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Preface

This volume represents the refereed proceedings of the “Sixth International
Conference on Finite Fields and Applications (F¢6)” held in the city of
Oaxaca, México, between 22-26 May 2001. The conference was hosted by the
Departmento do Matemadticas of the Universidad Auténoma Metropolitana-
Iztapalapa, México. This event continued a series of biennial international
conferences on Finite Fields and Applications, following earlier meetings at
the University of Nevada at Las Vegas (USA) in August 1991 and August
1993, the University of Glasgow (Scotland) in July 1995, the University of
Waterloo (Canada) in August 1997, and at the University of Augsburg (Ger-
many) in August 1999. The Organizing Committee of Fig6 consisted of Dieter
Jungnickel (University of Augsburg, Germany), Neal Koblitz (University of
Washington, USA), Alfred Menezes (University of Waterloo, Canada), Gary
Mullen (The Pennsylvania State University, USA), Harald Niederreiter (Na-
tional University of Singapore, Singapore), Vera Pless (University of Illinois,
USA), Carlos Renteria (IPN, México), Henning Stichtenoth (Essen Univer-
sity, Germany), and Horacio Tapia-Recillas, Chair (Universidad Auténoma
Metropolitan-Iztapalapa, México).

The program of the conference consisted of four full days and one half
day of sessions, with 7 invited plenary talks, close to 60 contributed talks,
basic courses in finite ficlds, cryptography and coding theory and a series of
lectures at local educational institutions.

Finite fields have an inherently fascinating structure and they are im-
portant tools in discrete mathematics. Their applications range from com-
binatorial design theory, finite geometrics, and algebraic geometry to coding
theory, cryptology, and scientific computing. A particularly fruitful aspect is
the interplay between theory and applications which has led to many new
perspectives in research on finite fields. This interplay has been a dominant
theme in earlier F, conferences and was very much in evidence at Fg6. Ap-
plied or applications-oriented topics accounted for a significant part of the
program.

These proceedings reflect the wide variety of topics represented at the con-
ference. Most, invited talks and a good proportion of the contributed talks
are on permanent record here. All contributed talks were screened before the
conference and all full papers were carefully referced. We would like to take
this opportunity to thank the members of the Organizing Committee and
all referees who helped in these tasks. These colleagues contributed enor-
mously to the quality of the conference presentations and to guaranteeing
high standards for these proceedings.

We greatly appreciate the generous financial support received for the con-
ference. A fair portion of the funds were provided by a grant from the Consejo
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Nacional de Ciencia y Tecnologia (CONACYT), México and from various of-
fices of the host institution. We also thank Universidad Benito Juarez de
Oaxaca, Instituto Tecnolégico de Oaxaca, Direccién General de Servicios
do Cémputo Académico-UNAM, Instituto Politécnico Nacional, Sociedad
Matemaética Mexicana, Certicom Corp., Institute of Combinatorics and Ap-
plications, and Red de Criptologia (CONACYT-UAM) for diverse kinds of
support.

We are grateful to various offices of the state of Oaxaca who helped with
additional funds and organizational issues. Thanks are also due to the Gov-
ernor of the state of Oaxaca, who gave a reception for the participants in the
splendid setting of the Centro Cultural Santo Domingo in the city of Oax-
aca. Last but not least, the highly efficient and friendly manner in which the
conference took place would not have been possible without the enthusiasm
and hard work by the assistants, secretaries and students who saw to many
details involved in such a major event; we are grateful to all of them.

Regarding the present proceedings, we thank Dr. Martin Peters of Sprin-
ger-Verlag who gave us the opportunity to edit this volume with a top
publisher and in an attractive form. Working with him and all the staff at
Springer-Verlag is always a pleasure.

Finally, we are pleased to confirm that the Fgq series will continue with
Fq7 in Toulouse, France in May 2003. We expect another lively and stim-
ulating meeting there, which should, like the previous conferences, serve as
an important meeting place for theoretical as well as applied aspects of finite
fields. We hope to see you there!

May 2002 Horacio Tapia-Recillas
Gary Mullen
Henning Stichtenoth
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Commutative Semifields of Rank 2
Over Their Middle Nucleus

Simeon Ball'* and Michel Lavrauw?
! Queen Mary, University of London, London, E1 4NS, United Kingdom
2 Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands

Abstract. This article is about finite commutative semifields that are of rank 2
over their middle nucleus, the largest subset of elements that is a finite field. These
semifields have a direct correspondence to certain flocks of the quadratic cone in
PG(3,q) and to certain ovoids of the parabolic space Q(4,q). We shall consider
these links, the known examples and non-existence results.

1 Semifields

A finite semifield S is a finite algebraic system that possesses two binary
operations, addition and multiplication, which satisfy the following axioms.

(S1) Addition is a group with identity 0.

(S2) a(b+c¢) =ab+ac and (a+ b)c = ac+be for all a, b, c € S.

(S3) There exists an element 1 # 0 such that la =a=al forall a € S.
(S4) If ab = 0 then cither @ = 0 or b= 0.

Throughout this article the term semifield will refer to a finite semifield. The
additive group of a semifield must be commutative. By (S2),

(ac+ad) + (be + bd) = (a + b)(c + d) = (ac+ be) + (ad + bd).

Hence, ad + bc = be + ad and any elements that can be written as products
commute under addition. By (S4) and finiteness, any element of S can be
written as a product and so it follows that the additive group is abelian.
Moreover it is not difficult to show that the group is elementary abelian.
Let a # 0, and let p be the additive order of a. If p is not prime then we
can write p = rs for r and s integers not equal to 1, and by observing that
0 = (pa)a = (rsa)a = (ra)(sa) we get a contradiction from (S4). The fact
that every nonzero element has prime order suffices to show that the group is
elementary abelian. and that all nonzero elements have the same prime order
p. This number p is the characteristic of the semifield. An elementary abelian
group can be viewed as a vector space over a finite field. In particular S has
p" elements where n is the dimension of S over the field GF(p). There are

* The author acknowledges the support of an EPSRC (UK) Advanced Research
Fellowship AF/990 480.



2 Simeon Ball and Michel Lavrauw

many examples of semifields known and some standard constructions can be
found in Knuth [19]. If the order is p, the semifield must be GF(p). If the
order is p?, the semifield is GF(p?). This is not difficult to see. Let {1,z}
be a basis for the semifield. Multiplication is determined by z? = ax + b
and the polynomial x? — az — b has no roots in GF(p) else we would have
2> —ar —b = (v — r)(x — s) = 0 contradicting (S4). Thus 2? — az — b
is irreducible and the multiplication is GF(p*). This short argument comes
again from [19] where it is also determined that the only semifield of order
8 is GF(8). And completing the question of existence Albert [1] and Knuth
[19] construct semifields that are not finite fields for every other order q = p",
that is h > 3 if pis odd and h > 4 if p = 2.

The major motivation to study semifields in the 1960’s was their use in
the construction of projective planes, see Hughes and Piper [16] or Hall [15].
Every semifield determines a projective plane and the projective plane is
Desarguesian if and only if the semifield is a field. The incidence structure
constructed from a semifield S with

Points: (0,0, 1) Lines: [0,0,1]
(0,1,a) [0,1,a] a€S
(1,a,b) l,a,b] a, beS

such that the point (r1,z2,z3) is incident with the line [yy, yo, y3] if and only
if
Y1T3 = TaY2 + T1Y3

is a projective plane 7(8) of order |S|. It is a simple matter to check that
any two points of w(S) are incident with a unique line and dually that any
two lines of 7(S) are incident with a unique point and hence that 7(8) is a
projective plane. However it is harder to determine when two semifields S
and 8’ determine the same projective plane, i.e. 7(S) = 7(S’). In [19] Knuth
defines an isotopism from S to 8’ and shows that an isotopism is equivalent
to a set of three 1-1 maps (F,G, H) linear over GF(p) from S to &', such
that

(ab)H = (aF)(bG)

for all a, b, ¢ € S. Two semifields S and &' are isotopic if there is an isotopism
from S to §’. We have the following theorem due to Albert, a proof of which
can be found in [19].

Theorem 1. Two semifields coordinatize the same projective plane if and
only if they are isotopic.

In his original work on semifields Dickson [12] considered constructing
commutative semifields, that is semifields that satisfy

(S5) ab = ba for all @ and b in S.
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We define the middle nucleus of a commutative semifield to be
N = {z] (ax)b = a(xb), Va,b € S}.

It is clear that A contains the field GF(p) where p is the characteristic
and that A is itself a finite field. Moreover, S can be viewed as a vector
space over its middle nucleus. Dickson [13] gave a construction of a com-
mutative semifield of rank 2 over its middle nucleus. It is as follows. Let
S:={(z,y) | x,y € GF(q)} and let o be an automorphism of GF(q) where
q is odd. Addition is defined component-wise and multiplication by

(x,y)(u.v) = (2v + yu, yo + mz°u’)

where m is a non-square in GF(q). The only axiom that requires much
thought is (S4) and we shall check this in a more general setting shortly.
In this article we shall only be concerned with commutative semifields that
are of rank 2 over their middle nucleus which have a correspondence with
certain useful geometric objects.

Cohen and Ganley [10] made significant progress in the investigation of
commutative semifields of rank 2 over their middle nucleus. They put Dick-
son’s construction in the following more general setting. Let & be a com-
mutative semifield of order ¢* with middle nucleus G F(q). Then there is an
a € 8§\ GF(q) such that {1,a} is a basis for S. Addition in S is component-
wise and multiplication is defined as

(z,y)(u.v) = (za + y)(ue + v) = 2ua® + (20 + Yu)a + yv (1)

= (zv + yu + g(zu),yv + f(uz))

where za? = g(z)a+ f(z), f and g are functions from GF(q) — GF(q). The
distributive laws are satisfied if and only if both f and ¢ are linear maps, in
other words, f(z +vy) = f(x) + f(y) and g(z + y) = g(z) + g(y) for all =, y
in GF(q). Thus we must check (S4). Suppose that

(za+ y)(ua+v) =0
and that z, y, u and v are non-zero. It follows that
g(zu) +xv+yu =0

and
flau) +yv =0

and eliminating y that
xv? + vg(zu) — uf(zu) = 0.
Writing zu = z and v/u = w

2w? + g(z)w — f(z) = 0.



4 Simeon Ball and Michel Lavrauw

If one or more of x, y, u or v is zero it follows immediately that at least one
of (x,y) or (u,v) is (0,0). Hence we have proved the following theorem which
comes from [10].

Theorem 2. Let S be a commutative semifield of rank 2 over its middle
nucleus GF(q). Then there exist linear functions f and g such that multipli-
cation in S is defined as in (1) and zw? + g(2)w — f(2) = 0 has no solutions
for allw, z € GF(q) and z # 0.

If ¢ is odd then this quadratic in w will have no solutions in GF(q) if and
only if
9(2)* +4zf(2)

is a non-square for all z € GF(q)*. Cohen and Ganley [10] prove the following
theorem for ¢ even.

Theorem 3. For g even the only commutative semifield of rank 2 over its
middle nucleus GF(q) is the finite field GF(q?).

In light of this theorem we restrict ourselves to the case ¢ is odd.

Let us consider again the example of Dickson. We have g = 0 and f(z) =
mz? where m is a non-square. We had only to check that (S4) is satisfied and
this is clear since g(z)?+4zf(z) = 4mz°*! is a non-square for all z € GF(q)*.

2  Flocks of the Quadratic Cone

Let ¢ be an odd prime power and let K be a quadratic cone of PG(3,q) with
vertex v and base a conic C. The quadratic cones of PG(3,q) are equivalent
under the action of PGL(4, q) so we can assume that v is the point (0,0,0,1)
and the conic C in the plane m with equation X3 = 0, is the set of zeros of
XoX; = X2

A flock F of K is a partition of K\ {v} into ¢ conics. We call the planes
that contain conics of the flock the planes of the flock. A flock F is equivalent
to a flock F’ if there is an element in the stabiliser group of the quadratic
cone that maps the planes of the flock F to the planes of the flock F'. If all
the planes of the flock share a line then the flock is called linear.

Let

apXog+ a1 X1 +asXo+a3X3=0

be a plane of the flock. Since (0, 0,0, 1) is disjoint from any plane of the flock
az # 0 and hence we may assume that a3 = 1. The point (1,0,0, —ag) is
incident with the quadratic cone and this plane and hence the coefficients of
Xy in the planes of the flock are distinct. Hence we can parameterise by the
elements of GF(q) so that the planes of the flock are

T - LXO - f(t)Xl +g(t)XQ + X3 =0

where t € GF(q) and f and g are functions from GF(q) — GF(q).
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The points that are incident with the line that is the intersection of two
planes of the flock m; and 7, are incident with the plane

(t—s)Xo— (f(t) = f(5)) X1+ (g(t) — g(s)) X2 = 0.

The points that are incident with the cone K satisfy the equation XoX; = X3.
If the equation

(= 8)X5 = (F(t) = F())XT + (g(t) — g(5)) X1 X2 = 0

has a solution then we can find a line on the cone, by choosing the Xj
coordinate appropriately, that would be contained in the plane above, and
hence a point on the cone and incident with both the planes m; and 7. The
flock property implies that no such point exists and hence that this equation
has no solutions. There is no solution with X; = 0 as this would imply that
Xy = 0 and that t = s. Hence we can put w = X5/X; and we have the
forward implication of the following theorem which is due to Thas [26].

Theorem 4. Let F be a flock of the quadratic cone with vertex (0,0,0,1) and
base XoX1 = X3. Then there exists functions f and g from GF(q) — GF(q)
such that the planes of the flock are

tXy — f(t)Xl + g(t)Xg +X3=0
where t € GF(q) and F is a flock if and only if

(t = s)w? + (g(t) = g(s))w = (f(t) = f(5)) =0
has no solution for all s and t € GF(q), s # t.

If f and g are additive then the condition of the theorem says that F is a
flock if and only if

2w? + g(z)w — f(2) =0

has no solutions for w € GF(q) and z € GF(q)*. A flock with this property
is called a semifield flock as such a flock is in one-to-one correspondence with
a commutative semifield of rank 2 over its middle nucleus. This is clear from
Theorem 2. The commutative semifield S = {(x,y) | z,y € GF(q)} where
addition is defined component-wise and multiplication is defined by

(@,y)(u,v) = (zv + yu + g(zu),yo + f(zu))

is the semifield associated to the flock F.

The known examples of semifield flocks up to equivalence are listed in Ta-
ble 1. In all relevant cases m is taken to be a non-square in GF{q) and ¢ is a
nontrivial automorphism of GF(q). Some of the links between the commuta-
tive semifields, certain ovoids of Q(4, ¢), semifield flocks of the quadratic cone
and semifield translation planes were not known until recently and hence in
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Table 1. The known examples of semifield flocks up to equivalence

name g@)]  fl@) Je=p"
linear 0 mx all
Dickson [12] Kantor [18] Knuth [19] 0 ma’
Cohen-Ganley [10] Thas-Payne (28] 2 \m™ e+ ma® 3h
Penttila-Williams [24], Bader-Lunardon-Pinneri [4]| z* ot 3°

most cases more than one person or persons is accredited with the discovery
of the functions f and g. In fact in the second case Dickson [12] discovered the
semifield, Kantor [18] the ovoid and Knuth [19] the semifield plane. In the
third example Cohen and Ganley [10] discovered the semifield while Thas
and Payne found the ovoid [28]. And in the fourth example Penttila and
Williams discovered the ovoid [24] and details concerning the corresponding
flock were investigated by Bader, Lunardon and Pinneri [4]. We shall discuss
these equivalent objects in the following sections and explain the links be-
tween them and how this can be of use. Firstly however we shall check that
the last two examples in Table 1 do indeed satisfy the condition of Theorem 2
and Theorem 4. In the Cohen-Ganley Thas-Payne example

g(x)? +4xf(x) = g(x)* +af(x) = 2° + m™'2? + ma'® = m(z® — m™'z)?
which is a non-square for all z € GF(3")*.

The Penttila-Williams example is somewhat more difficult to prove. The
following comes from [2]. We have that

g(x)? +duf(x) = g(x)? +of(x) = 2% + 2 = 25(1 4 22?)
and since 3% — 1 = 242 = 2.11? we need to show that 1 + € is a non-square
for all € such that ¢! = 1. Now (g —1)/2 =121 = 1+ 3+ 32 + 3% + 3* and
in GF(3%)
I+ =141+ +)(1+E)A+ 8.

The set {1,3,9,27,81} are the squares modulo 11 and each non-zero inte-
ger modulo 11 can be written exactly 3 times as the sum of elements of
{1,3,9,27,81} modulo 11. Hence in GF(3°)

(1+e)'?=2=-1

and 1+ € is a non-square for all ¢ such that e'! = 1.
The following theorem comes from [14].

Theorem 5. The projective planes obtained from the flocks F and F' are
isomorphic if and only if the flocks F and F' are equivalent.
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The projective planes in Theorem 5 are constructed, via the Bruck Bose
André method, from the spread

{{(y,2.1,0), (f(z).y + 9(x).0.1)) | 2.y € GF(q)} U {((1,0,0,0),(0,1,0,0)) }.

This plane is a semifield plane. Following [11, (5.1.2)] the spread comes from

the spread set
p={("}"0) roeoru)

which has the property that the determinant of M — N is non-zero for all
distinct M, N € D. The plane is coordinatised by the semifield whose multi-
plication is defined by

<y> | () B < Pk 5) </) B (Ivyt)?ifl;ffzf’)(zt))'

We can check that this multiplication defines a semifield. It is only condition
(S4) that requires some work. If

zg(u) +zv+yu =0

and
zf(u) +yv=0

then
v + zg(u)v — zuf(u) = 0.

If z = 0 one can check that then one of either (z,y) or (u,v) is equal to (0,0).
If 2 # 0 then, since g(u)? + 4uf(u) is a non-square for all u € GF(¢)*, u =0
and it follows that (u,v) = (0,0). Hence this is a semifield. Note that this
means we can construct a not necessarily commutative semifield from the
functions f and g. Now semifields that we get from the above multiplication
will be isotopic if there corresponding flocks are equivalent by Theorem 1 and
Theorem 5. However we have not proved that the commutative semifields that
we get from the functions f and ¢ are isotopic if and only if their associated
flocks are equivalent.

The following theorem which we prove in Section 6 shows that there is an
isotopism between two commutative semifields if their associated flocks are
equivalent.

Theorem 6. F and F are equivalent semifield flocks if and only if there
exists a linear one-to-one map F from S to S and a GF(p)-linear map H
from S to S such that

(ab)H = (aF).(bF)

for all a, b € S where . is multiplication in S and F and F are the semifield
flocks associated to the commutative semifields S and S of rank 2 over their
middle nucleus GF(q), q = p™, respectively.
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Let us consider for the moment a flock that is linear, i.e. with the property
that all the planes of the flock contain a common line. The points that are
dual to the planes of the flock

{{t, = f(t),9(1).1) | t € GF(q)}

are collinear and so (f(t) — f(s))/(t —s) and (g(t) —g(s))/(t— s) are constant
for all s # t. Hence f and g have polynomial degree 1. The following theorem
is from Thas [26].

Theorem 7. A flock whose planes are all incident with a common point is
either linear (in which case the planes of the flock share a common line) or
equivalent to a semifield flock of Dickson, Kantor, Knuth type.

Remark 1. Tt follows from this theorem that the semifield flocks we obtain
directly from the Cohen-Ganley so-called sporadic example of a semifield
and the semifields from [25] are equivalent to a semifield flock of Dickson,
Kantor, Knuth type. In [25, Theorem 1] g(t) = tV9 and f(t) = ct and it is
a simple matter to check that the planes of the flock are all incident with
the point (c,1,0.0) and in [25, Theorem 2] g(t) = at + btV? and f(t) =t
and the planes of the flock are all incident with the point (1,1,0,0). As
mentioned in [14] the sporadic example of Cohen and Ganley over GF(52)
with g(t) = t° and f(t) = 2¢/2t> + t the planes of the flock are all incident
with the point (1, 1,2V/2, 0). By Theorem 6 their associated commutative
semifields are isotopic to a Dickson, Kantor, Knuth semifield. All known
examples of commutative semifields rank 2 over their middle nucleus are
isotopic to one of the commutative semifields rank 2 over their middle nucleus
constructed from the pairs of functions in Table 1.

In the following argument we are going to use the so-called linear repre-
sentation of PG(2,q) so let us recall what we mean by this (for more details
see [22]). Let GF(qo) be a subfield of GF(q), ¢ = q%. Let V be the vector
space of rank 3 over GF(q). The projective plane PG(2,q) is the incidence
geometry whose points are the subspaces of rank 1 of V and whose lines are
the subspaces of rank 2 of V. However V is a vector space of rank 3n over
GF(qo) and the points of PG(2,q) are subspaces of rank n which are mutu-
ally disjoint and cover V\ 0, i.e. they form a spread A. The spread A induces
a spread in the subspace generated by any two elements of A (since this
subspace is a line of PG(2,q)). We call a spread with this property normal.

Let us consider a semifield flock F. The points

{{t. = f(t).9(1).1) | t € GF(q)}

that are dual to the planes of the flock project on to the plane X3 = 0 the
set of points
W= {{t, = f(t).9(t),0) | t € GF(q)}.
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Since the functions f and g are additive, they are linear over some subfield
GF(qo) of GF(q). The maximum subfield with this property is often called
the kernel of the flock. This kernel is equal to the left nucleus of the semifield
(and hence equal to the right nucleus since the semifield is commutative).
If we look at the linear representation of the plane X5 = 0 the set W is a
subspace of rank n over GF(qq) .

The vertex of the quadratic cone is the point (0,0,0,1) and this point is
dual to the plane X3 = 0 and the ¢ + 1 lines on the quadratic cone are dual
to a set of ¢+ 1 lines in the plane X3 = 0 that are tangents to some conic C'.
The definition of a flock implies that the points in W are not incident with
a tangent to this conic C', i.e. the set W is contained in the internal points
of the conic C’. If the flock is linear then the set W is a point of the plane
X3 = 0. Theorem 7 implies that the flock is of Dickson, Kantor, Knuth type
if and only if the set W is contained in a line of the plane X3 = 0. In all other
cases the set W in the linear representation contains a subplane PG(2,qo)
that is contained in the internal points of a conic in PG(2,q). However this
cannot always occur. The following is from [5].

Theorem 8. If there is a subplane of order qy contained in the internal
points of a conic in PG(2,q) where ¢ = q& then qo < 4n? — 8n + 2.

The above argument leads immediately to the following corollaries.

Corollary 1. A semifield flock of the quadratic cone of PG(3, q) whose defin-
ing functions f and g are linear over the subfield GF(qo) where ¢ = qf and
qo > 4n®—8n+2 is either a linear flock or a Dickson, Kantor, Knuth semifield
flock.

Corollary 2. A commutative semifield of rank 2 over its middle nucleus
GF(q) that has defining functions f and g which are linear over the subfield
GF(qo) where ¢ = qf and qy > 4n* — 8n + 2 is either the finite field GF(q?)
or isotopic to a Dickson, Kantor, Knuth semifield.

Remark 2. We may expect something much stronger than this bound to hold.
Indeed we can see that the theorem hypothesis requires that their is a sub-
plane in the internal points of the conic. However in fact the set W is con-
tained in the internal points of a conic and in the linear representation of
PG(2,q) it is a subspace of rank n over GF(qo).

The bound in the theorem for n = 3 gives ¢y < 14 and by computer
Bloemen, Thas and van Maldeghem [7] have checked that there are no other
semifield flocks other than the linear flock and the Dickson, Kantor, Knuth
flocks. Note also that the only other known examples have gy = 3.

The following nice result of Bader and Lunardon [3] shows that in some
sense the Pentilla-Williams example is sporadic, and any other examples vet
to discovered.
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Theorem 9. If there is a polynomial h(t) over GF(q) such that for a fized
non-square m in GF(q) the equality

g(t) +4tf(t) = mh(t)

s a polynomial identity then f and g are one of the first three examples in
Table 1.

3 The Generalized Quadrangle T'(£)

A generalized quadrangle is a set of points and a set of lines with an incidence
relation that satisfies the following axioms.

(Q1) Every two points are incident with at most one line.

(Q2) For all anti-flags (p, L) (the point p is not incident with the line L)
there is exactly one point incident with L and collinear with p.

(Q3) There is no point collinear with all others.

Let GG be a generalized quadrangle in which there is a line incident with
at least three points and a point incident with at least three lines. It is
not difficult to prove that the number of points incident with a line, and the
number of lines incident with a point, are constants. We say G is a generalized
quadrangle of order s, t if every line is incident with s + 1 points and every
point is incident with ¢ -+ 1 lines.

An egg £, of PG(2n+m — 1,q) is a set of ¢" + 1 (n — 1)-subspaces
with the properties that any three elements of &, ,, span a (3n — 1)-space
and every element of &,, ,, is contained in a (n +m — 1)-subspace called a
tangent space that is skew from all other elements of &,, ,,. We write £ for
Em.n when no confusion is possible.

The following construction of the generalized quadrangle T'(E,, ;) from
an egg is based on a construction due to Tits and comes from Payne and
Thas [23]. Let &, ,, be an egg of 7 = PG(2n+m —1,q) and embed the space
7 in PG(2n 4+ m, q). Points are defined as

(i) the points of PG(2n +m,q) \ ,

(ii) the (n + m)-spaces of PG(2n + m,q) that contain a tangent space of
Em n but are not contained in ,

(ili) a symbol (o0).

Lines are defined as

(a) the n-spaces of PG(2n4m, q) which contain an element of &, ,, but are
not contained in T,
(b) the elements of &, ..
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Incidence is as follows. A point of type (i) is incident with a line of type (a)
if they are incident in PG(2n + m,q). A point of type (i) is incident with
the lines of type (a) which it contains and the unique line of type (b) which
it contains. The point of type (iii) is incident with all lines of type (b).

T(&.n) 1s a generalized quadrangle of order (g™, ¢™), [23, Theorem 8.7.1]
or [20, Theorem 3.3.1]. Let C be a non-singular conic in PG(2,¢{). In the
linear representation described in the previous section the g + 1 points of C
become gff +1 (n—1)-subspaces of PG(3n—1, qo) which form an egg & whose
tangent spaces correspond to the set of tangent lines of C. The generalized
quadrangle T'(&¢) is the Tits generalized quadrangle T»(C) of order (g, qf))-

An ovoid O of a generalised quadrangle is a set of points with the prop-
erty that every line is incident with exactly one point of @. An ovoid of a
generalised quadrangle of order (s,t) contains st 4+ 1 points.

Let us consider an ovoid O of T»(C) that contains the point (co). The set
O\ {(00)} is a set of ¢*" points of type (a) with the property that the line
of PG(3n,qp) spanned by any two of them meets 7 in a point not contained
in an element of the egg &¢.

Let us consider again the set W from the previous section which is con-
tained in the internal points of a conic C’. In the linear representation W is
a (n — 1)-subspace of a (3n — 1)-space 7’ disjoint from all elements and all
tangent spaces of the egg Ec/. In the dual space the space W* dual to W is a
(2n — 1)-subspace of a (3n — 1)-space 7 disjoint from the (n — 1)-subspaces
dual to the tangent spaces. In the dual setting we have an egg £ where C is
the dual of the conic C'. Embed 7 in a (3n)-space and let P be any point of
PG(3n,q) \ 7. The (2n)-subspace (W*, P) has the property that any two of
its points span a line that meets 7 in point not in the egg &-. Hence

(W™, P)\m) U {(o0)}

is an ovoid of the generalised quadrangle T5(C).
The above argument was first explained by Thas [27].

4 Ovoids of Q(4,q)

In this section we shall see that T»(C) is isomorphic to the classical generalised
quadrangle Q(4, ¢) and hence that commutative semifields of rank 2 over their
middle nucleus imply certain ovoids of Q(4, ¢q).

A quadratic form Q(x) on a vector space V over a field F satisfies the
axioms

Q(Ax) = N?Q(x) forall x € V

Qx+y)=Q(x)+Qy) +b(x,y)

where b(x,y) is a bilinear form. A totally singular subspace S is a subspace
with the property that Q(x) =0, Q(y) = 0 and b(x,y) =0 for all x, y € S.
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We restrict ourselves to the case where the field F' = GF(q) and the max-
imum rank of a totally singular subspace is 2. The classification of quadratic
forms over a finite field says that there are three such inequivalent non-
singular quadratic forms {for more details on the equivalence and singular-
ity of quadratic forms see [8]). Let G denote the geometry whose points
are the totally singular subspaces of rank 1 and whose lines are the to-
tally singular subspaces of rank 2 for one of these quadratic forms. Let (x)
and S be totally singular subspaces of rank 1 and 2 respectively such that
x ¢ S, i.e. a non-incident point and line of G. The rank of S N x* where
xt :={z €V | b(x.z) = 0} is 1 since x* is a hyperplane not containing
S. In terms of the geometry this implies that for a non-incident point P and
line [ of G there is a unique point P’ incident with [ and collinear with P.
Hence from the three quadratic forms we obtain three generalised quadran-
gles which are called the classical orthogonal generalised quadrangles. These
are listed in Table 2 in which g is an irreducible homogeneous quadratic form.

Table 2. The classical orthogonal generalised quadrangles

name label |n Canonical form
Hyperbolic|QT (3, ¢)[4 Q(x) = zox1 + T2x3
Parabolic | Q(4,q) |5| Q(x) = zoz1 + x324 — 23
Elliptic |Q7(5,¢)|6|Q(x) = zox1 + x2xs + g(x4,x5)

An ovoid O of a classical orthogonal generalised quadrangle of order (s, t)
is a set of st 4+ 1 totally singular subspaces of rank 1 with the property that
for all distinct (x), (y) € O the bilinear form b(x,y) # 0.

Let the generalised quadrangle Q(4.¢q) of order (g,q) be defined by the
quadratic form

Q(x) = zoxy + 324 — :13%.
An ovoid O of Q(4, q) has ¢?+1 points. We may assume that (0,0,0,0,1) € O.
The associated bilinear form to @ is

b(x,y) = Toy1 + Yox1 + T3ya + Tays — 272Ya.

For any (z) € O
0 # b(x.(0,0,0,0,1)) = x3

and hence we can assume that 23 = 1. Moreover if x = (x¢, x1, 22,1, 24) and
y = (20, y1,22. 1.ys) where (x) and (y) € O then

b(x,y) = xoy1 + Lox1 + Y4 + Tg — 2:1:3 =QRx)+Q(y)=0

and so the first and third coordinate pair are distinct pairs for distinct points
of the ovoid. Hence there is a polynomial F(z,y) such that the ovoid

O = {{z. F(z.y).y. 1,y* — 2F(x,y)) | =,y € GF(q)} U {(0,0,0,0,1)}.
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Table 3. The known examples of ovoids of Q(4, q)

name F(z,y) q restrictions
elliptic quadrics me all

Kantor [18] ma® odd |« € Aut(GF(q))
Thas-Payne [28] m™lx + (mx)/° + 43| 3h

Penttila-Williams [24] N The 35

Ree-Tits slice [18] 27T 4y 32T a=+/3q
Tits [29] T 4y 2 0 =/2q

In the article of Penttila and Williams [24] the stabiliser group of each
of the known ovoids is calculated. Note that in four examples of Table 3
F(z,y) = f(x) + g(y) where f and g are linear over some subfield of GF(q).
In the previous section we constructed an ovoid of T5(C) from a semifield
flock. However the generalised quadrangle T5(C) is isomorphic to Q(4, ). Let
¢ : Q(4,q) — T»(C), where C is the conic XoX; = X3, be the map

(0.0,0,0,1) s ()

{a.b,c,1,¢% —ab) — {a,b,c,1)

(a® 1aOb> H<(a?1a0)( b,0,0,1))
(1.0,0,0,a) — {(1,0,0,0),(0,—a,0,1)).

This is indeed an isomorphism since collinearity is preserved. The points
(x) = {a,b,c,1,c*> — ab) and (x') = {(a’,¥/,c/,1,c* — a/b') are collinear in
Q(4,q) if and only if b(x,x') = ab/ + ba’ — ab — a'b/ + * — 2¢cc + ? =
(c—c)? —(a—a')(b—1b) =0if and only if the point {(a —a’,b~V,c—¢)
lies on the conic XgX; = X%. One can check that the other incidences are
preserved.

Hence from the ovoid of T5(C) that was constructed in the previous section
we get an ovoid of Q(4, ¢). In the next section we shall use explicit coordinates
to calculate F'(x,y) from the functions f and g that determine the semifield
flock. The following theorem is from Lunardon [22].

Theorem 10. If F and F' are semifield flocks of the quadratic cone then
the ovoids that come from the flocks are equivalent if and only if the flocks F
and F' are equivalent.

5 Correspondence Between the Ovoid and the Flock
Using Coordinates

As in [20] we follow the argument of Thas [27] using coordinates. Let us see
how this works. It may help to refer back to end of Section 3.

The lines on the quadratic cone with vertex (0,0,0,1) and base defined by
the equation XoX; = X7 dualise with respect to the standard inner product
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to lines in the plane X3 = 0 with equation
Xo+ (I,2X1 +aXy =0.

These lines are tangents to the conic whose points are the zeros of the
quadratic form Q' = 4XX; — X2. The associated bilinear form is

V(x,y) = dxoyr + dyoxs — 220%s.
We wish to view the vector space of rank 3 over GF{(q) as a vector space of
rank 3n over GF(qo) and the bilinear form &' over this vector space is
b(x,y) = Trqqo (4201 + 4yor1 — 2222).

In Section 3 the set W is contained in the hyperplane X5 = 0 and is the set
of points {(t, —f(t),g(t)) |t € GF(q)}. The functions f and ¢ are linear over
some subfield GF(qo) and so we can write

n—1 n—1
ft) = Z ¢it® and g(t) = Z bt
i=0 i=0

We follow the argument at the end of Section 3 and dualise with respect to
the bilinear form b. A point (xg, 21, z2) € W* if and only if

Tro—g,(—4xof(t) + dz1t — 2299(t)) = 0
for all t € GF(q) if and only if

n—1
TTq_,qo((~4CofL'0 + 4z, — 2b0$2)t + E(—4CZ‘£B0 — Qbil‘g)tqé) =0
=1
if and only if
n—1 .
Trg—qe((—4cozo + 4y — 2bgzo + Z(~4cixo —2bxe)% ) =0
i=1
for all t € GF(q). Hence
n-—1 .
dx = Z(4Ci.?70 + Qbixg)qol 1.
=0
The set
n—1 1 B
W* = {<I(), Z(CiIo + ibifﬂg)qo ,1’2> 1 Lo, To € GF((])}
i=0

Now if we were to cone W* to the set (W*, P) where P is a point not on the
hyperplane X3 = 0 we would have ¢* points of an ovoid of the 73(C) defined
with conic 4XoX; = XJ. However we wish to have an ovoid of the 73(C)
defined by the conic XoX; = X2 and so we use the map 1 that takes
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X() — XQ
X1 — X]
X2 = %XQ

and maps the subspace W* to the subspace

{{(x, F(z,y),y) | z,y € GF(q)}

where
n—1 )
n-—1

F(I, y) = Z(—Ciﬂt + biy)qn

1=0

We take the point P to be the point (0,0,0, 1) so that the set

{{z, F(x,y),y,1) |2,y € GF(q)}

is a set of ¢% points of an ovoid of Ty(C). We apply the isomorphism ¢!
from the previous section to give the explicit points of an ovoid of Q(4,q)
that comes from the semifield flock defined by the functions f and g,

O = {{z, F(z.y),y,1,y* — xF(z,y) | 2,y € GF(q)} U{(0,0,0,0,1)}.

6 Correspondence Between the Commutative Semifield
and the Flock

In this section we look at the correspondence between the commutative semi-
fields of rank 2 over their middle nucleus and the associated semifield flocks.
This is a proof of Theorem 6.

Let S and S be commutative semifields of rank 2 over their middle nucleus
GF(q), ¢ = p", constructed from the pairs of functions (f,g) and (f, g)
respectively. The functions f, g, f , ¢ are linear over GF(p) so we can write
them as

n—1 n—1
fa)=3"fa?' . gla)=" gaa?,

=0 =0

n—1 n—1

fay=3"fa". §a) =Y g
=0 =0

Let us assume that there exists a one-to-one G'F(p)-linear map H from S to
S and a one-to-one linear map F from S to S such that

((z,y)(u, ) H = ((2,y) F).((u, ) F)
for all (z,y) and (u,v) € S. Expanding the left-hand side we get

(&, y)(u, v))H = (20 + yu + §uz),yo + f(uz))H
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n—1 n—1
= <Zh(u+uu+q ux) +z:mz yo + f(uz))?

=0 =0

n—1 n—1
Zkl(uw—gu—l—qum p +Zl (yo + f(uz))? )

=0 1=0
for some h;, m;, k; and [;. Expanding the right-hand side we get

((z,9)F) . ((u,0)F) = (aox + oy, fox + f1y) - (aou + aqv, fou + frv) =

(2ap8pzu + 201 Bryv + (aBy + o fo)(xv + yu)+
9((aoz + ary)(agu + aqv)),
Boau+ Byv + BoPr(xv + yu) + f((aor + ony)(aou + a1v))),

for some ag, a1, Gy and F1. Equate the coefficient of (yv)p to get
(i>0) m; = (1] gl (i =0) mo =201 + g,
(i>0) L=a?fi (i=0) lo=p+afo.
Equate the coefficient of (yu)?" to get
(i>0) hi=(apa1)” g; (i=0) ho= o+ 1B+ aoaigo,

(i>0) ki =(agar)" fi (i=0) ko= 0o +com fo.
Equate the coeflicient of (xu)”j to get

n—1 n—1

J>0 Z}qu] z‘i’zmzfj 2*0[0 g]a

n—1 n—1
(7 = O) Z h’ignfi + Z 7nifn-'/l = QOtoﬁo + 04390?
1=0 1=0
(j > 0) ZkzgjﬁZij_a £
n—1
qurLz+Zler 1_/6(]+a0f0
=0 =

where all indices are taken modulo n. Subbtltute the expressions for the h;,
mi, ki and [; in the previous four equations and get the equations A; for

n—1 n—1

Z(%%)p 9igj—i + (a0 + a10)g; + Z af? gi]ﬁjﬂ‘ + 20151]2]' = aﬁpj 9i>
i=0 =0
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the equation Ag

n—1 n—1
E (@01)? Gign—i + (0f1 + @130)go + E i’ Gifn—i+ 2011 fo =
i=0 i=0

20000 + aggo,
the equations B, for j =1,...,n—1

n—1 n—1 ) )
Z(Oéoal)pl fi9j—i + BoBrg; + Z a%p fifi—i+Bif = O«Q)p fis

=0 i=0

and the equation By

n—1 n—1 )
Z(aom)ﬂ Fign—i+ BoPrio + Y 05¥ fifui+ BLfo = B + o fo.
i=0 i=0

Now the sums Z?;Ol Ajt?" and Z?:_ol Bjt? give

glaeng(t)) + (aoBr + Boar)§(t) + g(aF (1)) + 201 B1 £ (t) = 2a0B0t + g(adt)
and

Fa0eng(t) + Bofha(t) + fa f(0) + BT (1) = B3t + fladt).
The functions f and ¢ are additive and so these equations can be written as

g(—adt + a2 f(t) + a1a0d(t)) = 20080t — 20151 f(t) — (aoBr + Focu )§(t)

and
f(=agt +atf(t) + amaog(t) = A5t = B f(t) = BoSrg(t)-
Put u = —a2t+a?f(t) + aga1§(t) and rewrite the above equations in matrix
form as
—af  —aj Qapay 0 t u
-5 6 Bobr 0 —f) | _ | —fw)
2000y 20131 —(aofr + Boar) 0 g(t) 9(u)
0 0 0 1 1 1

The matrix is an element of the stabiliser group of the quadratic cone defined
by the equation 4XpX; = X3 with vertex (0,0,0,1). Dualising as in the
previous section this implies that there is an element of the stabiliser group of
the quadratic cone defined by the equation XoX; = X2 with vertex (0,0, 0,1)
that maps the set of planes

A~

{tXo — f(£) X1+ g(t) X2 + X3 =0[t € GF(q)}
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to the planes
{uXo— flu) X1 +g(u)Xo+ X3 =0|u € GF(q)}.

The converse argument works following the above argument in reverse.
Note that the determinant of the matrix is —(af1 — a1 {30)3 and the deter-
minant of map F'is ooy — a18y. Therefore F' will be a non-singular map
and hence H will be non-singular too.

7 g-clans and Translation Generalised Quadrangles

A g-clanis a set {4, |t € GF(q)} of q two by two matrices with entries from
GF(q) with the property that the difference of any two distinct matrices is
anisotropic, i.e.
a(Ay — Aot =0
s # t implies a = (0,0). A g-clan is additive if A; + As = Asps.
Consider the set of matrices

{(f) f)%) It e GF(q)}

where f and g are linear over some subfield GF(qp). Let (v,u) be such that
(v,u)(Ar — Ag)(v,u)T =0, 5 # t. It follows that

o (322 ) o™ =0

where z = ¢ — s. This implies that 2v? + vug(z) — u?f(z) = 0 and z # 0.
If either w = 0 or v = 0 then (u,v) = (0,0). If u # 0 then making the
substitution z = v/u
2w? 4 wg(z) — f(z) =0.

If this quadratic has no solutions for w,z € GF(q) and z # 0 this set of
matrices is a g-clan. However this is the same condition as in Theorem 2 and
o to a commutative semifield of rank 2 over its middle nucleus GF(q) there
is an associated additive g-clan. The following theorem is from [21]. For the
definition of an egg see Section 3.

Theorem 11. The set {A; |t € GF(q)} of 2 X 2 matrices over GF(q) is an
additive q-clan if and only if the set € = {E, | v € GF(q)? U {o0}}, with

Ey = {{t,—vAn", —v(A + AD)) |t € GF(q)},
Ew = {{0,£,0,0) | t € GF(q)},

v € GF(q)? U{oo}},

T, = {{t. 17" +7AlY".0) [t € GF(q), B € GF(9)*},

Tp. ={(0.t.5) |t € GF(q), B € GF(¢g)*}
is an egg of PG(4n — 1, qo) where g = qf}.

and tangent spaces Tg = {Tg,




Commutative Semifields 19

The construction of a generalized quadrangle T'(€) in Section 3 from an egg £
implies that from a commutative semifields of rank 2 over its middle nucleus
one can construct a generalized quadrangle of order (g, ¢?). This is a special
case of a more general construction of generalized quadrangles due to Kantor
[17]. If a generalized quadrangle G has an abelian collineation group that acts
regularly on the points not collinear with a base point P while fixing every
line incident with P then G is called a translation generalized quadrangle. The
following theorem is from [23, (8.7.1)].

Theorem 12. The incidence structure T(E) is a translation generalized
quadrangle of order (", q™) with base point (0) and conversely every trans-
lation generalized quadrangle is isomorphic to a T(E) for some egg € of
PG(2n+m—1,q).

For more details and other results concerning eggs and translation generalized
quadrangles refer to [20] or [21].

8 Concluding Remarks

It was the intention of this article to show how useful pairs of functions f
and g from GF(q) — GF(q) linear over a subfield with the property that
¢%(z) +4x f(x) is a non-square for all z € GF(q)* are. Of course it would be
of great interest to have more examples. The recent geometrical construction
of the Penttila-Williams ovoid by Cardinali [9] from a Cohen-Ganley Thas-
Payne flock and a Dickson Kantor Knuth flock gives hope that there may be
a geometrical way to construct new examples.

The fact that the set W is a subspace of rank n contained in the internal
points of a conic is not necessarily required in the hypothesis of Theorem 8.
The theorem only requires that W contains a subplane. One might expect
that a much stronger bound should hold in Corollary 1 and Corollary 2 if
one could utilise the fact that W is a much larger subspace for n > 4.

We have seen that the functions f and g allow us to construct not just
a commutative semifield of rank 2 over its middle nucleus but other semi-
fields as well. A geometrical explanation of these semifields (including the
commutative semifield of rank 2 over its middle nucleus) will appear in [6].
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Abstract. The purpose of this paper is to design a private key cryptosystem that
uses error correcting codes in an efficient way.

A secret key variant of the McEliece public key cryptosystem [5] was introduced
by Rao and Nam in [7].

One of the practical drawbacks of the Rao-Nam system is that it needs to keep
in memory the set of error vectors and syndromes in order to remove the errors in
the decryption process.

Our proposal is to use the product of random error-correcting linear codes, and
to take advantage of the product structure in order to tag the positions in error.
The cryptosystem we present will have two main advantages:

e There are no memory requirements.
e The decryption process is easy.

1 Introduction

The well known McEliece Public Key Cryptosystem (PKC) (see [5], [1]) is
based on error correcting codes. The private key of each user of the system
is the generator matrix G of a linear [n,k,d] code with a good decoding
algorithm (in the original proposal by McEliece it was a binary classic Goppa
code), which is disguised as G’ = SGP, where S is an invertible matrix and
P a permutation matrix. G’, being the generator matrix of a linear code
with the same parameters as the one generated by G, but supposedly hard
to decode, is the public key of the user. The sender encrypts a k-bit message
vector m into an n-bit ciphertext vector ¢ as

c=mG +e

where e is a random n-bit error vector of weight less than or equal to the
correcting capability t.

Jordan [4] and Rao [6] propose to use the same idea for a private key
cryptosystem (by also keeping G’ secret). They at first thought that it would
allow a drastic reduction in the size of the keys used. Nonetheless, as van
Tilburg points out in [8], the small weight of the error-vectors permits, by
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means of an easy Majority Voting (MV) analysis, the recovering of the G'-
matrix (bringing the problem back to McEliece’s PKC but with an easily
breakable parameter size).

The only case in which the MV attack is not successful is when the average
weight of the error vectors is n/2 in the binary case (n(q — 1)/q in the g-ary
case). That kind of error vectors is beyond the correcting capability of any
linear code. To overcome the problem, Rao and Nam in [7] propose choosing
the error vectors among the elements of a (secret) set Z of predefined error
vectors of average weight n/2 and each with a different, syndrome.

The RN-ciphering is as follows: y = (xSG + 2)P, 2z € Z, and S and P
as above. At the deciphering end the user computes ¢’ = yP~' and the syn-
drome of 3. Looking up in the syndrome-error table (Z, HZ7) he identifies
z and removes it.

The two main drawbacks of RN-system are the linearity of the whole
process and the need to store in memory, as part of the key, the syndrome—
error table, which in practice results in a limited size of such table.

Struik and van Tilburg, in [8], take advantage of both features pointed out
before and cryptanalize the equivalent scheme y = G + z (let us note that
the matrices S, P do not play a relevant role in the RN-scheme because it does
not make use of any actual decoding algorithm for G). That cryptanalysis
relies strongly on the fact that in the binary case the sum of two encryptions
G + 71, xG + 2o of the same plaintext x is an element z1 + 20 € Z + 2,
and this, together with the limited size of Z (limitation forced by the need
to store Z), allows the breaking of the system.

To avoid that kind of attack, which makes use of the linearity of the
cryptosystem, Struik and van Tilburg propose a modification consisting of
breaking the linearity by means of introducing invertible non-linear functions
fs indexed by the syndrome, that scramble the space of message vectors.

Still that system has the other weakness, namely, the need to store the
syndrome—error table. Making use of the limited size of the set of error vectors
Z, it can be broken as Barbero and Ytrehus show in [2].

Hence, in order to build a secure Rao-Nam-like cryptosystem one should
fight against both characteristics at once.

Assuming that the problem with linearity is already solved in the way pro-
posed by Struik and van Tilburg, we still need to design a system in which
the errors used must have enormous average weight on the one hand, but on
the other hand they must be in some sense correctable by the code so that
there is no need to store them and, on a third hand, the total number of dif-
ferent errors used must be large enough to avoid attacks like that of Barbero
and Ytrehus that make use of the feasibility of retrieving all eryptograms
associated to a given plaintext.

All together it seems an impossible task, since random errors of enormous
weight are non correctable by a linear code, but here we can make use of an-
other characteristic of the system, that is, the errors do not appear randomly,
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but are introduced on purpose by the sender, hence he can control the type
of errors introduced. Now the idea is to use some family of codes that can
correct errors of enormous weights provided they have a certain structure.

This paper presents a variation of the RN system that can solve the
problem. We propose the use of some nice properties of the product codes in
order to be able to avoid the need to store any set of errors. The idea is to
make use of the structure of a product code in order to remove certain errors,
that can be of considerably high weight, provided the errors satisfy certain
conditions. The errors do not need to be stored since they can be generated
randomly, just paying attention to satisfying the required conditions, and
this can be done by a simple checking. Also the codes used as factors do
not need to be of any special kind, since we do not need to use them for
actual decoding. Hence random linear codes can be used, paying attention in
principle only to their lengths and dimensions.

Besides, the total number of errors for suitable parameters can be made
large enough so as to make computationally infeasible attacks like that of
Barbero and Ytrehus, described in [2].

Regarding the problem with linearity, we follow the idea used by Struik
and van Tilburg.

The only practical problem that affects this system is the fact that, as we
will see later. the information rate can be poor, that is, the plaintext will in
general experiment a large expansion before being sent through the channel.

The paper is organized as follows. In Section 2, we give the definition
and some properties of product codes as well as some results, both of general
linear codes and of product codes, that will be used in the design of our
cryptosystem. Section 3 contains the description of our scheme together with
a small example to illustrate it. Section 4 is for some considerations about the
cryptosystem presented, specially regarding the set of errors used and also
some suggestions about the choice of parameters in order to achieve good
performance of the system. The last section is for the conclusions.

2 Product Codes

Let C; and C; be two linear codes over the finite field F, with parameters
(n1, k1, dy) and (ng, ko, do) respectively. The definition of the product code is
as follows:

Definition 1. The product code C of C; and Cy, denoted C; @ Cs, is the set
of all the ny x ny matrices over F, , whose columns are in C; and whose rows
are in Co.

The set so defined is itself a linecar code over F
n=nine, k = kike and d = did».

If Gy and Gy are generator matrices of C; and Cy respectively, then the
Kronecker product matrix G = G; @ G5 is a generator matrix of the product

¢» With parameters
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C. However, not every generator matrix of G' can be expressed in this way.
It should also be remarked that the property of being susceptible to being
expressed as a product code is not invariant under equivalence, that is to say,
an equivalent code of a product code does not have to be a produet code (See
3D

Thus, a permutation P of the columns of a generator matrix G of a
product code of sufficiently large length, plus a change of basis (i.e. taking
G’ = SGP) will make the recovering of the original factorization of the given
code infeasible.

Remark 1. For words of a product code of length n. = nyny we will denote the
coordinates or positions with just one index 1 < j < n, or with a pair (i,7),
1 <i<mny, 1<j<ng, depending on whether we are considering the word
as a vector of length n or as a matrix of size ny X ny. This will be clear from
the context and we hope it will not lead to confusion.

Also, to pass from one notation to the other is immediate, since we will
always consider the same deterministic way of passing from an n—wvector
to an ny X ne matriz and viceversa. Namely, the vector will be split in ny
conseculive portions of length no and these will be placed one under another
as the rows of an ny X ny matriz, and reciprocally, the rows of an ny X no
matriz will be placed consecutively one after another to form a vector of length
.

As has already been said, the product code C = C;®Cs is a linear code and
consequently it has a correcting capability ¢ = [(d1dy — 1)/2]. Nonetheless,
its structure of product code enables the correction, and specially in the case
that interests us, the detection and location of error configurations of weight,
in most cases, much larger than its capability as a linear code.

In what follows supp(v) will denote the support of a vector v, that is the
set of coordinates in which v is not zero. In the same way we will denote the
support of a matrix.

We will make use of the following result:

Theorem 1. Let Y = X + E be the received word (matriz), where X € C is
the sent word.

When the error matriz E is such that none of the non zero columns of E
is a codeword of Cy and none of the non zero rows of E is a codeword of Ca,
then the error I can be located, in the sense that the minimum rectangle of
positions R such that R D supp(E) can be determined.

Proof. Let H; be a parity check matrix for the code C;, i = 1, 2. Taking into
account the hypotheses that the error matrix E satisfies, we have that H;Y
shows the columns of Y affected by errors, and analogously Y HY shows the
rows of Y that have errors. Hence we can determine the minimum rectangle



26 Angela 1. Barbero and Juan G. Tena

of positions, R. that contains the support of E as follows,

ith row of Y HI is non zero
R =< (i,5)] and
j-th column of HyY is non zero

It is well known that a certain set of positions J = {ji,...,jx} that are
information positions in a generator matrix G of a linear (n, k)-code C ( i.e.,
such that the matrix Gy (J), formed considering the columns corresponding
to the positions in J. has rank k), can be taken as information positions
in any other generator matrix G’ of the same code C. Hence, one can talk
about information positions (or coordinates) in a code C as those that are
information coordinates in any generator matriz of C.

Another well known fact regarding linear codes is that the information
positions determine any codeword. Therefore, given a a linear (n, k)-code C
over F,. if e € Fl, ¢ # 0. is a vector such that {1,...,n}\supp(e) contains
k information positions in C then e ¢ C. This is clear because any codeword
which has zeros in a set of information positions can only be the all-zero
word.

Now, more specifically about product codes, let us recall some facts that
we will use in the sequel.

We will call the next one lemma in order to refer to it more easily when
we need it.

Lemma 1. Let Gy, be an invertible matriz of size k;y, © = 1,2. Then the
Kronecker product Gy, xx, = G, ®Gy, is invertible and Gk_,llxk,2 = G,:11®Gk_,21

As a consequence of the previous result one can see that the product of
information positions for the factor codes will give a rectangle of information
positions for the product code.

3 The Proposed Scheme

Let C;, i = 1,2, be linear codes of parameters (n;, k;). These codes do not
need to be “good” linear codes in the usual sense, in fact we are not going to
use any of the main characteristics of good codes, like the minimum distance
or the existence of a good decoding algorithm. In fact we can even generate
these factor codes in a random way by simply taking two matrices Gy, i = 1,2
with the corresponding sizes and ranks. Let C be the product code C = C;®Co
with parameters n = ning and k = kiks and let G = G; ® Gy be a generator
matrix of C. We also choose matrices S, P as in the McEliece PKC, that is,
S is an invertible scrambling matrix of size & and P a permutation matrix of
size n. The role played by these matrices here is to hide the product structure
of G. Finally let us denote by H; a parity check matrix of C;, for i = 1, 2.
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Encryption: Let m be the cleartext. a vector of length k1 ko over F . Let E be
a ny X ng error-matrix with support contained in a rectangle R as in the
setting of Theorem 1 and such that the complementary of the positions
in R contains ki x ko information positions. This can be constructed as
follows.

Supposing we first want to choose the rows with errors, then we can
proceed in the following steps: '

o Choose k; information positions I = {iy,... i, } in Gj.

e Choose a vector e; of length n; and such that supp(e;) C {1,...,n; }\I

(note that this guarantees that ey HI # 0).

e Choose another vector es of length ng such that egHQT # 0.

e Construct E = el @ ey
Analogously one could start by choosing the columns with errors and
by exchanging the roles played by rows and columns in the description
above.
Let us note that this gives us a very simple procedure to construct errors
that verify the hypotheses needed in Theorem 1. But still many other
error matrices that meet the required conditions can be constructed by
slightly modifying the above procedure, that is, choosing, for instance, a
set I = {i1,....ik, } of k; information positions in C;, and then placing
random non zero values in any random set of positions (4, j) chosen among
those with i ¢ I. Finally use Hs to check that every non zero row of the
error matrix is not a codeword of Cs. In case some row turns out to be a
codeword just make a new choice of values for the positions in that row
until the resulting ny-vector is not a codeword of Cs.
E can now be written as an nyns vector e just by putting the rows one
after another.
The ciphertext will then be

¢=(fr(m)SG +e)P

where fr is a non linear invertible function fg : Ffj'k‘z — F’;lk? indexed
by R. Such a function can consist, for instance, of a permutation of the
elements of Fé"lk? depending on the positions in R.
Decryption:
e The receiver starts by computing ¢ = cP~! = fr(m)SG + e.
o The next step is to write ¢ as a matrix C’ of dimensions n; X ny as
explained in the remark in the previous section.
o Determine the rectangle of errors R as in the proof of Theorem 1.
o Next choose k; x ko information positions in G outside R and compute
the inverse of the submatrix Gy, «, corresponding to the columns of
G in those positions. The way in which F was generated, guarantees
the existence of k; X ko information positions outside R. It is also
clear that ¢ and fr(m)SG coincide in all the positions outside R,
and hence coincide in the positions corresponding to Gy, xx,. Then
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fr(M)SGy, xk, will be computed by simply selecting the coordinates
in ¢ in the corresponding positions.
b —1 1
e Compute fr(m)SGp, xr, G (1,5 = fr(M).
e Finally recover m as f5, ' (fr(m)).

Let us point out now some characteristics of the design of the cryptosys-

tem:

1.

As we remarked previously, the factor codes C; and Co can be chosen
randomly. just paying attention to their lengths and dimensions in order
to achieve suitable parameters of the product code in the way we will
precise below (see Section 4).

. The private key the users need to exchange consists of the matrices G

and G5, the matrix S and the permutation P. The matrix G and the
parity check matrices Hy and Hy can be computed from G; and Gs.
The two legal users do not even need to arrive to the same parity check
matrices, since they only need to use them to characterize which vectors
are in the corresponding factor codes, so any parity check matrix H; will
work.

There is no need to store any set of errors. In the first procedure described,
the ‘factor’ errors ey and e can be generated randomly after selecting the
set I, and then, checking whether they verify the required conditions or
not can be done multiplying by the corresponding parity check matrix.
In case the vector ¢; does not verify e; HI # 0 it can be rejected and
another e; can be generated randomly until one is found that verifies
the condition. In the more general procedure, described afterwards, the
checking must be done over all the non zero rows (or columns).

The choice of ky x ko information positions in GG and the computation
of the inverse of Gy, xk, is done according to Lemma 1. Hence the com-
putational complexity of those parts of the encryption and decryption
processes depends on the parameters ny,no, ky and ko, and not on the
parameters n and k.

3.1 Example

Here we give a little example to illustrate the processes of encryption and
decryption with our cryptosystem. The parameters used in the example are
small to allow a full description of the whole system in a limited space, but
do not pretend to be suggestions for the size of the parameters in a real
application. For that we refer the reader to the next section.

In our example we will consider over the field Fy the codes C; and Cq

generated by the following matrices:

11000

1101
Gl‘{ﬂl(l)l} and Go= 01011
00101
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The product code € will have parameters n = 20 and k = 6 so the rate is
aproximately 1/3.
We will consider any couple of parity check matrices Hy and Hs, for

instance:
0101 00111
i = {1 110} and Hz = [11 1()1}

The generator matrix of the product code is G = G1 @ G.
We will take also the scrambling matrix

[110000]
011000
001010
000100
000011
1000001

And a permutation
P =(2.15,12.14.5,4.3.10.8,19.16.7,6, 18,17, 11, 1,13, 20, 9)

Now recall that the actual private key is G, G2, S and P, hence the total
size of the key is 8 + 15 + 36 binary symbols to represent the matrices G, G2
and S, and 69 bits to represent a permutation of order 20 (See [2]).

Now suppose Alice wants to send the message m = (1,1,0,1,0.1).

Encryption:

o First she chooses an error vector ey of length 4 whose support leaves
out k; = 2 information positions of Cy. Since in this case the code C;
is such that any two positions are information positions, that means she
can choose any vector ey with w(e;) < 2, for instance e; = (0, 1,0, 1).
Now as e she can choose any vector in Fg\CQ, for instance eo = (1,1,1,1,1)
(H3 o #0).

The error matrix is
00000
11111
00000
11111

E =

or, written as a vector of length 16,
e=(0.0.0.0.0,1.1,1.1,1,0,0,0,0.0,1,1,1,1,1).

Let us note that w(e) = 8 =n/2.
The minimum rectangle that contains the support of FE s
R={(2.1).(2.2).(2.3).(2.4). (2.5). (4.1), (4,2),(4,3). (4. 4), (4,5) }.
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e Now suppose that the non linear function fr : F§ — F$ is defined as the

r-th cyclic permutation acting over the numbers 0, 1,...,25 — 1 (written
as 6-uples of binary numbers), and where r is the sum modulo 2¢ of all
the indices that appear in the positions in R (let us remark that we have
chosen this function here for the sake of simplicity in the example. In a
real application a ’wiser’ choice of fr should be made, considering the
non linearity and also a reasonably even distribution of its outputs over
the set Fslk‘z).

Inour case r = 24+ 14242+ -+4+5 = 60 and fr(z) = z+60 mod 2.

m=(1,1,0.1,0,1) =1+ 2+ 23 4+ 25 = 43,
hence
frim) =43 460 mod 26 =39=1+2+2%+2°=(1,1,1,0,0,1)
Finally the encrypted text will be
c=(fr(m)SG +e)P =(1,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1,0)

At the other end Bob receives ¢ and proceeds to decrypt it.
Decryption:

¢ = P! = fr(m)SG+e = (1,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,1,0,0,1).
11000
, 01001
C=1o1110
01001

We will now denote by C; and ¢; the i-th column and row of C’ respec-
tively.

Now Bob will use the parity check matrices to compute the syndromes,
by columns

CLHT #0,CoH{ #0,C5HY #0,CsH] #0,C5HY #0
and by rows
(’,JHQT =0, (:QHQT # 0, (:3H;‘F =0, C4H2T #0

Hence R = {<2* 1) (2* 2)* (2 3)* (2* 4)* (27 S)a (4 1) (4 2)* (4’ 3) (47 4)~ (4~ 5)}7
and fr(x) = 2 +60 mod 2° and so f5'(z) =2 — 60 mod 2°.

The next step is to choose k1ko = 6 information positions of C outside R.
To achieve that, Bob should first consider 2 information positions in Cy
outside {2,4}, so there is only one option, those positions must be I =
{1,3}. Then he should choose 3 information positions in Cy. For instance
J={1.2.3}.
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Hence
10 110

Gy, () = {01} and Gi,(J)= (010
001

(1100007
010000
001000
000110
000010
1000001 |

Gk’1><k‘2(] X '])~l = le([)—l ® sz(‘])il =

e The vector fr(m)SGy, xk, (I X J) is the vector of length |I|-|.J| obtained
from ¢ by selecting only those positions corresponding to I x J, so in
this case

f};{(ﬁl)Sle><}g2 ([ X ]) = (1, 1,(), 0, ], 1)

frim) = (1,1,0,0,1,1)Gr, sk, (I x J)71S71 = (1,1,1,0,0,1)
o And finally
m = fr'(fr(m)) = fz'(39) = 39 — 60 mod(2°) =43 = (1,1,0,1,0,1)

4 About the Set of Errors.
How to Choose Parameters

Let us call £ the set of admissible error vectors in our cryptosystem, that is,
the set of errors e such that, once written as ny X no matrices E, and denoting
by R = I x J the minimum rectangle of positions such that R 2 supp(F), it
verifies either

o {1,...,n1}\I contains k; information positions of C; and no nonzero row
of Eisin Co, or
o {1,..., n9}\J contains ko information positions of Co and no nonzero

column of F is in C;.

The weight of the error vectors considered in € is < max{(n;—ki)ng, (no—
ko)ny}. Large k; will result in acceptable information rates, while small k;
will allow the use of error vectors of high weight. The introduction of the non
linear functions fr that scramble the messages fades the immediate threat
of MV on each coordinate, since it is in principle impossible for the attacker
to recover, or better, to recognize, encryptions that differ only in the error
vector used, but still it would be safer to count on the possibility of using
error vector of high weight in order to avoid other hypothetical attacks that
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could take advantage of the weakness that error vectors of low weight might
suppose.

Hence, to have a balance between both desirable characteristics one pos-
sibility would be to combine two different codes, one with low and the other
with high rate.

Also the range of weights that the error vectors can have is wide, and this
avoids the weakness of having error vectors of constant or almost constant
weight, which could allow other kinds of attacks.

Besides, the next lemma guarantees that the error vectors are evenly
distributed in the vector space Fj'"2. which in turn avoids attacks that could
take advantage of the fact of the error vectors being concentrated in some
particular coset of the code C.

Lemma 2. Two different error vectors in £ will always belong to different
cosets of C

Proof. Let us consider two error vectors ej,es € £, and let us consider the
corresponding matrices £ and Ey. Let R; = I; X J; be the minimum rectangle
such that R; O supp(£;), fori = 1,2. And suppose that, for instance, I; leaves
out k1 information positions of C; (analogously for I5).

Let R =1 x J be the minimum rectangle such that R O supp(FE; — Fa).

o If{1,..., n1 }\I contains k; information positions. Each column of Ey—Es
will belong to Cp if and only if it is the allzero vector, that is, F, — Eq
will belong to C if and only if £y = Fs.

e On the contrary. if {1..... n1}\I does not contain k; information posi-
tions of C;. then it is clear that there exists 7y € I\I;. And then the
ip-th row of Ey — Fo will be the ip-th row of Ey multiplied by —1, and
hence, not a vector in C,. Thus Ey — Ey € C.

Regarding the cardinality of &£, the exact formula cannot be given in
general since it depends strongly on the factor codes chosen in each particular
case. But some bounds can be given specially in the case where we do not
consider all the possible error vectors in £, but only those that result from
the construction first described in the encryption process in Section 3. We
will denote by & the set of those error vectors.

Let us continue with the same notations as before. and consider all the
possible choices of ¢; such that the complementary of its support contains
k1 information positions in C;. How many different ¢; can be considered? It
depends on the particular code Cy we are using; to be precise, it depends
on how many ways there are to choose ki information positions in C;. One
extreme case is that any ky positions in C; are information. For instance,

110
the code generated by { 01 1} over Fy has that property. In that case, for

1 <ni — ki, the nunber of error vectors e; of weight ¢ that can be taken is
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< 1) (¢ —1)", and the total number of vectors e; would be

bl () (G- 1)

1=1

and for each e; one can choose a vector ey with the only condition that
eaHI # 0, that is, there are ¢"* — q"2 possible choices for es.

The same can be done exchanging the roles played by e; and es.

Finally we have to discount the patterns that have been counted twice,
that is, those of the form (f ® ey where e; leaves out k; information positions
for both 7 = 1 and 2. so we have a total number of errors given by

U(ny. ki.ng ko q) =

Zk @ (a- 1)i>(q”‘-’ —q") + zi @ (-1 (™ — ¢") -

711:ij / rg— ks =
( 2 @ - 1)1) ( 2. <n,2> (¢~ 1)i> =
=1 i=1
2 nj—k;j \ )
e <le]> (- | = (@ =) | + ] - ")
J=1 i=1 e

On the other hand. the other extreme case would be that there is only
one possible choice of k; information coordinates in C;, but this requires C; to
be degenerated. that is. to have some all-zero column in its generator matrix.

. . . h; — ki +1
Provided C; is not degenerated, the worst case would give us ( v + ) (g—
J

1)7 choices of a vector ¢; of weight j whose support leaves out k; information
1000

011 1} corresponds to that

positions. For instance, the code generated by {

worst, case.
In this case the total number of possible error choices is

L(ny, k1,no ke, q) =

2 nj—k; /) o )
71‘[ Z <1;/ ,’J ) ((] _ ])z _ ((]"" . qlc_,) + H(qn/ _ qk‘,)
j=i ' j=1

i=1

In a general case the cardinality of the set of possible error vectors £ will
be
L(II B AJ na. /ﬂg (]) S ‘5/1 S U(']'I,[. ]S] no, kg, q)
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We should remark here that in the case of using arbitrarily chosen ma-
trices, with no particular structure, the actual number of possible error vec-
tors tends to be closer to the upper bound U(ny, ki, n9, k2, q) than to the
lower one L(ny. ki, ng, ko, q). Just to show a little example, for the matrix

110110
Gy = [010101] over Fy the actual number of choices of error vectors
001011
whose support leaves out k; = 3 information positions is 33, while the best
case would give 41 different choices and the worst case only 14 different pos-
sibilities.

Nonetheless, the actual cardinality of £ is in general much larger than the

cardinality of &’. Just to show a little unreal example, if we consider over Fy

1011
the codes C; and C,, generated by Gy = Gy = 0 >, we have |&| = 1307,

0110

while for £ we have L(4.2.4,2,2) = 108 < (&) <140 = U(4,2,4,2,2).
Finally, to illustrate the fact that the set of error vectors can have enor-

mous size, even for small parameters of the factor codes, let us consider

| 4
Glng_[IQQLr)lO}

012551
over F~. In this case we have
|E'| = U(6,2,6,2,7) = 5131586304

and the cardinality of £ will be in fact much larger.

4.1 The Choice of Parameters

According to the remarks pointed out above, it would be wise to consider
parameters that allow a large number or error vectors, but taking care not
to reduce the rate of the code and, consequently, increase the costs too dras-
tically. In order to achieve this we would suggest considering a balanced
combination of field size and rates of the factor codes.

For instance, if one of the factor codes has parameters (ny,n; — 1), while
the other has parameters (no,no/T) we can achieve a code of rate approx-
imately 1/7', which will allow us the use of error vectors of weights up to
n(T — 1)/T (in case F*\C; contains some vector of weight ns). So, these
parameters conveniently chosen, together with a suitable field size, can give
us an enormous cardinality of the set of errors for each code used as private
key, and also a really large number of different private keys to choose with
the same parameters. which will avoid attacks based on exhaustive search of
the key used.

As an example, if we consider over Fyg factor codes of parameters (10, 9)
and (10, 3) we will obtain a cryptosystem with rate approximately 1/3. Even
if we do not consider all the possible error vectors, but only those that can
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be constructed with the first procedure described, we still have that [€'] is
between L(10,9,10.3.16) and U(10.9.10,3,16), and a simple computation
shows that these munbers are enormous. Also we remark that the actual
number of admissible errors |€| will be much bigger. Hence an attack like
that of Barbero and Ytrehus that needs the computation of all cryptotexts
associated to one chosen plain text will be infeasible here.

Besides, provided F19\C; contains vectors of weight 10 this will give us
error vectors of weights up to 70. Certainly the average weight will not be
that high, but still this shows that we can use errors in a window of weights
large enough to avoid attacks that could take advantage of the weakness
of using errors of low weight. or errors of weight kept constant or almost
constant. Even when the immediate threat of a majority voting attack is
now less important since the non linearity of the functions used to scramble
the space of messages protects against such attack, it should not be discarded
that the use of errors of low weight can allow some other kind of attack.

The size of the private key for such a code will be: 10-9-4 bits to store one
of the generator matrices, 10 - 3 - 4 bits to store the other generator matrix,
27 - 27 - 4 bits to store the scrambling matrix S and 473 bits to represent a
permutation P of order 100. Hence the total size of the key is 3869 bits. Less
than 0.4 Kb to encrypt 16%7 different messages.

And finally, the number of different private keys that correspond to that
particular choice of parameters is the number of different matrices with
10 columns and 9 rows and rank 9 over Fig times the number of differ-
ent matrices with 10 colummns and 3 rows and rank 3 over the same field.
Just computing the number of 9 x 10 matrices of rank 9 over Fig gives us
(Zf:o(l(ig —16"))(Y0_, 16) and this amounts to 0.5-10%* different matrices
with those characteristics, and still this number should be multiplied by the
number of matrices 3 x 10 with rank 3 over Fig. This simple example of a
possible choice of parameters gives us the idea of the enormous size of the
set of different private keys that can be chosen by the two parties. This is
possible precisely because the system do not need of any particular kind of
code to be used as component of the product. Even those with very poor
performance as usual linear codes can be used here, since the process does
not make use of any decoding algorithm in the usual sense.

5 Conclusions

We have presented a variation of the Rao-Nam cryptosystem that, with a
reduced key size, is strong against known attacks that can break the Rao-
Nam original cryptosystem and some of its modifications.

The construction is based on profitting from properties of the product
codes.

The only drawback of our system when compared with the previous ver-
sions of private key cryptosystems that make use of error correcting codes
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may be the low information rate that can be achieved in general with our
system.

On the other hand, the possibility that product codes offer to locate errors
very easily when they are placed in some particular configuration, together
with the idea of leaving free of errors a sufficient number of information
positions allows us to recover the original message with neither the need to
use any actual decoding algorithm for the code C nor the obligation to store
in memory large error-syndrome tables. Also the whole process of ciphering
and deciphering requires low complexity, since it simply consists of matrix
multiplications. And for the more complex tasks like inverting some matrices,
this can be done by means of working with the factor components, so the
complexity, even in those steps, depends only on the small parameters of the
factor codes and not on the actual parameters of the product code.

Also in the last section we have shown how even reasonably small pa-
rameters will provide enough number of different private keys, and once a
particular private key has been chosen, enough number of different error
vectors to make our system resilient against attacks that need some kind
of exhaustive search like those that have been designed against the original
Rao-Nam system and some of its variations.
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Pseudorandom Sequences from Elliptic Curves
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Abstract. In this article we will generalize some known constructions to produce
pseudorandom sequences with the aid of elliptic curves. We will make use of both ad-
ditive and multiplicative characters on elliptic curves. Keywords are: Artin-Schreier
extension, Kummer extension, elliptic curve, exponential sum, correlation, balance,
linear recurrencies.

1 Introduction

Nowadays, many applications call for random numbers. One of the most
preferable ways to generate those would be to take a monkey, give him a coin
to flip, and write down the result of cach coin flip. Unfortunately this process
is quite slow, and we would like a faster way to generate random numbers.
On second thought, a sequence of numbers that appears random would be
just as good - who could tell the difference? We will call such a sequence
pseudorandom.

Many people have constructed pseudorandom number generators using
many, diverse methods (sec for example Chap. 5 of [7] for an overview).
The first study of using linear congruences on elliptic curves to gencrate
pscudorandom sequences was done in [6]. Further results on these generators
were obtained in [3.4,8,15]. We will generalize some of these constructions and
introduce another construction using linear recurrence relations on elliptic
curves. An instance of this last construction was investigated in [5].

2 Some Properties of Elliptic Curves

As we will use elliptic curves throughout this article, we will start by fixing
some notation and giving some elementary properties of elliptic curves. We
will denote the Galois field of ¢ elements by F, and an elliptic curve by &.
The group of F-rational points on the curve £ will be denoted by &(F,) and
the function field of an algebraic curve C by F(C), or by F,(C) if we only
want the functions with coefficients in F,. The algebraic closure of a field F
will be denoted by F. Scalar multiplication of a point P on an elliptic curve

* This author was supported by STW in the project Strong Authentication Meth-
ods, number EWI1.4536.
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by n will be denoted by [n]P. We denote the n-torsion subgroup of (F,) by
Elnl.

For the following proposition, see p.145 of [11].

Proposition 1. Let £ be an elliptic curve defined over the finite field F,.
There exist numbers k and | such that as abelian groups

EFy) = Z/KL x LKL,
Furthermore, k divides (¢ —1).

We will denote the k and [ from the above proposition respectively by
k(E) and I(€) or, if we want to stress the field of definition, by k(£,F,) and
I(€,F,) respectively.

Since k = k(£.F,) divides ¢ — 1, we see that the multiplication by k map
from € to € is unramified of degree k?. Further note that k] C £(F,).

3 Pseudorandom Sequences

In this section we will give some basic definitions concerning pseudorandom
sequences.

Definition 1. Let S = {s(0),s(1)....,: s(N — 1)} be a sequence of elements
of F, and let o € F}. Denote the characteristic of F; by p. We define the
balance with respect to « in the following way:

N-1

1 Tre, 7, (@s(i))
Bs(a) = - 3 ¢,

with ¢, the p'" root of unity exp(27i/p). Further we define the balance to be

Bs = ggl%{tBs(a)\}-

Now we introduce a similar concept for sequences defined over Z/mZ. We
will assume that m divides ¢ — 1. Then it is possible to identify Z/mZ with
(F;)(q’l)/ ™. Thus there exists a surjective homomorphism of groups y,, :
F; — Z/mZ.

If S = {s(0),s(1)....,: s(N —1)} is a sequence of elements of (]F;)W’l)/m
then we define the balance with respect to a to be

7

N-1

1 »
BS(Q’,) = — Z V)IC’LWL(O(S<L)>1

=0

with o € F} and ¢, = exp(2mi/m).
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We now define the autocorrelation of a sequence.

Definition 2. Let {s(0),s(1),....s(N — 1)} be a sequence S of period N
defined over the finite hold F,. erte p for the characteristic of this field.
Furthermore, let a. 8 € Fy.

We define the autoc orrelatzoﬂ with respect to o and [3 of a sequence as follows:

Trg ¢ s(i4d)—PBs(i
Cs(d, a, f Zcrx(a Jr)‘())7

=0

with 0 < d < N and (, = exp(2mi/p). For a sequence S defined over
(]F:;)(q_l)/m we define

Cs(d, o, ) = Z (xmles(itd)=Rs(d)),

with (, = exp(2wi/m).

Note that in the above definition i + d should be read modulo N. Also note
that for binary sequences this definition amounts to

s(z—é—d)—i—s 1)
Cs(d) = & Z

which is the usual definition of the autocorrelation (see for example Chap. 5,
Sect. 4 of [7]).

Another useful object is the crosscorrelation of two sequences. It is defined
as follows:

Definition 3. Let S = {s(i)} and T' = {t(¢)} be two sequences defined over
F, having the same period N. Denote the characteristic of F, by p and let
a, 3 € Fy;. We define the crosscorrelation of S and T with respect to a and [
by

N-1

v, (as(i+d)—Bt(i))
Csr(d,a,3) = ZC o ,

with ¢, = exp(2mi/p) and 0 < d < N. For sequences S and T' defined over
(]F;)(q_l)/m we define

Csr(d,a,p) = Z me(as (i+d)=Bt(i))

m
=0

with ,, = exp(27i/m).

The problem is to find a family of sequences X' = {S;|i € I} such that for
all 4,7 € I the crosscorrelations Cs, s, (d, a, 3) are small.



40 P.H.T. Beelen and J.M. Doumen

4 Pseudorandom Sequences from Elliptic Curves Using
Additive Characters

Some generalizations of known constructions of pseudorandom sequences
from elliptic curves will be given in this section.

Let £ be an elliptic curve defined over a finite field Fye of characteristic
p. Suppose for now that this group is cyclic of order N and has generator
P. Let f € Fue(€) be a function on £ defined over F,e. We can define a
pseudorandom sequence S = {s(i)} as follows:

s(i) = Trg,cr, (f([1P)),

with 0 <@ < N. Here Try |y, denotes the trace map from Fe to IF, defined
by K

Try, .5, (¥) = 2+ 27 + 2t 4t
We see that the condition that £(IF,) is a cyclic group is a natural one, since
we need an ordering of the points in £(Fy-). In the literature this assumption
is often made. Moreover, the field F, is usually assumed to be F,. We will
remove both restrictions. First we need some definitions.

Definition 4. Let C be an algebraic curve of genus g defined over F,. Let
f € F4(C) be a rational function on C defined over F, as well. We define
CAS(f.F,) to be the set of all F,-rational points @ on C such that there
exists a g € F,(C) (depending on @) with the property that f — gP + ¢ is
defined at Q).

Note that for every function f € F,(C) and point @ € C(F,) there exists
a function g € F,(C) such that either vo(f —g”+g) > 0 or vo(f—g°+g) < 0
and p fuq(f — g” + g). We define mg = —1 in the former case and mg =
—vg(f — g” + g) in the latter. Of course mg depends on [ as well. When
we want to make this explicit we will write mo(f) instead of mg. For more
details see p.114 of [12].

Also observe that the quantity Trg, w, ((f = ¢° + 9)(Q)) does not depend
on g as long as the function f — g 4 g is defined at Q. This is why for
Q € CHS(f, Fy) we will write Trg |z (f(Q)) for this quantity even if f itself
is not defined in Q.

We will now define the sequence we want to study.

Definition 5. Let £ be an elliptic curve defined over Fye. Suppose that P
is a generator of the group [k(€.Fy)|E(Fye) and denote its order by N. Let
[ € Fee(€). We define the sequence SA3(f, P) = {s(i)o<icn by

s(i) = Trg . w, (f([1]P)).

Here we use the convention that TIFq,;.HFq(f(Q)) =01if Q & EM(f,Fye). Of
course this sequence depends on the elliptic curve as well, but we do not make
this explicit in the notation.
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Note that in the above notation N = I(€,Fyc) and that if £(F,e ) is cyclic,
we are back in the situation that has already been studied in the literature
[4,15].

From the point of view of coding theory we do not need an ordering of
the points in £(Fye). In this case any change of ordering gives rise to an
equivalent code. Indeed there is in that case no need of restricting oneself to
elliptic curves. The resulting codes are called trace-codes. They have been
studied in for example Chap. VIII of [12] and [14].

Before we give some estimates for the parameters of the pseudorandom
sequences defined above, we need some theory. The key to the results is the
proposition about the following exponential sum.

Definition 6. Let C be an algebraic curve defined over Fy. Let f € Fy(C).
We define the following exponential sum:

JAS . Tr, 5, (F(P))
ESME.fl= Y ¢ .
PeCAS(f,F,)
with ¢, = exp(2mi/p).
We will now give a known upper bound for this exponential sum.

Proposition 2. Let C be an algebraic curve of genus g defined over Fy. Let

f € Fy(C) and suppose that f # 2P — = for all z € F(C). Then the following
holds:

ESA\(Cf)lé 29 — 2+ Z (’mp-'rl) \/c—]

Pec(F,)

Proof. This proposition was proven in [2,8,15]. We give the gist of the proof
for the convenience of the reader. We can rephrase the proposition by consid-
ering the curve D defined over I, whose function field is given by F,(C)(z)
with 2P — z = f. Denote its genus by h. The L-function of D is the product
of the L-function of C with the following p — 1 expressions (1 <i <p—1):

Te iTrg op (P
exp Z - Z C;) ¥q ¥, (P)

e>1  PECAS(fF,e)

As a matter of fact the above expressions turn out to be polynomials. By
Hasse-Weil’s theorem these polynomials have roots of length 1/,/g and hence
we find for all e > 1

Tre =, (P) 2(h — g
R R
PeCAS(fF,) F
Using the theory for Artin-Schreier extensions we can find an explicit expres-
sion for the genus h (see for example Chap. I, Sect. 7 of [12]). This leads to
the upper bound given in the proposition.
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We will now apply the above result to give an estimate for the parameters
of the sequences SAS(f, P).

Lemma 1. Let & be an elliptic curve defined over the finite field Fye of char-
acteristic p. Set k = k(E,Fye). Furthermore, let f € F4e(E) be a function and
P be a generator of the group [k]E(Fye).

Suppose that for all = € F(E) the relation 2P — z # f o [k] holds and that

EMS(fo[K].Fyr) = (K71 (EM(f.Fge) N (P)).

Then Bgas(s.py is bounded from above by

| V= HESURN 0P + s Tmalf o k) + DV
Q
with N = #(P).

Proof. Denote by S the sequence {Tr ¢, (f(Q))} with Q € EMS(f,Fge) N
(P). Further denote by T the sequence {Trg,_. s, (fo[k}(Q))} with @ € EA5(fo
[k],Fye). We know that EAS(f o [k].Fge) = [k] 71 (EA5(f,Fqe) N (P)). Hence,
for each point R in EAS(f.F,e) N (P), there exist exactly k? points @ in the
set EAS(f o [k].Fye) such that [k]Q = R. Hence for any o € F}

#EM(f o [k].Fye)Br(a) = k*#(EX5(f,Fge) N (P))Bs(a).
Hence
Br(a) = Bs(a).

Since

N-|Bsas(g.py ()] < N =#(EXS(f.Fge) N (P) +#(E2(f. Fge) N (P))| Bs(a)],

we see that an upper bound for Br () results in an upper bound for Bgas s p)-
However, since #E25(f o [k],Fy)Br(a) = ESAS(E, f o [k]), such an upper
bound is available from Proposition 2. This concludes the proof.

Note that the technical condition

EAS(f o [k].Fye) = (K] (EM5(f.Fge) N (P))

is fulfilled if £ = 1. Also note that the righthandside set is always contained
in the lefthandside set.

We consider a special case of the above lemma. Denote by wdeg(f(
the weighted degree of a polynomial in two variables defined by wdeg(z
and wdeg(y) = 3.

Y)

z,y))
) =2
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Theorem 1. Let £ be an elliptic curve defined over the finite field Fqe of
characteristic p given by a Weierstrass equation. Let f be a polynomial in
the coordinate functions x and y such that degy( f) < 1. Further let P be a
generator of the group [k(E)|E(Fy) and define N = #(P). Suppose that p
does not divide wdeg(f). Then we have

Bsass.py < %7 (1+ (1 + wdeg())V)

Note that the above theorem also follows from Theorem 1 of [8] or the
work of Bombieri [2]. Also note that the condition deg,(f) < 1 is not a
real restriction, because we can use the Weierstrass equation to reduce this
degree if deg,(f) > 2. Further note that if this condition is met, we have
vo(f) = —wdeg(f) with O the point at infinity [0 : 1 : 0]. For the proof of
the above theorem note that EAS(f.F,) = E(F,e) \ {O} and that EAS(f o
k()] Bye) = EFy )\ EREN].

In the same way we can investigate the autocorrelation of the sequences
SAS(f. P). We do this in the following theorem. First we state a lemma.

Lemma 2. Let £ be an elliptic curve defined over the field Fye of character-
istic p. Let f € Fy (€) and choose a. 3 € Fy. Write k = k(E,Fge) and choose
a generator P of the group [k]E(Fye) and a number d satisfying 1 < d < N
with N = #(P). Define h € F,(E) by

h(X) = af(X @ [dIP) - Bf(X).

Denote by S the sequence {Trg .z (ho [k](Q))} with Q € EA5(h o [k],Fye).
Finally suppose that EX5(h o [k],Fye) = [k] 7' (EA5(h,Fye) N (P)). We then
have

N - Coas(ppy(doa, 3) = ¢+ #(E*S(h,Fye) N (P))Bs.

Here T (h(Q))
e o iw
C = Z Cp T )

where the sum is over points Q such that Q € (P) and Q & EAS(h,Fye).

Proof. Note that Cgas (s py(d, . ) = Bgas(;, py(1). Using similar tricks as in
the proof of Lemma 1 we obtain the result.

Using an upper bound for exponential sums we can derive an upper bound
for the autocorrelation. if some technical conditions are met. More explicitly
we find the following theorem. in the case that f is a polynomial in the
coordinate functions.

Theorem 2. Let & be an elliptic curve defined over the field Fye given by a
Weierstrass equation. Let f be a polynomial in the two coordinate functions x
and y. such that deg,(f) < 1. Choose v, 8 € Fy. Further choose a generator:
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P of the group [k(E)|E(Fy) and a number d satisfying 1 < d < N with
N = #(P). Suppose that the characteristic does not divide wdeg(f). We
then have

1
[Cgas , (doa B)] < N (2421 + wdeg(f))V°) -

Analogous to the autocorrelation, we can derive properties about the
crosscorrelations of sequences. We state some results in the following the-
orem.

Theorem 3. Let £ be an elliptic curve defined over the finite field Fye of
characteristic p, given by a Weierstrass equation. Let P be a generator of the
group [k(E)|E(Fye) and write N = #(P). Let fi and fo be two polynomials
in the coordinate functions x and y such that deg,(fi) <1 fori=1,2, and
such that for all (a.3) € F2 \ {(0.0)} we have p /(Wdeg(afl — Bfa). Write
Sy = SAS(f1.P) and Sy = SYAS(fg. P). For all .3 € Fy and 0 < d < N we
have

1 . ;
|Cs, s,(d.a.3)| < v (24 (24 wdeg(f1) + Wdeg(fg))\/(?) \
unless d =0 and o fy = 3 fs.
Proof. This is a straightforward generalization of the proof of Theorem 2.

We now give an example of a family of sequences having good crosscorre-
lations. We assume in this example that the characteristic is 2, since this is
the most interesting case for applications.

FErample 1. Let € be an elliptic curve defined over the finite field Foe. Denote
by P a generator of the group [k(£)|E(Fe) and write N = #(P). Let a be
defined by a = (ag. - ,am) € IFQ'f“Ll and let S, be the binary sequence
SAS(fa, P) with defining function fa = agy + - - - + ama™y.
For any number 0 < d < N and a.b € F '\ {0} we have

Csas ()] < % (24 (2 + wdeg(fa) + wdeg(fu))V2°)
<L (24 (8+4m)vee).

unless d = (0 and a = b.

5 Pseudorandom Sequences from Elliptic Curves Using
Multiplicative Characters

We will now give results which are similar to those of the previous section,
but depend on the use of multiplicative characters and Kummer extensions,
instead of additive characters and Artin-Schreier extensions. Codes have been
obtained using this approach in [9]. Sequences have been constructed in this
way using the projective line in [1]. We will construct sequences using elliptic
curves.



Pseudorandom Sequences from Elliptic Curves 15

Definition 7. Let C be an algebraic curve defined over . Choose 1 <
m < ¢ — 1 adivisor of ¢ — 1 and let f € F,(C). Define CX(f,F,) to be the
set of F -rational points on C such that there exists a g € F,(C) such that

vp(f -« ’”) = 0.

Note that if ¢ : F} — Z/mZ is a homomorphism of groups, the quantity
O((f - g"™)(Q)) does not depend on g, as long as vgo(f - g™) = 0. Hence
for Q € CE(f,F,) we will write ¢(f(Q)). even if vg(f) # 0. In particular
we see that the quantity f(Q)9~Y/™ is well-defined for Q € CX(f, F,). If
Q ¢ CH(f,F,), we can always find g € F,(C) such that (f - ¢™)(Q) = 0.
Hence we define f(Q)4=1/™ =0 for Q ¢ CK(f,F,), even if f has a pole in
Q. In the same way we define ¢(f(Q)) =0 for Q € CX(f,F,).

Definition 8. Let £ be an elliptic curve defined over IF,. Fix a natural num-
ber 1 < m < ¢ — 1 dividing ¢ — 1. Denote by x, : F; — Z/mZ some fixed,
surjective homomorphism of groups. Let P € £(F,) and f € F,(€). Define
SK(f, P) = {s(i)} by

We need the homomorphism y,, to define the balance and correlations
of the sequence S (f, P) (see Section 3). Note that x,,(f(Q)) = 0if Q ¢
EX(f.Fy).

Example 2. Let F), be a prime field with p odd. Let o be a generator of
the multiplicative group F). Let f [X] be a polynomial in F,[X] of degree
m. By evaluating this polynomial in all elements «, a2, ... of [, we obtain a
codeword from a Reed-Solomon code (RS-code). We obtain a blllle sequence
from this codeword by applying coordinatewise the map o : F, — Z/2Z,
defined by

0 fa=0or (%) =1,

e =3 (7) — 1

If we take for example p = 13, f[X] = X? + X, and o = 2 we find the
codeword

(2,6,7.7.12.3.0,2,12. 4,6, 4)

and corresponding binary sequence
(1.1,1,1,0,0.0,1.0.0,1.0).

As we said before it is possible to obtain codes using this construction.
This was done in [9]. In that article non-linear codes were found and investi-
gated. It is possible to find interesting linear codes as is shown in the following
example. After the example we return to the study of sequences.
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Ezample 3. Choose C to be the projective line defined over some finite field I,
of odd characteristic. For M C F,(z)/(F,(z))? we choose the group generated
by the residue classes of x — 3 with 3 in some non-empty subset S of F,.
Then every element of M has a representative of the form [[;.q(z — 3)
with e € {0,1}. As a vector space over Fo, the group M has dimension #.5.
Define x5 as in example 2. Evaluating xz o f in the set F, \ S for all functions
f € M, yields a binary linear code C' of length #(F, \ S). Its dimension is
less than or equal to min(#S, #(F, \ 9)).

Equality need not hold in this equation. Suppose for example that g is a
square. The evaluation of the polynomial f(X) = XV + X in an element
a of F, is either zero or a square. To see this note that for a € F, we
have f(a)V? = f(a), and hence either f(a) = 0 or f(a){~1/2 = 1. Hence
if we choose S = {a € F,|aV? + a = 0}, then the polynomial Xv7 4 z
will correspond to the all-zero codeword. This means that in this case the
dimension of the code cannot equal the cardinality of S.

Note that the curve given by the equation Y? = Xv7 + X has maximum
number of Fy-rational points for its genus. As a matter of fact the number
of Fy-rational points can be seen to be 2g — /g + 1, while its genus equals
(v/@—1)/2. The fact that it is maximal also follows from the fact that it can
be covered by the Hermitian curve which has equation YVt = XV7 4 X
Using the Hasse-Weil bound and investigating the curve Y? = f(X), one
can show that for sets S with cardinality strictly smaller than /g, only the
zero-polynomial can give the all-zero codeword. This means that in this case
the dimension of the resulting codes equals the cardinality of the set S.

Refining this argument, we see that for the minimum distance d of these
codes we have the statement

- (#S- (a1
2
which is a non-trivial lower bound if #S5 < ,/g.

(]IZ _#Sa

In a similar way as in the previous section we give statements about the
balance, autocorrelation and crosscorrelation of the sequences SK(f, P).

Definition 9. Let C be an algebraic curve defined over Fy. Let 1 < m <
g — 1 be a divisor of ¢ — 1 and denote by x., : Fg — Z/mZ some surjective
homomorphism of groups. Let f € F,(C). We define the following exponential

sum:
ESK@C.fy= Y gy,
PECK (fFy)
with ¢, = exp(2mi/m).
For this exponential sum a bound exists similar to that of the exponen-

tial sum defined in Definition 6. See for example [9], where similar upper
bounds are derived. The proof of the following proposition is analagous to
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that of Proposition 2. Instead of Artin-Schreier extensions we use Kummer
extensions (see for example Chap. IIT. Sect. 7 of [12]).

Proposition 3. Let C be an algebraic curve of genus g defined over IF,. Let

f € F,(C) and suppose that f # =" for all z € F(C) and all divisors 1 > 1 of
m. Write rp = ged(m,vp(f)) > 0. Then the following holds:

rp — 1
ESK@C. <292 1- :
Eske.nl< (2024 Y -2 | va
Peg(Fy)
The rp occurring in the above proposition are standard in the theory
of Kummer extensions. When we want to stress the role of f, we will write

rp(f)-

Theorem 4. Let £ be an elliptic curve defined over the finite field F, of
characteristic p. Let f € Fy(E) be a function and write k = k(E,F,). Let P
be a generator of the group [k|E(F,). Suppose that the polynomial T™ — f o [k]
is absolutely irreducible. Then we have

_r(f) -1

Boxism < 3 | N - #(EX (1B n (Y + Y0 - T2

Q

WVa

with N = #(P).

Proof. Note that vq(f o [k]) = vpo(f) and hence rq(f o [k]) = ro(f).
Moreover, note that for @ € £(F;) we have rg = m if and only if Q €
EX(f,F,). Hence we see that EX(fo[k],F,) = [k]71EX(f,F,) N (P). The rest

of the proof is similar to that of Lemma 1.

In the following corollary we again use the weighted degree of a polynomial
in two variables defined by wdeg(x) = 2 and wdeg(y) = 3.

Corollary 1. Let the notation be as in the above theorem and suppose that £
s given by a Weierstrass equation. Suppose that f is a non-trivial polynomial

of total degree A in the coordinate functions x and y satisfying deg, (f) < 2.
Suppose that ged(wdeg(f).m) = 1. Then we have

By < 5 (N~ #(E(L.E) 0 (P)) + (BA+1)v7).
If we additionally demand ((P)\ {O}) C EK(f,F,), we find

1
Bgk5.py < N (1+B8A+1)/q).
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Proof. This follows from the above theorem by remarking that by Bézout’s
theorem (see for example Sect. 83 of [13]) f has at most 3A zeros on .
Further note that the point O is the only pole f has on £. These zeros and
poles are the only points @ for which it can happen that ro < m. Using
that rg > 1 for these points Q. the result follows. Note that ro(f o [k(€)]) =
ro(f) = ged(wdeg(f).m) = 1. Hence the polynomial T™ — f o [k(E)] is
absolutely irreducible by the theory of Kummer extensions.

Note that it can be useful to rewrite f, using the equation of £, in such
a form that the total degree is minimal. This explains why we now assume
deg,(f) < 2 instead of assuming deg, (f) <1 as we did before.

We will now give some statements about the autocorrelation and cross-
correlations of these sequences. We omit most of the proofs, since they are
analogous to the proofs in the Artin-Schreier case.

Theorem 5. Let & be an elliptic curve defined over the field Fy of character-
istic p. Let f € Fy(E) and choose a. 3 € Fy. Write k = k(E,F,) and choose
a generator P of the group [KE(F,) and (1 number d safzstmq 1<d< N
with N = #(P). Define h € F, (&) by

h(X) = af(X & [dP) - Bf(X).

Suppose that the polynomial T™ — h o [k] is absolutely irreducible. We then
have

. 1 . r —1
(Csi(r.py(dia B)] < | N = #(E" (h.Fy) N +§: _relh) -1y o

] m—l

Corollary 2. Let the notation be the same as in the above theorem. Sup-
pose that € is given by a Weierstrass equation. Further assume that f is a
non-trivial polynomial in the coordinate functions of total degree A satisfying
deg,(f) <2 and ged(wdeg(f).m) = 1. Then we have

1

Cgr.py(d.o. ) < ¥ (N - H#(ER (h.F,) N (P)) + (34 + 3wdeg(f) + 2)V/4) .

If we additionally demand ((P)\ {O.[=d|P}) C EX(h.F,), we find

) 1
Csr 5. pyld, o 3) < N (24 (3A 4 3wdeg(f) 4+ 2)/q) -

Proof. Again we want to use Bézout’s theorem to estimate the number of
zeros of the function h. Using the addition formula (see for example Chap.
I, Sect. 2 of [11]) we find that (=, y) @ (a,b) can be written as (g1 (x,y)/(x —
a)?, go(x.y) /(2 — a)?) with g (vespectively go) a polynomial in 2 and y
of total degree less than or equal to 2 (respectively 3). This means that
af((a.y)@(a.b)) can be written as k(x, y)/(x—a)*¥9e) with k a polynomial
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of total degree less than or equal to wdeg(f). Hence, after multiplying the
rational function h with (@ — a)V8f) we get a polynomial of total degree
less than or equal to A + wdeg(f). This gives an upper bound for the total
number of zeros of the function i while its poles are O and —[d]P. The rest
of the proof is analogous to the proof of Corollary 1.

Theorem 6. Let € be an elliptic curve defined over the finite field Fy of
characteristic p. Let P be a generator of the group [k(E)IE(F,) and write
N = #(P). Let fi and [y be two functions and choose o, 3 € Fyy as well as
a natural number 0 < d < N. Write Sy = SY(f1. P) and So = S&(fs, P).
Define h € F(€) by

h(X) =afi(X 3 [dP) - Bfa(X)

and suppose that the polynomial T™ — ho [k(E)] is absolutely irreducible. We
have

) 1 . ro(h) —1
|C‘Sl‘52((],()[.,fl'j)‘ S W N - #(51 (h*Fq) n <P>) + Z(l - %T(l—ivl_
‘ Q

Wa

Corollary 3. Let the notation be the same as in the above theorem. Suppose
that € is given by a Weierstrass equation. Further assume that f1 and fo are
non-trivial polynomaials in the coordinate functions of total degree Ay and A
with Ay > As and satisfying deg,.(fi) < 2 with i = 1,2. Further suppose that
ged(wdeg(fi).m) = 1 if d # 0 and ged(wdeg(afi — Bfa),m) =1 if d = 0.
We then have

1

Cs, s,(d, o, 3) < v (N - #(EX(h, F,) N (P))+ (3wdeg(f1) + 345 + 2)\/(5) )

If we additionally demand ((P)\ {O.[-d|P}) C EX(h,F,), we find

1 .
Csys:(da. ) < = (2+ (302 + Bwdeg(f1) +2)v/a)

P

6 Pseudorandom Sequences Using Linear Recurrence
Relations on Elliptic Curves

In this section we will investigate the balance and the period of a family of
sequences obtained by using linear recurrence relations on the points of €.
Suppose that G is a cyclic subgroup of € of order N generated by a point
P € £. In this section we will assume that N is a prime number.
Let 7(X) = X" + 7, ;X" 1... 4 ry be a monic polynomial of degree
n > 1over Z/NZ with ged(rg, N) = 1 and let £2(r, G) be the vector space over
Z/NZ of bi-infinite sequences of points in G that satisfy the linear recurrence
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relation with characteristic polynomial r(X). This vector space has dimension
n.

We suppose from now on that the characteristic polynomial r(X) of the
recursion is irreducible over Z/NZ. It is known from the theory of linear
recurrencies (for example, Chap. 7 in [10]) that if r(X) is irreducible, every
sequence, apart from the zero sequence, has the same period k(N,r). As a
matter of fact k(N,r) is the smallest positive integer k such that for every
root av of 7(X) we have of = 1.

Define ¥(r, G) to be the set of sequences {2(r, G) modulo cyclic shifts.

Lemma 3. Fvery point Q € G occurs the same number of times in sequences
in¥(r,G). i.e. the number of pairs

BA(0) [ 0 < k(N.r)(i) = Qi € W(r, @)
1s independent of the choice of Q.

Proof. Since we demanded that ged(ro, N) = 1 in the choice of the recursion
polynomial r and this polynomial has degree n, each sequence in ¥(r,G) is
uniquely determined by the choice of n consecutive points. Conversely, each
n-tuple of points occurs exactly once in ¥(r,G) (note that this is modulo
cyclic shifts). Since each point @ occurs equally often in the set of all n-
tuples of points, we have that this is the case in ¥(r, G).

Let f € F, be a function on €. Now look at the sequence SAS(f, P)
which was defined earlier by

SAS(f.P) = {Trr;qt 7, (f (MP))}ogKN'

Furthermore, define the set of sequences ¥s(r, G) by applying the function f
to each point in each sequence in ¥(r,G), and then taking the trace to the
ground field [, of the result:

Wy (r.G) = {Tog,. g, (f (V) [ € ¥(r,G)} .

Hence each sequence of points in ¥(r,G) corresponds with a sequence in
Wf (T, G)
Here we use the same convention as before, namely that Trp . r, (f(Q) =

0if Q ¢ EN(L.F,0).

Theorem 7. Choose a point P € £. Let G be the subgroup of £ generated
by P and suppose that its order is a prime N. Furthermore, let v be a monic
recursion polynomial of degree n whose tail coefficient is coprime to N. Then
the average balance of a sequence in Wy(r,G) is the same as the balance of
the sequence SMS(f, P).
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Proof. Start by defining the sequence T' by concatenating all sequences of
W (r.G). Since the order of points is not important in the definition of bal-
ance and because according to Lemma 3 each point occurs an equal number
of times. we can reorder the points of 7" such that we get a number of copies of
the sequence SA3(f. P). Of course. this is the same sequence as SA3(f, P) it-
self. Thus the average balance of sequences in ¥¢(r, G) is equal to the balance
of the sequence SA3(f. P).

It is well known from the theory of linear recurrencies that the period
of a sequence can be larger than the group order. So sequences defined in
the above way can have a larger period than the sequences described in the
previous sections. But this only applies to the sequences of points on &£. The
next theorem links this period to the period of the generated pseudorandom
sequence. We still suppose that r(X) is irreducible.

Theorem 8. Let r and G be defined as in the above theorem. Suppose that
the order of G is a prime N and that the degree of the recursion polynomial is
n. Denote by Ty(a) the number of points Q in G for which Trg . r, (f(Q)) = a.
Suppose that all sequences in Wy (r. G) have period dividing k(N,r)/d. Then d
is a divisor of ged(N —k(N, 7). Ty(a), N" —1) for alla € Fo\{Try ., (f(O))}.

Proof. We know that all non-zero sequences in ¥¢(r,G) have as period a
divisor of k(N,r)/d. Hence the number of times a occurs in the corresponding
sequences is divisible by d. Write b = Trg |z, (f(O)). Then d divides N"T}(a)
with a € F, \ {b}. and d divides N"T¢(b) — k(N,r). Since k(N,r) divides
N™ — 1, we see that d divides ged(N"T¢(b) — k(N.r),T(a), N" — 1) for all
a € F\{b}. Using 3° o Ty(a) = N, we find for all a € F,\{Trg, .z, (f(O))},
after eliminating 7' (b). that d divides

ged(N"TD — (N, 7). Ty(a), N* —1).
The result follows directly from this.
Exzample 4. Let € be the elliptic curve defined over Fy given by the equation
V24Y =X+ X +1.

Let G be a prime-order subgroup of £(F,) with ¢ an odd power of 2. Using
the addition formulas on &£. one can derive that for this curve T,(0) — 1 =
T,(1) = (N —1)/2. Hence. according to the above theorem, we find that d
divides ged((N = 1)/2.k(N.,r) — 1). Take for example r(X) = X? — X — 1,
the Fibonacci-recursion. The polynomial »(X) is irreducible if and only if
N =2,3 (mod 5). Assuming this, we find that &(N,r) divides 2N + 2, since
for any root p of r(X) we have p?V*2 = (p- pV)? = (=1)? = 1. Here we used
that r(X) is absolutely irreducible and hence that its roots are given by p
and pV. Let us further assume that k(N.r) = 2N + 2. In this case we find
that d divides 3.
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On Cryptographic Complexity
of Boolean Functions

Claude Carlet*

GREYC, University of Paris 8 and INRIA

Abstract. Cryptographic Boolean functions must be complex to satisfy Shannon’s
principle of confusion. Two main criteria evaluating, from crytpographic viewpoint,
the complexity of Boolean functions on Fy' have been studied in the literature: the
nonlinearity (the minimum Hamming distance to affine functions) and the alge-
braic degree. We consider two other criteria: the minimum number of terms in the
algebraic normal forms of all affinely equivalent functions (we call it the algebraic
thickness) and the non-normality. We show that, asymptotically, almost all Boolean
functions have high algebraic degrees, high nonlinearities, high algebraic thicknesses
and are highly non-normal.

1 Introduction

Let n be any positive integer. We denote by B, the set of all Boolean (i.e.
Fy-valued) functions on FJ'. We denote by @ the additions in F», in F3
and in B,. Every Boolean function f admits a unique representation (cf.
[11)) called its algebraic normal form (A.N.F.) as a polynomial over Fy in n
binary variables of the form:

flag, - xn) = @ ay (H.z'i“") = @ (y 25 Gy € Fo.
i=1

ue Fon u€ Foyn

The degree of the A.N.F. is called the algebraic degree of the function. It is
an affine invariant: the degree of any function f equals that of any affinely
equivalent function fo A (A element of the general affine group). The Boolean
functions whose algebraic degrees do not exceed 1 are called affine.

The Hamming weight of a Boolean function f is the size of its support
{x € F}; f(z) = 1} and the Hamming distance between two functions f
and ¢ is the Hamming weight of the Boolean function f @& g. The nonlin-
earity NL(f) of a Boolean function f is its minimum Hamming distance to
affine functions. It is an affine invariant and can be expressed by means of
the discrete Fourier-Walsh-Hadamard transform of the function. The discrete
Fourier-Walsh-Hadamard transform of f is by definition the integer-valued

* INRIA Projet CODES, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex,

France
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function fA defined by

Yu € FY, f(?l) = Z fla) (=1

zeF}

where u - & denotes the usual inner product u -z = uxy B -+ B URTy.
Fourier-Walsh-Hadamard transform corresponds to the expression of f in
the orthogonal basis of the so called Walsh functions = — (—1)**. We will
also have to consider the Fourier-Walsh-Hadamard transform of the “sign”
function x = (—1)/:

Vi) = 37 (~1)f @20 = 9260 () — 2f(u))

e F}

where &g is the Dirac symbol (6p(u) equals 1 if w = 0 and 0 otherwise). We
have:

NL(f)y=2""" ~ ! max |X¢(u)| . (1)

2 ueF}

Because of Parseval’s relation:

> G w2

T
uEFQ

any Boolean function f in n variables satisfies N'L(f) < 2"~1 —2%/2=1 This
upper bound can only be achieved for even values of n. The functions for
which equality holds are called bent functions.

In this paper, we are interested in those cryptographic criteria on Boolean
functions (used in conventional cryptosystems) which are related to Shan-
non’s principle of confusion. This principle [22] has been introduced in 1949
{(with another principle, called diffusion, that we do not study in this paper),
and since then, its relevance to modern cryptography has always been veri-
fied. Concerning the Boolean functions involved in the cryptosystems (stream
ciphers, block ciphers), this principle is related to the complexity of the func-
tions. The complexity criteria and the corresponding complexity measures
which are relevant to cryptography being related to the attacks on the cryp-
tosystems where Boolean functions play a role, they are different from those
used in circuit complexity (see e.g. [24]).

Nonlinearity is the most important of these criteria. It is related to attacks
on stream ciphers (cf. [1]) and block ciphers as well (cf. the linear attack by
Matsui [13]). Two other criteria play also important roles: the algebraic degree
and the number of monomials in the A.N.F. (i.c. the number of nonzero a,,’s).
The complexity of the “higher order differential attack” on block ciphers
due to Knudsen and Lai [8.9] depends on the highest algebraic degree of the
Boolean functions involved in the system. The linear complexity of a sequence
generated by several Linear Feedback Shift Registers (LFSRs) combined by a
nonlinear function depends on the degree of the function and on the number
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of terms in its A.N.F. (these parameters condition therefore the resistance to
Berlekamp-Massey algorithm. cf. [12,20]). The nonlinear functions selected
for filtered LFSR’s must also have high degrees and include many terms in
their A.N.F.s (cf. [15] page 208).

As already pointed out by W. Meier and O. Staffelbach in [14], the general
complexity criteria which are mostly interesting in cryptographic framework
are affine invariants because the attacks on cryptosystems using Boolean
functions (e.g. filtered Linear Feedback Shift Registers, block ciphers) often
work with the same complexity when the functions are replaced by affinely
equivalent ones. This is why we shall consider an affine invariant related to
the number of terms, and not the number of terms itself.

Recall that, asymptotically, alimost all Boolean functions have high cir-
cuit complexities. Lupanov [10] calls this the Shannon effect: Shannon [23]
observed in 1949 that Boolean functions with high circuit complexity must ex-
ist because of the double-exponential increment of the number of all Boolean
functions.

In this paper, we study to what extent this Shannon effect applies to
cryptographic complexity criteria (the nonlinearity, the algebraic degree and
the affine invariant, denoted by 7 (f) and called algebraic thickness, which
is related to the number of terms). We also study another criterion, called
normality, whose definition will be given later. We show that, asymptotically,
almost all Boolean functions on F3' have high degrees (greater than 3n where
8 is any positive number smaller than 1), high nonlinearities (greater than
271 — 227~ where o is any number greater than %) high algebraic thick-
nesses and are highly non-normal. We can also require that these functions
admit no linear structure (i.e. that there does not exist a # 0 in FJ' and € in
F; such that, for every @ € FJ'. f(x @ a) = f(x) @ e, cf. [6]). Our method is
very similar to the methods used in circuit complexity: counting the functions
which do not match the above constraints.

We finally generalize our study to g-ary functions (i.e. functions from F .
to F, where ¢ is a power of a prime).

2 The Number of Terms in the A.N.F.s
of Boolean Functions

The number of terms (i.e. of monomials with nonzero coefficients) in the
AN.F. of a Boolean function can obviously be any integer between 0 and 2.
But as explained by Meier and Staffelbach [14], a Boolean function having
many terms in its A.N.F. can be nevertheless inadequate for cryptographic
use if it is affinely equivalent to a function with few terms in its A.N.F.. They
take the example of the function whose A.N.F. contains all monomials: this
function is equal to []\_, (¢ 1).

This is why we are interested in an affine invariant related to this param-
eter of the function:
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Definition 1. We call algebraic thickness of a Boolean function f and we de-
note by 7(f) the minimum number of terms (i.e. of monomials with nonzero
coefficients) in the A.N.F.s of the functions f o A, where A ranges over the
set of all affine automorphisins of FJ'.

Examples:
— For every nonzero affine function f(zy,- -+, 2,) = a1 21D - -Da, r,Dag,
where a = (a1.-++.,a,) € Fy" and ap € Fy, we have T(f) = 1, since the

constant function 1 has one term in its A.N.F. and since every non-constant
affine function is equivalent to a; (for instance).

More generally, let E be any flat (affine subspace) of F' and let k be its
dimension. E is the intersection of (n — k) independent affine hyperplanes.
Thus, the indicator of E (defined by 1g(z) = 1 if # € E; 0 otherwise) is
equivalent to H:;A x; and thus 7T(1g) = 1.

We know (cf. [11]) that every non-affine quadratic function (i.e. any
function of degree 2) is equivalent to 122G - -Prop_1 T2k Dokt (where 2k+
1 < n) if the function is balanced (i.e. if its output is uniformly distributed)
and to @1xy @ - @ Top_1x9) OF tO 1Ly B - & Top_129, B 1 (where 2k <
n) otherwise. Thus, T(f) < |n/2] + 1, where | | denotes the integer part.
Moreover, two functions of two different forms, or of the same form but with
different values of k are affinely inequivalent. Thus the maximum of 7(f)
when f ranges over the set of all quadratic functions equals [n/2] + 1.

We see that classical Boolean functions have small algebraic thicknesses.
The question addressed in this section is an approximation of the maximum
possible value of 7(f) when f ranges over B,,. Clearly, the number of terms
in the A.N.F. of any Boolean function f. and a fortiori T(f), is smaller than
or equal to 2". But is max¢eg, 7 (f) polynomial or exponential in n? If it was
polynomial, then this would indicate a potential weakness of many ciphers
using Boolean functions.

2.1 A Lower Asymptotic Bound on maxscg (7 (f))

We show in the next proposition that maxsep, (7(f)) is exponentially large,

since liminf,, _ > % Moreover, for almost all Boolean func-

tions f, the number 7(f) is not substantially smaller than 2771,

Theorem 1. For every number A < 1/2, the density in B, of the subset
{f € B, | T(f) > A2} is greater than 1 —22" H2N=2"+n 0 ypere Ho (1) =
—alogy(x) = (1) logy(1 — ) is the entropy function. This density tends to
1 when n tends to infinity. Thus. there exists N such that for every n > N,
a Boolean function f such that T(f) > A 2™ exists. We can take N =9 for
A= 11 and N =12 for A = g

Proof. Let k be any positive integer. The number of Boolean functions on

F3 whose A.N.F.s have at most &k terms equals 1 + (Qin) 4Lt (2]:).
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The number of affine automorphisms on Fj' equals (2" — 1)(2" — 2)(2" —
4) . (2)7 _ 271,71) N

Thus, the number of Boolean functions f such that 7(f) < k is smaller than
or equal to

<1 + <217’> 4o+ (2]‘n>> (271 — 1)(2'1 _ 2)(271, N 4) o (211 o 271—1) on.

which is smaller than:

on on 5
N(n.k) = <1+<1> NS <A>>2 n’+n.

We know (cf. for instance [11]. page 310) that for every positive A <
and every positive integer N:

Z <V> < 9N Hz(\),
1

0<i<AN

B[

Thus the density of the set {f € B, | 7(f) > A2"} is greater than 1 —
LV%’\IQQ > 1 — 22" (HaN=D+n*+n The entropy function is strictly increas-
ing on [0;1/2] and its value at 1/2 is 1. Thus for A < 1/2, the expression
2" (Hy(\) — 1) +n2% +n tends to —oc when n tends to infinity and the density
tends to 1.

We have checked these values N =9 and N = 12 by computation.

2\2n—1
not work for A = 1/2. We do not know if there exist functions f such that

T(f) >2n L

Remark: N(n.2""") = <2“71 + 3 ( . )) 2 "+ Thus, our method does

2.2 An Upper Bound

Proposition 1. For every Boolean function [ in B, T(f) is smaller than
or equal to % 2",

Proof. The proof is by induction on n. The assertion is clearly valid for n = 1.
Let n be any integer greater than 1 and assume that the assertion is valid
for n — 1. Let f be any Boolean function in B, and let fy and f; be the
Boolean functions on F,_;Y'*l such that f(x1,---,2,) = fo(z1, -, 00-1) &
xnfi(zr, -+, xn_1). We shall denote by | f| the number of terms in the A.N.F.
of f. We have |f| = | fo| + |f1]. By hypothesis, there exists an affine isomor-
phism A on F5' ! such that | f; o A| < 2 2"~ Thus, we can assume without
loss of generality that |f;| < 2 2771, Assume that |f| = |fo| + |f1] is greater
than % 2", Let r be the number of terms which are in both A.N.F.s of fy and
f1. We have | fo|+] fi| —r < 277!, since 2"~ ! is the total number of monomials
" (x,u € FIZ”'J). Thus r is greater than % on _on-1 — % 27~1, Changing
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into o, &1 in the A.N.F. of f keeps f; unchanged and replaces fy by fo & f1.

We have |fo @ f, 1]+ Ll = 2U'n[ 2] =2 = (fol+ Al =r)+ Al -7 <
n—1 n—1 on—1 _ 2 9n

2+ 22 —32n =32

Remark: All the affine isomorphisms we use in the proof above are in fact
translations.

2.3 Relationship Between 7 and the Other Complexity Criteria

We shall say that a function f has high thickness if 7(f) equals A 2" where
A is near 1/2: this is coherent with Theorem 1. We shall say that f has high
nonlinearity if N'C(f) is greater than 277! — k,, 2"/2=1 where the sequence
Kp, is under-linear in n: we know that for every n, there exist (e.g. quadratic)
functions on £ with nonlinearity greater than or equal to 277! — 2ln/21-1
but the number of such functions seems very small (this has never been proved
but it can be verified for small values of n with computer help). We shall say
that f has high algebraic degree if its degree is greater than n where J is
near 1.

We also consider that f has low thickness if 7(f) is polynomial in n (for
some values of the exponent and of the coeflicient), that f has low nonlinearity
if NL(f) is smaller than 2"\ where A < 1/2, and that f has low algebraic
degree if its degree is smaller than jn where 3 is small.

All those functions whose algebraic thicknesses are high have degrees not
substantially simaller than n/2, since for every Boolean function of algebraic

degree d we have
d
_ n
(<Y <) @)

=0

and 221:0 (") is polynomial. 7(f) is small if d is small, but the converse is
false: recall that 7 (f) equals 1 when f is the indicator of any flat. If this flat
is a singleton, then the degree of f equals n.

There exist functions with low algebraic thicknesses and with highest pos-
sible nonlinearity (e.g. quadratic bent functions). There also exist functions
with high algebraic thicknesses and low nonlinearities, since there exist func-
tions with high algebraic thicknesses and low weights: take A < X < 1/2;
the number of functions of weights smaller than or equal to 2"\ equals

2"\’ 271 2211 H.’(/\/)
Z < ) ) > : (cf. [11], page 310) and we have seen above
=\ 203N (1 — N)

that the number of functions f such that T(f) < 27X is smaller than or equal

<1 + <271> + <2“>> 9 nPHn 92" Ha(N)+n?4n,
1 k - '

thus, the latter is asymptotically smaller than the former and there exist
functions of weights smaller than or equal to 2™\ satisfying 7(f) > 2"\,
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But the most interesting question is clearly: “does there exist functions
with high degrees, high nonlinearities and high algebraic thicknesses?”. The
answer is yes, according to Theorem 1 and to the following results:

Theorem 2. Let o and o be two numbers such that —} < o < a. Then,
asymptotically, the density of the set {f € By, NL(f) > 2"~ —n*2371} s

greater than 1 — 27" and tends to 1 when n tends to infinity. Thus, there
exists N such that for every n > N, a majority of Boolean functions f are
such that NL(f) > 2"~1 —n®22~1. For instance, for a = 0.55 we can take
N =11.

Proof. The number of affine functions is 2"*1. For a given affine function
I, the number of Boolean functions f such that dg(f,1) < 2"~ — n*23-1

2rL T Q{*Ei
equals Z ( > < 92 Ha(3=n®2727") Thus, the number of
1

n

<j<gn—l_pagz !
those B%(h?%in fu;(:tzions which have nonlinearities smaller than or equal to
9n=1 _ pa 251 s smaller than 27+1+2" H2(G=n"275 71 Ginee Hy(1/2) =1,
H}(1/2) = 0, and HY(1/2) = — L, Taylor formula gives Ha(5—n®27%71) =
1- ";Xhl‘; +0(n?*27"). Thus. asymptotically, we have (n+1)27" + Hy(3 —
n®273 ) <1 - n2' 27" (indeed, take o’ < o’ < a; then n + 1 is negligible

1"
2a

. . " . . 20 . .
with respect to n?* —n2®" | since 2a > 20’ > 1, and 515 1S asymptotically

greater than n?*) and the density of the set of those Boolean functions
which have nonlinearity greater than 2"~' — n®2%~! is greater than 1 —
n 2a’ 5—n n 20/ . ..
92" (1=n"" 272" — 1 _9-7"" and tends to 1 when n tends to infinity. We
have checked the last sentence by computation.
A p

Since the density of the set of those functions whose nonlinearities exceed
271 — 2% ~1 and of the set of those functions whose algebraic thicknesses
exceed A 2" with A near 1/2 both tend to 1, we deduce that the density of
those functions which have both properties tends also to 1. We have seen
that these functions canuot have low degrees since relation (2) and the fact
that 7(f) exceeds A 2" imply that d cannot be significantly smaller than .
But we can in fact require that these functions have high degrees:

Theorem 3. Let 3 and ' be two positive numbers such that 3 < 3’ < 1.

The density of the set of all functions on F§' whose degrees are greater than

Bn is asymptotically greater than 1 — 272" 12U and tends to 1 when n

tends to infinity.

Proof. The number of all functions on F3' of degrees smaller than or equal to

n n )
G n equals 2 where 7, = E ( > =27~ g < ) We have (cf.
i i
0<i<pgn 0<i<n—g3n-1
on Ho(l1—p3—1/n)

11 310) 7, < 2" —
[11], page ) T < VEn(1—5—1/n)(8+1/n)

. Thus, assuming without loss
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of generality that 3 > 1/2, the density of the set of all functions on F' whose
on Ho(1-3—1/n)

degrees are greater than 3n equals 1 —2772" > 12 Ven(-i=1/mG1/m)
‘)72,, Ho(1-3")

is asymptotically greater than 1 — and tends to 1 when n tends

to infinity.

So, to conclude this section, we can say that, for every « such that % < « and
every /3 such that 0 < 3 < 1, there exist functions with degrees greater than
An, nonlinearities greater than 2"~ — n®2%~! and with 7(f) near 271

3 Normality of Boolean Functions

The complexity criterion on Boolean functions we shall now consider is not yet
related to explicit attacks on ciphers. But it is a natural criterion to consider.
The situation of the three other criteria when they were first considered was
similar. For instance. at the time D.E.S. was designed, only the differential
attack was known (and kept secret). but the notion of nonlinearity had been
already introduced by Rothaus [19]. The linear attack has been discovered
sixteen years later (cf. [13]).
There is a relation (cf. Proposition 2) between the criterion we shall introduce
and nonlinearity which shows that to have a chance to be highly nonlinear,
a function must satisfy this criterion at a reasonably high level.

Hans Dobbertin has introduced in [4] the following notion: a Boolean
function defined on FJ (n even) is normal if it is constant on at least one
n/2-dimensional flat. We generalize this notion and extend it to any n:

Definition 2. Let & < n. A Boolean function f on FJ' is called k-normal
(resp. k-weakly-normal) if there exists a k-dimensional flat on which f is
constant (resp. affine).

The complexity criterion we are interested in is non-k-normality with small k.
Philippe Langevin calls index of f the maximum value of k such that f is k-
normal. Clearly, k-normality implies k-weak-normality and k-weak-normality
implies (k — 1)-normality.

Examples:

- BEvery symmetric Boolean function (i.e. every function whose output is
invariant under permutation of its input bits, i.e. whose output depends only
on the weight of the input) is [%J—normzﬂ and {%1-W(:akly—nornml since its

restriction to the ['%]—dimonsional fat:
" SN
{(rro.oay) € FI Tiyn =x; §1,Vi < E}

is constant if n is even and affine if n is odd. Indeed, if n is even, all the

elements of this flat have same weight L%J and f(x) takes therefore constant
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value; if n is odd. we have f(r) = f(r. - a1, 0) D ay,flx L1, (])
@f(xy, - xp-1. 1)) where the functions f(xy,---.2,-1.0) dlld f(?l
Zn_1, 1) are constant on this flat.

— Every Boolean function on F}' with n <7 is L%J—uormal. as proved by S.
Dubuc [5].

There is a mutual upper bound on & and on the nonlinearity of the func-
tion:

Proposition 2. Let f be a k-weakly-normal Boolean function on F3'. Denote
by NL(f) its nonlinearity. Then

A/E(f) S 21171 _ Qk‘fl\
or equivalently
k <log,[2" ™' —~NL(f)]+1

Proposition 2 is a direct consequence of a known property of Fourier-Walsh-
Hadamard transform. This property is interesting by itself:

Proposition 3. Let f be any Boolean function on F3', E any vector subspace
of ' and a, b two vectors of F3'. Then

S DTG ) = (D)"Y (—pf et

ueb® r€aDE+

where |E| denotes the size of E and E+ = {x € F}'; Yy € E, z- z/ =0} is its
orthogonal. If f&b-x is constant on the flat a® B+, then Yo p(—1) X5 (u)
= 42",

Proof. Let ¢ be any real-valued function on £ and ¢ its Fourier-Walsh-
Hadamard tmnsform. We have:

Z (71)(1 u A(II) Z p(r)(_])a‘uﬂ):zvu _

ueEbGF u,Eb&)E:J?GFZ”
S pla)(~ e tow),
uEEwelr)
Since the sum Y, _p(=1)@® 0T s null for every @ ¢ a @ E+, we deduce:
/\ ~ (abx)-b
S0 = B Y (-1 ()
uebhE r€adp Bt
Applying this result to ¢ = xy implies
Z (’])n uY ‘b ) b Z (71)f(r);br
uEbGE rcabE+

If the restriction of f to the flat as S E* equals b-xDe (e € Fy), then applying
this last equality gives > - o (=1)"" Y (u) = £2".



62 Claude Carlet

Proposition 3 implies that, if f < b-x is constant on the flat a © E*, then
the mean of (—1)*"X(u) when u ranges over b ® E equals i\F\ = £|EL.

Thus the maximum magnitude of Y7 (u) is greater than or equal to |E+|. This
implies Proposition 2, according to relation (1).

Remark: Proposition 3 also implies a more general result due to Zhang,
Zheng and Tmai, but proved in a complex way in [25]: let A be any k-
dimensional flat (k < n). Let f be a Boolean function on FJ' and f’ its
restriction to A. Denote by N L(f’) the nonlinearity of f’ (i.e. the minimum
Hamming distance between f” and any affine function on A). Then we have

NE(f) = NL(F)y <27 =2,

Indeed, according to Proposition 3 with A = a®E*, we have: maXye py x5 (D)
< max, e py [X (0. u)| which completes the proof.

Let us see now the consequences of Proposition 2 on the properties of
Boolean functions with specified degrees.

1. Every quadratic Boolean function f on F3' is §-normal if n is even
and "JQH -weakly-normal if n is odd, according to the propertlcb of quadratic
functions recalled in the previous section.

2. According to Proposition 2. this implies that the maximum possible
nonlinearity of quadratic functions (known by coders as the covering radius
of the Reed-Muller code RM(1,n) in the Reed-Muller Code RM (2.,n)) is
upper bounded by 277! — 2“7 if n is even and by 21 — 2% % T if nis odd
(these values are in fact the exact ones).

We know that, at least for n > 15, n odd, properties 1 and 2 above do not
generalize to all Boolean functions. Indeed we know (cf. [16]) that for these
values of n, there exist Boolean functions with nonlinearities greater than

on—l _ ot According to Proposition 2, these functions cannot be %-
weakly-normal (and a fortiori they cannot be "; -normal). S. Blackburn
and Hans Dobbertin have also shown in [4] that for every even n > 12, there
exist non-Z-normal Boolean functions on F3'. We investigate now the leues

of k (depending on n, whatever is its parity) for which these results extend.

Theorem 4. Let « be greater than 1. Let (ky,),en+ be a sequence of positive
integers such that alogon < k, < n. The density in B, of the set of all
Boolean functions on F3' which are not k‘”—umakly rwrmal (and thus which
are not k,-normal) is (m’at(’r than 1 — 2" D=2 This density tends to
1 when n tends to infinity. Therefore, there exists a pots/,twe integer N such
that, for every n > N, non-k,,-normal functions exist. For k,, = {%J we can
take N = 12.

Proof. Let X, be the number of k,,-dimensional flats in F}'. Fix such a flat
A. Let 1, be the number of Boolean functions whose restrictions to A are
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affine (clearly, this number does not depend on the choice of A). The number
of k,-weakly-normal functions on F7' is smaller than or equal to A, juy,.
The number of k,-dimensional vector subspaces of F3' equals (cf. [11]) :

n] (2" -1D@E@r-2)@2"-2%)... (2" - okn—1)
{knjl (2R — 1)(2kn — 2)(2kn — 22) ... (2kn — 2ka—T)

and the number of k,,-dimensional flats in F}' is:

_ on—ky n
—

We choose now as particular k,-dimensional flat the set Fi» x {(0,---,0)}.
The restriction to Ff» x {(0,---,0)} of a Boolean function on Fy is affine if
and only if the algebraic normal form of the function contains no monomial
of degree at least 2 involving the coordinates x1, - - -, x, only. The number of
such functions is p,, = 2", where v,, = 2" — 2kn £ 1+ k,. The number of k,,-

weakly-normal functions on Fj' is smaller than or equal to 2" %= { kn ) } 20,
n
The number of Boolean functions on Fj being equal to 22", the density of

the subset A,, of B,, containing all Boolean functions on F3' which are not
kn-weakly-normal is greater than or equal to

1 o 2”4/“," n 21/,,,—2n.
]

n S .
We have { < Qnhn—kn *"’x since every factor in the numerator of

Ky,

n . o . .
{ I } is smaller than 27 and every factor in its denominator is greater than
n

or equal to 257 ~1. Thus, the density of A,, is greater than or equal to

1 = onlbnt D) thy+1-ky 2 =250 g gn(kn+1)-2"

The exponent n(k, +1) — 2¥» is smaller than or equal to 28/ (k,, + 1) — 2kn
and thus tends to —oo when n tends to 4oc.
The last sentence of the proposition can be checked by computation (the
N n on . .
sequences 1 — 27~ Fn | 7| 2¥n=2" "5y aven and n odd are increasing and pos-
N

itive respectively for n > 12 and n > 13).

Remark: Theorem 4 remains valid if we only assume that 2 7 tends to infin-
ity. It also remains valid (except “N = 12") if, in the definition of k- weakly-
normal functions. we replace “there exists a k-dimensional flat on which it

is affine” by “there exists a k-dimensional flat such that the restriction of
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the function to this flat has degree <17, where [ is some fixed positive inte-
ger: the value of 1, has then to be changed into 2" —2F» +1 4 (l”l) +...+ (kl“).

X.-D. Hou has shown in [7] that, for any odd n < 13, the maximum

nonlinearity of all functions of degree 3 is the same as for quadratic functions:
on=1 _ 25" So we could hope that Boolean functions of degree 3 behave for
every n as quadratic functions with respect to nonlinearity or to normality.
For nonlinearity. this is an open problem. But for normality, we will show
the existence of noun-k,-normal Boolean functions of degree 3. where k,, is
negligible with respect to n. This confirms the feeling that these functions
behave merely as general functions, considering their combinatorial properties
(cf. [2]).
Proposition 4. Let A > % Let (kyn)nen+ be a sequence of positive integers
such that n® < k, < n. The density of the set of all Boolean functions of
degrees at most 3 on F which are not k,-weakly-normal (and thus which
are not ky-normal) in the set of all Boolean functions of degrees at most 3
is greater than or equal to 1 — okt D)=k = ()= (%) Tpys density tends
to 1 when n tends to infinity. Therefore, there exists a positive integer N
such that, for every n > N, such functions exist. For k,, = [’5‘1 we can take
N =15.

Proof. Let 1, be the number of Boolean functions of degrees at most 3 whose
Fats kn .
restrictions to Fiy" x {(0.---.0)} are affine. The number of k,,-weakly-normal
functions of degrees at most 3 on Fj' is smaller than or equal to A, y,, where
Ap is the number of k,,-dimensional flats in F3'.
. . .. & X
The number of functions whose restrictions to Fy, x {(0,---,0)} are affine
Ao ot ou - ;o N n n ko k, SN .
equals p;, = 2, where v}, = 14+ n + (2) + (§) - (%) - (31). The number
of k,-weakly-normal functions of degree at most 3 on FJ' is smaller than or
o n
equal to 2" Fn {

n

} 2n and the density of this set in the set of all Boolean

functions of degree at most 3 is greater than or equal to

1 — :)'H*]\‘,, n 21/7/,—»”

T

where kK, =1+ n+ (;’) + (’3’) and is therefore greater than

p Fn kn
1 — 271,+71L‘,,7L‘,127( 5 )—( 3 )
Since the binomial coefficient (A,;) has degree 3 with respect to k, and since
the sequence L,’T tends to infinity. the exponent n + nk,, — k> — (]‘2") - (1‘5")
tends to —oc when n tends to .
For k, = | %], it is a simple matter to check that, for n > 16, we have
5 I ;

n+ % < ("ég) + (71:/;2) (n even) and n + # < (<"+21>/2) + ((”31)/2) (n odd).

For n =15 (and n = 13) we checked that 1 — 2"~ " avimEe s,

n
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Remark: Proposition 4 remains valid if we assume only that the sequence k;;

tends to infinity. It also remains valid (except *N = 157) if, in the definition
of k-weakly-normal functions, we replace “there exists a k-dimensional flat
on which it is affine”™ by “there exists a k-dimensional flat on which it is
quadratic” (we then just have to withdraw the term (]‘2”) from the proof).
Obviously, Proposition 4 can also be generalized to all other fixed degrees.

3.1 Relationship Between Normality
and the Other Complexity Criteria

We have seen in Proposition 2 that if f is k-(weakly)-normal, then N'L(f) <
2n—1_9k=1 Notice that, since every Boolean function has nonlinearity upper
bounded by 271 —27/2-1 this gives no information if k < n /2. But the high
nonlinearity of bent functions (2771 — on/ 2=1) implies that they cannot be
(5 + 1)-weakly-normal.

Anyway, k-normality with large k implies low nonlinearity, but we do not
know whether the converse is true or not.

Low degree of Boolean functions does not imply their normality: we have
seen in Proposition 4 that there exist functions of degree 3 which are non-k-
normal with low £.

k-normality does not imply either low degree: take a function of high
degree on Fj'~' (considered as a subspace of FJ') and complete it by 0 to
obtain a function on F3'.

There exist functions f with low algebraic thicknesses (e.g. functions of
degree 3) which are non-k-normal with small k according to Proposition 4;
and there exist functions with high algebraic thicknesses which are k-normal
with large k: take a function g on Fy'~ ' with high 7 (g) and complete it by 0
to obtain a function f on F3'; it is a simple matter to check that 7(f) > 7 (g).

The most interesting point is that almost all functions have high de-
grees, high nonlinearities, high algebraic thicknesses and are non-k-normal
with small k’s. since we have seen at subsection 2.3 that the density of those
functions which have high degrees (greater than Jn where 8 < 1), high
nonlinearities (greater than 2"~1 — n® 251 where % < @), high algebraic
thicknesses (more than approximately 2771) tends to 1 and we know that
the density of the set of those functions which are non-k-normal with & log-
arithmic in n tends also to 1.

Remark: We can also require that these functions admit no linear structure.
This can be necessary because. if the function used in a cipher admits a linear
structure, the complexity of an exhaustive search of the key may be reduced
[6]. Thus the non-existence of a linear structure can also be considered as
a complexity criterion (of a different kind, since functions either satisfy this
criterion or do not satisfy it, while all the other criteria are satisfied at levels
quantified by numbers). A linear structure of a Boolean function f is any

an

nonzero word a € Fy such that the function D, f(z) = f(z @ a) & f(2)
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is constant. The existence of a linear structure for a function f is equiv-
. . . —1
alent to the existence of a Boolean function g on F3'"" and of an affine

function [ on F¥' such that f(x1.....x,) is affinely equivalent to the func-
tion g(x..... Tp_1) & l(x1.... xy) (cf. for instance [5]). Thus, the number

of functions admitting hnear structures is smaller than or equal to 22"
times the number of affine automorphisms, times the number of affine func-
tions, and is therefore smaller than 92" THn®+2mtl The density of the set
of functions admitting no linear structure is then greater than or equal to
1 —2n+2n+1-2""" i tends to 1.
Meier and Staffelbach introduced in [14] a complexity criterion (in their pa-
per, they wrote “nonlinearity criterion”) satisfied at levels quantified by num-
bers and related to this notion: a Boolean function on F3' being given, its
“distance to linear structures” is its distance to the set of all Boolean functions
admitting linear structures (among which we have all affine functions). Let p
be a positive number smaller than 1/2. The number of Boolean functions on
F3' which lie at distance smaller than or equal to p 2™ from this set is smaller
than or equal to 22" T2l sz" (* ) <22 n 2 142" Ha(p) | Ty,
this number is negligible with respect to 22" if Hs(p) < 1/2 and, asymptoti-
cally, almost all functions lie then at distance greater than p 2" to the set of
all Boolean functions admitting linear structures.

General remark:

1. We see that all complexity citeria studied in this paper are not contra-
dictory to each others. This is different when we also consider criteria more
related to the principle of diffusion, such as correlation immunity, resilience,
cf. [3]. However. all the results above are essentially valid if we restrict our-
selves to balanced functions. Indeed, the number of balanced functions on FJ'
equals (2,1,1) = 022" 7"/2) (cf. [11], page 309) and all our arguments can be
used , replacing the number of functions, 22", by ( 2"*1)

2. There is the same “Shannon effect” with (hned‘r) error correcting codes,
Boolean functions from circuit viewpoint, and Boolean functions from cryp-
tographic viewpoint: we know by combinatorial arguments that, asymptot-
ically, good codes (resp. good functions) exist; moreover, we know that, for
sufficiently large values of their lengths (resp. of their numbers of variables)
almost all of them are good, but the values of the length (resp. of the number
of variables) for which we can assert that many are good make impossible the
verification of the quality of such codes (resp. functions) chosen at random.
We know very few examples of non- [2] normal functions: the functions ob-
tained by Patterson and Wiedmann [16] and a few functions obtained for n
even > 8 by Sylvie Dubuc in her thesis [5].
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4 On g-ary Functions

Since the motivation of this paper was cryptographic, we have focused on
Boolean functions. But our main results generalize to functions from F ;. to
F,. where ¢ is any power of a prime. We denote by Bf the set of such g-ary
fnn(tlons The algebraic normal form of any function in BY has the form:

flrg, -z = Z Gy (ﬁ :1:,,3“l> Ly € F

WEZ," i=1

where Z, = {0.....q — 1}. It exists and is unique (see [18]).

We denote by 7 ( f) again the minimum number of terms (i.e. of monomials
with nonzero coefficients) in the A.N.F.s of the functions fo A, where A ranges
over the set of all affine automorphisms of F;'. A Boolean function f on F!
is called k-normal (resp. k-weakly-normal) if there exists a k-dimensional flat
on which f is constant (resp. has degree at most 1).

Theorem 5. For every \ such z‘hm‘ + A < 1, the density of the subset
of BY which contains all functions such that T(f) > A q" is greater than
1— 24" HaON) gra"+n"4n=a" This density tends to 1 when n tends to infinity.

Proof. Let k be auny positive integer. The numbel of functions in B whose
A N.F.s have at most k terms equals 1 + ( )(q -1+ + (ql:)(q L
The number of affine automorphisms on Fj' equals ( " =1 g" - @)(¢" -
@) (q" = q" ") q".

Thus, the number of functions f such that 7(f) < k is smaller than or equal
to

(1 + <q:> (g=D+-+ (%\) (¢ — 1)k> (@"-D("=a)(q" =) (" —¢" ") "

() )

Thus the density of the set {f € BY | T(f ) > Ag™} in BY is greater than

n 2 n n Hz A g n, .2, )
120" H20) Ad" 0 on—a” g g g AT 004 tends to 1 since
Ha(N\)
Tog, + A<l
Theorem 6. Let o be greater than 1. Let (k,)nen+ be a sequence of positive

integers such that alog,n < k, < n. The density of the subset of Bj con-
taining those Boolean functions on F' which are not ky-weakly-normal (and
thus which are not ky,-normal) is greater than 1 — g kntD+ka =k +1=¢"" ppi
density tends to 1 when n tends to infinity.
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Proof. The number of k,-dimensional flats of F| , equals:

nek, (@ =1)(q" = q)q" ~ ) (" =g < gkt —ka (k1)
(q n o— l)(q [ — q)( 'n — q ) . (qkn — qku“l) -
The number of g-ary functions whose restrictions to a given k- dimensional

flat (c.g. FF» x {(0,---.0)}) have degrees at most 1 equals ¢7 ~ Lk
Thus, the number of k,-weakly-normal functions on F' is smaller than or

q

n ko, . .2 .
equal to ¢ —¢ " Frlknt)Hke =k +1 and the density of the subset of BZ con-
taining all Boolean functions on Fi* which are not k;-weakly-normal is greater

than or equal to
1 qn(k,,+l)+k-,,—k'f,+l—qk’”

and tends to 1.
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On Divisibility of Exponential Sums
over Finite Fields of Characteristic 2

F.N. Castro and O. Moreno

Department of Mathematics, University of Puerto Rico, PO Box 23355, SJ, PR,
00931-3355

Abstract. Moreno-Moreno’s result and the covering method give estimates on the
2-divisibility of the number of solutions of a system of polynomial equations. Let us
call i the order of the 2-divisibility given by Moreno-Moreno’s result and ' that
of the covering method. In 2000 we proved that u' > p. In this present paper we
give general conditions under which ' > p. We also give some results concerning
the tightness of the covering method.

1 Intoduction

In [12] and [8], Moreno et al. introduced the covering method. This is a combi-
natorial technique that give a lower bound for the 2-divisibility of exponential
sums over finite fields of characteristic two. In [12] and [8], they proved that
the covering method improves the binary Ax’s theorem. In [9], we introduce a
generalization to the covering method, and prove the Moreno-Moreno’s theo-
rem for finite fields of characteristic two. In [10], we give a survey of the best
methods to obtain divisibility results. Let u be the order of the 2-divisibility
given by Moreno-Moreno's result and p' be the order of the 2-divisibility
given by the covering method. In [9], we proved that p’ > p. In the present
paper we give general conditions under which ¢/ > p. Another theorem of
this paper is a tight lower bound on the 2-divisibility of the number of so-
lutions of a system of polynomial equations over Fy. Our bound is tight in
the following sense: if the 6[:17;'1 ceexoit, L fN:L'?N' ---2¢N" monomials are
fixed and the coefficients €; varied, then there is a choice of coefficients which
yield a polynomial for which the lower bound is tight. Since a polynomial
over Fy is a Boolean function. our result can be stated as follows: Consider
the following set G = {eja}" -~ alin + -+ eyaiN - afh ¢ g € Fo} of
Boolean functions, if the minimum number of monomials that cover all the
variables x1,...x, i1s r, then there is a Boolean function F' € G such that
the exact 2-divisibility of the number |{{a4,.... an) : Flay,...,a,) =0}
2r=1,

Finally we want to point out that the divisibility of exponential sums of
characteristic two is very important and has been used many times in coding
theory(see [12], and [5]).

is
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2 On the Divisibility of the Number of Rational Points

In this section, we are going to state some definitions and results about the
divisibility of the number of solutions of a system of polynomial equations
over Fy. Let Fy(x1.....: T )y s Fi(zy,.... z,,) be polynomials over F,, and
let N(Fi,...,F;) be the number of solutions of the system of polynomial
equations: F; = 0..... Fy = 0. Without of lost of generality, we assume
throughout the rest of the paper, that the F;’s are not polynomials in some
proper subset of the variables {z1,..., X}
In 1935, Chevalley proved a conjectured by E. Artin.

Theorem 1 (Chevalley). If F(rq,...,2,) is a homogeneous polynomial of
total degree d over a finite field F, having q = p! elements and n > d, then
F has a nontrivial zero.

Ax obtained an improvement of the Chevalley’s theorem(see [2]). Now we
state the Ax’s theorem.

Theorem 2 (Ax). With the notation of Theorem 1. If ju is equal to [n/d] —
1, where [a] is the smallest integer larger or equal to a, then the number of
zeros of F is divisible by g*.

In 1971, N. Katz improved Ax’s theorem(see [4]). Now we state the Katz's
theorem:

Theorem 3 (Katz). Let Fy. ..., F be polynomials in n variables with coef-
ficients in F, of total degrees dy, .. .. dy, respectively. Let ji be the least integer

that satisfies
t
n=2iidi

L >
o= maz; d;

Then gt divides N{(Fy, ..., E).

Ezample 1. Let Fy(xy.....: r5) = a4+ -+ + a3, and Fy(ay,... ,T5) = T +
-+ + x5 be polynomials over F,. Applying Katz’s theorem, we have that ¢
divides N(Fy. F3).

Moreno and Moreno gave in [11] an improvement to the Ax-Katz’s the-
orem. Before we state the Moreno and Moreno result, we need to give a
definition.

Definition 1. For cach integer n with p-expansion
n=uay+ap - +ap’ where 0 <a; <p,

we denote its p-weight by o,(n) = >_7_ a,. The p-weight degree of a mono-

mial 27 = 29D s wy(2?) = 0,(d1) + -+ + 0,(dy). The p-weight degree

; ial B ) = 7O pd e — y (Al
of a polynomial F(xy.....2,) = Y aqx® is w,(F) = max,a g, 20wp(z?)
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The Moreno-Moreno's result is the following:

Theorem 4 (Moreno-Moreno). Let Fy, ..., F; be polynomials in n vari-
ables with coefficients in F,, a finite field with ¢ = pl elements. Let wp(F;)
be the p-weight degree of F; and let jo be the smallest integer such that

> f<”’ 2 w?’(E)> .

maz; wy(F;)

Then p# divides N(Fy..... F}).

Ezample 2. Let Fy(aq1.....24) = 23 + - + a3, and Fy(ay,...,24) = 21 +
-++ 4 x4 be polynomials over Fys. Applying Moreno-Moreno’s theorem, we
have that 2///2 divides N(Fy, Fy).

Remark 1. Theorem 3 improves Theorem 4 whenever the characteristic is
small with comparison to the degrees, i.e., we need, say p < max; d; in order
for an improvement to occur.

Now we are going to describe the Adolphson-Sperber’s method(see [1}).
Let F(zy,...,a) = Z(zh ..... dyep ds....dy 1"111 ---2% be a polynomial over
F,. The Newton polyhedron A(F') is defined to be convex hull in R" of the
set DJ{(0,. .., 0)}. Let w(F') be the smallest positive rational number such
that w(F)A(F) contains at least one point with positive integral coordinates.
Now, we state the Adolphson and Sperber’s theorem:

Theorem 5 (Adolphson-Sperber). With the above notation and assump-
tions, we have
¢" divides N(Fy,..., F).

where p is the smallest integer greater than or equal to w(zz,_,l yi ) —t.

Let us illustrate Theorem 6. computing w(vF') for a polynomial.

Ezample 3. Let F(x.y.2) = 2° + y° + 27 + 2y + 2z + yz be a polynomial
over F,. The convex hull associated to F' is the convex set generated by the
following points:

v = (3.0.0.1). vg = (0.5,0.1), v3 = (0,0.7,1), vy = (1,1,0,1),
vs = (1.0.1.1). vg = (0.1.1.1). vr = (0,0,0,0).

Then w(F) = 2. Hence g divides N (0 + y® + 27 + 2y + z2 + y2).

3 On 2-Divisibility of Exponential Sums;
Method of Covering

Let Fa be the binary field and F(x1.....x,) be a polynomial in n variables
over Fa. Let C(F') be a minimal set of the monomials of I covering all vari-
ables, that is, every variable x; is in at least one monomial in C(F) and C(F)
is minimal with that property. We call this set C(F) a minimal covering of
the variables of I and we asswmne that its cardinality is r.
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Example 4. Let F(ay,...,x,) = r\vors+o405+x1 4 - -+ 25 be a polynomial
over Fy. In this case C(F) = { x1x0m3. 2425 }.

The following lemima establishes divisibility properties of an exponential
sum which will determine the divisibility of the number of zeros of a system
of polynomial equations(see [8]. [12]). Lemma 1 is an improvement to the
binary Ax’s theorem.

Lemma 1 (Moreno et al). Let F'(x) = F(z1,...,2,) be a polynomial in n
variables over Fy. Let C(F) be a minimal set of monomials of F(x) covering
all the variables and v be the cardinality of C(F). Then

2" divides S(F) = Z (=1)F @),

L.y €F

For the proof see [8]. [12].

Ezample 5. Let F(ry....,x6) = x10g + ToZ3 + 2324 + TaX5 + T2 + 126 +
xy--- + x¢ be a polynomial over Fo. We have C(F) = {x122, 2324, 2576},
hence 8 divides S(F).

In [9], we proved that Lemma 1 is an improvement to the Adolphson-
Sperber’s theorem for polynomial equations over Fy, i.e., r > w(F).
Now, we state an immediate consequence of Lemma 1:

Theorem 6. Let F'(xy.....a,) be a polynomial of degree d over Fy. If there
exists a variable x; that does not appear in the leader monomials of F, then

/AL divides S(F) = Z (~D)F e,

214,y EFg

Remark 2. 1f d divides n, Theorem 6 gives an extra two factor when it is
compared to the binary Ax’s theorem.

Let Fi(xzy,....x9)...., Fi(x1,....x,) be polynomials over Fy. We denote
the number solutions of the system of polynomial equations Fy(z1,...,x,) =
0,....F(x1,...,2,) = 0 by N(Fy,....F;). Now we state the identity that

associated exponential sums and the number of solutions of a system of poly-
nomial equations:

where 1 is an additive character.
Combining Lemma 1 and the above identity, we have the following theo-
rem:
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Theorem 7. Let Fy(wy,....00).. ... Fi(xy,....xzy) be polynomials over Fsy.
Let C(Fy, ..., Fy) be a minimal set of monomials of Z,[.:l y: Fi(x) covering all
the variables and r be the cardinality of C(Fy, ..., F;). Then

2"t divides N(Fy. ..., )

Example 6. Let Fi(xy,...,x5) = 21200 + 21 + -+ + x5, and Fo(xy, ..., x5) =
T1T9T3 + T4x5 + 1126 be polynomials over Fy. In this case, we have that
|C(Fy, Fy)| = 3. hence 2 divides N(Fy, F). In particular, the system Fi(z1,
cooyms) = 0 and Fo(ry....,: ,25) = 0 has a nontrivial solution. Note that
Theorem 3 and 4 do not give any information about N(F F3).

As preparation for the statement and the proof of the main result of this
section, we note the following lemma.

Lemma 2. Let eyay" ---aftr, .. enyz{™ -+ 2SN be monomials over Fo,
and lm‘ r be the minimal number of monomials of {ejx' - xlin ...,
enNxiNt o xENn } that covers . .. - If G is the class of polynomials gen-

erated by the monomials

eraytt et o ena Nt i
where €; € {0,1}.
7€ > n /h("A“' mPENRN .
G={eaai"ap 4+ denziV o atNt e € {0,1} 1.

Then there is one polynomial F' in G such that N(F') is divisible by 2!
but not divisible 2".

Proof. Let yF(z1.....1,) = Zl Lyt - atin. We are going t() use the
following identities (—1)¢¥e1' W= = 2 yze“ ~xén and 2t = ; for
[ > 0, throughout the proof.

NP = Y [T - 2epai-agm).

LT YEFD (€140 €in)

If we expand this equation, we get

IN(F _f)”+22” Z aa(er, . env o x,y), (1)

(z1,....zy y)EF2

where the g)’s are monomials. In [12] and [8], Moreno et al. proved that

mAin ord, (2”(’\) Z Or(€1ev o ENLEL, oL Ty, y)) =7 (2)

Leoenily YEF,
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Recall that if a is a positive integer. then ordg(a) =r < 2" |a but 2" fa.
Note that

on + ZA 211()\) Z(Tl

2"

is an integer.Moreover

on(A)—mr o
2”( )= Z {]A(fl....,GN,LK'],...,.E,“,Z/)
(@10 Y)EF2

is an integer. If we apply reduction modulo 2 to (3), yields a polynomial in

the variables €. . ... en (€ = emod 2). Let
— — an—r n(A)—r — — .
P(e,....en)=2"""+ E o) g Ga(E1, o ENL, XL T, Y)-
A (T e Y)EF
. e €iny €. €in - - .
Note that if €; 27" - ", oL ey - 2™ is a minimal covering, then
i1 Ly i L ;
N _ €1 Ciin _ [ e _ _
2MT g €y s X "'62',»'1‘1,l coean T =6 g,
Ty, Ty YERS
is one of the term of P(ey, ..., en )(Note that (2) is attained when
? ? 4
gr(€1, .- EN, T, ..., XTn.Y) = €, €, ). Hence there is a term €, -- €
whose coefficient is 1. Therefore there is at least a nonzero coefficient in
P(e,. .., €n). Hence P(eq,. .., €N 0. Recall that the degree of each €; is
1 i

less than or equal to 1. If P(€,....,€x) = 0 for all (¢;,...,éx) € F5, then
P has 2" solutions. By lemma 10.2 in [3], we have that P(¢y,...,éy) is the
zero polynomial. This is a contradiction. Therefore there is a N-tuple € # 0
of zeros and ones such that P(e) # 0. Then ordo(N(Fe)) = r — 1 for the
polynomial F, that has coefficients given by €. This completes the proof of
Lemma 2.

Example 7. Let

G = {611L’1I'2I3I4.’L’5+€2.I,’1.’l’2.’1,‘3+z qj;rt‘i”x;’ D€, 6,65 €Fpand i, j <107},
i

In this case » = 4. Hence there exists a polynomial F' € G such that

orda(N(F)) = 3. Taking F(ay,...,x10) = T1 -+ X5+ T12223 + 2129 + ToT3 +
-+ x99 + 11110, We obtain ordo(N(F)) = 3, i.e., N(F) =8 x 67.

N; e €iin .
Let Fi(xy,....2n) = > . €277 -~ 2,”" be a polynomial over Fy for

i=
i=1,....t. Let G be the class of polynomial generated by monomials
el R CINy1 ~INn
eppay 'ttt o €N, Ly
> €Ny 1 €tNyn
N R Y S DU SO A R

Note that these are the monomials of F; for i = 1,...,t.
Now we state the main theorem of this section.
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Theorem 8. With the above notation. If G is the class of polynomial gen-
. € Cijn . . .
erated by the monomials ;2" -+~ 2" fori=1.....t and j = 1,..., N,

then there are polynomials FY. .. .. F/ in G such that N(FY, ..., F}) is divisible
by 27~ but not divisible by 2" 1L

, - . t
Proof. The proof follows taking F(xy.....x,) = > ., y:Fi(z1,...,2,) and
repeating the same argument of Lemma 2 with the new F.

Theorem 8 is equivalent to Theorem 8.1 in [10] for the case Fy. For poly-

nomials of one variable Theorem 8.1 in [10] is equivalent to the theorem of
McEliece(see [7]).

4 Application of the Covering Method

In this section we will combine the covering method and the reduction to
the ground field method to obtain improvements to the Moreno-Moreno’s
theorem. For details of the reduction to the ground field method see [8], [10]
and [11].

In [9]. combining Lemma 1 and the reduction to the ground field method
we obtained the Moreno-Moreno’s result for finite fields of even characteris-
tic. We denotes by X; the variable taking value in Fyr. and ax; the variable
taking value in Fy. Let F(Xy..... X, ) be a polynomial over For. and let

F'(z11.....215....,2,) be the polynomial over F, associated to FI(Xq,...,
Xn), le
Z (_])Tr'(F(Xl..A.,Xn)) — Z (_1)F/(r||.u.,a:nf).
Xq,.... X €F,y T11nens x, fEF,
Recall that F'(xq1.....2,5) is a polynomial in n f-variables over Fs.

The following theorems give improvements to the Moreno-Moreno’s result
for finite fields of even characteristic.

Theorem 9. Let F(X;..... X,) be a polynomial over Fyr, and let wo(F) =
I. If there exists a variable X; that does not appear in the monomials of
2-weight degree . then

21 divides N(F),
where

)

Moreover if there are k variables do not appear in the monomials of F' of
2-weight degree . then
2! divides N(F),
where
n—k k
i

> f(



rdvd
[

On Divisibility of Exponential Sums

Proof. Let ay.. ... ay be a basis of Foy over Fo. Then X; = 25:1 T4, and

Y = Z LY. Now we are going to apply the reduction to the ground field
to I (X Tovnnn Xn).

‘N(F) = 2f Z XjoNpev ( 1)7"’(F(X' ““““ X))

ver,
Tr Zf Yy F(V‘f T Zr T )
1 1 i=1 Yy 2 5=1 T, j=1TnjQj
- ETZIH“” o f € z(‘ )
Yoo y//»gl.z
_ F'(x11,.... T,
= 2j Z’u canpery (—1) =20
Yi- !/& ,
where
2
Flloy....oenp) = E i Pl (x11, ..., T f)-

i=1

Note that wo(P}) < I for i = 1,....f. We have that |C(F")| > ﬂ by
Theorem 6 since the variables x;y,. ... xj¢ do not appear in the nlononnals
of 2-weight degree [ of F’. Hence 2[7//1] divides N(F).

For the second part of Theorem 9, we assume that the variables Xy, .. .,
X,k appear in the monomials of F' of 2-weight degree [, and X,,11-p,..., X,
do not appear in the monomials of F' of 2-weight degree [. Let r be the
cardinality of the minimal covering C(F") of the variables of F'. Then

n—k  kf
> i
et

since the polynomial F’ can be written

F’(;L'U. R ..r,,f) = Z .l/i<P/',/<"I'11-' ~~~'T/n,7k,f) + P, (.”1711, ... ,l’nf)>,

i

where wy(P/) < 1. and wy(P, ) <11 for every i. Note that P/ is a polyno-
mial in the variables @y, ....: Tifenenn Tp—i.f- Recall that xy1,... . ¢ph_p 5 are
variables over Fy corresponding to Xi.. ... X, k. In the above argument, we
cover the first (n — k) f variables with monomials of 2-weight degree [, and
the other k-variables are cover with monomials of 2-weight degree < [. This
completes the proof.

Exzample 8. Let F(X1. Xo. X3) = X7 + X7+ XJ + G(X1, X2. X3) be a poly-
nomial over Fy;. where wo(G) < 2, and G(0,0,0) =. By Theorem 9, we have
that I has a nontrivial solution (2 divides N(F)).

Example 9. Let F(X1. Xo. X3. X4) = X7+ X3+ X+ X3+ X, Xo 4+ X3X,4 be
a polynomial over Fy;. By Theorem 9. we have that 2# divides N(F'), where
o> % + %ﬁ —f= % Moreno-Moreno implies that p > §
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Theorem 10. Let Fi(Xy,....X,) be a polynomial over Fyr, and let wo(F;)
=l fori=1,..., t. If there exists a variable X; that does not appear in the
monomials of F; of 2-weight degree | fori=1,...,t, then

2t divides N(F'),

where
f(n—t)

H> ]

Proof. The proof of Theorem 10 is similar to the proof of Theorem 9. Apply-
ing the reduction to the ground field method to 23:1 Y:F( Xy, ..., Xp), we

obtain a polynomial in (n+t)f variables over Fo. Then applying Theorem 6,
we obtain the desired result.

Note that Theorem 10 implies Theorem 9. Combining Theorem 7 of [9]
and Theorem 10, we obtain the following result:

Theorem 11. Let F1(Xq,....Xy),...,.... Fi{(X ..., X,) be polynomials in
n-variables with coefficients in ¥For, and let 1l; be the 2-weight degree of
Fi(Xq,...,Xy). Let Fl(x11,....2n5) be the polynomial over Fy associated
to Fi(X1,....Xy) fori = 1,....t. Let C(F{,...,F{) be a minimal set of
monomials of 25:1 YiF!/(x11, ..., xnys) that covers all the variables
L1lyev s @1fyeesnly-e, Inf-
If r is the cardinality of C(FY, ..., F}), then
t
max; [l;
Moreover, if | =1y = --- =l;, and a variable X; does not appear in the
monomials of F; of 2-weight degree | fori=1,...,t, then
t
L=y
r—tf> ______f(n 121,:1 )
Ezxample 10. Let
f‘ﬂl(l‘] ..... .’l‘w) = T1X2X3 +G1(£I?1,...,.’E10),

Fo(xy....,x10) = a3z425 + Go(21, ..., 210)
and
Fs(xy, ..., 210) = vex7eszy + Gs(xy, ..., 210)
be polynomials over Fyr, where wq(G1) < 3, wa(G2) < 3 and wo(G3) < 3 and
Gi(0,...,0) =0 for i = 1,2,3. Applying Theorem 6 and the reduction to the
ground field method, we obtain that the system of polynomial equation has

nontrivial solution. Note that the Ax-Katz’s and Moreno-Moreno’s theorems
do not give any information about N(Fy. Fy, F3).
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Abstract. We provide a lower bound for the cardinality of the value set of a
polynomial over a finite field which improves upon several earlier bounds.

1 Introduction

Let f(x) be a polynowmial over Fy. the finite field of order ¢ and characteristic
p. Numerous papers have been written concerning the cardinality V| of
the value set Vi = {f(a) : a € F} of f(x). If f(x) has degree n, since a
polynomial cannot have more than n roots in any field, it is casy to see that

q—1

|

J+1<Vil<q

n

Polynomials achieving the lower bound are said to be minimal value set poly-
nomials while those with value sets achieving the upper bound ¢ are known
as permutation polynomials. sec Chapter 7 of Lidl and Niederreiter [2].

In general it is very difficult to determine the cardinality |V| of the value
set Vi of a polynomial f(x) over the finite field F,. This has only been done
for several classes of polynomials, including the power polynomials 2" whose
value set has cardinality (V.| = (¢ — 1)/d + 1, where d = (¢ — 1, n), Dickson
polynomials D, (i, @) see [1], linearized polynomials all of whose nonzero
terms involve exponents which are powers of the characteristic p of Fy, and
a few other small classes, sce for example [3] and [4].

2 Main Result

In Theorem 2.1 of [4] it was shown that if u,(f) is the smallest positive integer
i such that ZHEF‘,‘(]E(G))I‘ # 0. then [Vi| > u,(f) + 1.

Notation: Let f(x) be a polynomial of degrec n over F,. Since f(x) and
() + a both have values sets of the same cardinality, we may assume that
£(0) = 0. By the Lagrange Interpolation Formula [2] page 369, we can assume
that n < ¢ — 1. Thus for each i = 1,..., q — 1, we may write (f(z))" =

Z(jl;(l, ai;ad mod (17 — ).
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Let Ay be the matrix Ay = ((I,EIJ' . for 1 < i,j < q—1 so that the
entries of Ay consist only of 0 and 1. In particular, the (i.j) entry of Ajf
is 1 if the coefficient of 2/ in (f(x))" mod (24 — x) is nonzero. If f(x) is
not the zero polynomial. the matrix Ay has at least one nonzero column. If
the j-th column of Ay consists entirely of 0's or entirely of 1's, set I; = 0.
Otherwise for a nonzero j-th column, arrange the entries in a circle and define
l; to be the maximum number of consecutive zeros appearing in this circular
arrangement. Let L; be the maximum of the values of [;, where the maximum
is taken over all of the ¢ — 1 columns of the matrix Ay.

For example. if f(r) = 23 + 62 over Fy. then

101000
010101
100010
010101
001010
010101

and so l; = 1Il3 =15 = 3.1y = 4 = Iy = 1. Note [; = 3 because of our
circular arrangement. In the fifth column of Ay the zero in the last row and
the two zeros in the first two rows are counted as consecutive zeros. Hence
Ly = 3, and as we will show in Theorem 1 below. |Vy| > Ly +2 = 5. For this
particular example, Theorem 2.1 of [4] shows that [V > 3. In fact [Vy| = 5.

Theorem 1: With notation as above. we have:
]VH > Lf + 2.
Proof: First observe that

Fylal/(x? = 2) = @ Fyla]/(x = ap).

ayeF,

This follows from the Chinese Remainder Theorem since over Fy, 29 —x =
Hakqu(;r, — ). Tt follows that for cach i with 1 < i < ¢ — 1, (f(x))" mod
(x? — ) is the unique polynomial of degree at most ¢ — 1 which represents
the function ¢; : F, — F, given by ¢;(a) = (f(ax))".

Assume that I = [; # 0 for the j-th column of the matrix Ay. Then there
arc three possibilities:

1) Some ay; = 1and ap—;; = - =ap_1,; =0,

or

2) some ay; =1 and apq1 5 =+ = apqr; = 0,

or

3) apq1, = -+ = ag-1,; = 0 for r consecutive zeros, and a;; = --- =

as; = O for s consccutive zeros with r 4+ s = [, and a4 # 0.
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Without loss of generality, we first assume that ap—;; =--- =ap-1; =0
and ap; = 1.

Then (f(z))* mod (27 — x) has a nonzero coefficient of 7 and the co-
efficient of 27 is zero in (f(x))" mod (29 — z) for the previous [ values,
T T Y

If the set of nonzero elements of Fy is denoted by {o,...,aq-1}, the
polynomial (f(x))¥ mod (2 — x) is the interpolating polynomial for the set
of values {(f(ai))k..... (f(ag-1))*}. Hence we have

(f(2)* mod (29 — )
=Y ayer, (Flan)) (1= (2 —ap)i™h)
=20 z0er, (Flan) (L= (2 —ap)?™1)

= Ty aner, (Floa)) (1= 22 (7)o (on)=1 7).

Since ay; = 1 we have
J

Y (flan)ral T £, (1)

an#0€F,
Moreover, ay_;j = --- = ax—1,; = 0 implies that
Yo (flan)al T =0s=k—=1... k-1 (2)

Qp ¢(’EF¢(

Assume the number of distinct nonzero elements in the image of f(x) is
m < [. Then the image of f(.r) is f(Fy) = {0,051,....08n}, where 3; # f3;.
Then (1) implies that ¢ 8F + -+« + ¢, 8% # 0, where ¢; € F,, and not all
Ci = 0.

From (2) we have the system of equations

(?1,&'3}1“7’,1 o e =0

(;Ldf*l + e (,,,,Bk =9

m

Since by assumption m <[, and ¢y, ..., ¢, are not all 0, we have
s
det : : =0.
k=1 k—1
,*7)1 im
Hence
1 ... 1
e B veo B
(dl.‘.dm)( mm - Jet . . =0.

gm—1 m—1
o] 1 . B’m
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But this is impossible since the J;'s are nonzero and distinct and the Van-
dermonde determinant can be evaluated as H (Bi — Bj).
1<i<gj<m

Hence the number of distinct nonzero elements in the image of f(x) must
be at least [ + 1. Since 0 lies in the image of f(x) we have |Vy| > [ + 2.
Similarly this is true for the maximum value Ly of [.

A similar argument works in the case when some ay; = 1 and a1, =
= Okl = 0.

In the case when we have r consecutive zeros in the last r rows and s
consecutive zeros in the top s rows in the j-th column of the matrix Ay, if
m > r, then we have a system like (3), except the exponents on the 3; run
through the values k + 1.k +2,...,¢q—1.1,....k4+m — ¢+ 1. In this case
also the argument is the same as above. and so the proof is complete.

Remark 1) We note that [Vy| > [; + 2 for each value j = 1,..., g—1.In
particular, this holds for the last column when j = ¢ — 1 and hence as a
corollary, we have Theorem 2.1 from [4].

Remark 2) We also note that our result extends the Hermite/Dickson cri-
terion for permutation polynomials, see [2, Thm. 7.4, page 349]. This is due
to the fact that the Hermite/Dickson criterion is essentially equivalent to the
first ¢ — 2 consecutive elements of the last column of the matrix A; being
0, with the last element of that column equal to 1. In particular, f(z) is a
permutation polynomial if and only if Ly =q — 2.

Example 1) We now provide a larger example which shows that our method
yields a better bound than the Wan, Shiue, and Chen bound from [4]. Con-
sider the polynomial f(x) = 27+ over Fig. After forming the matrix A § we
find that the first six entries of the last column of Ay contain 6 consecutive
zeros, with a 1 in row 7 so that the bound from [4] is |Vy| > 6 + 1 = 7, while
for j = 3, we have a string of 11 consecutive zeros in the third column of Ay
and so from Theorem 1. we have |V;| > 11 + 2 = 13. In fact, our bound is
Vil = 13.

sharp since

Example 2) When considering polynomials f(x) over extension fields F, of
prime power order ¢ = p® with e > 1, there are examples where there is no
i such that Zaqu (f(a))" # 0. and so in these cases the bound |Vy| > i+ 1,

from [4] cannot be applied. However in these cases, our bound from Theorem
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1 still applies. For example, if f(x) = 22 + 2 over the field Fy. then

1100000
0101000
0011110
Ap=11001000
0111100
1010110
1111110

and hence Ly = 2. and from Theorem 1, [V > 4. In this case we actually
have |Vy| = 4.

Example 3) The following example shows that our method, while providing
an improvement of Theorem 2.1 of [4], is still not best possible, i.e. that the
condition is not necessary and sufficient for a polynomial f(z) to have a value
set of cardinality Ly + 2. Consider the polynomial f(x) = 204 a4 T
over the field Fio. In this case Ly = 3 and so Theorem 1 predicts a value set
of cardinality [V¢| > 5. while in reality. we have |V;| = 10.

Example 4) We now include a table which shows that our Theorem 1 im-
proves the values cited in Table 1 of [4] for many values of a.

Table 1: f(x) = 27 + ax over Fig

0 g L)+ 1 Ly + 2|V
1 3 7 13 13
2 3 7 13 13
3 3 7 13 13
4 3 7 7 7

6 3 7 7 7

7 3 7 13 13
8 3 7 13 13
9 3 7 7

10 3 7 13 13
11 3 7 13 13
12 3 7 13 13
13 3 7 13 13
14 3 7 13 13
15 3 7 13 13
18 3 7 13 13

We note that our Theorem 1 improves upon 12 of the values in Table 1 of
[4]. We also point out that for a = 6,8,9, the cardinalities of the value sets
are given in [4] as 13.7.13. when they should have been given as 7,13,7 as
indicated above.
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Abstract. A curve over the field of two elements with completely decomposable
Jacobian is shown to have at most six rational points and genus at most 26. The
bounds are sharp. The previous upper bound for the genus was 145. We also show
that a curve over the field of ¢ elements with more than ¢™/? +1 rational points has
at least one Frobenius angle in the open interval (7/m,37/m). The proofs make
use of the explicit formula method.

1 Introduction

The Jacobian of an (absolutely irreducible, projective, non-singular) alge-
braic curve is said to be completely decomposable if it is isogenous over the
base field to a product of elliptic curves. Many examples are known of curves
with completely decomposable Jacobian [ES93], both in characteristic zero
and in finite characteristic. For a curve over a finite field Fj, the genus of
a curve with completely decomposable Jacobian is bounded [TV97], [Ser97].
For ¢ = 2, Serre [Ser97] gives a first order estimate g < 146. We use the
explicit formula method developed in [Ser83] to obtain ¢ < 26. The upper
bound is sharp and is attained by the modular curve X (11) for which Hecke
showed that the Jacobian decomposes as E7 x E30 x B} [Lig77].

For an algebraic curve (absolutely irreducible, projective, non-singular) of
genus g over a finite field of g elements, the Hasse-Weil bound gives that the
number of rational points N does not exceed g 4 1+ 2g,/g. For the explicit
formula method, the number of rational points is expressed in terms of the
Frobenius eigenvalues as

g

N=g+1- Z(aj + @;).
j=1

By Weil’s theorem. we may write a; = ,\/(je"")f, for elements ¢; in [0, 7] for all
J. The 0; are called the Frobenius angles. Over an extension field of size ¢™,
the number of rational points N,, is given by

9 g
Np=q¢"+1- Z(a‘"j”' +a)=¢"+1-1" Z 2cosmb,

J=1 j=1
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where 7 = ,/q. For curves of large genus, the distribution of the Frobenius
angles is restricted by the constraints Ny, > N,,, for all m,d. This allows
one to obtain upper bounds of the form N < ag + b for the number of
rational points that are better than the Hasse-Weil bound when the genus
is large [Tha81], [Ser83]. Asymptotically, the Drinfeld-Vladuts bound gives
limsup,_, ., N/g < /g — 1 [VD83], where the limit is over an infinite family
of curves of increasing genus. In Section 2.1, we recall the main steps of the

explicit formula method.

Tsfasman-Vladuts [TV97] and Serre [Ser97] study the distribution of the
Frobenius angles for families of curves of increasing genus. It is easy to see
that any infinite family of curves of increasing genus contains a subfamily for
which N,,/g approaches a limit, for each m, when the genus increases. Such
subfamilies are called asymptotically exact in [TV97]. For curves in an asymp-
totically exact family, the distribution of the Frobenius angles approaches a
limit distribution that is given by a continuous measure on [0, ]. In particu-
lar, the Frobenius angles in an asymptotically exact family are dense in [0, 7].
This shows that any family of curves for which the Frobenius angles are not
dense in [0, 7] is finite. We consider the following problem.

(Problem 1) Given a discrete subset © of [0, 7], maximize N and g for a
curve over F, with all Frobenius angles in 6.

The elliptic curves over the field of two elements have Frobenius angle 6
such that 2v/2cosf € {~2,—1,0,1,2}. The corresponding Frobenius eigen-
values are of degree at most two. As a special case of the previous problem
we have

(Problem 2) Maximize N and ¢ for a curve over F, with all Frobenius
eigenvalues of bounded degree at most d.

The case d = 2 corresponds to curves with completely decomposable
Jacobian. In Section 2.3 and Section 2.4, respectively, we show that a curve
over F, with completely decomposable Jacobian has N < 6 and g < 26,
respectively. Similarly, the family of curves with no Frobenius angle in a
given interval is finite. And we can ask for the largest number of rational
points or the largest genus for curves in the family.

(Problem 3) Given a (small) subset I of [0,7], maximize N and g for a
curve over I, with all Frobenius angles outside I.

In Section 3, we prove that any curve over F, with N > ¢"™/? +1 has a
Frobenius angle in the open interval (7/m,3m/m). We formulate one other
problem along the same lines. It will not be considered in this paper however.

(Problem 4) Given 6, maximize N and g for a curve over F, such that
[0, 7(] §Z U]‘(ej -0, 9/ + 5)
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2 The Explicit Formula Method

We first recall the explicit formula method and its use in obtaining general
upper bounds for the number of rational points on a curve [Ser83], [Han95].
Then we present three variations of the method that yield better bounds
for curves whose Frobenius angles are restricted to a subset © of [0,7]. In
particular, curves that exceed one of the latter bounds, necessarily have at
least one Frobenius angle outside 6.

2.1 General Upper Bounds for the Number of Rational Points

For an algebraic curve X of genus g over the finite field F}, of ¢ elements, let
the Frobenius angles be 61,03, ...,0,. So that the number of rational points
N, over F. satisfies

g
Ny=¢q"+1—q¢"? ZQcosnﬁj.
j=1
With r = /g, we rewrite the equation as
g
Nir "+ (N, = Ny)r™ "= " 4pr " = ZQcosnﬁj. (1)
=1

Let f be an auxiliary cosine polynomial with real coefficients w,,,

f(a) = Ug + Z Uy, cosnl. (2)

n>1

Define

U(r) =) una". (3)

n>1

The equations (1) scaled by u,,, for n =1,2,..., add up to

Nip(r~) + Z Un (N — N ™" =

n>2

= 2upg +U(r) +¥(r 1) — 2 Z f05). (4)

The equation (4) leads to upper bounds for the number of points. As in
[Ser83], choose {u,,} such that ug = 1, and

(a) u, >0,¥Yn>1
(b) f(8) > 0.for all 6 € [0.7].
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Then Equation (4) yields
Nu(r™h) < 29 +(r™h) + (r).

As an example, the choice

=

£(6) = cos® (1 — cos O/ (’,os(o—g))2

1
—1+3cosf + gcos%H— %—500530+ 6c0s46

gives, for ¢ = 3, the upper bound

54

N < (g~ 15) + 28 < 1317 g +8.244,

89

This is better than the Hasse-Weil bound N < 2\/§g +4forallg>2 A

curve attains the upper bound above only if Ny = Ny = N3 = N4 and if

all its Frobenius angles are among {7/2,57/6}. The unique such curve is
the Deligne-Lusztig curve associated to 2G(3) [HP93]. The curve is of genus
g = 15 and has N = 28. Its zeta function Z(T') = P(T)/(1 = T)(1 — 3T) has

numerator P(T) = (1 +3T%)7(1 + 3T + 3T2)8.

2.2 Restricted Upper Bounds for the Number of Rational Points

(uo =1)

The upper bound in the previous subsection generalizes as follows. Choose

{un} in Equation (4) such that

(a) up=1and u, > 0,Yn > 2.
(b) f(8) >0,forall € © C [0,7].

Then, for a curve that has all its Frobenius angles contained in ©,
N(r™h) < 29+ 9(r") + ().
The converse yields that a curve with
N(r=) > 29+ 9(r™h) + ().
has a Frobenius angle outside @. For 0 < a < g <, let
f2(8) = (cosf — cos ) (cos @ — cos 3)

1 1
=3 + cosacos § — (cosa + cos 3) cos  + 5(:0320.

Then f>(f) is non-negative on @ = [0, 7]\(«, 8). For ¢ = 2, and for a = 7/3

and § = 37 /4, we obtain

8 —2v/2 . T 3w
“lg-n+5 = e G,

N >
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The inequality on the left applies in the range 2 < g < 38. In that range
the inequality holds for a curve that meets the Oesterlé upper bound for the
number of points. For another example, let

F(0) = (1+v2cos8)(1 — 2v2cos6)?,
=1+ 3v2cosh + 2v2cos 30.

We obtain, for a curve over Fy,

¢

1 3
N>S(g-1+5 = e (%,w].

2.3 Uniform Upper Bounds for the Number of Rational Points
(uo = 0)

By choosing ug = 0, we obtain upper bounds for the number of rational
points that are independent of the genus g. Choose {u,} in Equation (4)
such that

(a) ug =0 and u, >0,Yn > 2.
(b) f(8) > 0,for all§ € © C [0,7].

Then the number N of rational points on a curve with all Frobenius angles
contained in © satisfies

Ny(r=h) < o(r™h) +9(r).

If, moreover, the coeflicients wu,, have the following symmetry property, for
some positive integer m with m > deg(v)),

(€) up =Upm—n, forn=0,1,...,m,

then the upper bound becomes

=r"+1.

The function

V2

(0 - cos (1 — 2cos? 0)(1 — 8cos? §)

I

7 1 1
—V2c0os0 + = V2cos36 + = V2cos 50
10 2 5

cancels at the Frobenius angles of the five different elliptic curves over Fy.
It leads to the bound N < 6 for any curve X over F, with completely
decomposable Jacobian. The bound is tight only when Ny = N3 = N;. The
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smallest feasible zeta function is of genus 3 with uniquely determined zeta
polynomial P(T) = (14 2T +2T%)2(1 — T + 2T?). 1t is realized by the curve

4z

2 _
yty= (22 +x+1)3

We give two examples that use Condition (c). The choice f(6) = cos8 yields
that a curve with N > r% + 1 has a Frobenius angle in (7/2,37/2) (indeed
the Frobenius trace can only be negative if at least one Frobenius angle has
cosf < 0). The choice f(#) = cos §-+cos 26 yields that a curve with N > 7341
has a Frobenius angle in (7/3, 7). In both cases, the bound on N is sharp. The
projective line with N = 72 + 1 has no Frobenius angle in (7/2,37/2), and
the Hermitian curve (see [RS94]) over F,> with N = 73 + 1 has no Frobenius
angle in (7/3, 7). The latter example confirms that the Hasse-Weil bound is
not sharp for curves with N > 73 + 1. In Section 3, we show more generally
that a curve with N > 7" 4 1 has a Frobenius angle in (7/m, 37/m).

2.4 Uniform Upper Bounds for the Genus (uo = —1)

By choosing ug = —1, we obtain upper bounds for the genus g. Choose {u,, }
in Equation (4) such that

(a) ug=—-1and u, >0,Yn > 2.
(b) f(0) > 0,for all § € © C [0,7].

Then the genus of a curve with all Frobenius angles contained in O satisfies
Np(r=1) 429 <o(r) +v(r™1).

If, moreover, the coeflicients u,, satisfy

(d) p(r-1) =0,

then the upper bound becomes

29 < p(r).

The function

f0)=-1- A cosd + ! cos26 + 26 cos30 + 16 cos46
3 9 9 9
is of minimal degree such that it cancels at the Frobenius angles of the three
elliptic curves over Fy that are defined over F» and such that Condition (d)
holds. It leads to the bound 2¢g < 52 for any curve X over F5 with completely
decomposable Jacobian. A previous estimate showed that g < 145 [Ser97].
The bound is tight only when N; = Ny = N3 = Ny for the base field Fj. It
is attained by the modular curve X (11), which has g = 26, N = 55 over Fy,
and zeta polynomial P(T) = (14 4T + 4T%)5(1 + 3T + 472)10(1 + 4T?)'1,
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3 An Asymptotic Example

Let m > 4 and let o = w/m. Conditions (a)-(c) in Section 2.3 hold with
O = [0, 7]\ (7/m.3m/m) for coefficients {u,,} that are defined by

m—2

= Z Up, cos nd. (5)
n=2

1+ cosmb

4(cos ) — cos a)(cos B — cos 3a)

f0) =

So that

sin(n — 1)a sinna sin(n + 1)«
Uy, = - - : , n=0,1,...,m. (6)
sin v sin 2o sin 3o

Thus, a curve with number of rational points N > ™ + 1, for m > 4, has
at least one Frobenius angle in the open interval (w/m,3m/m). For f(6) we

may write
m—1

f(O) =2m-3 H (cosf — cos(2k + 1)a),
k=2
which justifies writing the right hand side of (5) as a cosine polynomial. To
see that the coefficients of the cosine polynomial are those given by (6), we
use a generating function for gaussian polynomials [And98]

1 B 1+ 3
(1 -T)1 —yT)(1 = y?T)(1 - °T) Z{ 3 }T’

i>0

where

{2’ +3] WP =D -t -1
3 (v = D> =1y - 1)
For y with 4™ = 1, the right hand side is periodic and, for n =1 4 2,

120 1) TN ey,
(1-T)(A-yD)A-y*T)1-y*T) =  (P-DE*-D(y-1)
Let = €', so that ™ = —1. With y = 2% and t = 2°T, we obtain
(L+t™) mZ: n(n — 1)a sinna sin(n + 1) i
(t+t=1 —2cosa)(t +t~' — 2cos 3a) = sin asin 2acsin 3o '

Now sum the two equations with t = ¢ and t = =%

divide by 2

, respectively, and

The cases m = 2 and m = 3 were considered in Section 2.3, so that the
claim extends to all m > 2. For m = 4 and m = 6 the bounds are sharp, as can
be seen by considering curves of Suzuky type or Ree type, respectively. The
Suzuki curve over Fg has N = 65 but has no Frobenius angle in (7/4, 37/4).
The Ree curve over F3 has N = 28 but has no Frobenius angle in (7/6,7/2).
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4 Conclusion

Results by Tsfasman-Vladuts and Serre led us to consider Problems (1)-
(4) in the Introduction. For Problems (1)-(3) we have given methods that
yield partial results. One result is a sharp upper bound for the number of
points (N < 6) or the genus (g < 26) for a curve over Fy with completely
decomposable Jacobian. We also showed that a curve over F, with N >
¢™? + 1 has at least one Frobenius angle in the interval (7/m,3m/m). No
results were obtained towards Problem (4).
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Abstract. We discuss a finite field polynomial analogue of the twin primes con-
jecture.

1 Introduction

One of the most famous conjectures of classical number theory is the Twin
Primes Conjecture, which asserts that there are infinitely many pairs (p, p+2)
of primes. For example, Hardy and Wright [3] conjecture a specific formula
for the number of such pairs below an integer x as x goes to infinity. In this
paper we discuss an analogue to the Twin Primes Conjecture in the domain
of monic polynomials (in one variable) over the finite field F,. We first (in
Section 2) define the notion of twin irreducible polynomials and consider the
case (which is not the true analogue of the Twin Primes Conjecture) of a
fixed degree r but growing field order g, showing that in this case there are
indeed arbitrarily many pairs of twins (indeed also triples, quadruples, and so
on) as q goes to infinity. However, again, we observe that the true polynomial
analogue of the famous conjecture is rather in the case where the order ¢
of the base field is fixed and the degree r goes to infinity. This much more
challenging case is studied analytically in Section 3, resulting in a specific
formula (Conjecture 2) for the expected number of pairs of twin irreducibles
of degree r over Fy. We then turn to a sieving technique, which supplies us
both with an alternate theoretical framework in which to predict the numbers
of pairs of twin irreducibles (Section 4), and also with actual counts of such
pairs for specific small values of ¢ and r (Section 5). We shall see that both
frameworks (Sections 4 and 5) give excellent predictions of the computed
actual counts of pairs of twins. Though proof of the classical Twin Primes
Conjecture has eluded mathematicians to this point, perhaps this paper can
point us toward a solution to our analogous Twin Irreducibles Conjecture
(Conjecture 1 of Section 3).
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2 Definitions and the Fixed Degree Case

For ¢ a prime power, let F, denote the finite field of order ¢. All polynomials
over F, considered herein are monic, for these are the correct polynomial
analogues to positive integers. Among the positive integers, two primes are
called twins if they differ by as little as possible, meaning (except for 2 and
3) that they differ by 2. Hence it make sense to call two irreducible polyno-
mials “twins” provided that they differ by as little as possible. Consider first
polynomials over the field Fy. By how little can they differ? We observe that
a polynomial Y (x) over F5 is divisible by « if its constant term is 0 and is
divisible by z+1 if it has an even number of nonzero terms. Hence if P is irre-
ducible over Fy (of degree > 3), then none of P(z)+1, P(z)+z, P(x)+x+1,
P(z)+ 22, or P(z) + 22 + 1 can be irreducible. Hence the smallest possible
gap between two irreducibles of degree > 3 over Fy is x% + z. However, if
q > 2, then two (or more) irreducibles can differ by just a constant, so th!
at is the smallest gap possible. For example, for p a prime, the polynomials
P —x—awitha=1,...,p— 1, provide a set of p — 1 consecutive nonlinear
irreducibles over the field F, see Corollary 3.79 of [8]. We now formalize
these observations regarding twin irreducibles in the definitions which follow.

Definition 1. The absolute value of a polynomial Y of degree r over the
finite field F, of ¢ elements, denoted Y], is ¢".

Definition 2. Two irreducible polynomials P; and Ps, both of degree r over
F,, are said to be twin irreducible polynomials, or simply twin irreducibles,
provided that [P, — Pi| = 4 if ¢ = 2 or |Py — Pi| = 1 otherwise. More
generally, the members of a collection of k distinct irreducible polynomials
Py, Py, ..., Py, all of degree r over F,, are said to be a k-tuplet of twin irre-
ducibles provided that each pair of them are twin irreducibles.

Again, in the cases when ¢ > 2, this means that P, and P;, ¢ # j, differ
only in their constant terms, whereas in the single case ¢ = 2, they differ only
in their linear and quadratic terms.

Throughout this paper the reader will notice many analogues in the poly-
nomial ring over the finite field F, of well studied ideas and results in the
ring of integers. While we would like to continually remind the reader of these
incredible similarities, we would also like to avoid any possible confusion and
so we will refer to twins in the integer setting as twin primes, while in the
polynomial setting we will refer to twins as twin irreducibles.

Example 1. Over Fo, 23 + 2 + 1 and 2 + 22 + 1 are twin irreducibles. Over
Fs5, the polynomials 22 + 2 and 2% + 3 are twin irreducibles. Over F7, z2 +1,
22+ 2, and 22 + 4 form a 3-tuplet (i.e., triplet) of twin irreducibles.
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Definition 3. Let N,(r) denote the number of monic irreducible polynomi-
als of degree r over F, so that

Nyr) = S g,

dlr
where 1 is the Mobius function,

see Theorem 3.25 of [8].

We can now immediately obtain a result on the existence of k-tuplets of
twin irreducible polynomials provided that we fix the polynomial degree r. It
comes as no surprise that for fixed r, as we increase ¢, we increase the odds
of finding k-tuplets of twin irreducibles. The result is as follows:

Proposition 1. For every degree r > 2 and every k > 2 there exists at least
one k-tuplet of twin irreducible polynomials of degree r over ¥ provided that
q>2(k—1)r.

Proof: We observe that if ¢ > 2(k — 1)r > 2r, then

o

1

4
k#l.rl<_:r1__<r1__vr—
(k=1)rq"™ < 5 =4'( ) < q"( 2gi

)

T q 1 T 1 T
=0 (- 5(CEN < aU-r(25) < ;u(d)q /.

[\]

Dividing through by r, we obtain that if ¢ > 2(k — 1)r, then
(k—1)g" "' < Ny(r).

But now just suppose that among irreducible polynomials of degree r over
F, there exist only (k — 1)-tuplets, then for each of the ¢"~! combinations
of coeflicients of all but the constant term, there could be at most k — 1
irreducibles, so the total number of irreducibles N,(r) would be less than or
equal to (k — 1)¢"~". contradicting the above result. Hence if ¢ > 2(k — 1)r,
we are guaranteed at least one k-tuplet of twin irreducibles of degree r over
F,.
Corollary 1. In the collection of all polynomials over all finite fields, there
exist infinitely many k-tuplets of twin irreducible polynomials for every k > 2.

Impressive as this corollary may sound, it stems simply from the fact that
if you have enough constant coefficients, you will be able to obtain k-tuplet
twin irreducibles. This however, is not the true analogue of the classical Twin
Primes Conjecture that there are infinitely many primes p with the property
that p + 2 is also prime; the correct analogue is the case where the base field
is fixed. We now consider this much more problematic case.
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3 The Fixed Base Field Case

We start by stating the desired result:

Conjecture 1. For every finite field F, there exist infinitely many twin irre-
ducible polynomials over F.

One can see immediately that this result is much more difficult than that
of the previous section. For with the base field fixed, the number of constant
coefficients stays fixed as the degree r goes to infinity, and so the density
of twin irreducibles (and of course k-tuplets of twin irreducibles for all k)
decreases rapidly.

Definition 4. Let N3 ,(r) denote the number of twin irreducible polynomi-
als of degree r over F.

In what follows we shall attempt to make an argument, following one
made for the classical case in, for example, [3], for the plausibility of an af-
firmative answer to our conjecture. Specifically, we put forward the following
conjecture.

Conjecture 2. As the degree r goes to infinity, we have

= (57 BT )

where by ~ we mean that the ratio of the quantities on the two sides ap-
proaches 1, where 6 = 4 if ¢ = 2 and 1 otherwise, and where the product is
over all irreducible polynomials P over F, provided that ¢ > 2, but over all
irreducibles of degree > 2 when ¢ = 2.

To obtain this conjecture, we mimic the argument presented in Section
22.20 of [3], adapting it to the polynomial setting as needed. In particular,
we tequire a polynomial version of Mertens’ Theorem (Theorem 429 in [3]),
which states that as x — oc,

1 -
162
D log

p<w

where, as throughout the remainder of this paper, log denotes the natural
logarithm.
We start then with the analogue of this result.

Theorem 1. (Mertens’ Theorem for Polynomials) As n — oo,

1 (k)5

deg P<n

where P runs over monic irreducible polynomials and ~ is Euler’s Constant.
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The following proof was shown to us by K. Conrad.
Proof: We consider the reciprocals of the quantities in the statement, i.e., we
show that as n — oo,

! 8
H mme n. (1)

deg P<n

The left side of (1) is a finite product. Taking logarithms of both sides
and expanding the log, the asymptotic (1) is equivalent to

Z Zﬁ:logn—l—’y—l—o(l) (2)

deg P<n k>1

with o(1) an expression tending to 0 as n — oo.

We will prove (2), thus obtaining (1) by exponentiation.

The key idea in proving (2) is to observe that on the left side we can
replace the double sum, whose inner sum has infinitely many terms, with a
single finite sum over prime powers P* of degree up to n. The change from
deg P < n and all k to deg P* < n is a negligible change in the following

sense:
1 1
Z Z k[P[F Z k[P +o(1). (3)

deg P<nk>1 deg Pkgn

To see why (3) holds, subtract the sum on the right from the sum on the
left. Every term in the right sum is a term in the left, so after subtraction we
are left with

1 deg P
> 2 M > > né,k

deg P<n k> 2 deg P<n k>$

deg P
deg P 1
> ey L

n n
deg P<n k>m

> 5 () (r=i7m)

deg P<n

Z deTgLPqi"<1 ‘1l/q>

deg P<n

wlmm) X

deg P<n

Il

IA

IN

qi”<l —1l/q>#{P :deg P < n}

: qi<1 —11/q>0 <%>

which evidently goes to 0 as n — co.
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This verifies (3), which means the desired identity (2) is equivalent to

1
Z Wzlogn—i—v—ko(l). (4)
deg Pk<n

To show (4), we write the left side as

1 " 1 " by,
Z W = Z Z kqm = q_m’

deg Pk<n m=1deg Pk=m m=1
where
1 1 m d 1 qm
= - -N(—): ENd) = — S dN,(d) = L.
b= 3 = 2N () = 2o Nald) = D dNy(d) =
deg Pk=m dim djm dlm
Thus

n

1 1
- = — =1 1
Y g = g = loan o)

deg P¥<n
by the definition of ~. This establishes (4), so we are done.
Remark. This argument, as Conrad first found it, applies to any function

field K over a finite field Fy, as follows. For any place v on K, let its residue
field have size Nv = ¢9°€?. Then as n — oo,

1 L(1/q) ,
Il - No T 1-1/¢" " (5)

degv<n

where the product runs over all places of K and where L(T) is the numerator
of the zeta function of K. The analogue of (5) for number fields has a zeta
residue in place of L(1/q)/(1 — 1/q). For a discussion of Mertens’ Theorem
in both the number field and function field cases, see [11].

We are now in a position to develop Conjecture 2 by employing an appro-
priate translation of the argument made for the classical case in [3], Section
22.20.

Fix a degree r. Define

M:HP

deg P<r/2

where the P are irreducible. (One could call M a “primorial” polynomial
since it is the product of some initial segment of irreducible polynomials with
degree < (r/2). We note that M is not the same as M}, given in section 4 of
this paper.)
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Let us denote the degree of M as m. Following [3], we call a polynomial
Y special if it is relatively prime to M. For any degree k, let S(k) denote the
number of special polynomials of degree k. Then by equation (4.30) of [2]
and by our Theorem 1, we have

1 277
M 11— — ) ~|M|—,
T (1- )

deg P<r/2

S(m) =@4(M) =

where @, is the function defined for nonzero polynomials f in Fy[z] which
counts the number of polynomials in F,[z] that are of smaller degree than
the degree of f and which are relatively prime to f. Lemma 3.69 of [8] shows
that the function @, is multiplicative and if f = P ... P where each P; is
irreducible of degree n;, then

T

oy(f) = [Tl =),

=1

Now, the total number of monic polynomials whose degree is m is ¢ =

M|, so the proportion of special polynomials of degree m is of order

277

r

Now we consider S(r), noting that r is much smaller than m. In fact,
by the definition of M, we see that S(r) is just the number of irreducible
polynomials of degree equal to r. Hence

Because the total number of polynomials having degree r is ¢", the pro-
portion of special polynomials of degree r is then of order %

Let us denote by R the ratio of the calculated proportions of special
polynomials of degree r and m respectively. We obtain

2e=7"

Now we turn our attention to twin irreducible polynomials. It is reasonable
to conjecture that the ratio Ry of special pair proportions of degree r and m
respectively should in fact be R?, i.e.,

1
de=2v"

Ry =R?*~

This is reasonable because if the probability that a polynomial Y (z) (of
degree either m or r) and Y(z) + « (or Y(z) + 22 + = when ¢ = 2) are
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irreducible is assumed be independent, then the probability that both are
irreducible is just the product of the separate probabilities.

We observe that this assertion about Ry is the only point at which are
unable to provide proof, exactly as with the classical case as argued in [3].

Continuing, recall that we seek an asymptotic formula for Ny 4(r), the
number of twin irreducible polynomial pairs of degree r. But given our con-
jecture on Ry, we can now obtain our goal by finding the proportion of special
pairs of the large degree m. Let us first assume that ¢ > 2. Consider a special
pair Y and Y + a. How many of these are there of degree m? For each P (ir-
reducible) of degree less than or equal to /2, we must have Y # 0 (mod P)
and Y # —a (mod P), so we get |P| — 2 residue classes for each P, giving a

count of
2
I (Pl-2=mm ][ Q—@O

deg P<r/2 deg P<r/2

such pairs of degree m for a given a.

Suppose first that ¢ is odd, so that o and —a are distinct. We observe
that if Y and Y 4 « are a special pair, then so are the exact same pair Y + «
and Y + a — a. Hence we can obtain distinct special pairs by using half of
the non-zero elements of F, when ¢ is odd. On the other hand, if ¢ is even
(and greater than 2), then each non-zero « has the property that if ¥ and
Y + « are a special pair, then Y +«a and Y + o+ « are the same special pair.
Hence again we obtain a factor of (¢ —1)/2. We conclude then that the total
number of special pairs of degree m for ¢ > 2 is

E’;—1|M| 11 (1 - 1—2})—'> .

deg P<r/2

The case ¢ = 2 is somewhat different. Recall that here twins differ by
x? + z rather than by a constant. If Y (of degree m) satisfies Y =1 (mod )
or Y =1 (modx + 1), then Y + 22 + x satisfies these same conditions.
Now if P3 = 22 + x + 1 is the unique quadratic irreducible (P is the “third”
irreducible over Fs), then it’s easy to check that if Y = & (mod P3) or
Y =2+ 1 (mod P3) then Y + 22 + z is also relatively prime to Ps, but
that if Y = 1 (mod P3), then P3 divides Y + x2 + 2. Thus P3 provides 2
(= | P3| —2) residue classes producing special pairs. Now for all irreducibles P
of degree 3 or greater, as in the ¢ > 2 case, we require that Y 20 (mod P)
and Y # 22 +z (mod P), so we get | P| -2 residue classes for each P. Finally,
we note that the special pair Y and Y + 2 4z is identical to the special pair
Y+22 + r and (Y + 22 + 2) + (22 + x), so we must divide our count by 2
to eliminate this duplication. We obtain then in the case ¢ = 2 a count of
special pairs of degree m of

1

s I or-a-g I (1-3).

2<deg P<r/2 2<deg P<r/2
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where the extra factor of 4 in the denominator on the right occurs because
the two linear irreducibles (each of absolute value 2) are missing from the
product as each |P| is factored out.

We now have all the information we need to obtain our desired asymptotic
formula. The basic equation is

proportion of special pairs of degree r

2 proportion of special pairs of degree m

and so

Ny o(r) Ry(total of degree r)(number of special pairs of degree m)
24\ total of degree m '

Recall that by Merten’s Theorem, 2~ /r ~ HP,dengr/Q(l - ﬁ) Hence
we can compute

L q ,,,q9-1 2
Nao(r) ~ =5 w0 (T557) 11 (“W)

A<deg P<r/2

1 ~q—1 2
~ 7’2(46‘27/7‘2)(1 ( 203 ) H <1 B m)

A<deg P<r/2

<q — 1)q_" HP,)\gdengr/Q(l - %)
26 r? (HPideg PST/Q(l - ﬁ )2
q-1.q" 1
~ ()L 1 -
s 1 (- )
deg P>\

where 3 is 4 if ¢ = 2 and is 1 otherwise, A is 2 if ¢ = 2 and is 1 otherwise,
and 6 is 4 if ¢ = 2 and is 1 otherwise. 6 = 4 arises in the ¢ = 2 case because
we must remove the factors of ([]p 4eq p<, (1= |—},‘))2 corresponding to the
two linear irreducibles over F5 from the product, and each contributes 1/4 to
the denominator. Then one of those factors of 4 (in the numerator) cancels
with g = 4.

This completes the argument for Conjecture 2, which has been the goal of
this section. We now turn in a different direction, using a sieving technique
both to provide an alternate framework to understand (and predict counts
of) twin irreducibles and to obtain exact counts (Section 5).

4 The Polynomial Wheel Sieve

The wheel sieve for integers was first described by Pritchard [9] as a fast
algorithm for computer prime number sieve routines. In [5], this technique
was used to study the distribution of primes in sets of arithmetic progressions
of the form a+mnmy, where the multiplier my, is the k-th primorial number py -
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po...px and a < my_1 is any number relatively prime to my. The heuristics
in [5] suggest that the primes are distributed binomially among the arithmetic
progressions a + nmy, using a binomial probability given by the asymptotic
value from Dirichlet’s Theorem. Similarly, the heuristics from [5] suggest that
twin primes in pairs of arithmetic progressions a + nmy and (a + 2) + nmy,
are also distributed binomially, with a binomial probability given from the
twin prime conjecture [3].

An analogue of Dirichlet’s theorem on the distribution of primes in an
arithmetic progression also holds for polynomials over the finite field Fy, see
[7]. In [6], the authors considered a polynomial version of the wheel sieve, and
discussed the distribution of irreducibles over the field F5. In particular, they
discussed the distribution of irreducibles in arithmetic progressions, and made
several conjectures, the most important of which (Conjecture 1) postulates
that the irreducible polynomials in the progressions from the wheel sieve are
distributed so as to asymptotically approach a binomial distribution using a
binomial probability given by the asymptotic value from a theorem of Artin
8].

For the sake of completeness, we now briefly describe the polynomial wheel
sieve and provide an example for purposes of illustration. For an integer k > 1,
let Mi(z) = Pi(x)--- Py(x) be the product of the first k monic irreducibles
in Fp[z]. The polynomial My(x) corresponds to the k-th primorial number
p1 -+ P, and will be called the k-th primorial polynomial. For each value of
k > 1, the wheel sieve generates a sequence of polynomials, using an iterative
process with polynomials from the previous cycle as seeds.

Definition 5. Over Fy, let W; = F; U {z}. Given Wy, for k > 0, let Sy =
{S € Wi|Px(z) /S} be the set after sieving the set W} by the irreducible
Py. Let Wyy1 = {S(x) + N(x)My(2)|S(x) € Sk}, where N(z) varies over all
polynomials of degree less than the degree of Pi{x).

Note if ¢ is a prime, Wi may be taken as 1,2,...,¢—1,x.

Let (wfj) be the matrix containing the set Wy. The first column is the
set Sk_1, and the remaining columns as we move from left to right, contain
successive multiples of the primorial polynomial Mj_i(x). The set Sk, by
construction, is pre-sieved for the first & irreducibles. This reduces the work
necessary to sieve using the remaining irreducibles of degree (deg(My)+1)/2.
(The addition of 1 is necessary only if deg(My) is odd.) After sieving Sy by
these irreducibles, the remaining set is examined for twin irreducibles. This
procedure is carried out on a computer, using a program written in the C
language.

We now illustrate the wheel sieve in the case when ¢ = 3. We note that
an example for ¢ = 2 is given in [6].

Ezample 2. The first four irreducible polynomials over F3 are Pi(z) = «x,
Py(x) = x4+ 1, P3(x) = 2 + 2, Py(z) = 22 + 1, and the first three primorial
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polynomials are M (z) = x, My(x) = 1%+ 2, M3(x) = 23 +2z. Then we have
Wi ={1,2.z2},5 ={1,2},
lz+12z+1 1 2 +1
[ — —
R ST TS PP §

or using more compact notation, where the polynomial a,z" + a,_12" " +
-+ 4 ap is abbreviated in the form a,a,_1 - - - ap, we have Sy = {1,2,12,21}.
For the next case,

1111221 1 221
2112 222 2112
[q = =
Ws 12122222 (° 53 122 222
21 101 211 101 211

Note that exactly 1 polynomial is removed per row, because each row spans
a complete set of residues when sieved by Py(x).

The number of polynomials in S} is easily shown to be

k

by (Mi(2)) = [[(P - 1)

=1

because these polynomials are all relatively prime to the first & irreducibles.
(®, was defined in the previous section, but the form given here is specific to
operation on My (z), and emphasizes the similarity with the Euler ¢-function
from number theory.) Note that the polynomials have, by construction, degree
less than that of My (x) and so there will be deg(M},) —deg(My—1) = deg(Py)
different degrees in Sy beyond those degrees found in S;_;. This leads to an
awkward counting of monic irreducibles in Sy, since we are interested in these
counts for a particular degree r. It will be useful to define the number of monic
polynomials of degree r > m in Wy, which is denoted by

k—1
Gy (My—y.r) =q" ™ [[ (1P = 1)

i=a

where m = deg(My_1(z)), and a = 3 when ¢ = 2 and a = 1 otherwise.
When 7 = m, this reduces to ®(My_1(x)), which is the number of elements
in Si_; and hence the number of rows in the matrix representation of Wj.
For example, when ¢ = 3 and k = 3 then @3(M3) = 8, which is the number
of elements in S3 (see the above example). The number of monic polynomials
in Wy of degrees r = 3 and r = 4 arc respectively 8 and 3-8 = 24.

In analogy, the number of onic “special ”pair polynomials in S), is given
by

k
R e (L

1=a



Twin Irreducible Polynomials 105

where ¢ = 1 when ¢ > 2 and @ = 3 when ¢ = 2 (to avoid zeros in the
product when ¢ = 2). Our use of the term “special "in this context means
the polynomials are relatively prime to M. The function @, ,(My) plays a
role in finite fields similar to the integer function ¢ given in [5]. The function
Dy o(My(z)) counts the number of twin irrducible pairs that are relatively
prime to M (x), and the factor in front, (¢ — 1)/2 comes about from the
same counting arguments as given in Section 3 (which were applied to the
product M but are equally valid with regard to the product My above).
Similarly, the number of monic special pairs of degree r > m in Wy, is

k—1
-1
R e K | (I

where m and a are the same as above and 6 was defined in Conjecture 2. As
an example, over Fg, § = 1 and (¢ —1)/2 = 1 so the number of monic special
pairs in Wy of degrees 3 and 4 are respectively 1 and 3 - 1.

The following is a generalization of Conjecture 1 in [6]:

Conjgecture 3. The monic irreducible polynomials of degree r in the progres-
sions of the wheel sieve are distributed so as to asymptotically approach a
binomial distribution in the parameter p = (@,(My_1(x), 7)) (¢"/r), for r
in the range deg(Mj—1) < r < deg(My).

Analogously we make

Conjecture 4. The monic twin irreducible polynomials of degree r in the pro-
gressions of the wheel sieve are distributed so as to asymptotically approach
a binomial distribution in the parameter p = ((®,(My_1(x),7))"1(q"/r))?,
for r in the range deg(Mj,_1) < r < deg(My).

Numerical calculations support Conjectures 3 and 4. In particular, Fig-
ures 1 and 2 from [6] provide numerical evidence for the ¢ = 2 case. These
conjectures are formulated in a similar way to Conjecture 2. The probability
of obtaining two irreducibles with a minimum gap next to each other is as-
sumed independent, and hence this twin probability is just the square of the
probability to find a single irreducible in S;, (compare the binomial parame-
ters from Conjecture 3 and 4). This heuristic shows that the distribution of
irreducibles in the rows of the sieved matrix are binomial, as shown in Figure
1 of [6], which is reminiscent of Bernoulli trials. It is now a small step to show
that this conjecture is equivalent to the Conjecture 2 in Section 3.

The analog of the twin prime conjecture is obtained by combining Con-
jectures 3 and 4. The average probability that a given element in W} of
degree r is an irreducible is just the number Ny (r) of irreducibles, divided by
the number @,(My_1,r) of polynomials of degree r in the set Wy,. Similarly,
the average probability that a special pair in Wy is a twin irreducible pair
is given by the number N, (r) of twin irreducibles, divided by the number
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@y o(My_q.7) of special pairs in the set Wj. Under the assumption that the
probabilities are uncorrelated, the latter probability is equal to the square of
the former, and so we obtain

Na4(r) - < Ny(r) )2
@2’(1(]\1;6_1,7‘) Qq(Mk,l,r')

where again deg(My—;) < r < deg(My). Solving for N 4(r) and using the
definitions for Ny(r), ¢, and P, 4, one finds a similar asymptotic form as
Conjecture 2. In particular,

Vaglr) ~ o (15 (q TToe - 2)) (2) (qr-m E(tm - 1)) _

2

i=a

and upon expanding the products and using ¢" = |Mj_1|, we obtain

¢-1\ ¢ q 1
roredict ~ 0| —— | = 1
Woredic "( 2 >H< <|Pi|—1>2>

1=a

as the prediction for Ny 4(r), where a = 3 when ¢ = 2 and a = 1 otherwise.
It is no surprise that Conjecture 2 and Whyreqier have similar asymptotic
forms (differing only in where the product is truncated), since they were
formulated with similar assumptions. The predictions from both conjectures
will be compared with numerical data in the next section.
We note that the product has a very similar form to the integer twin
prime constant, Cs. In analogy, we define the constant

Cra =" (q;> Il (l - - 1>2>

i=a

as the twin irreducibles constant, where as before, a = 3 when ¢ = 2 and
a = 1 otherwise. This constant converges quickly, and for example when g = 2
it has the value C'; » = 0.8328783....

Contrasting Sections 3 and 4, Section 3 used analytic techniques whereas
Section 4 used probabilistic estimates based on the binomial distribution. We
leave it to the reader to determine whether either approach will eventually
yield a proof rather than a conjecture.

5 Numerical Data

In this section we provide some data related to the distribution of twin irre-
ducibles over finite fields of small orders. In particular, we compare estimates
given from the analytic theory developed in Section 3 and estimates arising
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from the wheel sieve theory described in Section 4. We compare these es-
timates with actual counts of the number of twin irreducibles over fields of
orders 2,3,4,5 and 7.

In the following tables,
Ny(r) denotes the number of monic irreducibles of degree r over F,

Ny 4(r) denotes the number of pairs of monic twin irreducibles of degree
r over Fy,

@ (Mjy,_1,7), abbreviated as &,(k, ), denotes the number of monic poly-
nomials of degree r over F, which are relatively prime to the first & — 1
irreducibles,

Dy o(My_1.7), abbreviated as @, 4(k,7), denotes the number of special
pairs of monic polynomials in Sy, of degree r over Fy with minimal gap,

Apredict denotes the predicted number of twin irreducibles of degree r over
F, obtained from Conjecture 2 in Section 3,

Wredict denotes the predicted number of twin irreducibles of degree r
over F, obtained from Conjecture 4 in Section 4.

In Tables 1, 2, 3, 4, and 5, we provide numerical data on the distribu-
tion of twin irreducibles over fields of orders 2, 3, 4, 5, and 7. Thus in the
table for the field F,, one can compare the actual number Ns 4(r) of twin
irreducibles of degree r obtained by machine calculation with the estimate
Apredict from the analytic method by comparing the values in columns 3 and
6 for a given r. Similarly, one can compare the actual number N 4(r) of
twin irreducibles of degree r with the estimate Wy, eqicr from the wheel sieve
method by comparing columns 3 and 7.

Armed with the conjectures, the analog of Brun’s constant (the recipro-
cal sum of the twin primes) is easily calculated. The calculation is slightly
different for ¢ = 2, since the smallest “gap” is x? + z, except for the first
2 irreducibles, P; = z and P, = & + 1. We decide that P; is the analogue
of “2” in the integer case, and should not be included in the sum. Hence,
for ¢ = 2, the first irreducible pair (23 + x + 1, 23 4+ 22 4+ 1) has degree 3
and contributes 1/8 + 1/8 = 0.25 to the sum. Continuing in this manner,
the wheel sieve can be used to calculate the exact value of Bs 2 up to degree
26, giving an intermediate sum of 0.9350. Using Conjecture 4 to estimate the
sum up to degree 65190, the sum becomes 1.0585. Using analytic estimates
to extrapolate as the degree goes to infinity, we obtain By 5 = 1.0591... for
the analog of Brun’s constant over Fy. The calculation of By, for ¢ > 2
can be done in a similar manner. In the cases for ¢ = 3,4,5,7, we obtain
Bo3 =2.2724..., By 4y = 4.0647...,By5 =5.5058..., By 7 = 8.7025. ...

We note that while the two predictors Apreqict and Wpregicr are based
upon quite different methods (one analytic and the other probabilistic), they
give very similar estimates for the number Ny ,(r) of twin irreducibles of
degree r over F,,.
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Table 1. Distribution of twin irreducibles over F for degree 7.

T ANQ (7) ;?\TZ‘Q(/I') @Q(k’. T‘) @gg(k‘, T) Ap,'»edi(;f, Wpredict
2 | 0 0 0 0 0
3 2 1 2 1 2 1
4 3 1 3 1 2 1
5 6 2 6 2 2 1
6 9 2 12 3 3 2
7 18 4 21 6 4 4
8 30 7 42 12 7 6
9 56 8 84 24 11 10
10 99 16 147 36 17 16
11 186 28 294 72 28 29
12 335 55 588 144 47 47
13 630 76 1176 288 81 83
14 1161 142 2205 504 139 140
15 2182 224 4410 1008 243 247
16 4080 414 8820 2016 427 431
17 7710 758 17640 4032 756 770
18 14532 1340 33075 7056 1348 1362
19 27594 2456 66150 14112 2420 2456
20 52377 4436 132300 28224 4367 4424
21 99858 7926 264600 56448 7922 8040
22 190557 14362 496125 98784 14436 14573
23 364722 26638 992250 197568 26416 26693
24 698870 48358 1984500 395136 48520 49005
25 1342176 89048 3969000 790272 89431 90372
26 2580795 165368 7938000 1580544 165367 167067

As mentioned earlier, both approaches are based on the idea of special
polynomials, however in Section 3 the estimates are based on M (a primorial
product up to deg P < (r/2)) and in Section 4 the estimates are based on
M;, (a primorial product up to the k-th irreducible). Perhaps a deeper exam-
ination of these two methods will help elucidate the ideas behind the twin
prime conjecture for finite fields.

There is a remarkably similar comparison between the forms of primes
(over Z) and irreducibles (over F;). This is best illustrated by putting these
side-by-side. For the primes and irreducibles,

T . q
m(x) ~o i Nolr) ~ -
g

and for the twin primes and twin irreducibles,

x q°
mo(x) ~ 2C (log—l)2 ; Nz,q(T) ~ Coy —

=3
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Table 2. Distribution of twin irreducibles over Fg for degree r.

r Ns(r) Ny 5(r) D3k, r)  DPas(k,r) Apredict  Whpredict
2 3 0 4 1 1 0
3 8 1 8 1 1 0
4 18 0 24 3 2 1
5 48 6 64 7 4 1
6 116 6 192 21 8 2
7 312 15 512 49 18 18
8 810 36 1536 147 41 41
9 2184 105 4096 343 96 97
10 5880 216 12288 1029 234 236
11 16104 585 36864 3087 580 589
12 44220 1506 106496 8575 1462 1478
13 122640 3747 319488 25725 3737 3791
14 341484 9510 958464 77175 9666 9796
15 956576 25555 2768896 214375 25261 25586
16 | 2690010 66606 8306688 643125 66606 67445
17 | 7596480 177561 24920064 1929375 177001 179285
Table 3. Distribution of twin irreducibles over F4 for degree 7.
|
T N4(7'> NQA(T) ¢4(k7 T) 452,4(k7 T’) Apredict Wpredict
2 6 3 9 6 4 3
3 20 4 27 12 7 6
4 60 18 81 24 15 13
5 204 36 324 96 37 38
6 670 130 1215 336 103 102
7 2340 312 4860 1344 303 311
8 8160 1008 18225 4704 928 943
9 29120 2836 72900 18816 2933 3002
10 104754 10158 273375 65856 9502 9670
11 381300 31116 1093500 263424 31410 32030
Table 4. Distribution of twin irreducibles over F5 for degree r.
r N5 (T) ]\[2(5(7’) (I)'>(kw T) ([)2.5(kq T’) Apredi,ct Wp'redi,ct,
2 10 5 16 18 7 7
3 40 20 64 54 20 21
4 150 45 256 162 56 56
5 624 196 1024 486 178 180
6 2580 520 5120 2430 616 617
7 11,160 2280 24576 11178 2264 2305
8 48,750 8825 122880 55890 8662 8797
9 217000 34530 589824 128547 34221 34799
10 976248 138394 2949120 642735 138585 140863
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Table 5. Distribution of twin irreducibles over F7 for degree r.

r N7(T) N2<7(7") ¢7(k1 T) ¢2.7(k:a T) Apredict Wpredict
2 21 21 36 75 30 26
3 112 84 216 375 94 101
4 588 336 1296 1875 366 386
5 3360 1680 7776 9375 1641 1750
6 19544 7770 46656 46875 7969 8225
7 117648 41847 279936 234375 40982 41396

where C3 4 and the twin prime constant Cy are also similar, both being con-
vergent products. In particular

e-U(-gom) (%) I0- )

p P

where for Cy the product is over all primes p > 3, and for Cy 4 it is over
all monic irreducibles of degree two or greater for ¢ = 2 but over all monic
irreducibles for ¢ > 2.

6 Generalizations and Extensions

In this final section we briefly discuss several extensions and generalizations
of the previous work. We say that two polynomials f,g over F, have rank
g™, m >0, if f— g is a polynomial of degree m. Thus for ¢ = 2, we obtain
the twin irreducible case when m = 2, while if ¢ > 2, when m = 0 we obtain
our earlier notion of twin irreducibles.

We begin by noting that in the fixed degree case, Proposition 1 can be
generalized from twins to rank ¢™.

Proposition 2. Let m > 0. For every degree r > 2 and every k > 2, there

exists at least one k-tuplet of twin irreducible polynomials of degree r over F
of rank q™, provided that q > (2(k — 1)r)Y/(m+1),

We also then have

Corollary 2. In the collection of all polynomials over all finite fields, there

exist infinitely many k-tuplets of twin irreducible polynomials of rank ¢™ for
every k > 2.

As indicated in Section 3, the case of a fixed base field F, is much more
difficult. In this case we propose

Congecture 5. For each m > 0 and for every finite field F, there exist in-
finitely many irreducible polynomials over ¥, of rank ¢™.
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Conjecture 2 postulates an asymptotic form for Ny 4(r), the number of
twin irreducibles of degree r over F,. It would be of interest to have an
asymptotic formula for the number of rank ¢™ irreducibles over F, of degree
r. For ¢ > 2 this appears to be

(=) B0 o)

We close by asking, more generally, can one obtain an asymptotic formula
for the number of k-tuplets of twin irreducibles among rank ¢™ irreducibles
over F, of degree r?
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Abstract. Let G be a finite group acting on a polynomial ring A := F[z1,...,xx]
by graded algebra automorphisms. If F is a field of characteristic zero, then due
to classical results of Emmy Noether one knows that the invariant ring A% can be
generated in degrees less or equal to |G|. If F is a field of positive characteristic p
dividing the group order |G|, this is no longer true. The situation in characteristic p
not dividing |G| has been clarified recently after being open for several decades. This
paper presents an account on these developments, including some related questions
and conjectures dealing with constructive and structural properties of modular
invariant rings.

1 Introduction

Let F be a field and let F[xq,x9, - ,2,] be a polynomial algebra on which
the group G acts by graded algebra automorphisms. The ring of invariants
consists of all polynomials unchanged by elements of G and is the major
object of study in classical invariant theory. One major motivation comes from
algebraic gecometry, where more general ‘affine’ algebras and group actions
occur. Assume for the moment that F is algebraically closed and let X be
an affine algebraic variety with A := O(X) the corresponding algebra of
regular functions, such that X can be identified with the set of maximal
ideals in A. For a group G of automorphisms of X let X//G denote the
categorical quotient. Then a natural question is, whether X//G is again an
affine algebraic variety. A necessary condition for this is, that the invariant
ring
A9 :={acA|gla)=aV ge G}

is a finitely generated F - algebra. In this case the maximal ideal spectrum
max — spec A® of the invariant ring is a natural candidate for X//G and one
might hope that X//G coincides with the set - theoretic quotient, namely the
orbit space X/G. In general neither does A have to be finitely generated,
nor does the categorical quotient X//G have to coincide with the ‘geometric
quotient’ X/G, but if G is a finite group, then due to a fundamental theorem
of Emmy Noether, the situation is much better (see e.g. [1] 1.4.4).
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Theorem 1. (Emmy Noether (1926)[14]) If |G| < oo, then A% is finitely
generated and X//G = max — spec A is in bijection with the orbit - space

X/G.
Therefore the natural questions arise

e how can A® be constructed ?
o what are the geometrical properties of A%?

When invariant theory was created in the middle of the 19’th century,
the main interest was focused on the situation where F is the field of com-
plex numbers and G is a classical (infinite) group. Therefore invariant theory
‘in characteristic zero’ is highly developed. Recent applications in geometry,
algebraic topology and cohomology theory ask for results in the situation
where F is of positive characteristic, in particular a finite field, and G is a
finite group (see [21]). As I pointed out in my talk at the Fq4 - conference
in Waterloo ([4]), much less is known in this situation, because many of the
methods developed for characteristic zero do not carry over, and some results
on ‘classical invariant rings’ are known to be false in positive characteristic.
Since 1997 considerable progress has been achieved, in particular with respect
to constructive methods. For example the problem of Emmy Noether’s degree
bound which was addressed in [4], has in the meantime been resolved to full
satisfaction ([6]. [8]). The experience gained in this process has led to various
new questions and conjectures which also deal with geometrical and struc-
tural properties of invariant rings. In this paper I want to give an account on
these developments and will present an admittedly subjective outlook into
the nearer future.

Notation: Throughout the paper Ny denotes the set of nonnegative in-
tegers; for n € N, n denotes the set {1,2,--- ,n} and N denotes the set of
functions from n to Ng.

2 Constructive Aspects

Noether’s proof of Theorem 1 was one of the first major applications of her
newly developed theory of rings and modules with ascending chain condition.
The price one has to pay for the generality of Theorem 1 is, that its proof is
not constructive.

Definition 1. Let R be a commutative ring, A := Rlay, as, - ,ax] a finitely
generated R - algebra with generators aj,--- ,a; and G a finite group acting
on A as R - algebra automorphisms, stabilizing the R - module Zf:l Ra;.
For o € Nf we denote with a® the power product attay? .. alt € A and
with My((a;)) we denote the R - module spanned by

k
{a® | ol =) a; <0} C A.
=1
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For a subalgebra or ideal B of A we define the Noether number
B(B,(a1,...,ax)) € NU{oo}

to be the infimum of the set of all £ € N such that {b1,...,bn} C Me((as)),
satisfying B = R[by,...,by] if B is a subalgebra, or B = (b1, ...,by)Aif Bis
an ideal. If there is an obvious set of chosen generators (a;) or the choice does
not matter, we will simply write 3(B). For example, if A = Rz, -+, ] is
a polynomial ring generated by variables x; of degree 1 and B is a finitely
generated graded subring or a homogeneous ideal, then 3(B) := B(B,(z;))
will be the minimal number k such that B is generated by homogeneous
elements in A of degree less or equal to k.

Remark 1. By Theorem 1, 3 := B(A®, (ay,...,ax)) < oo, if G is finite and
R is Noetherian, but the proof does not give any bound for 3.

Obviously the Noether number §(B) is a measure for the algorithmic
complexity of a subring or ideal. In particular if R is a field and B := A®,
then invariants in My((a;)) can be computed by solving linear equations of

size increasing with £. Since 3(A®) is an upper bound for the ¢ needed to
generate A%, it also bounds the overall size of linear systems to solve.
In 1916 Emmy Noether gave two different proofs for the fact that

ﬁ(]F[‘Tl* ﬂ‘r’k]c) < ’GL

if G is a finite group and R = F is a field of characteristic zero. This is usually
referred to as the ‘Noether bound’ in invariant theory. Both of these proofs
fail in positive characteristics. On the other hand it is known from [16], that
B(AF) can be arbitrarily large, if the characteristic of F divides |G|. After
Emmy Noether’s general result (Theorem 1), the question of degree bounds
somewhat fell into oblivion, until it resurrected again with the upcoming of
constructive invariant theory in conjunction with new powerful methods in
computer algebra. In particular the so called ‘Noether gap’, i.e. the conjecture
that the Noether bound 3(F[z1,--- ,21]¢) < |G| holds if char F does not di-
vide |G|, has de facto been open since 1916, but was considered more seriously
during the past decade (see e.g. [19], [15], where the conjecture was shown
to hold for solvable groups). This question has recently been answered to
the affirmative by the author and J Fogarty independently and with slightly
different approaches (see [6], [8]). In the following I will present a ‘combined
version’ of these proofs, incorporating an essential observation by D Benson
which makes the combinatorics in [6] more transparent.

The fact that Noether’s degree bound does not hold in general can be
seen already in the simple example A := Fo[z1, -+ 2k, 41, ,yx] with G =
Yy = {g) acting by swapping the ‘variable types’ x; < ;. It is an easy
exercise to show that the invariant ¢ := (xy - 2p)t =2y -2 +y1 - -y 18



Invariants of Finite Groups 115

indecomposable, i.e. cannot be written as a sum of products of invariants of
smaller degree. Therefore

B(AC (1, ) > k — oo if k — oc.
It is interesting, though, to observe that
1= (x2-ap) o+ (g ap) Tyo — (23 2) Toye,

i.e. r decomposes in the Hilbert - ideal A®'* A, generated in A by all invariants
of positive degree. Hence one can easily see that S(A% T A) = 2 for all k > 2.
In fact a generalization of this observation led to the proof of Noether’s bound
in [6].

Let H < G be a subgroup of index n with coset - decomposition G :=
wl'_,g;H. The homomorphism of A® - modules given by

1 A - AC 4 Z gla)
geG:H

is called the relative transfer map with respect to H; its image is an ideal in
AC | called the relative transfer ideal (w.r.t. H). The following lemma gives a
useful decomposition in A of high degree relative transfer elements:

Lemma 1. For b.by. by, - .b, € A we have
tGb - by) = Y (=D IGO o) T 9i(6))-
ICn, I#n Jjel  jél

Proof. By Benson’s trick we have for each fixed i the obvious equality:
I (9:b) = g;(8;) ) =o0.
j=1

Expansion and multiplication with g;(b) for fixed i gives:
0="> (=" IT a5 - (IT 9:(65)) - i ®).
Icn JE1 Jel
Now summation over ¢ € n yields the claimed identity.

Theorem 2. Let A be as in Definition 1 and H a subgroup of G such that
either |G| invertible in R or H G a normal subgroup with index |G : H]
invertible in R. Then

B(AY) < (AT - (G : H).
In particular, if |G| € F*, then Noether’s degree bound holds, i.e.
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Proof. Under both assumptions on H, the relative transfer map tg, is surjec-
tive. Also note that the elements g;(b;) appearing in the previous lemma are
in A7, if H is normal in G. Now suppose that 8 := B(A") = B(AH (ay))
with A := R[ay. -~ ,a¢] and AY = R[by, - by] with b; € AH ﬂ./\/lﬁ((ap)). If

H < G and |G| invertible, we have f%(bbl cby) = ﬁfc(fG (bby ---by)) =

Yo (= g be tG (IT 9i(85)) € RIAY 0 Mos((ar))].
ICn, I#n jel il
If H<G and |G/H| invertible, we replace |G| by |G/H| and t§ by t§ to
conclude in a similar way that t$ (b ---b,) € R[AY N /\/lnq(@)] Now an
iterative application of this result finishes the proof.

One might hope to remove the requirement H < G for subgroups of in-
vertible index:

Congecture 1. : If H < G with index [G : H] invertible in R, then
3(AY) < g(Afy -G - H).

If A=TF[zy, -, x|, the formula in Lemma 1 describes a decomposition
of relative transfer elements in the Hilbert - ideal A%+ A. Extensive sample
calculations done by Harm Derksen and Gregor Kemper led them to the
following far reaching conjecture:

Conjecture 2. [Noether bound for Hilbert ideals] (H. Derksen / G. Kemper):
Let G be a finite group, F a field and A := Flzy,- -, 2x] a polynomial ring,
such that G acts by graded algebra automorphisms. Then

B(ASTA) <G|

In the next section we will show that in special cases this conjecture can
be verified using the techniques of the proof of Theorem 2, which we are now
going to refine.

From now on for the rest of the paper let R := [F be a field of characteristic
p | |G| and V a finitely generated FG - module. We consider the symmetric
algebra A := Sym(V*) of the dual module V*. Choosing a basis {z1,-- , 24}
for V*, the ring A can be viewed as a polynomial ring Flxy,-- -, z4] with
induced graded G -action. Let P be a fixed Sylow p - group of G with nor-
malizer Ng(P) and N := Ng(P)/P. For subgroups U < H < GG we define
the (homogeneous) relative transfer ideal

TH =) (AY)a A",

Y<U

Lemma 2.

BIAST . A) < max{B(A9/I%,) - [G: Q] | Q < P}.
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Proof. Let f € A%* be indecomposable in A% A. Since n := [G : P] is
invertible, f is of the form t%(h) for some h € AT which itself can be
written as

h="Y" thbgibga-boug)
Q<P
with bg +I(<9Q € AQ/ISQ and bg ; homogeneous of positive degree < g :=

B(AR /I?Q). Moreover we can assume that every nonzero transfer element

t8(th(ba.ibg.2 baey)) = tG(bgabg2 - bo.tg)

is indecomposable in A9t A as well. But from lemma 1 we see that this
requires £g < [G : @], hence

G+
fey Ao A
Q

Hence Noether’s bound in case of relative transfer quotients for p - groups
implies Conjecture 2:
Corollary 1. If [(AQ/IgQ) <1Q| for all Q < P € Syl (G), then conjecture
2 holds, i.e. B(ASTA) <|G|.

To obtain degree bounds for A® rather than A%+ A one can make use
of the Brauer homomorphism from representation theory, i.e. is the canoni-

cal homomorphism A% — AC := A¢ /Igp. Using Mackey’s formula for the
relative transfer, we get

t3(b) = Z thn ap() = Z Ip=t¥(b) mod Itp,
geP\G/P geEN/P

where P\G/P denotes a chosen system of double cosets of P in G. It is easy

to see that ZF, N AY = I, hence we get

AC = (A9 4+ Tp) /T p = 11 (AP TEp) = (AP JTEL)N.
Since p does not divide |N|, Theorem 2 gives

Lemma 3. L L
B(AG) < B(AF) - |N]|.

B(AC) < max{B(ZCp), H(AT) - [N},
It has been conjectured by several experts that
B(Sym(V*)¥) < max{|G|.dim V - (|G| — 1)}

is a ‘natural degree bound’ for modular invariant rings of type Sym(V*)¢.
Using the above technique this certainly would follow from the next two
slightly sharper conjectures:
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Conjecture 3. Let P be a Sylow p - group of G. Then

1. B(AC/IC,) <|Ng(P)|.
2. If A= Sym(V*) with FG - module V, then

B(ZSp) < max{|Gl.dim V - (|G - 1)}.

3 p-permutation Modules

In this section we present some evidence for the previous conjectures, based
on the analysis of a special type of invariant rings. An FG - module V' in
characteristic p is called a p - permutation module or trivial source module,
if its restriction to any Sylow p - subgroup is an ordinary permutation module,
or in other words, if a basis b of V' can be found, which is permuted by some
Sylow p - group. Note that, since any two Sylow p - groups are conjugate, the
property of being a p - permutation module does not depend on the choice
of the Sylow group. Note also that V' is a p - permutation module if and
only if so is the dual V*. The following lemma is a known fact in modular
representation theory (e.g. see [18]):

Lemma 4. The FG - module V is a p - permutation module if and only if
it is a direct summand of a permutation module for G.

Now choose a Sylow p - group P and assume that V|p is a permutation
module of dimension d. Then for any subgroup @ < P the restricted module
VI*Q is also a permutation module. Moreover for every integer m, the homo-

geneous component A, = Sym(V*),, of degree m is generated as a vector
space by power products x? = z7'z3?---aj* of exponent sum m, which

themselves are permuted by Q. In particular an element

is Q - invariant, if and only if ¢, is constant on the orbit a® := {aog | g € Q},
where () is viewed as permuting the set d and therefore acting naturally on the
set of functions N%. In other words, each @) - invariant is a linear combination
of orbit - sums of the form

9€Q/Qa

where Q/Qa is a chosen cross section for the cosets of the stabilizer subgroup
Qa in Q. In particular (x®)* € ISQ if and only if @, < @. On the other
hand, the @ - stable power products are products of ‘norm - like elements’
of the form n; := [[, .., where {O; | i =1,--- s} is the set of all @ -
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orbits on a chosen permutation basis {x1,--- ,z4} of V. From this it is easy
to see that
AQ =12, @ Flny, - n,] 1.

~

In particular A% /ISQ > F[ny, - ,ns) is a polynomial ring generated by
elements of degree < |@|. This together with Lemma 2 gives:

Proposition 1. If V is a p - permutation module and P is a Sylow p -
group of G, then ﬁ(AQ/ISQ) < |Q| for each subgroup @ < P. In particular
conjecture 2 holds for A = Sym(V*).

To show that the second degree bound of conjecture 3 holds in this case,
we can argue in a similar way as in the proof of Lemma 2: Let f € I§’+ be
indecomposable; by the transitivity of relative transfers (¢ |av = (t# ot§)| AU
for U <Y < H) we can in fact assume that f is of the form tg(h) with h being
a power product in the n;’s. Each polynomial [ cq/q (T — g(ns)) € AC[T]
|G:Q|

has n; as a zero, showing that n;

€ Yo<i<ic0l ACnw/. This allows for
reductions of exponents in h and since the operator tg is A® - linear, we can
assume that these exponents do not exceed |G : Q| — 1. Hence the total degree
of f can be assumed to be less or equal to s-(|G : Q| —1). Since s < d = dim V

and deg n; < |Q| we conclude that 3(Z¢5) < max{|G|,d (|G| — 1)}. Hence

Proposition 2. If the FG - module V is a direct summand of a permutation
module, then

B(Sym(V*)®) < max{|G|,dim V - (|G| - 1)} 2.

Note that the modular group algebra FP in characteristic p is a local
Frobenius - algebra and therefore finitely generated projective, injective and
free FP - modules coincide. Since the restriction V|p of any f.g. projective or
injective FG - module is free and hence a permutation module (viz. a sum of
copies of the regular module), any such module is a p - permutation module.
Moreover every FG - module appears as submodule and factor module of
a suitable projective one. This adds to the evidence for (2) to be a natural
modular degree bound, even though no general result seems to exist about
Noether numbers for invariant rings of sub representations or quotients. If
the group G is cyclic, then W < V implies B(Sym(W*)%) < B(Sym(V*)%),
due to a recent result of R J Shank and D Wehlau [17]. If moreover G is of
order p then the bound (**) has been proved by D Hughes and G Kemper

[9]-

4 Structural Aspects

Let B be a positively graded F - algebra with By & F, M a finitely generated
B - module and I < B an ideal. Recall that a sequence a1, as,- - , a, of homo-
geneous elements in [ is called a regular M - sequenceif B(ay,- - ,a,)M < M
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and for every 1 < i < r the multiplication with a; is an injective operator
on the quotient M/(a1,as.--- ,a;—1)M. It is a known fact that all maximal
regular M - sequences in I have the same length, which is called the grade of
I on M. The grade of B on M is called the depth of M and the module M
is called Cohen - Macaulay, if its depth coincides with its Krull - dimension
Dim M = Dim (B/Anng(M)). Here Anng(M) := {a € B | aM = 0} is
the annihilator of M in B. The ring B is called Cohen - Macaulay, if the
regular module gB is Cohen - Macaulay. It can be shown that B is Cohen
- Macaulay if and only if B is a finitely generated free module over some
polynomial subring of B (see [1] 4.3 or [2]).

It has been known for quite some time that rings of polynomial invariants
of the form Sym(V*)¢ are Cohen - Macaulay, if G is a finite group whose
order is coprime to the characteristic of F. This is known to be false in general,
once p = char F divides |G| (see [10] and the references there). The degree
to which it fails is measured by the defect def A9 := Dim A® — depth AC.
Clearly if A = Sym(V*) and G is finite, then Dim A = Dim A% = dimp V,
because A is a finite extension of AY.

In 1980 G. Ellingsrud and T. Skjelbred proved the celebrated result that,
if P is a Sylow p - group P of G with fixed point space V¥, one has

depth Sym(V*)¢ > 2 4+ dim V¥ 3

if dim V' > dim VP + 2, with equality if G is a cyclic p - group (see [3]).
For almost two decades this has been the only general result on the depth of
modular invariant rings, which remains to be one of their most interesting,
but difficult to determine parameters. In particular the classification of mod-
ular Cohen - Macaulay - invariant rings is an open problem. The result of
Ellingsrud and Skjelbred was achieved using homological algebra, in partic-
ular a Grothendieck spectral sequence. During the last five years or so, these
techniques have been revitalized (see e.g. [10], [22], [12]), most notably by
Gregor Kemper who was able to classify all groups, whose modular regular
representation has a Cohen - Macaulay ring of invariants.

With regard to the techniques laid out in the previous sections of this
paper, some recent results show that the relative transfer ideal Igp and

its radical 4/ ISP can shed some new light on the problem of determining
the depth of modular invariant rings. Let P < G be a chosen Sylow p -
group of G and assume for technical reasons, that F is algebraically closed
of characteristic p > 0. This allows us to consider A := Sym(V*) as the
algebra of polynomial functions on V, and A as the algebra of polynomial
functions on the orbit space V/G. Hence for an ideal Z < A%, the variety
V(Z) consists of all orbits v“ in V such that f(z) = 0 for every f € T
and = € v“. On the other hand for each subset S C V there is the ideal
I(S) :=={f € A| f(s) =0 Vs € S} and Z9(S) := Z(S) N A®. In [5] relative
transfer ideals have been investigated geometrically, which led to the following

description of ISP in terms of its variety in the orbit space V/G:
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Theorem 3. (P. Fl. [5])

1. VECp) = (v € V/G | p | 1O,
2. ,/ISP =TIC(VP), where VT denotes the space of P - fized points in V.
3. If the action of P on V is defined over F,, then

A%/,/TSp is Cohen — Macaulay of Krull dimension dimg V.
Note that for a permutation module of a p - group @, the previous result

AQ :IgQ O F[ng, - .0y

implies that W/IEQ = IgQ with

AQ/ISQ = F[nla T ens]
being even a polynomial ring. Hence Theorem 3 3. is a natural generaliza-
tion, which indicated that the ideal \/ZSP might ‘measure the depth’ of
Sym(V*)€: the formula (3) of Ellingsrud - Skjelbred shows, that dim V' is
a lower bound for the depth of A%, so it was conceivable that the ‘missing
part’ of the depth is provided by regular elements in the ideal Igpl. In the

case of p - groups this follows from a result of G. Kemper (see [11], Theorem
1.5) and for general groups it is a consequence of the following

Theorem 4. (P. Fl., R.J. Shank, [7])
depth A® = grade(Igp, A%) +dim VT,

Moreover, if V' is defined over Iy, one can at least in principle use the
‘Dickson invariants’ d; € Sym(V*)Gtn(9) < Sym(V*)C to determine the grade
of I¢, on AC.

Theorem 4, in connection with Lemma and Conjecture 3, shows that the
relative transfer ideal ISP contains the clues for some of the most important
structural and constructive properties of modular invariant rings. Therefore

an efficient algorithm to find minimal generating sets for the ideal \/IEP is

very much needed as an important step to determine its grade and henceforth
the depth of AC.

! note that the grade of an ideal always coincides with the grade of its radical.
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The Group Law on Elliptic Curves
on Hesse form
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Abstract. In this paper I will give an introduction to elliptic curves on Hesse
form. The embedding of these curves in the projective plane make their symmetries
especially nice. If we pick a point p in the projective plane s.t. p is not a 3-torsion
point, p is the parametrization of the curve that contains p. We will also see that
the division polynomials are independent of chosen elliptic curve on Hesse form.

1 Introduction

The study of elliptic curves, elliptic integrals and elliptic functions were one
of the great topics in the nineteenth century mathematics. Where the Nor-
wegian mathematician Niels Henrik Abel were one of the masters together
with Gauss, Jacobi and Legendre.

In this paper I will give an introduction to a certain family of elliptic
curves, the elliptic curves on Hesse form. We will see that, among other
properties on the elliptic curves on Hesse form, the division polynomials are
independent of the chosen curve.

I was first introduced to these curves by my advisor Professor Kristian
Ranestad as a topic for my master thesis in algebraic geometry. In cooperation
with the Headquarters Defence Command, Norway and Thales Communica-
tions he started a seminar series on elliptic curves and cryptography at the
Department of Mathematics at University of Oslo in fall 1998. This made us
interested in studying the elliptic curves on Hesse form to see if there are
some advantages compared with curves in the Weierstrass family.

2 Elliptic Curves on Hesse form

Let k be a field and K = k its algebraic closure. And let P} denote the
projective plane over the field k with projective coordinates zg,z; and zo.
Elliptic curves are algebraic curves of genus 1 defined over the field k. Every
elliptic curve can be embedded as a curve given by a smooth cubic equation
in the projective plane P2.

A curve F in P? is smooth or nonsingular at a point p if the three partial
derivatives g—i(p) are not all zero. The curve is smooth or nonsingular if it
is nonsingular at every point p € F'.
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2.1 Hessians and the Hesse pencil, H

An important property of most plane nonsingular, irreducible cubics over
the field k& is the existence of flexes. A flex is a nonsingular point, p, of a
curve such that the curve intersects the tangent at p with multiplicity at
least three at p. If it intersects exactly three times it is called an ordinary
flex else a higher flex. Nonsingular cubics over a finite field k contain either
0, 1, 3 or 9 k-rational flexes.

In 1842 Ludwig Otto Hesse (1811-74) constructed a determinant, called
a Hessian, that characterizes the flexes of a curve of degree at least 3. The
Hessian of a plane projective curve, F', of degree d, is defined by

FIQIQ FJ?().T)1 Fr(]mg
H(F) = Fﬂlfom FINL‘] FIL’]IQ
FJ,’(]T,Q F.’I,‘[ZQ F],‘Q.’I?g

where Fy . is the second partial derivative of the polynomial I with respect
to ; and z;. When F'is irreducible H(F) is a form of degree 3(d — 2). The
following theorem gives us the relationship between H(F) and the flexes of
F.

Theorem 1. Let F be a curve of degree d > 1 in P2. Let char(k) = 0 or
char(k) > d and let p be a k-rational point on the curve F. Thenp € H(F)NF
if and only if p is either o flex or a singular point of F'. The multiplicity of p
in H(F)N F equals 1 if and only if p is an ordinary flex.

Proof. For a proof of this theorem, see either [2], [7] or [5].

When the characteristic of a finite field is less than the degree of the curve we
will need to use the Hasse derivative instead of the usual derivative. The Hasse
derivative, D, actson F'(z) = Y a;2" in k[z] as D.E,T) Y axt) =Y (fﬂ)aixi_’",
where the binomial coefficient is taken modulo the prime characteristic. Write
i and 7 as p-ary expansions, i = ig+i1p+---+np° and r = ro+7r1p+ec+Tep”
with 0 < i; < p and 0 < r; < pfor 0 < j <e, then (}) = (TL}(’)) (11"11) (iz)
(mod p). And () =0 (mod p) if and only if r; > i; for some j.

Lemma 1. Let F' be a cubic defined over a field of characteristic > 2. A
nonsingular point p on F is a flex point if p lies in the intersection of F', K(©),
KW and K'), where K = (D(5))* Dy + (D)) DY) = Dy Dy Dy and

(k)
Dy =Dy F, D2, = D2 F and {i,j,k} = {0,1,2}.

Proof. See {7].
We will need the following well known theorem, named Bezout’s Theorem.

Theorem 2. (Bezout) Let F' and G be complex projective curves of degrees
m and n such that ' and G have no common factors of positive degree. Then
F and G intersect exactly mn times, counting multiplicities, in the complex
projective plane.
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Proof. See f.ex. [2], [5] or [6].
This gives the next corollary.

Corollary 1. A nonsingular, irreducible plane projective cubic over C has
nine flexes, all ordinary.

These nine flexes lie by threes on twelve lines. This is the classical configura-
tion, (94, 123), of flexes of a plane cubic.

A nonsingular , irreducible plane projective cubic curve over R has at least
one flex. For nonsingular cubics over a finite field, Fy, the following theorem
lists the possible number of flexes.

Theorem 3. The number of rational flexes of a nonsingular cubic over F,
is zero, one, three or nine. The possibilities are as follows:

g=0 (mod3): 0,1,3;
gq=2 (mod3): 0,1,3;
g=1 (mod3):0,1,3,9.

Proof. See [7].

Lemma 2. There exists a nonsingular plane cubic curve over Fy with nine
F,-rational flexes if and only if ¢ =1 (mod 3). In this case the cubic has the
canonical form E, ) = aroriTs + b(xd + a3 + 23).

Proof. See [7].

The (94,123) configuration exists in IP’%Q for nonsingular cubics if and only
if g =1 (mod 3). When we take the configuration in canonical form we get
a pencil of cubic curves containing the nine points. This pencil is called the
Hesse pencil.

Definition 1. The family of curves in P2, over the field k, generated by the
two cubics zgz1xo = 0 and ;178 + 7f + IS =0

Eap) : azor122 + blad + 23 +23) =0, (a,b) € P
is called the Hesse pencil, H.

H is an 1-dimensional linear subspace of P?, the space of cubics in P2. The
name comes from the fact that the Hessian of a curve in the Hesse pencil
is itself a curve in the Hesse pencil. The Hessian of (a,b) is (s,t) where
s = 216b% +20® and t = —6a%b. H(E(,)) is a new curve different from E, )
in ‘H if and only if E(, ) is a nonsingular curve in H.

Definition 2. We say that an elliptic curve in P? is on Hesse form if it is a
smooth curve in H.
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A curve in H is smooth if and only if b # 0 and a®+27b% # 0. This means there
are exactly four singular curves in H over C and over Fy, where ¢ =1 (mod 3).
In F, the equation " = 1 has d solutions, z = 1,w" u.)?’“ L wD" where
d=(n,q—1), 7 =(¢—1)/d and w is a primitive root of Fq, i.e. w is such that
F, = {0,1,w,...,w?? | w9~! = 1}. So the polynomial 22 + z + 1 has two
distinct roots in Fy if and only if ¢ = 1 (mod 3). The four singular curves
are the four triangles

Towo =Eqp) T-3=FE3))
T 3 = E(_3c1) T_3e2 = E(_3e2 1)

where € is a primitive 3th root of unity in C or in F, where ¢ = 1 (mod 3).
These four triangles are the four triples of lines containing the nine flexes
mentioned above. We will later refer to the points on these four triangles as
T(= UTy).

Since the Hessian of a curve in H is itself a curve in H we have that the
nine (three) common intersections of the curves in H are the nine (three)
flexes on the elliptic curves, E, ), over C and over Fy where ¢ = 1 (mod 3)

(over R and over Fj; where ¢ = —1 (mod 3)). The nine common intersections
of the curves in H in P% is the set
UC = {(0,1, )a( )7(0717 )7
17 07 )7 ]" )

(1707"1)1( (
(1,*1,0) (17 )7(1» )}

It is easy to see that these nine points lie on a plane projective cubic if and
only if the cubic is a curve in H. The set Uy is the three points

Ug = {(0,1,-1),(1,0,-1),(1,-1,0)}.

From Bezout’s theorem it then follows that through a point P € P2\ Uy there
is exactly one curve in H. So the curves in H spans the projective plane P2.

2.2 The Group Law

As a consequence of the Riemann-Roch theorem ([6], [10]) the set of points
on an elliptic curve, F, over a field k& form an abelian group. We can form a
group structure on F by fixing any point on E as the identity element, O.
To define the “ordinary” group law on elliptic curves, however, we need the
identity element to be a flex.

We say that points are collinear if they all lie on the same line. The
ordinary group law on elliptic curves are characterized by two equivalent
properties, one is that the identity element is a flex and the other is the
collinearity condition, i.e. three points P, @, R on F are collinear if and only
if P+@Q+ R = O in the group structure. For an introduction to the ordinary
group law see f.ex. [2], [11], [10] or [9].
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Now we want to define a group law on the elliptic curves on Hesse form.
Let E be an elliptic curve in H. We fix the flex (0,1, —1), that lies on every
curve in H, as the identity element, O.

Definition 3. A point @ = (g, 71, 72) € P? over the field k is called general
ifegT.

The matrix

ToYo T1Y2 T2Y1
Mqy = (TitjYi-j)(mods) = | T1Y1 Tayo ToY2
Z2Y2 ToY1 T1Yo

is called a Moore matriz. The determinant of M, , is given by detM; , =
(¥3 + ¥3 + y3)zoz122 — Youry2(zd + 23 + 23), ie. detMyy is a curve E(q
in H, where (a,b) = (y3 + y3 + v3, —yoy1y2) € P*. Note that if y € U, then
detMy, = 0.

Lemma 3. Ifz,y € E, then rkM, , = 2.
Proof. We will divide the proof in three parts:

1. When both z and y € Uy it is easy to see that rkM,, = 2. F.ex. if
z =(1,0,—¢) and y = (1,-1,0), then

10 €
Myy=10-€0
0-10

has rank 2.

2. When y € Uy and x is general, then none of the coordinates of x is zero
so we can say zp = 1 and it is also easy to see that rkM,, = 2 in this
case. F.ex. let y = (1, —¢,0) and = = (1, 21, z2), then

1 0 —€TX9
M:c,y = —€X1 T2 0
0 —€ I

and (1,0, —exs) = a(—exy, x2,0) 4+ b(0, —€,21) where a = —1/ex; and
b= —ex9/xz1, SO M, , has rank 2.

3. Now let x and y be general, then none of the coordinates are zero so we
can say xo = Yo = 1, then

1 z1y2 xayn
Myy=|2151 22 %2
T2Y2 Y1 Ty
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Suppose M, , has rank 1, then

i)z — 23y =0
i) 1o — 23y1y2 =0
iii) y1 — T129y3 = 0
) Y2 — T122y7 =0

By solving these equations we get y3 = y3 = 1. Then Wyl tys =3
and yoy1y2 = 1.e or €2 and E is one of the triangles T_3, T_3 or T_32,
a contradiction.

Let ¢ be the involution ¢ : x; — x_;, ¢ (mod 3). The unique solution of
M,(z),y -2z =0,whenz,y € & defines a group law on the points of E with
the flex (0,1, —1) as identity. The solution is given as the 2 x 2-minors of the
matrix after removing one row.

ToYo T2Y2 T1Y1
M,y = | T21 Z1Y0 ToY2
T1Y2 oY1 T2Y0

Theorem 4. Let @ = (20,21, 22) and y = (Yo, y1,y2) be two points in P2 on
an elliptic curve E in H. The following equations defines a group law on E
over k:

1. let z,y € E and x # y, then
T +y = (012292 — T3Y1y2. ToT1Y3 — T3YoY1, ToT2Y; — TTYoY2)
2. whenx =y € E, then
2 = (voxs — Toxs, T3xy — 23T, 3T) — 2123)

Proof. 1. When z and y € E there are at least one nonvanishing equation
given by the 2 x 2-minors of M,y ,. For the operation z +y, when +v,
we choose the symmetric equation given by the 2 x 2-minors of M, ,
after eliminating the first row of the matrix. To see that the operation
‘+‘ is a group operation we check the group axioms:

(a) The operation ‘+* is closed on the curve E. Let E, denote the polyno-
mial azga 29 +b(x3+23+23), where (a,b) € P! is the parametrization
of E. If x and y are two points on F, then F, = axgrizo + b(T% +
o3 +a3) =0 and E, = ayoyry2 + b(yg +y3 +y3) = 0, ie. E; and
E, € I(E), the ideal of E. When we factorize F,y, with respect
to B, and E, we get either £, or E, as a factor in each term, so
E.1y € I(F) and = + y is a point on the curve £.

(b) (0,1,—1) is the identity element:

4 (0,1, 1) = (23, Ty, ox2) ~ (T0, 21, 72) = 7 and

(0,1. 1) + a = (—ap, —woxy, —2ox2) ~ (20, 71, 72) =
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(c) The involution ¢(x) = (zg.x9.x,) defines the inverse of an element
x = (xg,x1.72) € E:

x4 u(r) = (vir1a0 — BR21 209, 02T — TTH, T — T02T)
~ (0,1, -1)

(d) The operation ‘+° is commutative on the curve E:

R 2 2 e 12 2., . 2 2,
T4y = (T1T2y) — ToY1Y2, ToT1Ys — T3Yoy1, LoTo2yi — TTYoY2) ~

2 2, 2 2 22 _
(yl.l/2!170 — YoZ1T2,YoY1Ty — Yo Tox1, YoY22q1 — !/1-1303?2) = y+tx

(e) The operation ‘+* is assosiative on the curve E. Let x,y, z be three
points on £ and let p; = (z +y) + z and p2 = z + (y + 2). The two
points p; and py are equal on F if and only if z,y,z € E. This will
be shown in appendix A.

2. When = = y the equation we chose in 1 is vanishing so we choose the
equation we get by eliminating the second or third row in the matrix

]\/Iz,(:r,),z-

Let E[n] = {p € E | np = 0} denote the n-torsion subgroup of E.
Theorem 5. Let k = K. then for everyn > 2 E[n] is isomorphic to Zy, X Zy,.

Proof. See f.ex. [6].
Lemma 4. A point p € E is a flex if and only if 3p = 0.

Proof. If p is a flex, then p € U, and it is easy to check that the points of
Uy are three torsion points on E. We have Uy, ~ Zs if k = R or k = F|, with
q=2 (mod 3) and U ~ ZyxZsif k =Cork =F,, ¢=1 (mod 3). We then
know from theorem 5 that the elements of Uy are all the 3-torsion points on
E.

Collinearity

An elliptic curve E in H satisfy the collinearity condition, i.e. three points
on E are collinear if and only if their sum equals zero on E.

If we have three collinear points, = (2, z1,22), ¥ = (yo,¥y1,y2) and
z = (20,21, 22) € P? then the matrix

To T1 X9
M= | yo y1 12
20 21 22

has rank 2 and detM = 0.

Proposition 1. Three points x,y,z € E are collinear if and only if x +y +
z=(0,1,—1) € E.
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Proof. Suppose first that z,y, z € E are collinear. When z,y € E, x+y is the
solution of M,(,,-a =0, a = (ag,a1,az2) € E. Let L; be the three equations
from M,(z) 4 -a =0

Ly : zoyoao + T2y2ar + x1y1a0 =0
Ly : zoy1a0 + T1y0a1 + Toyza2 = 0
L3 : z1y2a0 + Toy101 + Tayoaz =0

then
Lz — Ly = (2192 — Z2y1)ao + (Toy1 — Z1y0)a1 + (Z2yo — oy2)az = 0

and since detM = 0 we get

(T1y2 — T2y1)20 + (T2yo — ToY2)z1 + (Toy1 — Z1Yo)22 =0

Bezout’s theorem (2) tells us we can’t have more than three points in the
intersection E N detM, so we have to have a = (ag, a1, a2) = (20,29,21) = —%
and r+y = —=z.

Now suppose z+y+2z = (0,1,—1) € E then L;(z,1(y),z) =0, (i = 1,2, 3),
where L; are the three equations from M ,,) -z =10

L1 : zoyozo + T1y121 + ToYozo = 0
Lo : xoy122 + T1Y220 + T2Yoz1 =0
L3 : moy221 + T1y022 + T2y120 = 0

0 = Ly — L3 = detM and we have that x,y, z are collinear.

The group law on the singular curves in ‘H

A curve F in P? is singular at a point p if the three partial derivatives
(OF/0x;)(p) (i = 0,1,2) are all zero. The partial derivatives of a curve
Eup) € His 0E(q4)/01; = arjry + 3ba? s0 F(qp) is singular if a®+27° =0
or if b=0.

We have either 2 or 4 singular curves in H dependent of the characteristic
of the field k. If k = F,, ¢ = 0 (mod 3) we have two singular curves, the
triangle To, and the triple line (zg + z; + 22)%. If k = Ror k = Fp,q=2
(mod 3) we have two singular curves, the triangle To, and the curve (zo +
Ty + 22) (22 + 23 + 23 — 2ox1 — ToT2 — T172). And when k = C or k = F,,
g =1 (mod 3) we have four singular curves, the four triangles:

T :zox129 =0

T 3 (.170 + 2, + $2)(€Z‘0 + 62ZE1 + .7?2)(621170 +ex1 + ZL'Q) 0
T 3¢ : (mg+ery + x2)(ex + 21 + T2) (20 + €221 + 22) =0
T_se2 : (20 + €221 + 22)(exo + €x1 + 22) (29 + 21 +12) =0
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On all these singular curves in H, if we exclude the singular points, we have
the same group law as we have on the elliptic curves in H. We can extend
the group operation on the elliptic curves in H:

ExE —, E
(x,y) +— x+y

to a rational map:
P2 xP?2--» P2
(zy) — z+y

where x + y is defined as in theorem 4.

2.3 The j-invariant

Algebraic curves over K are classified by the discrete invariant genus, g, and
by a point on the variety of moduli of curves of genus g, Mg, which is a
continuous invariant. M, is an irreducible algebraic variety of dimension 1 if
g = 1 or dimension 3g — 3 if g > 2. Algebraic curves with g = 1 are called
elliptic curves. For elliptic curves the point on M, is called the j-invariant
and it classifies elliptic curves up to isomorphism.

Theorem 6. Let k = K and char(k) # 2. Two elliptic curves X and X'
over k are isomorphic if and only if j(X) = j(X').

Proof. See [6].

Proposition 2. Let ¢ = ¢,b # 0. The j-invariant of an elliptic curve on
Hesse form, E,p) = E. : cror122 + T3 + 23 + 23, over K is given by

A(c® - 216)3 B A(c® —216)3

(E.) = — S .
IE) = = 538166 £ 21876 119683~ (e ¥ 3P(c - 30 (c 1+ 3)°

Proof We can transform E. into classic Weierstrass form Fg, .y : y*z =
4z3 — gox2? — g32° using f.ex. Nagell’s algorlthm [ |. It follows that E, ~
Flg,.95) Where (go,93) = (— —18¢, 27 — 2160 -3 ) The j-invariant of E.

is then given by theorem 6 and j(F(g, 4,)) = 1728 I 279

Proposition 3. Let V = {-3, -3¢, —3€%}. The transformation

Al\V—>K
C’_*j(EC)

18 surjective and 12 : 1, except over j = 0 where it is 4 : 1.

Proof. We will prove this proposition in Sect. 2.4.
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Corollary 2. 1. Fvery elliptic curve E over K is isomorphic to a smooth
curve in H,
E.:cxorixzo + :Kg + av% + IS =0
forc € AY\V, where V = {-3, —3¢, —3¢%}.
2. If we have an elliptic curve on classic Weierstrass form

F(f/z«gs) : yZZ = 4a® — 9251722 - gSZSa

we can transform it into Hesse form, E., by solving

7<F<(]Qq3)) = j(EC>

with respect to c.

Proof.
1. {j(E.)} = K, so there exists a curve in every isomorphism class of elliptic
curves in H.

2. Follows from theorem 6.

2.4 Symmetries of Curves in ‘H

The group SL(3, k) acts on points in P, if § € SL(3, k) then 6((zo, 1, 72)) =
(0(z0), 0(x1), 0(2)).

The Heisenberg group of dimension 3, Hjy

Let o and 7 be two elements in SL(3, K) such that o(x;) = z;41 and 7(z;) =
€'x;. As matrices

001 100
c=1100 and 7=(0e0 |,
010 00 e

where € is a primitive third root of unity in K. The group generated by the
matrices o and 7 is called the Heisenberg group of dimension 3 and is denoted
Hj. Hj is a finite nonabelian subgroup of SL(3, K) with [o,7] = €id. The
order of Hj is 27 [1].

Proposition 4. Hj leaves the curves in ‘H invariant and operates on the
points on an elliptic curve in H by translation by 3-torsion points.

Proof. By looking at the generators for H we see that Hz acts trivially on
the elements of H.

The generators of Hs acts on points in E as translation with 3-torsion
points. Let x € K, x = (2¢,21,22), then o(z) = (21, 72,20) = (zg, 21, 72) +
(1,-1,0) and 7(x) = (wo, €x1.€2x2) = (20,21, 72) + (0,1, —€). Further, the
center of Hy is Z(Hy) = {id, eid, €*id} and Hj is a central extension

]—%Z(Hg)——%H3*>23XZ3—>1

where o+ (1,0) and 7 — (0,1).
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The normalizer of Hz in SL(3, K), N3

The normalizer of Hs in SL(3, K) is the group that consists of those p €
SL(3,K) such that pH3 = Hsp and is denoted N3. N3 is generated by the
matrices o, 7, 6 and v where

001 100
o= 100 ] , T = 0e 0 |,
010 00¢
111 100
§=ks| 1e e | and v=e5|0e20
1€ ¢ 00 ¢

This group is a finite subgroup of SL(3, K). We have |N3| = 648. ks is a
constant which make det(8) = —3k2(2¢ — 1) equal to 1 over the field in which
we are working. For example in char(k) = 2 we have ks = 1, in char(k) =5
we have ks = (4 + 3¢)3 and when k = C we have ks = —@i.

Remark; N3 is not defined over fields of characteristic 3, because the
determinant of ¢ then is zero.

The group G = N3/Hjz ~ SL(2,Z3)
The factor group G = N3/Hs ~ SL(2,Z3) is generated by 6 and :

Hs — N3 — N3/Hj

! l L
H3 e N3 -—>SL(2Z3)

ag,T — 10

’ 01

02

b= L1g

S 12

01

The group H ~ A,
The group H = G/ < 6% >~ Ay is generated by 6 and i
1 — <62> — SL(2,Z3) — Ay — 1

5 — 0

— U

R
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Hj acts trivially on H. This induces an action of SL(2,Z3) on H, where the
orbit consists of isomorphic curves. Further

) ~10 0
8?2 = 0 0-1)eqG
0 -10

also acts trivially on H, so we get an action of H on H.
Now we are ready to prove proposition 3 from p. 131:

Proof. Proof of proposition 3: There exists a ¢ € K s.t. j(E.) # 0, so the
transformation is surjective. If j(E.) = 0, then ¢ = 0 or ¢ = /216, and
therefore the isomorphism class of Eg : #3 + 23 + 3 = 0 consists of 4 curves
in H. When j(E.) # 0 the isomorphism classes of E, concists of 12 curves,
this follows from the formula for j(E.) and from the action of the group H
on the curves in H.

3 Torsion Points and Division Polynomials

Let E be an elliptic curve. For n € Z let @,, be the multiplication-by-n map:
é,:F ™~ , FE
p = mp=p+t-+p
————
ntimes

The image of &, is a subgroup nE of E and the kernel of @,, is the n-torsion
subgroup of E, E[n] = {p € E | np =0} = &.1(0).

Proposition 5. Let E be an elliptic curve and n € Z, n # 0.

1. deg®, = n>.
2. If char(k) = 0 or if n is prime to char(k), then

En| ~Zn X Z, .
3. If char(k) = p, then either

Ep'l~0 foralr=1,2,...; or
Ep'| ~Zy forallr=1,2,...

Proof. See [10].

If E[p"] = 0 then E is said to be supersingular else E is said to be ordinary.
Other equivalent definitions of supersingular elliptic curves can be found in
8].

In the next section we will take a closer look at the division polynomials
on E € H. The results in Sect. 3.1 are taken from my master thesis [4].

If we only want to find the n-torsion points on E we will describe a
computational easier way in Sect. 3.2.
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3.1 A First Algorithm for Finding the n-torsion Points on £ € ‘H

In this section we will work over the field of complex numbers, C.

Let E be an elliptic curve in ‘H. The formulas for addition and doubling
on F defined in theorem 4 are independent of chosen elliptic curve E € H.
We can therefore extend @,, to a rational map:

é,, P2 --» P2
p — np

®,, maps a point p = (29,21, 22) € P? to the point np = (n — m)p + mp for
a m € Z. Common factors in the polynomials representing np are contained
in the base locus and can be removed. By proposition 5 we expect to find
that the polynomials representing np after removing common factors are of
degree n?. We will show this for n up to 10 in the next sections.

Let x € F and nz = (Fy, F1, F>), where the F;’s are polynomials of
degree n? representing nz. x is a n-torsion point on E if nz ~ (0,1, —1) i.e.
ifxe Z(Fo) n Z(F1 + FQ)

Definition 4. The set of n-torsion points on E s.t. ma # 0 whenever m | n
and m < n are called the primitive n-torsion points of E.

Lemma 5. The number of primitive n-torsion points of E, a,,, can be found
by executing the following recursive Maple-procedure:

a := proc(n::posint)
localm, j; optionremember;

ifn = 1thenl

else
ji=n?—1;
form indivisors(n) doifm # n and m # 1 thenj := j — a(m)
fiod;
RETURN(j)

fi

end

We will state some claims and show them for n up to 10 when 3 { n in the

following sections. The case with 3n-torsion points will be discussed in Sect.
3.1.

Claim. If n # 3 then for all m s.t. m | n and 31 m Fy and Fy + F, have a
common factor P, of degree 2+. The P,,’s are irreducible polynomials which
are SL(2,7Z3)-invariant.



136 Hege R. Frium

When 3 t n we can write the polynomials representing nz as products of
Ps:

nx = (xg H(P,m)(TPm)(TQPm), o™ (xg) H(O’npm)(TU"Pm)(TQO‘"Pm),

m, m,
min mln
o "(x0) [[(67"Pn) (70" Po) (r%0 " Pn)),
min

where o and 7 are the two generators of Hs (2.4).
Let X, be the curve defined by Z(P,,).

Claim. The intersection of X,, and F is exactly the primitive m-torsion
points of E.

Claim. If X,, is singular then the singularities are exactly the twelve vertices
of the four triangles in H. So we have no singular intersection points with E.

Since the P,,’s are SL(2,Zs)-invariant X,, intersect isomorphic with each
curve in the same isomorphism class of curves in H. So X,,, intersects iso-
morphic with each of the 4 triangles in ‘H, and we need only to check the
triangle Two : xpx122 = 0 when we want to study the intersection between
X and the singular curves in H.

Definition 5. The number of branches of the curve X, at a point ¢ € X,
is the number of locally irreducible components of X, in a sufficient small
neighbourhood of q.

Denote the singularities of X,,: [(z.y,2),a,b,c|, where (x,y,2) = q is the
singular point, a is the multiplicity of ¢, b is the intersection multiplicity
between X,, and one of the triangles in H at ¢ and ¢ is the number of
branches of X,,, at q.

Claim. The intersection multiplicity is 1 for all points p € X,,, N E.

To prove this when X,, is nonsingular we use Hurwitz formula (7) on the
morphism

3, .3,.3
(zozyiz2,25+2]+25)

f:Xm P!

Al
and show that f is only ramified at points (a,b) € P! that correspond to
singular curves in H. (This morphism is defined for all p € X,,, since 3 {m.)
When X, is singular we use Hurwitz formula on the minimal desingular-

isation Xy, ., Of Xy as described in lemma 6.

Theorem 7. (Hurwitz). Let [ : X — Y be a finite separable morphism of
complete, nonsingular curves. Let n = degf and let R be the ramification
divisor of f. Then

2g(X)—2=mn-(29(Y) —2) + degR,
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where

degR = Z (ep —1).

Pex
Proof. See [6].

The ramification index. e, is the intersection multiplicity between X, and
a curve in ‘H at the point p.

Definition 6. A morphism f : X — Y, defined as in theorem 7, is said to
be unramified at a point y € Y if the number of inverse images of y equal
degf, else f is said to be ramified at y € Y.

3,.3,.3
(zoz122. 2547 +25)

Lemma 6. Let f: X » P be a finite separable

Mblown —up
il

morphism between complete nonsingular curves, where Xonyo 0, o
1mal desingularisation of X,,,. The following are equivalent:

s the min-

1. computing the degree of the ramification divisor of f, degR, using Hurwitz
formula on f.

it. computing degR = quxm(lq — 1), where I, is the intersection multi-
plisity between X,, and a curve in 'H at g and r is the number of branches
of X at the point q.

Proof.
Proepr€X

Mplown—up

LN

qEX’rn —_—pl

We blow up X,,, at the singular point ¢ with r branches s.t. ¢ splits into r
points p1,...,Pr € Xmyun_u,- Locally at ¢ € X;;, we can write X, as an
union of irreducible components Z; U---U Z,. Then I, = >°1_(Iz,4) =
S (Ip,), where >0 (Iz, ) is the sum of the intersection multiplicities
between Z; and a curve in H at the point g. And >_._, (I,,) is the sum of the
intersection multiplicities between X and a curve in ‘H at the points

Di, (2217’)

Mplown —up

Algorithm 1 An algorithm for finding the n-torsion points on E when 3t n
and to prove the claims:

1. Compute nz.

—_—

2. Compute the crossproduct n2 x (0,1, —1) and find the common factors
P, of Fy and Fy + F>.

3. Check if X,,, is a singular curve.
(Use f.ex. the Maple-procedure algcurves[singularities). )

4. Check that X, intersects E in “é" different points.
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3n-torsion points

Let E be an elliptic curve in H and let p,¢q be two points on E where g is
given by an element o« € Hj:

a: F — FE
p = p+q

This map is the translation-by-¢ map and it is an isomorphism with inverse
element o~! € Hs, (but it is not a group homomorphism). We have seen
in Sect. 2.4 that H3 operates on an elliptic curve in H by translation by
3-torsion points, so ¢ is an element of Uy. For « € Hj consider the following
composite map:

E o E 3n E
p — ptq 3n(p+q)
= 3np + 3ngq

If p € ker(®,,) then 3n(p + q) = 3np + 3ng = 0. So we find the 3n-torsion
points on £ when n # 3 as the product of the orbit of Hz on P,, i.e. the
3n-torsion points on F are exactly the intersection between E and the curve
given by the product of the polynomials representing nx.

We find the 3-torsion points on E by intersecting F with any other curve
in H. But Hj acts trivially on H so we have to consider the case with the
9-torsion points on E as a special case.

Let V4 denote the set of homogeneous elements of degree d in the graded
polynomial ring K[zo,z1,z2] = @, V4. We have 8 cubics beside H in V3
that are invariant as curves under the action of Hj:

By : x} + ex} + €%a3 By : a3 + €2xf + exd

B : "L%Jtl + a:f:rg + (E%Io By x%zl + ez%xg + egz%xo

Bs : zjzy + €2aws + exdxg Be : 231y + 2210 4 2214

B : x%xg +exdxg + 621“%:61 Bg : m%xg + ezz%ajo + ex3Ty
Bz, ..., By together with zox122 are the polynomials that represents 3z on
E, and therefore By,..., Bg intersected with E give the primitive 9-torsion

points on F.

Lemma 7. Ifn # 3 the curve associated with the polynomial Ps,, intersected
with E gives the 3n-torsion points on E:
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where P, is the polynomial which curve intersected with E gives the n-torsion
points on E. If n = 3 then

8
Py = (zo172) H B,

i=1
where By, (i = 1..8), are the 8 Hs-invariant cubics mentioned above.

In the next sections we will find the n-torsion points on F for n up to 10.

2-torsion points on E

The 2-torsion points on E consist of:
1 origin
3 primitive 2-torsion points

We follow algorithm 1:

1. Compute 2x:

21 = (Fy, Fy, Fp) = (2023 — 2023, 2329 — 222, 31 — 2173)
= (zo(my — 21)(z0 — €x1) (20 — €21),
zo(x1 — 20) (21 — €x0) (1 — €220),
z1(xo — T2) (20 — €x2)(x0 — €223))
= (zo(Po)(TR) (1% P2), xo9(0%Po) (70> Py) (1202 Py),
z1(0Py) (1o Py) (720 Py))

The curve given by the product of these 12 polynomials intersected with
E gives the 6-torsion points on E, see Sect. 3.1 and 3.1.
—_—
2. Compute the crossproduct nz x (0,1, —1) and find the common factors
Pm of FO and F1 -+ FQI
Fo: 2ox3 — 2073 = xo(20 — 71) (22 — €71) (22 — €221) = 0
and
Fi + Fy : adxg — 23mg — adzy + 123 = (29 — 1) (2123 + 2220 + 23) =0
Common factors of Fy and F; + F, is the line

ngxg—xlz()

3. Check if X, is a singular curve:
X5 is a nonsingular curve.

4. Check that X,, intersects E in %2 different points:
X intersects F at 3 different points, this is because the ramification of
the morphism

(zox1Ta,z8+x+23)

3:1

f:Xs p!
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is a point of ramification index 2 on each of the four triangles. Hurwitz
theorem says deg R = 4. so these are all the ramifications. The four points
(vertices) are

(1,0,0), (1,1,1), (l,e,¢) and (1,62 €2).

Conclusion:
The 2-torsion points on E are the origin and the three intersection points
between E and the line X5.

The three primitive 2-torsion points, p1,pa, p3 are collinear so py + py =
—Pps3.

3-torsion points on E

We have seen in Sect. 2.1 that the set of 3-torsion points on E are the set
Uy. The primitive 3-torsion points are the set Uy \ (0,1, —1).

3z can be written as:

3x = (xé:r“{";rg + :Ué:rlxg + :1;0:1;‘11.1:3 — :tg;rlxg - .Z‘().T’lr.’lfg — :I:gxlzvg,

Sedadeld — alad — alad — adxS,  Badadad - abad — xdal — z329)

= (—moz1@2(x] + et + ad) (xf + a? + exd),

—(xdmy + wiag + 23w0) (vday + exny + Eadng)(xizy + Exday + exday),
— (2229 + 2220 + 222 )(rgrz + exlxg + €2£§$1)(IE8172 + a2z + exZry))

= (—woz122(B1)(B2), —(B3)(Ba)(Bs), —(Bs)(Br)(Bs))

where B; € V3 are the 8 cubics invariant as curves under the action of Hs,
see p. 138. These nine cubics intersected with E give the 9-torsion points on
E. see Sect. 3.1 and 3.1.

4-torsion points on E

The 4-torsion points on E consist of:
1 origin
3 primitive 2-torsion points

12 primitive 4-torsion points
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1. Compute 4x:

dr = (zo(xg — 1) (20 — €x1) (g — 1) (23T) + 2320 — 2370 — T321)

(230, + exdrg — exdry — 23wy ) (xhzy + Exday — Eatny — 231),

x1 (w0 — T2) (0 — €x9) (o — €222)(TFT0 + .1::;’:1:2 — zhxy — r310)

(2320 + exdzy — exdry — wdwo)(2img + Extze — T — TIXY),

xo(x1 — @) (21 — €x0) (21 — egxo)(mgml + m‘gxo — 23z — 1’01’1)

(2321 + exdzg — exdmg — ximy) (2321 + a3z — Exdry — vday)
= (2o(Po) (T P2)(r*Py) (P) (T Py) (72 Py),

21(0Py) (1o Py) (120 Py) (0 Py) (1o Py) (T30 Py),

To(02 Py) (102 Py) (1202 Py) (02 Py) (102 Py) (7% 0% Py))

The curve given by the product of these polynomials representing 4z
intersected with F gives the 12-torsion points on E, see Sect. 3.1.

— T ] .
2. Compute the crossproduct nz x (0,1, —1) and find the common factors
' of Fy and Iy + Fy:

Fy : zo(wg — 21)(x0 — €x1) (w2 — 221 ) (xhay + :E%TQ — zimy — 2517)

: 3 3 23 3
(z3r) + exiry — exdry — adwy)(zdey + Eadary — adny — ix))
=0
and
. 3 3
Fi+Fy: (29 — x1)(xha) + 2imy — 2i2g — 12561)(%961 +adzlry

5.6 3,44 6 2
+xizd + a7y — 310L 3 — £0$1L2 xoxlxg +$0$1$2

—3udated + abaiad + advial — 2Swiad + 2wy + 23f)
=0
Common factors of Fyy and F; + F5 are the line
XQ Lo —T1 = 0
and the curve
Xyt adzy + zpze — 2h0 — 2321 =0

3. X4 is a nonsingular curve.

4. The curve X, intersects F in 12 different points, from Hurwitz formula
the morphism

(;1:01'1;172‘13+w?+m§)

12:1

Pl

JiXy

has degR = 28. These ramification points lie on the singular curves in H
with degR = 7 on each. The curve X intersects T, : Tor122 = 0 with



142 Hege R. Frium

multiplicity 4 at (0,0,1) and (0, 1,0), with multiplicity 2 at (1,0,0) and
with multiplicity 1 at (0,1,7) and (0,1, —i). Zpe(Xﬂjzozlxz)(eP - 1):
3+ 341 =7and Xy intersects F at 12 different points, the primitive
4-torsion points on E.

Conclusion:
The 4-torsion points on E are the origin, £ N X5 and E N X4.

5-torsion points on E

The 5-torsion points on E consist of:
1 origin
24 primitive 5-torsion points

1. Compute 5zx:

5z = (vo(Ps)(TPs)(12P5), x9(0?Ps) (102 Ps) (1202 Ps),
z1(0Ps) (1o Ps) (120 Ps))
The curve given by the product of these polynomials representing 5x

intersected with E gives the 15-torsion points on F, see Sect. 3.1.
2. Common factors for Fy and F; + F5 is the curve

Xs:  abzize — adzize — adzi2d — adadad — xdadad
+ziz} + xdad + 2822 — 2323 + xiad — xdad + 2328 = 0.

3. X5 is singular. The singularities are the 12 vertices of the triangles in H.
The singularities of X5 on Ty, are:

(1,0,0),2,10,2] [(0,1,0),2,5,1] [(0,0,1),2,5,1].
4. The morphism
f . X5 (zozlzg,xg-l-z?-}-zg) Pl
° blown—up

24:1

has degR = 64. quxs(lq —r)=(10-2)+(6-1)+56-1)=16= 1314_
So X5 N E are 24 different points.

Conclusion:
The 5-torsion points on E are the origin and E N X5.

6-torsion points on E

The 6-torsion points on F consist of:
1 origin
3 primitive 2-torsion points
8 primitive 3-torsion points

24 primitive 6-torsion points
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From Sect. 3.1 we know we find the 6-torsion points on F as the inter-
section between F and the curve given by the product of the polynomials
representing 2z.

The primitive 6-torsion points on E are given by the 8 lines:

€272P)) iy —ex; =0
€T P)) c X9 — €221 =0
2PQ)) X1 — Xy = 0

(
(
(0
(€720%Py)) : 11 — exp =0
(
(
(
(

o

/\/—\/\/“\/\f\/—\/\
NNNNNNNN

N
I

w

270%Py)) i x1 — €229 =0
UPQ)) txog—22=0
20Py)) :mg—exg =0
ToP))  :ixg— a9 =0

=2 ot
Il

Il

3

SUSN SN SN SN SN SN S

®©

We can write 6z as:

61 = (—(2oT122)(B1)(B2)(Po) (T P2) (T2 Py)(0® Py) (10% Py) (1202 Py)
(0P) (1o Py) (%0 P2)((3¢® — 3)by — €2by + bs)((3¢ — 3)by — eby + bs),
—(Bs)(B7)(Bs)(3b1 + bs — by — br)(3eby + bs — by — by)
(3€2by + by — €%by — by),
—(Bs3)(B4)(Bs)(3by + bg — bs — br)(3eby + bs — ebs — by)
(3¢%by + bz — €%bs — by)
where B; € V3 are the 8 cubics invariant as curves under the action of Hs, see

p. 138, and b; € Vg, (i = 1,...,7) are the base elements of the polynomials
in Vg invariant under the action of Hs:

by xdxdad by : ) + 29 + 3

bs : w{w1mo + x{zomo + hT0T1 byt T5TF + 2fd + 2§

“ - |4
bs : 2§73 + 2503 + 2523 be : xjrizd + xix3xd + xdada?
by : xdrywd + vizoxd + xdzoxd

The curve given by the product of the polynomials representing 6z inter-
sected with F gives the 18-torsion points on E, see Sect. 3.1.

Conclusion:
The 6-torsion points on E are the origin, ENXs, ENT,, and ENYg,, i = 1.8,

7-torsion points on E

The 7-torsion points on E consist of:
1 origin
48 primitive 7-torsion points
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1. Compute 7x:

T = (~xo(Pr)(TPy)(r*Pr),  —a1(oPr)(roPy)(r*0 Py),
—19(0? P;)(10* Pr) (170 Py))

The curve given by the product of these polynomials representing 7z
intersected with F gives the 21-torsion points on E, see Sect. 3.1.
2. Common factors of Fy and F; + F3 is the curve
2 _ 9,43

X7:  x?alald + a:ozrl — 2zdx323 — xoxlxg — xdzdxs — Qmoxlxg

+xdal - roxlrz + 21:83:?3:% 4a8riad + 5x§abrd + 2abaiad
+5a8aial — dxbadal 4 22§22 — mgxlxz + 237122y — 2dxllal
+x3x}012 4adrfad — x3afad + QxO:I:IJ:Q + 226030133; — zdziaf

—dajriad —|— T(,xlxéo - T%I%.’L‘%l + a:ox 152 + ailad — 21928

+adz] — afad + 2] — 28210 + 2321t = 0.
3. X7 is a singular curve and has the following singularties on T:

[(1,0,0),4,14,2] [(0,1,0),4,14,2] [(0,0,1),4,14,2]
4. The morphism

(1?011112,$8+I?+Ig) 1
f : X7b£ oWwN—u P
o v 48:1

has degR = 144. 3 (I,—7) = (14-2)+(14-2)+(14-2) = 36 = 171,
So X7 N E are 48 different points.

Conclusion:
The 7-torsion points on E are the origin and E N X7.

8-torsion points on E

The 8-torsion points on E consist of:
1 origin
3 primitive 2-torsion points

12 primitive 4-torsion points

48 primitive 8-torsion points

1. Compute 8z:

81 = (x0(P2) (T Po) (72 Po)(Pa)(7Pa) (72 P1)(Py) (7 Ps) (7% Fy),
2o(0?2 Py)(10* Py) (1202 Py) (02 Py) (10 Py) (1202 Py)
(0°Ps) (0% Py) (%0 Py),
21 (0 Py) (1o Py) (720 Py) (0 Py) (T Py) (120 Py) (0 Ps)
(o Ps)(T%0 Py))

The curve given by the product of these polynomials representing 8z
intersected with F gives the 24-torsion points on F, see Sect. 3.1.
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2. Common factors of Fy and Fy + F>
Xo:axo—a1=0,

N o s S B
X4 Xl + Toly — T1T2 — Lok = 0
and

5 3 . o 6 5
Xg: x?xdeg + L}fﬂ“ﬂ% - ;I'O.L()CEQ — 3ajrirs — 3xdxdxd

—xgrial — 2§10 + afxlrs + 61:8:1"1’1’3 + 6§32l
+@01173 - 181“%0 - .787“1 T + 3dxird — 6a3z]a§
—6a3aSal + 3xdxtad — pdw2d? + 21928 + 25210 = 0.
3. Xg is a singular curve and has the following singularities on T,

[(1,0,0).4,20,4] [(0,1,0).4,12,2] [(0,0,1).4,12,2].

4. The morphism

(zoz1T2 7x3+x?+mg)

48:1

Pl

f : X8blo'mn, ~up

has degR = 144. qux —7) = (20—4)+(12—2)+(12—2) = 36 = %.
So Xg N E are 48 dlﬁeron‘r points.

Conclusion:
The 8-torsion points on E are the origin, EN Xy, FN X, and E N X5,

9-torsion points on E

The 9-torsion points on F consist of:
1 origo
8 primitive 3-torsjonspunkter
72 primitive 9-torsjonspunkter
From Sect. 3.1 we know we find the 9-torsion points on E as T, N E and
Z(B,)NE, (i=1,...,8), (see p. 138).
The polynomials representing 92 are too big to show here, each polynomial
has appr. 250 terms.

10-torsion points on E

The 10-torsion points on E consist of:
1 origin
3 primitive 2-torsion points

24 primitive 5-torsion points

72 primitive 10-torsion points
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1. Compute 10z:

10z = (—2o(P2)(1P2) (T2 P2)(Ps)(7Ps) (7% Ps)(P1o) (7 Pio) (T2 Pyo),
—21(0Py) (10 Py) (120 Py) (0 Ps) (10 Ps ) (720 Ps)
(o Pyo)(TaPio) (120 Pyo),
—29(02 Py)(10* Py) (1202 Py) (0% Ps ) (102 Ps ) (1202 P5)
<U2P10)(702P10)(T202P10))
The curve given by the product of these polynomials representing 10z

intersected with E gives the 30-torsion points on F, see Sect. 3.1.
2. Common factors of Fyy and Fy + F5 are

X2 Xy — T = 0 y
X5 @ a§xi2g + 2325 — xdade; — adx3ad + 2225 — adrdal
—zixd — zyziee + xiz + xizl — 2zd + 2823 =0,
and
. 18,5 18,4,2  18.3.3 18,2 4 _ 18 5
Xio: —Zy XX — T LT — Ty TITH — T TITy — T T1T5
x5’y + 22§’ ad s + 220223 + 2052823 + 8xldxiad

+8z5xtad + 2z’ xial + 2xl5 22T + 228°x 2§ + 2 l°x)

—zi?ril ey — 2?2023 — 11222323 — 14222828 — 142422723

+72§%2828 — 14zi?a32] — 142l2xta§ — 1122232 — 2l2232)0
—z?rial! + pdxttey + 2dtPad + Tadri?ad + dadallald
+4232123 + 322 xS + 30x]282] + 30232 2§ + 3x)xbx)
+ariel® + dafzial! + Tedaiel? + xdaixl® + ada2lt

6,.17 6,162 46,153 6,14, .4 6,.13,.5
—xoTy To — ToT Ty — drgxPry + 2wty + 220201

+5zri?ed — 162f2ital — 16252128 — 17252929 — 162525210
—16z5zTz! + bafabal? + 220§2%xl® + 2a8rixl? — dabadald

—x%x%x%ﬁ - xgxlmy + ach}g:rg + mgzyzg + a:gx}ﬁa:g

3,.15,.6 3,.14,.7 3,.13,.8 3,.12,.9 3,.11,.10
—2zgxi°rs — 25T — 2:1:0;17‘1 Ty +dxyrrxs + ldzge s
+14zdzi0zit + dadalzl? — 22328213 — 2032 T2t — 22328200

35,16 3,.4..17 3..3,.18 14,..10 13,.11
FTT{Ty + Ty + TpTITy — T Xy — 17Ty

12,12 11,13 10,14 _
—x1°x3" — Ty Tyt —xyxy = 0.

3. X0 is singular and has the following singularities on Th:
[(1,0,0),6,18,6] [(0,1,0),6,25,3] [(0,0,1),6,25,3].
4. The morphism

3,.3,.3
(zom1z2,25+2]+T3)

72:1

Pl

f : Xloblown—up
has degR = 224. 3 v (I,—7) = (18—6)+(25-3)+(25—3) = 56 = 24,
So X190 N E are 72 different points.

Conclusion:
The 10-torsion points on E are the origin, EN X5, EN X5 and E N X;,.
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3.2 A Second Algorithm for Finding the n-torsion Points on
EcH

As we saw in the last section it is easy to find the n-th division polynomial as
long as 3 | n, it is the polynomial . If we want to find the n-torsion points
when 3t n we can use nz N E and divide the points by 3.

Let k be an arbitrary field and let E be an elliptic curve in H.

Algorithm 2 An algorithm for finding the n-torsion points on E when 3 1 n:
1. Compute nx = (Fy, F1, Fy), the 3n-th division polynomial P3,, = FoF1 Fy.
2. Compute E[3n] = {p € E |3np =0} = EN Z(Ps,).

3. The n-torsion points on E is found by dividing the points in E[3n] by 3,
i.e. find those g € E s.t. 3¢ = p.

Remark; to find those ¢ € E s.t. 3¢ = p we simply solve the equations

3gxp=0.

3.3 n-torsion Points on the Singular Curves in H

The singular curves in H when k = K are the four triangles Ty, (A €
{00, —3, =3¢, —3€2}) (see Sect. 2.1 and 2.2).

/ Io \

Fig. 1. The triangle Teo.

Let 2,y € Ty, C P2. The lines I; are represented by ; = 0,7 = 0,1, 2. Let
[¥ be the line [; minus the two vertices of the triangle that lies on the line.
The rational map
P2 xP? -5 P?
(r.y) — z+y
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is not defined when both x and y are vertices in the triangle, else:

y=(L00)andrelf=z+y=(1
reli=a+y=(0
reli=a+y=(0

y=1(0,1.0)and x € I§ = =+ y = (0,
velj=z+y=(0
rely=r+y=(1

y=(0,0,)andx €l =x+y=(0
relf=z+y=(1
rely=x+y=(0,
yelyandz €l = x+ycl
relf=z+yel;
relb=>a4+yell
yelijande el =a2+yel]
relf=a+yel;
rely=>a+yel]
yelhandrcly >x+ycly
reli=zt+ycly
rely=>z+yel]

Let T, .(K) denote the nonsingular points of the triangle T\ € H over the
field K. And let [ be the line in T} s.t. (0,1, —1) € [§, minus the two singular
points in T that lies on the line.

Proposition 6. The points on l§ are a subgroup of Ty, (K) isomorphic to
K*.
Proof. Let © = (0,21, 22),y = (0,y1,y2) € I§; C Too. Then

0 zay2 11
My =1 2251 O 0
Ty 00

M, (2),y -z = 0 implies that = 4y = (0, 21y1, —22y2). So the following map is
a group isomorphism:

e 3 =, C
x = (0,1, ﬁ—f) — —i—f
B(0,1,-1) = 1 and 9z +y) = (0,1, ~ Z8)) = B _ ().

Corollary 3. The n-torsion points on the singular curves in H that lies on
the line Iy are a subgroup of K* isomorphic to U,, the multiplicative group
of n-th roots of unity.

Proof. Let 2 = (0,21,22) € I§ C Tw. If z is a n-torsion point then nr =
(0,1,(£2)") ~ (0,1, ~1), and since ¢ (nz) = 1 = 22 is a n-th root of unity in
K*.
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A A Proof for the Associativity of the Group Law
Defined in Sect. 2.2

Let z,y,2 € E and evaluate py = (z +y) +zand po =z + (y + 2) :

= (—iﬂéy%ygzl@ + QI(Q)flI?y(Q)ylyQlez + 131313321/%3!523 - x0x§y0y§z§
—:z:ozéyoy‘fzﬁ - 51"31’31132122 + l‘%ﬂf%yg’ylyﬂg’
—TiTy1Ys 2 + aGaYoyTY2Z — wiadyZ0z + roriraynys s
F23003 020y Y2021 — TTYGYS 2021 — T1THYY1 25,
—x%xgy?ygz? + ;r%:r/%yoylyng — (L’%:E?yézOZg + :roxlxgygyfzf

N 3.3 9 4929
+2x0 L1 25YoY1 Y3 2072 — TIT2YoY22] — TaYpYiZ0%2)

P2 = (—TqYay1y2zi 75 + ToyoyT 207 + TYoYs 2027 — oY1 Ya o7 22
+m1xgy§zfz§ - 2$1m9y3y1ygz§zm + .7:1:U2yfy§z§,
ToT1yRyR 2t — 2romiyoytyazozi v + Tox Y1 2075 + T5YoY1 2175
—:r%y%y%z()z?@ - I%?Joy%y%gzg + T3y 221,
ToTaYaYTZs — 2T0T2YoY1Ys 202175 + ToL2W320 2 + TTYY27) 22

2.2 92 2 2 2.2.2 2.3 .3
—T1YpYi 202125 — T1Yo1Ya2021 + TYY1 Y220 22)

We then factor the crossproduct py x pz with respect to detM, ,, detM, ,
and detM, .. This gives us the following three polynomials:

ki = ((—ylyé1 + y2yi4)f£0371332202f22 + uéyéx?z? - yoyfyﬁrowmz?

Fyoytyaror 12228 + (—y1ys + Yoyt )Toa 172202125
=gyt + yrys)alzd 225 — yyi szl 2y — yhyiasas
220232155 Y3y + 221 202293 yox's + (—y2yt + y1y3) 752021 25
+yoyaaiz) 2y )detMy y

(213 222005 Yo — 21y 222005 Yo'y — T2 yygws — 202 yayh
+ay Yyl + 2525y g )detMy y

+((=2y5u3y5 — vays) =iz + (y) + 2u3y7y3 )52 + 2y0y Ys 2021 2007
HYSYR YT 25 — 2y0uTYaZ071 20 — YoYU Ya T2
+(_7JIZ/2 + y1yg)i€01712f2202122 + (on?yg + yoyfyg)xommz"f
+(=Youiy3 — Youiys)ror1razs)detMy ,
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2.2 3.2 4 2 3 5 2. 923 5
ko = (zox yiys 2029 — ToT2YoY Y2212 + ToT2YTYs 202,

32 5y 2 2.3 2 3 4.9 2. 3 9.4
+(2y5u1 + Y7 )TpT22021 25 — THT2YoYL Y221 25 — T1THY0Y; Y220 2o
32 3 2.3 2 3 4 2.2.3

(29591 — Y1) 7173252125 + (—Y2yiYo + YaYo)T1252527 22

2. 4.5 32 5 3. 2 2.4.2
—ZoTTYoYaz02] + (YoUT — YT — Va1 )T1T521 %)

+(yoyt — v — yayi)T1z52125 + (Y2yiyo — ygyo)moxfzozfzg)deth,y
H((—yovi + ¥ + ysyd)miadz123 + madyoyiyezi

+(—yoys + ¥ + vyl aizianzd + zoriyoyszost + TETSYoY Y221 22

+T XYY Y220 22 — TaTIYI Y2027 — ToT YTYS e 20)det M,
(=138 — yivd)worTzgze + (Youlys + 2yoysys)z12523 22

8 2 5 3 2.6 2 2 2 3 4 7 2 2
(Y1 + 20795 + Y1) T1732125 + (2Y0Y1 s + YoY2)To2] 202
R > 2 2
+H—yiYs — yiys)wiTazot — YiyaYeTI T2

— 2y 2dz02t ) detM,y ,

ks = (—zoz3y3ysz0 21 + TaT1Yoy1Ys2izs — TET1YS YR 2025
+(—203y7 — 3)xda1 2023 23 + T 1yoy1Ys 2T 22 + Tiayoy1yE 22T
(Y5 + 20397 )atw22575 20 + (—yivo + Yayoys )xiTaz) 2123
+rox3y0y1 20% + (—Y3ys + Y5 + Yays )ai a2 2
H(=u38 + U5 + vyt )2t a2tz
+(=y5yoy1 + Y1Yo)ToT52025 25 )det M, y

+H(zor321y5 2007 + Tor iyt ys 2023 + (Ysus — yays — ¥3)aizaziz
—zoT3Yoyi 2075 + (Y3Ys — YaYs — ) Tiwselz — almayeyiyieda
—Ta Y1 2227 Y5 Y0 — TieYoy1Ys 2o 21)det M,

2.5 2 2 6, 2 3,5\,..2 2 2,242 2
JF(onJfZIQZOZQﬂU?xl + (’!Jl Yo + y1y2)$0x12022 + YoY1 Y221 2225%0

+(—you1 — 2yoyiys)mor3z02s + (YSY5 + Yiys)zordeda
+(=2y0y1ys — YoyryS)Tirazi 2

+(—5y3 — 2035 — y3)aizaeiz)detM, ,

—_—
We see that p1 X p2 = (k1,k2,k3) = 0 as long as z,y,z € E. It then follows
that the operation '+’ is associative.
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Abstract. We summarize results on maximal curves over F 2 (i.e., curves attaining
the Hasse-Weil upper bound for the number of rational points over finite fields).
We discuss the classification problem and the genus spectrum of maximal curves.
We present some towers of curves over finite fields attaining the Drinfeld-Vladut
bound. Especially interesting is the description of the completely splitting locus
(see Formula (20)) of a certain tower of curves, meaning the first description by
their coordinates of the supersingular points of the modular curves X, (2"), for each
n €N

1 Introduction

The theory of equations over finite fields is a basic topic in Number Theory
and Algebraic Geometry. The object of the first investigations in this theory
were congruences of the form

Hl

y*> = f(z) (modulo a prime number), (1)

where f(z) is a rational function with integer coefficients. E. Artin associ-
ated a zeta-function to Equation (1), in analogy with the one introduced by
Dedekind for quadratic number fields, and (assuming Riemann’s hypothesis
for this zeta-function) he conjectured an upper bound for the number of so-
lutions in the prime field F,, of congruences such as the ones in (1) above.
E. Artin’s conjecture was then proved by H. Hasse for polynomials f(z) of
degrees 3 and 4 over arbitrary finite fields, and widely generalized by A. Weil
(see [30]) as follows: Let X be a projective geometrically irreducible nonsin-
gular algebraic curve of genus g = g(X), defined over a finite field Fy with ¢
elements. Then, its number of rational points #X (Fy) satisfics

#X(Fe) — (0+1)] < 29VE (2)
Inequality (2) is equivalent to the validity of Riemann’s hypothesis for the

zeta-function associated to the curve X, and for other proofs of this inequality
we refer to [3] and [27].
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Curves X that attain the upper bound in (2) are called maximal; i.e., a
curve X is [F2-maximal if we have

#X(Fpe) =q*> +1+2q- g(X). (3)

Y. Thara noticed that if a curve X is F2-maximal then the genus g(X) must
be small; more precisely. he showed that its genus satisfies

9(X) <qlg—1)/2. (4)

In order to study the asymptotics of Fy-rational points on curves of large
genus, Y. Thara (see [20]) introduced the function

A(() = limsup Ne(g)/g. (5)

g—o0
where Ny(g) = max{#X(F¢); g(X) = g}. To obtain lower bounds on A(¢)

one usually considers towers F of curves defined over the finite field Fy, that is

an infinite sequence of curves X,, over F, with increasing genus, and calculates
the limit A(F) over Fy:

= lim *—#Xn(m)
MF) = nl_}oo o) (6)
We have (for any F-tower F):
A(l) > MF). (7)

The best known upper bound for A(¢) is due to Drinfeld-Vladut (see [7]). It
says
A(f) <VIE—1, for any £. (8)

When the cardinality ¢ of the finite field is a square we have equality in (8),
and this fact was proved independently by Thara and by Tsfasman-Vladut-
Zink (see [20] and [29]); i.e., we have

A(>)=q—1, forany q. (9)

The interest on curves over finite fields was greatly renewed after Goppa’s
construction of linear codes from such curves (see [13], [28] and [12]). Using
Goppa’s construction and the equality in (9) above for ¢ > 7, Tsfasman-
Vladut-Zink constructed an infinite sequence of codes of increasing lengths
having limit parameters (relative minimum distance and transmission rate)
above the so-called Gilbert-Varshamov bound, a result that caused a sensa-
tion among specialists in Coding Theory (see [29]).

The purpose of this paper is to survey on results on curves over finite
fields in two directions:
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1. Maximal Curves (genus and classification).
2. Towers of curves and Drinfeld-Vladut bound.

Throughout this paper we will use the word curve to designate a non-
singular projective geometrically irreducible algebraic curve, defined over a
finite field F, with £ elements, or its nonsingular projective model. Also, we
denote Fy an algebraic closure of Fy.

2 Maximal Curves

A maximal curve X over F,. attains the Hasse-Weil upper bound for the
number of F .-rational points; i.e., we have

#X(Fpe)=¢"+1+2¢ g(X),

where g(X) denotes its genus.
The genus of a Fy2-mazimal curve X satisfies (see [20]):

9(X) <qlg—-1)/2.

The most well-known maximal curve over Fg is the so-called Hermitian
curve (denoted by H) which can be given by the affine equation:

yl+y =zt (10)

The Hermitian curve H over F,2 is maximal and has the largest genus
possible for a F z2-maximal curve; i.e., we have

g(H)=q(q—=1)/2 and #H(Fp)=1+q".

For a divisor m of (¢ 4+ 1) we denote by H,, the curve over F,2 defined by
the affine equation:

yl+y=a. (11)

The genus of H,, satisfies

q+1

2-gltt) = 0~ 1) (2 -1)).

One can check directly that H,, is a F2-maximal curve, but this also follows
(since H,, is covered by the Hermitian curve H = Hy) from the following
general result due to J.-P. Serre (see [22]):
Let e: X — Y be a surjective map of curves where both curves and the
map are defined over Foz. If X is Fy2-mazimal, then Y is also Fj2-mazimal.
Since the genus g(X) of a F2-maximal curve X satisfies the upper bound
in (4), we have here two natural questions:



On Curves with Many Rational Points over Finite Fields 155

1. Genus Spectrum
What are the natural numbers in the interval (0, g(¢ — 1)/2] that are
genera of [F2-maximal curves?

2. Classification
For a fixed genus g, what are the F 2-maximal curves (modulo isomor-
phisms) that have genus g?

1. Genus spectrum

Not every integer lying in the interval (0,q(q — 1)/2) is the genus of a
Fj2-maximal curve. For example (see [11]) if X is F2-mazimal and g(X) <
q(g—1)/2, then g(X) < (g—1)%/4. Note that if ¢ is odd (i.e., the characteristic
of the finite field is not two), then the curve Hy in Equation (11) satisfies:

g(Hs) = (¢ —1)*/4. (12)

In order to find lots of entries of the genus spectrum for F 2-maximal
curves (as follows from Serre’s result aforementioned), one can determine
genera of curves covered by the Hermitian curve H over F,2. This approach
was systematically used in [19] by considering quotient curves H/G, where
G is a subgroup of automorphisms of H. In particular is is shown that for
a fixed integer g > 1, there are F 2-maximal curves of genus g for infinitely
many values of g (see [19], Remark 6.2). If the characteristic p is odd and
considering p-subgroups G (writing q¢ = p"), there are Fp2-mazimal curves
with genus g given by:

g — _pn~v . (pn—w _ 1)7 (13)

for each 0 < v < n and for each 0 < w < (n —1).

In case p = 2 it seems a hard problem to determine the pairs (v, w) for
which there are F :-maximal curves (coming from 2-subgroups G of auto-
morphisms of the Hermitian curve) with genus as in Formula (13) (see also
).

For each divisor m of (¢* — q + 1), there are F2-mazimal curves having
genus g given by (see [19], Theorem 5.1):

g=—" (14)
The determination of explicit equations for the F,2-maximal curves leading

to the genus formula in (14) above is not so easy (see [5]).
For k > 2, the following equation gives a F2:-maximal curve (see [14]):

k-1
quj —a-2? 7t with ol =1, (15)
=0
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The curve given by Equation (15) above has genus g = ¢*(¢¥ — 1)/2 and, in
particular, its genus appears among those given in Formula (13). For ¢ = p,
this curve also appears in [[6], Theorem 2.1].

2. Classification

The interest on the classification problem for F,.-maximal curves with a
fixed genus was triggered after the following result of Riick-Stichtenoth (see
25)):

If X is F2-mazimal and g(X) = q(q—1)/2, then X is F2-isomorphic to
the Hermitian curve H given by Equation (10).

For ¢ odd, the second largest genus of F,2-maximal curves is given by
g2 = (¢ — 1)?/4. Here we also have a unicity result (see [10]):

If X is Fp2-mazimal (q odd) and g(X) = (q — 1)*/4, then X is F-
isomorphic to the curve Hy given by Equation (11) with m = 2.

In case of characteristic p = 2, the second largest genus of maximal curves
over F 2 is go = q(¢—2)/4 and the classification problem here has some extra-
difficulties (see [2]).

In [[10], Theorem 2.3] it is given a characterization of the F,2-maximal
curves with equations as in (11), but this characterization requires an extra-
hypothesis on Weierstrass nongaps at a rational point of the curve.

Write ¢ = p' and consider the curve X over F,2 given by the equation

t
qu/pt +a- -2 =0, with o4 t'=-1. (16)
i=1

This curve X is F2-maximal with ¢(X) = ¢(¢—p)/2p. In case of characteristic
p = 2, one gets the second largest genus possible. Curves X given by equations
as in (16) appear also in [[6], Theorem 2.1] where it is given a classification
of the Galois subcoverings of prime degrees of the Hermitian curve.

For ¢ = 3 (modulo 4), the following two curves X; and X5 (both having
genus equal to g = (¢ — 1)(¢ — 3)/8) are Fj2-maximal and nonisomorphic to
each other:

X; givenby y? 4y =24 and
X, given by z@FD/2 4 (a+1)/2 1

The curve Xy above is the unique mazimal curve over Fp with genus g =
(g — 1)(q — 3)/8 that has a nonsingular plane model over F 2 (see [4]).

We end up this first part with the following question:
Question: s every I 2-maximal curve [ 2-covered by the Hermitian curve
over Fp2 (i.e., by the curve given by Equation (10))?

A related important result was obtained in [21]. It is shown that mazimal
curves over Fg2 lie in nondegenerate Hermitian varieties as curves having
degree equal to (g + 1).
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3 Towers of Curves

In order to study the asymptotic behaviour of the number of F,-rational
points on curves of large genus, Y. Thara introduced the following function:

A(t) = tim sup Ne(g)/9,

g—o
where Ny(g) = max{#X (F); ¢(X) = g}.
The study of this function A(¢) envolves the consideration of infinite se-

quences of curves defined over the finite field F, having genera tending to
infinity.

Definition. A tower F over Fy (or a Fy-tower) is an infinite sequence of
curves and surjective and separable maps, both defined over the finite field
Fﬁa

o Xpg1 = X Xo = X3

such that g(X,) — oo as n — oc.
The following limit exists and it is called the limit of the tower F:

AMF) = lim  # X, (Fe)/g(X,,).

n—oc

Clearly we have A(¢) > M(F), for any Fy-tower F.

Example 1. Let W be the tower over F 2 where (see [16]):

X is the projective line with affine coordinate denoted by ;.
X5 is the plane projective curve with the equation

2l 4 xy =282 +1).

X3 is the curve in P? given by the equations

et oy =ad/(xd7 41 and 2l 4 ao =29/ 4 1)

e X, is the curve in P* given by the equations
b ay =29/ 1)
ol g =28/ +1)
a4y =2/ (@47 + 1),

and so on. The map X, ;1 — X,, is given by

(1,22, .. Xy, Tpg1) = (21,22, .., Tp).



158 Arnaldo Garcia

In this tower W over I ;2 the ramification points are wildly ramified which
makes more subtle the determination of the genus g(X,), for each n € N.
One has that
AW) =q-1;

i.e., the F2-tower W attains the upper bound of Drinfeld-Vladut given in
(8). This gives another proof of the Equality (9) (see also [20] and [29])
with the advantages of having the curves in the tower explicitely given by
algebraic equations, and also providing an explicit description by coordinates
of the Fg-rational points of the curves in the tower. For the determination
of Weierstrass semigroups on this tower we refer to [24].

The tower W in Example 1 is recursive; i.e., it uses the same equation for
the construction of all curves X,,, n € N, in the tower. We say that the tower
W is recursively given by

Y +y=2x/(297 +1).

Example 2. Let F; be a nonprime finite field of characteristic p (i.e., ¢ > p)
and denote m = (¢ — 1)/(p — 1). Consider the F,-tower G recursively given
by the equation (see [18]):

y" 4+ (z+1)" =1
More precisely we have

e X; is the projective line with affine coordinate denoted by ;.
e X5 is the plane projective curve with equation

'+ (r+1)™=1.
e X; is the curve in P? with equations
5+ (za+1)"=1 and 204+ (1 +1)" =1,
and so on for the curves Xy, X5, Xg, .. ..

Here one has 5
AG) > —— > 0. 1
9> = (17)
This gives a very simple proof for nonprime finite fields of the following result
of Serre ([26]):
A(q) >0, forany q.

Unfortunately the method in [18] does not apply to prime fields F, as was
pointed out by H.W. Lenstra (see [23]).

The first tower over F 2 given by explicit algebraic equations that attains
the Drinfeld-Vladut bound can be described as follows (see [15] and [9]):



On Curves with Many Rational Points over Finite Fields 159

X is the projective line with affine coordinate x;.
X5 is the plane curve given by

+1
23+ =ai".

e X3 is the curve in P? given by
1 1 . 22
224 2 =29 and 29 4 23 = 27T, with 2o = 2.
2 1 3 2 7
e X, is the curve in P* given by
+1
23 + 29 = ¥
+1
z4 + 23 = ©3
1 . 23
2+ 2y = 2T with 23 = =2,
T2
and so on for the curves X5, Xg, X7,.... Note that the above descrip-
tion of this tower is not recursive since one makes for each n > 1, the
. . Zn+1
substitution z,4; = ~~.
In

Now we review the concepts of ramification point and ramification index.
Let ¢ be a surjective and separable map between two curves; i.e.,

x5y

We denote by d the degree of the map %; i.e., except for finitely many
points of the curve Y, we have that there are exactly d points on the curve X
above each point of Y. The finitely many exceptional points of the curve Y
having fewer than d preimages in X under the map ¢ are called ramification
points. More precisely, let P be any point of Y and let

v (P)={P,P,,...,P}C X

be the preimages of P in X under the map . Attached to each Pj, j =
1,2,...,r, there is a natural number e; > 1 (called ramification index of the
point P; over P) and we have

r
=1

Except for finitely many points P in Y one has that r = d (and hence
e =¢ey=--=¢e3=1).1fe; =ey--- = e4 =1 then the point P is called
unramified. A point P; is ramified over the point P if e; > 2. The ramification
at P; is called wild if the characteristic p divides the ramification index e; and
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it is called tame otherwise. When the map ¢ determines a Galois covering
one has (for any point P in Y):

€1 =€y =+ =¢€.

Hence we have that in Galois coverings of degrees relatively prime to the
characteristic all ramifications are tame.
A tower T over a finite field Fy

""'))(n+14»Xn""“»X2"»X1

is called tame if for each map X, 11 — X, all ramifications are tame.
We have two important sets of points on the first curve X; of the tower.
To define these two sets, let us denote by

Tip Xn - Xl

the compositum of the first (n — 1) maps in the tower 7 over F,.

1. The ramification locus

S ={P e X,(Fy) | for some n>2, 3Q € X,,(Fy) with 7,(Q) = P,
and the point Q is ramified over P}.

2. The completely splitting locus

T ={P € X,(Fy) | for all n > 2, the point P is unramified for the map m,,

and all its preimages under m, are Fy-rational points
of X}

Tame towers 7 over F; are specially interesting when:
1. The ramification locus S is a finite set.
2. The completely splitting locus T' is a nonempty set.

This is so because of the following result (see [18]): For a tame tower T
over Fy, its limit satisfies

2t

M2 g -2

(18)
where t = #T and s = # 5.

For example, one can derive the Inequality (17) in Example 2 from the
formula in (18).
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Example 3. Let p > 3 be an odd prime number and consider the tower 7
over F,2 defined recursively by the equation (see [17]):

The ramification locus S of this tower 7 is
S ={0,00, %1, ta},

where o € F)» with o? = —1. Hence, its cardinality is s = 6.

For the determination of the completely splitting locus T' of this tower T
we need Deuring’s polynomial H(Z) whose roots determine the supersingular
elliptic curves in Legendre’s form:

p—1

H(Z) = J; <PJ%]>2 - 77 € F,|2).

Here there are two fundamental properties of Deuring’s polynomials:

1. Polynomial identity
724+ 1\°
H(Z4)—Zp“1~H<< 2; > ) (19)

2. Location of the roots
All roots of the polynomial H(Z) € FpZ] are fourth powers in F .

We then have the following explicit description of the completely splitting
locus

T ={B€F,2 H(B) =0} (20)
Since the polynomial H(Z) is separable of degree (p — 1)/2, it follows from

(20) that
t=#T=2p—2.

Applying Inequality (18) we get

2. (2p—2)
M2 50 a6 P
From this it follows that A\(7) = p — 1; i.e., the tower T over F,» in Example
3 attains the Drinfeld-Vladut bound.
We conclude with two remarks due to M. Zieve. Firstly that Property 2
(Location of the roots) follows from Property 1 (Polynomial identity) and the
fact that all roots of H(Z) lie in F2. Secondly that the tower 7 in Example 3
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corresponds to the modular curves Xo(2"), for n € N. This last remark is done
by comparison with an explicit modular tower worked out by N. Elkies (see
[8] and [17]). In particular the explicit description of the completely splitting
locus T given in (20) above represents the first description by their coordinates
of the supersingular points of the modular curves Xo(2"), for each n € N.

References

1. Abddn, M., Quoos, L. (2001) On the genera of subfields of the Hermitian Func-
tion Field. Preprint.
2. Abdén, M., Torres, F. (1999) On maximal curves in characteristic two.
Manuscripta Math. 99, 39-53
3. Bombieri, E. (1976) Hilbert’s 8th problem: an analogue. Proc. Symposia in Pure
Math. 28 (ed. F. Browder), American Math. Society, Providence, 269-274
4. Cossidente, A., Hirschfeld, J., Korchmaros, G., Torres, F. (2000) On plane
maximal curves. Compositio Math. 121, 163-181
5. Cossidente, A., Korchmaros, G., Torres, F. (1999) On curves covered by the
Hermitian curve. J. Algebra 216, 56-76
6. Cossidente, A., Korchmaros, G., Torres, F. (2000) Curves of large genus covered
by the Hermitian curve. Comm. Algebra, 28, 4707-4728
7. Drinfeld, V., Vladut, S. (1983) Number of points of an algebraic curve. Funct.
Anal. 17, 53-54
8. Elkies, N. (1997) Explicit modular towers. In Proc. 35th Annual Allerton Con-
ference on Commun., Control and Computing, Urbana, IL
9. Elkies, N. (2000) Explicit towers of Drinfeld modular curves. To appear in Proc.
3rd European Cong. of Math., Barcelona
10. Fuhrmann, R., Garcia, A., Torres F. (1997) On maximal curves. J. Number
Theory 67, 29-51
11. Fuhrmann, R., Torres, F. (1996) The genus of curves over finite fields with
many rational points. Manuscripta. Math. 89, 103-106
12. Geer van der, G. (2000) Curves over finite fields and codes. To appear in Proc.
3rd European Cong. of Math., Barcelona
13. Goppa, V. (1983) Algebraic - geometric codes. Math. USRR-Izv. 21, 75-91
14. Garcia, A., Quoos, L. (2001) A construction of curves over finite fields. Acta
Arithmetica. 98, 181-195
15. Garcia, A., Stichtenoth, H. (1995) A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vladut bound. Inventiones. Math. 121, 211-
222
16. Garcia, A., Stichtenoth, H. (1996) On the asymptotic behaviour of some towers
of function fields over finite fields. J. of Number Theory 61, No. 2, 248-273
17. Garcia, A., Stichtenoth, H. (2001) On tame towers over finite fields. Preprint
18. Garcia, A., Stichtenoth, H., Thomas, M. (1997) On Towers and Composita of
Towers of Function Fields over Finite Fields. Finite Fields and Appl. 3, 257-274
19. Garcia, A., Stichtenoth, H., Xing, C.P. (2000) On subfields of the Hermitian
Function Field. Compositio Math. 120, 137-170
20. Thara, Y. (1981) Some remarks on the number of rational points of algebraic
curves over finite fields. J. Fac. Sci. Tokyo 28, 721-724



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

On Curves with Many Rational Points over Finite Fields 163

Korchmaros, G., Torres, F. Embedding of a maximal curve in a Hermitian
Variety. To appear in Compositio Math.

Lachaud, G. (1987) Sommes d’Eisenstein et nombre de points de certaines
courbes algébriques sur les corps finis. C.R.Acad. Sci. Paris 305, 729-732
Lenstra, H. W. (2000) On a problem of Garcia, Stichtenoth and Thomas.
Preprint

Pellikaan, R., Stichtenoth, H., Torres, F. (1998) Weierstrass semigroups in an
asymptotically good tower of function fields. Finite Fields and Appl. 4, 381--392
Riick, H. G., Stichtenoth, H. (1994) A Characterization of Hermitian Function
Fields over Finite Fields. J. Reine Angew. Math. 457, 185-188.

Serre, J. P. (1983) Sur le nombre des points rationnels d’une courbe algébrique
sur un corps fini. C.R. Acad. Sci. Paris 296, 397-402

Stohr, K. O., Voloch, J. F. (1986) Weierstrass points and curves over finite
fields. Proc. London Math. Soc. 52, 1-19

Tsfasman, M. A., Vladut, S. G. (1991) Algebraic Geometric Codes. Kluwer,
Dordrecht

Tsfasman, M., Vladut, S. G., Zink, T. (1982) Modular curves, Shimura
curves and Goppa codes, better than the Varshamov-Gilbert bound. Math.
Nachrichten. 109, 21-28

Weil, A. (1971) Courbes algébriques et variétés abéliennes. Hermann, Paris



VHDL Specification of a FPGA
to Divide and Multiply in GF(2™)

Mario Alberto Garcia-Martinez! and Guillermo Morales-Luna?

! Instituto Tecnoldgico de Orizaba

Departamento de Ingenieria Eléctrica-Electrénica

Oriente 9 no. 852, 94300 Orizaba, Veracruz, Mexico
marioag@prodigy.net.mx

Programa de Ingenieria Molecular, Instituto Mexicano del Petréleo

on leave of absence from Computer Science Section, CINVESTAV-IPN
Av. IPN 2508, 07360 Mexico, D.F.

gmorales@cs.cinvestav.mx

Abstract. Some FPGA’s are designed to compute division and multiplication on
Galois fields. FPGA’s are quite cheap programmable logic devices used in digital
circuits with the important characteristic of being reprogrammable. Any FPGA can
be specified within VHDL which at present is a standard language in the design
of digital systems. We describe in VHDL the divider and multiplier basic cells and
their whole integration. The structures have scalable systolic architectures. The
circuits operate by pipelining; the divider in GF(2™) requires 5m — 1 clock cycles
while the multiplier 3m — 1. The divider proceeds by the Gaussian triangulation
algorithm and is uniform with respect to the irreducible polynomial generating the
field. The codes, some simulations and performance measurements are provided.

1 Introduction

Open networks are extensively applied in bank transactions, e-commerce,
e-mail and most communications, and several security threats regarding au-
thentication, data integrity and confidentiality arose. Adequate schemes to
guarantee high security levels are increasingly important. Many cryptographic
schemes, as well as operations in error correcting codes, switching theory and
digital signal processing, require computations over finite fields. High speed
and low complexity design for finite fields arithmetic is thus quite useful with
respect to wider bandwidths and better security.

In GF(2™), addition is realized directly as bit-wise exclusive-OR without
carries. Multiplication and division are more complex [9] and treated with
several algorithms [1]. In general, the parallel architectures are faster than
their serial counterparts, and require greater amounts of logical gates when
implemented. In addition, different basis are used for the representation of
the field elements. Some of these architectures require an additional circuitry
for the basis conversion, increasing their hardware complexities. On the other
hand, each structure depends on the irreducible polynomial generating the
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field, nevertheless it is possible to change the generating polynomial with-
out alteration of the circuitry structures. This is particularly important for
cryptographic applications that require frequent change of system keys. Fenn
et al. [4] present a similar systolic divider in GF(2™) with space and time
complexities of order m? and m respectively, but they use a dual basis repre-
sentation. Lee and Yoo [8] introduce a structure for exponentiation with time
complexity of order 3m + 9 cycles, that uses a canonical basis parallel multi-
plier. Chin [2] presents a parallel inverter/divider systolic array that uses the
canonical basis and has a space complexity of order m?(m —1)/2 cells and a
time complexity of order 2m? — 3m/2 cycles. Sunar and Kog [10] introduce a
new algorithm for the parallel Mastrovito multiplier with a space complexity
of m? AND gates and m? — 1 XOR gates. Our main interest is the develop-
ment of an implementation with FPGA for great values of m optimizing the
space resources.

We propose a serial systolic structure for a divider and a multiplier that
work using the canonical basis and the algorithm developed in [6], which has
space and time complexities of order m? and m respectively. Moreover this
structure is uniform with respect to the irreducible polinomial.

As a first approach, division can be carried out by calculating the mul-
tiplicative inverse of the divisor and multiplying by the dividend. This pro-
cedure has an unnecessary lengthy run-time. Better methods to divide have
been developed by posing an equivalent problem consisting in solving a lin-
ear system of equations over GF(2™). We follow the method introduced in [6]
and translate the problem into a system of m linear equations on GF(2™)
(m is the dimension of the finite field, whose order is 2™). The algorithm
proceeds in two main steps. First, the coefficients matrix of the linear system
of equations is built. Second, the system is solved by a triangulation pro-
cess. Our Divider is modular and quite appropriate to handle large values
of m. In addition, it does not depend on the irreducible polynomial that is
used to generate the field. The number of required timing cycles, or clock
pulses, is linear with respect to m. We present the design of FPGA’s (Field
Programmable Gate Array) to compute the division and multiplication over
Galois fields. FPGA’s are quite cheap programmable logic devices used in dig-
ital circuits with the important characteristic of being reprogrammable [5,11].
Any FPGA can be specified within VHDL (Hardware Description Language)
which at present is a standard language in the design of digital systems [3,7].
We describe the basic cells and their integration into the divider and the
multiplier. The structures have systolic architectures and can be expanded
easily. The circuit operates by pipelining and requires 5m — 1 clock cycles
to compute division and 3m — 1 clock cycles for multiplication. The divider
uses the Gaussian triangulation algorithm and is uniform with respect to the
generating irreducible polynomial. The simulation of the cells were validated.
The Divider circuit has been recorded as a programmable device.
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2 The Circuit Divider

2.1 Algebraic Preliminares

Division in finite fields is reduced to solve a system of linear equations by
Hasan and Bhargava in 1992 [6], with smaller calculation time and simpler
computing structures. The basic structures and procedures do not depend on
the irreducible polynomial generating the field.

Let a, ¢ be two elements over GF(2™), with a # 0. The quotient b = c/a
can be computed as follows: Let us write ¢ = ab, a = aTAM b= bT Am)
c=cTA™ where A™ = (ai)zgl is the matrix whose elements are the
powers of a generator o of GF(2™) and a, b and c are the column-coordinate
vectors of a, b and c relative to the basis A Then

TA™ = (ax b)T AR = (g« b)T pPT A

§=0,....2m—2 .

where a = b is the convolution of @ with b and P = (py);_, r._, I8
the coordinate matrix of powers of a in terms of the chosen basis Alm),

ACm=1) = pT A(M) Hence, ¢ = P (a*b), where for each i =0,...,m — 1,

2m—2

¢ = Z Dik Z agb;. Thus:

k=0 o+j=k

c=Qb (1)
m—1
7=0,...,m—1 . . e
where Q = (qi5);_, ,_, has entries ¢;; = Z Di k+j0k- In this way, division
k=0

can be performed by solving a system of m linear equations over GF(2™)[6].

2.2 Serial Structure of the Divider

The general design of the serial divider on GF(2™) is sketched in Fig. 1. It
can be used for large values of m and solves indeed Eq. (1).

The input signals are the following: (gi)y;_ol is the vector whose entries are
the coefficients of the generating polynomal, provided by the user, (g;);~ is
a sequence of control digits (marking the size of m), (ai)?;gl gives the divider
element in GF(2™) and (Ci)?f__gl gives the dividend element. The output signal
gives the sequence of the quotient coefficients (bi);igl. The first task of the
divider is the generation of the coefficients matrix @ in Eq. (1), along m
clock cycles. Thereafter, the linear system of equations is solved in a pipeline
process requiring, as we will see, 4m — 1 clock cycles. The total time required
by the whole divisor is thus 5m — 1 clock cycles. The middle cells D;’s are
flip-flops used to synchronize both main structures Gen-Mat and Solution.

We will describe each component below.
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Fig. 1. Serial divider on GF(2™)

2.3 Array to Compute the Coefficients Matrix

The array Gen-Mat that generates the coeflicients matrix is shown in Fig. 2-
(a). The array Gen-Mat consists of m — 1 cells sequentially arranged and

oD ‘:':::] :r_g" : |g‘4pE|. Y ,{i:&i{
El| t N ™ I"“'—!—————--—---—-— s
. 8 : @ gt
.t rmux uf 2 columna -1 N -__7—-{1'?__" --p-|| L=
= A
| 'lnu:'-—
(a) (b)

Fig. 2. (a) Array Gen-Mat. (b) Diagram of Cel01

labeled Cely, Cely, Cels, ---, Cel,_1. Each Cel; is of type Cel01, displayed
in Fig. 2-(b) in which boxes labelled FF represent flip-flops. Indeed, the
computation they performed is described in the pseudocode shown at Table 1.

The coordinates of a are introduced in a serial way into Cel; beginning
with the “most significant digit” a,,—1. Output column 0 is just a copy of
a. Columns 1 to m — 1 are the respective outputs of cells Cel;, Cely, Cels,

-, Cely,_1. Each cell requires two additional clock cycles to display the first
element of each column in its output. The output of cell Cel;_; is introduced
into the next processor Cel;.

The VHDL code of circuit Gen-Mat, which calculates the coefficients ma-
trix of the linear system (1), is shown in Table 2
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Table 1. Description of cell type Cel01.

if ¢in, = 1 then
{ aout =13

7= Qin }
else

{ Aout = Gtemp” + Ain }
Gout ‘= Gtemps Gtemp ‘= Jin;
Qout ‘= Qtemp; Qtemp ‘= Qin;

Table 2. VHDL description of Gen-Mat

library IEEE;
use IEEE.std_logic_1164.all;
entity gen mat4 is
generic (m: positive:=4);
port(CLK,CLR,Ginput,Qinput,Ainput:in STD_LOGIC;
C0l1.0,Co0l.1,C01_2,Col _3:0ut STD_LOGIC);
end gen mat4;
architecture genmat4_arch of genmat4 is
component cellOlb
port (CLK,CLR,Gin,Qin,Ain: in STD.LOGIC;
Gout,Qout,Aout: out STD_LOGIC);
end component;
signal Gtemp,Qtemp,Atemp: STD_LOGIC.VECTOR(O to m-1);
begin gen mat:
for I in O to m-1 generate
cel0: if (I=0) generate
cell0: cellO1b port map (CLK=>CLK,CLR=>CLR,
Gin=>Ginput,Qin=>Qinput, Ain=>Ainput,
Gout=>Gtemp(I),Qout=>Qtemp(I), Aout=>Atemp(I));
end generate celO;
cell: if (I<=m-1 and I>=1) generate
celdal: cellOlb port map (CLK=>CLK, CLR=>CLR,
Gin=>Gtemp(I-1),Qin=>Qtemp(I-1), Ain=>Atemp(I-1),
Gout=>Gtemp(I), Qout=>Qtemp(I), Aout=>Atemp(I));
end generate cell;
end generate gen mat;
Col 0<=Ainput; Col_1<=Atemp(0); Col 2<=Atemp(1l); Col 3<=Atemp(2);
end gen maté4_arch;
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2.4 Array to Solve the Linear Equations System

The proposed structure that applies the Gauss-Jordan triangulation method
to solve the linear equations system (1) is shown in Fig. 3. The signals indi-

Fig. 3. Array to solve the linear equations system

cated in the figure are the following;:

[ acO ... ac.[m-1] ] = Columns of the matrix |C-in = Dividend
[ b.[m-1] ... b0 ] = Solution of eq. (1) s—-in = Control signal
clk = Clock

Two types of cells, Cel02 and Cel03, are used here. Corresponding diagrams
of Ce102 and Cel03 are sketched in Fig. 4. Their operations are described in
pseudocodes shown in Table 3, (a) and (b) respectively.

The flip-flops are used for synchronization purposes. The beginning of
matrix entries arrival is determined by the control signal. The entries of the
solution vector b are output from the (m — 1)-th cell of type Cel02. The
m-th coordinate appears at cycle 3m — 1. Thereafter, each new coordinate
appears at one clock cycle. Hence, in this array encharged to solve the system
of equations, the total output of b is obtained at clock cycle 4m — 1. This,
together with the m clock cycles used at first array Gen-Mat gives dm — 1
clock cycles for the whole divider. The code of circuit Solution, which solves
by triangulation the linear system (1), is shown in Tables 4 and 5.
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Pix

Pia

Fig. 4. (a) Diagram of Ce102. (b) Diagram of Cel03

Table 3. Description of cells Ce102 and Cel03.

if s;, ;= 1 then

{ Pouw:=(1,1);
7= Qin }

else
case (r,a;,) of

( ki

(I
~ N~
—_— 0 = O
o O~ O

0,0) : Pous :

(0,1): Poyt :
(1,0) : Poyt :=
(1,1) : Pous :

endcase ;

Sout = Sin;

case (P;y,) of

(0,0) : aout = in;

(1,0) : Gout =7+ Qin;

(L, 1) : Gout :=7; T := Qin;
Pout = Pin;

(a) Operation of Cel02.

3 The Circuit Multiplier

3.1 Multiplication Procedure

(b) Operation of Cel103

For any a,b € GF(2™), the product ¢ = ab can be calculated strightforwardly
using Eq. (1) and the matrix Q. Thus the following two steps arise naturally:

1. Calculation of the coefficients matrix Q.
2. Matrix-vector multiplication to obtain the coordinates of the product

¢ = ab.

The first step coincides with that of the divider. For the second step, a trivial
recursive relation is used. Namely, from Eq. (1), fori =0,...,m — 1

m—1

m—2
¢ = Z qi;b; = Z qijb; | + gim—1bm—1.
=0 j=0



VHDL Specification of a FPGA

Table 4. VHDL description of Solution

library IEEE;
use IEEE.std_logic_1164.all;

entity Solution is generic (m: positive:=4);
port ( CLK,CLR,Qin,Cin: in STD_LOGIC;
AO,A1,A2,A3: in STD_LOGIC;
Bout: out STD_LOGIC);
end Solution;
architecture Solution_arch of Solution is
component cell02b is
port (CLK,CLR,Hin,Fin,Ain: in STD_LOGIC;
Hout,Fout,Aout: out STD_LOGIC);
end component cell02b;
component cellO3b is
port (CLK,CLR,Sin,Ain: in STD_LOGIC;
H,F,Sout: out STD_LOGIC);
end component cellO3b;
component ffd is
port (CLK,CLR,Data In: in STD.LOGIC;
Data_Out: out STD_LOGIC);
end component ffd;
signal Htemp,Ftemp:STD_LOGIC_VECTOR(O to m);
signal Stemp:STD_LOGIC_VECTOR(O to m);
signal Qtemp,Atemp:STD_LOGIC_VECTOR(0O to m);

begin Sol4:
for J in 0 to m-1 generate
row0: if (J=0) generate
rowa0: for I in O to m generate
cel030: if (I=0) generate
cell030: cell03b port map (CLK=>CLK,
CLR=>CLR,Sin=>Qin,Ain=>A0,
H=>Htemp(I) ,F=>Ftemp(I),
Sout=>Stemp(J));
end generate cel030;
cel020: if (I<=m and I>=1) generate
cell020: cellO2b port map
(CLK=>CLK,CLR=>CLR,
Hin=>Htemp(I-1),
Fin=>Ftemp(I-1),Ain=>A1,
Hout=>Htemp(I),Fout=>Ftemp(I),
Aout=>Atemp(I));
end generate cel020;
end generate rowa0;

end generate row0; (to be continued ... )

171



172 Mario Alberto Garcia-Martinez and Guillermo Morales-Luna

Table 5. VHDL description of Solution (cont’)

rowx: if (J<=m-1 and J>=1) generate
rowax: for I in O to m generate
££2: if (I=0) generate
ffd2: ffd port map (CLK=>CLK,CLR=>CLR,
Data_In=>Stemp(J-1) ,Data Out=>Qtemp(J));
end generate ff2;
celO3x: if (I=1) generate
cell03x: cell03b port map (CLK=>CLK,
CLR=>CLR,Sin=>Qtemp(J),
Ain=>Atemp(I-1), H=>Htemp(I),F=>Ftemp(I),
Sout=>Stemp(J));
end generate celO3x;
cel02x: if (I<=m and I>1) generate
celd02x: for K in I to m+1-J generate
cell02x: cellO2b port map
(CLK=>CLK,CLR=>CLR,
Hin=>Htemp(I-1),Fin=>Ftemp(I-1),
Ain=>A1,Hout=>Htemp(I),
Fout=>Ftemp(I),Aout=>Atemp(I));
end generate celd02x;
end generate cel02x;
end generate rowax;
end generate rowx;
end generate Sol4;
end Solucion_arch;

Hence, let
A9 =0

/1k; k-1
CE )= («‘5 )4 qigobroa

(2)

Obviously, Vi : ¢; = (:,Em'l).

3.2 Serial Structure Multiplier

In Fig. 5-(a) we sketch the basic diagram of the structure Multiplier. We
use Gen-Mat for the first step. For the second step, there is a linear array of
processors muly, muly, ..., mul,_1. The operation of cell mul is described in
the pseudocode in Table 6.

The coordinates of b enter into muly, with the “most significant bit” com-
ing first. As the coordinates of b pass through the processors, each bit b; is
stored in the internal register of mul;. This processor identifies b; with the aid
of control signal d. Once b; is stored in mul;, mul; simply performs multipli-
cation and addition operations over GF(2). The coordinates of the product ¢
start emerging from mul,, 1 at cycle 2m at a rate of one coordinate per cycle.
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Fig. 5. (a) Structure of the multiplier. (b) Circuit diagram of cell mul

Table 6. Description of cell type mul.

dout = din:,

Cout ‘= Cin + TQin;
bout 1= bt,cmp;
blcmp = bin;

if d;;, := 1 then r :=b;,;

This gives a computational time of 3m — 1 cycles. The circuit diagram of cell
mul is presented in Fig. 5-(b). The D! boxes are delay circuits to synchronize
the signal transits from the Gen-Mat structure into the multiplier cells.

The code of circuit Multiplier, which performs multiplication, is shown
in Table 7.

4 Some Examples

All tests were made with the field GF(2%) represented by means of the ir-
reducible polynomial p(X) = X* + X3 + 1. Hence, if a is a root of p(X)
the cyclic multiplicative group of GF(2%) is represented as shown in Table 8.
at = a3 + 1 is a generator as well. Let us consider g;, = [1 00 1] and as con-
trol signal let ¢;;, = [1 0 0 0]. As an illustrative example consider as dividend
and divisor, respectively:

ain:a'6:<1:3+(12+(y+1:[1 111]
cn =o't =0 +a? = [1100]

whose quotient evidently is b = o® = [1 1 1 0]. Indeed, matrices Q and P
are:

100011110101100 1000
p_ |010001111010110 Q- |1001
~lo01000111101011 10010

000111101011001 0100
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Table 7. VHDL description of Solution

library IEEE;
use IEEE.std_logic_1164.all;

entity Solmulti is generic (m:positive:=4);
port (CLK,CLR,Binput,Cinput,Dinput: in STD_LOGIC;
Ainput: in STD_LOGIC_VECTOR(O to m-1);
Coutput: out STD_LOGIC);
end Sol multi;
architecture Solmulti_arch of Sol.multi is
component celmul
port (CLK,CLR,Ain,Bin,Cin,Din: in STD_LOGIC;
Bout,Cout,Dout: out STD_LOGIC);
end component;
signal Btemp,Ctemp,Dtemp:STD_LOGIC_VECTOR(O to m-1);

begin
Sol: for I in O to m-1 generate
cel0: if (I=0) generate
cell0:cel mul port map (CLK=>CLK,CLR=>CLR,
Ain=>Ainput(I),
Bin=>Binput, Cin=>Cinput, Din=>Dinput,
Bout=>Btemp(I),Cout=>Ctemp(I),Dout=>Dtemp(I));
end generate celO;
celx: if (I<=m-1 and I>=1) generate
celdax: celmul port map (CLK=>CLK, CLR=>CLR,
Ain=>Ainput(I),Bin=>Btemp(I-1),
Cin=>Ctemp(I-1),Din=>Dtemp(I-1),
Bout=>Btemp(I),Cout=>Ctemp(I) ,Dout=>Dtemp(I));
end generate celx;
end generate Sol;
Coutput<=Ctemp(m-1);
end Sol multi_arch;

Table 8. Representation of GF(2*)* using the irreducible polynomial p(X).

¥ =1Jat=a°+1 o =+ +afaP=a+1
at=ale®=a+a+1 o’ =a?+1 a® =a’+a
=l =+’ +a+1a’ =a’+a o =ad+a
ad=atla" = +a+1 al'=a®+a?+1at® =1
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Fig. 6. (a) Simulation of Gen-Mat. (b) Simulation of Solution

With this example we obtain the output shown in Fig. 6. It is worth to remark
that the first matrix column, marked in graph (a) as column 0, initiates in
the ascent of pulse 1, the second column, column 1, in pulse 2, the third
column in pulse 4 and last column in pulse 6. The solution B_out = [1 1 1 0]
begins to exit after pulse 12. In graph (b) the stages conforming the whole
Divider are displayed: the Gen-Mat circuit, the intermediate stage of flip-
flops synchronizing the signals and the solver circuit.

In Fig. 7 we show, using the same factors a and b as above, the behaviour of
the multiplier cell mul, whose design was shown in Fig. 5-(b) and implements
the recursion (2).

= Logic Simulator - Xilinx Foundation F2.1i [multi] - [Waveform Viewer 0 - c:\indtn\active\projects\multi\cel_mul tve]
£4 Fle Signal Wavefom Device Options Tools Miew Window Hep
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Fig. 7. Behaviour of multiplier cell mul
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5 Conclusions

In the present paper we present a serial structure for a Divider and a
Multiplier on GF(2™). It requires just one control signal and simple and
regular interconnections. Regarding its functionning, the clock cycle does not
depend on the exponent (coding size, indeed) m, the calculations of the divi-
sion and multiplication require 5m—1 and 3m— 1, respectively, cycles of clock
and both operate in “pipeline” way. In spite that along the current presen-
tation we used an elementary example, we believe that the described circuits
are quite adequate for applications of error correction codes for common val-
ues of m between 8 and 32. The description with VHDL, for m = 4,8, 16,
were validated by simulations using the Xilinx [11] package.

A prototype of the divider, for the smaller value m = 4, has been built
in a PLD, and the construction can be extended up to m = 16. For greater
values of m, up to 256, we plan to construct a proper FPGA. Afterwards, we
forsee to use several FPGA’s in a cascade composition to treat even greater
values of m, particularly those suited for cryptographic applications.

Acknowledgements: We thank the suggestions of anonymous referees that
helped us to improve the final presentation of this paper.
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Abstract. Using a polynomial analogue of the wheel sieve, we discuss the distri-
bution of irreducible polynomials over Fi. In particular, we provide considerable
numerical evidence that in analogue to integer arithmetic progressions, irreducible
polynomials over Fy are binomially distributed in the progressions of the wheel
sieve. We also present numerical evidence that the irreducibles of fixed degree are
binomially distributed by weight. Also briefly discussed is the distribution of self-
reciprocal irreducible polynomials. A number of conjectures are raised.

1 Introduction

Let Fj, denote the finite field of order ¢ where ¢ is a prime number, and
let F,[z] denote the ring of all polynomials over F, in the variable . It
is well known that the ring Z of integers and the polynomial ring Fj[z]
share a number of common properties. For example, the ring Z has unique
factorization into primes while the ring Fy[z] has unique factorization into
irreducible polynomials. Moreover, in each case there are an infinite number of
prime elements. In Z, this is simply Euclid’s Theorem that there are infinitely
many primes. In the polynomial setting, this result follows from the fact that
for each degree d > 1, there is an irreducible polynomial of degree d over Iy,
see [6] page 93.

Dirichlet’s Theorem on primes in an arithmetic progression provides a
refinement of Euclid’s theorem to the effect that if (a,b) = 1, then there are
infinitely many primes in the progression an + b as n runs through the set
of positive integers. In the polynomial ring setting, the analogous result was
first proved by Kornblum [5] and states that if (A(x), B(x)) = 1, then the
progression A(x)Y + B(xz) contains infinitely many irreducible polynomials
as Y varies through the elements of Fy[z].

While a computer sicve study of the distribution of irreducible polyno-
mials could be conducted for fields of prime or even prime power order,
throughout the remainder of this paper we will focus only on the case where
q = 2. How does one order the polynomials in Fy[z]? Corresponding to the
polynomial f(x) = a,a™ +- - -+ a2+ ag, we may naturally associate the inte-
ger It = an2™ +-- -+ a12+ag. Since each a; € Fy and hence may be assumed
to be either zero or one, this is of course simply the base 2 representation of
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the integer I;. We will often say things like Ny(z) < Na(z), meaning that
subject to the above ordering, the polynomial Ni(z) occurs before Na(z).
While this is an small abuse of the notation, the meaning should be clear
from the context.

The wheel sieve for integers was first described by Pritchard [7] as a
sublinear algorithm for computer prime number sieve routines. In [3], this
technique was used to study the distribution of primes in sets of arithmetic
progressions of the form a + nmy where, if p; denotes the i-th prime, the
multiplier my is the k-th primorial number p; - ps ... px and a < my_1q is any
number relatively prime to my. The heuristics in [3] show that the primes are
distributed binomially among the arithmetic progressions a + nmy, using a
binomial probability given by the asymptotic value from Dirichlet’s Theorem.

In Section 2 we discuss a polynomial version of the wheel sieve, and in
Section 3 we consider the distribution of irreducibles in arithmetic progres-
sions. Section 4 is devoted to a discussion of irreducibles by weight. We close
with Section 5, which provides a brief discussion of the distribution of self-
reciprical irreducible polynomials.

2 The Polynomial Wheel Sieve

For an integer k > 1, let My(z) = Pi(z)- - Px(x) be the product of the first
k monic irreducibles in Fi[z]. The polynomial My(x) corresponds to the k-th
primorial number p; - - - pg, and will be called the k-th primorial polynomial.
For each value of k£ > 1, the wheel sieve generates a sequence of polynomials,
using an interactive process with polynomials from the previous cycle as
seeds.

Definition 1. For a fixed prime p;, let Wi = {1,2,...,p; — 1,2} be the set
of initial polynomials. Given Wy, let Sy = {S € Wy| Pu(z) [ S} be the
set after sieving the set W}, by the irreducible Py. Then Wiy = {S(x) +
N(z)Mg(z) | S(z) € Sk, deg(N) < deg(Px)} and N(z) runs through all
polynomials < P.

Let W be the matrix containing the set Wy, with ¢9€9(P) columns. The
first column is the set Si_1, ordered increasingly. And the remaining columns
as we move from left to right, contain successive multiples of the primorial
polynomial Mj_1(z) added to the first polynomial in column 1.

Example 1: Let ¢ = 2. The first four irreducible polynomials over F, are
Pi(z) =z, Py(x) = 2+1, P3(z) = 22+ +1, Py(x) = 23 +x+1, and the first
three primorial polynomials are My (z) = z, Ma(z) = 2%+, M3(z) = z* +z.
Then we have the trivial case

er = {1,1‘},51 = {1} .

Continuing we have
Wy = {1,z + 1}, 55 = {1},
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and
Ws={l,22+2+ 1,28 +2° + 1,2 +2+1}, 83 = {L,z3 + 22 + 1,23 + 2 + 1}

or using a more compact notation, where the polynomial a,z™ + a,_12" "' +
---+ag is abbreviated in the form a,a,,_; - - - ag, we have S3 = {1,1101,1011}.
For the next case,

110011 100101 110111 1001001 1011011 1101101 1111111
W, = | 1011 11001 101111 111101 1000011 1010001 1100111 1110101
1101 11111 101001 111011 1000101 1010111 1100001 1110011

and

110011 100101 110111 1001001 1011011 1101101
Sy = 11001 101111 111101 1000011 1010001 1100111 1110101
1101 11111 101001 111011 1010111 1100001 1110011

Remark. An alternative definition of Sy might be helpful. Since each poly-
nomial in Sy is relatively prime to Mj(z), one could also say S, = {f €
Fylz] | deg(f) < deg(My) , ged(f, My) = 1}.

As indicated on page 122 of [6], there is a function @, defined for nonzero
polynomials f in Fy[z] which counts the number of polynomials in F[z] that
are of smaller degree than the degree of f and which are relatively prime to
f. Lemma 3.69 of [6] provides some of the basic properties of this function,
and shows that this function has many of the properties of the Euler function
¢ from elementary number theory. The function @, is multiplicative and if
f € Fy[z] has degree n > 1, then &,(f) = ¢"(1 —¢~™)--- (1 — ¢~ ™), where
the n; are the degrees of the distinct monic irreducible polynomials appearing
in the canonical factorization of f in F,[z]. This formula can be rewritten
to appear to look more like the formula for the usual Euler ¢ function. In
particular, if f = P{' ... P¢ where each P; is irreducible, then

24(f) = [J(g e = gm1)
=1

Lemma 1. The number of elements in Sy is

k

#S% = @4(Mi(z)) = [ (g™ - 1)

i=1

where n; is the degree of Pi(x).

Proof. This is a trivial result of the definition of @,(f).
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3 Irreducibles in Arithmetic Progressions

The wheel sieve provides a natural framework to study the distribution of

irreducible polynomials in sets of arithmetic progressions. Following the no-

tation of Hayes [2], let H be a polynomial over a finite field of ¢ elements and

A be a polynomial prime to H. If n(r; H, A) is the number of irreducibles of

degree r which are congruent to A (mod H), then a theorem of Artin states
1 q"

w(r; Hy A) ~ &, () - (1)
with an error term that is O(q"/r) for some v < 1, see [2]. We note that
the fraction ¢"/r is an asymptotic expression for Ny(r), where Ny(r) =
(/) Xaps u(d)g™/? is the number of monic irreducibles of degree r over F,
see [6].

If M3(n) denotes the number of irreducibles over F; of degree at most n,
then Ms(n) can be written as the double sum

n 1 .
Ma(n) =Y T—nzu(d)Q /4

m=1 dlm

The asymptotic number of irreducibles in the set Sy, after sieving, is given
by Ms(n) where n is the largest degree of any polynomial in Sj.

Starting with n = 1, the first few values of My(n) are given by 2, 3, 5,
8, 14, 23, 41, 71, .... A simplified formula or recurrence for Ms(n) would be
of interest. A related question is to determine P;(x), the i-th irreducible over
F, subject to the ordering from Section 1.

We are interested in studying heuristics of w(r; H, A) and in particular in
comparing the error term with the distribution obtained for the polynomial
arithmetic progressions of the wheel sieve, where H = M (z) and A is taken
from the set Si_1.

3.1 Heuristics of the Distribution of Irreducibles in S

A computer program was written for ¢ = 2 that calculates the elements of
the set S ordered as in the example for W4. We chose ¢ = 2 because the
polynomials can be represented by a string of zeros and ones, as shown for
W,. Each polynomial in Sy was tested for irreducibility using simple bit
manipulations such as bit shifts and XOR (exclusive or) operations on the
binary string representing the polynomial. The computer output was checked
extensively against published tables of irreducible polynomials [6].

The results are given in Table 1 and Figure 1. The numbers given are
the distribution of irreducible polynomials found in each “row” of the poly-
nomial arithmetic progressions given in Definition 1. In Example 1, the rows
corresponding to the arithmetic progressions are seen clearly for Wy4. The
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number of irreducibles in each row is easily counted for k = 4: in Example 1,
S4 has one row has 6 irreducibles and two rows have 7 irreducibles. Similarly,
for k = 5, there are 11 rows having 6 irreducibles each (see Table 1).

100000 T T T T T T T3 1406 FrT—7T T T T 13

, 10000 E 3 ‘é’ 100000 ; 1
5 1000 ! 3 ° 1?222 F ;
e 100} i s 100 | ]
Ko 4 Q 3 ]
5 10 i 5 .
1F k=8 5 1Ff .

0.1 N N T N B B B A 01 L——1 1 1 L]
0246 810121416 0 51015202530
Irreducibles per row Irreducibles per row

Fig. 1. The count of rows with the given number of irreducible polynomials in the
matrix Wy for given k. The curve is the prediction from Conjecture 1.

3.2 Computational Heuristics Compared to Estimates
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