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1 Introduction

Section 2 of this document gives an overview of the Chaum on-line e-cash scheme
that makes use of blind RSA signatures. Section 3 outlines some extensions of
the basic Chaum scheme that could be of use in the OpenCoin project. Section
4 discusses future requirements of the OpenCoin project and how they might
be met.

2 The Chaum E-cash Scheme

In this section we review the Chaum [6] concept of using blind RSA signatures
for untraceable payments and e-cash.

2.1 The Basic Scheme

Chaum’s scheme uses RSA signatures. There are three participants: the Issuer
IS who issues e-coins to a User U who wants to use them to pay a Merchant
M . An important attribute of the scheme is user anonymity: the use of an
e-coin should not provide any information about the identity of the User. The
technique involves the User preparing a Blank that is blinded before being sent
to the Issuer to sign and return to the User. The User removes the blinding to
obtain a signed Blank, i.e. a Token. The User gives the Merchant the Token in
exchange for goods and the Merchant returns the Token to the Issuer to redeem
the value once the Issuer has verified that the signature is valid.

The Issuer generates an RSA modulus n, the product of two (large) primes
p and q, and a pair of public and private keys, e and d, such that ed =
1(mod φ(n)). The pair n, e is made public in an authenticated way and d is
kept secret.

The set of Blanks is a subset B ⊆ Z∗n. The set of Tokens is

C = {md(mod n)|m ∈ B}.
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The User chooses an element of B at random and a blinding element r ∈ Z∗n
at random and calculates the blinded Blank c1 = rem(mod n). The User and
Issuer engage in an exchange in which the User pays the Issuer and the Issuer
mints a blinded Token c2 = cd

1(mod n) to give to the User. How this exchange
takes place and whether or not the User and Issuer trust each other is left for
later discussion. Nevertheless the User can verify that the Issuer has used the
private key d by checking that ce

2 = c1(mod n). Payment may be made using
’real cash’, by a debit from a bank account of the User held with the Issuer, or
possibly by a Token (e-coin). The User unblinds the blinded Token to obtain
the Token t = md = c2r

−1(mod n).
When a User spends an e-coin at a Merchant, the User gives the Merchant a

Token t in exchange for goods. How this exchange takes place and whether or not
the User and Merchant trust each other is left for later discussion. Nevertheless
the Merchant can verify that the Token has been signed by the Issuer. The
Merchant sends the token t to the Issuer in order to redeem its value. The
Issuer maintains a list of Blanks that have been spent. The Issuer verifies that
the signature is valid by checking that m = te ∈ B and that m has not been
spent. If this is so then the Issuer pays the Merchant the value of the token (this
may be by credit to a bank account or by minting an e-coin for the Merchant
or by some other means – how the exchange between the Merchant and the
Issuer takes place and whether or not the Merchant and Issuer trust each other
is left for later discussion). This process may or may not take place before the
exchange between the User and the Merchant completes.

It is clear that if the User, the Merchant and the Issuer all act honestly then
in the execution of the scheme as described the User does pay the Merchant for
goods received.

2.2 Unforgeability

It is essential that only the Issuer, using the private key d, should be able to con-
struct a Token t = md(mod n) for a Blank m ∈ B other than deriving it from a
blinded token obtained from the Issuer. This should be so even with the knowl-
edge of other Blank, Token pairs (for chosen Blanks or Tokens). This places
conditions on the set B. For example, it should not be possible to construct
Blanks m1, m2 ∈ B such that m = m1m2(mod n) ∈ B since then by obtaining
Tokens t1, t2 corresponding to m1,m2 from the Issuer, the User may construct a
token t = t1t2(mod n) corresponding to m, i.e. succeed in the one-more-forgery
attack.

2.3 Blank Generation

A Blank must both have some redundancy, so that the signature of the Issuer
may be verified, and have some randomness, so that the probability that two
Users generate identical e-coins is small. This may be achieved with a Blank
that is the concatenation of a fixed part f specified by the Issuer and a random
string a generated by the User. Thus a Blank has the form m = f ||a or m =
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h(f ||a) for some hash function. The User should use a random number generator
whose outputs are distinct and unpredictable to produce the strings a. Moreover
distinct Users should produce distinct random strings. If a hash function is used
then it needs to be collision-resistant.

3 Extensions of Chaum’s Scheme

3.1 Randomized Signatures

Since the Issuer signs a blinded Blank c1 the Issuer cannot be certain that
the corresponding Blank has any particular form. An attacker who obtains
signatures on spoof blinded Blank values x1, . . . , xl such that many of xixj ∈ B
for 1 ≤ i ≤ l, 1 ≤ j ≤ l may potentially succeed in a “one-more-forgery
attack”. However, we note that the basic scheme of Chaum has been proven to
be invulnerable to such an attack in any meaningful way [2].

In a randomized signature the Issuer introduces some random value into the
signing process so that the User does not determine (or even know) what value
has been signed. This is intended to provide a defence against the one-more-
forgery attack. The mechanism is as follows. The Issuer chooses a random value
x and sends the User the value y = xe(mod n). The User chooses a random
value u and constructs the Blank m = h(f ||a||b) where b = uey(mod n) and
the blinded Blank c1 = reum(mod n) which is sent to the Issuer. The Issuer
returns a pair of values c2 = ((c1x)d(mod n), x) as the signed blinded Blank and
the User forms the pair t = (c3 = c2r

−1(mod n), v = ux(mod n)) as the Token.
A token t = (c3, v) is verified by checking that ce

3v
−1 = h(f ||a||ve)(mod n).

3.2 Time Limits

As e-coins are spent the Issuer’s database of spent Blanks will become unwieldy.
Placing a time limit on the validity of a Token means that spent Blanks need
not be kept in the database after the expiration of the corresponding Token. An
expiry date in the fixed part of a Blank and in the certificate of a denomination’s
signature verification key may be used for this purpose.

3.3 Double Spending and Online Issuer

An issue with the basic scheme is that the User may behave dishonestly and try
to spend a Token more than once. The Issuer will discover this when recording
the corresponding Blank for a second time in its database of spent e-coins but
the Merchant on its own cannot check that a Token has not been spent before.
Thus the Issuer needs to be online to provide the Merchant with an assurance,
before the Merchant completes the transaction with the User, that the e-coin
he has been offered has not already been spent. On the other hand, since
the Merchant could take the Token given by the User as payment and spend
it elsewhere, the User may not want to provide the Token and wait, without
completing the transaction, while the Merchant obtains this assurance.
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In a modification of the Basic Scheme the User gives the Merchant the Blank
rather than the corresponding Token when offering payment. The Merchant
contacts the online Issuer to check whether the Blank appears on the database
of spent e-coins. If it does not then the Issuer places a lock on the Blank
so that only the enquiring Merchant may redeem the e-coin by presenting the
corresponding Token after completing the transaction with the User. When
the Merchant provides the goods in exchange for the Token a verification of
the signature will check that it corresponds to the Blank that has been locked.
Such a lock should have a time limit (or other mechanism) to enable the User
to redeem the Token should the Merchant not complete the transaction.

3.4 Tracing Double Spending

An alternative to having the Issuer online to prevent double spending is to have
a means of tracing Users who double spend and to take action against them.
This requires that the User’s identity is encoded in the Blank in such a way
that is only revealed if the User double spends. Chaum et al. [7] were the
first to describe a scheme that achieves this. Their scheme uses the cut-and-
chose method. Here, the User generates many blinded Candidate Blanks and
is challenged by the Issuer to reveal information about half of them. A correct
response provides the Issuer with an assurance that the User’s identity has been
encoded in the Candidate Blanks and the Issuer signs the other half of them
collectively. When the User gives the Merchant the token the Merchant also
challenges the User to reveal information about the Candidate Blanks. A correct
response provides an assurance to the Merchant that the Token is valid. Should
the User double spend a Token then, with high probability, all the responses
given to the Merchants provide the Issuer with the means to identify the User.

Unfortunately the scheme of [7] is complex and computationally intensive.
Moreover there are issues relating to the need to trust the Issuer in policing
double spending. However, it points the way forward to more modern schemes
that offer off-line double spending detection at lower cost. All of these schemes
require users in the system to have their own public keys, and hence for these
keys to be authenticated using some form of PKI.

3.5 Partially Blind Signatures

An alternative to the use of the key management technique of Section 3.2 to
enable the signing of different denominations and the imposing of time limits is
the use of partially blind signatures. In a partially blinded signature scheme the
User and Issuer agree on some common information a (such as the denomination
or an expiry date) which becomes part of the signature and is a required input to
a verification of the signature. Abe and Fujisaki [1] have proposed such a scheme.
Chien et al. [10] have proposed a less computationally intensive scheme but it
is vulnerable to the one-more-forgery attack. Cao et al. [5] propose another low
complexity partially blind signature scheme. Their technique is to use a to mask
the signing key d. Thus they have distinct but related signing keys for distinct
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denominations (or other common information a). In particlar, given a master
key d, they propose signing keys of the form τ(a)d for some coding function
τ with input the common information a. The common information a becomes
part of the signature.

4 OpenCoin Requirements

The document https://trac.opencoin.org/trac/opencoin/browser/trunk/
standards/requirements.txt lists the following as the OpenCoin project’s
current and future requirements:

• The system shall be resistant to compromising, i.e.

– Tokens cannot be falsified without having the minting keys
– ‘Anonymity’: issuer should not be able to correlate a minted blind

to a redeemed token.
– Everybody should be able to verify if a token is valid (signed by the

issuer’s mint, fulfills the token format specs of the issuer, not expired,
not spent yet, ...)

– no double spending possible. There shall be not race condition or
other trick to circumvent the double spending check.

• Strength against denial of service

– How to distribute the DSDB (double spending database)
– How to prevent a malicious receiver from locking a token forever

making it unredeemable for its owner?
– How to minimize impact of temporarily unavailable issuer services

(coin expiration!)

• Future directions

– Are there protocols/algorithms besides Chaum which are more suited?
– Receipts: How could mutual receipts (“i hereby certify that I sent/received

10 opencents from Alice/to Bob”) come into play? Can the protocol
be designed in a way such receipts are mandatory? I.e. the issuer can
detect if receipts where exchanged and refuses redemption otherwise.

– Offline tokens: There are ways to debunk double spenders. How do
they work? Is it feasible to implement them?

– Transferable tokens (what’s the correct term?): with Chaum’s proto-
col, every receiver should redeem (or exchange) tokens immediately.
How to make tokens ‘multi-hop’ capable?

– Conditional anonymity: The issuer can detect if blinded tokens are
blinded such that a trusted third party (e.g. law enforcement agen-
cies) could unblind them and refuses minting otherwise.

In the next subsections, we comment on each of these requirements in turn.
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4.1 The system shall be resistant to compromising

Issues under this topic are standard for e-cash schemes and are certainly attain-
able by Chaum’s on-line scheme as implemented in OpenCoin. The detection of
double spending is dependent on maintaining an on-line double spending data-
base (DSDB), and this raises concerns about how quickly merchants are able
to deposit coins, compared to how quickly users can try to double spend them.
(Note that there is no double-spending detection in the basic Chaum scheme –
the coins are truly anonymous, and cannot be opened if double spent, unlike
more advanced, off-line schemes.) The OpenCoin team is aware of this issue and
has been exploring the available trade-offs between detecting cheating spenders
and detecting cheating merchants. At the root of this is the fair-exchange prob-
lem.

4.2 Strength against denial of service

Issues here are largely to do with availability and resistance to Denial of Service
(DoS) attacks.

The DSDB can be distributed using (presumably) standard techniques in
distributed/high availability database design. Having DoS-resistance for the
coin redemption and double spending detection steps is crucial, since an attacker
who can mount a DoS against these services may be able to spend coins multiple
times during the course of a DoS attack without being detected.

It is also worth examining the extent to which the specific cryptographic
components are vulnerable to DoS, based, for example, on exhaustion of com-
putational resources. To take one example, the coin issuing protocol requires
the mint to carry out a non-trivial cryptographic computation (signing of a
blinded coin). However, in the basic protocol, the client requesting a coin need
not carry out any computations at all in order to create seemingly valid coin
issuing requests: since the submissions are blinded, he can simply submit ran-
dom strings of the correct size to the mint. This kind of attack can be defended
against via an economic disincentive if every run of the minting protocol results
in an amount to be debited from the requesting user’s account.

The mint (Issuer) is required to sign all e-coins that are minted (and to verify
all e-coins when they are spent). This may place a serious burden on the mint
even under normal operating conditions. Moreover, a sustained DoS against the
minting interface to the mint would prevent new coins being issued. Since coins
can only be spent once, the system would eventually grind to a halt once all
issued coins were spent. One counter-measure to this threat is to set up multiple
servers capable of minting. But the mint’s private key is involved in every coin
issuing process, and it is a security-critical component, since its compromise
would allow an attacker to create arbitrary value in the system without users’
accounts being debited. It is therefore advisable to limit the distribution of the
mint’s private key as much as possible. This is in contradiction to the desire to
distribute the coin minting capability.

It may therefore be advisable to use threshold cryptographic techniques in
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this situation. Here, the private key of the mint is split into pieces and dis-
tributed to sub-mints. This can be done in such a way that any threshold k
of sub-mints can, working together, create a (blinded) signature that, when
unblinded, verifies under the mint’s usual public verification key. However, no
group of size smaller than the threshold k can create signatures, thus protecting
against any number of sub-mints being compromised up to that threshold value.
The blind RSA scheme of Chaum supports this kind of threshold signing in a
fairly natural way; details follow.

In a k-out-of-l Threshold Signature scheme the ability to create signatures
under a private key d is distributed to a group of l signers such that any k of
them can produce a signature in cooperation but no fewer than k can do so.
In such a scheme the signing key d determines l shares d1, . . . , dl and these are
distributed in secret to the l signers P1, . . . , Pl respectively. These shares will
have the property that the signatures on a message m under any k of them may
be combined to provide the signature on the message m under the key d.

Shoup [14] presents a threshold signature scheme for RSA in the case where
n = pq is a product of primes p, q with p′ = p−1

2 , q′ = q−1
2 also primes (each of p,

q is a so-called strong prime). Shoup gives a security proof in a security model
under well studied assumptions. In Shoup’s scheme calculations are performed
modulo n′ = p′q′, the order of the subgroup. The signing key d is shared by an
adaptation of the usual method of choosing a random polynomial g modulo n′

of degree k − 1 with d = g(0). Signers P1, . . . , Pl are given shares g(1), . . . , g(l)
respectively. Since d can be written as a suitable linear combination of any k
of g(1), . . . , g(l), a normal RSA signature md may be calculated as a product
of suitable powers of any k of the partial signatures mg(1), . . . ,mg(l). That
such partial signatures have been calculated honestly may be checked by an
adaptation of the Chaum-Pederson [8] proof of equality of discrete logarithms.

So far we have described (at a high level) Shoup’s threshold RSA signature
scheme. Shoup’s paper [14] contains two distinct variant schemes. It is quite
straightforward to extend these schemes to support blinding, resulting in thresh-
old blind signature schemes. (In fact, Shoup’s second scheme already involves a
blinding factor one half of the time.) The threshold value k could be set to 1,
in which case any single sub-mint can create valid signatures, and the private
key shares g(i) are simply copies of the original private key. Higher threshold
values require more sub-mints to be involved – this increases the security of the
private key, but requires more (total) computation and communication.

One very nice feature of the Shoup-style threshold blind RSA scheme is
that no interaction between sub-mints is required to create signature compo-
nents; the user can interact separately and directly with the different sub-mints
and combine the signature components that he receives for himself. However
randomized blinded signatures would require the sub-mints to agree upon the
randomizing value x.

Xu and Chen [15] propose another method of threshold RSA signatures but
do not provide a security proof. Instead of working in the group of squares
modulo n they work in Zw for some prime w > n. Lagrange interpolation is
used to express d as a sum of shares modulo w. To obtain the signature as a

7



product of partial signatures modulo n a correction factor of a suitable power
of an additional ’share’ mr(mod n) is required. This is done by an exhaustive
search of k possibilities using public information about a reference signature of
a fixed Blank m0. Again a randomized signature would require the Signers to
agree upon the value x.

There is a good deal of further literature on blind threshold signatures,
particularly for the discrete-log (rather than the RSA) setting. Interpreting this
literature would require extensive project time. One immediate point, already
made by Shoup in [14], is that discrete-log schemes tend to require interaction
between the threshold signers, whereas the RSA-based scheme does not. In any
case, using a discrete-log based scheme seems unnecessary given the availability
of a simple and secure blind variant of Shoup’s threshold RSA signature scheme.

4.3 Future directions

4.3.1 Are there protocols/algorithms besides Chaum which are more
suited?

This depends on the exact requirements. Chaum’s scheme is on-line, whereas
“modern” schemes are off-line and offer stronger double spending detection and
traceability guarantees. However, these latter schemes require the users to have
public keys and register them as part of a PKI. Such schemes may also require
significant additional implementation effort, since they are based on more ad-
vanced computational primitives than the simple RSA-style arithmetic used in
Chaum’s scheme.

4.3.2 Receipts

This is rather easily done if one assumes a PKI is deployed to support the system.
A digital signature can then be used by a merchant to create a receipt for any
coins received from a spender. The phrase “the issuer can detect if receipts were
exchanged and refuses redemption otherwise” in the stated requirement seems
to suggest that the mint can link the receipt to a coin received from a merchant,
but also link the receipt to a particular spender and/or merchant. This then
seems to sit in contradiction to the anonymity requirement that the mint not
be able to tell who spent which coins and on what. At the minimum, the
messages being signed would need to be carefully constructed, avoiding signing
the spender’s identity, for example. It would be important before proceeding to
explore further why this feature might be required at all – the security properties
required of an e-cash scheme imply that such receipts are not needed anyway in
order to ensure smooth operation of the scheme.

4.3.3 Offline tokens

Double-spending is inherent in any e-cash scheme, since coins are just bits and
are trivial to copy. So some form of double-spending detection must be imple-
mented to deter malfeasors in any scheme. Then the feasibility of any e-cash
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scheme depends on the ease with which double spending can be detected, and
the degree of traceability which results from successful detection. The basic
split in classification for e-cash schemes is between on-line and off-line schemes.
OpenCoin has implemented an on-line scheme, in the original spirit of Chaum’s
proposal. Off-line schemes are certainly feasible, and there are many to choose
from, but implementing one would require significant re-engineering of the cur-
rent on-line implementation. It would also seem to require strong user identities
and PKI for users.

4.3.4 Transferable tokens

The idea here would seem to be that, once a coin is received by party B from
party A, it can be passed on as payment for another service by B (to C, say).
The problem with this approach in standard (off-line) e-cash is that nothing
can prevent B spending the coin multiple times and through this framing A as
a double spender. In an on-line scheme, it is in B’s interests to redeem the coin
from A with reasonable haste, to prevent A from double spending the coin in an
undetectable way (nothing prevents A from doing this even after the coin has
been transferred to B). Most current e-cash schemes do not support this kind
of transferability property. However, some research has been done into schemes
offering transferability. We could certainly study this literature more closely if
the project has a follow-on phase. One paper of relevance is [13].

A simple method trading transferability for anonymity would be for A simply
to provide a signature of transfer of ownership of the coin for B. B can lodge
this signature with the bank, to prevent A from double spending the coin. This
receipt of transfer need not identify the recipient of the coin, only that the
coin has been transferred by A to someone. Potentially, A can also lodge a
corresponding receipt of transfer from B at the bank, to prevent B framing A
as a double spender; however, this only seems important in an off-line scheme.
This approach would require the bank to be online (whether the starting e-cash
scheme was on-line or not) and would potentially compromise the anonymity of
the scheme. It would also require the users to have signing keys and therefore
a user PKI.

It may be possible to use optimistic fair exchange techniques together with
an offline Trusted Third Party to preserve anonymity (except in the event of
dispute) for coin transfers of this type. This would require further design work
and security analysis. Similar ideas seem to arise in the recent paper [3] – the
connection may be worth investigating more closely.

4.3.5 Conditional anonymity

This might be enabled using an additional TTP (representing the law enforce-
ment agency) and verifiable encryption techniques. Essentially, when the user
blinds a coin, he provides to the mint along with the blinded coin a verifiably
encrypted version of the coin’s serial number, using the TTP’s public key to
perform the encryption. The verifiable nature of the encryption would allow
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the issuing bank to be sure that the user has properly encrypted the serial num-
ber, but without revealing that serial number (otherwise anonymity is broken).
What we need in order to achieve this is a cryptographic proof that the string
that has been encrypted is the same as the serial number of the coin that has
been blinded. This proof will be scheme-specific and could be difficult to con-
struct. It may be even better from a non-repudiation perspective if the user
verifiably encrypts a signature of the serial number. But this could make the
proof of correctness even more complicated.

An alternative would be to provide a verifiable encryption of the blinding
factor itself – again, any such proof would be scheme-specific and it would likely
require careful research to obtain a working scheme. It should also be noted that
this facility (of course) runs counter to the desire of having fully anonymous e-
cash.
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