective plane make their symmetries 
especially nice. If we pick a point p in the projective plane S.t. p is not a 3-torsion 
point, p is the parametrization of the curve that contains p. We will also see that 
the division polynomials are independent of chosen elliptic curve on Hesse form. 

1 Introduction 

The study of elliptic curves, elliptic integrals and elliptic functions were one 
of the great topics in the nineteenth century mathematics. Where the Nor
wegian mathematician Niels Henrik Abel were one of the masters together 
with Gauss, Jacobi and Legendre. 

In this paper I will give an introduction to a certain family of elliptic 
curves, the elliptic curves on Hesse jorm. We will see that, among other 
properties on the elliptic curves on Hesse form, the division polynomials are 
independent of the chosen curve. 

I was first introduced to these curves by my advisor Professor Kristian 
Ranestad as a topic for my master thesis in algebraic geometry. In cooperation 
with the Headquarters Defence Command, Norway and Thales Communica
tions he started a seminar series on elliptic curves and cryptography at the 
Department of Mathematics at University of Oslo in fall 1998. This made us 
interested in studying the elliptic curves on Hesse form to see if there are 
some advantages compared with curves in the Weierstrass family. 

2 Elliptic Curves on Hesse form 

Let k be a field and K = k its algebraic closure. And let jp'k denote the 
projective plane over the field k with projective coordinates xo, Xl and X2. 

Elliptic curves are algebraic curves of genus 1 defined over the field k. Every 
elliptic curve can be embedded as a curve given by a smooth cubic equation 
in the projective plane jp'2. 

A curve F in jp'2 is smooth or nonsingular at a point p if the three partial 
derivatives ~F (p) are not all zero. The curve is smooth or nonsingular if it ux, 
is nonsingular at every point ]J E F. 
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2.1 Hessians and the Hesse pencil, 1£ 

An important property of most plane nonsingular, irreducible cubics over 
the field k is the existence of flexes. A flex is a nonsingular point, p, of a 
curve such that the curve intersects the tangent at p with multiplicity at 
least three at p. If it intersects exactly three times it is called an ordinary 
flex else a higher flex. Nonsingular cubics over a finite field k contain either 
0, 1, 3 or 9 k-rational flexes. 

In 1842 Ludwig Otto Hesse (1811-74) constructed a determinant, called 
a Hessian, that characterizes the flexes of a curve of degree at least 3. The 
Hessian of a plane projective curve, F, of degree d, is defined by 

FxOXO FXOXl FXOX2 
H(F) = FXOXl FX1X1 FX1X2 

FXOX2 FX1X2 FX2X2 

where FXiXj is the second partial derivative of the polynomial F with respect 
to Xi and Xj' When F is irreducible H(F) is a form of degree 3(d - 2). The 
following theorem gives us the relationship between H(F) and the flexes of 
F. 

Theorem 1. Let F be a curve of degree d > 1 in lP'2. Let char( k) = ° or 
char(k) ~ d and let p be a k-rational point on the curve F. Then p E H(F)nF 
if and only if p is either a flex or a singular point of F. The multiplicity of p 
in H (F) n F equals 1 if and only if p is an ordinary flex. 

Proof. For a proof of this theorem, see either [2], [7] or [5]. 

When the characteristic of a finite field is less than the degree of the curve we 
will need to use the Hasse derivative instead of the usual derivative. The Hasse 
derivative, Dx , acts on F(x) = 2: aixi in k[x] as Dir) (2: aixi) = 2: e)aixi-r, 
where the binomial coefficient is taken modulo the prime characteristic. Write 
i and r as p-ary expansions, i = io+i1P+" '+nepe and r = rO+rlP+" '+repe 
with 0 :::; i j < p and 0 :::; rj < p for 0 :::; j :::; e, then (;) == (;~) (;~) ... (;:) 
(mod p). And (;) == 0 (mod p) if and only if rj > ij for some j. 

Lemma 1. Let F be a cubic defined over a field of characteristic ~ 2. A 
nonsingular point p on F is a flex point if p lies in the intersection of F, K(O) , 
K(l) and K(2), where K(i) = (D(j))2 D(kk) +(D(k))2 D(jj) -D(j)D(k)D(jk) and 

D(j) = DxjF, D(jk) = D;jXkF and {i,j, k} = {O, 1, 2}. 

Proof. See [7]. 

We will need the following well known theorem, named Bezout's Theorem. 

Theorem 2. (Bezout) Let F and G be complex projective curves of degrees 
m and n such that F and G have no common factors of positive degree. Then 
F and G intersect exactly mn times, counting multiplicities, in the complex 
projective plane. 
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Proof. See f.ex. [2], [5] or [6]. 

This gives the next corollary. 

Corollary 1. A nonsingular, irreducible plane projective cubic over C has 
nine flexes, all ordinary. 

These nine flexes lie by threes on twelve lines. This is the classical configura
tion, (94 ,123 ), of flexes of a plane cubic. 

A nonsingular , irreducible plane projective cubic curve over lR has at least 
one flex. For nonsingular cubics over a finite field, Fq , the following theorem 
lists the possible number of flexes. 

Theorem 3. The number of rational flexes of a nonsingular cubic over Fq 
is zero, one, three or nine. The possibilities are as follows: 

Proof. See [7]. 

q == 0 (mod 3): 0,1,3; 

q == 2 (mod 3): 0,1,3; 

q == 1 (mod 3) : 0,1,3,9. 

Lemma 2. There exists a nonsingular plane cubic curve over Fq with nine 
Fq-rational flexes if and only if q == 1 (mod 3). In this case the cubic has the 

canonical form E(a,b) = aXOXlX2 + b(x~ + xr + x~). 

Proof. See [7]. 

The (94,123) configuration exists in lP'} for nonsingular cubics if and only 
q 

if q == 1 (mod 3). When we take the configuration in canonical form we get 
a pencil of cubic curves containing the nine points. This pencil is called the 
Hesse pencil. 

Definition 1. The family of curves in lP'2, over the field k, generated by the 
two cubics XOXIX2 = 0 and x~ + xr + x~ = 0 

is called the Hesse pencil, '}-{. 

'}-{ is an I-dimensional linear subspace of lP'9, the space of cubics in lP'2. The 
name comes from the fact that the Hessian of a curve in the Hesse pencil 
is itself a curve in the Hesse pencil. The Hessian of (a, b) is (s, t) where 
s = 216b3 + 2a3 and t = -6a2b. H(E(a,b)) is a new curve different from E(a,b) 

in '}-{ if and only if E(a,b) is a nonsingular curve in '}-{. 

Definition 2. We say that an elliptic curve in lP'2 is on Hesse form if it is a 
smooth curve in '}-{. 
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A curve in 1{ is smooth if and only if b -I- 0 and a3+27b3 -I- O. This means there 
are exactly four singular curves in 1{ over C. and over Fq where q == 1 (mod 3). 
In Fq the equation xn = 1 has d solutions, x = 1,wr,w2r , ... ,w(d-l)r, where 
d = (n, q -1), r = (q -l)/d and w is a primitive root of Fq , i.e. w is such that 
Fq = {O, 1, w, ... ,wq- 2 I wq- 1 = I}. So the polynomial x2 + x + 1 has two 
distinct roots in Fq if and only if q == 1 (mod 3). The four singular curves 
are the four triangles 

Too = E(1,o) T_ 3 = E(-3,1) 

T_ 3€ = E(-3€,1) T_3€2 = E(-3€2,1) 

where E is a primitive 3th root of unity in C. or in Fq where q == 1 (mod 3). 
These four triangles are the four triples of lines containing the nine flexes 
mentioned above. We will later refer to the points on these four triangles as 
T(= UT>,). 

Since the Hessian of a curve in 1{ is itself a curve in 1{ we have that the 
nine (three) common intersections of the curves in 1{ are the nine (three) 
flexes on the elliptic curves, E(a,b), over C. and over Fq where q == 1 (mod 3) 
(over IR and over Fq where q == -1 (mod 3)). The nine common intersections 
of the curves in 1{ in P~ is the set 

Uc = {(O, 1, -1), (0, 1, -E), (0,1, _E2), 

(1,0, -1), (1,0, -E), (1,0, _E2), 

(1, -1,0), (1, -E, 0), (1, _E2, On 

It is easy to see that these nine points lie on a plane projective cubic if and 
only if the cubic is a curve in 'H. The set UIR is the three points 

UIR = {(O,l,-l),(l,O,-l),(l,-l,On· 

From Bezout's theorem it then follows that through a point P E ]P'2 \ Uk there 
is exactly one curve in 1{. So the curves in H spans the projective plane ]P'2. 

2.2 The Group Law 

As a consequence of the Riemann-Roch theorem ([6], [10]) the set of points 
on an elliptic curve, E, over a field k form an abelian group. We can form a 
group structure on E by fixing any point on E as the identity element, O. 
To define the "ordinary" group law on elliptic curves, however, we need the 
identity element to be a flex. 

We say that points are collinear if they all lie on the same line. The 
ordinary group law on elliptic curves are characterized by two equivalent 
properties, one is that the identity element is a flex and the other is the 
collinearity condition, i.e. three points P, Q, Ron E are collinear if and only 
if P + Q + R = 0 in the group structure. For an introduction to the ordinary 
group law see f.ex. [2], [11], [10] or [9]. 
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Now we want to define a group law on the elliptic curves on Hesse form. 
Let E be an elliptic curve in 1t. We fix the flex (0,1, -1), that lies on every 
curve in 1t, as the identity element, O. 

Definition 3. A point x = (XO, Xl, X2) E ]p2 over the field k is called general 
if X tJ. T. 

The matrix 

is called a Moore matrix. The determinant of Mx,y is given by detMx,y = 
(Y8 + Yr + Y~)XOX1X2 - YOY1Y2(x5 + xr + x~), i.e. detMx,y is a curve E(a,b) 

in 1t, where (a, b) = (y8 + Yr + y~, -YOY1Y2) E ]pl. Note that if Y E Uk then 
detMx,y == 0. 

Lemma 3. If x, Y E E, then rkMx,y = 2. 

Proof. We will divide the proof in three parts: 

1. When both x and Y E Uk it is easy to see that rkMx,y 
x = (1,0, -E) and Y = (1, -1,0), then 

(
1 ° E) 

Mx,y = ° -E ° 
0-1 ° 

has rank 2. 

2. F.ex. if 

2. When Y E Uk and x is general, then none of the coordinates of x is zero 
so we can say Xo = 1 and it is also easy to see that rkMx,y = 2 in this 
case. F.ex. let Y = (1, -E, 0) and x = (1, Xl, X2), then 

and (1,0,-Ex2) = a(-Exl,X2,O) + b(O,-E,Xt} where a = -l/EXl and 
b = -EX2/Xl, so Mx,y has rank 2. 

3. Now let x and Y be general, then none of the coordinates are zero so we 
can say Xo = Yo = 1, then 
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Suppose l\JJ:,y has rank 1, then 

i) Xl - X~YIY2 = 0 
ii) ;1:2 - XiYIY2 = 0 
iii) Yl - XIX2Y~ = 0 
iv) Y2 - xlx2yr = 0 

By solving these equations we get yf = Y5 = 1. Then Y5 + yf + Y5 = 3 
and YOYIY2 = 1, for f2 and E is one of the triangles T_ 3 , T_ 3t or T-3E2, 
a contradiction. 

Let L be the involution I : Xi f---) X-i, i (mod 3). The unique solution of 
lVI,,(x),y . Z = 0, when x, Y E E defines a group law on the points of E with 
the flex (0,1, -1) as identity. The solution is given as the 2 x 2-minors of the 
matrix after removing one row. 

Theorem 4. Let;1: = (.'I:o,Xl,:C2) and Y = (YO,Yl,Y2) be two points in jp'~ on 
an elliptic CUT've E in H. The following equations defines a gmup law on E 
oveT' k: 

1. let X,Y E E and x #)1, then 

x + Y = (:r:l X2Y6 - X6YIY2, XOXIY~ - X~YOYl' xOx2yr - XrYOY2) 

2. when X = )I E E, then 

2"> - (x' X3 X· X3 x3 x x3 x x3 x x' x3) 
J - 0 2 - 0 ,], 1 2 - 0 ·2, 0 1 - 1 2 

Pmoj, 1. When:r and )I E E there are at least one nonvanishing equation 
given by the 2 x 2-rninors of lvI,(xl,y' For the operation x+y, when x # y, 
we choose the symmetric equation given by the 2 x 2-minors of ML(xl,y 
after eliminating the first row of the matrix. To sec that the operation 
'+' is a group operation we check the group axioms: 
(a) The operation '+' is closed on the curve E. Let Ex; denote the polyno

mial a;r;l]xl;r2+b(:r:~+;ri+:d), where (a, b) E jp'l is the parametrization 
of E. If ;]; and )I are two points on E, then Ex = a:rO:r:lX2 + b(x~ + 
xr + x~) = ° and Ey = a.l)O)ll)l2 + b()l5 + )If + )I~) = 0, i.e. Ex and 
Ey E I(E). the ideal of E. When we factorize Ex +y with respect 
to E." and Ey we get either E1; or Ey as a factor in each term, so 
E y +y E I(E) and x +.1) is a point on the curve E. 

(b) (0,1, -1) is the identity element: 
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(c) The involution t.(:r) = (:£() .. 1:2 .. fl) defines the inverse of an element 
x = (::r;O.X1.:J:2) E E: 

:r + l~(::r:) = (X6:Z:lX2 - x6.Tl;r2,::r;ox~ - :rox~,::r;ox~ - xox{) 

~ (O,L-l) 

(d) The operation .+. is commutative on the curve E: 

X + Y - (". 'Y' '1)2 x2y 'I) '," 'r '1)2 X2'1) Y ,'" X y2 x·2y Y ) ., - ·q~~2. 0 - O. L 2,·"0· L 2 - '2. 0.1""0 2 1 - ]. 0 2 

(Y1Y2 X6 - Y6::r'1:r:2, YOYl.T~ - y~::r'OX1' YOY2 xI - yi:1:0X2) Y + x 

(e) The operation . +. is assosiative on the curve E. Let :r, Y, z be three 
points 011 E and let P1 = (x + y) + z and P2 = X + (y + z). The two 
points Pl and P2 are equal on E if and only if .7:, Y, z E E. This will 
he shown in appendix A. 

2. When x = Y the equation we chose in 1 is vanishing so we choose the 
equation we get hy eliminating the second or third row in the matrix 

!vI,(x).:c' 

Let E[n] = {p EEl np = O} denote the n-torsion subgroup of E. 

Theorem 5. Let k = K. then for every n :::: 2 E[n] is isomorphic to Zn x Zn. 

Proof. See Lex. [6]. 

Lemma 4. A point pEE is a flex if and only if 31' = O. 

Proof. If p is a flex, then p E Uk and it is easy to check that the points of 
Uk arc three torsion points on E. We have Uk ro-' Z3 if k = lR or k = Fq with 
q == 2 (mod 3) and Uk ro-' Z3 X Z3 if k = Cork = Fq , q == 1 (mod 3). We then 
know from theorem 5 that the elements of Uk are all the 3-torsion points on 
E. 

Collinearity 

An elliptic curve E in H satisfy the collinearity condition, i.e. three points 
on E are collinear if and only if their sum equab zero on E. 

If we have three collinear points, x = (.7:0,Xl,X2), Y = (YO,Yl,Y2) and 
z = (zo, Zl, Z2) E jp'2 then the matrix 

has rank 2 and detA! = O. 

Proposition 1. Three points x, y, z E E are collinear if and only if x + Y + 
z = (0. L -1) E E. 
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Proof. Suppose first that x, y, Z E E are collinear. When x, y E E, x+y is the 
solution of ML(x),y' a = 0, a = (ao, aI, a2) E E. Let Li be the three equations 
from ML(x).y . a = 0: 

then 

L1 : xoyoao + X2Y2a1 + XlYla2 = 0 
L2 : .1:2Ylao + xlyoal + XOY2a2 = 0 
L3 : XlY2aO + XOYlal + x2yoa2 = 0 

and since detM = 0 we get 

Bezout's theorem (2) tells us we can't have more than three points in the 
intersection E n detAI, so we have to have a = (ao, aI, (2) = (zo, Z2, Zl) = -z 
and x + Y = -z. 

Now suppose x+y+z = (0,1, -1) E E then Li(x, L(Y), z) = 0, (i = 1,2,3), 
where Li are the three equations from MX,L(y) . z = 0 

Ll : XoYoZo + XlYlZ1 + X2Y2Z2 = 0 
L2 : XOYlZ2 + XlY2 Z0 + X2YOZI = 0 
L3 : XOY2Zl + X1YOZ2 + X2YlZO = 0 

0= L2 - L3 = detM and we have that x, y, Z are collinear. 

The group law on the singular curves in 1-£ 

A curve F in ]p2 is singular at a point p if the three partial derivatives 
(8F/8xi)(P) ('i = 0,1,2) are all zero. The partial derivatives of a curve 
E(a,b) E 1i is 8E(a,b)/8xi = aXjXk + 3bx; so E(a,b) is singular if a3 + 27b3 = 0 
or if b = O. 

We have either 2 or 4 singular curves in 1i dependent of the characteristic 
of the field k. If k = Fq , q == 0 (mod 3) we have two singular curves, the 
triangle TrX! and the triple line (xo + Xl + X2)3. If k = lR. or k = Fq , q == 2 
(mod 3) we have two singular curves, the triangle Too and the curve (xo + 
Xl + x2)(x6 + XI + x~ - XOXI - XOX2 - XlX2). And when k = C or k = Fq , 

q == 1 (mod 3) we have four singular curves, the four triangles: 

Too : XOXlX2 = 0 
T_ 3 : (xo + Xl + X2)(EXO + E2Xl + X2)(E2xo + EXI + X2) = 0 
T- 3E : (xo + EXI + X2)(EXO + Xl + X2)(E2Xo + E2Xl + X2) = 0 
T- 3E 2 : (xo + E2xl + X2)(EXQ + EXI + X2)(E2XQ + Xl + X2) = 0 
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On all these singular curves in 'H, if we exclude the singular points, we have 
the same group law as we have on the elliptic curves in 'H. We can extend 
the group operation on the elliptic curves in 'H: 

to a rational map: 

ExE 
(x,y) 

E 
x+y 

p 2 X p 2 __ + p2 

(x,y) f---+ x+y 

where x + y is defined as in theorem 4. 

2.3 The j-invariant 

Algebraic curves over K are classified by the discrete invariant genus, g, and 
by a point on the variety of moduli of curves of genus g, M g , which is a 
continuous invariant. Mg is an irreducible algebraic variety of dimension 1 if 
9 = 1 or dimension 3g - 3 if 9 ~ 2. Algebraic curves with 9 = 1 are called 
elliptic curves. For elliptic curves the point on Mg is called the j-invariant 
and it classifies elliptic curves up to isomorphism. 

Theorem 6. Let k = K and char(k) =I- 2. Two elliptic curves X and X' 
over k are isomorphic if and only if j(X) = j(X'). 

Proof. See [6]. 

Proposition 2. Let c = %, b =I- O. The j-invariant of an elliptic curve on 
Hesse form, E(a,b) = Ec : CXOX1X2 + x5 + xr + x~, over K is given by 

Proof. We can transform Ec into classic Weierstrass form F(92,93) : y2 z = 
4x3 - g2xz2 - g3z3 using f.ex. Nagell's algorithm [3]. It follows that Ec c::: 
F(92,93) where (g2, g3) = U2 c4 - 18c, 27 - 2~6 c6 - ~c3). The j-invariant of Ec 

3 

is then given by theorem 6 and j(F(92 93)) = 1728 3!~7 2. 
, g2 g3 

Proposition 3. Let V = {-3, -3t, -3t2}. The transformation 

is surjective and 12 : 1, except over j = 0 where it is 4 : 1. 

Proof. We will prove this proposition in Sect. 2.4. 
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Corollary 2. 1. Every elliptic curve E over K is isomorphic to a smooth 
curve in 71. 

Er : c:r:OX1X2 + .1;~ + xf + x~ = 0 
for c E Al \ V, where V = {-3. -3f, -3e2 }. 

2. rt we have an elliptic curve on classic WeieTstrass form 

F . y2?, - 4x 3 _ q Tz2 _ g z3 (!/2.g,,)' ~ -. .2" 3, 

we can transform, it into Hesse form, Ee , by solving 

with Tespect to c. 

Proof. 

1. {j(Ec)} = K, so there exists a curve in every isomorphism class of elliptic 
curves in 71. 

2. Follows from theorem 6. 

2.4 Symmetries of Curves in 1t 

The group 5L(3, k) acts on points in p%, if () E 5L(3, k) then ()((Xo, Xl, X2)) = 

(()(Xo), ()(xJ). ()(.1;2)). 

The Heisenberg group of dimension 3, H3 

Let a and T be two elements in 5L(3, K) such that a(xi) = Xi+l and T(Xi) = 
fi xi . As matrices 

(001) 
a= 100 

010 
and (

100) 
T= OtO. ' 

00(2 

where t is a primitive third root of unity in K. The group generated by the 
matrices a and T is called the Heisenberg group of dimension 3 and is denoted 
H3. H3 is a finite nonabelian subgroup of 5L(3, K) with [a, T] = tid. The 
order of H3 is 27 [1]. 

Proposition 4. H3 leaves the curves in 71 invariant and operates on the 
points on an elliptic CUTve in 71 by translation by 3-torsion points. 

Proof. By looking at the generators for 71 we see that H3 acts trivially on 
the clements of 71. 

The generators of H;l acts on points in E as translation with 3-torsion 
points. Let :1: E E, :r = (:r:O,:J:l,X2), then a(:r) = (:J:l,:r2,xo) = (XO,Xl,X2) + 
(1, -1,0) and T(X) = (:r:o, u:l.f2:r2) = (xo, Xl"T2) + (0,1, -f). Further, the 
center of H3 is Z(H:,) = {id, Eid, f 2id} and H3 is a central extension 

1 -----t Z ( H:3) -----t H 3 -----t Z:l x Z 3 -----t 1 

where a f--+ (1,0) and T f--+ (0.1). 
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The normalizer of H3 in SL(3, K), N3 

The normalizer of H3 in 5L(3, K) is the group that consists of those p E 

5L(3, K) such that PH:3 = H3P and is denoted N 3 . N3 is generated by the 
matrices (J, T. [) and v where 

(
001) 
100 
010 

(J= 

8 = k6 1 E f2 and (
1 1 1) 

1 (2 E 

This group is a finite subgroup of 5L(3. K). We have IN31 = 648. k6 is a 
constant which make det( 8) = -3kZ (2E - 1) equal to lover the field in which 
we are working. For example in r:har(k) = 2 we have k6 = 1, in char(k) = 5 

we have kti = (4 + 3f)~ and when k = C we have k6 = -1i. 
Remark; N3 is not defined over fields of characteristic 3, because the 

determinant of 8 then is ~ero. 

The factor group G = N3 / H3 ":' 5L(2, Z3) is generated by 8 and D: 

H3 ----> N3 ----> N3/H3 
1 1 II 

H3 ----> iVa ----> 5L(2, Z3) 
10 

(J,T f-7 
01 

b 
02 

f--+ 
1 0 
1 2 

v f-7 

01 

-c (02) (12) 5L(2. Z3) = (6 = 10 ,D = 01 ) 

The group H c::::' A4 

The group H = G/ < 82 >":' A4 is generated by 15 and v: 

1 ----> < 82 > ----> 5L(2, Z;;) ----> A4 ----> 1 
- -
b f--+ [) 
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H3 acts trivially on ?t. This induces an action of SL(2, Z3) on ?t, where the 
orbit consists of isomorphic curves. Further 

"82 (~1 ~ ~1) EG 
o -1 0 

also acts trivially on ?t, so we get an action of H on ?t. 
Now we are ready to prove proposition 3 from p. 131: 

Proof. Proof of proposition 3: There exists acE K s.t. j(Ec) #- 0, so the 
transformation is surjective. If j(Ec) = 0, then c = 0 or c = ij2I6, and 
therefore the isomorphism class of Eo : x~ + xf + x~ = 0 consists of 4 curves 
in ?t. When j(Ec) #- 0 the isomorphism classes of Ec concists of 12 curves, 
this follows from the formula for j(Ec) and from the action of the group H 
on the curves in H. 

3 Torsion Points and Division Polynomials 

Let E be an elliptic curve. For n E Z let cJ>n be the multiplication-by-n map: 

cJ>n:E ~ E 
p f--+ np = p + ... + p 

'----v---" 
ntimes 

The image of cJ>n is a subgroup nE of E and the kernel of cJ>n is the n-torsion 
subgroup of E, E[n] = {p EEl np = o} = cJ>;;-1(0). 

Proposition 5. Let E be an elliptic curve and nEZ, n #- O. 

1. degcJ>n = T/? 
2. If char(k) = 0 or if n is prime to char(k), then 

3. If char(k) = p, then either 

E[pr] '::::' 0 for all r = 1,2, ... ; or 

E[pr] '::::' Zp' for all r = 1,2, ... 

Proof. See [10]. 

If E[pr] = 0 then E is said to be supersingular else E is said to be ordinary. 
Other equivalent definitions of supersingular elliptic curves can be found in 
[8]. 

In the next section we will take a closer look at the division polynomials 
on E E ?t. The results in Sect. 3.1 are taken from my master thesis [4]. 

If we only want to find the n-torsion points on E we will describe a 
computational easier way in Sect. 3.2. 
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3.1 A First Algorithm for Finding the n-torsion Points on E E 1t 

In this section we will work over the field of complex numbers, C. 
Let E be an elliptic curve in H. The formulas for addition and doubling 

on E defined in theorem 4 are independent of chosen elliptic curve E E 1i. 
We can therefore extend iPn to a rational map: 

iPn : p 2 ---t p 2 

P f---> np 

iPn maps a point p = (Xo, Xl, X2) E lP'2 to the point np = (n - m)p + mp for 
a m E Z. Common factors in the polynomials representing np are contained 
in the base locus and can be removed. By proposition 5 we expect to find 
that the polynomials representing np after removing common factors are of 
degree n2 . We will show this for n up to 10 in the next sections. 

Let X E E and nx = (Fo, FI , F2 ), where the Fi'S are polynomials of 
degree n2 representing nx. X is a n-torsion point on E if nx f"V (0,1, -1) i.e. 
if X E Z(Fo) n Z(FI + F2)' 

Definition 4. The set of n-torsion points on E s.t. mx 1- 0 whenever min 
and m < n are called the primitive n-torsion points of E. 

Lemma 5. The number of primitive n-torsion points of E, an, can be found 
by executing the following recursive Maple-procedure: 

a := proc(n::posint) 

localm, j; option remember; 

ifn = 1 then 1 

else 

fi 

end 

j := n2 -1; 

formindivisors(n) doifm 1- nand m 1-1 thenj:= j - a(m) 

fiod; 

RETURN(j) 

We will state some claims and show them for n up to 10 when 3 f n in the 
following sections. The case with 3n-torsion points will be discussed in Sect. 
3.1. 

Claim. If n 1- 3 then for all m s.t. min and 3 f m Fo and FI + F2 have a 
common factor Pm of degree ~. The Pm's are irreducible polynomials which 
are SL(2, Z3)-invariant. 
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When 3 t n we call write the polynomials representing nx as products of 
Pm's: 

(J-n(xo) II ((J-n Pm) (T(J-nPm)(T2(J-n Pm)), 
tn, 

min 

where (J and T are the two generators of H3 (2.4). 
Let Xm be the curve defined by Z ( Pm). 

Claim. The intersection of Xm and E is exactly the primitive Tn-torsion 
points of E. 

Claim. If Xm is singular then the singularities are exactly the twelve vertices 
of the four triangles in H. So we have no singular intersection points with E. 

Since the Pm's are 8L(2. Z3)-invariant Xm intersect isomorphic with each 
curve in the same isomorphism class of curves in H. So Xm intersects iso
morphic with each of the 4 triangles in H, and we need only to check the 
triangle T = : X'O:);1 X2 = 0 when we want to study the intersection between 
Xm and the singular curves in H. 

Definition 5. The number of branches of the curve Xm at a point q E Xm 
is the number of locally irreducible components of Xm in a sufficient small 
neighbourhood of q. 

Denote the singularities of Xm: [(:r,y,z),a,b,c], where (x,y,z) = q is the 
singular point, a is the multiplicity of q, b is the intersection multiplicity 
between Xm and Olle of the triangles in H at q and c is the number of 
branches of Xm at q. 

Claim. Thc intersection multiplicity is 1 for all points p E Xm n E. 

To prove this when Xm is Ilonsingular we use Hurwitz formula (7) on the 
morphism 

and show that f is only ramified at points (0, b) E P 1 that correspond to 
singular curves in H. (This morphism is defined for all p E Xm since 3 t Tn.) 

Whcn Xm is singular we use Hurwitz formula on the minimal desingular
isation Xmblwn vp of Xm as described in lemma 6. 

Theorem 7. (Hurwitz). Let f : X -+ Y be a finite separable morphism of 
complete, nonsingular curves. Let n = deg f and let R be the ramification 
divisor of f. Then 

2g(X) - 2 = n . (2g(Y) - 2) + dcgR, 
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where 
degR = L (ep - 1). 

PEX 

Proof. See [6]. 

The ramification index, ep , is the intersection multiplicity between Xm and 
a curve in 1i at the point p. 

Definition 6. A morphism f : X ----+ Y, defined as in theorem 7, is said to 
be unramified at a point y E Y if the number of inverse images of y equal 
deg f, else f is said to be ramified at y E Y. 

( 3+ 3+ 3) 
L 6 L t f X XOXIX2.XO Xl x 2 pI b fi' bl emma . e : mblown-up '1) e a nzte separa e 

u17t • 

morphism between complete nonsingular curves, where Xmblown-up is the min-
imal desingularisation of X m. The following are equivalent: 

i. computing the degree of the ramification divisor of f, degR, using Hurwitz 
formula on f. 

ii. computing degR = LqEXm (Iq - r), where Iq is the intersection multi
plisity between Xm and a curve in 1i at q and r is the number of branches 
of Xm at the point q. 

Proof. 

l~ 
qEXm .. pI 

We blow up Xm at the singular point q with r branches s.t. q splits into r 
points PI, ... ,Pr E Xmblown-up' Locally at q E Xm we can write Xm as an 
union of irreducible components ZI U ... U Zr· Then Iq = L~=1 (IZi,q) = 
I:~=1 (IpJ, where I:~=1 (IZi,q) is the sum of the intersection multiplicities 
between Zi and a curve in 'H at the point q. And L~=1 (Ipi) is the sum of the 
intersection multiplicities between Xmblown-up and a curve in 1i at the points 
Pi, (i = 1 ... r). 

Algorithm 1 An algorithm for finding the n-torsion points on E when 3 f n 
and to prove the claims: 

1. Compute nx. 
----; I 

2. Compute the cmssproduct nx x (0,1, -1) and find the common factors 
Pm of Fo and FI + F2 · 

3. Check if Xm is a singular curve. 
(Use f. ex. the Maple-pmcedure algcurves[singularities].) 

4. Check that Xm intersects E in Cl3' different points. 
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3n-torsion points 

Let E be an elliptic curve in H and let p, q be two points on E where q is 
given by an element a E H3: 

a:E 
p 

E 
p+q 

This map is the translation-by-q map and it is an isomorphism with inverse 
element a~l E H 3 , (but it is not a group homomorphism). We have seen 
in Sect. 2.4 that H3 operates on an elliptic curve in H by translation by 
3-torsion points, so q is an element of Uk. For ex E H3 consider the following 
composite map: 

E 
p+q 

3n· 
----------+ 

f-+ 

E 
3n(p + q) 

= 3np+ 3nq 

If p E ker(tJ\,) then 3n(p + q) = 3np + 3nq = O. So we find the 3n-torsion 
points on E when n ¥- 3 as the product of the orbit of H3 on Pn , i.e. the 
3n-torsion points on E are exactly the intersection between E and the curve 
given by the product of the polynomials representing nx. 

We find the 3-torsion points on E by intersecting E with any other curve 
in H. But H3 acts trivially on H so we have to consider the case with the 
9-torsion points on E as a special case. 

Let Vd denote the set of homogeneous elements of degree d in the graded 
polynomial ring K[xo, Xl, X2] = ffid>O Vd. We have 8 cubics beside H in V3 

that are invariant as curves under tIle action of H3: 

B I , ... ,Bs together with XOXIX2 are the polynomials that represents 3x on 
E, and therefore B I , ... ,Bs intersected with E give the primitive 9-torsion 
points on E. 

Lemma 7. If n ¥- 3 the curve associated with the polynomial P3n intersected 
with E gives the 3n-torsion points on E: 

P3n = IT a(Pn ), 

o.E H 3 
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where Pn is the polynomial wh'ich curve intersected with E gives the n-torsion 
points on E. If n = 3 then 

8 

Pg = (XOXIX2) IT Bi , 

i=l 

where Bi,(i = 1..8), are the 8 H3-invariant cubics mentioned above. 

In the next sections we will find the n-torsion points on E for n up to 10. 

2-torsion points on E 

The 2-torsion points on E consist of: 
1 origin 
3 primitive 2-torsion points 

We follow algorithm 1: 

1. Compute 2x: 

2x = (Fo, FI, F2) = (xox~ - xoxr, XrX2 - X&X2' X&XI - XIX~) 
= (XO(X2 - Xt}(X2 - EXI)(X2 - E2xt}, 

X2(XI - XO)(XI - EXO)(XI - E2XO), 

xt(xo - X2)(XO - EX2)(XO - E2x2)) 

= (Xo(P2)( 7 P2)( 7 2 P2), X2(a2 P2)( Ta2 P2)(72a2 P2), 

Xl (a P2)( 7a P2)( 72a P2)) 

The curve given by the product of these 12 polynomials intersected with 
E gives the 6-torsion points on E, see Sect. 3.1 and 3.l. 

---- ) 2. Compute the crossproduct nx x (0,1, -1) and find the common factors 
Pm of Fo and Fl + F2: 
Fo : xox~ - xoxf = XO(X2 - Xt}(X2 - EXt}(X2 - E2Xl) = 0 
and 
Fl + F2 : X3X2 - XfX2 - X3 Xl + XIX~ = (X2 - Xt}(XIX~ + XIX2 + x3) = 0 
Common factors of Fo and Fl + F2 is the line 

3. Check if Xm is a singular curve: 
X 2 is a nonsingular curve. 

4. Check that Xm intersects E in a; different points: 
X 2 intersects E at 3 different points, this is because the ramification of 
the morphism 
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is a point of ramification index 2 on each of the four triangles, Hurwitz 
theorem says dey R = 4. so these are all the ramifications. The four points 
(vertices) are 

Conclusion: 
The 2-torsion point,; on E are the origin and the three intersection points 
between E and the line X 2. 

The three primitive 2-torsion points, Pl,P2,P3 are collinear so PI + P2 = 
-P3' 

3-torsion points on E 

We have seen in Sect. 2.1 that the set of 3-torsion points on E are the set 
Uk. The primitive 3-torsion points are the set Uk \ (0,1, -1). 

3x can be written as: 

3x = (x6J;i:r2 + x6:rlx~ + xoxix~ - XbXIJ;2 - XOX;J;2 - xo:rl'x~, 
3x 3:r3x 3 _ x6 r 3 _ x 6 :r3 _ x3:.r6 3x3 x3x3 _ x6x3 _ X3x 6 _ x3x6) 

o 'I 2 uO"1 12 0"2' 0 1 2 0 2 '0 1 "I 2 

- ( ". x 'r (~,:l + ur3 + 2J.3)(x3 + c2X3 + cx3) - -,vOl·2 "IJ "'1 f '2 '0 ' 1 "'2' 

-(:r6xl + y;iX2 + x~xO)(X6:r:l + fxfx2 + E2X~xo)(x6xl + E2Xix2 + EX~XO), 
-(:r6X2 + :r~;ro + x~:rd(:.r6:r2 + u;fxo + E2x~xd(x6:r;2 + E2Xixo + EX~Xl)) 
= (-XOXj:r:2(Bd(B2 ), -(B3)(B4)(B5), -(B6)(B7 )(Bs)) 

where Bi E V3 are the 8 cubics invariant as curves under the action of H3 , 

see p. 138. These nine cubics intersected with E give the 9-torsion points on 
E, see Sect. 3.1 and 3.l. 

4-torsion points on E 

The 4-torsion points on E consist of: 
1 origin 
3 primitive 2-torsion points 

12 primitive 4-torsion points 
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1. Compute 4x: 

4x = (XO(X2 - Xd(X2 - Exd(X2 - E2XI)(X~XI + X~X2 - X{X2 - X~XI) 
(X~XI + EX~X2 - EX{X2 - X~Xd(X~XI + E2X~X2 - E2X{X2 - X~XI)' 

XI(XO - X2)(XO - EX2)(XO - E2X2)(X{XO + X{X2 - X~X2 - X~Xo) 

(x{xo + EX{X2 - EX~X2 - x~xo)(x{xo + E2X{X2 - E2X~X2 - X~Xo), 
X2(XI - XO)(XI - EXO)(XI - E2XO)(X~Xl + X~Xo - x{xo - x~xI) 

(X~Xl + EX~Xo - EXrXO - x~XI)(X~Xl + E2x~xO - E2xrxo - x~xI) 

= (XO(P2)(TP2 )(T2 P 2 )(P4 )(TP4 )(T2 P 4 ), 

xl ((J P 2 ) (T(J P 2 )( T2 (J P 2 ) ((J P 4 )( T(J P 4 )( T2(J P 4 ), 

X2( (J2 P 2 ) (T(J2 P 2 ) (T2(J2 P 2 ) ((J2 P 4 ) (T(J2 P 4 ) (T2(J2 P 4 )) 

The curve given by the product of these polynomials representing 4x 

intersected with E gives the 12-torsion points on E, see Sect. 3.1. 
-----) ) 

2. Compute the crossproduct nx x (0,1, -1) and find the common factors 
Pm of Fo and FI + F 2 : 

Fo : XO(X2 - XI)(X2 - EXI)(X2 - E2xI)(X~Xl + X~X2 - XrX2 - X~XI) 

(X~Xl + EX~X2 - EXrX2 - x~xI)(X~Xl + E2x~X2 - E2X{X2 - X~Xl) 

=0 

and 

FI + F2 : (X2 - Xd(X~Xl + X~X2 - X{X2 - X~Xl)(X~X~ + X~XIX2 
65 563353 344 64 632 

+Xl X 2 + Xl X2 - XOXI X2 - XOXI X2 - XOXI X2 + XOXI X 2 

-3x~x{x~ + xgxix~ + X~XIX; - XgXlX~ + X6XlX2 + x~xg) 
=0 

Common factors of Fo and FI + F2 are the line 

and the curve 

3. X4 is a nonsingular curve. 
4. The curve X4 intersects E in 12 different points, from Hurwitz formula 

the morphism 
( 3 3 3) 

f 'X XQXjX2,XO+x,+x2 pI 
. 4 ) 

12:1 

has degR = 28. These ramification points lie on the singular curves in H 
with degR = 7 on each. The curve X4 intersects Too : XOXIX2 = 0 with 
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multiplicity 4 at (0,0,1) and (0,1,0), with multiplicity 2 at (1,0,0) and 
with multiplicity 1 at (0, I,i) and (0, 1, ~i). LpE(X4nXQXIX2)(ep ~ 1) = 
3 + 3 + 1 = 7 and X 4 intersects E at 12 different points, the primitive 
4-torsion points on E. 

Conclusion: 
The 4-torsion points on E are the origin, En X 2 and En X 4 . 

5-torsion points on E 

The 5-torsion points on E consist of: 
1 origin 

24 primitive 5-torsion points 

1. Compute 5x: 

5x = (xO(P5)(TP5)(T2 P5), x2(a2 P5)(m2 P5)(T2a2 P5), 

Xl (a P5 )( m P5 )( T2a P5 )) 

The curve given by the product of these polynomials representing 5x 
intersected with E gives the 15-torsion points on E, see Sect. 3.1. 

2. Common factors for Fo and FI + F2 is the curve 

3. X5 is singular. The singularities are the 12 vertices of the triangles in 'li. 
The singularities of X5 on Too are: 

[(1,0,0),2,10,2] [(0,1,0),2,5,1] [(0,0,1),2,5,1]. 

4. The morphism 

has degR = 64. LQE X 5 (IQ ~r) = (10 ~ 2) + (5 ~ 1) + (5 ~ 1) = 16 = 6r 
So X5 n E are 24 different points. 

Conclusion: 
The 5-torsion points on E are the origin and En X 5 . 

6-torsion points on E 

The 6-torsion points on E consist of: 
1 origin 
3 primitive 2-torsion points 
8 primitive 3-torsion points 

24 primitive 6-torsion points 
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From Sect. 3.1 we know we find the 6-torsion points on E as the inter
section between E and the curve given by the product of the polynomials 
representing 2x. 

The primitive 6-torsion points on E are given by the 8 lines: 

We can write 6x as: 

Y6, (= Z(E2y2p2)) : X2 - EXI = 0 
Y62 (= Z(ETP2)) : X2 - E2xl = 0 
Y6" (= Z((J2 P2)) : Xl - Xo = 0 
Y64 (= Z(ET2(J2p2)): Xl - EXo = 0 
Y65 (= Z(E2m 2P2)): Xl - E2XO = 0 
Y66 (= Z((JP2)) : Xo - X2 = 0 
Y67 (= Z(y2(Jp2)) : Xo - EX2 = 0 
Y68 (= Z(mP2)) : Xo - E2X2 = 0 

6x = (-(XOXIX2) (Bl ) (B2) (P2) (y P2) (y2 P2) ((J2 P2) (m2 P2) (y2(J2 P2) 

((JP2)(mP2)(y2(JP2)((3E2 - 3)b l - E2b4 + b5)((3E - 3)b l - Eb4 + b5), 

-(B6)(B7 )(Bs)(3bl + b3 - b4 - b7 )(3Ebl + b3 - Eb4 - b7) 

(3E2h + h - E2 b4 - b7 ), 

-(B3)(B4)(B5)(3bl + b3 - b5 - b7 )(3Eb l + b3 - Eb5 - b7) 

(3E2 bl + b3 - E2 b5 - b7 ) 

where B; E V3 are the 8 cubics invariant as curves under the action of H 3 , see 
p. 138, and b; E Vg • (i = 1, ... , 7) are the base elements of the polynomials 
in Vg invariant under the action of H3: 

b . X3 X3X·3 
1· 0 1 2 

b . x4x x4 + X 4'1' x4 + x4x x.4 7· 0 1 u2 1 ·2· 0 2 0 1 

The curve given by the product of the polynomials representing 6x inter
sected with E gives the I8-torsion points on E, see Sect. 3.1. 

Conclusion: 
The 6-torsion points on E are the origin, EnX2 , EnToo and EnY6i , i = 1..8. 

7-torsion points on E 

The 7-torsion points on E consist of: 
1 origin 

48 primitive 7-torsion points 
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1. Computt' 7:r: 

7:r = (-:CO(P7 )( T P7 )( T2 P7 ), -.rl (oP7 ) ( TOP7 ) ( T 2o-P7 ), 

-X2 (0- 2 P7 ) (TO"2 P7 )( T 2 o-2 P7)) 

The curve given by the product of these polynomials representing 7x 
intersected with E gives the 21-torsioll points on E, see Sect. 3.1. 

2. Common factors of Ftl and F1 + F2 is the curve 

X~I" ",12'c 2".2 + '1,9,[,7 2x 9x 5:r2 X 9 :r4X 3 J,9:r3 X 4 2X9~,2X5 
J·O' 1"2 "0' 1 -0 1'2 - '0'1 2 - "0"1' 2 - '0""1 2 

+v 9 ,,,7 _ .,.,6x ,9,!" + 2'l,6X8~,2 _ 4xG'C7x,3 + 5x 6 x,6x .4 + 2x6x 5x,5 
"'0"'-2 ""0 1,,2 "0 '1'''2 '0'1 2 0 1 2 '0 1 2 

+ r; x 6,)A X6 _ 'lx 6 x 3x 7 + 2,y,6,,2 x 8 _ 'J'oX x9 + x3 x 12 :r _ x 3 ,,.,1]X2 
v o· '1 2 . '0' 1 2 "'0"-] 2 . '0 ,] 20 1 . 2 . '0"-'1 ' 2 

-t ",:3xIO'r;,3 4-r3 v 9x 4 ",3 x 8x 5 + 2x3J,7 x 6 + 2x3x6x 7 x 3x 5x 8 ""01 . 2 -- . 0'''] '2 - ,LD '1 20 '1' 2 ' 0' I '2 - '0 '1 2 
_4",:1,,,4 X9 -t ·c3 'C3 ,),10 - x,3",2.,,11 + x 3x x 12 + xllx5 _ 'clOxG 

"'O.vI"2 '0'1"2 O"'J"'2 0 1 2 '1 2 . 1 2 

+:r9",7 'c8.,,8 + )'7 x 9 x 6 .,,10 + '1,5 x 11 - 0 '1""2 -, ]"'2 '1"2 - 1""2 "]' 2 - . 

:), X 7 is a singular curve and has the following singularties on 1'00: 

[(1. 0, 0), .1,14,2] [(0,1,0),4,14,2] [(0,0,1),4,14,2] 

4. The morphism 

has degR = 144. L,QEx 7(Iq -r) = (14--2)+(14-2)+(14-2) = 36 = 1:4. 
So X7 n E are 48 different points, 

Conclusion: 
The 7-torsion poiuts on E are the origin and En X 7 , 

8-torsion points on E 

The 8-torsion point;; on E consist of: 
I 1 origin 
I 3 primitive 2-torsion points 
'12 primitive 4-torsioll points 
48 primitive 8-torsion points 

--=---------' 

1. Compute 8x: 

8:c = (Xo(P2 )( 7 P2 )( 7 2 P2 )(P4 )( 7 P4 )( 7 2 P4 )(PS )( T Ps)( 7 2 Ps), 

X2( 0- 2 P2 )( TO" 2 P2 )( T 2o-2 P2) (o-2P4)( TO" 2 P4 ) (T 2 o-2 PI) 

(0- 2 Ps)( TO" 2 PS )( T2(J2 Ps), 
2 2 

:C1 (0-Pz)( TO" P2 )( T 0- P2)(o-P4 )( TO" P4 )( T 0-P4 )( 0-Ps) 

(T(J Ps) (720-Ps)) 

The curve given hy the product of these polynomials representing 8x 
interseded with E gives the 24-ton,iofl points on E, see Sect. 3.1. 
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2. COUllllon factors of FIJ and F] + F2 

XT 
• ".3), + x~) ,yo x3 x 'l)lx - 0 

.,l • dO] '0,',2 - '1 2 - '2 1-

and 

X X12X3~" + X,12 X x:3 - x 9X6x - 3x9x.4,,,3 - 3x9x 3x.4 s: u() 1,v 2 0 1 2 '0 '1 2 '0 1"'2 0 '1 2 
~.9x x·6 x,6.,,10 + X6x 9x + 6,,,6 x 7x 3 + 6x 6x 3x 7 -"'0,,1 2 - 0·V1 01 ,2 .vo '1 '2 '0 1 '2 

+ ,,6 X ~.9 _ x 6 ,y.10 _ X3x. 12 x. + 3x3x9~.4 _ 6x3x 7x·6 
"'0' 1"'2 "0"'2 0 1 2 0 1""2 . 0 1 2 

-6'1,;3,,,6'r 7 + 'J x·3 x 4x 9 _ x3 x X 12 + x 10 X 6 + X 6x 10 = 0 '0"" 1'2 d 0 1 "2 "0,,1 2 1 2 ] 2 . 

3. Xs is a singular curve and has the following singularities on Too: 

[(1. O. 0). 4, 20, 4] [(0,1,0).4,12.2] [(0,0,1),4,12,2]. 

4. The morphism 

has degR = 144. LqExJlq-r) = (20-4)+(12-2)+(12-2) = 36 = 1!4. 
So Xs n E are 48 different points. 

Conclusion: 
The 8-torsion points on E are the origin, En X 2 , En X 4 and En Xs. 

9-torsion points on E 

The 9-torsion points on E consist of: 
lorigo 
8 primitive 3-torsjonspunktcr 

72 primitive 9-torsjonspunkter 
From Sect. 3.1 we know we find the 9-torsion points on E as T = n E and 

Z(Bi) n E, (i = 1. ... : 8), (see p. 138). 
The polynomiahi representing 9x are too big to show here, each polynomial 

has appr. 250 terms. 

IO-torsion points on E 

The 10-torsion points on E consist of: 
1 origin 
3 primitive 2-torsion points 

24 primitive 5-torsion points 
72 primitive lO-torsion points 
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1. Compute lOx: 

lOx = (-xO(P2 )(TP2)(T2 P2)(PS ) (TP5 )(T2 P5 )(P10 ) (TPlO )(T2 PlO), 

-Xl ((J P2)( T(J P2) (T2 (J P2 ) ((J P5 )( TCJ P5 )( T2(J PS ) 

((J FlO) (T(J PlO )( T2(J PlO ), 

-X2 ((J2 F2 ) (TCJ2 F2) (T2 (J2 P2)( (J2 Ps )( TCJ2 P5 ) (72(J2 Ps ) 

((J2 FlO) ( TCJ2 Pw) ( 7 2 (J2 PlO ) ) 

The curve given by the product of these polynomials representing lOx 
intersected with E gives the :30-torsion points on E, see Sect. 3.1. 

2. Common factors of Fo and F1 + F2 are 

and 

X · -x18 x5 X - x 18 x4x2 - x18x·3x3 - x 1S X2X4 - X1S 'I: x5 10 . . 0 1 2 0 1 2 0 1 2 0 1 2 '0 . 1 2 

+X65xr + 2X65X~X2 + 2xb5xI x§ + 2xb5X~X~ + 8X65Xfx~ 
+8X65Xix~ + 2xb5xyx3 + 2xb5XIx~ + 2X65XIX~ + Xb5X~ 

_x 12 'rllx - X12xlOX2 - 11x12 X9 x3 - 14x 12X8X4 - 14x 12 X7x5 o ,- 1 -2 0 1 '2 '0' 1 2 0 1 2 0 1 2 

+7xb2x~x3 - 14x62xfx~ - 14x62xix~ - llX62xyx~ - x62;r;Ix~0 
_X62x1X~1 + X6x}4X2 + x6xi3x§ + 7X6XFx~ + 4X6XPX~ 
+4x6xiOx~ + 3x6xlx3 + 30X6X~X~ + 30x6xrx~ + 3X6x~x~ 
+4X6xix~0 + 4X6Xix~1 + 7X6X1x~2 + x6xix~3 + X6XIX~4 
-x8xF X2 - x8xi6 x§ - 4x8xi5x~ + 2x8xi4x~ + 2x8x}3x~ 

+5x8xP.T3 - 16x8xpx~ - 16x8x}Ox~ -17x8xi.T~ -16x8x~x~0 
-16x8xr:r~1 + 5x8x~X§2 + 2x8xix~3 + 2xgxix~4 - 4xgxfx~s 

--;J:gxI:J:~6 - xgxlxF + :rgxi8x~ + xgxF x~ + xg:ri6x~ 
-2;r8xi5x~ - 2X5xi4X6 - 2x5XPx~ + 4x8xpx~ + 14x8xpx~0 
+14J;5XiOx~1 + 4x8xlx~2 - 2X5x~x~3 - 2X5xrx~4 - 2X5X~X~5 

+x8x~x~6 + x5:rixF + x8xrx~8 - Xi4X~O - xi3.r~1 
_XFJ;~2 - :J:px~3 - XiOX~4 = O. 

3. XlO is singular and has the following singularities on Txo: 

[(1,0,0),6,18,6] [(0,1,0),6,25,3] [(0,0,1),6,25,3]. 

4, The morphism 

has degR = 224. EqEX10 (Iq-r) = (18-6)+(25-3)+(25-3) = 56 = 2~4. 
So XlO n E are 72 different points. 

Conclusion: 
The 10-torsion points on E are the origin, En X 2 , En X5 and En X lO . 
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3.2 A Second Algorithm for Finding the n-torsion Points on 
EE1-£ 

As we saw in the last section it is easy to find the n-th division polynomial as 
long as 3 I n, it is the polynomial ftx. If we want to find the n-torsion points 
when 3 f n we can use nx n E and divide the points by 3. 

Let k be an arbitrary field and let E be an elliptic curve in 1i. 

Algorithm 2 An algorithm for finding the n-torsion points on E when 3 f n: 

1. Compute nx = (Fo, FI , F2 ), the 3n-th division polynomial P3n = FoFI F2 . 

2. Compute E[3n] = {p E E 13np = O} = En Z(P3n)' 
3. The n-torsion points on E is found by dividing the points in E[3n] by 3, 

i. e. find those q E E s. t. 3q = p. 

Remark; to find those q E E s.t. 3q = p we simply solve the equations 
3q x p = O. 

3.3 n-torsion Points on the Singular Curves in 1-£ 

The singular curves in 1i when k = K are the four triangles TA, (.\ E 
{oo, -3, -310, -3E2}) (see Sect. 2.1 and 2.2). 

Fig. 1. The triangle Too. 

Let x, y E Too C p2. The lines li are represented by Xi = 0, i = 0, 1,2. Let 
It be the line li minus the two vertices of the triangle that lies on the line. 

The rational map 

p 2 X p 2 ---t p2 

(x,y) f--' x+y 
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is not defined when both :r and yare vertices in the triangle, else: 

y = (1,0,0) and:1" E 10 =? :r+y = (1,0,0) 

.r E 'I =? x + y = (0,1,0) 
:r E I~ =? x + y = (0,0,1) 

y = (0, L 0) and x E 10 =? x + y = (0,1, 0) 
;r E 11 =? .1: + y = (0,0,1) 
;r E 1'2 =? x + y = (1, 0, 0) 

y = (0,0,1) and.r E '0 =?.r + 11 = (0,0,1) 
:r E l1 =? x+y = (1,0,0) 
x E 12 =? x + y = (0,1,0) 

11 E 10 and x E 10 =? x + y E 10 
.1: E Ii =? x + Y E Ii 
x E 1'2 =? x + y E 1"2-

y E Ii and .r E 10 =? x + 11 E II 
x E II =? x + y E 1"2 
:1: E 12 =? x + 11 E 10 

y E 1'2 and J: E 10 =? x + 11 E 1'2 
.1: E It =? x + Y E 10 
.1: E 12 =? .1: + y E I]' 

Let T)..n8 (K) denote the nonsingular points of the triangle T).. E H over the 
field K. And let 10 be the line in T).. s.t. (0,1, -1) E 10, minus the two singular 
points in T).. that lies on the line. 

Proposition 6. The points on la are a subgroup of T)..n., (K) isomorphic to 
K*. 

( 
0 3:2Y2 Xl Yl ) 

.M,(x),)j = X2Y. 1 0 0 
,[1112 0 0 

M,(x),)j . Z = 0 implies that x + Y = (0, X1Y1, -X2Y2). So the following map is 
a group isomorphism: 

~J 1* 0 ----+ C* 
.1'- (0 1, X2) f-7 _X2 

, 'XJ Xl 

1/'1((0,1, -1) = 1 and1/'l(:r + y) = ~)((O, 1, -~~~~)) = ~~~~ = ~)(X)1/'I(11). 

Corollary 3. The n-torsion points on the singular curves in H that lies on 
the line 10 are a subgTOvp of K* 'isomorphic to Un) the multiplicative group 
of n-th mot8 of unity. 

Pmof. Let :1: = (0,:r1,x2) E 10 c Toe. If x is a n-torsion point then nx = 

(0, 1, (~2)n) rv (0,1, -1), and since 1/'I(nx) = 1 =? X2 is a n-th root of unity in 
Xl Xl 

K*. 
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A A Proof for the Associativity of the Group Law 
Defined in Sect. 2.2 

Let x, y, Z E E and evaluate PI = (:r + y) + Z and P2 = X + (y + z) : 

P2 = (-X6Y6YIY2Z~Z~ + x6Yoyr zozg + x6Yoygzozr - :r:6YiY~Z6Z1Z2 
+XIX2Y6ziz~ - 2XIX2Y6YIY2Z6z1Z2 + XIX2Yiy~z6, 

xOXIY6Y~Z{ - 2XOXIYOyiY2Zoziz2 +xoxIYiz6Z~ +X~ygYIZIZg 
X2y2'y2 z z2z x·2y y2,y z2 z2 +x2y y3z3z - 2 O. 2 0 1 2 - 2 O. 1. 2 0 2 "2 1 2 0 1, 

224 . 2 2, 422 23 3 
XOX2YOYI Z2 - 2XoX2YOYIY2Z0Z1Z2 + XOX2Y2 Z0Z1 + X1YoY2 Z1 Z2 

222 2 2 222 23 3 
-X1YOYI ZOZj Z2 - X1:YOYIY2 Z0Z1 + X1YIY2 Z0Z2) 

We then factor the crossproduct PI x P2 with respect to detl'vlx,y, detl'vlz,y 

and detMx,z' This gives us the following three polynomials: 

kl = (( -YIY5, + Y2Y{)XOXl.'I:2 Z0zi z2 + Y6y~xiz? - YoYiy~:r:OXIX2Z? 
+YoYiY~:x:ox jX2zg + (-YIY5, + Y2yt)XOXI X2Z0Z1Z5, 

4 43222 23333 2336 +( -Y2Yl + iflY2 )Xl ZOZ1 Z2 - YOYI X2Z1 Z2 - YOYI X2 Z2 

- 2zOZ5,Zj YiY~Yoxf + 2zt zoz2Y~YiYo:d + (-Y2yt + YIY5,)X~Z6zi Z~ 
233:33 

+YOY2 Xl ZI Z2 )detMx.y 

+(ZIY~Z2Z0YiYox~ - ZLY~Z2Z0YfYo:r:~ - xfzfygY6X~ - :r:~zfygY6 
+ 3 3, :3, 2 ... 3 + 6 3 3 2)d tM X2Z2YIYOJ 1 :r:2Z2YIYO e z,y 

2, 3:3 ,2 6 ,,3 3 ,2 6 2 3 3 3 3 5 2. 3 +(( -2YOYIY2 - YOY2)J 1Z1 + (YOYI + 2YOYIY2)X2 Z2 + 2YOYIY2 Z0Z1Z2Xl 
2 3, 3 :3 :3 , 2, 5 , :3 2 3 3 :3 :3 

+YOYIY2 XIZ2 - 2YOYIY2Z0Z1Z2X2 - YOYIY2 X2Z1 

+( -yiY2 + YIy;):r:OXIX2 Z0Z1Z2 + (YoY~Y~ + YOyryg)XOXI X2Zr 
+( -YoY~.IJ~ - YoYiyg):rOX1:r:2z~)detMx,z 
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k2 = (xoxiYiY5 z5zi - X6 X2YO:IAY2 Z1Zg + X6 X2yiY5 zozf 
+(2Y5yi + Yf)x6 X2zozi z5 - X6X2YOYrY2ztz~ - XIX~YOYrY2Z5zi 
+( -2Y5yi - Ynxlx~z5z1Z~ + (-Y2YfYo + YiYO)XIX~z5zrZ2 

2 4 5 (3 2 5 3 2) 2 4 2 -XOX1YOY2 Z0 Z1 + YOYI - Yl - Y2Yl XIX 2Z1Z2 

+(Y5yi - y~ - Y5Yi)XIX~ZlZg + (Y2yryO - yiyo)xoxi zozi z5)detMx,y 

+(( -Y~Yi + yf + Y5Yi)XIX~ZlZg + xlx~YOYfY2Z6z2 
+( -Y5yi + y~ + Y5Ynxix~zlzg + xox~YoYizozi + x6xiYoYfY2 Z1Zg 

4 2 3 2 2 4 2 3 2 5 2 3 2 )d tM +x1x2YOYIY2Z0Z2 - xox2YlY2ZoZl - XOX 1YIY2 Z0 Z2 e z,y 

+(( -yfY5 - Yiy~)xoxiz6Z2 + (YOY~Y2 + 2YoYrYi)XlX~Z6Z2 
+(y~ + 2yfY5 + YiY~)XIX~ZlZg + (2yoyfyi + YoYDxoxi zozi 

( 5 3 2 6) 2 2 4 2 2 2 2 + -YIY2 - YIY2 .TOX2Z0Z1 - YIY2YoxlxOZ2Z1 

-Y5Yl ygXl x~zozi )detMx,z 

We see that PI x P2 = (k 1 ,k2,k3 ) = 0 as long as ;J.:,y,z E E. It then follows 
that the operation' +' is associative. 
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Abstract. We summarize results on maximal curves over lFq2 (i.e., curves attaining 
the Hasse-Weil upper bound for the number of rational points over finite fields). 
We discuss the classification problem and the genus spectrum of maximal curves. 
We present some towers of curves over finite fields attaining the Drinfeld-Vladut 
bound. Especially interesting is the description of the completely splitting locus 
(see Formula (20)) of a certain tower of curves, meaning the first description by 
their coordinates of the supersingular points of the modular curves Xo(2n), for each 
n E N. 

1 Introduction 

The theory of equations over finite fields is a basic topic in Number Theory 
and Algebraic Geometry. The object of the first investigations in this theory 
were congruences of the form 

y2 == f(:c) (modulo a prime number), (1) 

where f(x) is a rational function with integer coefficients. E. Artin associ
ated a zeta-function to Equation (1), in analogy with the one introduced by 
Dedekind for quadratic number fields, and (assuming Riemann's hypothesis 
for this zeta-function) he conjectured an upper bound for the number of so
lutions in the prime field IF' p of congruences such as the ones in (1) above. 
E. Artin's conjecture was then proved by H. Hasse for polynomials f(x) of 
degrees 3 and 4 over arbitrary finite fields, and widely generalized by A. Weil 
(see [30]) as follows: Let X bc a projective geometr-ically ir-r-educible nonsin
gular- algebmic cur-vc of germs g = g(X), defined over- a finite field IF'£ with j! 

clements. Then. 'its n'umOeT of mtionul points #X (IF'£) satisfies 

(2) 

Inequality (2) is equivalent to the validity of Riemann's hypothesis for the 
zeta-fUllctioll associated to the curve X. and for other proofs of this inequality 
we refer to [3] and [27]. 
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Curves X that attain the upper bound in (2) are called maximal; i.e., a 
curve X is lFq2-maximal if we have 

(3) 

y. Ihara noticed that if a curve X is IF q2-maximal then the genus g(X) must 
be small; more precisely, he showed that its genus satisfies 

g(X) S q(q - 1)/2. (4) 

In order to study the asymptotics of lFR-rational points on curves of large 
genus, y. Ihara (see [20]) introduced the function 

A(£) = lim sup NR(g)/g, (5) 
9--->00 

where NR(g) = max{#X(lFR); g(X) = g}. To obtain lower bounds on A(£) 
one usually considers towers F of curves defined over the finite field lFR, that is 
an infinite sequence of curves Xn over IF R with increasing genus, and calculates 
the limit A(F) over lFe: 

(6) 

We have (for any lFt-tower F): 

A(£) 2: A(F). (7) 

The best known upper bound for A(£) is due to Drinfeld-Vladut (see [7]). It 
says 

A(£) S v'c - 1, for any £. (8) 

When the cardinality £ of the finite field is a square we have equality in (8), 
and this fact was proved independently by Ihara and by Tsfasman-Vladut
Zink (see [20] and [29]); i.e., we have 

A(q2) = q - 1, for any q. (9) 

The interest on curves over finite fields was greatly renewed after Goppa's 
construction of linear codes from such curves (see [13], [28] and [12]). Using 
Goppa's construction and the equality in (9) above for q 2: 7, Tsfasman
Vladut-Zink constructed an infinite sequence of codes of increasing lengths 
having limit parameters (relative minimum distance and transmission rate) 
above the so-called Gilbert-Varshamov bound, a result that caused a sensa
tion among specialists in Coding Theory (see [29]). 

The purpose of this paper is to survey on results on curves over finite 
fields in two directions: 
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1. Maximal Curves (genus and classification). 
2. Towers of curves and Drinfeld-Vladut bound. 

Throughout this paper we will use the word curve to designate a non
singular projective geometrically irreducible algebraic curve, defined over a 
finite field IF' £ with £ elements, or its nonsingular projective model. Also, we 
denote iF£ an algebraic closure of IF'£. 

2 Maximal Curves 

A maximal curve X over IF' q2 attains the Hasse-Weil upper bound for the 
number of IF'q2-rational points; i.e., we have 

#X(lF'q2) = q2 + 1 + 2q· g(X), 

where g(X) denotes its genus. 
The genus of a IF'q2-maximal curve X satisfies (see [20]): 

g(X) ::::: q(q - 1)/2. 

The most well-known maximal curve over IF' q2 is the so-called Hermitian 
curve (denoted by H) which can be given by the affine equation: 

(10) 

The Hermitian curve H over IF' q2 is maximal and has the largest genus 
possible for a IF' q2-maximal curve; i.e., we have 

For a divisor m of (q + 1) we denote by Hm the curve over IF'q2 defined by 
the affine equation: 

The genus of Hm satisfies 

.tl.!. yq + y = X Tn • 

( q+ 1 ) 2· g(Hm) = (q - 1)· ~ - 1 . 

(11) 

One can check directly that Hm is a IF' q2-maximal curve, but this also follows 
(since Hm is covered by the Hermitian curve H = Hd from the following 
general result due to J.-P. Serre (see [22]): 

Let E: X ---7> Y be a surjective map of curves where both curves and the 
map are defined over IF' q2. If X is IF' q2 -maximal, then Y is also IF' q2 -maximal. 

Since the genus g(X) of a IF'q2-maximal curve X satisfies the upper bound 
in (4), we have here two natural questions: 
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1. Genus Spectrum 
What are the natural numbers in the interval (0, q(q - 1)/2] that are 
genera of IF'q2-maximal curves? 

2. Classification 
For a fixed genus g, what are the IF' q2-maximal curves (modulo isomor
phisms) that have genus g? 

1. Genus spectrum 
Not every integer lying in the interval (0, q(q - 1)/2) is the genus of a 

IF'q2-maximal curve. For example (see [ll}) if X is IF'q2-maximal and g(X) < 
q( q-l) /2, then g(X) .:; (q_l)2 /4. Note that if q is odd (i.e., the characteristic 
of the finite field is not two), then the curve H2 in Equation (ll) satisfies: 

(12) 

In order to find lots of entries of the genus spectrum for IF'q2-maximal 
curves (as follows from Serre's result aforementioned), one can determine 
genera of curves covered by the Hermitian curve H over IF' q2. This approach 
was systematically used in [19] by considering quotient curves H/G, where 
G is a subgroup of automorphisms of H. In particular is is shown that for 
a fixed integer 9 .2: 1, there are IF'q2-maximal curves of genus 9 for infinitely 
many values of q (see [19], Remark 6.2). If the characteristic p is odd and 
considering p-subgroups G (writing q = pn), there are IF' q2 -maximal curves 

with genus 9 given by: 

(13) 

faT each 0 ::; v ::; n and faT each 0::; w ::; (n - 1). 
In case p = 2 it seems a hard problem to determine the pairs (v, w) for 

which there are IF' q2 - maximal curves (coming from 2-subgroups G of auto
morphisms of the Hermitian curve) with genus as in Formula (13) (see also 
[1]) . 

For each divisor rn of (q2 - q + 1), there are IF' q2 -maximal curves having 
genus 9 given by (see [19], Theorem 5.1): 

rn - 1 
g=--. 

2 
(14) 

The determination of explicit equations for the IF' q2-maximal curves leading 
to the genus formula in (14) above is not so easy (see [5]). 

For k .2: 2, the following equation gives a IF'q2k-maximal curve (see [14]): 

k-1 

""' J k L....tyq =a·xq +1, (15) 
j=O 
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The curve given by Equation (15) above has genus 9 = qk (qk - 1) /2 and, in 
particular, its genus appears among those given in Formula (13). For q = p, 
this curve also appears in [[6], Theorem 2.1]. 

2. Classification 
The interest on the classification problem for lFq2-maximal curves with a 

fixed genus was triggered after the following result of Riick-Stichtenoth (see 
[25]): 

If X is lFq2-rnaximal and g(X) = q(q -1)/2, then X is lFq2-isomorphic to 
the Hermitian curve H given by Equation (10). 

For q odd, the second largest genus of IF q2-maximal curves is given by 
g2 = (q - 1)2/4. Here we also have a unicity result (see [10]): 

If X is lFq2-maximal (q odd) and g(X) = (q - 1)2/4, then X is lFq2-
isomorphic to the curve H2 given by Equation (11) with m = 2. 

In case of characteristic p = 2, the second largest genus of maximal curves 
over lFq2 is g2 = q(q-2)/4 and the classification problem here has some extra
difficulties (see [2]). 

In [[10], Theorem 2.3] it is given a characterization of the IF q2-maximal 
curves with equations as in (11), but this characterization requires an extra
hypothesis on Weierstrass nongaps at a rational point of the curve. 

Write q = pt and consider the curve X over IF q2 given by the equation 

t 

Lyq/pi + a· xq+l = 0, with aq- l = -l. (16) 
i=l 

This curve X is lFq2-maximal with g(X) = q(q-p)/2p. In case of characteristic 
p = 2, one gets the second largest genus possible. Curves X given by equations 
as in (16) appear also in [[6], Theorem 2.1] where it is given a classification 
of the Galois subcoverings of prime degrees of the Hermitian curve. 

For q == 3 (modulo 4), the following two curves Xl and X2 (both having 
genus equal to 9 = (q - l)(q - 3)/8) are lFq2-maximal and nonisomorphic to 
each other: 

Xl given by yq + y = x(q+1)/4, and 

X 2 given by X(q+1)/2 + y(q+I)/2 = 1. 

The curve X 2 above is the unique maximal curve over IF q2 with genus 9 = 
(q - l)(q - 3)/8 that has a nonsingular plane model over lFq2 (see [4]). 

We end up this first part with the following question: 
Question: Is every IF q2-maximal curve IF q2-covered by the Hermitian curve 
over lFq2 (i.e., by the curve given by Equation (10))? 

A related important result was obtained in [21]. It is shown that maximal 
curves over IF q2 lie in nondegenemte Hermitian varieties as curves having 
degree equal to (q + 1). 
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3 Towers of Curves 

In order to study the asymptotic behaviour of the number of IFf-rational 
points on curves of large genus, Y. Ihara introduced the following function: 

A(C) = lim sup Nf(g)/g, 
g-HX) 

where Nf(g) = max{#X(IFt); g(X) = g}. 
The study of this function A(C) envolves the consideration of infinite se

quences of curves defined over the finite field IFf having genera tending to 
infinity. 

Definition. A tower F over IFf (or a IFf-tower) is an infinite sequence of 
curves and surjective and separable maps, both defined over the finite field 
IFf, 

such that g(Xn) ---t 00 as n ---t 00. 

The following limit exists and it is called the limit of the tower F: 

Clearly we have A(C) :::: A(F), for any IFf-tower F. 

Example 1. Let W be the tower over IFq2 where (see [16]): 

• Xl is the projective line with affine coordinate denoted by Xl. 

• X 2 is the plane projective curve with the equation 

• X3 is the curve in ]p'3 given by the equations 

and x~ + X2 = xi/(xi- l + 1). 

• X 4 is the curve in ]p'4 given by the equations 

and so on. The map Xn+1 --7) Xn is given by 
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In this tower W over f q2 the ramification points are wildly ramified which 
makes more subtle the determination of the genus g(Xn ), for each n E N. 

One has that 
A(W) = q -1; 

i.e., the f q2-tower W attains the upper bound of Drinfeld-Vladut given in 
(8). This gives another proof of the Equality (9) (see also [20] and [29]) 
with the advantages of having the curves in the tower explicit ely given by 
algebraic equations, and also providing an explicit description by coordinates 
of the f q2 - rational points of the curves in the tower. For the determination 
of Weierstrass semigroups on this tower we refer to [24]. 

The tower W in Example 1 is recursive; i.e., it uses the same equation for 
the construction of all curves X n , n E N, in the tower. We say that the tower 
W is recursively given by 

Example 2. Let fq be a nonprime finite field of characteristic p (i.e., q > p) 
and denote m = (q - 1)/(p - 1). Consider the fq-tower 9 recursively given 
by the equation (see [18]): 

More precisely we have 

• Xl is the projective line with affine coordinate denoted by Xl. 

• X 2 is the plane projective curve with equation 

• X3 is the curve in ]p3 with equations 

and so on for the curves X 4 , X 5 , X 6 , .•.. 

Here one has 
2 

A(Q) 2 - > 0. 
q-2 

(17) 

This gives a very simple proof for non prime finite fields of the following result 
of Serre ([26]): 

A(q) > 0, for any q. 

Unfortunately the method in [18] does not apply to prime fields fp as was 
pointed out by H.W. Lenstra (see [23]). 

The first tower over f q2 given by explicit algebraic equations that attains 
the Drinfeld-Vladut bound can be described as follows (see [15] and [9]): 
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• Xl is the projective line with affine coordinate Xl· 

• X 2 is the plane curve given by 

• X3 is the curve in 1P'3 given by 

• X 4 is the curve in 1P'4 given by 

and so on for the curves X 5 , X 6 , X 7 , .... Note that the above descrip
tion of this tower is not recursive since one makes for each n 2: 1, the 

.. zn+l 
substltutlOn Xn+l = --. 

Xn 

Now we review the concepts of ramification point and ramification index. 
Let 1/; be a surjective and separable map between two curves; i.e., 

We denote by d the degree of the map 1/;; i.e., except for finitely many 
points of the curve Y, we have that there are exactly d points on the curve X 
above each point of Y. The finitely many exceptional points of the curve Y 
having fewer than d preimages in X under the map 1/; are called ramification 
points. More precisely, let P be any point of Y and let 

be the preimages of P in X under the map 1/;. Attached to each Pj , j 
1,2, ... , r, there is a natural number ej 2: 1 (called ramification index of the 
point Pj over P) and we have 

T' 

Except for finitely many points P in Y one has that r = d (and hence 
el = e2 = ... = ed = 1). If el = e2 ... = ed = 1 then the point P is called 
unramified. A point Pj is ramified over the point P if ej 2: 2. The ramification 
at Pj is called wild if the characteristic p divides the ramification index ej and 
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it is called tame otherwise. When the map 1jJ determines a Galois covering 
one has (for any poillt P in Y): 

Hence we have that in Galois coverings of degrees relatively prime to the 
characteristic all ramifications are tame. 

A tower T over a finite field IFf 

is called tame if for each map X n +1 ---» Xn all ramifications are tame. 
We have two important sets of points on the first curve Xl of the tower. 

To define these two sets, let us denote by 

7rn : Xn ---» Xl 

the compositum of the first (77 - 1) maps in the tower T over IFf. 

1. The ramification locus 

S = {P E Xl (lFp) I for some n 2: 2, 3Q E Xn(lFf ) with 7rn(Q) = P, 

and the point Q is ramified over P}. 

2. The completely splitting locus 

T = {P E Xl (IF'p) I for all n:2: 2, the point Pis unramified for the map 7rIt , 

and all its preirnages under 7rn are IFf-rational points 

of X n }. 

Tame towers T over IFf are specially interesting when: 
1. The ramification 10c11s S is a finite set. 
2. The completely splitting locus T is a nonempty set. 

This is so because of the following result (see [18]): FaT a tame toweT T 
OVCT IF p, its limit satisfies 

'\(T) > 2t 
-2g(Xd-2+$ 

(18) 

wheTe t = # T and 8 = # s. 
For example, one can derive the Inequality (17) in Example 2 from the 

formula in (18). 
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Example 3. Let p 2': 3 be an odd prime number and consider the tower T 
over IF p2 defined recursively by the equation (see [17]): 

x 2 + 1 y2= __ 
2x 

The ramification locus S of this tower T is 

S = {O, 00, ±1, ±o:}, 

where 0: E IF p2 with 0,2 = -1. Hence, its cardinality is s = 6. 
For the determination of the completely splitting locus T of this tower T 

we need Deuring's polynomial H(Z) whose roots determine the supersingular 
elliptic curves in Legendre's form: 

p;l p-l 2 

H(Z) = ~ (~) . zj E IFp[Z]. 
j=O J 

Here there are two fundamental properties of Deuring's polynomials: 

1. Polynomial identity 

H(Z') ~ ZP '. H ( (z:; 1) ') . 

2. Location of the roots 
All roots of the polynomial H(Z) E IFp[Z] are fourth powers in IFp2. 

(19) 

We then have the following explicit description of the completely splitting 
locus 

(20) 

Since the polynomial H(Z) is separable of degree (p - 1)/2, it follows from 
(20) that 

t = #T = 2p - 2. 

Applying Inequality (18) we get 

>..(T) > 2· (2p - 2) = p _ 1. 
- 2·0-2+6 

From this it follows that >..(T) = p -1; i.e., the tower T over IFp2 in Example 
3 attains the Drinfeld-Vladut bound. 

We conclude with two remarks due to M. Zieve. Firstly that Property 2 
(Location of the roots) follows from Property 1 (Polynomial identity) and the 
fact that all roots of H (Z) lie in IF p2. Secondly that the tower T in Example 3 
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corresponds to the modular curves Xo(2n), for n E N. This last remark is done 
by comparison with an explicit modular tower worked out by N. Elkies (see 
[8] and [17]). In particular the explicit description of the completely splitting 
locus T given in (20) above represents the first description by their coordinates 
of the supersingular points of the modular curves X o(2n ), for each n E N. 
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Abstract. Some FPGA's are designed to compute division and multiplication on 
Galois fields. FPGA's are quite cheap programmable logic devices used in digital 
circuits with the important characteristic of being reprogrammable. Any FPGA can 
be specified within VHDL which at present is a standard language in the design 
of digital systems. We describe in VHDL the divider and multiplier basic cells and 
their whole integration. The structures have scalable systolic architectures. The 
circuits operate by pipelining; the divider in GF(2m) requires 5m - 1 clock cycles 
while the multiplier 3m - 1. The divider proceeds by the Gaussian triangulation 
algorithm and is uniform with respect to the irreducible polynomial generating the 
field. The codes, some simulations and performance measurements are provided. 

1 Introduction 

Open networks are extensively applied in bank transactions, e-commerce, 
e-mail and most communications, and several security threats regarding au
thentication, data integrity and confidentiality arose. Adequate schemes to 
guarantee high security levels are increasingly important. Many cryptographic 
schemes, as well as operations in error correcting codes, switching theory and 
digital signal processing, require computations over finite fields. High speed 
and low complexity design for finite fields arithmetic is thus quite useful with 
respect to wider bandwidths and better security. 

In GF(2m ), addition is realized directly as bit-wise exclusive-OR without 
carries. Multiplication and division are more complex [9] and treated with 
several algorithms [1]. In general, the parallel architectures are faster than 
their serial counterparts, and require greater amounts of logical gates when 
implemented. In addition, different basis are used for the representation of 
the field elements. Some of these architectures require an additional circuitry 
for the basis conversion, increasing their hardware complexities. On the other 
hand, each structure depends on the irreducible polynomial generating the 
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field, nevertheless it is possible to change the generating polynomial with
out alteration of the circuitry structures. This is particularly important for 
cryptographic applications that require frequent change of system keys. Fenn 
et al. [4] present a similar systolic divider in GF(2m) with space and time 
complexities of order m2 and m respectively, but they use a dual basis repre
sentation. Lee and Yoo [8] introduce a structure for exponentiation with time 
complexity of order 3m + 9 cycles, that uses a canonical basis parallel multi
plier. Chin [2] presents a parallel inverter/divider systolic array that uses the 
canonical basis and has a space complexity of order m2(m - 1)/2 cells and a 
time complexity of order 2m2 - 3m/2 cycles. Sunar and Ko<.; [10] introduce a 
new algorithm for the parallel Mastrovito multiplier with a space complexity 
of m2 AND gates and m2 - 1 XOR gates. Our main interest is the develop
ment of an implementation with FPGA for great values of m optimizing the 
space resources. 

We propose a serial systolic structure for a divider and a multiplier that 
work using the canonical basis and the algorithm developed in [6], which has 
space and time complexities of order m2 and m respectively. Moreover this 
structure is uniform with respect to the irreducible polinomial. 

As a first approach, division can be carried out by calculating the mul
tiplicative inverse of the divisor and multiplying by the dividend. This pro
cedure has an unnecessary lengthy run-time. Better methods to divide have 
been developed by posing an equivalent problem consisting in solving a lin
ear system of equations over GF(2m). We follow the method introduced in [6] 
and translate the problem into a system of m linear equations on GF(2m) 
(m is the dimension of the finite field, whose order is 2m). The algorithm 
proceeds in two main steps. First, the coefficients matrix of the linear system 
of equations is built. Second, the system is solved by a triangulation pro
cess. Our Divider is modular and quite appropriate to handle large values 
of m. In addition, it does not depend on the irreducible polynomial that is 
used to generate the field. The number of required timing cycles, or clock 
pulses, is linear with respect to m. We present the design of FPGA's (Field 
Programmable Gate Array) to compute the division and multiplication over 
Galois fields. FPGA's are quite cheap programmable logic devices used in dig
ital circuits with the important characteristic of being reprogrammable [5,11]. 
Any FPGA can be specified within VHDL (Hardware Description Language) 
which at present is a standard language in the design of digital systems [3,7]. 
We describe the basic cells and their integration into the divider and the 
multiplier. The structures have systolic architectures and can be expanded 
easily. The circuit operates by pipelining and requires 5m - 1 clock cycles 
to compute division and 3m - 1 clock cycles for multiplication. The divider 
uses the Gaussian triangulation algorithm and is uniform with respect to the 
generating irreducible polynomial. The simulation of the cells were validated. 
The Divider circuit has been recorded as a programmable device. 
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2 The Circuit Divider 

2.1 Algebraic Preliminares 

Division in finite fields is reduced to solve a system of linear equations by 
Hasan and Bhargava in 1992 [6], with smaller calculation time and simpler 
computing structures. The basic structures and procedures do not depend on 
the irreducible polynomial generating the field. 

Let a,c be two elements over CF(2m), with a =f. O. The quotient b = cia 
can be computed as follows: Let us write c = ab, a = aT A(m), b = bT A(m), 

c = cT A(m), where A(m) = (ai):~l is the matrix whose elements are the 
powers of a generator a of CF(2m) and a, band c are the column-coordinate 
vectors of a, band c relative to the basis A (m). Then 

where a * b is the convolution of a with band P = (Pij )i:g:.·.·.·,,!~~2 is 

the coordinate matrix of powers of a in terms of the chosen basis A (m), 

A(2m-l) = p T A(m). Hence, c = P(a * b), where for each i = 0, ... ,m -1, 
2m-2 

Ci = L Pik L aRb j . Thus: 
k=O £+j=k 

c=Qb (1) 

m-l 
where Q = (qij )j:oO, ... ,m=ll has entries qiJ· = '" Pi k+jak. In this way, division 

2 , ... ,m ~ , 
k=O 

can be performed by solving a system of m linear equations over CF(2m)[6]. 

2.2 Serial Structure of the Divider 

The general design of the serial divider on CF(2m) is sketched in Fig. 1. It 
can be used for large values of m and solves indeed Eq. (1). 

The input signals are the following: (gi);:~l is the vector whose entries are 
the coefficients of the generating polynomal, provided by the user, (qi)i>O is 

a sequence of control digits (marking the size of m), (ai);:~l gives the di;ider 

element in CF(2m) and (ci);:~l gives the dividend element. The output signal 

gives the sequence of the quotient coefficients (bi);:~l. The first task of the 
divider is the generation of the coefficients matrix Q in Eq. (1), along m 
clock cycles. Thereafter, the linear system of equations is solved in a pipeline 
process requiring, as we will see, 4m - 1 clock cycles. The total time required 
by the whole divisor is thus 5m - 1 clock cycles. The middle cells Di'S are 
flip-flops used to synchronize both main structures Gen-Mat and Solution. 

We will describe each component below. 
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Fig. 1. Serial divider on GF(2 ffi ) 

.~ . ., .. 

2.3 Array to Compute the Coefficients Matrix 

The array Gen-Mat that generates the coefficients matrix is shown in Fig. 2-
(a). The array Gen-Mat consists of m - 1 cells sequentially arranged and 

tH. .. , c.-.. , c.-..1 ( ..... -1 

' IJ 

." ." ' u .,. ." ." 
' 11 

' U 
." 
") 

." 

(a) 

' u 
." 
' u 
." 

.!!L ___ +{" I--.----~ 

(b) 

Fig. 2. (a) Array Gen-Mat. (b) Diagram of Cel01 

labeled Ceh , Ce12, Cel3 , ... , Celm-l . Each Ce4 is of type CelOl , displayed 
in Fig. 2-(b) in which boxes labelled FF represent flip-flops. Indeed, the 
computation they performed is described in the pseudocode shown at Table 1. 

The coordinates of a are introduced in a serial way into Ceh beginning 
with the "most significant digit" am - I. Output column 0 is just a copy of 
a. Columns 1 to m - 1 are t he respective outputs of cells Cell, Cel2, Ce13, 
. .. , Celm-l . Each cell requires two additional clock cycles to display the first 
element of each column in its output . The output of cell Celj -l is introduced 
into the next processor Celj. 

The VHDL code of circuit Gen-Mat , which calculates the coefficients ma
trix of the linear system (1), is shown in Table 2. 
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library IEEE; 

Table 1. Description of cell type CelO!. 

if qin = 1 then 
{ aout:== T; 

r:= ain } 

else 
{ aout:= gtempr + ain } 

gout := gtemp; gtemp := gin; 

qout := qtemp; qtemp := qin; 

Table 2. VHDL description of Gen-Mat 

use IEEE. std_logic_1164. all; 
entity gen~at4 is 

generic (m: positive:=4); 
port(CLK,CLR,Ginput,Qinput,Ainput:in STD~OGIC; 

Col_0,Col_l,Col_2,Col_3:out STD_LOGIC); 
end gen~at4; 
architecture gen~at4_arch of gen~at4 is 
component cellOlb 

port (CLK,CLR,Gin,Qin,Ain: in STD_LOGIC; 
Gout,Qout,Aout: out STD~OGIC); 

end component; 
signal Gtemp,Qtemp,Atemp: STD_LOGIC_VECTOR(O to m-l); 
begin gen~at: 

for I in 0 to m-l generate 
celO: if (1=0) generate 

cellO: cellOlb port map (CLK=>CLK,CLR=>CLR, 
Gin=>Ginput, Qin=>Qinput, Ain=>Ainput, 
Gout=>Gtemp(I) ,Qout=>Qtemp(I), Aout=>Atemp(I)); 

end generate celO; 
cell: if CI<=m-l and 1>=1) generate 

celdal: cellOlb port map (CLK=>CLK, CLR=>CLR, 
Gin=>GtempCI-1) ,Qin=>Qtemp(I-l), Ain=>Atemp(I-l), 
Gout=>Gtemp(I) , Qout=>QtempCI), Aout=>Atemp(I)); 

end generate cell; 
end generate gen~at; 
CoLO<=Ainput; CoLl<=Atemp(O); CoL2<=Atemp(1); CoL3<=Atemp(2); 

end gen~at4_arch; 



VHDL Specifi cation of a FPCA 169 

2.4 Array to Solve the Linear Equations System 

The proposed structure that applies the Gauss-Jordan triangulation method 
to solve the linear equations system (1) is shown in Fig. 3. The signals indi-

Fig. 3. Array to solve the linear equations system 

cated in t he figure are the following: 

aeO .. , ae. [m-1J = Columns of the matrix 
[ b. [m-1J ... bO ] = Solution of eq. (1) 

C-in = Dividend 
s - in = Control signal 
elk = Clock 

Two types of cells, Cel02 and Cel03, are used here . Corresponding diagrams 
of Cel02 and Cel03 are sketched in Fig. 4. Their operations are described in 
pseudo codes shown in Table 3, (a) and (b) respectively. 

The flip-flops are used for synchronization purposes. The beginning of 
matrix entries arrival is determined by the control signal. The entries of the 
solution vector b are output from the (m - l )-th cell of type Cel02. The 
m-th coordinate appears at cycle 3m - 1. Thereafter , each new coordinate 
appears at one clock cycle. Hence, in this array encharged to solve the system 
of equations , the total output of b is obtained at clock cycle 4m - 1. This , 
together with the m clock cycles used at first array Gen-Mat gives 5m - 1 
clock cycles for the whole divider. The code of circuit Solution, which solves 
by t riangulation the linear system (1) , is shown in Tables 4 and 5. 
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'N 

(a) (b) 

Fig. 4. (a) Diagram of Cel02. (b) Diagram of Cel03 

Table 3. Description of cells Cel02 and Cel03. 

if Bin := 1 then case (Pin) of 
{ Pout := (1,1); (0,0) : aout := ain; 

r:= ain } (1,0) : aout := r + ain; 

else (1,1) : aout := r; r := ain; 

case (r, ain) of P out := Pin; 

(0,0) : Pout := (0,0); 
(0,1) : Pout := (1,1); 
(1,0) : Pout := (0,0); 
(1,1) : Pout := (1,0); 

end case ; 
Sout :== Sin; 

(a) Operation of Cel02. (b) Operation of Cel03 

3 The Circuit Multiplier 

3.1 Multiplication Procedure 

For any a, bE GF(2m ), the product c = ab can be calculated strightforwardly 
using Eq. (1) and the matrix Q. Thus the following two steps arise naturally: 

1. Calculation of the coefficients matrix Q. 
2. Matrix-vector multiplication to obtain the coordinates of the product 

c = abo 

The first step coincides with that of the divider. For the second step, a trivial 
recursive relation is used. Namely, from Eq. (1), for i = 0, ... , m - 1: 

m-l 

Ci = L qijbj = 
j=O 
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Table 4. VHDL description of Solution 

library IEEE; 
use IEEE.std_logic_1164.all; 

entity Solution is generic (m: positive:=4); 
port ( CLK,CLR,Qin,Cin: in STD_LOGIC; 

AO,A1,A2,A3: in STD_LOGIC; 
Bout: out STD_LOGIC); 

end Solution; 
architecture Solution_arch of Solution is 
component cell02b is 

port (CLK,CLR,Hin,Fin,Ain: in STD~OGIC; 
Hout,Fout,Aout: out STD_LOGIC); 

end component cell02b; 
component cell03b is 

port (CLK,CLR,Sin,Ain: in STD~OGIC; 
H,F,Sout: out STD_LOGIC); 

end component cell03b; 
component ffd is 

port (CLK,CLR,Data_In: in STD~OGIC; 
Data_Out: out STD~OGIC); 

end component ffd; 
signal Htemp,Ftemp:STD~OGIC_VECTOR(O to m); 
signal Stemp:STD~OGIC_VECTOR(O to m); 
signal Qtemp,Atemp:STD~OGIC_VECTOR(O to m); 

begin So14: 
for J in 0 to m-1 generate 

rowO: if (J=O) generate 
rowaO: for I in 0 to m generate 

cel030: if (I=O) generate 
cell030: cell03b port map (CLK= >CLK, 

CLR=>CLR,Sin=>Qin,Ain=>AO, 
H=>Htemp(I) ,F=>Ftemp(I) , 
Sout=>Stemp(J)) ; 

end generate cel030; 
cel020: if (I<=m and 1>=1) generate 
cell020: cell02b port map 

(CLK=>CLK,CLR=>CLR, 
Hin=>HtempCI-1) , 
Fin=>FtempCI-1) ,Ain=>A1, 
Hout=>Htemp(I) ,Fout=>Ftemp(I), 
Aout=>AtempCI)) ; 

end generate cel020; 
end generate rowaO; 
end generate rowO; (to be continued ... ) 
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Table 5. VHDL description of Solution (cont') 

rowx: if (J<=m-1 and J>=1) generate 
rowax: for I in 0 to m generate 

ff2: if (I=O) generate 
ffd2: ffd port map (CLK=>CLK,CLR=>CLR, 

Data_In=>Stemp(J-1) ,Data_Out=>Qtemp(J)) ; 
end generate ff2; 
cel03x: if (I=1) generate 
cel103x: cell03b port map (CLK=>CLK, 

CLR=>CLR,Sin=>Qtemp(J) , 
Ain=>AtempO-1), H=>Htemp(I) ,F=>Ftemp(I), 
Sout=>Stemp(J)) ; 

end generate cel03x; 
cel02x: if O<=m and I>1) generate 
celd02x: for K in I to m+l-J generate 
cel102x: cell02b port map 

(CLK=>CLK, CLR=>CLR, 
Hin=>HtempO-1) ,Fin=>Ftemp(I-1), 
Ain=>A1 ,Hout=>HtempO) , 
Fout=>Ftemp(I) ,Aout=>Atemp(I)) ; 

end generate celd02x; 
end generate cel02x; 

end generate rowax; 
end generate rowx; 

end generate So14; 
end Solucion_arch; 

Hence, let 
c(O) = 0 

2 

(k) (k-l) b 
Ci = C; + qi,k-l k-l 

Obviously, Vi: Ci = c~rn-l). 

3.2 Serial Structure Multiplier 

(2) 

In Fig. 5-(a) we sketch the basic diagram of the structure Multiplier. We 
use Gen-Mat for the first step. For the second step, there is a linear array of 
processors mulo, muh, ... , muLm-l. The operation of cell mul is described in 
the pseudocode in Table 6. 

The coordinates of b enter into mulo, with the "most significant bit" com
ing first. As the coordinates of b pass through the processors, each bit bi is 
stored in the internal register of mu4. This processor identifies bi with the aid 
of control signal d. Once bi is stored in mu1i, mu4 simply performs multipli
cation and addition operations over GF(2). The coordinates of the product c 
start emerging from muLnt-l at cycle 2m at a rate of one coordinate per cycle. 
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(a) (b) 

Fig. 5. (a) Structure of the multiplier. (b) Circuit diagram of cell mul 

Table 6. Description of cell type mul. 

d aut := din; 

Caut := Cin + rain; 

bout := btemp ; 

btemp := bin; 

if din := 1 then r:= bin; 

This gives a computational time of 3m - 1 cycles. The circuit diagram of cell 
mul is presented in Fig. 5-(b). The Di boxes are delay circuits to synchronize 
the signal transits from the Gen-Mat structure into the multiplier cells. 

The code of circuit Multiplier, which performs multiplication, is shown 
in Table 7. 

4 Some Examples 

All tests were made with the field GF(24) represented by means of the ir
reducible polynomial p(X) = X 4 + X 3 + 1. Hence, if a is a root of p(X) 
the cyclic multiplicative group of GF(24 ) is represented as shown in Table 8. 
a 4 = a 3 + 1 is a generator as well. Let us consider gin = [1 0 0 1] and as con
trol signal let qin = [1000]. As an illustrative example consider as dividend 
and divisor, respectively: 

ain = a 6 = a 3 + a 2 + a + 1 = [1 1 1 1] 

Cin = a 14 = a 3 + a 2 = [1 1 0 0] 

whose quotient evidently is b = a 8 = [1 1 1 0]. Indeed, matrices Q and P 
are: 

[

1 0 0 0 1 1 1 1 0 1 0 1 1 00] 
P= 010001111010110 

o 0 1 000 1 1 1 1 0 1 0 1 1 
00011 1 1 0 1 0 1 100 1 

[
1 000] 

Q= 1001 
0010 
0100 
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Table 7. VHDL description of Solution 

library IEEE; 
use IEEE. std_logic_1164. all; 

entity Sol-multi is generic (m:positive:=4); 
port (CLK,CLR,Binput,Cinput,Dinput: in STD~OGIC; 

Ainput: in STD_LOGIC_VECTOR(O to m-1); 
Coutput: out STD_LOGIC); 

end Sol-multi; 
architecture Sol-multi_arch of Sol-multi is 

component cel-mul 
port (CLK,CLR,Ain,Bin,Cin,Din: in STD_LOGIC; 

Bout,Cout,Dout: out STD_LOGIC); 
end component; 
signal Btemp,Ctemp,Dtemp:STD~OGIC_VECTOR(O to m-1); 

begin 
Sol: for I in 0 to m-1 generate 

celO: if (I=O) generate 
cellO:cel-mul port map (CLK=>CLK,CLR=>CLR, 

Ain=>Ainput (I) , 

Bin=>Binput, Cin=>Cinput, Din=>Dinput, 
Bout=>Btemp(I),Cout=>Ctemp(I),Dout=>Dtemp(I»; 

end generate celO; 
celx: if (I<=m-1 and I>=1) generate 
celdax: cel-mul port map (CLK=>CLK, CLR=>CLR, 

Ain=>Ainput(I),Bin=>Btemp(I-1), 
Cin=>Ctemp(I-1),Din=>Dtemp(I-1), 
Bout=>Btemp(I),Cout=>Ctemp(I),Dout=>Dtemp(I»; 

end generate celx; 
end generate Sol; 
Coutput<=Ctemp(m-1); 

end Sol-multi_arch; 

Table 8. Representation of GF(24)* using the irreducible polynomial p(X). 

aU = 1 0 4 = a" + 1 a~ = a" +0'" + a 0'1" = 0'+1 

0'1 = a 0'5 = 0'3 + a + 1 0'9 = 0'2 + 1 0'13 = 0'2 + a 

0'2 = 0'2 0 6 = 0'3 + 0'2 + a + 1 0'10 = 0'3 + a 0'14 = 0'3 + 0'2 

0'3 = 0'3 0 7 = 0'2 + a + 1 0'11 = 0'3 + 0'2 + 1 0'15 = 1 
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(a) (b) 

Fig. 6. (a) Simulation of Gen-Mat . (b) Simulation of Solution 

With this example we obtain the output shown in Fig. 6. It is worth to remark 
that the first matrix column, marked in graph (a) as column 0, initiates in 
the ascent of pulse 1, the second column, column 1, in pulse 2, the third 
column in pulse 4 and last column in pulse 6. The solution B_out = [1 1 1 0] 
begins to exit after pulse 12. In graph (b) the stages conforming the whole 
Di vider are displayed: the Gen-Mat circuit, the intermediate stage of flip
flops synchronizing the signals and the solver circuit. 

In Fig. 7 we show, using the same factors a and b as above, the behaviour of 
the multiplier cell mul, whose design was shown in Fig. 5-(b) and implements 
the recursion (2). 

J logic Simulator -Xrhnx Foundation F2.1 i JmultrJ - l\IIayelorm Vrewer 0 . c.\lndtn\achYe\projects\mulh\ceLmul tyel 

iLK ...... . 

• •••••••• e ••••• __ ••••••••••••••••••••••••••••••• _ •• _ •••• _ •• _ •••••• __ •••• __ • __ • __ • ____ • ___ o _____ •• ______ _ 

._ •••• ____ • '_0'_. __ .e •• ___ •••••••• __ ••••••••••••••••••••••••••••••••••••••• _ ••• _._. ______ ' _______ 0_' 

-- -----------_ ...... _---- .. _-_ .. __ .. _--_._-_ .. __ ........... __ .................. -....... --.--_ .. _----
_________ ._ •• ________ •• _--------_ •• __ •• 0 ______ • ____ • ___ ••• __ •• _ •••••••••••••••• __ ••••••••••• _ •••• 

.. --- - ._._._------- ......... __ .. _-------_._-----_._----------- -------_._- ------------ --- _ ... _---
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_. --------0·-0---.·----

Fig. 7. Behaviour of multiplier cell mul 
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5 Conclusions 

In the present paper we present a serial structure for a Divider and a 
Multiplier on GF(2m). It requires just one control signal and simple and 
regular interconnections. Regarding its functionning, the clock cycle does not 
depend on the exponent (coding size, indeed) m, the calculations of the divi
sion and multiplication require 5m-l and 3m-I, respectively, cycles of clock 
and both operate in "pipeline" way. In spite that along the current presen
tation we used an elementary example, we believe that the described circuits 
are quite adequate for applications of error correction codes for common val
ues of m between 8 and 32. The description with VHDL, for m = 4,8,16, 
were validated by simulations using the Xilinx [11] package. 

A prototype of the divider, for the smaller value m = 4, has been built 
in a PLD, and the construction can be extended up to m = 16. For greater 
values of m, up to 256, we plan to construct a proper FPGA. Afterwards, we 
forsee to use several FPGA's in a cascade composition to treat even greater 
values of m, particularly those suited for cryptographic applications. 

Acknowledgements: We thank the suggestions of anonymous referees that 
helped us to improve the final presentation of this paper. 
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Abstract. Using a polynomial analogue of the wheel sieve, we discuss the distri
bution of irreducible polynomials over F2 . In particular, we provide considerable 
numerical evidence that in analogue to integer arithmetic progressions, irreducible 
polynomials over F2 are hinomially distributed in the progressions of the wheel 
sieve. We also present numerical evidence that the irreducibles of fixed degree are 
binomially distributed by weight. Also briefly discussed is the distribution of self
reciprocal irreducible polynomials. A number of conjectures are raised. 

1 Introduction 

Let Fq denote the finite field of order q where q is a prime number, and 
let Fq[.T] denote the ring of all polynomials over Fq in the variable x. It 
is well known that the ring Z of integers and the polynomial ring Fq[x] 
share a number of common properties. For example, the ring Z has unique 
factorization into primes while the ring Fq [x] has unique factorization into 
irreducible polynomials. Moreover, in each case there are an infinite number of 
prime elements. In Z, this is simply Euclid's Theorem that there are infinitely 
many primes. In the polynomial setting, this result follows from the fact that 
for each degree d 2' L there is an irreducible polynomial of degree dover Fq , 

sec [6] page 93. 
Dirichlet's Theorem on prirneH ill an arithmetic progression provides a 

refinement of Euclid's theorem to the effect that if (a, b) = 1, then there are 
infinitely many primes in the progression an + b as n runs through the set 
of positive integers. In the polynomial ring setting, the analogous result was 
first proved by Kornblum [5] and states that if (A(x), B(:r)) = 1, then the 
progression A(x) Y + B(:c) contains infinitely many irreducible polynomials 
as Y varies through the elements of Fq [:c]. 

While a computer sieve Ht udy of the distribution of irreducible polyno
mials could be conducted for fields of prime or even prime power order, 
throughout the remainder of this paper we will focus only on the case where 
q = 2. How docs one order the polynomials in Fq[:C]? Corresponding to the 
polynomial f(:r) = on:r" + ... + (11:r: + ao, we may naturally associate the inte
ger If = an 2" + ... + (11 2 + (10. Since each 0i E F2 and hence may be assumed 
to be either zero or one, this is of cour::;e simply the base 2 representation of 
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the integer If. We will often say things like NI(x) < N2(x), meaning that 
subject to the above ordering, the polynomial NI(x) occurs before N2(x). 
While this is an small abuse of the notation, the meaning should be clear 
from the context. 

The wheel sieve for integers was first described by Pritchard [7] as a 
sublinear algorithm for computer prime number sieve routines. In [3], this 
technique was used to study the distribution of primes in sets of arithmetic 
progressions of the form a + nmk where, if Pi denotes the i-th prime, the 
multiplier mk is the k-th primorial number Pl' P2 ... Pk and a < mk-I is any 
number relatively prime to mk. The heuristics in [3] show that the primes are 
distributed binomially among the arithmetic progressions a + nmk, using a 
binomial probability given by the asymptotic value from Dirichlet's Theorem. 

In Section 2 we discuss a polynomial version of the wheel sieve, and in 
Section 3 we consider the distribution of irreducibles in arithmetic progres
sions. Section 4 is devoted to a discussion of irreducibles by weight. We close 
with Section 5, which provides a brief discussion of the distribution of self
reciprical irreducible polynomials. 

2 The Polynomial Wheel Sieve 

For an integer k 2: 1, let Mk(X) = PI(x)··· Pk(x) be the product of the first 
k monic irreducibles in Fq[x]. The polynomial Mk(X) corresponds to the k-th 
primorial number PI ... Pk, and will be called the k-th primorial polynomial. 
For each value of k 2: 1, the wheel sieve generates a sequence of polynomials, 
using an interactive process with polynomials from the previous cycle as 
seeds. 

Definition 1. For a fixed prime Pi, let WI = {I, 2, ... ,Pi - 1, x} be the set 
of initial polynomials. Given Wk, let Sk = {S E Wkl Pk(x) ;\' S} be the 
set after sieving the set Wk by the irreducible Pk. Then Wk+l = {S(x) + 
N(x)Mk(X) I S(x) E Sk, deg(N) < deg(Pk)} and N(x) runs through all 
polynomials < Pk . 

Let W k be the matrix containing the set Wk , with qdeg(Pk ) columns. The 
first column is the set Sk-I, ordered increasingly. And the remaining columns 
as we move from left to right, contain successive multiples of the primorial 
polynomial Mk-I(X) added to the first polynomial in column 1. 

Example 1: Let q = 2. The first four irreducible polynomials over F2 are 
PI (x) = x, P2 (x) = x + 1, P3 (x) = x2 + X + 1, P4 (x) = x3 + X + 1, and the first 
three primorial polynomials are MI(X) = x, M2(x) = x2+x, M3(X) = x4+x. 
Then we have the trivial case 

WI = {1,X},SI = {l}. 

Continuing we have 
W2 = {1,x+ 1},S2 = {I}, 
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and 

or using a more compact notation, where the polynomial anxn +an_1Xn-1 + 
.. +ao is abbreviated in the form ana,,-l ... ao, we have 53 = {I, 1101, lOll}. 

For the next case, 

( 
1 100111001011101111001001101101111011011111111) 

W 4 = 1011 11001 1011111111011000011101000111001111110101 
1101 11111 101001 111011 1000101 1010111 1100001 1110011 

and 

54 = 11001 101111 111101 1000011 1010001 1100111 1110101 {
I 10011 100101 110111 1001001 1011011 1101101 } 

1101 11111 101001 111011 1010111 1100001 1110011 

Remark. An alternative definition of 5k might be helpful. Since each poly
nomial in 5k is relatively prime to Mk(X), one could also say 5k = {f E 

Fq[x] I deg(f) < deg(Mk) , gcd(f, Nh) = I}. 
As indicated on page 122 of [6], there is a function <f>q defined for nonzero 

polynomials f in Fq[x] which counts the number of polynomials in Fq[x] that 
are of smaller degree than the degree of f and which are relatively prime to 
f. Lemma 3.69 of [6] provides some of the basic properties of this function, 
and shows that this function has many of the properties of the Euler function 
¢ from elementary number theory. The function <f>q is multiplicative and if 
f E Fq[x] has degree n 2.: 1, then <f>q(f) = q"(l- q-"l) ... (1- q-"r), where 
the ni are the degrees of the distinct monic irreducible polynomials appearing 
in the canonical factorization of f in Fq[x]. This formula can be rewritten 
to appear to look more like the formula for the usual Euler ¢ function. In 
particular, if f = p;l ... p:r where each Pi is irreducible, then 

T 

<f>q(f) = II(q",e, - q"i(ei-l)) 

i=l 

Lemma 1. The number of elements in 5 k is 

k 

#5k = <f>q(Mk(X)) = II (qni - 1) 
i=l 

where ni is the degree of Pi (x) . 

Proof. This is a trivial result of the definition of <f>q(f). 
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3 Irreducibles in Arithmetic Progressions 

The wheel sieve provides a natural framework to study the distribution of 
irreducible polynomials in sets of arithmetic progressions. Following the no
tation of Hayes [2], let H be a polynomial over a finite field of q elements and 
A be a polynomial prime to H. If 7r(r; H, A) is the number of irreducibles of 
degree r which are congruent to A (mod H), then a theorem of Artin states 

1 qT 
7r(r; H, A) '" iPq(H) . -;: (1) 

with an error term that is O(qTV /r) for some v < 1, see [2]. We note that 
the fraction qT /r is an asymptotic expression for Nq(r), where Nq(r) = 
(l/r) LdlT J.L(d)qT/d is the number of monic irreducibles of degree rover Fq , 

see [6]. 
If M2(n) denotes the number of irreducibles over F2 of degree at most n, 

then M2(n) can be written as the double sum 

n 1 
M2(n) = L - L J.L(d)2m / d . 

m 
m=l dim 

The asymptotic number of irreducibles in the set Sk, after sieving, is given 
by M2(n) where n is the largest degree of any polynomial in Sk. 

Starting with n = 1, the first few values of M2(n) are given by 2, 3, 5, 
8, 14, 23, 41, 71, .... A simplified formula or recurrence for M2(n) would be 
of interest. A related question is to determine Pi(x), the i-th irreducible over 
F2 , subject to the ordering from Section 1. 

We are interested in studying heuristics of 7r(r; H, A) and in particular in 
comparing the error term with the distribution obtained for the polynomial 
arithmetic progressions of the wheel sieve, where H = Mk(X) and A is taken 
from the set Sk-l. 

3.1 Heuristics of the Distribution of Irreducibles in Sk 

A computer program was written for q = 2 that calculates the elements of 
the set Sk ordered as in the example for W 4. We chose q = 2 because the 
polynomials can be represented by a string of zeros and ones, as shown for 
W 4. Each polynomial in Sk was tested for irreducibility using simple bit 
manipulations such as bit shifts and XOR (exclusive or) operations on the 
binary string representing the polynomial. The computer output was checked 
extensively against published tables of irreducible polynomials [6]. 

The results are given in Table 1 and Figure 1. The numbers given are 
the distribution of irreducible polynomials found in each "row" of the poly
nomial arithmetic progressions given in Definition 1. In Example 1, the rows 
corresponding to the arithmetic progressions are seen clearly for W 4. The 
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number of irreducibles in each row is easily counted for k = 4: in Example 1, 
54 has one row has 6 irreducibles and two rows have 7 irreducibles. Similarly, 
for k = 5, there are 11 rows having 6 irreducibles each (see Table 1). 

100000 1e+06 

10000 100000 
II) II) 

;: ;: 10000 0 1000 0 ... ... - - 1000 0 0 ... 100 ... 
Q) Q) 100 .0 .0 
E 10 E 10 ::J ::J 
z 

k=8 
z 

1 

0.1 0.1 
o 2 4 6 810121416 0 5 10 15 20 25 30 

Irreducibles per row Irreducibles per row 

Fig. 1. The count of rows with the given number of irreducible polynomials in the 
matrix Wk for given k. The curve is the prediction from Conjecture 1. 

3.2 Computational Heuristics Compared to Estimates 

The frequency distribution of irreducible polynomials per row in Wk is shown 
in Figure 1 for k = 8 and k = 9. When shown in a semi-log plot, this distribu
tion has a parabolic shape which is characteristic of a binomial distribution 
and so we make 

Definition 2. A binomial distribution in the parameter p is given by the 
terms of the expansion (p + (1 - p))n. The mean value of this distribution is 
/-l = np and the standard deviation is (J" = Jnp(l - p). 

The solid lines in Figure 1 are calculated using the values of p and n 
given in the conjecture below. The values of p and n give a mean value /-l 
for the binomial distribution that, for large k, approaches the asymptotic 
value in (1). The value of n is equal to the number of columns in the matrix 
representation of 5 k . Note that the solid lines are calculated and not fit to 
the data. Based upon the data, it is natural to make 

Conjecture 1. The irreducible polynomials in the progressions given in Def
inition 1 are distributed so as to asymptotically approach a binomial distri
bution in the parameter p = (cpq(Mk (X)))-l (qT /r), where q = 2 and r is the 
degree of Mk(x), and a value of n = 2deg (Pi) - 1, where Pi(x) is the i-th 
irreducible polynomial over F2 . 
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Table 1. Number of rows with N irreducible polynomials for a given value of k. 

k 
N 5 6 7 8 9 
0 0 0 0 2 0 
1 0 0 0 64 2 
2 0 0 8 355 43 
3 0 0 10 1326 294 
4 1 0 69 3153 1185 
5 5 1 164 5648 4141 
6 11 0 353 7057 11166 
7 4 15 522 6615 24189 
8 0 32 468 4936 42129 
9 0 24 347 2526 61697 

10 0 39 193 1011 76230 
11 0 32 60 314 80045 
12 0 4 10 57 71195 
13 0 0 1 11 54293 
14 0 0 0 0 35215 
15 0 0 0 0 19696 
16 0 0 0 0 9039 
17 0 0 0 0 3817 
18 0 0 0 0 1310 
19 0 0 0 0 341 
20 0 0 0 0 82 
21 0 0 0 0 14 
22 0 0 0 0 2 

Based on this conjecture, the error term in the distribution of irreducibles 
is easily computed, based on the standard deviation (1 of the binomial dis
tribution. The heuristics from the binomial distribution can be compared 
directly with the error term in (1). The error term given just below (1) has 
an unknown value of v whereas the binomial distribution has all parame
ters known. For a large number of trials, the binomial distribution may be 
approximated by a gaussian, with distribution as a function of row j, 

where /-l and (1 are given in Definition 2. When D(j) = 1 then the asymptotic 
estimate in Conjecture 1 is bounded. This occurs when j-/-l = ±(1y!log (211"(12). 
Now /-l is the location of the peak of the distribution, as given by (1), so the 
error term is asymptotically O((1y!log(12). Using the definition of (1, we see 
that the error term estimated from Conjecture 1 is O( y!(qr jr) log(qr jr)). 
This estimate for the error term is consistent with the heuristics, as shown 
in Figure 1, but is dependent on Conjecture 1. 
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4 Distribution of Irreducibles by Weight 

Let W (n, m) denote the number of binary irreducibles of degree n and weight 
m, i.e. with m nonzero coefficients. While we are unable to provide a formula, 
or even a conjecture, for W(n, m), we now provide numerical evidence that 
the irreducibles of degree n and weight m are binomially distributed. We 
note that any irreducible must have constant term 1, and have odd weight, 
otherwise it is divisible by x or x + l. 

The data for W(n, m) are given in Table 2, for n up to 26, corresponding 
to the largest degree in cycle k = 9 of the wheel sieve. The weights appear 
to be binomially distributed, in this case with binomial probability p = 1/2. 
Naively, this is what one might expect from the combinatorics if the weights 
are randomly chosen. More formally, we make 

Conjecture 2. The irreducible polynomials of degree n over F2 are binomially 
distributed by weight. 

From the data in Table 2, it seems that for fixed m, W(n,m) is an in
creasing function of n, except for m = 3 and m = 5. An interesting question 
to ask is whether W(n,3) > 0, for "almost all" n when n is large. If one 
makes a conjecture that the weights follow a binomial distribution, then the 
weight for the trinomials is easily calculated for monic polynomials over F2 
and a binomial probability p = 1/2 as, 

(2) 

which decreases asymptotically to zero. This would imply that the probability 
of monic trinomials vanishes as one considers all irreducibles of large degree. 
Note that (2) does not rule out irreducible trinomials of large degree, but says 
that the probability of finding one would be vanishingly small for large n if 
the binomial distribution is an accurate representation of the distribution. 

It is difficult to say whether (2) is accurate, because the ends of the weight 
distribution have small numbers of counts for W(n, m) and thus the statistical 
errors become significant. For a purely random process with a large number 
of Bernoulli trials, the distribution follows a Gaussian distribution. Figure 2 
shows the data for W (n, m) plotted along with a Gaussian distribution. The 
amplitude for the gaussian is calculated from N2(n), the exact number of 
irreducibles of degree n over F2 • The peak of the gaussian is calculated from 
(n + 3)/2 for given degree n. The standard deviation of the distribution is 
given by J(n - 3)pq where p = q = 0.5 for an equal probability Bernoulli 
trial. In other words, there are no free parameters in the Gaussian curve. 
The agreement between the data for W (n, m) and the Gaussian curve is 
remarkably good. However, without better heuristics, it is difficult to answer 
whether W(n,3) > 0 with finite probability for infinitely many values of n. 

From [1] we know that W(2n, 3) > 0 for infinitely many n. We now raise 
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Table 2. Weight distribution for irreducible polynomials W(n, m) where n is the 
degree and m is the number of non-zero coefficients. 

m 

n 3 5 7 9 11 13 15 17 19 21 23 25 
2 1 0 0 0 0 0 0 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 0 0 0 0 
4 2 1 0 0 0 0 0 0 0 0 0 0 
5 2 4 0 0 0 0 0 0 0 0 0 0 
6 3 6 0 0 0 0 0 0 0 0 0 0 
7 4 10 4 0 0 0 0 0 0 0 0 0 
8 0 17 13 0 0 0 0 0 0 0 0 0 
9 4 22 28 2 0 0 0 0 0 0 0 0 

10 2 38 44 14 1 0 0 0 0 0 0 0 
11 2 46 84 52 2 0 0 0 0 0 0 0 
12 4 54 152 110 14 1 0 0 0 0 0 0 
13 0 66 236 264 60 4 0 0 0 0 0 0 
14 2 73 357 500 214 15 0 0 0 0 0 0 
15 6 98 546 898 546 82 6 0 0 0 0 0 
16 0 94 734 1587 1304 337 24 0 0 0 0 0 
17 6 152 1050 2674 2696 1006 122 4 0 0 0 0 
18 5 124 1374 4316 5406 2745 531 30 1 0 0 0 
19 0 158 1774 6696 10238 6766 1772 190 0 0 0 0 
20 4 199 2325 9995 18405 15227 5368 815 39 0 0 0 
21 4 184 2892 14988 31848 32144 14698 2888 212 0 0 0 
22 2 226 3650 20993 53602 64163 36877 9928 1078 38 0 0 
23 4 296 4660 29458 86626 122502 86528 29748 4606 286 8 0 
24 0 202 5191 40861 136378 225569 190357 81708 17063 1509 32 0 
25 4 406 6938 55202 208988 399576 399560 208542 55752 6880 324 4 
26 0 328 8012 74404 314185 685607 799042 503547 166341 27390 1899 40 

ConjectuTe 3. For fixed odd m 2: 3. there arc infinitely many values of 71 2: 
m - 1 so that W(n. m) > O. 

5 Distribution of Self-reciprocal Irreducibles 

If f (x) is a polynomial of degree 71, then the Tecipmcal polynomial f* (x) 
is defined by f* (:1:) = xn f (1/ x), and f (x) is said to be self-Tecipmcal if 
f (x) = f* (:1: ). Self-reci procal irred uci bles of degree> 1 must have even degree 
say 2n, and it is easy to see that if f(x) is irreducible, so is f*(.7:). We refer 
to [4] section 2.7 for a discllssion of self-reciprocal irreducibles, including a 
formula, see page 77. for the number 8i(n, 2) of self-reciprocal irreducibles of 
degree 2n over F2 . 

Let si(n, m. 2) be the number of self-reciprocal irreducibles of degree 2n 
and weight m. over F2 . The distribution of weights for self-reciprocal irre
ducibles of degree 271 :S 26 is given in Table 3. 
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Fig. 2. The count of irreducible polynomials of degree n with a given weight Tn. 

The curve is the prediction from Conjecture 2. 

Table 3. Distribution of weights for self-reciprocal irreducibles of degree 2n with 
Tn non-zero coefficients. 

Tn 

2n 3 5 7 9 11 13 15 17 19 21 23 25 

2 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 () 0 0 0 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 1 1 0 0 0 0 0 0 0 0 0 

10 0 2 0 0 1 0 0 0 0 0 0 0 
12 0 0 2 2 0 1 0 0 0 0 0 0 
14 0 1 3 2 2 1 0 0 0 0 0 0 
16 0 2 2 3 ,1 5 0 0 0 0 0 0 
18 1 0 :2 6 8 7 3 0 1 0 0 0 
20 0 3 1 11 11 11 10 :3 1 0 0 0 
22 0 0 4 15 20 19 17 10 8 0 0 0 
24 0 0 7 17 22 :37 41 24 15 5 2 0 
26 0 2 2 14 :39 77 62 63 35 16 5 0 
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We note from Table 3 for n ~ 13 that si(n, 2) is a 0-1 linear combination 
of the values si(m, 2) for m < n. We ask whether this holds for all n 2': I? 

It is already known [1] that si(n, 3, 2) > 0 for infinitely many values of n, 
and we raise the following: 

Conjecture 4. For fixed odd TTl 2': 3 there are infinitely many values of 2n > m 
such that si(n. TTl, 2) > O. 

From [1] the self-reciprocal polynomials of degree 2n for which si(n, 3, 2) > 
o are explicitly given in the form x2n + xn + 1. where n is any non-negative 
power of 3. It would be of interest to have an analogous explicit form for 
self-reciprocal irreducibles of degree 2n and weight 5, and more generally of 
degree 2n and weight TTl; however this seems to be out of reach at the present. 
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Arithmetic on a Family of Picard Curves 
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Abstract. The L-function of the curve Ca : y3 = X4 - aX over an algebraic 
number field k which contains (9 := exp( 2;,) is the inverse of a product of six 
Hecke L-functions with Grossencharakter. The Euler factors at primes of good 
reduction are determined by means of Jacobi sums associated to certain powers of 
the 9-th power residue character. The number of points of Ca over a finite field is 
given in terms of such sums. The jacobian variety of Ca over the field of complex 
numbers has complex multiplication by the ring 2[(9]. 

Let k be a perfect field of characteristic different from 3. The curves 

Ca : y3 = X4 - aX, a E k* 

are smooth of genus 3 over k, with one point (0: 0 : 1) at infinity. The main 
result of this paper is that the L-function of the curve Ca over an algebraic 
number field k which contains (9 := exp( 2;i) is the inverse of a product of 
six Hecke L-functions with Grossencharakter (Theorem 1). As a consequence 
of this it follows that Hasse's conjecture on the meromorphic continuation 
and the functional equation of the zeta function is true for the family Ca. 
Since the Jacobians of the curves Ca have complex multiplication, the result 
on the zeta function fits into the theory of zeta functions of abelian varieties 
with complex multiplication ([De], [Tal). 

Let Nl denote the number of points of the curve Ca over a finite field 
k = lFq . If q ¢ l( mod g) then Nl = q + 1. This is proved in propositions 1 
and 2. If q == 1( mod g) then 

where 
Tl := 1jJ4(a)L(1jJ3, 1jJ), 

1jJ a character of k* of order g, L( 1jJ3, 1jJ) the Jacobi sum over IF q associated to 
1jJ3 and 1jJ. This is proved in proposition 3. Corollaries 1, 2 and proposition 4 
give explicit forms of the L-polynomial of the curve Ca over IF q in all cases 
q( mod g). Proposition 5 gives the arithmetic characterization of the algebraic 
number t.(1jJ3 , 1jJ) in the ring :£[(9]. 

Over the field k = CC of complex numbers, all curves Ca are isomorphic 
to C1 : y:3 = X4 - X. The moduli point of C1 is the only orbitally isolated 
singularity on the modular surface of Picard curves. The endomorphism ring 
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of the jacobian variety J(Cd of G\ is the ring :23[(9]. Up to isomorphism, C1 
is the only Picard curve whose jacobian variety has a cyclotomic maximal 
order as endomorphism ring. This is proved in proposition 7. In proposition 
8 is given explicitly a period matrix of J(Cd: 

2 2 

(
-(9 + 1 0 -2(9 - 2(9 -(9 - 1 

2 2, 2 II = (9 -] 0 -(9 + 2(9 -(9 + (9 + 1 
-(9 + 1 0 -2(92 - 2(9 -(92 - 1 

Picard curves of equation type y:3 = X 4 - a are considered in [Lac]. 

This research was supported by the Deutsche Forschungsgemeinschaft. 

1 The Curves C a : y3 = X 4 - aX over IF q 

Let k = IF q be a finite field of characteristic p =1= 3 with q = pi elements, and 
let a E k*. The curve 

Ca : .Ii" = X4 - ax 

is smooth of genus 3 over k. Let Fa/k be the function field of Ca, let lP'Fo 

denote the set of places, and let DivF". denote the group of divisors of Fa/k. 
The absolute norm 1)1(Sf)) of a place Sf) E lP'Fa is the cardinality of its residue 
class field. It holds 1)1(Sf)) = qdeg ~, with a natural number deg Sf) :;:, 1, the 
degree of Sf). The Zeta function of the curve Ca is a meromorphic function in 
the complex plane. defined for !R8 > 1 by 

Denoting for n :;:, 0 by An the number of positive divisors of degree n it holds 

The power series 

ZcJt) := L Antn 
n=O 

is convergent for It I < q-l and represents a rational function 

Z LcJt) 
Co (t) = (1- t)(l - qt)' 
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where Lea (t) is a polynomial with coefficients in Z of the form: 

For r 2': 1 let NT be the number of 1Fq ,-rational points of the complete curve 
Ca , and let S7 := N r - (q' + 1). It holds 

2a2 = S2 + SIal, 

3a3 = S3 + S2al + Sla2. 

The plane curve Ca has only one point at infinity, hence 

NJ = N + 1 

where N is the number of solutions (x, y) in k of the equation 

Proposition 1. If q == 2( mod 3) then NI = q + l. 
Proof: If q == 2( mod 3) the order q - 1 of the cyclic multiplicative group 
k* is not divisible by 3, so k* = k*3. This implies that for each x E k there 
exists exactly one y E k with y3 = :x;4 - a:x;. Hence N = q. 0 

Proposition 2. If q == 4( mod 9) or q == 7( mod 9) then NI = q + l. 

Proof: If q == 4( mod 9) or q == 7( mod 9) then the cyclic multiplicative 
group k* of order q - 1 is equal to the internal direct product of its subgroup 
of order :j, generated by (, and of its subgroup of order q;l, denoted by 
U ='.. Each element c E lF~ can be uniquely written in the form c = de j with 

3 

dE U ='. and 0 <:::: j <:::: 2. Let X be a character of k* of order 3. Put X(O) := O. 
:l 

The number of solutions in k of the equation y3 = x4 - ax is 

where 
2 

a = L X(c4 - ac) = L LX(d4(4j - ad(j) = 
rEF. dEUq_1j=O 

" 
2 2 

L LX[C(d4 - ad)] = [ L X(d4 - ad)]· [LX((i)] = 

dEU =l j=O 
3 

dEU .-1 
--3 -

)=0 

= [ L x(d4 - ad)]· [X(l) + X(() + X(()2]. 
dEU .-1 

-3-
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If q == 4( mod 9) or q == 7( mod 9) then q;l is prime to 3, so X is not trivial 
on the subgroup of k* of order 3. This implies 

X(l) + X(() + X(()2 = 0, 

so a = 0 and N = q. 0 

Corollary 1. If q == 2( mod 9) or q == 5( mod 9) then 

Lca(t) = 1+q3t6. 

Proof: If q == 2( mod 9) or q == 5( mod 9) then q == 2( mod 3), q2 
4( mod 9) or q2 == 7( mod 9), and q3 == 2( mod 3). By Propositions 9 and 10 
it holds Nl = q + 1, N2 = q2 + 1, N3 = q3 + 1. So Si = Ni - (qi + 1) = 0 for 
i = 1,2,3 and al = a2 = a3 = O. Hence Lca(t) = 1 + q3t6 . 0 

For a character <P of the multiplicative group k* let 

'" 2ni r(<p) := - ~ <p(c) exp(-Tr k/lFpC) 

cEk* P 

be the corresponding Gauss sum ([Da-HaJ). For an element dE k* define 

It holds 

For two characters <PI and <P2 of k* let 

~(<PI' «2) := - L 'Pl(C)'P2(1- c) 
cEk 

be the corresponding Jacobi sum. If <PI . <P2 -=J 1 then 

(1) 

(2) 

For each natural number m 2: 1 let (m := exp 2;;,i and let J-lm := {(~ I 0 ::; 
l ::; m - I} be the group of complex m-th roots of unity. 

Proposition 3. If q == 1( mod 9) then 

where 

'ljJ a character of k* of order 9. 
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The number of elements of a finite set X is denoted by IXI. It holds 

Lemma 1. Let k = IF q be a finite field of characteristic p 'I 3, and let ~ be a 
generator of the cyclic multiplicative group k*. If B(x) E k[.1:] is a polynomial 
with a simple root :I:] E k: 

then the number of solutions in k of the equation 

205 

where 

y3 = B(x) 

All := {(t, u) E k x k I Bl(t3 + xJ) = u3}, 

A~e := {(t, u) E k x k I Bl(~t3 + Xl) = eu3}, 

Ae~ := {(t, u) E k x k I B l (et3 + xd = ~u3}. 

Proof: I) The case q == 1 ( mod 3). Let X be a character of k* of order 3 
such that 

21ri 

X(O = w = e~. 

Put X(O) := o. It holds 

with 

where 

N = q + 0: + Q, 

cEk cEk cEk 

2 

=L L 

= IAlll + IAww21 + IAw2 wI +W(IAlwl + IAwll + IAw2W 21)+ 

+w2(I Alw 2 1 + IAwwl + IAw2]1), 

A:= {c E k I B(c) '10}, 

Aw'wJ = {c E A I X(c - :rl) = wi, X(Bl(C)) = wj }, 

fori,j = 0, 1,2. It follows that 

0: + Q = 2(IAlll + IAww21 + IAw2wl) + (w + w2)(IAlwl + IAwll + IAw2w21)+ 

+(w 2 +w)(IA]w 2 1 + IAwwl + IAw2 ]1) = 2(I Alll + IAww 2 1 + IAw2wl)-
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2 

= 3(IA lll + IAuw 2 1 + IAw2wl) - L IAwiW' I = 
ij=O 

since the sets A""",j, i, j = 0. 1,2, form a partition of the set A. 
It holds 

All = {c E A I X(c- xd = 1,X(B1 (c)) = I} = 

= {c E A I (3)(t, u) E k* x k* : c - :1:1 = t3, B1(C) = u3}. 

Let 

1311 := {(O,u) I U E k,u3 = B1(xd} u {(t,O) It E k,B1 (t 3 + xd = O}. 

The map 

911 : All \ 1311 ---+ All 

911 (t, 71,) := t3 + .1:1 

is precisely 9:1 : For c E All and (t, u) E 91/(c) it holds: 

where ( is an element of k* of order 3, so 191/(c)1 = 9. Hence 

It holds 
Aww2 = {c E A I X(c - xd = w,x(B1 (c)) = w2 } = 

= {c E A I (3)(t, u) E k* x k* : c - .1:1 = ~t3, B1(C) = eu3}. 

Let 

The map 

9ww 2 : A~e \ 13~e ---+ Aww2 

:3 gww2(t,U.):=~t +Xl 

is also precisely 9:1: For (' E Aww2 and (t.n) E g:~2(C) it holds: 

(3) 



Arithmetic all a Family of Picard Curves 193 

IAww21 = ~IA((21- ~I{c E k I eC3 = B1(Xl)}l-
9 9 

-tl{c E k I Bl(~c3 + xd = a}l· (5) 

Analogously: 

IAw2wI = ~IA(2~1- ~I{c E k I ~c3 = B1(xd}l

I -gl{e E k I B 1 (ee3 + xd = a}l· (6) 

From (3), (4), (5) and (6) it follows that 

a + a = 3(IAnl + IAww21 + IAw2wl) -IAI = 

I 
= 3(IAnl + IA((21 + IAe(I)-

I -3(I{e E k I BI(e3 + xd = a}1 + I{e E k I BI(~e3 + Xl) = a}l+ 

+I{e E k I B I (ee3 + xd = a}l) -IAI = 
I 

= 3(IAnl + IA(el + IAe~l) -I-I{d E k I Bl(d) = a}I-IAI· 

It holds 

IAI = q -I{c E k I B(e) = a}1 = q - I -I{d E k I Bl(d) = a}l, 

hence 
I 

a + a = 3(IAnl + IAwl + IAe~l) - q 

and 
1 

N = q + a + a = 3(IAnl + IA(~21 + IA~2(1). 

II) The case q == 2( mod 3). Each element of k has one and only one third 
root in k. It holds 

Proof of Proposition 3: The polynomial B(x) = x4 - ax = x(x3 - ax) 
has the root :rl = a in k. Let BI(X) := x3 - a E k[x]. With the notations of 
Lemma I it holds: 
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A~e = {(to 11) E k x k I -eu3 + et9 = a}, 

3 6 9 Ae~={(t,v.)Ekxkl-~v. +~t =a}. 

The equation 

with 01, 02, a:l E k \ {O} has by ([Da-Ha], 6.2 and 6.5) 

Tal (X'")Ta2 (7V) 
Ta3 (X'"7jf) 

Tal ( 7p3'" )Ta2 (7jf) 
TaJIjJ3,"+I/) 

solutions in k. Hence 

and 

IAlll = N(-l, 1,0) = q - 2-

8 

- L 
1/=1,1/#3 

L1(7j;6)T1(7j;I/) 
Ta (7j;6+I/) 

IAwl = N(-e,e,a) = 

= q _ X(C1) _ X2(C 1) _ ~ Le (7j;3)Te (7j;I/) 
L Ta(7j;3+I/) 

1/=1",#6 
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It follows that 

= 3q-

By (1) it holds 

Ll(1/})Td?jJV) + L(2 (?jJ3)T(3 (?jJV) + L((?jJ3)T(6(?jJV) = ?jJ-3(_1)T(?jJ3)T(?jJV)+ 

+?jJ-3( _1)?jJ-3V-6(OT(?jJ3)T(?jJV) + ?jJ-3( _1)?jJ-6V-3(~)T(?jJ3)T(?jJV) = 

= T(?jJ3)T(?jJV)(1 + ?jJ-3v-6(~) + ?jJ-6v-3(~)) = 

= T(?jJ3)T(?jJV)(1 + X- v- 2(O + X-2v-l(~)) = 

= T(?jJ3)T(?jJV)(1 + w-v- 2 + w2(-v-2)), 

so 

Analogously: 

Ll(?jJ6)Tl(?jJV) + L(2 (?jJ6)T(3 (?jJV) + Ld?jJ6)T(6(?jJV) = ?jJ-6(_1)T(?jJ6)T(?jJV)+ 

+?jJ-6( _1)?jJ-3v-12(OT(?jJ6)T(?jJV) + ?jJ-6( _1)?jJ-6V-6(~)T(?jJ6)T(?jJV) = 

= T(?jJ6)T(?jJV)(1 + ?jJ-3v-12(~) + ?jJ-6v-6(~)) = 

= T(?jJ6)T(?jJV)(1 + X- v- 4(O + X-2v-2(~)) = 

= T(?jJ6)T(?jJV) (1 + w-v- 1 + W2(-V-l)), 

so 
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By (7), (8) and (9) it holds 

. T(~.'3 )T(I/J) T( 'I/} )T( ~)4) . T( ljJ3 )T( '1//) 
IAnl + IA~el + IAe~1 = 3q - 3 Ta(?j;4) - 3 To (ljJ7) - 3 To(ljJ) -

. T(I/)6)T( ?j)2) T(?j)6)T(ljJ5) T( ?j}6)T( ljJ8) 
-3 . -3 -3--~~ 

'Ta(ljJ8) Ta(~)2) To (1/,5) , 

by Lemma 1 

r T(~)3 )T( ljJ) T( ljJ:3 )T( ljJ4) T(?jJ3 )T(?jJ 7) 
N =q- - - -

Ta(?j)4) To (ljJ7) To(?jJ) 

T(I/)6)T(1/J2) T(~)6)T(?jJ5) T(ljJ6)T(?jJ8) 
Ta(?j;8) To (?j}2) To (ljJ5) 

= q -1/J4(o.)L(?j):3, ?j)) - 1// (o.)I.(?jJ3, ljJ4) - ~)(o.)L(ljJ3, '1//)-

-1/J8(o.)I(~)6.1/J2) -l/,2(o.)L(~},~)5) - 'ljJ5(o.)L('ljJ6,~}). 

by (1) and (2). 
Let A be the automorphism of the field extension Q( (9) /Q defined by (t := 

(§. It holds 

riA = (1/J4 (0.)1.(1/)3 , 'ljJ))A = ('ljJ4(o.))A( - L 'ljJ3(c)'ljJ(1 - c))A = 
cEk 

cEk 

cEk 

cEk 

cEk 

cEk: 

cEk 

cEk 

= ?j)2(a)( - L ?j)6(c)~)5(1 - c)) = 'ljJ2(a)L(1/J6, 'ljJ5), 
cEk 
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hence 

A A" A" A+ AS ( ) N = q ~ T/ ~ '/ ~ T7 ~ T7 ~ '/ ~ T7 = q ~ Tr Q((g)/Q T7 .0 

Corollary 2. If q == 4( mod 9) or q == 7( mod 9) then 

where '/ = 1jJ4( o.)L( 'II}, 1jJ). 1jJ a chamcter of order 9 of the m'ultipi'icative group 
of the field IF q3 . 

If q == 8( mod 9) then 

where T7 = ~}4( o.)L( 1;}. ~)), 1jJ a chamcter of order 9 of the multiplicative group 
of the field IF q"' 

Pro a f: If q == 4( mod 9) or q == 7( mod 9) then q2 == 7( mod 9) or q2 == 
4( mod 9) and q3 == 1( mod 9). By proposition 2 it holds Nl = q + 1 and 
N2 = q2 + 1, so the coefficients fLl and 0.2 of LCa (t) vanish and the coefficient 
fL3 equals ~(N3 ~ q3 ~ 1), which by proposition 3 equals -~TrQ((g)/Q(rl) . 

If q == 8( mod 9) then q2 == 1( mod 9) and q3 == 2( mod 9). By proposition 
1 it holds Nl = q + 1 and N3 = q3 + 1, so 0.1 = 0, fL3 = ° and 0.2 equals 
~(N2 ~ q2 ~ 1), which by proposition 3 equals ~~TrQ((9)/Q(TJ). 0 

Remark 1. Corollary 2 explains some computations done in ([ CER]). 

Proposition 4. ff q == 1( mod 9) then 

where T7 = 1jJ4(fL)I,(~i" 1jJ). 1jJ a chamcteT of order 9 of the multiplicative group 
k*. A the automorphism of the field e.7:tension rQ( (9) IrQ defined by (rt := (§. 

Pro a f: The L-polynomial of the curve Calk can be written in the form 
LcJt) = rr~=l (1 ~ O'jt), where 0'1, ... ,0'6 are algebraic integers. For r ~ 1 
it holds 

6 

NT = qr + 1 ~ L nj 
j=l 

Let 1jJ be a character of order 9 of the cyclic group k*. The map 

is a character of order 9 of the cyclic group lF~r. It holds ([Da-Hal,0.8) 

Tdr)(~};) = Td(~/r 

(10) 

(ll) 
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for 1 ~ l ~ 8 and d E lF~, where TY)(#) denotes the Gauss sum of the 

character 1jJ~ on IF qT. 

By Proposition 4 it holds 

N _ r + 1 _ T(r)(1jJnT(r)(1jJr) _ T(r)(1jJ~)T(r)(1jJ;') _ T(r)(1jJ~)T(r)(1jJ~) 

r - q T~r)(1jJ~) T~r)(1jJn T~r)(1jJr) 

T(r) (1jJ~)T(r) (1jJ;) 

T~r) (1jJ~) 

hence by (11) 

T( 1jJ6y T( 1jJ2y 

Ta(1jJ8Y 

so one can choose in (10) 

T(r) (1jJ~)T(r) (1jJ5) 

T~r) (1jJ;) 

T(1jJ6YT(1jJ5Y 

Ta(1jJ2Y 

T(r) (1jJ~)T(r) (1jJ~) 

T~r) (1jJ~) 

T( 1jJ3y T( 1jJ 7y 
Ta(1jJ)r 

T(1jJ6YT(1jJ8y 

Ta( 1jJ5 Y 

_ T(1jJ6)T(1jJ8) _ A3 _ T(1jJ6)T(1jJ5) _ AS _ T(1jJ6)T(1jJ2) _ AD 

ct4 - Ta(1jJ5) - TJ , ct5 - Ta(1jJ2) - TJ , ct6 - Ta(1jJ8) - TJ • 

Let m 2: 1 be a natural number and let K be an algebraic number field 
with ring of integers OK such that (m E OK. Let p be a prime ideal of OK 

N K/Q(p)-l 

not dividing m, and let x E OK not divisible by p. The number x m 

is congruent modulo p to one and only one root of unity (;, E 11m. The map 

( 0 K / p) \ {O} --4 J-Lm, x mod p 1-7 (;, 

is a character of order m of the multiplicative group of the finite field OK/P 
called the m-th power residue character modulo p. 

Proposition 5. Let q == 1( mod 9) and let p be a prime divisor of p in the 
ring Z[(q-l]. Let 1jJ be the 9-th power residue character modulo p in Z[(q-l]. 
Identifying the finite field IF q with the residue class field Z[(q-ll!P it holds: 
a) The absolute value of the complex number L( 1jJ3, 1jJ) is 

b) The prime ideal decomposition of the principal ideal generated by L( 1jJ3, 1jJ) 
in the ring of integers Z[(9] is 
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where q:= pnZ[(9], Ais the automorphi8m O!Q((9)/Q) defined by (94 := (§ 
and NQl((q_ll/Ql((g)(p) = qf(plq). 

c) In the ring Z[(9] it holds 

The number L( 7/J3, 7/J) E Z[(g] is uniquely determined by the propertie8 a), b) 
and c). 

Proof: 
a): Every Jacobi sum in a finite field with q elements has absolute value y'q. 
b): By ([Hal], p.40, (6.)) it holds 

L(7/J3 , 'I,6)Z[(9] = (qLJ d(-3j ,-j)J)f(Plq), 

where J runs over the set {A k I 0 ::; k ::; 5} of automorphisms of Q( (g), 
j mod 9 is defined by 

and 
. . r( -3j) + r( -j) - r( -4j) 

d(-3),-)) = 9 ' 

r(x) the smallest non-negative residue of x mod 9. It holds 

(AO)-l r(-3)+r(-1)-r(-4) 
(g = (g, d( -3. -1) = 9 = 1, 

I(A')-' = IA5 = 15. d(-15 -5) = r( -15) + r( -5) - r( -20) = o. 
,>g ,>g ,>g.' 9 . 

I(A 2 )-' = IA4 = 17 d(-21 -7) = r(-21) + r(-7) - r(-28) = 0 
'>9 '>9 '>9" 9 ' 

dA3 )-' = (t = (g, d( -24, -8) = r( -24) + r( ;8) - r( -32) = 0, 

( (A 4 )-' = IA2 = 14. d(-12 -4) = r( -12) + r( -4) - r( -16) = 1 
9 '>9 '>9,' 9 ' 

I. (A5 )-1 = IA = 12, d(-6. -2) = r(-6) + r(-2) - r(-8) = 1 
'>9 '>9 ,>g" 9 ' 

{,(7/J3 , 7/J)Z[(9] = (q1+A 4 +A5 )f(plq) = (q . qA4 . qA5 )f(plq). 

c): For c E lF~ it holds 
J)(c) == 1 mod ((g - 1) 

and 
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Indeed, if ~;( c) = (~, 0 <::; k <::; b. then '1/;( c) - 1 = (~ - 1 is divisible by (9 - 1 
in £:[(9] and 4;3(c) -1 is divisible by (~-1 which is associate with ((9 _1)3. 
Then 

= - L 7i;(c) - L 7i;(c)(7i;3(1 - c) - 1) = 
c#l c#O,1 

c#O,1 c#O,1 

== 1 - L 4i(1 - c) + L 1 mod ((9 - 1)4 == 
cioO,1 

== 1 + 1 + q - 2 mod ((9 - 1)4 == q mod ((9 _1)4 == 1 mod ((9 _1)4. 

Two numbers in £:[(9] with the same absolute value and the same prime ideal 
decomposition differ by a root of unity. The group of roots of unity in £:[(9] is 
/LIS. The only element of IL18 which is == 1 mod ((9 - 1)4 is 1. The properties 
a), b), c) determine the number L(7i;3,7i;) in :2:[(9]. D 

2 The Curves Ca : y3 = X 4 - aX over an Algebraic 
N umber Field 

Let k be an algebraic number field which contains (9' Let a E k*, and let 
rna be the product of 3 and of all prime divisors p of k which appear in the 
decomposition of a. Let p be a prime divisor of k which does not divide rna' 
The curve Ca has good reduction at p: By reducing modulo p the equation 
y3 = JA - a:r: one obtains a curve Carp) over the residue c:laHs field k(p) at p 
with the equation 

Ca(p) : y3 = :IA - a(p ):r, a(p) := a mod p E k(p)* 

which is smooth of genus 3 over k(p). Let L ealP ) (t) be the L-polynomial of 
Ca(p)/k(p). By proposition 4 it holds 

5 

Lea (t) = II (1 _r/(p)Al t), 
j=O 

where T/(p) :=lbp 4 (a(p) )L(4;p 3 ,lbp) .41p the 9-th power residue character mod
ulo p, A the automorphism ofthe field extension iQl( (9) /iQl defined by (t : = (§. 

The L-fuTictioTi of Ca over k is defined by 

L(8, Ca. k):= II Lea(p) (N(p )-S). (12) 
(p.m,,)=l 
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The product on the right hand side of (12) is absolutely convergent for 
Rs > ~ ([Hal], [\Ve]. [De]). It holds 

where 

.5 

L(8, Ca , k) = IT Lj(8), 
j=O 

Lj(s):= IT (1 ~T)(p)A1 N(p)-'), 
(p.ma)=l 

(13) 

for j = 0, ... ,5. Extend the function T/(p) multiplicatively on the group 
Div rna k of divisors of k prime to rna and define 

for j = 0, .... 5. The functions Ao .... , A5 are Gro,5,5encharakter-e of k ([Hal]' 
[We]) in the sense of Heckt~ ([He]). Let Div~ k denote the set of positive 
divisors in Div rna k. By (13) it holds for R8 > ~ 

Lj(8)-1 = IT (1 ~ Aj(p)N(p)-s+~)-l = 
(p.ma)=l 

where 

L(8. Aj, k) := 

is the Hecke L-fundion corresponding to Aj, j = 0, ... ,5. So 

Theorem 1. The L-function L(8, Ca. k) of the curve Ca over- k eq'ual8 the 
product of the inverses of Hecke L-funct'ions L(8 ~ ~,Aj. k), j = 0, ... ,5. 

3 The Curves C a : y3 = X 4 - aX over rc 

A complex Picard curve is the projective closure of an affine plane curve of 
equation type y3 = P4(X), where P4(X) is a polynomial of degree 4. We ex
clude all polynomials P4(X) with only one zero. So one avoids unstable curves 
in order to get a compact algebraic moduli space IVI of (isomorphy classes of 
sernistable) Picard curves. which we choose in a very canonical way. Smooth 
Picard curves have genus 3. They correspond to a Zariski-open part 111# of 
NI. Let K = Ql( A) = Ql(w). w := e2~i. be the field of Eisenstein numbers. 
The cyclic group Z/3Z of order:3 acts via (.1',y) f---+ (;r:,wy) on each Picard 
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curve C. If C is smooth, we get JID] as quotient curve C/(Z/3Z) with Z/3Z 
as Galois group of C / JlDl . The action of Z/3Z induces a K-multiplication of 
type (2,1) on the jacobian variety J(C) of C, which means that the diago
nalized representation group of Z/3Z on the tangent space ToJ(C) of J(C) 

is generated by (g ~ g ). Let 

be the two-dimensional complex unit ball. The moduli space of abelian three
folds with K-multiplication of type (2,1) is the Shimura surface B/r, r = 
lU((2, 1), D), D = D K = Z + Zw the ring of Eisenstein integers. Define the 
congruence subgroup r(.;=3) by the exact group sequence 

1 -+ r( /=3) -+ r -+ lU((2, 1), D/(l - w)D) -+ 1. 

In ([HoI], Ch. I, Prop. 3.2.3) it is proved the following ----Theorem 2. The Baily-Borel compactijication B/ r(.;=3) coincides with the 
projective plane JlD2. The compactifying cusp points are four points 
K l , K 2, K 3, K4 E JlD2 in general position. The open part JlDt C JlD2 coming from 
smooth Picard curves is precisely the complement of the six projective lines 
Lij = Lji going through pairs K i , K j of different cusp points. 

It turns out that 

where JID; := JlD2 \ {Kl' K 2, K 3, K4}. Now identify JlD2 with 

JID~ = {(tl: t2: t3: t4) E JlD3; tl +t2 +t3 +t4 = O}, 

and introduce projective coordinates such that 

Kl = (-3: 1 : 1 : 1), K2 = (1 : -3: 1 : 1), 
K3 = (1 : 1 : -3: 1), K4 = (1 : 1 : 1 : -3). 

Each Picard curve is isomorphic to a normal form representative 

The correspondence 

Ct f--t t = (h, t2, t3, t4) f--t (h : t2 : t3 : t4) E JID; 

restricted to JlDt and composed with the 84- quotient map yields the pre
cise parametrisation of isomorphy classes ([HoI] I, Prop.5.2.3). Especially, all 
curves of the family 

Ca : y3 = X4 - aX ,a E C*, 
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are isomorphic over C to 

whose moduli point is the image of (0 : 1 : w : w2 ). 

The Jacobians of smooth Picard curves are (principally polarized) abelian 
threefolds. Via period matrices they are represented by points in the gener
alized Siegel upper half plane 

1HI3 = {st E Mat3(C); tst = st, ImstpositivedeJinite}, 

uniquely up to §p(6, Z)-equivalence, where 

denotes the symplectic group acting on 1HI3 in the well-known manner. By 
Torelli's theorem there is a canonical algebraic embedding M# Co......+ Qt3 into the 
moduli space Qt3 = 1HIJ/§p(6, Z) of principally polarized abelian threefolds. 
Restricting to the Zariski-open subspace Qtf c Qt3 corresponding to Jacobians 

of smooth genus 3 curves one gets a closed embedding M# Co......+ Qtf, which 
determines M# uniquely, up to isomorphy. The closed algebraic embedding 
M# Co......+ Qtf can be uniJormized in the following sense. In the analytic category 
there is a commutative Shimura diagram 

1 

/' 
lB# Co......+ lHIf 

1 1 
M# Co......+ Qtf 

,/ '\, 

1HI3 

1 

M ----7 Qt3 

where 1HI3 ------> Qt3 is the §p(6, Z)-quotient morphism, lHIfis the preimage of 
Qtf in 1HI3, lB Co......+ 1HI3 is a closed embedding, lB# = lB n lHIf, and lB ------> M is 
the analytic quotient morphism of the arithmetic group 

NSp(6,Z)(lB) := {G E §p(6,Z); G(lB) = lB} 

acting on lB. In ([Ho3]) it is proved that this ball lattice coincides with r. 
Identifying for a moment the ball with its image in 1HI3 we calllB the period 

space oj Picard curves and its points are called Picard period points (of the 
family of Picard curves). An element 'Y E r is called elliptic, iff 'Y has an 
isolated fixed point P E lB. Let r' be a subgroup of r. We call the elliptic 
element 'Y purely r' -elliptic, iff all non-trivially on lB acting elements of the 
stationary group r~ are elliptic. The images of purely r'-elliptic points on 
lB / r' are isolated (cyclic quotient) singularities. Notice that the fixed point 
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P is uniquely determined by the elliptic element I because the group of 
biholomorphic automorphisms oflffi coincides with JP'V((2, 1), C), so I has only 
one negative eigenlinc in V = (C:;. < ., . » with respect to the hermitian 
metric < . , . > of signature (2, 1) on C3 . 

In ([HoI], Ch. I, :3.4.4) it is proved the following 

Theorem 3. (see {Hal} 1, Prop. 8.4.4). The only singularities of ]1.1 are the 
'image points of 8 := (0 : 1 : w : w2 ) and N := (1 : i : -} : -i), along the 

54 -qv,otient mrnphis7n. D 

This is a simple application of a theorem of Chevalley stating that the sin
gularities of a finite (more generally: locally finite) Galois quotient XjG of a 
smooth complex manifold X come precisely from points x E X with isotropy 
group Gx not generated by reflections at x, where reflections at x are defined 
as elements of G'l: acting trivially on a submanifold of X through x of codi
mension 1. Looking at finite subgroups of 54 and their fixed points on JP'2 one 
finds up to 54-equivalence the points 5, N as only singular possibilities. The 
5 4-isotropy group of 5 is generated by the cyclic permutation (234) of order 
3. The 54-isotropy group of N is generated by the cyclic permutation (1234) 
of order 4. The (1:3) (24)-reflection line on JP'2 contains N. 

Proposition 6. The set of Picard period points of C1 coincides with the set 
of purely r -elliptic points on lffi. It coincides with the r -or-bit of 

Proof: For an arbitrary group G let Gtor be the set of elements of finite 
order of G (torsion clements), and let G k-tor be the subset of elements of 
precise order k E 1'1+. G acts by conjugation on Gk and on Gtar . It holds 

Lemma 2. For r = V((2.l). D) the set r g - tor is not void. It consists of pre
cisely six r -umfugution classes. They are projected onto two lP'r-conjugation 
classes 'in (lP' rh-tm. 
Proof of Lemma 2: For the first statement we consider the element 

(
-W2 -1 w2 ) 

ipI'- W 1 1 
1 -1 w2 - 1 

with 
det ipl = w, ipr = WE3· 

found by Feustel in [Feu]. It is easy to check that ipl belongs to r. The eigen
vahles are (g, (Ll 4 , (~/. The powers ip~, k = 1,2,4,5,7,8, yield six different 
conjugation classes in r 9 - I.or (compare determinants and eigenvalues) and 
two conjugation classes in (JP' rh-tor. D 

Now let ip be an arbitrary clement of r g- tor· with eigenvalues (g, (9), (g k, 

say. The Galois group of F := K((9) over K is generated by (J: (9 f---+ 
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(g 4. The characteristic polynomial X<p(T) of cp belongs to K[T]. Looking at 
trace and determinant of cp, which must belong to K, it is easy to see that 
cp has three different eigenvalues. They must be conjugated over K, hence 
(g] = (g4 = a((g), ~gk = (g7 = a2 ((g). The eigenvectors a, b, c of (g, a((g), 
a 2 ((g), respectively, can be choosen in p3. They form an orthogonal basis of 
p3 endowed with our hermitian (2, l)-metric because of different eigenvalues. 
From cp(a) = (g . a it follows that 

a(cp(a)) = a((g)a(a) = (g 4a(a) 

because cp belongs to M at3 (K). Therefore 

a, b = a(a), c = a2 (a) E p3, 

satisfying 
< a, a > < 0, < b, b > > 0, < c, c > > 0, (14) 

(without loss of generality) is an orthogonal cp-eigenbasis of ((:3 . The elliptic 
element cp has the unique elliptic fixed point P = lPa E lffi. We show that 
P is a purely T-elliptic point. With T' := T( A) we have a commutative 
diagram of quotient morphisms 

In [Ho1] I, Prop. 3.4.4, there are listed on 1P2 the p'- images of all T-elliptic 
points Q E lffi together with their (abstract) isotropy groups TQ . Our P cannot 
be an intersection point of two T-reflection discs because the reflections have 
eigenvalues only in K. Otherwise P E lffi C 1P2 would be the intersection 
point of two projective lines (the projectivized orthogonal complements of the 
one-dimensional eigenspaces) defined over K. This leads to lPa = P = lPa', 
a' E K 3 , a(P) = P, which contradicts to a(P) ~ lffi = IPV_, by (14). There 
are precisely two T -orbits TN, T S of T -elliptic points whose isotropy groups 
are not generated by reflections. The projective isotropy groups IPTN or IPTs 
are cyclic of order 4 or 3, respectively. Since lPcp E lP Tp is elliptic of order 3 
the point P must belong to the second orbit. The image p(S) coincides with 
p'(S), which is an orbitally isolated singularity with respect to T. This means 
that S is a purely T-elliptic point, hence IP Ts ~< IPcp > of order 3. D 

Let P be a number field and A a complex abelian variety of dimension g. 
We say that A has P-m'ultiplication, if there is a Q-algebra embedding ~ of P 
into the endomorphism algebra EndO A = Q ® End A of A. If, moreover, the 
degree [P : Q] of P is equal to 2g and l is an isomorphism, then A is called an 
abelian CM-variety. It is well-known in this case that A is simple and P is a 
CM-field, which is, by definition, a totally imaginary quadratic field extension 
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of a totally real number field, see [La]. A CM-curve is a (smooth complex) 
projective curve C whose jacobian variety J( C) is an abelian CM-variety. 

Proposition 7. The endomorphism ring EndJ(Cd is isomorphic to 2[(g]. 
Up to isomorphy, C1 is the only Picard CM-curve with a cyclotomic maximal 
order as endomorphism ring. 

Proof: Our special Picard curve C1 : y3 = X(X3 - 1) has an obvious 
non-trivial automorphism of 9-th order fixing IX = (0: 0 : 1): 

(x, y) f---+ (wx, (gy) , ((g3 = w). 

It extends to an automorphism of the Jacobian threefold of C1. With Theo
rem 6 below we will see that this automorphism generates a subfield in the 
endomorphism algebra of the Jacobian. Therefore we get embeddings 

2[(9] '-t End J(Cd ' F = Ql((g) '-t Endo J(Cd. (15) 

The representing period point Peg = lP'a E lB is purely r -elliptic by Propo
sition 3, fixed by 'PI of nine-th order. Therefore the ring EndK (a, a~) of 
K-endomorphisms of V with eigenvector a and invariant subspace a~ is big
ger than K. Such ball points have been called exceptional in [H02]' Corollary 
7.10. Moreover, a is eigenvector of a simple eigenvalue of 'PI E EndK(a,a~). 
Therefore Pc,g is an isolated exceptional point in the sense of Definition 7.12 of 
[Ho2]. The K-degree [K(P(g) : K] of Pc,g is equal to 3. Now apply the follow
ing theorem to see that J( Cd is a simple CM-threefold with multiplication 
field K((g). 

Theorem 4. (see [H02], section 7.) The endomorphism algebra of the ja
cobian variety J T ~ J( Ct) of a Picard curve with period point T E lB and 
moduli point t = (t1 : t2 : t3 : t4) E lP'2 is greater than K if and only if T 
is exceptional. JT splits up to isogeny into abelian CM- subvarieties if and 
only if T is an isolated exceptional point. Thereby Jacobians with eM-field 
F (of degree 3 over K) correspond to isolated exceptional points of K -degree 
3 and F ~ K(T). All other isolated exceptional points (of K-degree 2 or 1) 
lyon K -discs on lB (defined as non-empty intersections L n lB, L projective 
lines on lP'2 defined over K). Thereby T E lB(K) if and only if JT splits into 
Ex E x E. The degree 2 case happens if and only if J T splits into E x (E'2), 
where E is an elliptic eM-curve with K -multiplication and E' elliptic eM 
with imaginary quadratic multiplication field L I K. Moreover, it holds that 
K(L) = K(T) in the latter case. 0 

The endomorphism ring of any abelian CM-variety is an order in the cor
responding CM-field. Each order of a number field L is contained in the 
maximal order, the ring D L of integers in L. The maximal order of a cyclo
tomic field L = Ql(() is equal to :E[(], ( a generating unit root, see e.g. [Neu], 
I, Prop. 10.2. So the embeddings (15) must be isomorphisms, especially 
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The first part of Proposition 5 is proved. 
F is the only cyclotomic field of degree 3 over K. Therefore the Jacobian 
threefolds of CM-Picard curves C with cyclotomic endomorphism algebra 
Endo J(C), which must be isomorphic to F, have to be isogeneous. There is 
a bijective correspondence between the ideal classes of D F and the isomorphy 
classes of principally polarized abelian CM-threefolds A (of same multiplica
tion type) with endomorphism rings DF , see e.g. [La], 111.2, Cor. 2.7. It is 
well-known that the class number of F is equal to 1, see e.g. [Ha2]' III, end of 
29. Therefore, up to isomorphy, there is only one such A. Then, by Torelli's 
theorem, also the isomorphy class of Picard CM-curves with End J (C) ~ D F 

is uniquely determined. This completes the proof of Proposition 5. 0 

Remark 2. The type of F-multiplication is a lift (F-extension) from the type 
(2,1) of K-multiplication on J(Cd. This lifted type is unique by [La], 1.3, 
Theorem 3.6. 

Proposition 8. A period matTix of the Jacobian J( Cd is: 

(
-(9 + 1 0 -2(92 - 2(9 _(92 - 1 1 2(92 + (9) 

II= (92-10 -(92+2(9 -(92+(9+1 -1(92-2(9 ·w+ 
-(9 + 1 0 -2(92 - 2(9 -(92 - 1 1 2(9 2 + (9 

(
2(92+(9+11 -(9+1 -2(92-(90(92+(9-1) 

+ -(92+2(9 1 -2(92.+2(9+1 -(9+1 -1(92-(9-1 . 
2(92+(9+11 -(9+1 -2(92 -(9 0 (92 +(9- 1 

The set oflliI3 -(Siegel-)period points of J( Cd coincides with the §p( 6, '£.)-orbit 
of 

( ~~;i2~1 ~ r;;;l) 
- -1 0 

1's~l 0 ~21's+2 
3r2 31'2 

·w+ 

with 

1 4 3 2 (I 5 3 2 () r := -,,9 + (9 + 2(9 + (9 + 1 , s := - ,,9 + (9 + 2(9 + 9 . 

Proof: In [Ho3], tiections 2.4-2.5, it is described a procedure to receive the 
period matriceti starting from the coordinates of the fixed point PCg ' First 
one has to move the" diagonal ball" lffi C 1P'2 by a plane projective linear 
transformation to the "Picard ball" (Siegel domain) lffi' C 1P'2. This is done by 
the inverse of 

!vI := (~ ~ ~1) , 
_w 2 0-1 

(see [Ho3], p. 28) acting on row-vectors from the right. Let pi := (a: b: c) E 

lffi' be the image point of PCg E lffi. Setting b = 1 and applying Proposition 3 
one gets a, c E '£.[(9]. From the vector (a. 1, c) one gets the period matrices 
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via orthogonal fillings and *-pl'Ocecinre coming from Picard period integrals, 
all described in [Ho3] al'Ound Lemma 2.22. The numbers T, s appear in the 
period matrix II at places (1, 1) or (1. 4), respectively. 0 
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Abstract. In order to construct good quantum-error-correcting codes, we con
struct good Hermitian self-orthogonal linear codes over GF(4). In this paper we 
construct record-breaking pure quantum-error-correcting codes of length 24 with 
2 encoded qubits and minimum weight 7 from Hermitian self-orthogonal codes of 
length 24 with dimension 11 over GF( 4). This shows that length n = 24 is the small
est length for any known [[n, k, d]] quantum-error-correcting code with k 2 2 and 
d = 7. We also give a construction method to produce Hermitian self-orthogonal 
linear codes GF( 4) from a shorter length such code. 

1 Introduction 

It was shown [4] in 1995 that there could exist quantum-error-correcting codes 
(QECC throughout the paper) which would protect quantum information 
as classical error-correcting codes protect classical information. See [1] for 
the brief history of QECC. It is also known [1] that the problem of finding 
QECC is tram;formed into the problem of finding additive self-orthogonal 
codes under a certain inner product over the finite field GF( 4). These additive 
self-orthogonal codes include the classical Hermitian self-orthogonal codes 
over GF(4). So our purpose is to construct good Hermitian self-orthogonal 
codes in order to construct good QECC using the ideas of [3]. 

We recall some basic definitions from [1,2]. Let GF(4) = {O,l,w,w} with the 
convention that 2 = wand 3 = w where w = w2 = 1 + w. An additive code 
Cover GF(4) of length n is an additive subgroup of GF(4)n. As C is a free 
GF(2)-module, it has size 2" for some 0 S k S 2n. We call Can (n, 2k) code. 
It has a basis, as a GF(2)-module, consisting of k basis vectors; a genemtor 
matri:r: of C will he H k x n matrix with f'lltries in GF( 4) whose rows are a hasis 
of C. The we'ight wt (c) of c E C is the number of nonzero components of c. 
The minimum weight d of C is the smallest weight of any nonzero codeword 
in C. If C is an (n.2") additive code of minimum weight d, C is called an 
(n, 2k ,d) code. 

To study QECC. we consider a somewhat different inner product from the 
ordinary inner product. \Vc start with the following trace map. The tmce 
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map Tr : GF(4) --> GF(2) is given by 

Tr(x) =.1: + x 2. 

In particular Tr( 0) = Tr( 1) = 0 and Tr( w) = Tr(w) = 1. The conjugate of 
x E GF(4), denoted X, is the image of x under the Frobenius automorphism; 
in other words, 0 = 0 I = 1, and w = w. We now define the trace inner 
product of two vectors x = Xl x2 ... Xn and y = Y1Y2 ... Yn in GF( 4)n to be 

n 

x*y = LTr(xiYi) E GF(4). 
i=1 

(1) 

If C is an additive code, its dlLal, denoted C~, is the additive code {x E 

GF(4t I x*c = 0 for all c E C}. If C is an (n,2k) code, then C~ is an 
(n, 22n- k) code. As usual, C is trace self-orthogonal if C c::: C~ and self-dual if 
C = C~. In particular, if C is trace self-dual, C is an (n, 2n) code. 

We say that two additive codes C1 and C2 are eqlLivalent provided there is 
a map sending the codewords of C1 onto the codewords of C2 where the 
map consists of a permutation of coordinates followed by a scaling of coor
dinates by elements of GF(4) followed by conjugation of some of the coordi
nates. Notice that permuting coordinates, scaling coordinates, and conjugat
ing some coordinates of a self-orthogonal (or self-dual) code does not change 
self-orthogonality (or self-duality) and the weight distribution of the code. 
The automorphism grOlLp of C, denoted Aut(C), consists of all maps which 
permute coordinates, scale coordinates, and conjugate coordinates that send 
codewords of C to codewords of C. 

Now we state the relationship between QECC and additive self-orthogonal 
codes over G F ( 4). 

Lemma 1 (Theorem 2, [1]). Suppose that C is an additive trace self
orthogonal (n, 2n - k ) code of GF( 4)1l such that there are no vectors of weight 
< d in C~ \C. Then an additive quantum-error-correcting code with parame
ters [[n, k, d]] is obtained. 

If there are no nonzero vectors of weight < d in C~ in the above lemma, 
C is pure (or nondegenerate); otherewise it is impure (or degenerate) [1]. A 
[[n, k, d]] QECC can correct [(d ~ 1)/2] errors, where k is the number of 
encoded qubits (q11antum bits). 

The Hermitian inner product is defined as 

x· y = X1Y1 + ... + XnYn E GF(4), (2) 

for two vectors x = (X1,""Xn ) and y = (Y1,"',Yn) in GF(4)1l. A linear 
code with length 71, dimension k(as a vector space over GF(4)), and mini
mum weight d is called an [n, k, d] code. The following theorem explains why 
Hermitian self-orthogonal linear codes are interesting in order to construct 
QECC. 
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Lemma 2 (Theorem 3, [1]). A linear code C is self-orthogonal with respect 
to (1) if and only if it is self-orthogonal with respect to (2). 

Combining the above two lemmas, we get the following corollary. 

Corollary 1 ([1,5]). Let C be a Hermitian self-orthogonal linear [n, k] code 
over GF(4) such that there are no vectors of weight < d in C..l\C, where 
C..l is the Hermitian dual of C. Then there is a quantum-error-correcting 
[[n, n - 2k, d]] code. 

Proof. Since the given code C is linear, it has parameters as an additive 
code (n, 22k) = (n, 2n-(n-2k)). Thus by Lemma 1 a quantum-error-correcting 
[[n, n - 2k, d]] code is obtained. 

2 Construction Method 

By generalizing the building-up construction [3, Theorem 1] for self-dual 
codes over GF( 4) to self-orthogonal codes, we have the following theorem. 
We remark that there was an error in [3, Theorem 1] about the definition of 
Yi and so correct it here. 

Theorem 1. Let Go = (gi) be a generator matrix(may not be in standard 
form) of a Hermitian self-orthogonal code Co over GF( 4) of length n with 
dimension k, where gi are rows of Go respectively for 1 ::; i ::; k. Let x = 

(XI,···,Xn ) be a vector in GF(4)n with an odd weight. Suppose that Yi := 

(Xl, ... ,Xn ) . gi for 1 ::; i ::; k. Here Yi is the conjugate of Yi and· denotes 
the Hermitian inner product. Then the following matrix 

G = [:' ~ x, x, ;, X
n -, xnj 

Yk Yk gk 

generates a Hermitian self-orthogonal code Cover GF( 4) of length n + 2 with 
dimension k + 1. 

As an example of the above theorem, let Co be a Hermitian self-dual code over 
GF(4) generated by {lOlO,0101}. If we take x = (Olww), then the code Cis 
generated by {lOOlww, wwlOlO, wwOlOl} by Theorem 1. This is the unique 
[6,3,4] Hexacode over GF(4). 

As in [3, Theorem 2] we get the converse of the above theorem as follows. 

Theorem 2. Any Hermitian self-orthogonal code Cover GF(4) of length n 
and dimension k > 1 with minimum weight d > 2 is obtained from some 
Hermitian self-orthogonal code Co of length n - 2 and dimension k -l(up to 
equivalence) by the construction in Theorem 1. 

In the following section, we construct 19 inequivalent linear Hermitian self
orthogonal [24, 11,8] codes over GF( 4) with its dual minimum weight 7. These 
give record-breaking [[24,2,7]] quantum-error-correcting codes. 
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Table 1. Generator matrix of Q~2 

1000000100000133233203 

0100000300020221231212 

0010000100033303000120 

0001000200012220332002 

0000100200021031201103 

0000010200021001233210 

0000001100022020312101 

0000000010000100113322 

0000000001000001111111 

0000000000100010112233 

Table 2. New [[24,2,7]] quantum-error-correcting codes using Q~2 

codes C X=(Xl,"',Xll) As, B7 codes C X=(Xl,"',Xll) As, B7 

Q24,1 03001111121 117,171 Q24.2 22321301221 144, 156 

Q24,:1 22131000321 141, 186 Q24.4 10020033021 108,174 

Q24,5 13013111132 99, 156 Q24,6 12030021132 120, 198 

Q24.7 23310200132 105. 132 Q24,8 20012000332 96, 150 

Q24.9 31100212032 105, 165 Q24.10 02212022032 102, 162 

Q24.11 120103130:32 126, 183 Q24,12 11110021202 114, 150 

Q24,13 20223012202 96, 159 Q24,14 33030202002 105, 147 

Q24.15 02311200002 108, 147 Q24.16 31231302123 102, 150 

Q24,17 33:321333303 102, 159 Q24,18 20212031120 108, 180 

Q24.19 21121332320 90. 144 

3 Existence of [[24,2,7]] Quantum-error-correcting 
Codes 

According to [I, Table Ill], it is known that the highest minimum weight d for 
[[24,2, d]] codes is bounded by 6 ::; d ::; 8. We apply Theorem 1 to a Hermitian 
self-orthogonal [22,10,8] code Q~2 in Table 1 with many possibilities for vec
tors x to get 19 inequivalent Hermitian self-orthogonal [24, ll, 8] codes such 
that their dual codes all have minimum weight d = 7. Hence it follows from 
Corollary 1 that there exist pure [[24,2,7]] codes. Moreover length n = 24 is 
the smallest length for any known three error-correcting [[n, k, 7]] codes with 
k 2: 2 according to [1, Table III]. See Table 2 for such codes, where As(resp, 
B 7 ) denotes the number of minimum vectors in C(resp, C~), justifying the 
inequivalence of the codes. Here we gave the vectors x with only first II co-
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ordinates, the right half being 1 'so For example, x = (23310200l32) in Q24,7 

means x = (23310200l3211111111111). We summarize our result as follows. 

Theorem 3. TheTe exist at lcast 19 inequivalent pUTe [[24,2, 7]] quantum
CTrOT-coTTecting codes, which aTe obtained jmm HCTmitian sc(f-oTthogonallin
eaT [24,11,8] codes with its dual minimum weight 7. 

Acknowledgment. The author would like to thank Vera Pless for reading 
the first manuscript and the referee for useful comments. 
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Abstract. Following Patterson and Wiedemann [10], we find new counter-exam
ples for a conjecture of Mykkelveit [9] related to the covering radius of the first 
order Reed-Muller code. One of them has a remarkable algebraic structure. 

1 Spectral Magnitude 

Let L be an extension of degree m of F 2 , the field of order 2. Let ML be the 
canonical additive character of L that maps z E L onto (_l)trdz), where 
trL(z) is the absolute trace of z. Using the fact that the non-degenerate 
bilinear symmetric form (x, y) t--+ tr L( xy) is non-degenerate, one defines the 
Fourier coefficient of Boolean function f: L --+ F2 at a E L by : 

(1) 

Note that the Hamming distance between f and the affine function x --+ 

a.x + b (b E F 2 ) is 2rn - 1 - (_~)b f(a). The spectral magnitude of f defined by 

Sp(f) = SUPaEL l.f(a)1 measures the distance between.f and the space of affine 
functions. The spectral radius R( m) = inf f Sp(f) is particularly relevant from 
the cryptographic point of view. Fourier analysis gives the Parseval's lower 
bound: 

"f2ITl <::: R( m) (2) 

The functions reaching that bound are the bent junct'lons of Rothaus [11], 
they exist in even dimension only. All along that paper, we will denote m = 2t 
or m = 2t + 1 according whether m is even or odd. It is easy to see that the 
spectral magnitude of a quadratic form of rank k is 2 m;A . In even dimension, 
non-degenerate quadratic functions are bent, but there are bent functions of 
degree d for all d between 2 and t. In odd dimension, the minimal spectral 
magnitude of quadratic functions is 2t+1 whence we obtain the quadratic 
bound: 

(3) 

We say that f exceeds the quadratic bound if its spectral magnitude is less 
than 2t+1. Berlekamp and Welch [2], Mykkelveit [9] and more recently HOll 
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[6] have proved that if m E {3, 5, 7} then R(m) = 2t+l : such a function 
does not exist, for these values of m. For m = 9, 11 and 13 nothing more 
than the bounds (2) and (3) is known. In their famous note [10]' Patterson 
and Wiedemann construct Boolean functions of spectral magnitude 216 in 
dimension 15 providing counter-examples to a conjecture of Mykkelveit that 
claimed R(m) = 2(m+1)/2 for odd m. They conjecture that R(m) '" ,;zm and 
explain: 

"We have not succeeded in understanding algebraically the choice of or
bits and thus have not succeeded in generalizing our construction to other 
dimensions although we suspect there is a construction when m is not a prime 
power" 

In this note, we give a new counter-example that makes a link with the 
theory of (relative) difference sets. 

2 Action of Cyclic Groups 

Let G be a subgroup of order d of LX. We say that a Boolean function f is 
invariant under G if and only if F(gz) = F(z) for all 9 E G and z E L. It is 
equivalent to say that f is an union of cosets of LX modulo G. We want to 
study the spectral magnitude of the G-invariant Boolean functions in order 
to obtain functions exceeding the quadratic bound. 

Using a slight abuse of notations, we denote by G the characteristic 
Boolean function of the group G so that 

F(z) = L s(w)G(wz) = L G(wz), 
wED 

where s is a numerical Boolean sequence corresponding to a choice of cosets 
of G in LX whose support denoted by D is a set of cardinality say k. We 
denote by v the order of the quotient group n = LX IG so that dv = 2m - l. 
Later we will make connections with difference set theory that explains our 
notations: D, v, k. The Fourier coefficient of F at 0 is 

F(O) = 2m - 2dk = 2m - 1 + 1 - 2dk = dv + 1 - 2dk. 

This equality shows that d must be chosen less than or equal to 2t + 1 to 
obtain bent functions, and less than 2t+l to have some chance to exceed the 
quadratic bound. In particular, if we want F to have a spectral magnitude 
less than or equal to R we must assume 

R+l Iv - 2kl ::; -d-· 

Let a be a non-zero element of L. The Fourier coefficient of G at a depends 
on the class of a modulo G and is given by 

G(a) = - L f-Ldag) + L f-Ldag) = -2 L f-Ldag) = -~ L rdx)x(a), 
v 

gEG gfiG gEG x..lG 
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where Tdx) = LZELX X(Z)/-LL(Z) is the Gauss sum associated to the multi
plicative character X and the additive::haracter /-LL. The coefficients of F, is 
equal to the inter-correlation of s by G and is given by : 

~ ~ ~ ~~ 2~ 
F(a) = L.- s(w)G(aw) = L.- G(aw) = -:;; L.- Tdx)D(x)x(a). 

wEn wED x~G 

In the last equality, we identify G~ with the dual of n, whence D(X) is 
the (multiplicative) Fourier transform of D at X. The main question is: what 
kind of set D could make small the absolute value of the F(a)'s ? 

Problem 1. Find the spectral magnitude of the Legendre construction where 
v is prime and D is the set of quadratic residues modulo v. 

3 Functions from Sub-fields 

Assume that m is even. Let K be the subfield of degree t in L. By a theorem 
of Stickelberger [8], we know that the Gauss sums of order dividing 2t + 1 
are rational and so equal to 2t. It follows that the Fourier transform of F at 
a is given by : 

1~ 1 ~ k 
--F(a) = - 2: Tdx)s(x)x(a) = - 2: s(x)x(a) - - = 2t s(a) - k 

2 v v V 
x~G l#X~G 

We recover a result of Dillon [4]. 

Proposition 1. If D is a set of 2t - 1 cosets of the group G in LX then the 
corresponding function is bent. 

Proof. Clear. 

In [10], Patterson and Wiedemann proceed by analogy looking for Boolean 
function that are invariant under the multiplicative group of subfields of 
the field F 2",. The multiplicative group of the field of order 215 factors in 
7 x 31 x 151 and contains a cyclic group G of order 217 which is the direct 
product of Fs x and F32 x , there are 2 151 G-invariant functions but only 212 

of them are also invariant under the Frobenius automorphism and correspond 
to the 12 cyclotomic classes modulo 151 represented by the coset leader 0, 1, 
3, 5, 7, 11, 15, 17, 23, 35, and 37. Using a computer, one can see that 8 of 
these functions exceed the quadratic bound, see TAB.l. 

We have computed the auto-correlation function of the sequences s cor
responding to them, and for example, the auto-correlation of the first row 
takes only four values: 60 times the value 36, 30 times the value 38, 60 times 
the value 40 and 1 time 76. Its structure is similar to of that a difference sets 
but is not a (relative) difference set. 
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Table 1. Spectral distributions of Patterson-Wiedemann functions 

orbits degree -216 -152 -88 -24 40 168 232 

017111.517 8 5 1 1 5 

o 1 3 7 17 :35 9 5 1 1 5 

0352335 :37 10 2 4 1 1 1 3 

o 5 11 15 23 37 10 2 4 1 1 1 3 

4 Function from Subgroup 

Once again, assume that Tn is even. We suppose that G is the group of order 
d := 2t + 1. The function Z 1--+ trL(az2'+1) is G-invariant, bent if and only 
if the Kloosterman sum Kl ((L) is equal to -1. see [5]. Arguing with elliptic 
curve theory, Lachaud and Wolfmann [7] prove that for any L there are 2t - 1 
such (L. Now, we recover a similar result by means of Gauss sums. A classical 
proposition of Davenport-Hasse [8] asserts that for any character X of order 
v, the negative of the Gauss sum Tdx) is equal to TK(X? It follows that 

Let c be a non-zero element of K and let Ec = {z E K X I trK(z/c) = I}. It 
has order 2t - 1 and the multiplicative Fourier transform of Ec at X ~ 1 is 

1 1 
Ec(X) = -2 L [1 - I1K(Z/C)]X(z) = -2TK (X)x(C). 

zEKX 

Similarly those of the set Dc = {z I trK(c/z) = I} is equal to -TKCXJX(c)/2. 

Proposition 2. Let c E KX. The set Dc defines a bent function. 

Proof. Let Sc be the characteristic function of Ec. Let F be the boolean 
function defined by Dc whose Fourier coefficient at (L is : 

Problem 2. Prove that the bent functions given by (2) are quadratic. 
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5 A Remarkable Example 

As Patterson and Wiedemann have done with the group of order 217, we 
have looked for boolean functions invariant under the action of the group 
of order 151. There are 2217 such functions but only 223 are also invariant 
by the Frobenius automorphism. Four of them (TAB.2) exceed the quadratic 
bound with spectral magnitude: 248, 234, 232, and 246. It is worse than in 
the case of the group of order 217 but one of these functions has a remarkable 
structure. Indeed. the auto-correlation of the function of the second row takes 
only three values. Its support D is composed of the cyclotomic classes of 1, 
7, 9, 11, 25, 37, 49, it defines a (7.31,108,100,46) relative difference set. 
Moreover, regarding Z/151Z as the direct product Z/7Z x Z/31Z, D is equal 
to 

D1 x Z/31Z U {O} x D2 

where D1 is the Singer set {1,2,4} and D2 the Singer set {3,5, 7, ... } so that 
D appears as one of the relative difference sets described by theorem 2.1 of 
[1]. 

Concluding remark. Can we construct other functions, related to Singer 
sets for a greater Tn = pq, where p and q are distinct odd prime? Unfortu
nately, the answer is no! Indeed, the condition on d given in section 2 says 
that 

implying p = 3 and q = 5. 

Table 2. Action of Z/151Z 

spec. mag. orbits degree correlation 

248 35131921 12 186 [46], 1 [108] 

2731333577 10 [99], 10 [100], 10 [101] 

234 o 3 5 13 19 21 15 186 [47], 30 [101], 1 [109] 

2731 333577 186 [47], 30 [101], 1 [109] 

232 1 79 11 15 25 10 186 [46]' 30 [100], 1 [108] 

374993 105 186 [46], 30 [100], 1 [108] 

246 o 1 79 11 15 25 15 186 [47] , 1 [109] 

374993 105 10 [100], 10 [101]' 10 [102] 
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Abstract. In this survey we discuss rational approximation properties of certain 
algebraic power series over a finite field using continued fractions. These algebraic 
elements are fixed points of the composition of a linear fractional transformation 
and of the Frobenius homomorphism. 

1 The Fields of Power Series over IF q 

Let lFq be the field with q elements and let p be its characteristic. We consider 
the field IF q (T) of rational functions in the indeterminate T, with coefficients 
in IF q' On this field IF q (T) we consider the ultrametric absolute value defined 
by 

IP/QI = ITldcgP-dcgQ and 101 = 0 

where ITI > 1 is a fixed real number. The field obtained by completion from 
lFq(T) for this absolute value will be denoted by IF(q). If 8 E IF(q) and 8 f. 0, 
we can write it as a power series expansion 

e = L (hT k with ko E Z, 8k E lFq 8ko =f 0 
k~k() 

and the absolute value is extended by 181 = ITlko. This construction is anal
ogous to the classical construction of the field of real numbers from the ring 
of integers. The resulting field IF(q) has many similar properties with JR; and 
hence could be called the field of formal numbers over IF q' In the two state
ments below we com,ider 8 E IF'(q) written as 8 = P(T)+ Ln>o 8nT-n where 
P(T) is the integral (polynomial) part of 8. The first result is an illustration 
of the similarity with real numbers. 

Theorem 1.1. 8 E lFq(T) if and only if the sequence (8n )n:2:o is ultimately 
periodic. 
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Since we are concerned with algebraic elements in IF(q) over IFq(T), it is 
interesting to mention a deeper result concerning the power series expansion, 
due to Christol. 

Theorem 1.2. e is algebraic over IFq(T) if and only if the set of sub-

sequences 

is finite. 

Clearly the same construction as above can be made from an arbitrary 
base field K instead of IF q' Then the resulting field is called the field of power 
series over K and denoted by K( (T- 1 )) . Indeed the finiteness of the base 
field is essential in many results and this makes the field IF(q) particularly 
interesting. We study here, in the case K = IFq, rational approximation to 
algebraic power series over K(T). For a study in a larger context and for 
more references see [L 1]. 

Many classical questions in number theory, which have been studied in 
the setting of real numbers, can be transposed and studied in fields of power 
series. The starting point in the study of rational approximation to algebraic 
real numbers is a famous theorem established by Liouville in 1850. This 
theorem has been adapted by Mahler [l\I] in fields of power series with an 
arbitrary base field. 

Theorem 1.3. Let K be a .field. Let e E K( (T- 1 )) be an algebraic element 
over K(T), of degree n > 1. Then there is positive real number C such that 

for all P, Q E K[T], with Q f O. 

In the case of real numbers, we know that Liouville's theorem was the 
first step in the study of rational approximation to algebraic numbers. A 
deeper result was obtained with Roth's theorem established in 1955. This 
last theorem can be transposed in fields of power series if and only if the base 
field has characteristic zero. In this case the exponent n in the right hand side 
of the inequality in the above theorem can be replaced by 2 + e for all e > 0 
with the constant C depending upon f. But this is not so in the case of the 
field IF(q) and consequently the study of rational approximation to algebraic 
elements becomes more complex. 

2 The Continued Fraction Algorithm 

As in the classical context of the real numbers, we have a continued fraction 
algorithm in IF(q). For a general reference on this subject see [S]. If e E IF(q) 
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we can write 

The ai's are called the partial quotients and we have deg ai > 0 for i > O. 
This continued fraction expansion is finite if and only if 8 E lFq(T). As in 
the classical theory we define recursively the two sequences of polynomials 
(xn)n~O and (Yn)n~O by 

Xn = anXn-l + Xn-2 and Yn = anYn-l + Yn-2, 

with the initial conditions Xo = ao, Xl = aOal + 1, Yo = 1 and Yl = al. We 
have Xn+lYn - Yn+lXn = (_l)n, whence Xn and Yn are coprime polynomi
als. The rational xn/Yn is called a convergent to 8 and we have xn/Yn 
lao, aI, a2, ... , an]. Because of the ultrametric absolute value we have 

We mention an important result which is an analogue of Lagrange's the
orem (see [S]). 

Theorem 2.1. Let 8 E IF(q) be irrational. Then the sequence of partial 
quotients in the continued fraction expansion of 8 is ultimately periodic if 
and only if 8 is quadratic over lFq(T). 

3 The Approximation Exponent 

Let 8 E IF(q) be an irrational element. We define the approximation exponent 
of8 by 

. log 10: - P/QI 
v(8) = hmsup( - I IQI ) 

IQI->oo og 

where P and Q run over polynomials in IF q [T] with Q 1=: O. Let us consider the 
continued fraction expansion 8 = lao, al, ... , an, .. . ]. Since the convergents 
are the best rational approximations to 8, it is clear, using (1), that the 
approximation exponent can also be defined directly by 

v(8) = 2+limsup(degak+ddegYk)' 
k 

Observe that deg Yk = 2::1 <i<k deg ai and therefore v( 8) is directly con
nected to the growth of the sequence (degai)i~l' In particular if the sequence 
(degai)i~l is bounded then v(8) = 2. Clearly we may have v(8) = 2 without 
this assumption. 

Because of Mahler's theorem, for all 8 E IF(q) algebraic over lFq(T) and 
of degree n > 1, we have 

v(8) E [2,n]. 
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We give now two classical examples, in some sense dual of each other, of 
algebraic elements for which the approximation exponent is maximal. The 
second was first introduced in [M]. Here r = pt where t 2: ° is an integer. 

Example 1 : We define 8 E IF(p) by 

8 = [O,T, T r , ... , T rk , .. . ]. 

Because of the Frobenius homomorphism, we have 8 = 1/(T+8r ). It is easy 
to see that 1I( 8) = r + 1. 

Example 2 : Here we assume that t f- ° and we define 8 E IF(p) by 

In that case we have 8 = liT + 8 r and 1I(8) = r (see [M]). It is interesting 
to observe that the continued fraction for this algebraic element can be given 
explicitly. 

Theorem 3.1. Assume that r > 2. We define recursively on n 2: 1 a finite 
sequence Jln of elements in lFp[T] such that 

n T and n _ n _T(r-2)rn - 2 _ n 
Jq = Hn - Jtn-l, , Jtn-l 

If Jln = al, a2,···, am then Jln = am,···, a2, al and -Jln = -al, -a2, 
... , -am. Further Jloo denotes the infinite sequence beginning by Jln for all 
n 2: 1. Then the continued fraction expansion for 8 is [0, Jloo]. 

We recall that no explicit continued fraction expansion is known for a 
non-quadratic algebraic real number. 

4 Algebraic Elements of Class 

Let r = pt where t 2: ° is an integer. We denote by H(r, q) the subset of 
irrational elements in IF( q) such that there exist A, B, C, D E IF q [T] with 

A8r +B 
8 = ----,----:,-----

C8r +D 
(2) 

We put H(q) = Ur=pt,t2':O H(r, q). The elements of H(q) are called algebraic 
elements of class 1. Observe that the elements which are quadratic and also 
cubic over lFq(T) are algebraic of class I (indeed the four elements 1,8,8P 

and 8 p+1 are linked over lFq(T)). 
These algebraic elements were introduced by Baum and Sweet [BS1] when 

the base field was lF2 . Later they were considered by Mills and Robbins [MR] 
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in a general context. \Ve give below a theorem which gives the main known 
rational approximation properties of these elements. 

Theorem 4.1. We have the following properties : 
(i) IfG E H(q) then v(G) E Q and liminflQI->oo IQlv(8)IG - P/QI i- 0,00. 

(ii) If G E H(r. q) and if in equation (2) we have deg(AD - Be) < r -1 then 
v(G) > 2. 
(iii) If G E JF(q) is algebraic of degree n > 1 and G ~ H(q) then v(G) ::; 
[n/2] + 1. 

For (i) see [dM] and [V], for (ii) see [L3] and for (iii) see [LdM1] and 
[LdM2]. Observe that the last property implies that the algebraic elements 
which are best approximable by rational elements must belong to H(q) (as 
both examples above). A consequence of the first property in this theorem is 
that there exists a natural partition of the set H(q) into two subsets Hl(q) 
and H2(q). 

Corollary 4.2. Let G = lao, aI, a2,"'] E H(q). Then we have either 
• G E HI (q) : there 'is a real TL'lL7nlieT' fL > 0 .mch that 

(i.e. v(G) > 2) 

or 
• G E H2(q) : there is an integer B such that 

deg (Li ::; B for i 2:: o. 

The two examples given above belong to HI (q) when they are not quadratic. 
Clearly H2(q) contains the quadratic formal numbers. The existence of non
quadratic elements in H2(q) was first observed by Baum and Sweet [BSl] 
and latter by Mills and Robbins [MR]. It is interesting to remark that evi
dent computer calculation shows that H 1 (q) is a much larger set than H2 (q). 
It is also important to observe that both subsets H 1 (q) and H2 (q) are stable 
under three transformations : 1) the Frobenius homomorphism, 2) a linear 
fractional trallsformation with polynomial coefficients, 3) the change of T 
into a polYllomial of T. Moreover these three transformations preserve the 
degree of an algebraic clement over IF q (T). 

5 A Particular Subclass in 1t(q) 

If we look for an analogue of the subset H (q) in the setting of the real num
bers, we should consider the subset of quadratic real numbers. Indeed these 
numbers are fixed points of a linear fractional transformation with integer 
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coefficients. This implies the peculiar pattern of their continued fraction ex
pansions. Unluckily the possibility of describing explicitly the continued frac
tion expansion for all the clements of H(q) seems yet out ofreach (see [MR]). 
Nevertheless this description is possible for a particular subclass. 

We will say that an clement in H (q) is of class IA if AD - Be E IF~ in 
equation (2). Example 1 given above belongs to this subclass. Observe that, 
according to the second property of Theorem 4.1, if 8 is of class IA and T # 1 
then e E Hl(q). Snch algebraic clements have been studied by Schmidt [S] 
and also by Thakur [T] who proved independently the following theorem. 

Theorem 5.1. 8 E IF(q) is algebmic of class fA if and only if theTc exist 
k 2' -1, aj, Ci E IF q [T] with 0 ~ j ~ k and i 2' 1, t E N* and f E IF~ such that 

wheTe fOT I 2' 1 we have 

Observe that for T = 1 the corresponding element is quadratic and the 
expansion becomes ultimately periodic. The fact that the continued fraction 
expansion can be obtained explicitly for algebraic numbers of class IA implies 
the following result. 

Corollary 5.2. Let 11 be a mtional Teal nmnbeT with 11 2' 2 then there is an 
element 8 in H(q) such that 1/(8) = 11. 

6 A Particular Subset of 1i2 (q) 

As we noted above non-quadratic clements in H2(q) appear to be exceptional. 
The first examples were given in [BS1], [BS2] and [MR]. In [L2] and later in 
a joint work with J .-J. Ruch, [LR1] and [LR2], we have searched for these 
elements with all partial quotients of degree one. For the theorem below, we 
need to introduce a new notation. If (an )"2:1 is a sequence of polynomials 
in IF q [T] then, for i 2' 1 and k 2' 0, we define the polynomial Xi.k as the 
numerator of the finite continued fraction [0. ak+1, ak+2, ... , ak+i]. 

Theorem 6.1. Let,. = pt with t 2' 0 and I 2' r be twointegeTs. Let e be an 
irmtional element in IF( q). Assume that 8 = [0, aI, a2, ... ] with deg ai = 1 
for i 2' 1. Then then; exists f E IFZ such that 

(E) 8 = EXI + :Cl_r·er 

FYI + Yl-TEF 
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if and only if thprp is a sequpnce (f II) ,,2:0 of elements in lF~, with EO = 1 and 
f1 = f, such that for n 2': 1 we have 

(S) {f n - 1X2r,(n-2)r+l: Ena~Xr,(n-1)r+1 
En +1 Xr.(n-1)r+1 ~ f n -1 Xr,(n-2)r+1 

In the trivial case r = 1, we meet with a particular case of Theorem 5.1. 
Indeed e is then quadratic and (S) simply becomes al+k = akE(-l)k+l for 
k 2': L In the general case the existence of a sequence (an )"2: 1 solution of 
(S) will depend upon the choice of f and of the first I partial quotients, It is 
remarkable that for all q, r and I 2': r there is a trivial solution of (S) given by 
ai = T for i 2': 1 and Ei = 1 fori 2': O. The corresponding algebraic element is 
the one given as Example 1 above with r = 1 and is thus quadratic. We have 
given ( in [L2] for q = 3 and in [LR1] for general q) families of examples of 
sequences (an)"2:1 satisfying (S). As an illustration in odd characteristic, we 
give the following corollary [LR1]. Here, if S is a finite sequence and k 2': 0 an 
integer, then S[k] denotes the empty sequence if k = 0 or else the sequence S 

repeated k times. Furt! her if S\ and S2 are two finite sequences then Sl EB S2 
denotes the sequence obtained by concatenation. 

Corollary 6.2. Let q = pS with p -I- 2 and s 2': L Let a, {3 E lF~ with 
a + {3 = 2, Let k 2': 0 be an integer-. Let (9 E IF( q) be defined by the following 
continued fraction expansion 

Then e satisfies the algebraic equation 

YkXq+1 - :CkXq + (a(3)(q-l)/2Yq+kX - (a;3)(q-l)/2 Xq+k = o. 

Clearly the complexity of the system (5) in theorem 6.1 is growing with 
T. In the case of even characteristic, we can choose r- = 2. By studying the 
simplest case where the partial quotients are all linear in T, we can prove the 
following corollary [LR2]. 

Corollary 6.3. Let q = 28 w'ith S 2': 1 and I 2': 2 be integers. Let AI, A2, ... , Al 
and E be given in lF~. We consider the sequence (Ai)i2:1 defined recursively for 
n 2': 1 by 

{ 
2 -1 (_l)n+l 

AI+2n-1 = A"AI E 

AI+2n = AI. 

Let e be the 'irrational element in IF(q) defined by the continued fraction 
e.rpansion 
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Then e satisfies the algebraic equation 

We conclude by making a last observation. Let us denote by F(q) the 
subset of H(q) containing all the elements satisfying an equation of type (E) 
as defined in Theorem 6.1. From the subset F(q), using the three transfor
mations mentioned at the end of section 4, we obtain a wider set of badly 
approximable algebraic elements (that is to say with bounded partial quo
tients). Does this set cover H2(q)? The answer is no if q = 2. In that case 
Baum and Sweet have described all the power series with partial quotients of 
degree one (see [BS2]). There are among them algebraic elements which are 
not of class I (see [L1] p. 225). On the other hand Baum and Sweet have given 
the example of a cubic element with bounded partial quotients (see [BS1] and 
[L3]). The case of characteristic 2 might be specific since then the existence 
of badly approximable elements comes from arguments of differential algebra 
(see [LdM2] p. 5). Consequently it is natural to a! sk : if the characteristic is 
different from 2, are there badly approximable algebraic elements which are 
not of class I ? This last question forces us to think of an open problem in 
number theory: are there badly approximable algebraic real numbers which 
are not quadratic ? 
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Abstract. We compare the complexities of the polynomial representation and the 
periodic sequence representation of a function over a finite field in the complexity 
measures degree and linear complexity. We prove a sharp inequality describing the 
relation between degree and linear complexity. These investigations are motivated 
by results on some cryptographic functions. In particular, as an application of the 
above mentioned inequality we prove new lower bounds on the linear complexity of 
sequences related to the Diffie-Hellman mapping. 

1 Introduction 

One way functions are important topics in cryptography. For example the 
discrete logarithm is an attractive candidate for the inverse of a one way 
function. Various cryptographic protocols as the Diffie-Hellman key exchange 
depend on the intractability of the discrete logarithm (see e. g. [10, Chap
ter 3]). Unfortunately, there exists no exact definition for intractability of a 
function and we have to compensate this lack with several complexity mea
sures. In the present paper we consider functions over finite fields and their 
representations as polynomials and as periodic sequences and compare the 
complexity measures degree and linear complexity. 

Let q be a prime power and fix an ordering Fq = {~o, ... , ~q-1} of the 
elements of the finite field Fq. A q-periodic sequence (an) of elements of Fq 
can be represented by a uniquely determined polynomial f(X) E Fq[X] of 
degree at most q - 1. Conversely, every polynomial f(X) E Fq[X] defines a 
unique q-periodic sequence over Fq • In other words, we have 

Since ~q = ~ for all ~ in Fq we may restrict ourselves to the case that the 
degree of f(X) is at most q - 1 in the sequel. 

The linear complexity L(an) of the sequence (an) is the shortest positive 
integer L such that there are constants 1'1, ... ,I'L E Fq satisfying 

for all n 2: L. 
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If q = p is a prime, Fp = {a, 1, ... ,p -I}, and deg(f) < p then it can easily 
be shown (see e. g. [2, Theorem 8]) that 

(2) 

For arbitrary finite fields Fq of order q = pr with an integer r > 1 the situation 
is different. For example in F4 = F2 (p) = {O, 1, p, p + I} where p is a zero of 
the polynomial g(X) = X 2 + X + 1 E F2[X] the sequence (an) defined by 
the polynomial f(X) = pX + X 2 E F4[X] satisfies the recurrence relation 
an = an-2 for n 2: 2 and we have L(an) = deg(f) = 2. On the other hand 
the sequence (an) defined by the polynomial f(X) = X does not satisfy any 
recurrence relation of order at most 2 and we have L(an ) = deg(f) + 2 = 3. 
(The sequence (an) satisfies the recurrence relation an = an-l +an-2 +an-3 

for n 2: 3.) In the present paper we investigate how far (2) holds true for 
polynomials f(X) and sequences (an) over arbitrary finite fields defined by 
(1) where for 0 :S n < q the element ~n E Fq is defined by 

(3) 

if 

n = nl + n2P + ... + nrpr-l with 0 :S nk < p for 1 :S k :S r 

for a fixed basis {81, ... , f3r} of Fq over Fp. (Note that L(an) depends on the 
ordering of Fq .) 

After some preliminaries in Section 2 we prove the following extension of 
(2) in Section 3. 

Theorem 1. Let f(X) E Fq[X] be a polynomial of degree at most q - 1 and 
(an) be the sequence defined by (1) and (3). Then we have 

q p 
(deg(f) + 1 + p - q)- ::; L(an) ::; (deg(f) + 1)- + q - p 

p q 

or equivalently 

q p 
(L(an) + p - q)- - 1 :S deg(f) :S L(an)- + q - p - 1. 

P q 

Moreover, we show that the lower bound on L(an) is attained if L(an) = 
q - sq/p with 0 :S 8 :S 1 and the upper bound on L(an) is attained if 
deg(f) = q - 1 - sq/p with 0 :S s < p. 

These investigations are motivated by results on some cryptographic func
tions: the Diffie-Hellman mapping and the discrete logarithm [8,9]. In par
ticular, we combine Theorem 1 and results of Shparlinski [12, Chapter 8] 
to obtain new bounds on the linear complexity of sequences related to the 
Diffie-Hellman problem in Section 4. 
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2 Preliminaries 

We define the polynomial sq(X) E Fq[X] by 

q-l 

sq(X) = L unXn. 
n=O 

By [3, Lemma 8.2.1] the linear complexity L(un ) is given by 

L(un) = q - deg(gcd(Xq - 1, sq(X))) = q - v, (4) 

where v denotes the multiplicity of 1 as zero of sq(X). If Sq(1) i= 0, then v 
is defined to be o. In particular we have L(un ) = q if and only if Sq(1) i= o. 
Put 

Then we have 

and thus 

q-l 

f(X) = L ajXj. 
j=O 

q-1 

Sq(1) = L f(~) = Laj L e = -aq-1 

~EFq j=O ~EFq 

L(un ) = q if and only if deg(J) = q - 1. (5) 

To estimate the multiplicity v we evaluate the Hasse-Teichmiiller deriva
tives (see [5], [13]) 

q-1 

sq(X)(t) = ~ (~)unxn-t 

in 1. For the dual basis {81, ... , 8r } of {fJ1, ... , fJr} (see [6, Definition 2.30]), 
1. e. 

Tr(8 (3.) = {I if k =j, 
k J 0 otherwise, 

we have for 0 :::; n < q, 

r 

(6) 
k=1 

where Tr(X) = L:~=l Xpk~l is the (absolute) trace of Fq with the convention 
o :S Tr(O < p for ~ E Fq . By (6) and Lucas' congruence (see e. g. [4] or [7]) 
for t = tl + ... + trpr-1, 0 :S ti < p we have 

Thus 

(7) 
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3 Bounds on the Linear Complexity 

In this section we prove Theorem 1 as an easy consequence of the following 
Lemmas and show that the inequalities of Theorem 1 are best possible if we 
don't restrict the range of deg(f) or of L(an ). 

Lemma 1. Let f(X) = 2:3:~ (Y-jxj E Fq[X]. If L(an ) = q-s with 0::; s < P 
then some coefficients aq_l_pm'_ ... _pms of f(X) with 0 ::; ml, ... , ms < r 
are nonzero. 

Proof For 0 ::; t < s we have Sq(l)(t) = 0 and Sq(l)(s) 1= 0 by (4). Since the 
polynomials Po(X) = 1 and 

1 
Pt(X) = T!X(X - 1)··· (X - t + 1) E Fp[X], 1::; t ::; s, 

form a basis of the linear space of polynomials of degree at most s we can 
write XS / s! as linear combination of the form 

Xs s 

-, = L CtPt(X) with Cs = l. 
s. t=O 

Hence by (7), 

Sq(l)(s) = L C'r(:I~)) f(~) = L Ps(Tr(Dl~))f(O 
f,EFq f,EFq 

= 2: (Tr(~~~)s - I: CtPt(Tr(D10)) f(~) 
f,EFq t=O 

= '" Tr(oll;)S f(0 _ ~ CtSq(l)(t) = '" Tr(oll;)S f(O 
~ s! ~ ~ s! 

f,EFq t=o f,EFq 

= ~ ~aj L Tr(810s~j = ~ ~aj L (~(81~)pm)S e 
)=0 (EFq )=0 (EFq m=O 

1 
1'-1 

8! 
ml1 o •• ,rn.,s=O 

(8) 

which proves the assertion of the lemma. o 

Lemma 2. Let 0 ::; 8 < P and f(X) = 2:3:~ ajXj E Fq[X] with 

aq-l-p"" _ ... _p"''' #- 0 for some 0 ::; mi < r, 1::; i ::; s. 
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Then 

Proof. We assume L(an ) < q - sq/p and thus Sq(l)(t) = 0 for 0 ::; t ::; sq/p. 
Similarly as in the proof of the previous Lemma we can write for 0 ::; t ::; sq/p, 

(9) 

where t = h + ... + trpr-l with 0 ::; ti < p for 1 ::; i ::; r. By the linearity of 
the trace for all a = Z=~=l akok E Fq with ak E Fp we get 

r 

= 2:: 2:: ak1 .. ·aksTr(okl~) .. ·Tr(Oks~)f(~) 
~EFq kl, ... ,ks=l 

r 

2:: ak1 " ·aks 2:: Tr(8k10" .Tr(8k8~)f(O· (10) 
kl,.·.,ks=l ~EF'l 

By (9) the polynomial 

Hs(X) := 2:: Tr(~X)S f(~) 
~EFq 

has q zeros. Since deg(Hs(X)) ::; sq/p < q we have Hs(X) == O. On the other 
hand analogously to the proof of the previous lemma we get 

q-2 

Hs(X) = L aj L Tr(~X)S~j 

= ~aj L (I:(~X)pm)S ~j 
)=0 ~EFq m=O 

r-l q-2 

L Laj L eml+ ... +pms+jxpml+ ... +pms 

r-l 

m} .... ,ms=O 

q-l 

= - L kq_1_jajXj == 0 
j=O 

(11) 
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with 

{ 
0 if jl + ... + jr #- s, 

kj = UJ (S-;:I) (S-j13-h ) ... e-jl-j;-jr~l) if jl + ... + jr = s, 

where j = jl + ... + j rpr-l with 0 :::; ji < p for 1 :::; i :::; r. Since kj #- 0 if and 
only if jl + ... + jr = S we get a q _l_pm l_ ... _ pm s = 0 for all 0:::; ml,··., ms < 
r, which contradicts the assumption of the Lemma. D 

Proof of Theorem 1. The upper bound on L(an) is trivial if L(an ) :::; q - p 
and we may suppose that 

By Lemma 1 we have 

and thus 

L(an ) = q - s with 0:::; s < p. 

q 
deg(J) ;::: q - 1 - s

p 

L(an ) :::; (deg(J) + l)E + q - p. 
q 

The lower bound on L(an ) is trivial if deg(J) :::; q - 1 - p and we may 
suppose 

deg(J) = q - 1 - s with 0 :::; s < p. 

By Lemma 2 we have 

L(an ) ;::: q - /1 = (deg(J) + 1 + p - q)'l. 
p p 

The second inequality of Theorem 1 is obviously equivalent to the first one. D 

The first inequality of Theorem 1 is only nontrivial if deg(J) is at least 
q - p but Lemma 2 yields nontrivial lower bounds on L(an ) for many other 
degrees. For example we have the following result. 

Corollary 1. If 

then we have 

deg(J) ;::: q - 2p + 1 

q 
L(an ) ;::: -. 

p 

Corollary 1 is best possible in the sense that L(an ) can fall below the 
benchmark q/p if deg(J) :::; q - 2p. 

Example. Consider Fg = F3 (a) with a2 + 1 = 0 and the basis {,81,,82} = 
{l,a}. The sequence (an) defined by the polynomial f(X) = X 3 +X satis
fies an = -an-l - an-2, n;::: 2, and we have L(an ) = 2. 

Lemma 2 yields also a relation between L(an) and the number of nonzero 
coefficients of f(X). 
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Corollary 2. Let s be an integer with 0 ::; s < p. If L((jn) < q - sq/p then 
the weight of f(X) is at most q _ (r~s). 

Proof LFrom (5) and Lemma 2 we know that L((jn) < q - sq/p implies 
aq-l = 0 and a q_l_pml_pm2_ ... _pmt = 0 for all 0 ::; mi < r, 1 ::; i ::; t, 
for 1 ::; t ::; s. Hence the weight of f(X) is at most q - N, where N is the 
number of integers i of the form i = q - 1 - j with jl + ... + jr ::; s, where 
j = j1 + ... + j rpr-l with 0 ::; j; < p for 1 ::; i ::; r. It can easily be verified 
that N = (r~s). D 

Now we show that the lower bound on L((jn) in Theorem 1 is sharp. 

Corollary 3. If L((jn) = q - sq/p with 0 ::; s ::; 1 then we have 

L((jn) = (deg(f) + 1 + p - q)'l. 
p 

Proof For s = 0 the result is equivalent to (5). For s = 1 Lemma 2 yields 
deg(f) ::; q - 2. Since (9) is valid for 0 ::; t < q/p from (10) and (11) we know 
that 

r-l 
HI (X) = - L aq_1_pmXPffi 

m=O 

has q/p distinct zeros, namely all elements a = I:~=1 ak8k with ar = O. Since 
deg(Hd ::; q/p all these zeros have multiplicity 1. Hence the first derivative 
of HI (X) is not the zero polynomial, i. e. 

r-l 
H1(X)' = - L aq_l_ pmpm Xpffi-1 = -aq-2 i- 0 

m=O 

and thus deg(f) 2: q - 2. Now we have 

p 
deg(f) = q - 2 = L((jn)- + q - p - 1 

q 

which is equivalent to the assertion. D 

Now we prove that the upper bound on L((jn) in Theorem 1 is sharp, as 
well. 

Corollary 4. If deg(f) = q - 1 - sq/p with 0 ::; s < p then we have 

L((jn) = (deg(f) + l)E + q - p. 
q 

Proof For s = 0 the result follows by (5). For s 2: 1 the assumption L((jn) = 
q - s' with 0 ::; s' < s would imply deg(f) 2: q -1- s'q/p > q -1 - sq/p by 
Lemma 1. Hence we have L((jn) ::; q - s. By (8) we have 

Sq(l)(s) - _~8Sq/p ../.. 0 - ,1 aq-l- sq/ p I s. 
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and thus L(O"n) 2: q - s. Hence, 

q 
L(O"n) = q - s = (deg(f) + 1)- + q - p. 

p 

o 

Remark. For a positive integer m the method in the proof of Theorem 1 can 
be applied to qm-periodic sequences, i. e. 

where f(X 1 , ... , Xm) E Fq[X1 , ... , Xm] (cf. [2, Theorem 8]). The method 
yields also results on the linear complexity of q(q-1) periodic sequences (O"n) 
of the form O"n = Ldi(~n)Ai, n 2: 0, where fi(X) E Fq[X] and Ai E Fq. 

4 Applications 

The Diffie-Hellman problem in Fq is the following: Let, be a primitive ele
ment of Fq and ,i, ,j be nonzero elements of Fq. Find ,ij without knowing 
i and j. 

Since 
,2ij = ,(i+j)2 ,_i2 ,_j2 

and square roots in finite fields can efficiently be calculated (see e. g. [1, Chap
ter 7]) in order to investigate the Diffie-Hellman problem we may consider 
the polynomial h(X) E Fq[X] of degree at most q - 2 defined by 

for ° ::; i ::; q - 2. 

Corollary 5. Let 8 ~ {I, ... , q - I} be of cardinality 181 = q - 1 - sand 
(O"n) be a sequence satisfying 

Then we have 

If s ::; p - 3 then we have 
q 

L(O"n) 2: -. 
p 

Proof. By [12, Theorem 8.1] a polynomial f(X) E Fq[X] satisfying 

for n E 8, 

has degree at least q - 2s - 4. The first result follows from Theorem 1 and 
the second from Corollary 1. 0 
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Remark. For 8 = 0 we have 

{ 
q - 3 if q == 1 mod 4. 

deg(.f) = q _ 2 otherwise, 

by [8, Theorem 1] and thus 

L (CY ) 2 {q - 2q/p if q == 1 mod 4, 
n q _ q/p otherwise. 

The discrete logarithm (or index) of a non2ero element ~ E Fq to the 
base /, denoted ind,(O, is the unique integer I with 0 ::;; l ::;; q - 2 such that 
~ = "/' Obviously, the Diffie-Hellman problem depends on the intractability of 
the discrete logarithm, which can be identified with the polynomial F,(X) E 
Fq [X] defined by 

F,b") = ~n for 0 ::;; n ::;; q - 2 and F,(O) = ~q-l' 

(The coefficients of F, (X) in the special case of a polynomial basis were 
determined by .Mullen and White [11].) For S C {l, ... ,q -I} with lSI 
q - 1 - s a polynomial f(X) E Fq[X] with 

must satisfy 

f(~n) = F,(En) for n E S 

deg(.f) 2 q - IJ - 1 - 28 
P 

by [14, Theorem 1]. Hence. for q = p2 the linear complexity of a q-periodic 
sequence (CY n) satisfying 

is at least p if s ::;; (p - 3) /2 by Corollary l. 

Remark. For 8 = 0 and arbitrary q a direct application of the method in the 
proof of Theorem 1 yields L(cyn ) 2 q - q/p (see [9]). 
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Abstract. N. Katz has shown that the absolute value of sums of the form L X( 0+ 
bEFq 

b), F q the finite field of q elements, X a nontrivial multiplicative character of F qn , 

and 0 a F q-generator of F qn, is bounded from above by (n-1)vq. We use this result 
in conjunction with a sieve due to S. Cohen to show the following for n = 3: For 
any prime power q and any F q-generator 0 of F q3, there exists a primitive element 
of the form aO + b E F q3 for some a, b E F q, a # O. We discuss an application of 
these primitive sums in their use as pseudorandom vector generators, and conclude 
by discussing the harder problem of guaranteeing the existence of such roots when 
a is forced to be 1. 

1 Introduction 

We are interested in the following problem: Given a prime power q and 
positive integer n, prove (or disprove) that for any element B such that 
F q (0) = F qn there exist elements a, b E F q such that aO + b is a primi
tive root of F qn. A counting argument shows that the problem is trivial for 
n = 2; Cohen [5] addressed a non-trivial version of this problem (comparable 
to a = 1) for n = 2 with the following result. 

Theorem 1. Let 0:. 0 belong to F q2 with 0: =I=- 0 and 0 ~ F q' Then there 
exists a primitive root of F q2 of the form 0:(0 + b) for some b E F q' 

Other results of Cohen [6-8] show as well that such primitive sums do exist 
although Mullen [16], when commenting about these, limits himself to the 
case a = ±1, b = 1 and B primitive, where F q(B) = F qn. Here the problem is 
made dependent on B but no mention of how to find such an element is given. 
We submit that it is better to fix e and consider the problem as depending 
on a, b. Indeed in the vein of Theorem 1, we prove the following for cubic 
extensions. 

Theorem 2. For any prime power q and any element e such that F q (B) = 
F q3, there exist elements a, b E F q such that aO + b is a primitive root of F q3. 
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Following the proof of Theorem 2, we give an application of these prim
itive sums, specifically we demonstrate their use as pseudorandom vector 
generators. Niki [18,19] showed how primitive roots of the form a(} + b, for 
some F p-generator () E F pn and a, b E F p, can be used to construct a pseu
dorandom vector generator. (It should be noted, however, that Niki does not 
show the existence of such primitive sums. Niederreiter [17] discusses the 
statistical properties of this generator and its generalization.) After showing 
the existence of these primitive sums, we familiarize the reader with Niki's 
generator and present our special case of it, namely for cubic extensions. 

The more difficult problem of determining whether one can always find 
a primitive root of the form () + b, () an F q-generator of F qn and b E F q, is 
then discussed. Specifically, we show how Katz's bound and the Cohen sieve 
can be used to give an explicit bound that assures the existence of primitive 
elements of the desired form for q ~ qo, where qo is specified, and on the basis 
of our sieving and other computational work we are able to give a conjecture 
that parallels Theorem 2. 

We note that the above two questions about a(} + band () + b being 
primitive are equivalent to: Given an irreducible cubic f(x), can we produce 
a primitive polynomial of the form f(ax + b) or f(x + b)? This equivalence 
will be exploited as necessary throughout the paper. 

The machinery used in our proofs consists of a character sum analysis 
and an application of a sieving method. We use a bound on sums of the form 

where X is a non-trivial multiplicative character of F qn and here () is an F q

generator of F qn. N. Katz [14] has bounded these sums in a more general 
setting, and as such his proof uses sophisticated properties of the l-adic co
homology of schemes over F q , of the kind employed by Deligne [10,11] in his 
proof of Weil's conjectures for general varieties defined over F q. Specifically, 
Katz shows that 

L X((} + b) -:; (n - l)JQ. (1) 
bEFq 

This bound is, like the famous Weil bound, the best possible bound pro
vided there is no a priori knowledge of the sum. We will use this bound in 
conjunction with a sieving method due to S. Cohen to prove Theorem 2. 

The history of the problem of finding primitive sums is a long one, dating 
back to Davenport's work in the late 1930's. Specifically, in the general case 
of a degree n extension, Davenport [9] discussed the asymptotics of the () + b 
problem, and then Carlitz [2] generalized some of Davenport's ideas. Shpar
linski and Perel'muter [20] used ideas similar to ours to derive the asymptotics 
and also to get an upper bound of JQ on the size of the least such b. So far as 
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the applications are c:oncemcd, Chung llsed (1) to prove results conceming 
the diameter of a particular class of graphs. 

We give the pertinent definitions and notation in Section 2, prove Theorem 
2 in Section 3, present the pseudo-random vector generation application in 
Section 4, and discuss the (J + Ii problem in Section 5. 

2 Definitions and Notation 

Throughout F q will denote the finite field of q elements and (J a (fixed) F q

generator of F q'" i.c. F q ((J) = F q'" Here n 2: 3 since, as noted. Cohen has 
retiOlved the n = 2 casco 

By saying that an element x is no kind of dth power. we mean that if 
x = yk with kid then we must have k = l. With this definition in hand, for 
e I qn ~ 1 we define Ne (e) to be the number of elements of the form a(J + b, a, 
b E F q with a¥-O that are no kind of eth power. Thus, Ne (qn ~ 1) denotes 
the number of primitive roots of the form a(J + b. Likewise one can define 
N~ (e) to be the llumber of elements of the form (J + b, b E F q' that are no 
kind of eth power. 

Let Z denote the ring of integers. Let JL, ¢ denote the Mobius and Euler 
phi functions. respectively, and let L'i1d denote the sum over all ¢( d) mul
tiplicative characters of F qn with exact order d. Further let w( Tn) denote 
the number of distinct prime factors of Tn. We let (a, b) denote the greatest 
common divisor of (I and band {(I, b} their least common multiple. 

Using a well-known expression clue to Vinogradov (see for example Section 
7.5 in [13]), we can obtain the following characteristic function for x being 
no kind of eth power, e I qn ~ 1, namely 

(2) 

For a multiplicative character V) of F qn we let 

lj;(a(J + b), (3) 
a.bEFq,a?"O 

S~(4)) = L VJ((J + b). (4) 
hEFq 

With 1/J as above we have 

Se('ljI) = L VJ(a) L 1jJ((J + ba- 1 ) 

aEF~ bEF q 

(5) 
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which is equal to (q - 1 )5~ (lj!) whell the order of 'I/J divides q~'~ll and is equal 

to zero otherwise (Section 5.1 of [LS]). From this we conclude that in order 
to gain the correct asymptotic result for Ne (qn - 1) we need only bound 
5~ CI/J) = 5 ( 1/J). However, we already have the bound in hand, thanks to Katz, 
as (1) shows that 15(1/))1 :::; (17 - l)JQ. 

3 The Main Result 

We now prove Theorem 2. Using Vinogradov's result, Katz's bound, and the 
fact that the number of square-free divisors of an integer m is 2w (m), we have 

N ( ) = ¢(e) " ft(d) " 5 (0;. ) 
e e e ~ ¢(d) ~ e 'Vd 

die 'Ij'd 

2 (q - 1) ¢~e) {q - ((17 - 1)JQ)(2w ((e,Q)) - I)} (6) 

where Q = (qn - 1) / (q - 1). Thus only divisors of qn - 1 that are also divisors 
of Q contribute to the bound, and we will use this to our advantage. For 
17 = 3 we have Q = q2 + q + 1; let p > 3 be a prime, then x2 + x + 1 == 0 

is solvable in F p if and only if -3 is a square in F P' i.e. when (-;,3) = 1 or 

equivalently when (~) = 1, that is precisely when p == 1 (mod 6). Thus the 
only prime factors of q2 + q + 1 are 3 or primes p == 1 (mod 6). Observe from 
(6) that, for n = 3, N > 0 whenever q > 22(w(Q)+1), and from this it is easily 
determined that N > 0 for w(Q) 2 10 or q > 8736506. We aim to greatly 
reduce the amount of work necessary to prove Theorem 2, thus in order to 
use (6) to our greatest advantage, we require the following sieving technique, 
due to Cohen [5]. The proof below mirrors that of Proposition 6.1 of [3] with 
r = 2, Tn1 = e, In2 = f, m = {rn1' rn2}, and rno = (e, f)· 

Lemma 1. Let e, f 1 qn - 1 for positive 'integer n. Then if Na denotes the 
number of elements of F qn that are no kind of ath power, we have 

(7) 

Proof. Let Ua denote the set of elements that are not any kind of ath power, 
As U e n Uf = U1cm(e,f) and U e U Uf ~ Ugcd(eJ)' (7) follows by examination 
of cardinalities. 

Since only divisors of Q contribute to the bound in (6), it suffices to use 
(7) with {e, J} = Q to prove Theorem 2. If ef = q2 + q + 1 and (e, f) = 1 
then from the definition of 5e(1/J) as well as (6) and (7) we have N > 0 when 

(q - l)¢(e) (q _ (2v0)(2w(e) _ 1)) + (q - 1)¢(f) (q _ (2v0)(2w(f) - 1)) _ 
e f 

q(q-l»O. 
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This can be rewritten to give 

(8) 

and so it is our goal to, for all values of w( q2 + q + 1) greater than some value 
wo, satisfy (8). 

To apply this we consider q2 + q + 1 = ql .,. qr, where qi are members 
of {3,p : p:::::: 1 (mod 6)}. (We let Pi be the ith member of this set.) 
We then take ef = ql ... qr with (e,1) = 1; usually, e = ql ... qk and f = 
qk+l ... qr where k = [rtl], [aJ denoting the least integer less than or equal 
to a, provides the best results. That is, such a factorization is most likely 
to minimize the right-hand side of (8). Clearly the worst possible case is 
when qi = Pi for 1 ::; i ::; r, that is, if we can satisfy (8) for a given value of 
r = w( q2 +q+ 1) using only the first r primes P of the form either P = 3 or P :::::: 1 
mod 6 then any q with w( Q) = r will satisfy (8) as well. Using these values 
we can get a bound q for when N > 0 for a fixed value of r = w(q2 + q + 1), 
with results given in the table below. The first column gives the value of r. 
The second column gives the minimum q such that Q - Ar > 0 where Ar 
is the product of the first r primes of the form P = 3 or P :::::: 1 mod 6, and 
the third column gives the minimum value of the right-hand side of (8) when 
using the technique described above. By virtue of the manner in which we 
build the table, it is clear that if there is an r = ro for which the second 
column value exceeds the third column value, then the second column value 
will be greater than the third column value for all r ::::: ro. 

w(q'2 + q + 1) q::::: N > o when q > 
1 1 4 
2 4 33.9 
3 16 113.8 
4 71.5 378.5 
5 400.5 841.2 
6 2438.7 2244.2 

The prime power values for which Theorem 2 may not hold, then, are 
precisely those q for which w( Q) < 6 and which lie between the second and 
third column values. The list of such q is enumerated below. 

1. w( Q) = 1: q = 2, 3 
2. w(Q) = 2: q = 4,7,9, 11, 13, 19,23,29,31 
3. w(Q) = 3: q = 16, 25, 37, 49, 61, 64, 67, 79, 81, 107, 109 
4. w(Q) = 4: q = 121, 163, 211, 256, 277, 289, 373 
5. w( Q) = 5: no possible exceptions 

Fortunately, these values are small enough to be directly checked via com
puter, and we do this using the number theory package pari. The primes are 
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easy enough to check, as one considers all irreducible cubics x:l + Cl ;r2 + C2X + 
C3 E F p[Y:] and asks whether there exist a, b E F p with a¥-O such that 
f(a.T + b) is a primitive polynomial. (Of course, one may also take f) E F p3 

with f)3 + CI f)2 + C2(} + C3 = 0 and ask whether of) + b is primitive for some 
0, b E F p with a ¥- 0.) For q = pl'. e > 1. we build F ql by using a primitive 
element v. of degree 3e over F p and, for each i between 1 and p3e - 2 with 

(i,q3 - 1) > 1 and ord(lIi) = (;:1;:)-_\) not a divisor of pi - 1 for j a proper 

divisor of 3e (that is, irreducibles of degree 3 over F q that are not primitive), 
ask whether there exist 0, bE Fq with a¥-O such that oni + b is a primitive 
element of degree 3 over F q. For each possible exception listed above, we find 
using the methods just described that llone of the above-listed q qualifies as 
a genuine exception. That is, for each q listed above and for all () E Fq" with 
Fq ((}) = F q3 there exist 0) b E F q with a¥-O such that a(} + b is a primitive 
element of degree 3 over F q' We have proved Theorem 2. 

4 An Application to Pseudo-Random Vector 
Generation 

Before considering the primitive sum problem for cubic extensions with a = 
1, we turn aside to mention a special case of Niki's pseudorandom vector 
generator, namely when n = 3. 

Throughout, we let f E F p [x] be an irreducible cubic with root a E 

F pa \ F p' Niki's result assumes the existence of a primitive root (3 of the form 
(3 = aa + b, with eL, b E F p' This assumption is made for speed of calculation. 
Of course we have proved the existence of such a (3. We discuss a special case 
that will give even greater speed since the reduction modulo f will be as fast 
as possible. \Ve give the matrix equation for the generator's operation and 
mention when it will work. 

Clearly, since F p:) is a vector space over F p of dimension 3 and a is a 
generator, all elements can be written in the form a2a2 + ala + 00 for some 
appropriate choice of eLi E F p' 

We take the 'seed' ao E F p3 and then define recursively 

( (j) F) vn E p' 

This gives rise to a pseudorandom vector on [0, Ij3 by thinking of the field 
elements as intcgPrs and looking at 

(9) 

That this generator is a type of linear shift register was noted in [17]. 
We have shown that any generator of F q3 can be used for a in the random 
number generator. So in particular, when x 3 - 2 is irreducible over F q we can 
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pick 0: = {Y2. In fact x 3 - 2 is irreducible over F p when p == 1 (mod 6) and 
p i- A2 + 27 B2 for some A, B E Z, since 2 is a cube when p = A2 + 27 B2 
(page 119, Proposition 9.6.2 of [12]). Here we have that 

0: = v(2)0:2 + v(l)o: + v(O) n >_ 0 
n n n n 

so that 
O:n+l = (JO:n 

= (bv~2) + av~1))0:2 + (bv~1) + av~O))o: + (bv~O) + 2av~2)). 

That is, 

The equivalent statement in matrix form is 

( 
v(Ol ) (b 0 2a) (V(O)) 
vel) = abO v(1) 
v(2) 0 a b V(2) 

(11) 

This has applications as a random number generator and also as a simula
tion for a one-time pad. The output can be XOR'd with a message producing 
a ciphertext. However, since only a 'small' portion of the message is required 
to crack a shift register sequence, a higher degree extension would be better. 

We remark that this vector generator can be used to generate random 
numbers in two simple ways: Either take each component separately and 
use these for random integers in the integers modulo p, written Zp, or take 
Cl + C2P + C3P2 as a stream of random integers in Zp 3. These sequences of 
random numbers will be well-distributed provided the initial sequence is also 
well-distributed. 

5 The (J + b Problem When n = 3 

The primitive sum problem with a fixed (here a = 1) is a considerably more 
difficult problem in general, not only by its nature but in view of the methods 
we used to resolve the aB+b problem for cubic extensions. To contrast the two 
problems for the case n = 3, note first of all that the appropriate inequality 
for N~ (e) in general is 

N'( ) = ¢(e) " f.t(d) " S' ("j, ) 
e e e ~ ¢(d) ~ e 'f/d 

die 'ljJd 

~ ¢~e) {q _ ((n _ 1)Jq)(2w (e) - I)}, (12) 

where e I qn - 1. So, as opposed to inequality (6), we can no longer restrict 
ourselves to divisors of Q. For us, this means we must consider all prime 
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divisors of q3 - 1, which have no special form. Thus our sieving work will not 
prove nearly as fruitful as for the ae + b problem. 

It is an easy task to confirm that we may still use (8) for our sieve in
equality, with ef = q3 - 1 now. Again, we will take e and f to be coprime. 
By proceeding as in Section 3, with (12) being used to gain the third-column 
entries for w(q3 -1) :::; 6 (for these give better results than (8)), we build the 
following table. 

W(q3 - 1) q> N > o when q > 
1 1.44 4 
2 1.91 36 
3 3.14 196 
4 5.95 900 
5 13.22 3844 
6 31.08 15876 
7 79.92 55851.15 
8 213.26 125118.49 
9 606.50 349943.02 
10 1863.35 962317.64 
11 5853.49 2371021.36 
12 19505.14 6123335.26 
13 67257.95 14707545.65 
14 235631.39 40213302.64 
15 850352.69 109323610.97 
16 3194167.71 248825773.15 
17 12434883.46 687106165.47 
18 48949883.70 1573702162.76 

w(q::l - 1) q? N > o when q > 
19 198812307.15 4187541882.88 
20 823245530.25 10091738285.57 
21 3440622312.80 24465331612.66 
22 14763161313.90 65633354775.93 
23 64397952985.33 144076300790.86 
24 287520444756.94 386684814620.55 
25 1321070444052.47 860102588235.88 

Thus we are only assured of N = N~(q3 - 1) > 0 when w(q3 - 1) 2': 
25. Arguing as before, we conclude that the values of q for which there 
may not exist an element e E F q3 of degree 3 over F q such that e + b is 
primitive for some b E F q are those values of q with w( q3 - 1) :::; 24 and 
with S :::; q :::; T where Sand T are the appropriate second and third
column values respectively. Not surprisingly, there are a great many more 
possible exceptions; indeed there are a total of 3836 possible exceptions for 
1 :::; W(q3 - 1) :::; 17 (we were not able to check the values of w between 18 
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and 24 due to computational constraints). Because of the great number of 
possible exceptions, in this paper we list only for each value of w(q3 -1) :s: 17 
the number of possible exceptions as well as the smallest and largest possible 
exceptions for each value of w. A complete listing of the possible excep
tions for w( q3 - 1) :s: 17 can be accessed at the first author's home page at 
http://www.dean.usma.edu/math/people/millsd/default.htm. 

1. w(q3 - 1) = 1: 1 (q = 2) 
2. w = 2: 5 (from q = 3 to q = 17) 
3. w = 3: 15 (from q = 7 to q = 173) 
4. w = 4: 64 (from q = 11 to q = 887) 
5. w = 5: 195 (from q = 61 to q = 3833) 
6. w = 6: 536 (from q = 121 to q = 15803) 
7. w = 7: 972 (from q = 211 to q = 55837) 
8. w = 8: 816 (from q = 2671 to q = 125107) 
9. w = 9: 661 (from q = 9811 to q = 349801) 

10. w = 10: 374 (from q = 37951 to q = 959083) 
11. w = 11: 137 (from q = 106031 to q = 2356831) 
12. w = 12: 45 (from q = 955711 to q = 6059719) 
13. w = 13: 15 (from q = 1462171 to q = 14535511) 
14. w = 14: no possible exceptions 
15. w = 15: no possible exceptions 
16. w = 16: no possible exceptions 
17. w = 17: no possible exceptions 

The lack of possible exceptions from w( q3 - 1) = 14 to w( q3 - 1) = 17 
leads one to conjecture that there are also no possible exceptions for each of 
w(q3 - 1) = 18, ... , 24. 

To eliminate as many of these values of q as possible, we first use (8) on 
each of the 3836 possible exceptions, and in so doing we are able to eliminate 
3407 values of q, leaving us with the following 429 possible exceptions (see 
http://www.dean.usma.edu/math/people/millsd/primroots.htm for a com
plete listing of those values of q which satisfy the sieve inequality, with values 
of e and f such that (e, f) = 1 and ef = q3 - 1 given for each one): 

• w = 1 (1 possible exception): q = 2 
• w = 2 (5): q = 3, 4, 5, 8, 17 
• w = 3 (12): q = 7, 9, 13, 19, 27, 32, 41, 59, 73, 89, 97, 101 
• w = 4 (35): q = 11, 16, 23, 25, 29, 31, 37, 43, 47, 49, 53, 64, 71, 83, 103, 

109, 113, 125, 127, 131, 157, 179, 193, 197, 199, 223, 227, 233, 241, 243, 
251,271,313,317,409 

• w = 5 (74): q = 61, 67, 79, 81, 107, 137, 139, 149, 151, 163, 169, 181, 
229, 239, 263, 269, 281, 283, 289, 307, 311, 337, 343, 347, 349, 359, 361, 
367, 379, 397, 419, 421, 439, 443, 457, 461, 491, 499, 521, 523, 541, 599, 
601, 607, 613, 617, 619, 643, 647, 653, 659, 661, 683, 709, 733, 739, 751, 
757,787,829,853,859,881,907,911,1009,1021,1051, 1061, 1093, 1117, 
1153, 1201, 1213 
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• W = 6 (97): q = 121, 191, 256, 277, 331, 373, 431, 463, 529, 547, 625, 
631, 691, 729, 809, 811, 821, 823, 877, 947, 961, 967, 971, 997, 1024, 1031, 
1033, 1069, 1087, 1103, 1123, 1129, 1171, 1283, 1291, 1321, 1429, 1453, 
1471, 1493, 1531, 1543, 1571, 1607, 1621, 1663, 1681, 1693, 1699, 1721, 
1741, 1759, 1789, 1823, 1873, 1901, 1913, 1933, 1951, 1979, 1987, 1999, 
2003, 2053, 2081, 2083, 2113, 2131, 2143, 2221, 2237, 2281, 2293, 2341, 
2371, 2381, 2389, 2503, 2521, 2683, 2707, 2713, 2791, 2809, 2861, 2887, 
3001, 3061, 3181, 3271, 3301, 3313, 3331, 3469, 3511, 3697, 3851 

• W = 7 (95): q = 211, 571, 841, 919, 991, 1231, 1303, 1327, 1369, 1381, 
1451, 1511, 1597, 1831, 1849, 1871, 2011, 2209, 2311, 2347, 2401, 2473, 
2531, 2551, 2557, 2591, 2731, 2851, 2857, 2971, 3229, 3389, 3481, 3539, 
3541, 3691, 3877, 3911, 3917, 3931, 4027, 4271, 4423, 4447, 4489, 4523, 
4621, 4643, 4651, 4657, 4663, 4691, 4799, 4831, 4903, 4909, 5021, 5101, 
5171, 5209, 5419, 5441, 5479, 5521, 5581, 5659, 5743, 5749, 6007, 6067, 
6073, 6133, 6163, 6217, 6241, 6271, 6421, 6427, 6451, 6561, 6661, 6691, 
6733, 6841, 6889, 6961, 7039, 7177, 7333, 7393, 7459, 7621, 7921, 8101, 
8581 

• W = 8 (68): q = 2671, 3571, 3721, 4096, 4111, 4561, 4951, 5791, 5821, 
6091, 6581, 6763, 6871, 6997, 7151, 7639, 7879, 8647, 8779, 8941, 8971, 
9109, 9181, 9241, 9283, 10111, 10201, 10609, 11027, 11311, 11449, 11677, 
11743, 11881, 12301, 12541, 12547, 12973, 12979, 13003, 13421, 13729, 
14389, 14821, 14947, 15031, 15271, 15401, 15541, 15661, 16831, 16921, 
16993, 17161, 17491, 17761, 17851, 19321, 19891, 20341, 21121, 21211, 
21319, 22051, 22441, 23011, 25741, 28051 

• W = 9 (29): q = 9811, 10627, 14431, 14641, 15439, 19141, 20101, 22621, 
23431, 24091, 26107, 27967, 28711, 32041, 32761, 33931, 34981, 35863, 
36871, 38011, 40231, 40471, 42331, 42571, 43891, 46861, 51151, 51613, 
56611 

• W = 10 (10): q = 37951, 44521, 44851, 88741, 97171, 97861, 111211, 
132661, 140071, 162691 

• W = 11 (3): q = 106031, 139129, 220411 
• W = 12: No possible exceptions. 
• W = 13: No possible exceptions. 

Using high-performance computers provided by the U.S. Army Research 
Lab, the first author was able to determine that for each q < 500 listed above 
(there are 100 such values) and for each e E Fq3 of degree 3 over Fq there 
exists b E F q such that e + b is primitive, with the exceptions q = 3, 7, 9, 
13, and 37. For each genuine exception q, we list an exceptional polynomial 
below. 

• q = 3: x3 + 2x + 2 
• q = 7: x 3 + 2 
• q = 9: x3+u(u3+u2+2u+1)x+(u4+u3+2u2+u+2) where u6 = 2u+1 

and u generates F 93 
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• q = 13: x3 + 4 
• q = 37: x3 + 2 

Since the likelihood of a given q value being a genuine exception decreases 
as q increases, we feel safe in conjecturing the following. 

Conjecture 1. For any prime power q =I- 3, 7, 9, 13, 37 and any element B 
such that F q (B) = F q3, there exists b E F q such that B + b is a primitive root 
of F q3. 
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On Polynomial Families in n Indeterminates 
over Finite Prime Fields Coming from Planar 
Functions 

Nobuo Nakagawa1 

Kinki University, Department of Mathematics, Higashi-Osaka, 
Osaka 577-8502, Japan 

Abstract. It is shown that there is a relation between planar functions of ele
mentary abelian groups and bent polynomials. Moreover we prove several results 
concerning them. 

1 Introduction 

Bent polynomials are a generalization of bent functions to any character
istic p(p -I- 0). The aim of this article is to show that there is a relation 
between planar functions of elementary abelian groups and bent polynomials 
and prove several results concerning them. 

In section 2 I mention that the existence of a planar function of degree n, 
the existence of a regular affine plane of order n satisfying three conditions 
and the existence of a split (n, n, n, 1)- relative difference set are equivalent. 

After that examples are given and I will mention the main known results 
about planar functions. Moreover I mention some results concerning planar 
functions on GF(pn) of monomial type. 

In section 3 we will look a property of a Gauss sum with respect to planar 
functions and the definition of bent polynomials coming from planar functions 
of elementary abelian groups. 

In section 4 a relation between planar functions and bent polynomials is 
shown and results concerning m-forms in two indeterminates are proved. 

2 Equivalent Conditions of Planar Functions 
and Known Results 

Definition 1. 
Let G and H be groups of order n. For a mapping 

f : G ---+ H : x f---+ f(x) 

and u E G (fixed), the mapping fu is defined as 

fu : G ---+ H : X f---+ f(ux)f(x)-l. 
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Then f is called a planar function of degree n from G into H if and only if 
fv is bijective for \Ill E G (11 cJ 1). 

Theorem 1. Let G and H be finite gTOUpS of or-der- n. 
The following three statements ar-e equivalent. 
(1) There exists a planar fanchon fmm G into H. 
(2) There eX'istes a (n, n, n, 1) -relative difJr-ence set in G x H relative to H. 
(3) Ther-e e:ristes an affine plane A of or-der- n satisfying the following condi
tions. 

(a1) G x H ads on the points of A regulaTly. 
(a2) each element of H acts as an elation on A with ax'is goo and center 

(:xl). 
(a3) G is transitive on (tx ) \ (:xl) and ((:xl)) \ {goo}. 

This theorem is well known. In fact under assumption (1), 
D = {(x, f (x)) I x E G} is a relative difference set in G x H relative to H 
where f is a planar function from G into H. 
Moreover if we take P = G x H as the set of points and L = {H x I x E 

G} U {Dv I v E G x H} as the set of lines, we can prove (P, L, E) is an affine 
plane satisfying the condition (a1),(a2),(a3) easily. Conversely (1) comes from 
(2) or (3) immediately. 

Example 1. 

f : GF(q) -+ GF(q) : x I----> x 2 

where G F( q) is the additive group of the Galois field of q elements for an 
odd prime power q . (An affine plane corresponding to this function is De
tmrguesian. ) 

The following example was given by R.S.Coulter and RW.Mattews([2]). 

E:rample 2. 

f: GF(3e ) -+ GF(3") : x I----> :r:(3"+1)/2 

where g.c.d. (Ct, 2e) = 1. (Affine planes corresponding to these functions are 
not translation planes if 1 < Cl < 2e.) 

Example S. 

f : GF(34 ) -+ GF(34 ) ::r I----> a(x6 + x 30 + x 54 ) _ x 10 _ XIS 

where a2 = -1. (An affine plane corresponding to this function is a semifield 
plane( not Desarguesian.)) 

Known results with respect to planar functions. 
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Theorem 2. (Ganley (5)) SlLppose that there e;r;ists a planar flLnction of de
gree n. Then n is odd. 

Theorem 3. (Gluck,Himmine,Ronyai and Szonyi (6),f7},f17}) 
SlLppose that there exists a planaT' function f of degT'ee p for an odd prime p. 
Then f is a quadmtic polynomial and an affine plane cOT'responding to f is 
DesaT'glLesian. 

Theorem 4. There is not a planar flLnction fmm Z71 into Zn faT' the follow
ing n. 
(1) (Fung,SilL and Ma (4)) 
n is divisible by p2 faT' a pT'ime p. 
(2) (Himmine !9}) 
n = 3p for any pT'ime p. 
(3) (Ma (13)) 
n = pq for all distinct pT'imes p, q. 
(4) (LelLng,Ma, Tan (ll)) 
n = 3pq foT' distinct pr'imes p, q ImgeT' than 3. 

Theorem 5. (Nakagawa (15},f16}) Suppose that G and H aT'e finite abelian 
groups of ordeT' p71 foT' an odd pT"ime p, and theT'e exists a planaT' function 
from G into H. Then 

{ 
(71+1)/2 

e:rp( H)::; P 
pn/2 

(n : odd) 

(n : even) 

Mor'COveT' G is not cyclic: if n :::: 2. 

Theorem 6. (BlokhlLis, lungnickel and Schmidt (l)) If theT'e exists a planaT' 
function of degTf,-e n between abelian gmups, then n is a pT'ime po weT'. 

This elegant result by Blokhuis, Jungnickel and Schmidt i8 a corollary of 
the following theorem in the context of the prime power conjecture. 

Theorem 7. ( Blokfwis, lungnickel and Schmidt !l}) Let G be an abelian 
collineat'ion group of oT'deT' n 2 of a pmjective plane of oT'deT' n. Then n ,is a 
pT'ime poweT. say n = p". [f p > 2, then the p-mnk of G is at least n + 1. 

Now I will pose a problem. 

Pmblem 1. Determine all monomial polynomials over G F(pn) which are pla
nar functions from GF(pn) to GF(p") as additive group8. 

If m = 2pi (i = 0,1", -), then obviously f(:1:) = xm is a planar function. 
The following two lemmas art' used to obtain several results concerning the 
problem above. 



254 Nobuo Nakagawa 

Lemma 1. (cf./12}) Set A = {al,a2,···,apn} where al,a2,"',ap" are ele
ments of GF(pn). Then A = GF(pn) if and only if 

prJ {-I L a7= 
i=l 0 otherwise. 

We define Dickson polynomials gk(X) on GF(pn) inductively as the fol
lowing. 

go(x) = 2,gl(X) = X,g2(X) = x2 - 2 and gk(X) = xgk-l(X) - gk-2(X). 

Lemma 2. (c.f.[12}) (a) gk(y + y-l) = yk + y-k for all positive integer k. 
(b) gk(X) is a permutation polynomial if and only if g.c.d.(k,p2n - 1) = 1. 

We have the following theorem. 

Theorem 8. (a) A monomial polynomial f(x) = xm is a planar function 
from GF(pn) into GF(pn) if and only if the polynomial (x + 1r - (x - l)m 
is a permutation polynomial on G F(pn) where p is an odd prime. 
(b) Huppose that one of the following conditions is satisfied. 

(1) g.c.d.(rn.pn - 1) t 2. 
(2) pn - 1 is divisible by Tn - 1. rn t 2 and Tn is not divisible by p. 
(3)p25andm=(po+1)/2 (a=O,1,2 .... ). 

Then f(:r) = xmis not a planar function on GF(pn) (71 = 1,2", .). 

Proof (a) Suppose that f(x) = xm is a planar function. Then fu(x) = (u + 
x)m - .Tm is bijective for any u t o. Therefore (l/um)fu(x) = (1 + x/u)m -
(x/u)m is bijective. Set y = x/no Then the polynomial (y + l)m - ym is 
bijective. Set z = y - a where a = (p - 1)/2. Then (z - a)m - (z + a)m 
is bijective because 2a + 1 = O. Moreover we have (:e + l)m - (.T - l)m is 
bijective by putting x = z / a again after we multiply the above polynomial by 
( _l)m / am. The inverse is obtained by following the reverse of this argument. 

(b)(1) Suppose that an equation (x + l)m - (x - l)m = 0 over GF(pn) 
has a unique solution. Then the equation ((x + 1) / (x -1) r = 1 has a unique 
solution. On the other hand an equation ym = 1 has exactly d solutions where 
d =g.c.d.(m,pn - 1). However y = Cr + 1)/(:[ - 1) iff x = (y + l)/(y - 1) 
under x t 1, Y t 1. Thus excluding 1, ym = 1 has exactly d - 1 solutions. 
Therefore from our assumption we have d - 1 = 1, or equivalently d = 2. 
Hence if g.c.d.(m, pTl - 1) t 2, then (:r + l)m - (x - l)m is not a permutation 
polynomial, or equivalently f(x) = xm is not a planar function from (a). 

(b)(2) Suppose that pn - 1 is divisible by Tn - 1, m t 2 and Tn is not 
divisible by p. Then there is a positive integer h such that (rn - l)h = pn - 1. 
Note that h < ]in - 1 because Tn t 2. We calculate 

L ((:1; + l)rrt - (x _l)rrt)h. 
xEGP(p") 
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This polynomial equals 

= 2h{f L (~) ... (~) ( L Xhm-R)}. 
R=h rj +···+rh=£(r, :odd) xEGF(pn) 

However hm - f. ~ hm - h = pn - 1 and the equality holds iff f. = hand 
rl = ... = rh = 1. If h < f., then ~xEGF(pn) xhm-£ = 0 from Lemma 1 and 

~xEGF(pn) x hm- h = -1 from Lemma 1 again. Thus we have 

L ((x + l)m - (x - l)m)h = _2hmh f- 0 
xEGF(pn) 

from our assumption m is not divisible by p. Hence (x + l)m - (x - l)m is 
not bijective on GF(pn) from Lemma 1. Therefore f(x) = xm is not a planar 
function from (a). 

(b )(3) Suppose that p 2' 5 and m = (pa + 1)/2. Obviously (x + l)m - (x
l)m is bijective if and only if (2x + 2)m - (2x - 2)m is bijective. Moreover 
there is an element y E G F (p2n) such that 2x = y + y -1. Then we have 
(2x + 2)m - (2x - 2)m = (y + y-l + 2)m - (y + y-l - 2)m = y-m((y2 + 1 + 
2y)m_(y2+ 1-2y yn). This polynomial equals y-m( (y+ 1)pa+1_(y_1)P"+I) = 
2(y(pa_ 1)/2 +y_((pa- 1 )/2)) because m = (pa + 1)/2. Thus we have (2x+2)m-

(2x-2r = 2g(pa_l)/2(y+y-l) = 2g(pa_l)/2(2x) from (a) of Lemma 2. Hence 
(x+ l)m - (x-1)ffi is bijective ifand only if g.c.d.( (pa -1 )/2, p2n -1) = 1 from 
(b) of Lemma 2. However if p 2' 5, it is clear that g.c.d.( (pa -1) /2, p2n -1) f- 1 
for any positive integer a. Therefore (x + l)ffi - (x - l)ffi is not bijective, or 
equivalently f (:r) = Xffi is not a planar function. 0 

3 Gauss Sum of Planar Functions and Bent 
Polynomials 

Let f be a planar function from G into H where G and H are abelian groups. 
We define a Gauss sum of f with respect to X E G and p E fI where G and 
fI are the character groups of G and H respectively. 

Definition 2. 

Zx,p = L X(x)p(f(x)) 
xEG 

Then we have the following theorem. 

Theorem 9. Let f be a function from G into H of degree n. Then f is a 
planar function if and only if Zx.pZx.p = n for any X E G and any nontrivial 

p E fI. 
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Proof Suppose that f is planar. Then 

Zx,pZx,p = (L X(x)p(f(x))(L X(y)p(f(y)) 
xEG yEG 

x,YEG uEG yEG 

= n + L X(u)(L p(fu(y)) = n 
(l#)uEG yEG 

The proof of the inverse is also shown easily. We note the following two points. 
Firstly if 2::(l#)uEG auX(u) = 0 for any X E G, then au = 0 for all u E G(U-=F 
1). 
Secondly suppose that hl ,"', hn are elements of H. If 2::~:~ p(hi ) = 0 for 
any nontrivial p E iI, then {h l ,···, hn } = H. 0 

A linear polynomial at a in n indeterminates over Zp is defined as 

La(x) = alXl + ... + anxn 

where a = (al,"" an) and x = (Xl,"" Xn). 
We put the number of solutions of 9 at k E Zp as 

Ck(g) = 1{(Xl,'" ,xn) E Z; I g(Xl,'" ,xn) = k}1 

for a polynomial g(Xl,"', xn) in n determinates over Zp. 
Then the bent polynomials Fp(n) are defined as follows. 

Fp(n) := {f(Xl,"" xn) I f satisfies the condition (Hl ) or (H2) 

below for any vector a E Z;} 

Suppose that n is even. 

{ 
pn-l ± pn/2 =t= p(n-2)/2 

ck(La + f) = pn-l =t= p(n-2)/2 
(k = ko) 

(k -=F ko) 

where ko = ko(a) is a fixed suitable element of Zp. 
Suppose that n is odd. 

cdLa + f) = {::~: + p(n-l)/2 

pn-l _ p(n-l)/2 

(k = ko) 

(k E A) 

(k E B) 

where ko = ko(a) is a fixed suitable element of Zp and Zp = {ko} U A U B 
such that IAI = IBI = (p - 1)/2. 
(Remark: Bent polynomials are already defined by Kumar, Scholtz and Welch. 
(cf. [10])) 

Example 4. If a polynomial gin n indeterminates over Zp is a nondegenerate 
quadratic form, then 9 E Fp(n)([12], pp. 282-283). 
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4 A Relation Between Planar Functions 
of Elementary Abelian Groups and Bent Polynomials 

The following theorem shows a relation betweem planar functions and bent 
polynomials. Let G and H be elementary abelian groups. Hence we may 
assume G ~ z; ~ H. 

Theorem 10. A function f(x) 
planar function 'if and only if 

(h(x)"", fn(x)) from G into H is a 

zs a bent polynomial for each (Sl,"', sn) E Z; such that (Sl,"', sn) "I
(0"",0). 

Proof Suppose that f of the theorem above is a planar function. Let w be 
a primitive p-th root of unity. Moreover suppose that n is even. Then from 
Theorem 9 we have zx,p = ±wtpn/2 for some t E Z and any X E G and any 

non trivial p E iI. Since G is an elementary abelian p-group, any character 
of G corresponds to a unique n-sequence (aI, ... ,an) of Zp such that 

for all x = (Xl,"', ;Tn) E G. Then we may write X = X(al, .. ,an )' Similarly 
p = P(SI .... 'Sn) for a unique (Sl,"', sn) E Z;. Now from the equation above 
and the definition of zx,p' we obtain 

2:: wa,x,+ .. +anXn+SJ!I(X)+,,+snfn(x) = ±wtpn/2 

X=(Xl ,···.x" )EG 

for any (a1,"', an) and any (Sl,"', sn) such that (Sl,"', sn) "I- (0"",0). 
Here we fix (Sl,"" sn), and set as g(x) = slh(x) + ... + snfn(x). Then 

we have 2:: wLa(x)+g(x)-t = ±pn/2 

xEG 

for all a = (a1,oo·,an). We now denote the cardinality I{ X E G I La(x) + 
g(x) - t = k }I by Ck for any k E Zp. Then from the equation above it follows 
that 

Co + CIW + ... + Cp_lW p - 1 = ±pn/2. 

Since CO+C1 + .. '+Cp -1 = pn, l+w+·· ·+wp - 1 = 0 and {l,w,'" ,wp - 2} are 
linearly independent over Q we obtain the following equations from simple 
calculations. 
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Thus we have 

(k = t) 

(otihrTWiBf) 

Therefore g(.1;) = 81h(x) + ... + 8"fn(.1;) is a bent polynomial for any 
(81, ... ,Sn) I- O. We can also prove our assertion in the case that n is odd 
similarly though we use the equation 

L wLa(X)+9(X)~t = ±p(n~I)/2T 
xEG 

where T = 2:~:~~1 A( i)wi and A is the quadratic character of Z; with A(O) = 
O. 

Follow the inverse of the argument above. Then it can be verified that 
f(x) = (!I(x),···, fn(x)) is planar if SI!I(.1;) + ... + snfn(x) is a bent poly-
nomial for any (,51,"', Sn) I- O. 0 

Example 5. Let V := GF(54 ) be a 4 dimensional vector space over GF(5) 
with the basis {I, W. w2 • w3 }, where w4 = 2. Let f be a planar function on V 
defined as f (x) = :r2. Then we have 

h(xl, X2, X:l, X4) = x~ + 2x~ + 2XIX3, f4(Xl, X2, X3, X4) = 2XIX4 + 2X2X3· 

Therefore SIil +82h+s3h+s4f4 is bent polynomials for all (81, S2, 83, 84) I
o from Theorem 10. 

Now I will pose a problem. 

Pmblem 2. Find as many bent polynomials as possible except non degen
erate quadratic form over GF(p). Under what conditions are m-forms in n 
determinates over the prime field bent polynomials? 

The following theorem is partial solutions of the problem above. 

Theorem 11. Let f(x, y) := aoxm + alxm~ly + ... + amym be a m-form in 
two indeteTrninates on G F(p) wheTf~ p i,5 an odd prime. 
(a) We set the polynomial related to f(.1;, y) as C{Jf(t) = 0.0 + alt + ... + amtm 
where t is an indeterminate. 
Suppose that the number of solutions of the equation C{Jf(t) = 0 is neither 
1 nor 2. Moreover- suppose g.c.d.(m,p - 1) I- 2. Then f(x, y) is not a bent 
polynomial. 
(b) fr m = 3, then f(x. y) is not a bent polynomial. 
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Pmuf (a) vVe denote the number of solutions of the equation I.PJ(t) = 0 by 
N. Suppose that N = 0 or N 2 3 and g.c.d. (m .. p - 1) f- 2. Moreover assume 
that f(:r. y) is a bent polynomial. Then we have the following assumption (~). 

(q) N(ix+ jy+ f(x. y) = k) E {l.p-1,p+ L 2p-1} for Vi,Vj, Vk E GF(p) 

where N(ix + jy + f(:r;, y) = k) is the number of solutions of a equation 
ix + jy + f (x, y) = k. We will obtain a contradiction from these assumptions. 

(1) We may assume that am f- O. 
Suppose that am = O. We examine N(J(x, y) = 0). If .1: = 0, then (0, y) is 
a solution of f(.1:, y) = 0 for any y E GF(p). If ;1: f- 0, then Xmiff(t) = 0 
where t = y/x. Therefore if f(t) = O. Hence if N = 0, then N(J(x, y) = 0) is 
p, this contradicts to our assumption (q). If N 2 3, then there are at least 
three distinct elements tl. b t:; such that iff(ti) = 0 for i = 1. 2,3. Then 
(x, tiX) is a solution for each ti(i = 1,2,3) and any x E GF(p)X. Therefore 
N(J(x. y) = 0) is larger than 2p - 1, also a contradiction. 

(2) We may assume N = 0 from the same arguments as the proof of (1). 
(3) g.c.d.(m,p - 1) = 1. 

We Illay assume am = 1 from (1). We have N(J(x. y) = 0) is 1 from (1) 
and (2). Therefore N(J(x:, y) = k) is p + 1 for any k E GF(p)X from our 
assumption that f(:r, y) is a bent polynomial. Set rno = g.c.d.(rn,p - 1) 
We examine N(J(x:. y) = 1). If x = 0, then ym = 1. There are exactly 
rno elements such that yTn = 1. Therefore there are exactly rno solutions of 
f(x;, y) = 1 satisfying x; = O. If J; f- 0, then :rmiff(t) = 1 where t = y/x. 
Therefore xm = l/iff(t). Set 

f! = I{t E GF(p) I iff(t) E (GF(p)XrnO }I. 

Then there are exactly rno solutions of the equation xTn = l/iff(t) for 
each t such that iff(t) E (GF(p)x)mo. Therefore N(J(x,y) = 1) = rno+rnof!. 
Hence rna + mot' = p + 1. Thus we have rno I (p + 1). On the other hand 
rnol(p - 1). Therefore TrIo = 1 or 2. However Tna f- 2 from our assumption. 
Thus rna = g.c.d. (rn. p - 1) = 1. 

Put Tn] = g.c.d.(rn - l,p - 1). We note that rn] is even from (3). Set 

where v] = 1. We examine N( -Vjy + f(x, y) = 0) for each j. If x = 0, 
then -Vjy + ym = 0, we have y = 0 or y f- 0 and ym-] = Vj. Therefore 
-VjY+ f(O, y) = 0 has exactly rn] + 1 solutions if j = 1, and (0.0) is only one 
solution of -VjY + f(O. y) = 0 with respect to y. if 2 ::; j. If x f- 0, then we 
have xm-] = Vjt/iff(t) from -Vj)} + f(x, y) = -Vjxt + XTniff(t) = 0 where 
t = )}/x. Set 

for each 1 ::; j ::; mi. Here we consider two cases. 
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Case (i): nl ¥- O. In this case we may assume that nl ¥- 0" .. ,n8 ¥- 0 
and ns+l = ... = lLYnl = 0 for some positive integer 8. Then we have 

if j = 1 

if 2:::; j :::; 8 

We note that 1 + Tn1 + TTLlnl and 1 + Tn1 nj is an odd integer larger than 1. 
Therefore from (~) 1 + Tn1 + mllll = 2p - 1 and 1 + mlTlj = 2p - 1 each 
2 :::; j :::; s. Thus by taking the sum of these we have TnlP = 8(2p - 2) since 
TIl + Tl2 + ... + TI, = P - 1. Then pis. However 8 :::; TTLl and Tnll (p - 1). Hence 
8 < p. This contradicts pis .. 

Case (ii): TIl = O. In this case, N( -V1Y + f(x, y) = 0) = 1 + TTLl. As 
the same argulllents above we have 1 + Tn1 = 2p - l. However Tnll (p - 1). 
Therefore 2p - 1 :::; p, a contradiction. This complete the proof of (a). 

(b) Suppose that Tn = 3 and f(x.y) is a bent function. Since g.c.d.(3,p-
1) ¥- 2, we may assume that N = 2 or N = 1 from (a). 

(1) We may assume N ¥- 2. 
Suppose that N = 2. Let tl and t2 be distinct roots of 'Pf(t) = O. If a3 = 0, 
then (0, y) is a root of f(x. y) = 0 for each y E GF(p). Moreover (x, Xtl) and 
(X,xt2) are roots of f(:r:.y) = 0 for each x E GF(p)x. Therefore N(f(x,y) = 
0) is larger than 2p-1, and this contradicts the assumption (q). Thus we have 
a:, ¥- O. Now let {W1. W2} be a representative of the cosets of GF(py by the 
subgroup (GF(p)X)2. We examine N(-WiX+ f(x,y) = 0) for i = 1,2. If x = 

0, then C13y3 = O. Therefore (0.0) is a unique solution of -WiX + f(x, y) = 0 
satisfying ;r = O. If x ¥- O. then x\)f(t) = WiX where t = x/Yo Hence 
x 2 = wd'Pf(t) if 'Pdt) ¥- O. Put 

TTL; = I{ t E GF(p) \ {tll t2} I wd'Pf(t) E (GF(py)2 }I 

fori = 1,2. Then we have Tr/1 + Tr/2 = P - 2 and N( -WiX + f(x. y) = 0) is 
1 + 2m;. Since 1 + 2m; is odd. 1 + 2m; = 1 or 2p - 1 from the assumption (q). 
Thus (Tnl.m.2) = (O.O).(O.p-1).(p-1,O) or (p-1,P-1). However none 
of these satisfy Tn1 + Tr/2 = P - 2, a contradiction. Thus we may assume that 
N = 1 in the rest. 

(2) \Ve IIlay assume (Lo ¥- O. 
Suppose that ao = a3 = O. Take a nonsingular linear transformation .1: = 

aX + bY, y = eX + dY. and choose a, b, c, d for which the coefficient of X 3 is 
non-~ero. 

(3) We may assume that al = O. 
If 01 ¥- O. then by the linear transformation x = X + Y,y = -3ao/alY we 
have the coefficient of X2Y is ~ero. 

We way aSSUllle 'P f (1) = 0 by giving a linear transformation such that 
x = X, Y = aY for a suitable a E G F(p) x if necessary. 

From (2).(3) we have 'Pf(t) = 1 + (J2t2 + a:3t3. 
(4) We may assume 0:3 ¥- O. 

If a:3 = O. 'Pf (1) = 'Pf ( -1) = O. This contradicts (1). 
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(5) We may assume that 'Pf(i) = 0 for some i > 1. 
If 'Pf(i) i 0 for all i E GF(p)X \ {I}, we have f(x,x) = 0 for all x E GF(p) 
and f(x,y) i 0 for any other (x,y) E GF(p) x GF(p) from (4). Hence 
N(f(x, y) = 0) is p, a contradiction. 
Thus an equation CfJf(t) = 0 has two or three distinct roots. This is a final 
contradiction, and this complete the proof of (b). 0 

Remark: It follows from the proof of Theorem 11 that if N 
g.c.d.(m-1,p-1) i 1, then f(x,y) is not a bent polynomial. 

2 and 

Example 6. Assume that g.c.d.(p-1, 3) = 1. Then f(x, y) = ax4 +bx3y (b i 
0) are bent polynomials. (This is a special example of those given by Kumar, 
Scholt and Welch ([10]).) 
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Abstract. In 1997, H. Sakazaki, E. Okamato and M. Mambo [6] proposed an ID
based key distribution system on an elliptic curve over Zn. We will cryptanalyze 
the scheme and demonstrate that when the hashed ID length is about 160 bits, the 
scheme is insecure. To be specific, after requesting a small number of keys from the 
Center, our attack allows a new valid key to be constructed without any further 
interaction with the Center. 

1 Introduction 

In 1986, E. Okamoto [5] proposed an ID-based key distribution system (KDS) 
whose security depends on the difficulty of factoring an integer that is the 
product of two large primes, as in the RSA public-key cryptosystem. How
ever, this scheme cannot be constructed on an elliptic curve over Zn in a 
straightforward way because the point corresponding to a user's identity may 
not be defined on the elliptic curve. As a solution to this problem, Sakazaki
Okamoto-Mambo [6] proposed an ID-based KDS on an elliptic curve over Zn. 
The proposed scheme can be also constructed on the ring Zn. 

We will show that some homomorphism-like properties hold in the Saka
zaki-Okamoto-Mambo' scheme, and use them to cryptanalyze the scheme. 
We will demonstrate that, when the hashed ID length is about 160 bits, 
one can forge a private key S Ii corresponding to some identity Ii. Hence the 
Sakazaki-Okamoto-Mambo scheme with a 160-bit hash function should be 
considered insecure. 

This paper is organized as following: Section 2 describes the Sakazaki
Okamoto-Mambo KDS scheme. Section 3 will discuss the security of the 
scheme and present and analyze some attacks. Section 4 concludes the paper 
with some brief comments. 

2 The Sakazaki-Okamoto-Mambo Scheme 

2.1 Elliptic Curves over Zn 

For a detailed discussion of elliptic curves over Zn, see Koblitz [3]. Here we 
just provide enough information to describe the Sakazaki-Okamoto-Mambo 
scheme. 
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Let n be a product of two distinct primes p and q each greater than 3. 
Let a, b E Zn be such that gcd (4a3 + 27b2, n) = 1. An elliptic curve over Zn 
with parameters a and b is defined as the set of points 

{ (x, y) E Zn x Zn : y2 == x3 + ax + b (mod n)} U {O}, 

where 0 is a special point called the point at infinity. This elliptic curve is 
denoted En(a, b). Suppose that G E En(a, b) is a base point having order 

k = lcm(#Ep(a, b), #Eq(a, b)). 

Note that Ep(a, b) and Eq(a, b) denote the corresponding elliptic curves de
fined over Zp and Zq, and #E denotes the number of points in an elliptic 
curve E. Such a base point G exists provided that Ep(a, b) and Eq(a, b) are 
both cyclic groups. 

For the key establishment scheme described in this paper, one can select 
the elliptic curve parameters as follows. First random primes p and q of the 
same bit length are generated so that factoring n = pq is intractable (e.g., 
p and q are each 512 bits in length). Then, elliptic curves Ep(al' bl ) over 
Zp and Eq(a2' b2) over Zq are selected so that NI = #Ep(al' bd and N2 = 
#Eq(a2' b2) are distinct primes (e.g., using Schoof's algorithm [7] and it many 
enhancements). Let GI = (Xl, YI) E Ep(al' bd, G2 = (X2' Y2) E Eq(a2' b2) be 
points of order NI , N 2 , respectively. Finally, one computes k = NIN2 and 
a, b, x, Y E Zn satisfying: 

{a == al (mod p) {b == bl (mod p) 
a == a2 (mod q) b == b2 (mod q) 

and 

{x == Xl (mod p) {Y == YI (mod p) 
X == X2 (mod q) Y == Y2 (mod q). 

Then G = (x, y) is a point of order k on En(a, b). Given n, a, band G, 
computing k is assumed to be intractable without knowledge of the prime 
factors of n. 

2.2 The Sakazaki-Okamoto-Mambo Scheme over an Elliptic 
Curve 

Set-up Phase The Center publishes the parameters of an elliptic curve 
En(a, b), and a base point G, as described in Section 2.1. The Center has 
private key consisting of k, p and q. 

Issuing a Private Key to a User Suppose the Center wants to issue a 
private key to a user i. Let Ii = h(I Di ), where h is a public hash function 
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such as SHA-l [4], and f Di is user i's puolic identifying information. We call 
Ii a hashed identity. Suppose that gcd(h k) = 1. The Center computes 

Di = I i - 1 mod k 

and 

Hence. it follows that 
Ii 51,+C=0. 

The Center transmits (Ii, 51,) to user i over a secure (secret and authentic) 
channel. 51, is user i's private key, and Ii is his public key. 

Key Exchange Scheme Suppose Alice and Dob want to establish a com
mon key. Define [l. n - 1] = {1, .... n - I}. Let fA, IB he Alice's and Bob's 
public keys, and let 51A and SIB be their private keys. 

First, Alice randomly chooses an integer rA E [1, n - 11, computes the 
elliptic curve point 

CA = ,'hA + TAIBC 

over En(a, b), and sends it to Boh. Similarly, Bob randomly chooses an integer 
TB E [1, n - 1], computes 

over En(a, b), and sends it to Alice. 
Then Alice computes 

KltB = TA(IBCB + G) 

over En(a, b), and Bob computes 

KBA = TB(IACA + C) 

over En(a, b). Obviously 

Note that the aoove scheme can also be described over Zn. 

3 Cryptanalysis of the Sakazaki-Okamoto-Mambo 
Scheme 

In this section. we will investigate a weakness of the Sakazaki-Okamoto
Mambo' scheme. We will concentrate on the private keys distributed hy the 
Center, and provide methods to forge a private key Sf corresponding to a 
public key I, where I is a hashed identity. 



266 Minghua Qu, Doug Stinson, and Scott Vanstone 

3.1 Homomorphism-like Properties of the Sakazaki-Okamoto
Mambo Scheme 

In the following, we assume that the modulus k is unknown. All inverses are 
defined modulo k. For any positive integer x, define 

(Sx is the private key corresponding to public key x.) 

Lemma 31 Let z = xy where x, y and z are positive integers. Suppose that 
Sz = -z- I C. Then Sx = ySz and Sy = xSz' 

Proof. Clearly we have 

xyz-l == 1 (mod k), 

so it follows that 
_x- 1 == _yz-l (mod k) 

and 
_y-l == -xz- 1 (mod k). 

Hence, 

and 

D 

Lemma 32 Suppose that gcd(x, y) = 1, Sx = -x-1C and Sy = _y- 1C. 
Then Sxy = k1Sy + k2S x , where kl and k2 are integers that can be computed 
efficiently, given x and y. 

Proof. Since gcd(x, y) = 1, the extended Eulcidean algorithm can be used to 
find integers kl and k2 such that 

It follows that 

( ) -1 k -1 k -1 - xy == - lY - 2x (mod k). 

Hence, 

D 
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3.2 Attacks on the Sakazaki-Okamoto-Mambo Scheme 

Here is the basic idea of the attacks. If we know enough public keys Ii and 
their corresponding private keys 51;. then we can construct a database 

DB:= {(:r:,Sx)} 

for small prime integers :r, using Lemma 31. For a given public key I (i.e., a 
hashed identity), suppose that I can be factored as 

where gcd(xi,J:j) = 1 for all i # j and (Xi.Sx,) E DB for all i. Then we can 
compute the private key 

using Lemma 32. 
We now present two attacks on the scheme that use this idea. The first is 

an attack on a specific pre-chosen identity. The second attack is more general, 
but less efficient. We will suppose that the length of a hashed identity, say I, 
is 160 bits. Let t 1w a positive integer. A positive integer m is t-smooth if all 
the prime divisors of Tn are less than t. (Typically we will choose t = 240 .) 

Algorithm 1 is a forgery of a private key 51 corresponding to a specific 
public key I (where I is the hash value of the identity information of a user 
i) . 

Algorithm 1 

1. Find a t-smooth hashed identity I = PIP2 .... Pu, where the Pi'S are dis
tinct primes. 

2. Find a set of hashed identities h . ... ,Iv such that, for every i with 1 ::; 
i ::; '11, there exists an I j with 1 S j S v such that Pillj. (Clearly we can 
assume v Sell.) 

3. For every j with 1 S j S v, obtain a private key 51) corresponding to 
public key I j by interacting with the Center. 

4. For every i with 1 SiS '11. compute SPi using Lemma 31. 
5. Construct Sf from the v. pairs (pi, SpJ by repeatedly applying Lemma 

32. 

In Algorithm 1, we build a database that allows us to forge a specific 
secret key. Algorithm 2 consructs a large database that will allow various 
secret keys to be forged. More precisely, a secret key can be forged using 
Algorithm 2 for a hashed identity I whenever I is t-smooth and square-free. 

Algorithm 2 

1. Find a set of hashed identities h, ... ,Iw such that, for every prime P < t, 
there exists an I j with 1 S j S w such that pllj. 
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2. For 1 S j S (I), obtain a private key 5 I ) corresponding to public key I j 

by interacting with the Center. 
3. For all primes P < t, compute 5p using Lemma 31. 
4. Let I = PIP2 ... 'PI1 be a t-smooth hashed identity. where the Pi'S are 

distinct primes. 
5. Construct 5 T from the 11 pairs (Pi. 5pi ) by repeated applying Lemma 32. 

3.3 Analysis of the Complexity of the Attacks 

In this section, we analyze the complexity of the attacks. First, we need some 
results on smoothness probabilities. Let w(x, t) denote the number of integers 
in the interval [1. :1'] which are t-smooth. Tht~ notation "log" is used to denote 
a logarithm to the base P. The following result can be found in [1, p. 234]. 

Theorem 33 Fon: 2' 4 and 2 S t S x. it holds that w(:c. t) > :r:1- log log x/log t. 

If we take t = xet • where 0 < n < 1/2, then w(x, t) > x/(logx)l/a. 
Then the probability that a random integer in [1, x] is t-smooth is at least 
l/(logX)l/o. When1' = 21GO and t = 240, we have 0; = 1/4, and the proba
bility is at least 

1 1 

(lGOlog2)4 1.5 X 108 > 228 

(In practice, however. the probability is much larger than this. In fact, when 
1/2 S n S 1, the probability is close to 1 + logo;; sec [2, p. 383].) 

We first analyze Algorithm 1. 

• Suppose we attempt to construct I in step 1 by choosing random iden
tities, hashing them and testing them to sec if they are t-smooth. We 
should find a suitable I after 228 trials. Assuming that I = PIP2 . ... Pl1 is 
square-free, we proceed to step 2. 

• In step 2. we might choose random identities, hash them and test them for 
divisibility by the Pi '01. The probability that a random integer is divisible 
by Pi is 1/ Pi. so it will take about Pi trials to find a hashed identity 
divisible by Pi. for each i. The total number of trials will be about PI + 
... + p". It is not hard to Sf~(' that the number of trials is maximized when 
u = 4 and Jil.P2.P:3,P4 ;:::: 240. The number of trials in the worst case is 
therefore expected to be about 4 x 240 ;:::: 242. 

• In step ~~. we require Ii interactions with the Center to obtain the 5p , '13, 
1 S i SII. In the worst case, we will have u = 30. because the product 
of the first :31 primes f'xcepds 2HiO . 

• Finally, step 1 can be dOll(' quickly using u ~ 1 applications of Lemma 32. 

In practice, the most time-consumiug step is probably step 1. This is because 
the values I in step 1 need to be checked for divisibility by all the primes up 
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to 240. In step 2, we are only testing for divisibility by the Pi'S determined in 
step 1. 

This attack is sufficient to cast doubt on the security of the Sakazaki
Okamoto-Mambo scheme if the length of ahashed identity is 160 bits. 

Algorithm 2 can be analyzed in a similar fashion. Let 1f(x) denote the 
number of primes that are less than x. (By the prime number theorem, 1f( x) ~ 
xl log x.) Unfortunately, in step 2 of Algorithm 2, we need to construct a 
database of 1f(240) keys. This is so large that it is not really practical. 

4 Summary 

The attack presented in Algorithm 1 is at least close to being practical in the 
case where a hashed identity is 160 bits in length. After requesting a small 
number of (private) keys from the Center, our attack allows a new valid 
key to be constructed without any further interaction with the Center. This 
shows that it is not sufficient for the hash function to be "secure" in order for 
the Sakazaki-Okamoto-Mambo scheme to be secure. Our attack also works 
(although is not as effective) if the bitlength of the hash function output is 
large, e.g., 512 bits. 
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Abstract. In many secret-key cryptosystems substitution boxes are the only non
linear component, and provide resistance against both differential and linear crypt
analyis. In this paper the notions of differential and linear distribution of the map
ping defined by a substitution box are introduced. These distributions contain con
siderable information about its resistance against linear and differential cryptanal
ysis. With a computer search the differential and linear distribution of four-bit 
permutations with an optimal resistance against the attacks mentioned above were 
determined. In particular, this shows that Almost Perfect Nonlinear (APN) permu
tations on four bits do not exist. The substitution-boxes used in the AES finalist 
Serpent and the construction used for the S-box of AES are compared with these 
optimal four-bit permutations. In addition, identities on the elements of the dif
ferential and linear distribution of a mapping are presented. These relations are 
used to explain the close connection between the optimal distributions of four-bit 
permutations that were found by the computer search. 

1 Introduction 

Substitution boxes (S-boxes) are an important building block for symmetric
key cryptosystems. They can be used in non-linear feedback functions of 
streamciphers, as well as in the round function of iterated block ciphers. Two 
popular constructions used for iterated block ciphers are Feistel ciphers, e.g. 
DES, and substitution-linear transformation networks, e.g. Serpent [1] and 
AES [9]. 

Two attack methods that can be applied to a wide range of block ciphers 
are differential and linear cryptanalysis [3], [13]. Although differential and 
linear cryptanalysis often require an impractically large amount of chosen 
and known plain-ciphertext pairs respectively, it is good practice to design 
block ciphers that are resistant against these attacks. 

In the examples mentioned above, the round function consists of three dif
ferent layers; a key addition layer, an S-box layer and a linear transformation 
layer. The S-box layer consists of a number of S-boxes operating in parallel on 
the input data, where each S-box provides a 'local' resistance against linear 
and differential cryptanalysis. In practice, S-boxes defining permutations are 
of particular interest, especially on either four or eight bits. 
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The paper is organized as follows. Section 2 contains the definitions and 
notations used in the paper and introduces the notions of differential and 
linear distribution of a mapping. Section 3.1 contains the results of the com
puter search. The differential and linear distribution of permutations on four 
bits providing an optimal resistance against differential and linear cryptanal
ysis are presented and compared with the distributions of the S-boxes used in 
Serpent and AES. Finally, Sect. 4 contains identities on the elements of the 
differential and linear distribution of a mapping, which are used to explain 
the close connection between the distributions of the optimal permutations 
on four bits that were found by the computer search. 

2 Basic Concepts 

In this section some notations and definitions will be given that will be used 
throughout the paper. The notions of differential and linear distribution of 
a mapping from m to m bits, each of which represents an S-box, will be 
introduced in Sect. 2.1 and Sect. 2.2 respectively. In Sect. 2.3, some algebraic 
manipulations on a mapping that do not change its differential and linear 
distribution are discussed. 

2.1 Differential Distribution of a Mapping 

The numbers in the following definition are commonly used for measuring 
the resistance of a mapping against differential cryptanalysis (see e.g. [4]). 

Definition 1. Let m ~ 1. For a mapping f : F~ ---) F2 and a, b E F2, let 
the numbers D f (a, b) be defined as 

Df(a, b) := #{x E F2 I f(x) + f(x + a) = b}. 

The mapping f is called differentially d-uniform if D f (a, b) ::; d for all 0 "I
a E F2' and b E F2'. 

The table containing the values of Df(a, b) for all a, bE F2' is usually called 
the XOR Distribution Table of f [3]. Note that given an input difference a 
and assuming a uniform distribution of the input for f, the corresponding 
probability that the output difference equals b is given by Df(a, b)/2m for all 
a, b E F 2. As differential cryptanalysis tries to exploit non-trivial values of a, 
i.e. a "I- 0, and values of b (also called differential characteristics and denoted 
by a ---) b), with a probability which is as high as possible, the objective for 
the designer of symmetric-key cryptosystems is to find mappings with a value 
for d that is as small as possible. It is easily seen that d ~ 2, as all the input 
differences occur in pairs. Mappings for which equality holds are called almost 
perfect nonlinear (APN), as introduced in [14]. For odd values of m, classes of 
APN permutations on F2' are known. However, it is not known whether APN 
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permutations exist for even values of m. The following definition introduces 
the notion of differential distribution, which will be used for distinguishing 
mappings that have the same value for d. 

Definition 2. For a mapping f : F2 ----+ F2, let D{ be the number of 
times Df(a, b) equals i for all a, b E F2 with (a, b) =I (0,0). The vector 

Df := (Dt", , Dt"'-2"" Dt, Dt) is called the differential distribution of f. 

The following two relations on the elements of this distribution follow directly 
from counting the total number entries in the XOR Distribution Table (1) 
and from the fact that 2:bEF= Df(a, b) = 2m for all a E F2 (2). 

2 

2=-1 

L Dti = 22m - 1 , (1) 
i=O 

L 2iDti = 2m(2m - 1). (2) 
i=I 

Assume that the differential distributions for all mappings from m to m bits 
are ordered lexicographically, i.e. for f, g : F2 ----+ F2, Df < D9 if and only if 

D{ < Df for the largest value for 0:::; i :::; 2m (i even) for which D{ =I Df. As 
each of the differential characteristics with a high probability can potentially 
be exploited in differential cryptanalysis, it is desirable that the differential 
distribution is as small as possible. The mappings with the smallest possible 
differential distribution are called optimalw.r.t. resistance against differential 
cryptanalysis. 

2.2 Linear Distribution of a Mapping 

The numbers in the following definition can be used to measure the resistance 
of a mapping against linear cryptanalysis (see e.g. [4]), and is similar to 
Definition 1. The operation· : F2 x F2 ----+ F2 denotes the inner product on 
the vector space F2. 
Definition 3. Let m ;::: 1. For a mapping j : FE" ----+ FE" and a, b E FE", let 
the numbers L f (a, b) be defined as 

Lf(a, b) := I#{x E F21 a· x = b· j(x)} - 2m - I I. 

The mapping j is called non-linearly l-uniform if Lf(a, b) :::; 1 for all a E F2 
and 0 =I b E F 2. 

The table containing the values of L f (a, b) for all a, b E F2 is usually called 
the Linear Approximation Table of f [2]. Notice that a and b define a linear 
relation on the input and output bits of j respectively. Assuming a uniform 
distribution of the input for j, linear cryptanalysis tries to exploit non-trivial 
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equations (i.e. b i= 0) of the form (J.·:T = b· f (x) (also called linear characteris
tics and denoted by a ----+ b) which hold with probability having a distance to 
1/2 that is as large as possible. As the distance to 1/2 is given by the number 
Lf(a, b)/2m - 1 , the objective for the designer of symmetric-key cryptosystems 
is to find mappings with a value for I that is as small as possible. For any 
mapping f : F2' ----+ F~r, I 2:: 2(m-l)/2 [8]. Mappings for which equality holds 
are called almost bent (AB), as introduced in [14]. For odd values of m, classes 
of AB permutations on F2' are known. It is clear that AB mappings can only 
exists for odd values of m. For even m the conjectured lower bound is 2m/2. 

The following definition introduces the notion of linear distribution, which 
will be used for distinguishing mappings that have the same value for I. 

Definition 4. For a mapping f : F2' ----+ F2', let L{ be the number of times 
Lf(a, b) equals i for all a, b E F2' with (a, b) i= (0,0). The vector Lf := 

(L{m-l' L{m-l -1' ... ,L{, L6) is called the linear distribution of f. 
Assume that the linear distributions for all mappings from m to m bits are 
ordered lexicographically, i.e. for f, 9 : F2' ----+ F2', Lf < Lg if and only if 

L{ < Lf for the largest value for 0 ~ i ~ 2m - 1 for which L{ i= Lf. As each of 
the linear characteristics with a high probability can potentially be exploited 
in linear cryptanalysis, it is desirable that the linear distribution is as small 
as possible. The mappings with the smallest possible linear distribution are 
called optimal w.r.t. resistance against linear cryptanalysis. 

2.3 Algebraic Manipulations on Mappings 

Different algebraic methods are known for constructing different S-boxes from 
one mapping f, such that each of these S-boxes has the same value for d and 
I as f (see e.g. [16]). Of particular interest for this paper are compositions of 
a mapping f with affine bijective mappings. The following lemma shows that 
each of these mappings has the same distributions as f. 
Lemma 1. For a mapping f : F2' ----+ F2' and C, DE GL(m, F2 ) and c, dE 
F2', let 9 : F2' ----+ F2n be defined by 

xC + c ----+ f (x) D + d 

for all x E F2'. Then Dg = Df and L9 = Lf. 

Proof. For the differential distributions, notice that D 9 ( a, b) := #{ x E F2' I 
f(xC+c)D+d+f(xC+c+a)D+d= b} = #{y E F2'1 f(y)+f(y+a) = 
bD-1 } = D f (a, bD- 1 ), since C and D are invertible matrices. From this it 
follows that Dg = Df. 

For the linear distributions, note that Lg(a, b) = I#{x E F2' I a·(xC+c) = 
b· (f(x)D + d)} - 2m - I I = I#{x E F2' I aCT. x + a· c = bDT . f(x) + b· d}-
2m - I I = Lf(aCT,bDT). As C and D are invertible matrices, this defines a 
bijective mapping between the entries of the linear approximation tables of 
9 and f· From this it follows that Lg = Lf. 
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Note that in general not every choice for the matrices C, D and the vectors 
c, d will lead to a different mapping. For example if f(x) = 0 for all values of 
x, only the 2m constant mappings can be constructed by using this lemma. 
Notice also that for a bijective mapping f : F;n ----+ F;n, its inverse f- 1 

will have the same differential and linear distribution as f, since D f (a, b) = 

D f -l(b,a) and Lf(a,b) = L f -l(b,a) for all a,b E F;n. 

3 Permutations 

In this section S-boxes defining permutations are discussed. These are of par
ticular interest for practical applications. In substitution-linear transforma
tion ciphers, the S-box layer has to be one-to-one mapping to assure unique 
decryption. In Feistel ciphers, an invertible round function (for every fixed 
choice of the round key) avoids attacks based on the non-uniformity of the 
round function. Taking the cryptographic strength, the implementation com
plexity and the structure of computer CPUs into account, a natural choice 
for an S-box layer is to use either a number of permutations on either four 
or eight bits in parallel, like e.g. in Serpent and AES. 

3.1 Optimal Permutations on Four Bits 

In the following example the differential and linear distribution of one par
ticular permutation f : F~ ----+ F~ is given. 

Example 1. Let the mapping f : F~ ----+ F~ be defined by the following table, 
where the entries are given in hexadecimal notation: 

x o 1 2 3 4 5 6 7 8 9 a b c d e f 
f(x) o 1 9 e d b 7 6 f 2 c 5 a 4 3 8 

The values of the numbers Df(a, b) and Lf(a, b) are given in Table 1 and Table 
2 respectively. From these tables it can be seen that f is differentially and 
non-linearly 4-uniform. Moreover, the non-zero elements of the differential 
and linear distribution of f are given by D{ = 15, Dt = 90, D6 = 150 and 
L{ = 30, Lt = 120, L6 = 105 respectively. 

As the number of four-bit permutations equals 16!(> 244 ), performing an 
exhaustive search over all possible permutations in order to identify the ones 
with an optimal resistance against differential and linear cryptanalysis is a 
computationally time-consuming task. However, the amount of work can be 
reduced considerably by the following observations. 

Definition 5. Two permutations f, 9 : F;n ----+ F;n, are called equivalent if 
there exists an A E GL(rn, F 2 ) and an a E F;n such that 

g(x) = f(x)A + a, 

for all x E F2'. 
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a\b 
o 
1 
2 

3 
4 
5 
6 
7 
8 
9 
a 
b 
c 
d 
e 
f 

o 
16 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Table 1. XOR Distribution Table for f from Example 1. 

1 2 
o 0 
4 0 
o 0 
o 2 
o 0 
o 0 
2 0 
2 2 
o 0 
2 4 
o 2 
2 0 
o 2 
2 2 
2 0 
o 2 

345 
000 
000 
200 
() 0 0 
() 0 2 
020 
022 
200 
222 
002 
220 
204 
202 
040 
4 2 () 
022 

678 
000 
220 
020 
022 
202 
202 
240 
422 
020 
000 
200 
002 
200 
000 
() 0 2 
024 

9 a b 
000 
202 
420 
022 
020 
204 
020 
000 
002 
200 
000 
002 
242 
022 
220 
200 

c 
() 

o 
2 
2 
o 
2 
2 
o 
o 
2 
4 
2 
o 
o 
o 
o 

d 
() 

2 
2 
o 
4 
() 

o 
o 
o 
o 
2 
2 

o 
2 

o 
2 

Table 2. Linear Approximation Table for f from Example 1. 

a\b 0 1 2 
o 8 0 0 
1 020 
2 0 0 0 
3 0 2 0 
4 002 
5 0 2 2 
6 () 0 2 
7 0 2 2 
8 020 
9 () 0 4 
a 024 
b 0 4 0 
c02 2 
d 002 
e 0 2 2 
f 0 4 2 

3 4 
o 0 
2 0 
o 2 
2 2 
2 0 
4 0 
2 2 
4 2 
2 0 
o 0 
2 2 
() 2 
() 4 
2 4 
o 2 
2 2 

5 6 
o 0 
2 () 
2 2 
4 2 
o 2 
2 2 
2 4 
o 0 
2 4 
4 0 
o 2 
2 2 
2 2 
o 2 
o 0 
2 () 

7 
o 
2 
2 
4 
2 

o 
o 
2 
2 
o 
4 
2 
o 
2 
2 
() 

8 9 
o 0 
2 () 
o 4 
2 0 
o 0 
2 4 
4 0 
2 0 
o 2 
2 2 
o 2 
2 2 
o 2 
2 2 
4 2 
2 2 

a b 
o 0 
2 4 
4 0 
2 0 
2 2 
o 2 
2 2 
4 2 
o 2 
2 2 
o 2 
2 2 
2 4 
o 0 
2 0 
o 0 

c 
o 
2 
2 
o 
4 
2 

2 
o 
o 
2 
2 
4 
o 
2 
2 
o 

d 
o 
o 
2 
2 
4 
o 
2 
2 
2 
2 
o 
o 
2 
2 
o 
4 

e 
o 
2 
() 

4 
2 
o 
o 
o 
2 
2 
2 
o 
o 
o 
2 
o 

f 
o 
o 
2 

o 
2 
2 
o 
2 
4 
2 
o 
o 
o 
2 
o 
() 

e f 
o 0 
2 4 
2 2 
o 2 
2 2 
o 2 
o 0 
2 0 
4 2 
2 2 
2 () 
o () 
2 0 
o 4 
4 2 
2 2 

By Lemma 1, equivalent permutations have the same differential and linear 
distributions. Moreover, the classes of equivalent permutations partition the 
set of all possible permutations. Each of these equivalence classes contains 
a number of permutations that only depends on m, and can be represented 
by one particular element in this class, as shown in the next theorem. In the 
following, let {xo := O,Xl,X2,'" .X2m-l} be the set containing all elements 
ofF2· 
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Theorem 1. For each equivalence class, it holds that: (i) the number of el
ements in an eqlIivalence class equals 

m-l 

2m#GL(rn, F 2 ) = 2m IT (2m - 2k), 
k=O 

and (ii) each eq1L'ivalence class conta'ins a unique permutation h faT which 
h(O) = 0 and the matTi1; (h(xdTh(1:2f ... h(X2 m -lf) is in (full) row eche
lon fonT!. 

Proof. (i) Note that all mappings in an equivalence class are permutations. 
Now consider two permutations g and h in the equivalence class of 1, i.e. 
g(x) = f(:r)A + 0. and h(:r) = f(x)B + b for all x E F2' and for some 
A,B E GL(m,F2 ) and a,b E F 2'. Suppose g(.1:) = h(x) for all:x; E F;n. This 
implies that f (:x:) A + a = f (x) B + b for all :x: E F2'. As f is a permutation, one 
x will be mapped to zero, from which it follows that a = b. In addition, there 
will exist rn images of f that are linearly independent over F 2, implying that 
A = B. So all possible choices for A and a lead to different permutations. 

(ii) Consider the equivalence claSt; of which f is an element. Define the 
permutation g(x) := f(l;) + f(O) for all x E F 2'· Then clearly f and 9 are 
equivalent and g(O) = O. Note that every choice for A E GL(rn, F 2) corre
sponds to one of the #GL(rn, F 2) permutations h(x) := g(.x)A in the equiv
alence class with h(O) = O. Now find the unique A E G L(rn, F 2) such that 
the matrix AT (g(xd Tg(:X:2)T ... g(1'2m_dT ) is in (full) row echelon form, i.e. 
A represents the elementary row operations (i.e. the Gaussian elimination) 
needed for this transformation. Define h(x) := g(x)A for all x E F2'. 

The computer search can now be restricted to computing the differential and 
linear distributions of the 16!/322560 < 226 equivalence class representatives 
h. It turns out that for m = 4, permutations with an optimal resistance 
against differential and linear cryptanalysis are differentially 4-uniform and 
non-linearly 4-uniform. In particular, this implies that APN-permutations do 
not exist for m = 4. The possible differential and linear distributions for all 
classes of permutations with d = I = 4 are listed in Table 3. 

Table 3. Differential and linear distributions of permutations on Fi with d = I = 4. 

#classes Di 
4 

Di 
2 

Di 
0 

Lt 
4 

L1 
2 

L1 
0 

709632 15 90 150 30 120 105 
1290240 18 84 153 32 112 111 
322560 24 72 159 36 96 123 

From this table, it can be seen that only three different differential and 
linear distributions occur for permutations on F~ with d = I = 4. In addition, 
the permutations with an optimal resistance against differential cryptanalysis 
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also provide an optimal resistance against linear cryptanalysis, and their dif
ferential and linear distribution coincide with the ones of the mapping from 
Example l. 

Remark 1 (Serpent S-boxes). In the AES finalist Serpent, eight different per
mutations on F~ are used. The first published version of Serpent makes use 
of the permutations on four bits as used in the DES S-boxes. In the AES 
proposal, these were replaced by new ones, offering an improvement in the 
security of the cipher. All of these new permutations are differentially 4-
uniform and non-linearly 4-uniform. It is easily checked that four of them 
have a differential and linear distribution that equals the second one given in 
Table 3 and the remaining four having the distributions equal to the third one 
in this table, implying that they are not optimal in the sense of the definition 
given in Sect. 2. However, additional design criteria were used for the Serpent 
S-boxes (see also [1]). One of these is an 'avalanche' criterium, which states 
that a one bit input difference may not cause a one bit output difference. A 
computer search confirmed that optimal four-bit permutations satisfying this 
additional criterium do not exist. 

3.2 A Construction Based on Finite Fields 

For m > 4, a computer search like that in the previous subsection is computa
tionally infeasible. Therefore construction methods are desirable in this case. 
In [15], a construction method for S-boxes based on a mapping in the finite 
field F 2", is given. By selecting a basis of F 2m over F2 and representing the 
field as an m-dimensional vector space over F 2, this mapping defines a map
ping from F2' into itself. Note that the differential and linear distributions 
of this mapping do not depend on the particular choice for the basis. 

Theorem 2 (Nyberg). The 'inversion' mapping f : F 2", ---; F 2", defined by 

is differentially 2-uniform (i. e. AP N) if m is odd and differentially 4 -uniform 
if m is even. The mapping is non-linearly 2m / 2 -uniform. 

The value for the non-linearity in this theorem is an upper bound, however, 
small values of m indicate that this is the smallest possible value for l if m 
is even. The proof for the non-linearity is based on the Carlitz-Uchiyama 
bound for exponential sums [7], see also [6] for the relationship between the 
non-linearity and the number of points on a hyperelliptic curve. 

If m is even, then the non-zero elements of the differential distribution of 
the 'inversion' mapping are given by D{ = 2m - 1, D{ = 22m - 1 - 2m +! -

2m - 1 + 2 and D6 = 22m - 1 + 2m + 2m - 1 - 2. This follows directly from 
the proof of Nyberg's theorem given in [15]. In this proof it is shown that 
for a =I- 0 (implying that also b =I- 0, as f is a permutation), the equation 
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f(x) + f(x + a) = b has exactly four solutions in F 2", if and only if a = b- 1 

and at most two solutions otherwise. This implies that each non-trivial row 
and column in the XOR Distribution Table of f will contain exactly one four 
(i.e. D{ = 2m -1) and all other entries will be zero or two. The values of Dt 
and Db follow from (2) and (1) respectively. 

Remark 2 (AES S-box). AES uses one permutation on F~. This permutation 
is based on Nyberg's construction method. This 'inversion' mapping in the 
finite field F 28 is composed with an invertible affine mapping on the output, 
i.e. the S-box is equivalent to the 'inversion' mapping in the sense of Defini
tion 5. The reason for the affine transformation on the output is to avoid a 
simple mathematical description of the mapping over F 28, which could poten
tially be exploited in cryptanalysis, e.g. by applying an interpolation attack. 
From the discussion above, it follows that for m = 4 this construction would 
yield an S-box with an optimal resistance against both differential and lin
ear cryptanalysis (the permutation from Example 1 is based on the inversion 
mapping in the field Fdx]/(x4 + x + 1)). 

4 Connections between the Distributions 

This section contains connections between the differential and linear distri
butions of a mapping. In Sect. 4.1 three more relations on the elements of 
these distributions will be given (in addition to (1) and (2)). In Sect. 4.2, the 
special cases of APN mappings and differentially 4-uniform mappings will be 
discussed, and the close connection between the distributions in Table 3 will 
be explained by using the relations on the elements of their distributions. 

4.1 Identities on the Differential and Linear Distributions 

The identities on the elements of the differential and linear distribution of a 
mapping will be derived by using results from binary linear error-correcting 
codes. Such a code C of block length n is a linear subspace of F 2. If the 
dimension of this subspace is k and the minimum Hamming distance between 
any two distinct. codewords equals d, then C is called an [n, k, dj code. A 
linear code can be represented by a generator matrix G E F~xn, for which 
the rows form a basis for C, i.e. C = {mG I m E F~}. Alternatively, the 

code can be represented by a parity check matrix H E F~n-k)xn of rank 
n - k, i.e. C = {x E F2 I HxT = O}. The code of length n and dimension 
n - k for which H is a generator matrix is called the dual code of C and 
is denoted by C~. Let Ai denote the number of words of Hamming weight. 
i (0::; i::; n), then (Ao,A1, ... ,An) is called the weight distribution ofC. 
The polynomial A(z) = I.:~=o AiZi is called the weight enumerator of C. The 
weight distribution and enumerator of C~ will be denoted by (Bo, B1, ... ,Bn) 
and B(z) respectively. The connection between A(z) and B(z) is given by the 
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MacWilliams identity B(z) = 2- k (1 + z)"A((1 - z)/(1 + z)). Related to the 
MacWilliams identity are the Pless power moment identities [17]. For more 
detailed information about the theory of error-correcting codes, the reader is 
referred to [10], [11] or [12]. 

As in Sect. 3, let {:ro:= 0,X1,X2, ... ,X2m-d be the set containing all 
elements of F 2'. For a mapping f : F2n -'t F2' with f (0) = 0 define the 
binary [n = 2m ,m + 1 S k S 2m + 1, d] code C f by the generator matrix 

The following lemma describes the connection between the linear distribution 
of f and the weight distribution of C f· 

Lemma 2. The weight distT'ibution of C f equals 

2k-2m-1 (22m-k+1 Lf Lf Lf 2Lf Lf Lf Lf 22m - k+1) 
. , 2",-1_1"'" 2' 1'0' l' 2"'" 2",-1_1' 

Proof. For a, bE F 2', define the codewords Ca,b and c~.b as Ca,b := (0, a, b)G f 
and c~,b := (1, a, b )Gf respectively, i.e. . 

Ca,b = (0, a· :r1 + b· f(:rd, ... , a· X2m-1 + b· f(·1:2m-d) , 

C~,b = (1, 1 + a· .1:1 + b· f(Xl), ... , 1 + a· X2m-1 + b· f(X2rn-1)). 

If 11JH(C) denotes the Hamming weight of c, then from Def. 3 it follows that 

and Lf ( a, b) = I UJ H (c~,b) - 2m - 1 1· Further, note that Ca,b ic c~,b' as they differ 
in the finit coordinate and that UJH(Ca,b) = 2m-UJH(C~.b)' If k = 2m+l, then 
every choice for a and b corresponds to two unique codewords Ca,b and < b' 

one of which has Hamming weight 2m - 1 - Lf(a, b) and one with Hammi~g 
weight 2m - 1 + L f (a, b). This implies that the weight distribution of C f equals 

and that L~m = 0, as only the trivial choice a = b = 0 leads to a codeword 
of weight zero and it word of weight one, but this choice is excluded in the 
definition of the linear distribution. If k < 2m + 1, then each codeword in Cf 
is counted 22m+ 1- k times as (J and b range over all possible elements in F2'. 

Note that if f is a permutation with Tn > 1, as in Example 1, all rows in the 
generator matrix Gf will have even weight, implying that all codewords will 

be of even weight. In particular, this implies that Lf will be zero if i is odd. 
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Moreover, for permutations both (O.a,O)Gf and (O,O,b)Gf will be elements 
of a simplex code (if the first zero coordinate is deleted), implying that not 
only Lf(a, 0) = ° for a =1= ° but also Lf(O, b) = ° for b =1= 0. 

If the mappings f and g are related as in Lemma 1, then it follows that 

G 9 = (c~ ~T ~ ) . G f' 
dT ° DT 

implying that Gf and Gg generate the same code. Note that the fact that f 
and g have the same linear distribution, as shown in Lemma 1, also follows 
directly from Lemma 2, as Cf and Cg have the same weight distribution. 

The following relation on the elements of the linear distribution follows 
directly from counting the number of entries in the Linear Approximation 
Table or, alternatively, from counting the number of codewords in Cf : 

2m - 1 

L L{ = 22m _1. (3) 
i=O 

In the following theorem a second relation on the elements of the linear 
distribution is given. 

Theorem 3. The elements of Lf := (L{"'_1' L{"'-Ll"'" L{, L6) of a map
ping f : F2' ----; F2' satisfy the equation 

2",-1 

L i 2 L{ = 2 2m - 2 (2m - 1). (4) 
i=l 

Proof. If (Ao, A1 , ... , A2",) denotes the weight distribution of the [2m, k] code 
C f' then the second Pless power moment on this distribution is given by [17] 

2'" 2"'-1 

I>2Ai = 2m +k-2(2m + 1) ~ L i2Ai = 2m +k-2(2m + 1) - 22m , 

i=O i=l 

as A2", = 1. On the other hand, 

2m-1 2m- 1_1 
22m-k+1 L e Ai = L ((2m - 1 - i)2 + (2m - I + i?)L{ = 

i=l i=O 

2"'-1_1 2",-1_ 1 2",-1-1 

22m- 1 L L{+2 L i2L{=22m-1(22m_22m-k+1)+2 L i2L{, 
i=O i=l i=l 

by (3) and the fact that L{"'_1 = 22m-k+I_1. Combining these two equations 
gives 

i=l 

the result now follows by using L{m-1 = 22m-k+1 - 1. 
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The connection between the linear and differential distributions follows from 
observing the dual code of Cf. Note that all codewords in ct have even 
weight, as the all-one vector is in Cf . Moreover, the minimum distance of the 
dual code is at least four, as all columns in G f are distinct and non-zero. Of 
particular interest are the codewords of weight four in the dual code. Recall 
that Xo = f(xo) = 0 and let 0 ~ i < j < k < l ~ 2m -1, then each codeword 
of weight four in ct corresponds to 

Xi + Xj = Xk + Xl, 

f(Xi) + f(Xj) = f(Xk) + f(Xl). 

Define Xi + Xj =: a and f(Xi) + f(xj) =: b, then it follows that a i- 0 and 
Df(a, b) 2' 4, as Xi,Xj,Xk and Xl are four different solutions to the equation 
f(x) + f(x + a) = b. These observations can be found in [5], where a slightly 
different definition of the corresponding code is used, i.e. the first row and 
column of G f are deleted, so words of weight three and four of the dual code 
have to be considered there. With their definition of the code, the authors 
show that the mapping is APN if and only if the minimum distance of the 
dual code equals five. From their theorem, it follows directly that with the 
definition of the code used in this paper, the mapping is APN if and only if 
the minimum distance of ct equals six. 

A relation between the elements of the differential and linear distribution 
of a mapping can be obtained by observing the number of codewords of weight 
four in ct. The following lemma describes the connection between the linear 
distribution of f and the number of codewords of weight four in ct. 
Lemma 3. Let f : Fr --t Fr be a mapping with linear distribution Lf := 

(L~"'_1' L~"'-Ll' ... ,L{, L&) and let Bi denote the number of codewords of 
weight i in ct, then 

2m - 1 

z.= i4 L{ = 3· 22m- 1 B4 + 23m- 3(2m - 1). 
i=1 

Proof. Let (Ao, AI, ... ,A2",) denote the weight distribution of the [2m, k] 
code C f. As A2", = 1 and B3 = 0, the fourth Pless power moment [17] gives 

2"'-1 

z.= i4Ai = 2k - 4(2m(2m + 1) (22m + 5· 2m - 2) + 24B4) - 24m. 
i=1 

By using a similar technique as in the proof of Theorem 3, one obtains 

2"'-1 2 m - 1 _1 2",-1_ 1 2",-1-1 

22m- k+l z.= i4 Ai = 24m- 3 z.= L{ + 3 . 22m z.= i 2 L{ + 2 z.= i4 L{. 
i=1 i=O i=1 i=1 

The result can now be obtained from combining these two equations and 
using Eqs. 3, 4 and the fact that L~"'_l = 22m - HI - 1. 
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With this lemma, the following statcment follows from counting the number 
of codewords of weight four in ct from the differential distribution. 

Theorem 4. Let f : F2" -+ F2' be a mapping with differential distribution 
Df and linear di8tribution Lf. thfTl. the elements of these distributions satisfy 

2",-1 . f 
Proof. By Lemma 3, it is sufficient to show that 3B4 = Li=2 G)D2i . For 
all 0 i- a, b E F2" with Df(a, b) =: 2i 2' 2, denote the 2i distinct solutions 
to the equation f(:r) + f(:1: + a) = b by Xjll' Xjl' Xj2' xh ... :1:j2i-l' Without 
loss of generality, assume that :1:12 , = XJ2k+l + a with hk < j2k+l for k = 

0,1, ... , 2i - 2. i.e. 

f(XjrJ + f(:1'],) = f(·Tj2) + f(x]J = ... = f(Xj2'_2) + f(xhi-J = b. (7) 

For 0 i- a. b E F2". define the set 5f (a, b) of ordered pairs of indices as 

and define Sf (0, b) := 0 if D f (!L, b) = 0 for 0 i- a, b E F2". From this definition, 
it is clear that #5f (a, b) = i for all 0 i- a, b E F2' with Df(a, b) = 2i. For 
each 0 i- a, bE F2' with #5f(a, b) 2: 2, consider all G) sets consisting of two 
distinct elemcnts of 5 f (0, b). From (6) and (7), it follows that any ordered 
pair (k.l) with 0 <:; k < I <:; 2m - 1 can be an element of at most one set 
Sf (a. b) with 0 i- a. b E F2", implying that all these sets of two elements for 
all 0 ¥ (J.b E F2" are distinct. Moreover. at:; Df(O,b) = 0 for a ¥ 0, it followti 
that the number of such sets equals 

2m,~1 . 2m - 1 • 

2:= C)#{(a,b) I #Sf(a,b) = i,O i- a,b E F;n} = 2:= C) Dti' (8) 
1.=2 1.=2 

Let the positions of the codewords of ct be numbered from zero to 2m - 1 
from left to right and consider the codewords of weight four in this code. 
For each of these codewords, let the four positions with a one be given by 
o <:; ko < kJ < k2 < k:l <:; 2m . and define the three (= m /2) possible sets of 
ordered pairs of indices as 

11(c) := {(ko, kd· (k2' k3 )}, 

12(c) := {(ko, k2)' (kl' k3 )}, 

73(c) := {(ko. k3 ), (kl' k2 )}. 
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From this definition it is clear that these 3B4 sets are all distinct. Moreover, 
let T =: {(lo, h), (l2, h)} denote such a set and let a, b E F2 be defined 
as a := Xla + Xl, and b := f(Xlo) + f(xl,). Then it follows that a -=I- 0 
and that T c Sf (a, b), as this set corresponds to a unique codeword of 
weight four in ct with ones in the positions lo, h, l2 and h, and from the 

definition of ct it follows that Xl 2 + Xl3 = Xla + Xl, = a and f(Xl 2 ) + f(Xl 3) = 
f (Xla) + f (Xl,) = b. On the other hand, every set consisting of two distinct 
elements of #Sf(a, b) with 0 -=I- a, bE F2 and #Sf(a, b) 2': 2 corresponds to 
a unique C E ct with WH(C) = 4 by (6), (7) and the definition of ct, and 
consequently equals exactly one of the sets 'Ii (c), 'Ii (c) or 'Ii (c). From this 

one-to-one correspondence and (8), it follows that 2:::2- 1 G)Dti = 3B4 . 

4.2 APN and Differentially 4-Uniform Mappings 

Equations (1), (2), (3), (4) and (5) define five relations on the elements of the 
differential and linear distribution of a mapping f. In this section the special 
cases for APN and differentially 4-uniform mappings will be discussed. It is 
well-known that APN mappings always exist, e.g. the mapping f : F 2m ----t 

F 2m defined by f(x) = x3 (see [15]). However, for even values of m, no APN 
permutations are known (note that the mapping f(x) = X3 is a three-to-one 
mapping in this case). Moreover, the results from Sect. 3 show that APN 
permutations on four bits do not exist. Permutations on an even number of 
bits are of primary interest in practice and APN permutations might not 
exists for any even value of m. However, by Nyberg's construction (Theorem 
2), differentially 4-uniform permutations exist for all even values of m. The 
following corollary describes these two special cases of Theorem 4. 

Corollary 1. Let f : F2 ----t F2 be a mapping with differential distribution 
Df and linear distribution £1. 

1. The mapping f is differentially 2-uniform (AP N) if and only if 

2m - 1 _1 

£~m-1 = 0 and L i4 L{ = 23m- 3 (2m - 1). 
i=l 

2. The mapping f is differentially 4 -uniform if and only if 

2m - 1 

L i4 L{ = 22m- 1 D{ + 23m - 3 (2m - 1). (9) 
i=l 

Proof. The results follow immediately from Theorem 4, except for the fact 
that L~m-1 = 0 if f is APN. Note that if f is APN, then the dimension of 

Cf equals 2m + 1 (i.e. L~m-1 = 0), as otherwise the dual code would have 
parameters [2m , 2': 2m - 2m, 2': 6]. Such a code cannot exist, as shortening a 



284 Peter Hoplse 

[2m, 2m - 2m. 6] code on the first coordinate with respect to ~ero would imply 
the existence of a [2'" - 1. 2 2m - 2m - 1, 6]-code, which cannot exist (:-;ee 
the proof of Theorem 5 in [5]). 

Notice that by (1) and (2). the non-zero clements of the differential distribu
tion of an APl'\ mapping are given by 

D~ = 2m- 1 (2m - 1). D6 = 22m - 1 + 2m - I - 1. 

For differentially 4-uniform mapping::;, D{ can be computed by using (9). The 

val ues of D~ and D6' follow from (1) and (2): 

D{ = 2m - 1 (2m - 1) - 2D{, D6 = 22m - D{ - D{ - 1. 

In particular, this implies that the differential distribution of such mappings 
is determined completely by its linear distribution. 

Example 2. Consider the differential and linear distributions of the differen
tially and non-linearly 4-uniform permutations on F~ as given in Table 3. In 
this case, (4),(3),(9).(2) and (1) reduce to 

L~ = 240 - 4L{, 

L6 = 255 - L{ - L;, 

D{ = 2L{ + ~ Lt - 60, 

D; = 120 - 2D{, 

D6 = 256 - D{ - D~ - 1. 

Using these equations and the fact that all these numbers should be non
negative and that also the coefficients of the weight enumerator of ct should 
be non-negative, the following solutions are found: 

D{ = 3i. D~ = 120 - 6i, D6 = 135 + 3i, 

L{ = 20 + 2i, L2 = 160 - 8i, L6 = 75 + 6i , 

for 0 <::: i <::: 12. Note that the distributions for i = 0 would corre::;pond 
to an APN permutation, which doei') not exist by Table 3. From this table 
it follows that from the other 12 distributions, only the three distributions 
corresponding to i = .5,6 and 8 occur for permutations. Although the relations 
do not show why the other i')olutions cannot occur for permutations, they do 
explain the c:lOi'le connection between the differential and linear distributions 
of differentially and non-linearly 4-uniform permutations on F~. 
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Abstract. We describe a rather surprising, yet powerful, combination of two fa
mous number theoretic techniques: bounds of exponential sums and lattice reduction 
algorithms. This combination has led to a number of cryptographic applications, 
helping to make rigorous several heuristic approaches and provides a two edge sword 
to defend and attack. It can be used prove important security results and also to 
create powerful attacks. The examples of the first group include results about the 
bit security of the Diffie-Hellman key exchange system, of the Shamir message pass
ing scheme and of the XTR and LUC cryptosystems. The examples of the second 
group include attacks on the Digital Signature Scheme and its modifications which 
are provably insecure under certain conditions. 

1 Introduction and Notation 

In this paper we describe how a rather unusual combination of two celebrated 
number theoretic techniques, namely, bounds of exponential sums and lattice 
reduction algorithms, provides a powerful cryptographic tool. It can be ap
plied to both proving several security results and designing new attacks. 

For example, it has been used to prove certain bit security results for the 
Diffie-Hellman key exchange system, for the Shamir message passing scheme 
and for the XTR and LUC cryptosy:.;tern:.;. It ha:.; al:.;o been used to design 
provably 8Uccessful attacks on the Digital Signature Scheme and its modifi
cations, including the Nyberg-Rueppel scheme, which are provably insecure 
under certain conditions. 

Here we explain how these two techniques get together, outline several 
important applications applications and discuss some open problems on ex
ponential sums which arise in this context and which need to be solved before 
any further progress in this area can be achieved. 

Let p denote a prime number and let IF p denote the finite field of p ele
ment,;. For integers,'; and Tn ~ 1 we denote by ls J m the remainder of s on 
division by m. For a prime p and f > 0 we denote by MSBc,p(.T) any integer 
u such that 

(1) 

* Work supported in part by the Australian Research Council. 
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Roughly speaking, MSBe,p(x) gives £ most significant bits of x however this 
definition is more flexible and suits better our purposes. In particular we 
remark that £ in the inequality (1) need not be an integer. 

Throughout this paper log z denotes the binary logarithm of z > O. 
The implied constants in symbols '0' may occasionally, where obvious, 

depend on the small positive parameters E and are absolute otherwise. 

2 Hidden Number Problem and Lattices 

We start with a certain algorithmic problem, introduced in 1996 by Boneh and 
Venkatesan [5,6], which seemingly has nothing in common with exponential 
sums. Namely we consider the following 

HIDDEN NUMBER PROBLEM, HNP: Recover a number a E lFp such 
that for many known random t E IF; we are given MSBe,p(at) for 
some £ > O. 

The paper [5] also contains a polynomial time algorithm to solve this 
problem (with £ of order logl/2 p). The most important ingredient of this 
algorithm is lattice reduction. 

We briefly review a few results and definitions. For general references on 
lattice theory and its important cryptographic applications, we refer to the 
recent surveys [34,35]. 

Let {bl , ... , b s } be a set of linearly independent vectors in IRS. The set 
of vectors 

L ~ {t n,b, I n, oJ 
is called an s-dimensional full rank lattice. The set {bl , ... , b s } is called a 
basis of L, and L is said to be spanned by {bl , ... , b s }. 

One of the most fundamental problems in this area is the closest vector 
problem, CVP: given a basis of a lattice L in IRs and a target vector u E IRs, 
find a lattice vector vEL which minimizes the Euclidean norm Ilu - vii 
among all lattice vectors. It is well know that CVP is NP-hard (see [34,35] 
for references). However, its approximate version [2] admits a polynomial 
time algorithm which goes back to the lattice basis reduction algorithm of 
Lenstra, Lenstra and Lovasz [22]. 

It has been remarked in Section 2.1 of [29] and then in Section 2.4 of [34] 
and Section 2.4 of [35] that the following statement holds which is somewhat 
stronger than that usually used in the literature. 

Theorem 1. There exists a polynomial time algorithm which, given an s
dimensional full rank lattice L and a vector r E IRs, finds a lattice vector v 
satisfying the inequality 

Ilv - rll ~ 20(s log2 log s/log s) min {liz - rll, z E L} . 
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Proof. The statement is a combination of Schnorr's modification [38] of the 
lattice basis reduction algorithm of Lenstra, Lenstra and Lovasz [22] with 
a result of Kannan [16] about reduction of the CVP to the approximate 
shortest vector problem. 

One can also use a probabilistic analogue [1] of Theorem 1 which gives a 
slightly better constant. 

We are now prepared to sketch the main ideas of [5] to solve the HNP. 
Let d 2 1 be integer. Given ti, Ui = MSBR,p(at i ), i = 1, ... , d, we build the 
lattice £(p, C, t l , ... , td) spanned by the rows of the matrix: 

p 0 0 0 

o p 

o 
o 0 ... p 0 
h t2 ... td 1/2£+1 

and notice 

This vector is very close to the known vector u = (Ul, ... ,Ud,O) (at the 
distance of order p2-e). Thus applying one of the lattice reduction algorithms 
one can hope to recover v and thus a. In order to make this algorithm rigorous 
one needs to show that (for almost all choices of h, ... , td E IF p there is no 
other lattice vector which is close to u. Namely, taking into account the 
"stretching" factor in the algorithm of Lemma 1, we have to show that there 
are very few d-tuples (h, ... , td) E lF~ for which the lattice £(p, C, t l , ... , td) 
has a vector v =I wand such that 

The last inequality implies that 

(2) 

which is our main tool. 
Any vector v E £(p, C, tl, ... , td) is of the form 

with some integers /3 and .AI, ... , .Ad. Thus (2) implies that for all i = 1, ... , d 
we have 

(3) 
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for some Yi E [-h, h] where 

2 , (( d log log d) ) 
h = pT i exp 0 log d . 

The probability 

for any I cF O. 

2h + 1 
(mod p) Y E [-h, h]] <; -

p 
(4) 

Therefore the probability P that (3) holds for all i = 1. ... ,d and at least 
one (3 cF 0:, is at most 

Thus if 

ji = rc log] /2 p log log log p1 
loglogp 

and 

with some absolute constant C > 0 then the lattice reduction algorithm 
returns v with prohability exponentially close to 1. 

3 Extended Hidden Number Problem, Lattices 
and Exponential Sums 

It has turned out that for many applications, including some results about 
the so-called bit :,;ecurity of Diffie-Hellman, Shamir, XTR and some other 
cryptosysterns [12,13,27,40 42] and rigorous results on attacks (following the 
heuristic arguments of [lG,:n]) on the DSA and DSA-likc signature schemes 
[10,32,33]' the condition that t is selected uniformly at random from IFp is 
too restrictive. 

It has heen systematically exploited in the papers [10,12,13,27,32,33,40-
42] that the method of [G] can be extended to the case where t is selected 
from a sequence T having some uniformity of distribution property. 

Accordingly, we consider the following: 

EXTENDED HIDDEN NUI\IBEH. PnOBLEl'vl, EHNP: Recover a n:um
beT n E 1FT' 811,ch that for many known mndo7n t E T we are given 
lVISBp.p(ot) for some jJ > O. 

If T = IFp then rather simple counting arguments of Section 2 show that 
the number of rl-tuples (t[, .... td) E IF~ for which the algorithm of Lemma 1 



290 Igor E. Shparlillski 

returns a false vector is exponentially small. However for other sequences 7 
one needs a result about the uniformity of distribution of T. 

In the quantitative form which is based on best known lattice reduction 
algorithms [1,2,16,17,22,34,35,38] this has been obtained in [32]. 

Recall that the discrepancy of an N -element sequence T = {,1, ... , IN} 
of elements of the interval [0, 1] is defined as 

V(T)= sup IA(J,N)_IJII, 
J<;;;[O.l] N 

where the supremum is extended over all subintervals J of [0,1]' IJI is the 
length of J, and A(J, N) denotes the number of points In in J for ° :::; n :::; 
N-l. 

We say that a finite sequence 7 of integers is iJ.-homogeneously distributed 
modulo p if for any integer a, with gcd( a, p) = 1 the discrepancy of the 
sequence {latJp/phET is at most iJ.. 

In this case the arguments of Section 2 go through with only one change, 
namely (4) becomes 

2h + 1 
Pr [rt = y (mod p) y E [-h, hll :::; -- + iJ.. 

yET P 

This leads to the following result from [32] which extends the algorithm 
of [5] to the EHNP with a general sequence T. 

Theorem 2. For a prime p, define £ = pog1/2 P 1 + pog logp l, and d = 

21log1/2 pl. Let 7 be a 2- logl/2 P -homogeneously distributed modulo p se

quence of integer numbers. There exists a deterministic polynomial time al
gorithm A such that for any fixed integer a in the interval [O,p - 1], given a 
prime p and 2d integers 

and i = 1, ... ,d, 

its output satisfies for sufficiently large p 

P [A ( t t . ) - ] > 1 _ 2-(logp)'/21og1ogp r p, 1,.'" d, U1,"" Ud - a _ 
t" ... ,tdET 

if t 1 , ... ,td are chosen uniformly and independently at random from the ele
ments ofT. 

It follows from Corollary 3.11 of [36], that 7 is iJ.-homogeneously dis
tributed modulo p with 

( lOgp '" ) iJ. = 0 #7 c=F.~;-l ~ exp (27rict/p)) . 
tET 

(5) 
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Therefore, in order to apply this result one can establish the uniformity of 
distribution of various sequences of T arising in cryptographic applications 
and thus one needs to estimate exponential sums with elements of T. Thus 
bounds of exponential sums enter the problem. It has turned out that in some 
cases relevant exponential sums are well studied in number theory, and thus 
the corresponding cryptographic result follows immediately, for example, see 
Section 4. On the other hand, in some case the exponential sums are of very 
unusual structure which has no meaningful number theoretic interpretations 
and thus they have required special treatment, for example, see Section 5. 

4 Bit Security of the Diffie-Hellman Secret Key 

We recall the problem which underlies the Diffie-Hellman key exchange sys
tem: given an element 9 of order T modulo p, find an efficient algorithm to 
recover Diffie-Hellman secret key K = 19xy Jp from 19X Jp and 19Y Jp . 

Typically, either T = P - 1 (thus 9 is a primitive root) or T = q, a large 
prime divisor of p - 1. 

The size of p and T is determined by the present state of art in the discrete 
logarithm problem. Typically, p is at least about 500 bits, T is at least about 
160 bits. 

However after the common DH key K = 19xy Jp is established, only a 
small portion of bits of K will be used as a common key for some pre-agreed 
private key cryptosystem. 

Thus a natural question arises: Assume that finding K is infeasible, is it 
still infeasible to find certain bits of K? 

In 1996, Boneh and Venkatesan [5] found very elegant links between the 
EHNP and the above problem. 

Indeed, assume there is an efficient algorithm to find £ most significant 
bits of 19XYJ p from from X = 19xJ p and Y = 19YJp. Then, given A = 19aJp 
and B = 19b J p one can select a random u E [0, T - 1] one can apply the above 
algorithm to A and U = l B 9 U J p getting 

where a = 19ab J p and ga = ga. Thus we have a special case of the EHNP. 
Unfortunately the paper [5] has a minor gap in the proof of Theorem 2 of 
that paper. It is claimed that if 9 is a primitive root (that is, if T = P - 1) 
then the obtained problem is exactly the HNP. However, this is true only if 
ga is a primitive root as well, thus if gcd( a, p - 1) = 1. 

To fix this gap and to extend the result to the case of T < p - 1, Gonzalez 
Vasco and Shparlinski [12] have used the following bounds of exponential 
sums from [21]. 
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Theorem 3. Let Q be a safficiently large integer. The following statern.ent 
holds with tJ = 1/3 fOT all primes p E [Q. 2Q], and with {) = 0 for all primes 
p E [Q.2QJ except at most Q5/6+£ of them. For any E. > 0 there exists () > 0 
sach that fOT any g E IF p of TTmlt-iplicai'ive order T 2' plJ+ E the boand 

T-l 

max L exp (27riag X /p) = 0 (Tp-b) 
gcd(a.,p)=l f=O 

holds. 

Using (5) we see that under the conditions of Theorem 3 the sequence gX, 
x = 0 ..... T - 1, is p-8-homogeneously distributed modulo p. 

Combining this result with the above arguments and Theorem 2, one can 
obtain the following statement about the bit security of the Diffie-Hellman 
secret key. 

For each integer f! 2' 1 define the oracle VHf as an 'black box' which given 
the values of X = 19X J p and Y = 19Y J p outputs the value of MSB,.p (gxy). 

Theorem 4. Let Q be a safficiently large integeT. The following statement 
holds with {) = 1/3 fOT all pTimes p E [Q,2Q]' and with {) = 0 faT all pTimes 

p E [Q, 2Q] except at most Q5/6+0 of them. Let k = Ilogl/2 P l + pog log p l 
For' any E. > O. safficiently large p and any element g E IF; of maltiplicative 
oTdeT T 2' p,9+£. theTe exists a pTObabilistic polynomial time algoTithm which 
faT any paiT (a, b) E [0. T _1]2. given the valaes of A = 19a Jp and B = 19b Jp • 

makes 0 (log] /2 p) calls of the omcle VHk and computes 19ab J p cOTTectly 

with pmbab'ility 1 + 0 (2-10g1/2 p). 

5 Attack on the Digital Signature Algorithm 

On the other haJl(l. in some cases the corresponding exponential sums are 
new and require a separate study. For example, in [32] the sequence arising 
in the attack on thc Digital Signature Algorithm (DSA) has been studied. 
We recall the DSA settings. Assume that q and p are primes with qip - 1 and 
that g E lFp is a fixed clement of multiplicative order q. Let M be the set 
of messages to be signed and let h : M --* IF q be an arbitrary hash-function. 
They all (that is. P. q, g. M, h) are publicly known. 

The secret key is an elemcnt ex E lF~ which is known only to the signer. 
To sign a message 11. EM, the signer chooses a random integer k E 

lF~ usually called the nonce, and which must be kept secret. We define the 
following two elements of lFq: 
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The pair (r(k), 8(k, IL)) is the DSA s'ignatuTe of the message IL with a nonce 
k. 

The attack on the DSA which has been developed in [31] (and which 
simplifies and improves the attack from [15]) is based on the solving the 
HNP with the sequence 

(k, fL) E S, (6) 

where S is the set of pairs (k, fL) E [1, q - 1] x M with s(k, fL) 01 O. 
Denote by W the number of solutions of the equation h(fLI) = h(fL2), 

fLI, fL2 E M. Thus W/\M\2 is probability of collision and expected to be of 
order q-l for any practically usable hash function. 

In [33] the heuristic results of [31] have been made rigorous by proving 
the following statement. 

Theorem 5. Let Q be a sufficiently large integeT. The following statement 
holds with {) = 1/3 for all primes p E [Q,2Q], and with {) = 0 for all primes 
p E [Q,2QJ except at most Q5/6+0 of them. For any E > 0 there exists {; > 0 
such that for any 9 E lFp of multiplicative order q 2 p{}+E the sequence (6) 
the bound 

holds. 

max L exp(27riat(k,fL)/q) = 0 (W I/2q3/2-0) 
gcd(a,q)=l 

(k,/L)ES 

Using (5) we see that under the conditions of Theorem 5 the sequence (6) 
is q-8/3-homogeneously distributed modulo q provided that 

(7) 

This result is based on a combination of the bounds of exponential sums 
with exponential functions from [21] given in Theorem 3, with the Weil 
bound, see [28] and the Vinogradov method of estimates of double sums. 
As we have mentioned, the inequality (7) usually holds in the stronger form 
W = 0 (\M\2/q). 

Then the above arguments together with Theorem 2 imply the following 
statement. 

For all integer [! we define the oracle DSAc which, for any given DSA 
signature (r(k),s(k,p.)), k E [O,!} -1]. IL E M, returns the [! least significant 
bits of k. 

Theorem 6. Let Q be a sufficiently large integer. The following statement 
holds with {) = 1/3 faT all primes p E [Q,2Q]' and with 19 = 0 for all primes 
p E [Q,2QJ e:rcept at most Q5/6+0 of them. For any E > 0 there exists {; > 0 
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8uch that for any element g E IF p of rmLltiplicative order q, where q 2': p!9+E is 
pr'ime, and any hash function h satisfljing (7), given an oracle VSAe with jJ = 

flOgl/2 q l + pog log q l! there e:r;ist8 a probabilistic polynomial time algorithm 

to recover the DSA secret key 0, from 0 (logl/2 q) signatures (r(k), s(k, ji,)) 

with k E [0, q-~ 1] and J1 E M selected independently and uniformly at random. 
The probability of success is at least 1- 2~(loglop;q)logl/2q. 

6 Other Applications and Open Questions 

The method of the proof of Theorem 4 can be used to establish the bit security 
of several other exponentiation based cryptographic algorithms. Several such 
schemes, including the EIGamal cryptosystem (see Section 8.4 in [30]) and 
the Shamir message passing scheme (see Protocol 12.22 of [30]), have been 
outlined in [5.6]. As yet another example we also mention the Matsumoto~ 
Takachima Imai key-agreement protocol, see Section 12.6 of [30]. In fact the 
treatment of the Shamir message passing scheme in [5] has the same gap as 
the treatment of the Diffie-Hellman scheme. Accordingly, using exponential 
sums this gap has been fixed in [12]. 

In [27] several results on the recently introduced in [23,24] the XTR cryp
tosystem and on the LUG cryptosystem, see [3,43]. These results are ap
proximately the same strength as those known for the Diffie-Hellman scheme 
(however apply only elements of relatively large multiplicative order that 
those in Theorem 4). These results are also based on bounds of exponential 
surns, however instead of Theorem 3, a certain bound of exponential sums 
conjectured by Deligne in [9] (and proved in some special case). In the full gen
erality it has been proved by Katz [18] (the proof follows from Theorem 4.1.1 
of [18] after some standard transformations). In fact, for the cases relevant 
to the XTR and LUC cryptosystems, simpler and more explicit statements 
are given in [25] and in Chapter 6 of [26]. To be more precise, the approach 
of [27] makes use of the bound the bounds of the exponential sums 

L exp (27fiTr ht) Ip) -S p(m~m/s)/2 
lEy 

where Tr(z) = z + zp + ... + is the trace of z E IFpmin IFp and 9 is a 
subgroup of the group of the elements z E IFpm with 

~l+T)rn/s+ + m-m/s 
<- .. p = 1. 

which holds for any divisor s of TrI. 

The case of the XTR cryptosystem corresponds to m = 6 and.') = 2. The 
case of the LUG cryptosystem corresponds to m = 2 and s = 2. 
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The result of Theorem 6 has been extended to other DSA-like signature 
schemes, including the elliptic curve version of DSA in [10,33]. In particular, 
the bound of [20] provides an analogue of Theorem 3 for exponential sums 
over an orbit generated by a point on an elliptic curve, see [33]. However 
some interesting questions still remain open. For example, for the Nyberg~ 
Rueppel signature scheme the range of p and q in which the results of [10] are 
nontrivial are narrower than in practical applications. It is shown in [10] that 
the attack designed in that paper on the Nyberg~Rueppel signature scheme 
can be reduced to EHNP with the sequence of multipliers 

(k,J-L) E [l,q -1] x M. 

Unfortunately it is not clear how to estimate the exponential sums 

L L exp (27l'icr(k, J-L)), c E [1, q - 1], 
J1.EM kElFZ 

and obtaining such a bound is an interesting open question. Using a rather in
direct method, it has been shown in [10] that the sequence r(k, J-L) is 2~ logl/2 q 

homogeneously distributed modulo q, provided that 

w < (#M)2 q3~8 
- p3 

for some fj > 0. We remark that in the settings of the Nyberg-Rueppel 
signature scheme it is natural to assume that h is bijective, that is, W = #M. 
Also, if the message set M is "dense" (that is, #M is of order p) then the 
above result holds for q 2: p2/3+8. It would be very interesting to lower this 
bound. 

The results and ideas of [32J have recently been used in [7J to design 
an attack on another DSA-based cryptosystem. It is shown in [7] that in 
the above cryptosystem there is a way to extract all necessary information 
from the protocol itself, thus no additional "leakage" is assumed. In fact, 
Theorem 5 allows us to make the attack of [7] rigorously proved and also to 
extend it to other small subgroups of IF; (not only those with a power of 2 
elements as in [7]). 

Yet another modifications of the HNP has recently been introduced 
in [14]. Namely, that paper introduces the following 

HIDDEN NUMBER PROBLEM WITH HIDDEN MULTIPLIER, HNP
HM: Recover a number 0: E lFp such that for many unknown ran
dom t E T we are given MSBc,p(o:t), MSBc,p(t) and MSBc,p(O:) for 
some £ > 0. 

In the case T = IF; and £ 2: (4/5 + c)logp the paper [14] provides a 
polynomial time algorithm for the HNP-HM. In fact it also works in more 
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general residue rings (which is important for applications to [37]). As one 
can see this result is substantially weaker than those known for HNP and 
EHNP where one can take £ of order logl/2 p. However, using exponential 
sums, it has been shown in [14] that indeed for HNP-HM to have a unique 
solution the value of £ must be very large. Namely for £ :::; (1/2 + c:) logp 
there can be exponentially many possibilities for oc. 

The aforementioned algorithm has been used in [14] to establish a cer
tain bit security result for the "timed-release crypto" introduced by Rivest, 
Shamir and Wagner [37] and also to design a "correcting" algorithm for noisy 
exponentiation black-boxes. 

It is an interesting and challenging problem to study HNP-HM for more 
general sequences T, in particular for subgroups of IF;. 

In the case T = IF; the paper [6] provides a non-uniform polynomial time 
algorithm for the HNP which works with £ = O(loglogp). We recall that 
non-uniformity means that the algorithm exists but to actually design this 
algorithm one may need exponential time (thus such algorithms are of rather 
limited value). Nevertheless it would be of interest to extend this result to 
subgroups of IF;. In order to get such a generalisation one needs an analogue 
of Lemma 2.4 for subgroups and this seems to be a rather feasible task taking 
into account the bounds of exponential sums of Theorem 3. 

Finally, several more modifications of the HNP have been considered in 
the papers [4,11,19,39,44]. However they are of more algebraic than geometric 
nature and lattices have not been involved in their study. 
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Abstract. We give an alternate construction of the Berlekamp sub algebra for cy
clotomic polynomials over finite fields. This gives a new, deterministic, polynomial 
time reduction of factoring these polynomials to knowing the trace of an appropriate 
root of unity. 

In an earlier paper [16] we demonstrated a very constructive technique, using 
the theory of cyclotomy, for factoring the rth cyclotomic polynomial, if>,. (x) , 
over lFp, l' and p prime, which was both deterministic and polynomial in time 
0(1' logp) given the traces of this polynomial (i.e. the traces of the rth roots 
of unity over lFp). Here we give an algebraic approach, also using ideas from 
cyclotomy, which will yield a factorization of if>r (:r:) given a single one of its 
traces and, in most cases, this will be a complete factorization. 

The technique presented here is to factor out an ideal generated by quad
ratic elements from a polynomial ring in a number of indeterminates over 
IF p as well as an explicit isomorphism from this ring onto a sub algebra of 
lFp [x] /if>r (;r:) , to whit, the Bcrlckamp subalgebra. The determination of any 
zero-divisor;,; in this ring t.herefore immediately yield a fact.orization of P r (x) . 
In the event that we happen to know the trace of some primitive rth root 
of unity it will turn out that we will immediately know zero-divisors in this 
ring. 

Let p and r be distinct prime::;, d the multiplicative order of p in lFr' 
m = (T' - 1) / d, Q a generator of IF;, and ( a primitive rth root of unity in an 
appropriate extension field of IF Jl' Recall that if> r (x) factors into the product 

ofm dth degree polynomials, irreducible over lFPl if>r (x) = IT::~l 9i (x) where 

d-l 

.Yi (.r) = II (1' - CriJi ) 

k=O 

and that the trace of 9i (x) is 

d-l 

t; = L(a'pi E lFp,i E Z/mZ. 
j=() 

(1) 

(2) 
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The theory of cyclotomy gives liS the relations 

rn-I 

titiH = L [(k. h) - deAl ti+h (3) 
h=O 

where (k, h) is the cyclotomic number defined as the number of solutions to 
x + 1 = Y where :r and yare in the cyclotomic classes Hk and Hh with 

and 

H = { i .m+i. (,.2m+i ... ,Jd-l)m+i} C IF* 
I (} ,0 ., . ,LX _ r 

{ 
1. d even.i = 0 

ek = 1, dodd, .i. = m/2 
0, otherwIse 

(4) 

(5) 

For further information on cyclotomy and cyclotomic: numbers see [2], [3], 
[16] or [17]. 

Recall that the Chinese Remainder Theorem gives an isomorphism be
tweellIFp[xl/<pr(:r) and the direct sum of splitting fields for <pr(x) 

by 
f(;r;) + (<p(x)) f----) (.f(:r) + (go(J:)),···. f(:r) + (g",-1 (x))). (7) 

In order to minimize confusion let us agree to represent an clement of 
IFp[xl/<P(x) by the unique coset representative modulo <pr(x) which is a poly
nomial of degree less than r -1. Similarly, let us agree to represent an element 
of IF prJ;] / go (:r:) ... ~D IF p [J:]/Y",-l (:r) by anm-tuple of polynomials whoseith 

entry is the uniqlle coset representative modulo gi(:r:) which is a polynomial 
of degree less than d. 

Recalling the relations from the product formula, (3), let {Ti liE Z/mZ} 
be indeterminates and define R C IFp[1(J," '. Tm-d to be the ideal generated 
by the set 

rn-l 

{TiT;H - L [(k, 11) - d(h]T;+h I i,J E Z/rnZ} U {I + To + ... + Trn-d (8) 
h=O 

where (k, h) and ek arc as defined above. Now we define the quotient ring 

(9) 

We may think of IF p [']f] as the TII.-ciimcllsionalIF p-algebra of homogeneous first 
degree polynomials in To.' ... Tm - 1 where the ring action is given by the 
relations ill R. relations that arc designed to mimic the relations given by the 
prodllct rule for the periods in the theory of cyclotomy. 
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Let K be any splitting field for <Pj.(:r) over Fp and define the polynomials 

d-l 

Ti(X) = L Xo:ipj E K[x]. (10) 
j=O 

For i, k E Z/mZ we compute, for any l E Z/dZ, 

d-l i j 

Ti((o:kpl) = L ((o:kpl) 0: P 

j=O 

d-l 

= L ( (o:k+ipl+ j ) 

j=O 

Since the polynomial Ti(x) - ti+k E Fp[x] vanishes on all of the roots of 
gk(X) E Fp[x] there exists a polynomial hk(X) E Fp[x] so that 

(11) 

Now let Ti(X) be the projection of Ti(X) E Fp[x] into Fp[x]/<Pr(x) and let 
r.p be the isomorphism in (6). Then, for i E Z/mZ we have 

(12) 

where it is understood that the jth entry of the m-tuple is a coset represen
tative modgj(x). 

We have the same relations among the Ti(X) as we do among the Ti E 

Fp[1I']. Given Ti(X) and Tj(X) note that 

r.p (Ti(x)Ti+k(x)) 

= (titi+k' ti+1 ti+1+k,"', ti- 1ti-1+k) 

(

m-l m-l 

= ~ [(k, h) - dOk]ti+h, ~ [(k, h) - dOk]ti+1+h ,"', 

~[(k, h) - dO,lt'-Hh) 

m-l 

h=O 
m-l 

= L ([(k.h)-dOk]r.p(Ti+h(X))) 
h=O 
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hence, since y is an isomorphism. 

m-I 

Ti(X)Ti+k(:X:) = L ([(k, h) ~ dBk]Ti+h(x)) . (13) 
h=O 

m-I m-l 

~) : L aiTi f-> L QiTi(X). (14) 
;=0 i=O 

Lemma 1. .l/J is an injective 'fp-algebm homomorphism. 

Proof. Define the homomorphism I : IFp[To,"', Tm - I ] -+ IFp[x]/<p(x) by 

Ti f-> T;(x) and note that (8) and (13) above show that ip (R) = 0, so I 
factors through IFp[1I'] via ~), hencel/J is an IFp-algebra homomorphism. To 
see thatl/J is injective let Uti stray momentarily from our agreement regard
ing the representation of elements in IFp[x]/<pr(x) and note that, modulo 
<pr(x), any polynomial has a unique representation as an r ~ pt degree 
polynomial without a constant term. Specifically, since xr == 1mod<Pr(x), 
we have, for PI == /J2modr, that :x; (31 == x!32mod<Pr(x) and that 1 == ~x ~ 
x2 ~ ... ~ :rr-Imod<Pr(.r). Now note that the Ti(X) = L;~:~ x",'p' where, for 

o :S j :S d ~ 1, nip! # 0 E IF r [since the order of pmod T is d]. Therefore, using 
the representatioll above. we write 

d-I 

Ti(:r) = L xcxipi + (<pr(x)) 
j=() 

(15) 

where aipj is the least residuc of aip! mod T. If wc now remark that, for 
o :S i < k :S m ~ L niJ/ I =fo nkpl2 mod T for any hand 12 , then there can be 
no non-trivial relations among the Ti(;r:). That is, To(x),"', Tm-l(X) have 
distinct representations as polynomials of degree less than r, no constant 
term, and that no two of these representations have terms of equal degree, so 
the only linear combinations of these elements which equals zero is the trivial 
one. Therefore 

and sol/J is iujective. D 

rn-I 

L QiTi(X) = 0 q. Qi = 0 'IIi E 'lllm'll 
i=() 

(16) 

It is interesting to remark at this point that a direct sum of m copies of IF p' 

call it 13, also known as the Berlekamp subalgebml sits inside of IFp[x]lgo(x) EEl 

1 See, for example, Section 2.4 of [9] 
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... E& IF'p[x]/gm-dx) in a natural way and that Im('P'lj;) is contained in this 
sum. As 'lj; is injective and # (IF'p[''IT']) = # (IF'p E& ... E& IF'p) = pm, finite, it 
follows that 'P'lj; is an isomorphism from IF'p[''IT'] to H. Keeping in mind the 
one-to-one correspondence of idempotents in IF'p[''IT'] and those in H, we see 
that any idempotent in IF'p[''IT'] will give a non-trivial factorization of <pr(x). 

Suppose that we happen to know one of the traces, t i . Then 

has a zero in the ith position. This element will be zero if, and only if, all of 
the ti are equal. 

Lemma 2. Given distinct primes, rand p, the traces of the irreducible fac
tors of <Pr (x) cannot all be the same. 

Proof. As remarked above, if the traces were all the same then To(x) - ti = 
o E IF'p[x]/<pr(x). Recalling the representation of elements in IF'p[x]/<pr(x) 
discussed in the proof of Lemma 1 we may represent To (x) - ti by 

d-1 r-1 

To (x) - ti = L xpj + ti L xj 

j=O j=l 

r-1 

= LSjXj 

j=l 

where pi is the least residue of plmod rand 

{ I + ti if j E H 0 

Sj = ti, otherwise (17) 

This element will be 0 if, and only if Sj = 0 for all 0 :::; j :::; r - 1. As some 
j are in Ho and some are not, this would simultaneously force ti = 1 and 
ti = 0.0 

So To (x) - ti will be a non-trivial zero divisor. It should further be noted that 

where, since we are working in characteristic p, (tj - ti)p-1 = 0 or 1 as 

(_ )P-1 
tj = ti or not, respectively. As To(x) - ti can be computed in logp 

multiplications it follows that we will have found a nontrivial idempotent 
of H in polynomial time. Whether working with the idempotent or the zero 
divisor we will have a nontrivial factorization of <pr(X). 
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It is a well known fact2 that if f (x) is any polynomial over any finite field 
lFq, and if b(x) is an element of Berlekamp subalgebra of lFq[x]/ f(x), then we 
have 

f(x) = II gcd (f(x), b(x) - a) (19) 
aEIFq 

Noting that To(x) is an element of the Berlekamp sub-algebra of lFq[x]/<pr(X) 
we have 

<pr(x) = II gcd (<pr(x), To(x) - a) (20) 
aEIFp 

If we now observe that gcd (<pr(x), To(x) - a) = 1 for a~ {to,···, tm-d 

and that gcd ( <Pr (x), To (x) - ti) is a proper, non-trivial factor of <Pr (x) for 

i = 0, ... , m - 1, (20) becomes 

m-l 

<pr(x) = II gcd (<pr(x), To(x) - ti) (21) 
i=O 

Noting that these gcd calculations can be done in time 0 (r 10g2 r) [1] we see 
that if we know all of the traces of the irreducible factors of <pr(x) then we 
may compute the complete factorization of <pr(x) deterministically in time 
o (r2 10g2 r) . 

Also note that for any i, and j, Tj(x) - ti will also be a zero divisor, 
so we may get other non trivial factorizations of <pr(x). In particular, if ti is 
distinct from all of the other traces then we will have a complete factorization 
of <pr(x) via 

m-l 

<pr(x) = II gcd (<pr(x), Tj(x) - ti) 
j=O 

(22) 

Please note that it may be the case that not all of the ti are distinct [15]. 
In this case although we will get a nontrivial factorization, it need not be a 
complete factorization. 

Summary 

We may think of the IF p- algebra IF p [1l'] as the set of all sums of the form 

L::~l (YiTi, (Yi E T, and where multiplication is given by 

m-l 

TiTHk = L [(k, h) - d(h] THh 
h=O 

2 See, for example. Section 2.4 of [9] 
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This ring is IFp- algebra isolllorphic to the Berlekamp sllbalgebra of 
IFp [:r] /<p r (:r) , therefore finding zero divisors in this ring is equivalent to find
ing factors of <PI' (.r). If t is any trace of of <Pr (x) then Ti - t will be a 
zero divisor in IF p [1l'] and if, as is usually the case when p is large, t is distinct 
from all the other traces of <PI' (:r) . then {T; - t I 0 ~ i ~ m - I} corresponds 
to the complete set of irreducible factors of <Pr (:1:). Once t is known, the 
computations involves () ('r log2 T) operations in IF p to compute each factor. 
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Abstract. A necessary and sufficient condition for the generalized Gray map image 
G(D) of a Zpk+l-linear code D to be Fp-linear is given for any prime p and any 
integer k 2: 1. If p = 2 and the linear code is assumed to be cyclic, a necessary 
condition for G(D) to be linear is also given in terms of the generators of the ideal 
of D. Some examples to illustrate the results are given. 

1 Introduction 

In [3] the Gray map on finite chain rings is introduced and shown to be an 
isometry which generalizes the Gray map given in [1]. Also in [3] this map is 
used to demostrate the existence of a non-linear ternary (36,312 ,15) code. In 
[8] necessary and sufficient conditions are given for the image, G(D), under 
the generalized Gray map G defined on the ring Z2k+1, of a Z2k+1-code D 
(not neccesarily linear) to be linear. In particular, if the code D is linear a 
characterization is provided for the image G(D) to be linear. For the case 
of the ring Zpk+!. where p is a prime and k is an integer 2: 1, a necessary 
and sufficient condition for the Gray map image of a Zpk+l-linear code to 
be Fp-linear is provided in this note. These conditions are similar to those 
given in [4] for the case p = 2 and k = 1, i.e., for the usual Gray map over 
the ring Z4' For the case p = 2, assuming the linear code D is also cyclic, 
a necessary condition for the Gray map image G(D) to be linear, involving 
the generators of the ideal associated to the code, is also presented. Some 
examples to illustrate the results are given. 

2 Some Basic Results 

Some concepts that will be used in the paper are introduced in this section. 
In particular the definition of the Gray map as given in [3] as well as other 
basic results are recalled. 

Let F = Fq be a finite field with q = pB elements, where p is a prime and 
s a positive integer. Let u, v E Fq where u lists all the elements of the field 
F and v is the all-l vector. For a positive integer k let: 

Ci = (v + (\o(u - v)) ® ... ® (v + 8i ,k-1(U - v)) 
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for 'I = (), L .... k. where /) stands for the Kronecker delta and" .. is the 
tensor product ([6]). It is easy to see that the vectors Ci generate a [qk.k + 
1, (q - 1)qk-1]-linear code C over the field F (cf. [3]). 

Let p and k be as above and let R = Zp h+l be the ring of integers modulo 
pk+ 1 with residue field F~). Any element a of the ring R can be written in its 
p-adic expansion as: (J = Fda )pk + 1'k-1 (a)pk-1 + ... + ('1 (a)p + 1'0(0.) where 
1';(0.) E T and T ~ R is a set of representatives of the elements of Fp. The 
generalized Gray map OIl R is defined as (d. [3]): 

The Gray map is bijective on C and it can be extended coordinatewise 
to the cartesian product of R as: 

h-
G . RI! -----) Fnp G() (G() G()) ., ]I' g = 0.1. ...• an 

where Q = (0.1, .... an) E RTl. 
Observe that the nbove extension of G is the same as the one given in [3], 

i.e., G(g) = ~~'=o ali) .:g Ci where the o.(i)·s stand for the p-adic components 
of the element g E RrJ. 

We recall that the homogeneous weight on R = Zpk+l is defined as: 

Let dllOm and dH be the metrics induced by the homogeneous and Ham-
!. 

ming weights on RrI and F;']I respectively. In ([3]) it is shown that the Gray 
map: 

k 

G: (RTI.dhom ) -----) (F;? ,dH) 

is an isometry whose image is the Generalized Reed-Muller code GRM(l. k) 
over the field Fp. 

3 The Characterization 

In this section some properties of the Gray map G relnted to the addition 
on the ring R = ZpHl are described. A necessary and sufficient condition for 
the image G(D) of a Zpki l-linear code D to be linear is also given. 

For any 0. E R let a = rk(a)pk +rk_1(0.)pk-1 + ... +r1(a)p+ro(a) be its 
p-adic: expansion. For any two elements a. b of R let: 

k k 

a EB b = Lpip;(o.. b), Q(o., b) = LpiQi(o., b) 
1=0 ;=0 
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where. as an integer, I"i(a)+,-;(I;) = pQi(a. IJ)+Pi(o., b) and 0::; Pi(a, IJ) ::; p-I, 
for alii = 0, 1. 2 ..... k. 

Observe that since 0 ::; T.;(o.), Ti(b) ::; p - 1 and 0 ::; Pi(o.. b) ::; p - 1, then 
Qi(a, b) = 0.1. Also, if p = 2, Pi(o., b) = Ti(o.) E9 Ti(b), the addition on the 

binary field F2 and Q(o., b) = 0 (~b = ~Y=o Ti(a)Ti(b), (see also [9] and [8]). 

Proposition 1. Let .. +" be the addition on the ring ZpH I. Then for any 
elements a, b of Zph+! we have: 

a + I; = (a cD b) + pQ(a, b). 

Proof. The proof is by induction on k. Clearly the Proposition is true when 
k = 1. Suppose that the relation is true for k ~ 1, and let a and I; be in 
2pH2. By the induction hypothesis we have: 

k+l 

(a - To(a) + b - To(b))/p = Lpi-l[(Pi(a, b) + pQi(a, b)]. 
i=1 

This relation is equivalent to 

k+1 

a + b = [1'0(0) + To(b)] + Lpi[(Pi(a, b) + pQ'i(a, b)] 
;=1 

which directly gives the proof, since To(a) + TO (b) = pQo(o., b) + po(o., b). 

Proposition 2. With the same notation as above: 

G(o. ttl b) = G(o.) + G(b) 

k 
where the operation 011 the right-hand side is performed in Pi: . 
Proof. From the definition of (amb) it follows that G(o.2:Jb) = l:~=o Pi(o., b)Ck' 
On the other hand G(o.) + G(b) = h(a) +Tk(b)]Ck + [Tk-1 (a) +Tk-1 (IJ)]Ck-1 + 
... + [1'1 (a) +1'1 (IJ)]c1 + [ro(a) +ro(b)]co. By reduction modulo p on the brackets 
of this last expression the claim follows. 

The next result iti an immediate consequence of the previous Propositions. 

CorollaTY 3. Let G be the Gray map defined on the ring ZpHl as described 
above. Then for any elements a, b in Zl'k+!: 

G(a) + G(b) = G(a + b - pQ(a, b)) 

where pQ( a, b) is the integer that appears in the expression for a + b in 
Proposition 1. 

The operation .. +" on the ring R is extended, coordinatewise, to the 
cartesian product R" in the obviolls way: if Q = (a1' ... , an), Q = (b1, ... , bn) E 
Rn then Q + Q = (a I + b 1, ... , an + b" ). 
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From Corollary :{ it is easy to see that the Gray map on the cartesian 
product of the ring R satisfies the following: 

Proposition 4. For any clements g = (aI, ... , an), /;2 = (b1, ... , bn) of Rn: 

G(g) + G(/;2) = G(g + /;2 ~ pQ(g,/;2)) 

where Q(g,/;2) = (Q(al, bd, ... , Q(an , bn )). 

Recall that a R-linear code of length n means a R-submodule of Rn. We 
now have: 

Theorem 1. Let G be the generalized Gray isometry on R n and let D be a 
R-linear code of Rn. Then: 

G (D) is Fp ~ linear if and only if pQ (g, /;2) E D 

for all g, /;2 E D 

Proof. If G(D) is a linear code of Rn it follows from Proposition 4 that 
G(g+/;2~pQ(g,/;2)) E G(D) which implies that g+/;2~pQ(g,/;2) E D. Since D 
is linear, pQ(g,/;2) E D. It is easy to see that if pQ(g,/;2) ED for all g,/;2 ED, 
then 2g ~ pQ(g,g) E D. Hence aG(g) E G(D) fur any a E Fl" The rest of 
the proof follows from Proposition 4. 

4 Linear Cyclic Codes 

In this section we assume further that the linear code D is cyclic:. A necessary 
condition on the generators of the code D for its generalized Gray map image, 
G(D), to be linear is given when p = 2. If k = 1 the condition is also sufficient 
and in this case the result is the one presented in ([9]' Proposition 16) for 
codes over Z4. 

Let a E Zpk+l and let a = ro(a) + rl(a)p + ... + rk(a)pk be its p-adic 
expansion. The reduction modulo p of the element a is just a = 7'a(a) E Fl" If 
a(x) = aa + alx + ... + am:rnl is an element of the polynomial ring Zpk+l [x], 
its reduction modulo ]J is a(x) = ao + alx + ... + amxnl E Fp[x]. Assume 
now that n is snch that (]J, n) = 1. Let Rn = Z p k+l [x]/(xn ~ 1) and for any 
element a(x) ERn., < 0:(:1:) > will denote the ideal of Rn generated by o:(x). 

Let D be a Zp!+l-linear cyclic code. According to ([5], Corollary 3.5), 
polynomials fa, h, ... ,.fA: exist in Rn such that fklfk-ll·· 'Ihlfal(xn ~ 1) and 
D =< fo,ph, ... ,pk.h >. the ideal generated by these polynomials. 

Observations. From the above definitions it is easy to see that: 

1. If a(x) E Rn then pka(x) = pka(x) in Rn. 
2. If 'u(x), v(x) E Fp[;x:]/(x n ~ 1) and pku(x) = pk·u(x) in Rn , then u(x) = 

u(;x:). 
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Lemma 1. Let D ~ H" be a linear cyclic code as described above. Then 

Dn < p >=< p.h >. 

Proof. Let v E Dn < p >. i.e., 11 = ps for some s E Rn and 11 = mofo + 
pmlh + .. '+pkmkik where Tni ERn· Since fklIi then Ii = q;jk with qi ERn 
for i = 0, 1, ... , k -- 1. ar~d henc~ 11 = Tnoqoik + p ikT where TERn. Also since 
11 = ps, fj = 0 = rnoiJoik and ik # 0, then moiJo = 0, i.e., moqo = pt for some 
t E H", Thus 1L = ptik + pfkT which implies that v E< pfk >. The other 
contention is obvious. 

For the rest of this section we take p = 2. Let v, v E Z2H1 and let v = 
1'o(v)+7'I(v.)2+·· '+1'k(u)2k and v = 1'o(v)+1'l(v)2+ .. ·+1'k(v)2k be their 2-
adic expansion. respectively. The operation v8v = 1'o( v )1'o(v) +1'1 (u )1'1 (v)2 + 
... + 1'k (u )1'k (v )2k as defined above (cf. [9], [8]) is extended coordinatewise to 
the cartesian product of the ring Z2k+1 and to the polynomial ring Z2H1 [x] in 
the obvious way: ifuCr) = 110+lLl:r:+·· +v-rxr and v(x) = VO+Vl:r:+·· +vrxr 

then l1(X) 8 v(:r:) = (uo C0 vol + (VI C;) vIJx + ... + (V-r 0) vr)xr. Also, if A and 
B are subsets of Z2k+1 [:r:] then A C0 B = {a ~~ b : a E A, bE B}. 

Let n be a positive odd integer and let D =< fo,2h .... ,2kfk >~ Rn be 
a linear cyclic code where the polynomials fi are such that fklfk-ll·· 'Ihlfol 
(xn - 1). Let G denote the generalized Gray map induced on the ring Rn. 

Proposition 5. With the notation as above assume that the generalized Gray 
map image G(D) of the linear cyclic code D is a binary linear code. Then 

< .fi(X) > (~) < .fj(x) >~< .fk(X) >, Vi,j = 0, 1, ... , k 

where this last relation is performed in the ring F2 [xl/(xn - 1). 

Proof. From Theorem 1 above it follows that G(D) is linear if and only if 
2Q(g, Q) E D for all g, QED. For the case p = 2 the element Q(g, Q) is 
just (g (-) /;i), (d. §3). Tn terms of the ideal D, this condition is equivalent 
to: 2(a(x) (0) b(;J;)) E D for all a(:r), b(:r) E D. Since 2(a(x) (0) b(x)) E D, 
by Lemma 1 it follows that 2(a(x) C:) b(x)) E Dn < 2 >=< 2ik(x) > and, 
therefore, 2k(a(:r) Co) b(.r)) = 2kt(x)fk(:r) for some t(x) E Hn. Thus by the 
above observations 2k(ii(:r) ,::;) b(;r)) = 2kt(x).fd:r) which implies that a(x) 8 
b(:r) = t(:r:).fd:r) for all a(:x:) and b(;J;) in D. In particular, it follows that 
.fi(X) C;:J .f~(x) E< .fdx) > for all i,j = 0,1 .... , k, proving the Proposition. 

If k = 1 and it is assumed that .fi(X) 8 .fj(x) E< .h(x) > for all i,j = 

0,1 .... , k, then from the above observations it follows that 2(fi(X)C0fj(:r:)) ED 
and hence 2(a.(x) b(:r)) E D for all a. (:J:) , b(x) in D, and from Theorem 1 it 
follows that G(D) is linear. In this case the result is Proposition 16 of [9]. 

5 Examples 

In this section two examples are provided in which the previous results are 
used. especially Theorem 1. 
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Example 1. In [3] the authors llse the Gray map G on the ring Z32 to show 
that the Gray map image G(D) C zi6 of a Z32-linear code D c ZjJ is a 
non-linear (36,3 12 ,15) ternary code. The linear code D is the extension by a 
parity check of the code E which is the lift to Z32 [1:]1 (x ll - 1) of the ternary 
cyclic [11,6,5] Golay code. The code E is the cyclic code generated by the 
polynomial e(x) = x) + 7x4 + 8x:' + x2 + 6x + 8 E Z32[x]/(xll -1), which is 
the Hensel lift to Z32 [x] of the generator polynomial f(x) = x5 + x4 + 2x3 + 
x2 + 2 E Z32 [x] of the ternary Golay code. The authors prove that the image 
G(D) of the linear code D is not Z3-linear by showing that the elements 
g = (0,0,0,0,0,1,7,8,1,6,8,5) and 12. = (0,0,0,0,1,7,8,1,6,8,0,5) of Dare 
such that G(g + 12.) - G(g) - G(12.) 1. G(D). 

We now use the characterization given in Theorem 1 above to show that 
G(D) is not a linear code. In fact from a direct calculation it is readily seen 
that for the elements g and 12. as given above, 3Q(g,12.) = (0,0,0,0,0,0,3,3,0, 
0,0,3), which obviously is not an element of the code D since the polynomial 
3x4 + 3x3 is not a multiple of the generator of the code E. 

Example 2. In [2] the authors take the binary Golay [23,12, 7] code gen
erated by the polynomial .1'Y + x9 + :r7 + x6 + x5 + X + 1 and Hensel
lift it to the polynomial .1: 11 + 2X10 - x 9 + 4x8 + 3x7 + 3x6 - x 5 + 2x4 + 
4x3 + 4x2 + X - ] over Zs, generating a [23,12] code over Zs. Extending 
this code by a parity check results in a Zs-linear [24,12] code Ms. The 
authors prove that the image G(Ms) is not a Z2-linear code by showing 
that the elements 1l. = (0,0,0,0,0,0,0,0,0,0,0,1,2,7,4, :1, 3, 7, 2, 4, 4,1,7,3) 
and 111. = (0,0,0,0,0,0,0,0,0,0,1,2,7.4,3,3,7,2,4,4,1,7,0,3) of A1s are such 
that G(1l. + 111.) - G(1l.) - G(1Q) 1. G(Ms). 

This result can also be proved by means of Theorem 1 above. In fact, it is 
easy to see that for the two elements given above, 2Q('Q,1Q) = (0,0,0,0,0,0, ° 
0,0,0,0,0,4,0,0,6,6,4,4,0,0,4,0,6). which is not in Ms since the sum of its 
entries does not vanish modulo 8. Hence, by Theorem 1, G(Ms) i:s not linear. 
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Construction of Modular Curves and 
Computation of Their Cardinality over IF p 

Cedric Tavernier 

Projet codes, Batiment 10, INRTA Rocquencourt 78150 Le Chesnay, France 

Abstract. Following [3], and in using several results, we describe an algorithm 
which compute with a level N given the cardinality over lFp of the Jacobian of 
elliptic curves and hyperelliptic curves of genus 2 which come from Xo(N). We will 
also sketch how to get a plane affine model for these curves. 

1 Introduction 

Elliptic curves are used for electronic signature. A required condition to have 
a secure cryptosystem is to have #Jac(C(Tip)) nearly prime. It is known 
that the computation over Tip of elliptic curves and hyperelliptique curves 
of genus two is a difficult problem. Several algorithms (Schoof (1985), Atkin, 
Elkies, Sato, Pila. Huang) exist with polynomial complexity in Log(p). These 
methods consist in computing the Frobenius action on l-torsion points. This 
gives the cardinality modulo I (CRT construction). A new way: C. Frey and 
M. Miiller (1998), used Xo(N) and newforms to compute the cardinalities of 
jacobian of elliptic and hyperelliptic modular curves over Tip. 

In section two we will give some results and definitions about Xo(N). 
The curves Xo(N) has a structure of Riemann surface compact and it is a 
curve with rational coefficients, so we will study the space of holomorphic 
differentials Dl(Xo(N)) of Xo(N). In fact Dl(Xo(N)) is isomorphic to the 
space of modular forms which are vanishing on cusps of X 0 (N) and this space 
is called space of cusp-forms. 

In the third section we will introduce the Hecke algebra. The Hecke al
gebra is generated by some operators called the Hecke operators and the 
Atkin-Lehner operators. We will see how this algebra acts on the modular 
curves Xo(N) and further more on its Jacobian and on its homology. In con
sequence, we will give some definitions and results about a sub-space of the 
cusp-forms which is called the space of new-forms. 

In the fourth section we will study the first homology group Hl (Xo(N), Z) 
and the relative homology Hl (Xo(N), cusps, Z) and we will see that there is a 
correspondence between the homology group and cusp-forms. An important 
problem is to give a representation for the elements of the homology groups 
and we want a representation which can be easily computed. Thus we will 
study two methods, one using the theory of modular symbols and one using 
the Manin-symbols. We will present the algorithms which permit to convert 
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Modular-symbols into Manin-symbols and conversely. With these theories we 
will be able to restrict to new-forms. 

In the fifth section we will summarize some results about modular Abelian 
varieties. We know that for a level N given the new-forms are in correspon
dence with Abelian varieties of conductor N9 where g is the dimension of 
these Abelian varieties. In particular we are interested in computing the car
dinality over IF p of these Abelian varieties, so we will give some results about 
L-series and Abelian varieties. 

In the sixth section we will describe the algorithm to compute the car
dinality lFp of Abelian varieties coming from new-forms, and more specially 
we will give a method to restrict to Abelian varieties of dimension one, that 
is to say elliptic curves, and Abelian varieties of dimension two which are 
sometimes Jacobian of modular hyperelliptic curves of genus two. 

In the seventh section we will sketch some possible algorithms to obtain 
an affine model of curve C such that the the Jacobian of C is isogeneous to 
Aj , we will apply some methods due to [1] for genus one and [10] for the 
genus two. 

2 About Modular Curves Xo(N) 

Here, we give some definitions and results about Xo(N). 

( 0-1) (0-1) We know that SL2 (71,) is generated by S = 1 a and R = 1 -1 . 

For a positive integer N, we consider the group denoted by 

which is the Hecke subgroup of SL2 (71,) of level N. The groups SL2 (71,) and 
ro(N) act on the upper half plane lHl = {z Eel CS(z) > a} by homographic 
transformations given by 

( a b) . z ~ az + b. 
cd cz + d 

We denote the orbits ofthis action by Yo(N) = ro(N)\lHl. The quotient Yo(N) 
is equipped with a complex analytic structure which comes from 7r : lHl --+ 

ro(N)\lHl. We compactify Yo(N) by adjoining the set of cusps IQ U {oo}. We 
denote lHl* = lHl U IQ U { oo} and we denote 

Xo(N) = ro(N)\lHl*, 

the modular curve of ro(N). So Xo(N) is a Riemann surface compact and it 
can be seen as a projective algebraic curve defined over C. 
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Definition 1 A modular form fOT To(N) of weight 2 is a function f : !HI ~ 
C such that 

1. f is holomorphic on !HI; 

2. for any I = ( ~ ~) E To(N), fhz) = (cz + d)2 f(z); 

3. f is holornorphic at thr:c cusps. 

We denote this space by lvh (N). If a modular form f vanishes at the cusps, 
then f is called a cusp-form and we denote the space of cusp-forms of weight 
two, S2(N). 

Proposition 1 Let 7r be the quotient map !HI* ~ To (N) \ !HI * , and for any 
holomorphic d~ffeTential w on To (N) \!HI*, set 7r* W = f dz. Then W f----+ f is 
an isomorphism from the space of holomorphic differentials J?l(Xo(N)) on 
To(N)\!HI* to S2(N). The dimension of S2(N) as a complex vector' space is 
equal to the genus of the curve Xo(N). 

3 The Heeke Algebra TN 

Let T E !HI. We denote by E the elliptic curve C/ L where L = Z+ZT. Let CN 
be a cyclic subgroup of order N of E[N]. the group of N-torsion points. Then, 
by P = (E, CN)~ we denote the isomorphism class of a pair (E, CN). Using 
the modular interpretation of the points on Xo(N)/Z we can define the Atkin
Lehner operators which are also called Atkin-Lehner involutions [2] and are 
denoted Wn . Let n be a positive divisor of N such that gcd(n, N/n) = 1, 
then the action of the n-th Atkin-Lehner operator is given by 

Wn(P) = (E/Cn, (C[n] x CN/n)/Gn)~. 

Also using the modular interpretation we define the Hecke operator [2]. Let 
n not dividing N, then the n-th Hecke operator is denoted Tn and its action 
is given by 

Tn(P) = L)E/G, (C[n] x CN/n)/Cn)~' 
G 

where G runs thought the set of tmbgroups of order n of E that have trivial 
intersection with (C[n] x CN / n ). As a consequence, Wn and Tn act on 

1. the Jacobian variety Jo(N) of Xo(N); 
2. the space of cusp forms S2(N)(Z); 
3. the homology group H] (Xo(N), Z). 

Definition 2 The Hecke algebra 1l' N of level N is the Z-sub-algebra of the 
endomorphism ring End;,JJ?l(Xo(N))/Z) generated by 

Wn withnlN, gcd(n,N/n) = 1 andTk with gcd(k,N) = 1. 

The Hecke algebra is commutat'ive. 
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Theorem 1 The operators Tn and Wn have the following properties: 

1. Tnm = TnTm ~f gcd(m, 17,) = 1,-
2. TpTpr = Tpr+l + pTpr-l if p prime doesn't divide N,-
3. TpTpr = T;, r:2 1, ifp divides N. 

Definition 3 A cusp-form f E S2(N) is a Hecke-eigenform, if f satisfies 

T(f) = AT . f for all T E 1I'N; 

where AT is the Hecke-eigenvalues with respect to T. We denote 

the AT-eigenspace where T E 1I'N is fixed. Now we define the space of old 
forms of S2(N) as 

S21d = (g(dZ) I g(z) E S2(M) with MIN; M -I N; d l ;) . 

Definition 4 The orthogonal complement of S21d with respect to the Peters
son inner product: 

(j,g) = r f(z)g(z)dxdy withf,gES2(N), z=x+iy, 
iXo(N) 

is denoted by s;:ew (N) and is called space of new-forms. a cusp-form f is a 
new-form if and only if f(z) = q + Ln2:2 anqn and f is a Hecke-eigenform. 

Theorem 2 (Atkin-Lehner (1970)). Szew(N) is stable under all opera
tors Tn, and so S!J:ew(N) decomposes into a direct sum of orthogonal subspaces 

Szew(N) = EBXi 

each of which is a simultaneous eigenspace for all Tn with gcd( 17" N) = 1. The 
Tp for piN stabilize each Xi over C. The spaces Xi in the above decomposition 
all have dimension 1 over C. 

It is known that Hom(S2(N), q is a free 1I'N 0C-module ofrank one and 
1I'N is a free Z-module of rank equal to the genus of Xo(N). 

Proposition 2 (Merel (1994)). Let R be a commutative ring and let 'l/J E 
Hom(1I'N, R), then 

00 

I)(Tn)qn E S2(N)(R). 
n=1 

We will use this property to compute the Fourier expansion of cusp-forms. 
Since 1I'N is a free Z-module of finite rank acting on S2(N) we get 
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Lemma 1 Let f = q + L::2 a"qn E 8;,ew(N) be a Hecke eigenform and 
T E '][' N. Then the eigenvalue AT is a totally Teal integml algebraic integeT 
and the field 

is a finite extens'lon of CQl. 

4 Heeke Theory on Modular Symbols 

Let us consider Hl(Xo(N),Z) = AB(l1l(Xo(N),z)) which is the Abelian 
group obtained by tRking as generators Rll closed paths on Xo(N), and by 
factoring out by the relRtion that two clothed paths are equivalent if one can 
be continuously deformed into the other. Let a, (3 E 1HI* be points equiva
lent under the Rction of To(N), so that (3 = M(a) for some M E To(N), 
then any smooth path from a to (3 determines an integral homology class in 
Hl (Xo(N), Z) which only depends only on a and (3 (1HI* is simply connected). 
We denote this homology class by the modular symbol {a, (3}. Converselyev
ery integral homology class, E Hl(Xo(N),Z) can be represented by such a 
modular symbol {a. (i}. 

Proposition 3 Let a, ,8" E 1HI*, and let M E To (N). Then 

1. {a,a}=O; 
2. {a, I)} + {{:i,,} + {r.a}: 
3. {Ma,M(3} = {a./I}; 

Corollary 1 The map ]1;[ f-7 {a,]I;[ a} is a sUTjective gmup morphism 
To(N) ~ Hl(Xo(N),Z), which is independent ofa E 1HI*. 

One considers Hl (Xo(N), cusp, Z), the relative homology of Xo(N) with 
respect to the set of the cusps. In particular we can see that Hl(Xo(N),Z) 
is a subgroup of H 1 (X 0 (N), cusp, Z) because we can take as an element of 
Hl (Xo(N), Z), a linear combination of elements {a, M a} with a E CQl U {oo}. 
We denote by Z"'= the sct of the cusps To (N)\CQl U {oo}. A modular symbol 
{a,!3} is an element of H1(Xo(N),cusp,Z), where a, (3 are cusps. For a E 

CQl U { 00 }, we denote by [a] its image in To (N) \ CQl U { 00 }. Later we will study 
more precisely the correspondence. 

Proposition 4 (Eichler and Shimura) One has the exact sequence 

b e 
0-+ Hl(Xo(N),Z) -+ Hl (Xo(N), cusp,Z) -+ Z"'= -+ Z -+ 0 

{a,Ma} f-7 {o,Mo} 
(1) 

{ aJ3} -+ [a]- [(3] 

A[a] -+ A 
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Now we give some recalls: the projective line over ZjNZ is defined by 

JP'l(ZjNZ) = {(c,d) E (Z/NZ)2 I gcd(c,d,N) = 1}/ "', 

where (c, d) '" (c', d') iff cd' == c'd mod N. We can show that the map 

is a bijection between the right coset To(N)\SL2 (Z) and the projective line 
JP'I(ZjNZ). The elements of JP'I(ZjNZ) are called Manin-symbols. 

Theorem 3 (Manin 1972) HI(Xo(N),cusp,Z) is a free Z-module and it 
rank is equal to 2g(Xo(N)) + vc>o(N) - 1. It is generated by the modular 
symbols 

{{M(O), M(oo)}IM E To(N)\SL 2(Z)}; 

and we have the isomorphism 

Let i be the following involution which acts on JHI*, on the Manin-symbols 
and the modular symbols by the following relations: 

i(z)=-z, i((c,d))=(c,d)(-~ ~), i({n,tJ}) = {-n,-8}. 

Restricting (1) to invariant elements under the involution, we get: 

8+ 
0----+ HI(Xo(N),Z)+ ----+ HI(Xo(N),cusp,Z)+ ----+ Z~= 

If we want to construct a basis of HI (Xo(N), Z)+, we have to construct the 
matrix of 15+, thus a basis of HI (Xo(N), cusp, Z)+ and of Z'['. The construc
tion is similar if we want to construct a basis of HI (Xo(N), Z), we just have 
to omit the involution action. 

To find a basis of HI (Xo (N), Z) +. we use the following relations: 

1. (c: d) + (c: d)S = (c: d) + (-d : c) = 0; 
2. (c: d) + (c : d)R + (c : d)R2 = (c: d) + (c + d : -c) + (d : -c - d) = 0; 
3. (c: d) - i((c : d)) = (c: d) - (-c: d) = O. 

These formulas give us the relations between the elements of the represen
tative system of JP'l(ZjNZ), then we just have to index-link the elements of 
this representative system in a canonic basis, then we can construct our Z
module quotient. It is similarly to obtain a Z-module basis of Z~oo. We have 
the following equivalence: 
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l. i([a]) = [a] et [a] == [fi] ~ a = ±/:i mod ro(N) ; 
2. For j = 1,2, let aJ = Pj/(jj, be equivalent cusps written in lowest terms. 

Then Sl (j2 == ±S2(j1 mod gcd( (j1 (j2. N) where s j satisfies Pj s j == 1 mod (jj. 

Now we present some results about the correspondence between homology 
and cusp-forms. 

Proposition 5 (Merel 1994) We have isomorphisms 

1. H1(Xo(N). cv . .,p, Z) ~ cis(ro(N)) ttl S2(N) ttl S2(N); 
2. H1(Xo(N),Z) ~ S2(N) ttl S2(N) and H1(Xo(N),Z)+ ~ S2(N); 
3. dimH1(Xo(N),Z)+ = dimH1(Xo(N),Z)_ = g(Xo(N)); 

where S2(N) is the anti-holomorphic space of cusp-forms, cis(ro(N)) 2S a 
space of modular forms which is called space of Eisenstein series, and we 
noted g(Xo(N)) as the genus of Xo(N). 

We are going to describe the action of Hecke algebra on Manin-symbols 
and modular symbols: 

Proposition 6 For p prime and p IN, if a, f3 are cusps, we have: 

Then 

p-1 
,,{a+k f3+k} Tp({a,,6}) = {pa,pf3} + L.., --, - .. 
k=O P P 

T a ( {a, f3}) = { paxa + y , pax f3 + y }. 
p N za + pat N zf3 + pat 

To compute the matrix of Hecke operators acting on cusp-forms we need 
to be able to convert the modular symbols into Manin symbols [1]. 

If (c: d) E 1P'1(Z/NZ), with the Bezout lemma we can find a,b E Z such 

that det( ~ ~) = 1, so we are be able to convert a Manin symbol into modular 

symbol: 

(ab) {a b} (c: d) ---t M = cd ---t {M(O), M(oo)} = ~. d . 

If we give us a modular symbol {~, ~}, we have the following algorithm: 

Let [a1,' .. ,an] be the simple continued fraction expansion of t, i.e. 

1 
a1+-----

1 
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If we note Ck = [al,' .. ,akl then the numerator Pk and the denominator qk 
of Ck satisfy the equations (For i = 3,4, ... , k) 

Pi = aiPi-1 + Pi-2, P-I = 0, Po = 1, PI = aI, P2 = aIa2 + 1, 

qi = aiqi-I + qi-2, q-l = 1, qo = 0, ql = 1, q2 = a2· 

where t = ~: and we know that Piqi-I - Pi-Iqi = (-l)i, where i 2 o. So we 
obtain that 

We present another method: the Hecke algebra can act directly on Manin 
symbols, in such manner continued fractions are not needed. 

Definition 5 Let Mn = {v E M2X2(Z) I det(v) = n} and 

(c: d)M = {o if (c : d)M rl-JP'I(Z/NZ) 
(c: d)M if (c: d)M E JP'1(Z/NZ). 

For any integer n E Z we will say that the element en = LMEMn UM M E 

Z[Mnl satisfies the condition Cn if 

L uM(M(oo) - M(O)) = (00) - (0). 
MEMn 

Theorem 4 (Merel 1994) If en satisfies the condition Cn then we have 
the following formula for the action of Hecke and Atkin-Lehner operators on 
Manin symbols: 

Tn((c: d)) = L UM(C: d)M for gcd(n, N) = 1, 
MEMn 

MEMn , (c:d)M=(O,O) mod n 

where g = (~ ~) E SL2(Z) and En(gM) is the unique element ofJP'I(Z/NZ) 

congruent to (1, O)gM mod n and to (0, l)gM == (c : d)M mod N/n. 

Theorem 5 (Merel 1994) The element 

a>b2:0, d>~' ad-bc=n (~ ~) E Z[Mnl 
(2) 

satisfies the condition Cn. 
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Now we give a very useful result which gives us an algorithm to restrict to 
new-forms which are in correspondence with elliptic curves and hyperelliptic 
curves of genus two. 

Theorem 6 (Merel 1994) Let x E Z[JIll1 (Z/NZ)] and e = ~MEMI 71MM 
which satisfies thto condition C1 and ltot 

(3) 

for n d'ividing Nand wheTto the smn is restricted to the matrices M such that 
xM E JIll 1 (Z/NZ) , Then :1; belongs to S;"'W(N)if and only if x and WN(x) 
belong to the kernel of f1 fOT all divisOTS n of N. 

Using (2), (3), it is easy to see that the sum e is restricted to the matrix 
identity. With these results we now are able to construct a basis of new-forms 
which are in correspondence with Abelian varieties of genus one or two. We 
are going to see this correspondence in the following section. 

5 New-forms and Abelian Varieties 

Theorem 7 Ltot f = q + ~~=2 an qTt be a H ecke eigenform and let K j = 
Ql( an I n E N) be the field generated by the Fo'urieT coefficients of f. Then 
there exists an Abelian sub-varitoty Aj of Jo(N) and an isomorphism e from 
K f to End(Jo(N)) Ql with the pmpeTties: 

1. dim(A j ) = [Kf : Ql] = d; 
2, If gcd(n, N) = 1, then e( an) coincides with the restriction of Tn to A f'-
3. The conductor N (A f )is equal to N d , wheTe d = dim( A f). 

Moreover the pair (At. (j) 'is un'ique and At is a simple Abelian vaTiety defined 
oveT Ql. 

5.1 L-series and Applications 

Case of elliptic curves Recall that for an elliptic curves E over Ql, we 
define 

where 

1 1 
L(E, s) = II .. II . = '\"' ann- s 

1 - a p-s + pl-s 1 - a p-s ~ 
p good P Jl bad Jl 

a
p 

= {~+ 1- Np 

-1 

o 

if p good; 

if p split nodal; 

if P Ilonsplit nodal; 

if p cuspidal. 
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Recall that to a new-form f we can associate a Dirichlet series which admits 
an Euler product [7] 

II 1 II 1 L s L s = . = ann-(f, ) 1 _ a p-s + pl-s 1 - a p-s 
gcd(p,N)=l p piN P 

Theorem 8 (Eichler-Shimum) Let f = q + I:~=2 anqn a new-form with 
an E Z for all n 2: O. Then there exists an elliptic curve Ef of conductor N 
such that L(f, s) = L(E, s). 

In fact we know now that all elliptic curves are modular, that is to say that 
all elliptic curves of conductor N are simple factors of the Jacobian Jo(N). 

Case of Abelian variety of genus 2 Let f = q + I:~2 anqn be a Hecke 
eigenform, with Kf(an I n E Z) being a quadratic extension of Q. Let If = 

{I d, a} be the set of distinct embedding of K f into C, then we define the 
L-series of f in p by 

L (f s) = {I - aps + pS2 if P doesn't divide N, 
p, 1 - aps if p divide N. 

Theorem 9 Let Lp(Af, s) be the L-series of Af in p. Then, for a p prime 
not dividing N, we have the following properties: 

1. Lp(Af's) = I1o-Elf Lp(r,s); 
2. Lp(Af, 1) = #(Af ® lFp ). 

In particular we have the following formula 

Lp(Aj, 1) = (1 + p + ap)(1 + p + a(ap)) = xt(p + 1), 

where x£ is the minimal polynomial of Tp acting on f. 

Remark 1 The same properties hold if Kf(an In E Z) is an extension ofQ 
of greater degree but we are just interested by elliptic curves and hyperelliptic 
curves of genus 2. 

6 Steps to Compute the Cardinality over IF p 

We are going to summarize by the following points how to compute the 
cardinality of elliptic curves or Abelian variety over IF p: 

• First we construct a representative system of JID1 (ZjNZ), one can take 
all elements (d, i) with d dividing Nand gcd(d, i) = 1, then we have 
to choose a representant in the coset (d, i) where d is fixed because two 
elements (d, i) and (d, j) are equivalent if and only if i - j == 0 mod N j d; 
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• Secondly we find a Manin-symbol basis of H 1(Xo(N), CUSp, 71.)+, for this, 
the relations that we have seen before are essential: 

1. (c:d)+(-d:c)=O; 
2. (c:d)+(c+d:-c)+(d:-c-d)=O; 
3. (c: d) - ( -(" : d) = O. 

We just index-link the representative system of JP'1 (71./ N71.) by the elements 
of a canonical basis, then we just recognize the relations seen above in this 
canonical basis. After we quotient a free 71.-module ofrank #(JP'1 (71./ N71.)) 
index-linked by the canonical basis by the relation seen above. We obtain 
in fact a morphism JP'1(71./N71.) ----) H1(Xo(N),cusp,71.)+ 

• Similarly, we construct a 71.-module basis of 71.~oo. To do this: 
1. First we extract a representative system of cusps which come from 

H1(Xo(N),cusp,71.)+, we saw that it is possible because we can con
vert a Manin-symbol into modular symbol. So we will obtain two 
cusps for each modular symbol. 

2. Then we use the equivalent properties of cusps: [1] 
(a) i([a]) = [a] et [a] == [jJ] ~ a = ±jJ mod ro(N) ; 
(b) For j = 1,2, let aj = Pj/qj, be equivalent cusps written in lowest 

terms. Then S1q2 == ±s2ql mod gcd(qlq2, N) where Sj satisfies 
PjSj == 1 mod qj. 

We also obtain a morphism cusps ------) 71.~oo 

• Now we are able to construct the matrix of 8+ because we have a basis of 
71.~oo and H 1(Xo(N), CUsp, 71.)+ ,with the extended Euclidean algorithm 
we just convert some Manin-symbols into modular symbols and extract 
the two cusps of each modular symbol. 

• To obtain a Manin-symbol basis of S2(N), we just compute the kernel of 
8+. Thus we obtain the vector basis. We get the Manin-symbol basis in 
looking the index-linking that we choose for the representative system of 
JP'1(71./N71.). 

• Our goal now is to restrict to basis of new-forms which are in correspon
dence with Abelian varieties of genus one or two. Thus we choose the 
smaller prime P not dividing N, and we compute the matrix of the p-th 
Hecke operator Tp acting on S2(N). Then we compute the characteristic 
polynomial of Tp and we extract a basis of eigenvectors which corresponds 
to irreducible factors of degree one or two of the characteristic polynomial 
ofTp . 

• For each eigenvector we verify if it is an element of S'!jew(N) with the 
map (3) £1 : S2(N) ------) S2(N/n) with n I N. We keep only the elements 
which belong to s!]ew(N). So we get a Manin-symbol basis of s!]ew(N) 
which are in correspondence with these Abelian varieties of genus one or 
two. Of course sometimes there doesn't exist modular Abelian varieties 
with level N given. We are just interested by the best cases, where there 
is at least an Abelian variety of genus one or two. 

• Now we would like compute the Fourier coefficients of these new-forms 
in order to get the cardinality of these varieties over lFp . In fact the 
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eigenvalues of the p-th Heeke operator acting on a element of the basis 
of S7rw (N) is equal to the p-th coefficient of the new-form which is in 
bijection with this clement. So to compute the series of a new-form we 
just compute the eigenvalues of the Heeke algebra acting on the element 
of the basis of S2(1)) (N). 

In this example we programmed this algorithm with Magma: 
Here is a representative system of jp'l (:2/33:2). We choose this natural 

order given by magma as index-linking for the canonic basis: 

>RepresSyst(33); 

[ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], .. 
,[ 1, 32 ], [ 3, 14 ], [ 3, 11 ], [ 3, 20 ], .. , [ 3, 1 ], 
[ 11, 3 ], [ 11, 2 ], [ 11, 1 ], [ 0, 1 ] 

Now here is a Manin-symbol basis of S2(33). We know that the genus of 
Xo(N) is equal to 3, thus we get 3 vectors. We also take this natural order 
to index-link the basis of S2(33). 

>S2base(33); 

-[ 3, 5 ] 
- [ 11, 3 ] 
+[ 11, 1 ] 

], 

] , 

3, 5 ] 
+[ 3, 4 ] 
-[ 3, 1 ] 
+[ 11, 3 ] 
-[ 11, 1 ] 

-[ 3, 4 ] 
-[11,3] 
+[ 11, 1 J 

The smaller prime p not dividing N is 2. Thus we compute the action of 
the 2-th Heeke operator on 82 (33), because we want to extract the new-forms 
which interest us. 

> HeckeAction(2,33); 

A 
o 2 lJ 
o -2 OJ 
2 2-1] 

> CharcPolyHecke(2,33); 

<x - 1, 1>, 
<x + 2, 2> 

\Ve see that there are two eigenspaces, one is associated to the eigenvalue 1 
and the other is associated to the eigenvalue -2. We need the eigenvectors 
of this eigenspaces: 



> Eigenspace(A,-2); 
Echelonized basis: 
(1 0 -1) 
(0 1 0) 
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> Eigenspace(A,l); 
Echelonized basis: 
(2 2 1) 

We search now the elements of S2:ew(N). The degree ofthe irreducible factors 
of the characteristic polynomial of T2 is one. Thus if S2:ew (N) =I 0, the new
forms are in correspondence with elliptic curves (up to isogeny) of conductor 
equal to 33. We verify that the I-eigenvector satisfies the condition of the 
theorem 6 (3), that is to say that Eigenspace(A,I) has to belong to the kernel 
of the map E1 for the divisors 3 and 11 of 33. 

> Epsilon1(A,1,3); 
(0) 

> Epsilon1(W33(A,1),3); 
(0) 

> Epsilon1(A,1,11); 
(0) 

> Epsilon1(W33(A,1),11); 
(0) 

EpsilonI(A,i,3), for i = 1, -2 is always equal to 0 because dim(S2(3)) = 0 
whereas dim(S2(11)) = 1. We verify that the other eigenvectors which are 
associated to the eigenvalue -2 do not belong to S2:ew (N): 

> Epsilon1(A,-2,3); 
(0) 

(0) 

> Epsilon1(A,-2,11); 
(-4) 

(1) 

Therefore, the eigenvector which is associated to the eigenvalue 1 of the 
Hecke operator T2 belongs to S2:ew (N). So the I-eigenspace is in fact a new
form for which we can compute its Fourier coefficients. We see that the ele
ments which is in correspondence with the eigenvalues -2 belong to because 
dim(E_ 2 ) = 2. 

We have two ways to compute the Fourier coefficients, we can apply the 
p-th Hecke operator directly on the I-eigenvector of Manin-symbols, using 
the Manin and Merel results, or we can transform these Manin-symbols into 
modular symbols and then we use the continued fraction method. In practice 
the continued fraction method is more easier to implement. 

N = 33: genus(Xo(33)) = 3, we can get a new-form associated to a 
elliptic curve: [9] 

J(z) = q+q2 _ q3 _ q4 _ 2q5 _ q6 +4q7 _ 3q8 +q9 _ 2qlO +qll +q12 _ 2q13 ... 

This elliptic curve admits for minimal model E : y2 + xy = x3 + x2 - 11x [1] 

7 Construction of Modular Curves from New-forms 

First we summarize the results of Shimura [4]. Let J(z) a new-form of weight 
two and w(f) = 27riJ(z)dz be the associated differential. 
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Let I j = {(Tl, ... , CJ d} be all the distinct embeddings of K j = 1Ql( al, ... ) 
into ( which is the field generated by the coefficients of f. Let {fa 1 , ••• r d } 

be the complete set of new-forms conjugate to f over 1Ql. There exists an 
Abelian variety Aj rational over IQl (sec section 4 theorem 7) such that the 
space of differential I-forms fll(A j ) is isomorphic to LaElf Cw(r). Let 

f = (r', ... ,rd)t and w(f) = (w(j"'), ... ,w(rd))t. Then the image of 
Hl(Xo(N),Z) by the map 

q is a free Z-module of rank 2d. It is a lattice Aj in (d and we get 

When d = 1 we have an elliptic curve and in this case it is possible to get 
a minimal model of elliptic curve C such that C ~ Aj . See [1]. 

When d = 2, sometimes we can get a model of hyperelliptic curve of 
genus two C such that J ac( C) ~ A j. This model can be obtained if the 
period matrix of A j satisfies certain conditions. See [10]. 

8 Conclusion 

With this method it is possible to construct a general family of elliptic curves 
because we know that all elliptic curves are modular. In fact for a level N 
given we are able to construct up to isogeny all the elliptic curves and in 
fact, without constructing these elliptic curves, we can give the number of 
elliptic curves over Q (up to isogeny) with given conductor N. The complexity 
of this algorithm is polynomial in N. so if the level N is not too large we 
can get a great number of Abelian varieties. We have the Shimura-Taniyama 
conjecture which asserts that any Abelian variety A with real multiplication, 
both defined over 1Ql, is isogenous to a factor of Jo(N) for a suitable N. So we 
just can say that with this algorithm we can compute the number of modular 
Abelian varieties of genus two and conductor N 2 with level N given. We just 
interested by Abelian varieties of genus one or two because the hyperelliptic 
curves of genus two and elliptic curves may give good cryptosystems. An 
important problem in cryptography is to compute of the cardinality of the 
.J acobian of these curves over IF po 

Computing the cardinality over IFp with this algorithm is not possible if p 
is too large: we see that if we choose the method using continued fraction we 
need to compute p continued fractions on fractions of number very closed to 
p. This computing need about O(p log(p)) arithmetic operations. The method 
which uses the matrices sum acting on the Manin-symbols is not better be
cause we know (see [5]. [3]) that these families have a cardinal very closed to 
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p log(p) and it is not easy in practice to construct this sum. So we can't use 
these methods in cryptography. 

A possible improvement would be to find the matrix of the p-th Hecke 
operator with p large. It would be interesting if we find for example a method 
to compute the p-th Hecke operator action modulo some small prime numbers 
ii with a polynomial complexity who depends of ii' (CRT) 
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Asymptotic Properties of Global Fields 

M. A. Tsfasman* 

Institut de Mathematiques de Luminy, Independent University of Moscow, 
and Institute for Information Transmission Problems. 
E-mail: tsfasman@iml.univ-mrs.fr. 

Abstract. The main object of our study is an "infinite" global field, i.e., an infi
nite algebraic extension either of <Q or of IF r (t). In order to understand such fields 
we study sequences of usual global fields, both number and function, with grow
ing discriminant (respectively, genus). We manage to generalize the Odlyzko-Serre 
bounds and the Brauer-Siegel theorem. This leads to asymptotic bounds on the 
ratio log hR/ log /fDT valid without the standard assumption n/ log /fDT -+ 0, 
thus including, in particular, the case of unramified towers. Then we produce ex
amples of class field towers, showing that this assumption is indeed necessary for 
the Brauer-Siegel theorem to hold. To understand what is going on, we introduce 
zeta-functions of infinite global fields, and study measures corresponding to limit 
distributions of zeroes of usual zeta functions. 

Definitions. Let K be a global field, i.e., either a number field of degree 
n and absolute value of the discriminant D with rl real and r2 pairs of 
complex embeddings, or a function field over lFr ; in the function field case we 
set rl = r2 = 0 and 9 = genus(K); in the number field case, 9 = log JiDI. 
By h we denote the class-number of K (which equals the number of lFr -

rational points on the Jacobian of K in the function field case); R denotes 
the regulator of K in the number field case and equals 1 in the function 
field case. We write log for loge in the number field case, and for logr in the 
function field case over lFr ; the Euler constant is denoted by 'Y. For a prime 
power q let Nq(K) := I{v E P(K) : Norm(v) = q}1 , where P(K) is the set 
of non-archimedean places of K. 

We call a sequence {Kd of global fields a family if g(Ki) ----> 00 for i ----> 00, 

in the function field case r being fixed. We call a family {Ki} asymptotically 
exact if and only if there exist all the limits (for any prime power q) 

A simple diagonal argument shows that every family {Kd contains an 
asymptotically exact subfamily. 

By an infinite global field we mean an infinite algebraic extension either 
of Ql or of lFr(t). 

* Supported in part by RBRF 99-01-01204. This lecture is based on my joint work 
with Serge Vladut. 
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Lemma 1. Let lC be ani7ljinite global field. Any such field is thearlion of 
a tower of embedded global fields, lC = UK;. Any embedded tower is asymp
totically el:act. and moreover. the corresponding limits do not depend on the 
choice of the tower. but only on the field lC itself. 

Basic Inequality. To simplify the exposition. in what follows we assume the 
Generalized Riemann Hypothesis. Without it. the results for number fields 
become weaker (see Remark 1). 

First we prove 

Theorem 1 (Basic Inequality). For any infinite global field (and for any 
asymptotically exact family of global fields) one has 

~ cP log q. ~ 1f I 
~ Jq _ 1 + ¢R (log 2 V 21f + 4" + "2 ) + cPc (log 81f + I) <; L 

q 

the sum being taken over all prime powers q. 

In the number field case this result generalizes the Odlyzko-Serre inequal
ities for the discriminant. In the function field case it becomes 

'Xl '3 
~ Tn,! 111 < 1 
~ rm / 2 - 1 - , 
rn=l 

and generalizes the Drinfeld- VUidut theorem. Here f3m = cPr'" is the ratio of 
the number of places of degree Tn to the genus. 

Generalized Brauer-Siegel Theorem. Our next concern is the class num
ber. 

Lemma 2. For any 'infinite global field JC = UKi (and faT any asymptotically 
exact family of global .fields K i ) the limit 

BS(lC) = lim log h(Ki)R(Ki) 
i~oc g(Ki) 

exists. Moreover, for an infinite global field it does not depend on the choice 
of the tower. but only on the field lC itse~f. 

Then we prove 

Theorem 2 (Generalized Brauer-Siegel Theorem). FaT any infinite 
global field (and for any asymptotically exact family of global fields) one has 

~ q . 
BS(lC) = 1 + ~ cPq log -- - CPR log 2 - cPclog 21f , 

q - 1 
IJ 

the smn being taken oueT all pTirne powers q. 



330 :M. A. Tsfasman 

In the function field case it simplifies to 

00 m 

BS(K) = 1 + " (3m log _r_1· 
~ rm-m=l 

Bounds. Next question is that of the possible asymptotic behaviour of the 
Brauer-Siegel ratio BS(K). For the number field case we have 

Theorem 3 (Bounds). For any family of number fields 

BS < 1· . f log h(Ki)R(Ki) < l' log h(Ki)R(Ki) < BS 
low _ 1m m (K.) - 1m sup (K.) _ up 

"->00 g, '->00 g, 

where 
log 2n 

BSlow = 1 - ::::; 0.5165 ... , 
,+ log8n 

and 

log ~ + log §. + log Z 
BS = 1 + 2 4 6 ::::; 1.0938 .... 

up ::r + 1': +log2V21f+ log2 + ~ + ~ + log7 
2 4 v'2-1 V3-1 v5-1 v'7-1 

We see that the possible values for the ratio BS(K) lie in the interval 
(0.5165 ... ,1.0938 ... ). 

Note that in the statement of the classical Brauer-Siegel theorem there 
is the assumption nj log M ----; 0, which is equivalent to ¢ffi. = ¢c = 0 (and 
hence, ¢q = 0 for any q, since L::'=l m¢pm :s; ¢ffi. + 2¢c for any prime p). In 
this case, Theorem 2 implies BS = 1. 

The analogue of Theorem 3 for the function field case is 

log h(Ki). log h(Ki) r 
1 :s; lim inf r( K ) :s; hm sup r( K ) :s; 1 + ( Vr - 1) logr --

'->00 gi i->oo 9 i r - 1 

Examples. Having in mind the classical value 1 of the Brauer-Siegel theorem 
itself, it is natural to ask whether in our more general setting there exist 
examples when the ratio differs from 1, or not. They do exist. 

Theorem 4. Consider the field Kl which is the union of the 2-class field 
tower over Ql(cos ~~, y'2, V-23). This field is infinite and 

0.5939 ... :s; BS(Kd :s; 0.6025 .... 

For the field K2 which is the union of such 2-class field tower over 

Ql( V11·13·17 ·19·23·29·31·37·41·43·47·53·59·61·67) 
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that nine prime ideals lying over 2, 3, 5, 7 and 71 split completely, we have 

1.0602 ... ::; BS(!Cd ::; 1.0798 .... 

This shows that the condition nl log IDI ----> 0 in the Brauer-Siegel theorem 
is indeed indispensable for the ratio to be 1. Corresponding examples for the 
function field case are provided by modular curves. 

Zeta functions. To understand these results we introduce a limit zeta
function, roughly, the limit of g-th roots of classical zeta-functions. 

The limit zeta function of an asymptotically exact family is defined by 
the product 

(~(s) := II(l- q-S)-¢q , 
q 

q running over all prime powers. The" corrected" zeta function is defined as 

(¢(s) := eST¢IR 7r- s¢IR/2 (27r)-S¢C r(~)¢1R r(s)¢C II (1- q-S)-¢q. 
q 

Lemma 3. The product defining zeta functions (~( s) and (¢ (8) absolutely 

converges for Re (8) ~ ~. 

Note that (¢ (8) depends only on ¢'s and does not depend on the particular 
sequence of global fields. In particular, we have defined (d 8) for any infinite 
global field !C. 

Let now 
~¢(8) := (log (¢)' = (',p/(¢ = 

¢'R. 1 S L logq 
1 - -log7r - ¢IC log27r + -¢'R.'l/J( -) + ¢1C'l/J(8) - ¢--2 2 2 q qS - 1 

q 

where 'l/J(8) = r;: (8) . 

Then one can express the Basic Inequality (Theorem 1) as 

~¢(1/2) ~ 0 , 

and the generalized Brauer-Siegel theorem (Theorem 2) either as 

or as 
. log I'£i 0 

hm -- = log(¢(l), 
t-->CX) gi 

I'£i being the residue of (K, (8) at 1. 
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Measures. Let K = UKj be all infinite number field. For each K j we define 
the measure 

L'lK 
.I 

where t(p) = (p - ~) / i, and p runs over all non-trivial zeros of the zeta
function (KJ (8). Because of the GRH t(p) is real, and L'lKJ is a discrete 
measure on R Moreover, L'lK) is a measure of slow growth. 

Now we are ready to express the limit distribution of zeta zeros in terms 
of the parameters (cP:fI&' cPc, ¢q) of the field K. 

Theorem 5. In the space of measures of slow growth on lR the limit 

L'lJ( := lim L'lKJ 
J----l-X' 

exists. Moreover, the measure L'lJ( has a continuous density .MJ(, 

where 
J2j cos(t log q) - 1 

h (t) = ----''-------~--:-
q q + 1 - 2J2j cos(t log q) 

Corollary (Asymptotic Explicit Formula). We have 

L cP log q rc:;- 1f I 
q + (DJR: (log V 81f + - + - ) + cPc (log 81f + I) = 1 - lvh (0) . J2j-l . 4 2 

q 

In other words, we have transformed the basic inequality into equality, 
showing that the deficiency. i.e .. the difference between 1 and the left hand 
side, equals 

In the function field case, the corresponding statement is also true. The 
Asymptotic Explicit Formula gives the asymptotic distribution law for Frobe
nius angles for asymptotically exact families of function fields, or, which is 
the same. the limit distribution law for zeroes of their zeta-functions. Let 
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K = UKj be an infinite global field. For a zero p of the zeta-function (K j (s) 
define t(p) as 

1 p--
t(p) := _._2 . 

n2 

Clearly, t(p) is a real number defined modulo 2, and we suppose that 
t(p) E (-1, 1] which determines it uniquely. 

Let 
1 

Ll j := - '" 8t (p) , g. 6 
J (Kj(p)=O 

where 8t (p) is, as usual, the Dirac measure supported at t(p) . Then Llj is 
a measure of total mass 2 on ~/2Z, and Ll j is symmetric with respect to 
t f--t -to Points of ~/2Z are given by their representatives in (-1,1]. 

In the function field case in the weak topology on the space of measures 
on ~/2Z the limit 

Ll(K) := lim Llj 
J-->OO 

exists. The measure Ll(K) has a continuous density MJ( , 

1 in 00 

Mdt) = Re (~j3( - + -1 -t)) = 1 - L mf3mhm(t) 
2 ogr 

m=1 

for 
qm/2 cos(nmt) - 1 

hm(t) = / ' qm + 1 - 2qm 2 cos(nmt) 

which depends only on the field K and we have 

Remark 1 (Unconditional results). What can we prove with no GRH at 
hand? Instead of the Basic Inequality we get two weaker ones 

00 

2 L ¢q log q L (qm + 1)-1 + ¢lRh /2 + 1/2 + log 2J1f) + ¢lCh + 10g4n) ::::: 1 
q m=1 

and 
'" ¢ logq 
6 ; _ 1 + h/2 + log 2 J1f) ¢lR + h + 10g2n)¢1C ::::: l. 

q 

We can prove the existence of BS(K) and the Generalized Brauer-Siegel 
Theorem only for the case of a normal infinite number field K. (For any 
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asymptotically exact family of number fields we still have the "less than or 
equal to" inequality for the upper limit of the ratio.) The bounds weaken to 

(0.4087 ... ,1.1588 ... ). 

In our examples the possible range for BS(lC) is then, respectively, 

(0.5939 ... ,0.6235 ... ) and (1.0602 ... ,1.0921 ... ). 

We have no unconditional results for zero distributions. 

Remark 2 (Proofs). The proofs of Theorems 1 and 2 and of their uncon
ditional counterparts are those of analytic number theory. We use Guinand
Weil and Lagarias-Odlyzko explicit formulas. Theorem 3 is treated as a linear 
programming problem. the proof being rather cumbersome but elementary. 
To produce the examples like those of Theorem 4 we turn to the algebraic 
number theory, using the class field towers technique and decomposition con
siderations. The zeta-function theory and Theorem 5 need some analytic 
technique again. It is comparatively easy to guess what the results should 
look like, and even to prove them in the function field case. The subtle part 
is to prove different convergencies in the number field case. 

Conclusion. An infinite global field has a very strange set of invariants, 
which can be expressed either as an infinite sequence of non-negative real 
numbers {¢q(lC)}. or aD a limit zeta function Cds), or as a limit zero measure 
L1x::. This makes me expect that there exists a yet unknown to us non-trivial 
theory of infinite global fields. 
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