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Abstract

Numerous cryptographic applications require a trusted authority to hold a secret. With
a plethora of malicious attacks over the Internet, however, it is difficult to establish and
maintain such an authority in online systems. Secret-sharing schemes attempt to solve
this problem by distributing the required trust to hold and use the secret over multiple
servers; however, they still require a trusted dealer to choose and share the secret, and have
problems related to single points of failure and key escrow. A distributed key generation
(DKG) scheme overcomes these hurdles by removing the requirement of a dealer in secret
sharing. A (threshold) DKG scheme achieves this using a complete distribution of the
trust among a number of servers such that any subset of servers of size greater than
a given threshold can reveal or use the shared secret, while any smaller subset cannot.
In this thesis, we make contributions to DKG in the computational security setting and
describe three applications of it.

We first define a constant-size commitment scheme for univariate polynomials over
finite fields and use it to reduce the size of broadcasts required for DKG protocols in the
synchronous communication model by a linear factor. Further, we observe that the existing
(synchronous) DKG protocols do not provide a liveness guarantee over the Internet and
design the first DKG protocol for use over the Internet. Observing the necessity of long-
term stability, we then present proactive security and group modification protocols for our
DKG system. We also demonstrate the practicality of our DKG protocol over the Internet
by testing our implementation over PlanetLab.

For the applications, we use our DKG protocol to define IND-ID-CCA secure dis-
tributed private-key generators (PKGs) for three important identity-based encryption
(IBE) schemes: Boneh and Franklin’s BF-IBE, Sakai and Kasahara’s SK-IBE, and Boneh
and Boyen’s BB1-IBE. These IBE schemes cover all three important IBE frameworks: full-
domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs respectively,
and our distributed PKG constructions can easily be modified for other IBE schemes in
these frameworks. As the second application, we use our distributed PKG for BF-IBE
to define an onion routing circuit construction mechanism in the identity-based setting,
which solves the scalability problem in single-pass onion routing circuit construction with-
out hampering forward secrecy. As the final application, we use our DKG implementation
to design a threshold signature architecture for quorum-based distributed hash tables and
use it to define two robust communication protocols in these peer-to-peer systems.
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Chapter 1

Introduction

Malicious behaviour was never so prevalent over the Internet. The abundance of valuable
online information about individuals, organizations and governments has made attacks on
the Internet-based services a very successful venture for organized crime, terrorist outfits
and even government agencies. With their existing scale and substantial economic ad-
vantages, there is no perceivable end to these malicious activities over the Internet. As a
result, it is difficult to establish and maintain a trusted authority over the Internet, which
is indispensable for many Internet-based cryptographic applications. A naive approach can
be to replicate the information (or the computation) to multiple servers so that a failure at
a few servers does not shut down the corresponding service. However, this is not suitable
against a malicious attack where an adversary obtains or modifies the secret information
by compromising any one of these replicated servers.

Threshold cryptography [DF89] solves this problem by fault-tolerantly distributing the
information among a group of cooperating servers under the reasonable assumptions that
the majority of servers in the group remains trustworthy. The concept of secret shar-
ing [Bla79, Sha79] forms the basis of threshold cryptography. It allows a dealer to dis-
tribute a piece of secret information among a group of servers such that no subset of
corrupt servers (smaller than or equal to a given threshold) can figure out what the secret
is, even if they cooperate; moreover, when it becomes necessary to reconstruct the secret
information, a number of servers larger than the above threshold can always do it. In
threshold cryptography, secret sharing is used to define function sharing such that a highly
sensitive cryptographic operation (e.g., decryption or signing) is performed by a group of
cooperating servers. Here, any subset of servers of size at most the threshold is unable
to either perform the operation by themselves or prevent the other honest servers from
performing the operation.
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In secret sharing, a dealer knows the secret it shares. It has to be therefore trusted
not to crash until the completion of a secret sharing instance is guaranteed, and to erase
or at least not to divulge the secret before it is reconstructed. In many cryptosystems, we
require complete distribution of the trust and no party (not even a dealer) should be in the
sole possession of the secret. The concept of distributed key generation (DKG) [Ped91b]
satisfies this requirement. In a DKG protocol, a shared secret is collectively generated in a
group in a completely distributed way such that any subset of size greater than a threshold
can reveal or use the shared secret, while smaller subsets do not have any knowledge about
it. Importantly, there is no dealer; each node in the group runs an instance of a secret
sharing scheme and computes its final share by adding the shares it received from the
successful secret sharing instances.

The concept of DKG has numerous applications in cryptography. In symmetric-key
cryptography, DKG is used to design distributed key distribution centres [NPR99]. Here,
a group of servers jointly realize the function of a key distribution centre, which generates
and provides encryption keys for secure conferences to clients. In public-key cryptogra-
phy (PKC), DKG is essential for dealerless threshold public-key decryption and signature
schemes [DF89] and for distributed private-key generation in identity-based cryptography
(IBC) [BF01]. In a threshold decryption scheme, a private key is distributed among a group
such that, given a ciphertext, more than a threshold number of them have to combine their
decrypted shares to find the plaintext message. On the other hand, in a threshold signa-
ture scheme, the signing key is distributed among a group such that more than a threshold
number of them have to combine their partial signatures to sign a message. In distributed
key distribution centres, threshold decryption and signature schemes, DKG tackles the
problem of single point of failure. In IBC, it also mitigates the key escrow issue, when it is
impractical to trust and rely on a single entity, the private-key generator (PKG), to gener-
ate and distribute private keys to IBC clients. A distributed PKG becomes necessary when
IBC is used in practical systems—outside the usual organizational settings—such as key
distribution in ad-hoc networks [KKA03] or pairing-based onion routing [KZG07]. DKG
is also an important primitive in distributed pseudo-random functions [NPR99], which are
useful in distributed coin tossing algorithms [CKS00] and random oracles [Nie02].

Although various theoretical aspects of DKG have been thoroughly researched for the
last two decades, the systems aspects have been largely ignored. Existing DKG protocols
rely on assumptions like synchronous communication (bounded communication delay, with
known bounds) or ask for a reliable broadcast channel. As these prerequisites are not
readily available over the Internet, the existing DKG protocols are not suitable for the
Internet-based applications and there is no DKG available or used in practice yet.

This thesis designs and implements a practical DKG protocol for use over the
Internet and describes its application in IBC, onion routing circuit construction
and robust communication in peer-to-peer systems.
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1.1 Contributions

In this section, we present an informal description of our contributions, which are thor-
oughly discussed in the rest of the thesis. Our contributions fall into two main categories.

The first category consists of our work on the core concept of (polynomial-based) secret
sharing and DKG protocols. We define a constant-size commitment scheme for univariate
polynomials over finite fields and utilize it to reduce the communication cost for the secret
sharing and DKG protocols. We then present the first DKG protocol for use over the
Internet and test its implementation over the PlanetLab platform. Observing the necessity
of long-term stability, we also consider proactive security and group modification primitives
for our DKG protocol.

The second category explores applications of DKG in the discrete logarithm (DLog)
setting. We observe the necessity of distributing PKG for any Internet-scale application of
IBC and define distributed PKGs for all three important identity-based encryption (IBE)
frameworks. We then use one of the above distributed PKGs to define an onion routing
circuit construction protocol in the identity-based setting, which simultaneously solves the
efficiency and scalability problems in onion routing circuit construction. Finally, we utilize
a threshold signature scheme with our DKG protocol to define two robust communication
protocols for peer-to-peer systems based on distributed hash tables (DHTs) secure against
a malicious (Byzantine) adversary.

Constant-Size Commitments To Polynomials. All known verifiable secret sharing
(VSS) schemes [CGMA85] use commitments that are at least linear in the group size; they
use commitments to the polynomial coefficients or the evaluations to commit to the shared
polynomial. This results in a linear-size broadcast for the VSS protocols in the synchronous
communication setting.

In Chapter 3, we introduce and formally define the concept of polynomial commit-
ment schemes, and provide an efficient construction PolyCommit for univariate polyno-
mials [KZG10]. A polynomial commitment scheme allows a committer to commit to a
polynomial with a short string such that she can later open the commitment to evalua-
tions of the committed polynomial. A verifier can verify the correctness of these openings
(evaluations) with respect to the committed polynomial. Although the homomorphic com-
mitment schemes in the literature can be used to achieve this goal, as we discuss above,
the sizes of their commitments are linear in the degree of the committed polynomial. In
contrast, a polynomial commitment in our PolyCommit scheme is a single element (con-
stant size). Furthermore, the overhead of opening a commitment is also constant; even
opening multiple evaluations requires only a constant amount of communication overhead.
Therefore, PolyCommit is a useful tool to reduce the communication cost in cryptographic
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protocols. In the context of this thesis, we apply our constant-size PolyCommit scheme to
the Feldman VSS scheme [Fel87] to reduce its broadcast size from a linear-size vector to
a single element. Finally, we convert the new VSS (eVSS) scheme to the joint-Feldman
DKG (JF-DKG) protocol [GJKR07] in the synchronous setting using a non-interactive zero
knowledge proof technique to generate its efficient version eJF-DKG.

Distributed Key Generation (DKG). DKG has never been examined outside of the
synchronous setting. In Chapter 4, we present the first realistic DKG implementation for
use over the Internet [KG09, KG10a]. We propose a practical hybrid system model that
combines the malicious (Byzantine) adversary with crash recovery and network failures
in the asynchronous communication setting (no bounds over the communication delays),
and discuss its applicability over the Internet. We modify the AVSS protocol [CKAS02]
to work in our hybrid system model, which results in our HybridVSS scheme. We observe
the necessity of Byzantine agreement [LSP82] in an asynchronous DKG protocol to agree
on the set of VSS instances to be included in DKG and analyze the difficulty of using a
randomized Byzantine agreement for it. Using our VSS scheme in the hybrid model and
a leader-based agreement protocol, we then design a provably secure DKG (HybridDKG)
protocol for use over the Internet. To establish the efficiency and the reliability of Hybrid-
DKG, we develop a C++ implementation, and analyze our protocol implementation on the
PlanetLab platform [PACR03].

For long-lived distributed secrets the above threshold-based protection is not sufficient.
In Chapter 5, we describe a proactive share renewal primitive for HybridDKG such that
shares are periodically renewed (without changing the secret) in a way that information
gained by the adversary in a time period is useless for attacking the secret, once the shares
are renewed. We also define a share recovery protocol for a node that recovers from a
crash. Along with these traditional proactive security measures we observe the importance
of group modification primitives in our DKG protocol and define protocols to add/remove
nodes and modify the threshold values.

Our HybridDKG protocol uses DLog commitments and consequently does not guarantee
uniform randomness of the shared secret key [GJKR07]. However, we observe that in
the random oracle model, using non-interactive zero-knowledge proofs of knowledge based
on the Fiat-Shamir methodology [FS86], it is possible to achieve uniform randomness in
HybridDKG. In this scheme, the DLog commitments are initially replaced by Pedersen
commitments [Ped91b]; the DLog commitments are introduced only at the end of the
protocol to obtain the required public key. The zero-knowledge proofs are used to show
that the DLog and Pedersen commitments both commit to the same values.

Note that our PolyCommit scheme does not seem to work with the bivariate polynomials
that are used in all VSS and DKG schemes in the asynchronous setting. Therefore, we are
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not able to use the efficient PolyCommit commitment scheme in our HybridVSS and Hybrid-
DKG schemes, and they have a linear communication gap between the message (number
of messages transferred) complexity and bit (number of bits transferred) complexity.

Distributed Private Key Generators (Distributed PKGs). An identity-based en-
cryption (IBE) scheme can greatly reduce the complexity of sending encrypted messages
over the Internet. However, an IBE scheme necessarily requires a PKG, which can create
private keys for clients and so can passively eavesdrop on all encrypted communications.
Although a distributed PKG has been suggested as a way to mitigate this key escrow
problem for Boneh and Franklin’s IBE scheme, the security of this distributed protocol has
not been proven and the proposed solution does not work over the asynchronous Internet.
Further, a distributed PKG has not been considered for any other IBE scheme.

As the first application of our DKG protocols, in Chapter 6, we design distributed PKG
setup and private key extraction protocols for three important IBE schemes: Boneh and
Franklin’s BF-IBE [BF01], Sakai and Kasahara’s SK-IBE [SK03], and Boneh and Boyen’s
BB1-IBE [Boy08, BM07]. We give special attention to the applicability of our protocols to
all possible types of bilinear pairings defined by Galbraith et al. [GPS08], and prove their
adaptive chosen ciphertext security (IND-ID-CCA) in the random oracle model against
a Byzantine adversary. We also perform a comparative analysis of these protocols and
present recommendations for their use.

Note that our three schemes cover all three important IBE frameworks: full-domain-
hash IBEs, exponent-inversion IBEs, and commutative-blinding IBEs as defined by Boyen
[Boy08]. Futhermore, as they can be easily converted to the other schemes in their frame-
work category, our work proposes distributed PKGs for all practical IBE schemes.

Pairing-Based Onion Routing. Over the last few years onion routing networks have
emerged as the most successful solutions for anonymous web browsing. The most popular
existing onion routing network, Tor, is still far from optimal with its circuit construction
delays and scalability issues.

As the second application of our DKG protocols, in Chapter 7, we use the above
distributed PKG for BF-IBE to define new circuit construction protocols for onion rout-
ing anonymity networks [KZG07, KZG09]. We define a provably secure anonymous key
agreement scheme in the BF-IBE setting, and use it to design new onion routing circuit
constructions (PB-OR and λ-pass PB-OR). These constructions, based on a user’s selec-
tion, offer immediate or eventual forward secrecy at each node in a circuit and require
significantly less computation and communication than the telescoping mechanism used
by Tor [DMS04]. Further, the use of an identity-based infrastructure also leads to a re-
duction in the required amount of authenticated directory information. Therefore, our
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constructions provide practical ways to allow onion routing anonymity networks to scale
gracefully.

We also present compact message formats for onion routing circuit construction [KG10b]
using the Sphinx methodology [DG09] developed for mixes. With this, we significantly
compress the circuit construction messages for the above PB-OR protocol. Our new cir-
cuit construction is also secure in the universal composability (UC) framework [Can01],
a property that was missing from the original construction. Futhermore, we compare the
message size and the efficiency of the new Sphinx-based scheme with the original PB-OR
scheme and observe that the Sphinx-based construction achieves a significant reduction in
the circuit construction message lengths.

Robust DHT. Several analytical results exist on distributed hash tables (DHTs) which
can tolerate Byzantine faults. Unfortunately, these results incur significant communication
cost in order to achieve message routing. For instance, for a DHT system of η nodes, a
naive routing scheme that has been used previously has O(log3 η) message complexity,
which, in general, is impractical for real-world applications. The previously best known
protocol achieves an expected O(log2 η) messages [SY08]. However, the protocol suffers
from large hidden constants and setup costs [YKGK10].

In Chapter 9, using the concept of threshold digital signatures over our HybridDKG
scheme, we obtain two robust communication protocols. Both of these protocols asymp-
totically improve the communication costs of previous solutions against a computationally
bounded Byzantine adversary [YKGK10]. In comparison, our first protocol is determinis-
tic and achieves O(log2 η) message complexity, and our second protocol is randomized and
achieves O(log η) message complexity in expectation. The hidden constants and setup costs
for our protocols are small, and no trusted third party is required. In the end, we present
results from microbenchmarks conducted over the PlanetLab platform, which show that
our protocols are practical for deployment under significant levels of churn and adversarial
behaviour.

1.2 Organization

In the next chapter (Chapter 2), we provide the necessary background information for the
topics discussed in the thesis. The rest of the thesis is divided into three parts: distributed
key generation, its cryptographic applications, and its implementation and corresponding
system-level application to DHTs.

In Part I, we present our work on VSS and DKG protocols. Chapter 3 describes
our constant-size PolyCommit commitment scheme for univariate polynomials over finite
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fields and uses it to define the efficient eVSS and eJF-DKG schemes having a constant-size
broadcast per VSS instance. In Chapter 4, we propose and prove our HybridDKG scheme
to solve the problem of distributed key generation in the DLog setting for use over the
Internet. We present proactive security and group modification protocols for HybridDKG
in Chapter 5.

In Part II, we discuss the cryptographic applications of DKG. In Chapter 6, we design
distributed PKG protocols for all three important IBE frameworks: full-domain-hash IBEs,
exponent-inversion IBEs and commutative-blinding IBEs, and also perform a comparative
study among them. In Chapter 7, we use one of the designed distributed PKGs to con-
struct onion routing circuits in the identity-based setting and include two extensions: a
multi-pass construction achieving better forward secrecy and a compact UC-secure circuit
construction.

In Part III, we concentrate on the implementation aspects of HybridDKG. In Chapter 8,
we describe the design and implementation of our HybridDKG protocol, and discuss and
test the system-level optimizations that we apply. We also include a detailed account on
our experiments over the PlanetLab platform. In Chapter 9, we use our implementation to
realize two practical robust communication protocols for DHTs against a computationally
bounded Byzantine adversary. Finally, in Chapter 10 we conclude the thesis and present
some possible future work.
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Chapter 2

Background

In this chapter, we prepare the background for the rest of the thesis. In Section 2.1,
we define our notation. Section 2.2 and Section 2.3 describe the concepts of verifiable
secret sharing and distributed key generation, respectively. In Section 2.4, we define the
cryptographic assumptions that we use throughout this thesis; assumptions specific to
particular topics are included in their respective chapters. In Section 2.5, we describe the
concept of bilinear pairings. In the end, we overview homomorphic commitment schemes
(Section 2.6) and the non-interactive zero-knowledge proofs in the random oracle model
(Section 2.7) that we frequently use in the thesis. An approach here is to provide an
overview of the above concepts rather than to discuss them thoroughly; thus, readers
seasoned in these topics can skip this chapter for now, and as required, refer to its sections
with the backward references provided.

2.1 Notation

We work in the computational security setting, where κ denotes the security level of the
system, in bits. That is, our probabilistic polynomial time (PPT) adversary algorithm A
has to perform 2κ computations to break the security of a cryptosystem. G represents
a multiplicative group of prime order p. The size of the prime p depends upon κ; it is
chosen to achieve κ bits security under the computational hardness assumption of the
system and changes with the assumption used. g and h denote elements of G. In some
cryptosystems, we need two additional groups of the same order p as G; we represent
them as Ĝ and GT . All these groups are represented in a multiplicative form. In the
cryptographic practice, multiplicative subgroups of finite fields [MOV97, Chapter 3] and
elliptic curve groups defined over finite fields [HMV04] are the two sources most commonly
used to generate these prime-order groups.
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Definition 2.1. Negligible Function. A function ε(·) : N → R+ is called negligible if
for all c > 0 there exists a κ0 such that ε(κ) < 1/κc for all κ > κ0.

In the remainder of the thesis, ε(·) will always denote a negligible function.

In our distributed settings, the adversary is always bounded to be able to corrupt or
control a threshold number of nodes in a group; we use t to denote this threshold. n
always represents the total number of nodes in the group and f represents the number of
crashes and link failures. We use letters P , Q and U to denote individual nodes (peers)
in the group, while Q and Q are used denote (sub)sets of the nodes. s and z are used to
denote secrets in the system, φ and ψ represent the polynomials over Fp, and H denotes
a cryptographic hash function. In our security proofs, h is used for hash values, and in
context does not conflict with the use of h as an element of G. Finally, T represents the
time since a protocol instance is started.

2.2 Verifiable Secret Sharing (VSS)

The notion of secret sharing was introduced independently by Shamir [Sha79] and Blakley
[Bla79] in 1979. Since then, it has remained an important topic in cryptographic research.

Definition 2.2. (n, t+δ, t)-Secret Sharing. For integers n, t and δ such that n ≥ t+δ >
t ≥ 0, an (n, t+ δ, t)-secret sharing scheme is a protocol used by a dealer to share a secret s
among a set of n nodes in such a way that any subset of t+ δ or more nodes can compute
the secret s, but subsets of size t or fewer cannot.

A secret sharing scheme with δ = 1 is called a threshold secret sharing scheme, and for
δ > 1, it is called a ramp secret sharing scheme. In this work, we concentrate on threshold
secret sharing and denote it as (n, t)-secret sharing instead of (n, t + 1, t)-secret sharing.
Note that all polynomial-based threshold secret sharing schemes can easily be converted
to ramp secret sharing schemes [Sti05].

In secret sharing, nodes may need a procedure to verify the correctness of the dealt
values in order to prevent malicious behaviour by the dealer. To solve this problem, Chor
et al. [CGMA85] introduced verifiability in secret sharing, which led to the concept of
verifiable secret sharing (VSS).

Definition 2.3. (n, t)-Verifiable Secret Sharing (VSS). An (n, t)-VSS scheme consists
of two phases: the sharing (Sh) phase and the reconstruction (Rec) phase.

Sh phase. A dealer Pd distributes a secret s ∈ K among n nodes, where K is a sufficiently
large key space. At the end of the Sh phase, each honest node Pi holds a share si of
the distributed secret s.

10



Rec phase. In this phase, each node Pi broadcasts its secret share s′i and a reconstruction
function is applied in order to compute the secret s = Rec(s′1, s

′
2, . . . , s

′
n) or output ⊥

indicating that Pd is malicious. For honest nodes s′i = si, while for malicious nodes
s′i may be different from si or even absent.

It has two security requirements: Secrecy and Correctness.

Secrecy (VSS-wS). A t-limited adversary who can compromise t nodes cannot compute
s during the Sh phase.

Correctness (VSS-C). The reconstructed value z should be equal to the shared secret s
or every honest node concludes that the dealer is malicious by outputing ⊥.

In the thesis, we consider VSS schemes in the computational complexity setting. Here,
any malicious behaviour by Pd is caught by the honest nodes in the Sh phase itself and the
VSS-C property simplifies to the following: the reconstructed value z should be equal to
the shared secret s.

Further, many VSS applications avoid participation by all parties during the Rec phase.
It is required that broadcasts from any t+1 honest nodes (or any 2t+1 nodes) is sufficient to
reconstruct s. Therefore, along with secrecy and correctness, we mandate the correctness
property that we refer as strong correctness requirement.

Strong Correctness (VSS-SC). The same unique value s is reconstructed regardless
of the subset of nodes (of size greater than 2t) chosen by the adversary in the Rec
algorithm.

Further, some VSS schemes achieve a stronger secrecy guarantee.

Strong Secrecy (VSS-S). The adversary who can compromise t nodes does not have
any more information about s except what is implied by the public parameters.

Finally, VSS has remained an important area of cryptographic research for the last
two decades [Fel87, DF89, Ped91a, Ped91b, HJKY95, CGJ+99, FMY99, GJKR99, JL00,
CKAS02, GJKR03, AF04, GJKR07]. In Chapters 3, 4 and 5, we make new contributions
to it, which have appeared in [KG09, KZG10].
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2.3 Distributed Key Generation (DKG)

Pedersen [Ped91b] introduced the concept of distributed key generation (DKG) and de-
veloped a DKG protocol, where each node runs a VSS instance and distributed shares
are added at the end to generate a combined shared secret without a dealer. Unlike VSS,
where a dealer chooses a secret and distributes its shares among the nodes, DKG requires
no trusted party.

Definition 2.4. (n, t)-Distributed Key Generation (DKG). An (n, t)-DKG scheme
consists of two phases: the sharing (Sh) phase and the reconstruction (Rec) phase.

Sh phase. Every node Pi distributes a secret zi ∈ K among n nodes, where K is a suffi-
ciently large additive cyclic group. At the end of the Sh phase, each honest node Pi
holds a share si of the distributed secret s, which is a pre-decided linear combination
of the shared zi values.

Rec phase. Each node Pi broadcasts its secret share s′i and a reconstruction function is
applied in order to compute the secret s = Rec(s′1, s

′
2, . . . , s

′
n). For honest nodes

s′i = si, while for malicious nodes s′i may be different from si or even absent.

As discussed in the introduction, DKG has numerous application in cryptography. In
the thesis, we concentrate on threshold cryptosystems in the DLog setting. In this setting,
having a cyclic group G of prime order p, a DKG protocol generates secret sharing of a secret
s ∈ Zp, and publishes Y = (g, gs) for g ∈R G as the corresponding public key. Gennaro et
al. [GJKR07, Section 4.1] suggested the following secrecy and correctness requirements for
an (n, t)-DKG protocol in the DLog setting:

Correctness (DKG-C).

1. There is an efficient algorithm that on input shares from 2t + 1 nodes and the
public information produced by the DKG protocol outputs the same unique
value s, even if up to t shares are submitted by malicious nodes.1

2. At the end of Sh phase, all honest nodes have the same value of the public key
Y = gs, where s is the unique secret guaranteed above.

3. s and Y are uniformly distributed in Zn and G, respectively.

Secrecy (DKG-S). No information about s can be learned by the adversary except for
what is implied by Y = gs.

1Note that this is the stronger version, which they define in the latter part of [GJKR07, Section 4.1].
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Gennaro et al. [GJKR99] found that DKGs based on the Feldman VSS methodology do
not guarantee uniform randomness of the shared secret key or DKG-S. Further, they ob-
served that the use of digital signatures or other slight modifications do not provide any
additional security to the Pedersen DKG [Ped91b] and presented a simplification using
just the original Feldman VSS called the Joint Feldman DKG (JF-DKG) as the represen-
tative scheme. They then defined a new DKG protocol combining discrete logarithm and
Pedersen commitments [Ped91b], which guarantees the uniform randomness property by
increasing the latency (number of communication rounds) of the DKG protocol by one.

In [GJKR03], the same set of authors observed that the Pedersen DKG and JF-DKG
produce hard instances of the DLog problem, which may be sufficient for the security of
some threshold cryptographic schemes. Although a reduction in their JF-DKG security
proof is not tight, as they discussed in [GJKR07], an elliptic-curve implementation of
JF-DKG with appropriately increased key sizes is still faster than the modification they
suggested in [GJKR99]. In this weaker version of DKG, the third correctness property is
absent and the secrecy requirement weakens to the following:

Weak Correctness (DKG-wC).

1. There is an efficient algorithm that on input shares from 2t + 1 nodes and the
public information produced by the DKG protocol outputs the same unique
value s, even if up to t shares are submitted by malicious nodes.

2. At the end of Sh phase, all honest nodes have the same value of public key
Y = gs, where s is the unique secret guaranteed above.

Weak Secrecy (DKG-wS). The adversary with t shares and the public key Y = gs

cannot compute the secret s.

Knowing this efficiency and secrecy tradeoff, we define two versions of our DKG con-
structions: an efficient DKG with weak correctness and weak secrecy, and a DKG with
uniform randomness of the shared secret and strong secrecy.

It is important to discuss the relationship between the various secrecy and correctness
notions that we present in the above two sections. For secrecy, VSS-wS and VSS-S are
equivalent to DKG-wS and DKG-S respectively. For correctness, VSS-SC is included in
both DKG-wS and DKG-S; the weaker VSS-C is a property common only in the uncondi-
tional VSS protocols.

Note that the above properties may require some cryptographic assumptions and gen-
erally have a negligible probability of error attached to them.
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2.4 Cryptographic Assumptions

All of our adversaries are PPT algorithms with respect to the security parameter κ. In
other words, they are computationally bounded by κ, and have to do 2κ computation to
break the security of any of the protocols except with a negligible probability.

Our protocols work in a distributed setting. Our adversaries are t-limited Byzantine
adversaries, who compromise up to t nodes in the system and make them behave arbitrarily.
Further they are rushing and can wait for the messages of the uncorrupted (honest) players
to be transmitted, then decide on their computations and communications, and still get
their messages delivered to the honest parties on time. They are also of a static nature
and have to choose their t compromisable nodes before a protocol run.

Our distributed cryptographic protocols in this thesis and most of the distributed cryp-
tographic protocols in the literature are not considered secure against an adaptive adversary
that may choose its t compromisable nodes as a protocol is getting executed. As elaborated
in [GJKR07, Section 4.4], this is only because their (simulation-based) security proofs do
not go through when the adversary can corrupt nodes adaptively. In [Fel87, Section 9.3],
Feldman claimed that his VSS protocol is also secure against adaptive adversaries even
though his simulation-based security proof did not work out. Canetti et al. [CGJ+99]
presented a distributed protocol methodology that is provably secure against adaptive ad-
versaries using interactive zero-knowledge proofs and a proof technique that may rewind
the adversary a polynomial number of times. However, their methodology in general adds
at least two more communication rounds to a protocol, which can severely deteriorate the
system performance. On the other hand, all of the protocols in the literature that are
proven secure only against a static adversary have remained unattacked by an adaptive
adversary for the last 22 years. Gaining some confidence from this fact and giving impor-
tance to efficiency, we stick to protocols provably secure only against a static adversary in
our work.

The discrete logarithm (DLog) assumption [MOV97, Sec. 3.6] is one of the fundamental
assumptions in PKC and we extensively use it in our work. It relies on the hardness of
computing an exponent a given two group elements g and ga in some group G.

Definition 2.5. Discrete Logarithm (DLog) Assumption. Given a generator g
of a multiplicative group G of prime order p and a ∈ Z∗p, for every adversary ADLog,
Pr[ADLog(g, g

a) = a] = ε(κ).

Diffie and Hellman [DH76] and most of the DLog systems afterwards used the following
assumption for their constructions, which is called the computational Diffie-Hellman (CDH)
assumption.
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Definition 2.6. Computational Diffie-Hellman (CDH) Assumption. Given a gen-
erator g of a multiplicative group G of prime order p and ga, gb ∈ G for unknown a, b ∈R Zp,
for every adversary ACDH, Pr[ACDH(g, ga, gb) = gab] = ε(κ).

Along with the CDH assumption, we use its decision version: decision Diffie-Hellman
(DDH) assumption [Bon98].

Definition 2.7. Decision Diffie-Hellman (DDH) Assumption. Given a generator g
of a multiplicative group G of prime order p and ga, gb, h ∈R G for unknown a, b ∈R Zp,
for every adversary ADDH, Pr[

(
ADDH(g, ga, gb, gab) = true

)
−
(
ADDH(g, ga, gb, h) = true

)
] =

ε(κ).

We also use another related assumption at multiple places. Mitsunari, Sakai and Kasa-
hara [MSK02] introduced the weak Diffie-Hellman assumption, which was renamed the
t-Diffie-Hellman Inversion (t-DHI) assumption by Boneh and Boyen [BB04a] as this as-
sumption is stronger than the above CDH assumption, especially for large values of t.2

Definition 2.8. t-Diffie-Hellman Inversion (t-DHI) Assumption. Let α ∈R Z∗p.
Given as input a (t+ 1)-tuple 〈g, gα, . . . , gαt〉 ∈ Gt+1, for every PPT algorithm At-DHI, the

probability Pr[At-DHI(g, g
α, . . . , gα

t
) = g

1
α ] = ε(κ).

It is easy to see that the above t-DHI assumption is equivalant to the assumption that
probability Pr[At-DHI(g, g

α, . . . , gα
t
) = gα

t+1
] = ε(κ) [BBG05]. See Cheon [Che06] for a

security analysis.

2.5 Bilinear Pairings

For three cyclic groups G, Ĝ, and GT of the same prime order p, a bilinear pairing e is a
map e : G× Ĝ→ GT with the following properties.

• Bilinearity: For g ∈ G, ĝ ∈ Ĝ and a, b ∈ Zp, e(g
a, ĝb) = e(g, ĝ)ab.

• Non-degeneracy: The map does not send all pairs in G× Ĝ to unity ∈ GT .

If there is an efficient algorithm to compute e(g, ĝ) for any g ∈ G and ĝ ∈ Ĝ, the pairing e
is called admissible. We also expect that it is not feasible to invert a pairing. All pairings
considered in our work are admissible and infeasible to invert. Such groups G and Ĝ are

2Note that we are using the symbol t instead of the generally used q for the DHI and similar assumptions
as the t in t-DHI is directly related to the threshold t in our distributed setting.

15



called pairing-friendly groups. We refer readers to [BSS05, Chap. IX and X] for a detailed
mathematical discussion of bilinear pairings.

Following a survey by Galbraith et al. [GPS08], there are three types of pairings for
prime order groups: namely, type 1, 2, and 3. In type 1 pairings, an isomorphism ϕ : Ĝ→ G
as well as its inverse ϕ−1 are efficiently computable. These are also called symmetric
pairings as for such pairings e(g, ĝ) = e(ϕ(ĝ), ϕ−1(g)) for any g ∈ G and ĝ ∈ Ĝ. In type 2
pairings, only the isomorphism ϕ, but not ϕ−1, is efficiently computable. Finally in type
3 pairings, neither of ϕ nor ϕ−1 can be efficiently computed. The efficiency of the pairing
computation improves from type 1 to type 2 to type 3 pairings. For a detailed discussion
of the performance aspects of pairings we refer the reader to [GPS08].

We consider the applicability of all three types of pairing while defining our proto-
cols. The major challenge is to accomodate the difficulty of hashing to Ĝ and unknown
isomorphism ϕ−1, in type 2 pairings. While in type 3 pairing, the major challenge is to
accomodate the inefficiency to compute both ϕ and ϕ−1.

In our protocols, we use the bilinear versions of the CDH and t-DHI assumptions.

Definition 2.9. Bilinear Diffie-Hellman (BDH) Assumption. Given a bilinear group
G = 〈e,G, Ĝ,GT 〉 where the order of all groups is a common prime p, generators g ∈ G,
ĝ ∈ Ĝ and gT = e(g, ĝ) ∈ GT , and a tuple 〈ga, ĝa, gb, ĝc〉 where a, b, c ∈R Zp, for every
adversary ABDH, Pr[ABDH(g, ĝ, gT , g

a, ĝa, gb, ĝc) = gabcT ] = ε(κ).

Definition 2.10. t-Bilinear Diffie-Hellman Inversion (t-BDHI) Assumption. Let
α ∈R Z∗p. Given a bilinear group G = 〈e,G, Ĝ,GT 〉 where the order of all groups is a

common prime p, generators g ∈ G, ĝ ∈ Ĝ and gT = e(g, ĝ) ∈ GT , and a (2t + 2)-
tuple 〈g, gα, . . . , gαt , ĝ, ĝα, . . . , ĝαt〉 ∈ Gt+1 × Ĝt+1, for every PPT algorithm At-BDHI, the

probability Pr[At-BDHI(g, g
α, . . . , gα

t
, ĝ, ĝα, . . . , ĝα

t
) = gT

1
α ] = ε(κ).

We also need the decision version of the BDH assumption, the DBDH assumption.

Definition 2.11. Decision Bilinear Diffie-Hellman (DBDH) Assumption. Given a
bilinear group G = 〈e,G, Ĝ,GT 〉 where the order of all groups is a common prime p, gener-
ators g ∈ G, ĝ ∈ Ĝ and gT = e(g, ĝ) ∈ GT , and a tuple 〈ga, ĝa, gb, ĝc, hT 〉 where hT ∈R GT

and a, b, c ∈R Zp, for every adversary ADBDH, Pr[
(
ADBDH(g, ĝ, gT , g

a, ĝa, gb, ĝc, gabcT ) = true
)

−
(
ADBDH(g, ĝ, gT , g

a, ĝa, gb, ĝc, hT ) = true
)
] = ε(κ).

2.6 Homomorphic Commitments

Commitment schemes are fundamental components of many cryptographic protocols. A
commitment scheme allows a committer to publish a value, called the commitment (say
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C), which binds her to a message m (binding) without revealing it (hiding). Later, she
may open the commitment C and reveal the committed message m to a verifier, who can
check that the message is consistent with the commitment. Damg̊ard surveys the basics of
commitment schemes in [Dam99].

Let C(α, [r]) be a commitment to α, where r is an optional randomness parameter. For
the homomorphic commitments we use, given C1 = C(α1, [r1]) and C2 = C(α2, [r2]), we
have C1 · C2 = C(α1 + α2, [r1 + r2]).

Let g, h ∈R G. The DLog commitment scheme is the most commonly used homomor-
phic commitment. It is of the form C〈g〉(α) = gα with computational hiding (secrecy)
under the DLog assumption and unconditional binding (correctness). Pedersen [Ped91b]
presented another homomorphic commitment of the form C〈g,h〉(α, r) = gαhr with uncon-
ditional hiding but computational binding under the DLog assumption.3 In the thesis, we
extensively use both of these commitment schemes.

2.7 Non-Interactive Zero-Knowledge Proofs

We assume the random oracle model in our work, and so we can use non-interactive zero-
knowledge (NIZK) proofs based on the Fiat-Shamir methodology [FS86]. In particular, we
use the following three NIZK proofs in our work:

NIZK Proof-of-Knowledge of a Discrete Logarithm. NIZK proof-of-knowledge
(NIZKPK) of a discrete logarithm [CS97] is a standard proof-of-knowledge in cryptog-
raphy. Here, given C〈g〉(s) = gs for g ∈ G and s ∈ Zp, a prover proves that she knows s.
We denote the proof as

NIZKPKDLog(s, C〈g〉(s)) = πDLog ∈ Z2
p. (2.1)

This proof of knowledge is basically a Schnorr signature [Sch91] on message (g, C〈g〉(s)) and
is generated as follows:

1. Pick v ∈R Zp and let t = gv.

2. Compute hash c = HDLog(g, C〈g〉(s), t), where HDLog : G3 → Zp is a random oracle
hash function.

3. Let u = v − c · s.

4. Send the proof πDLog = (c, u) along with C〈g〉(s).
3In an elementary form, Pedersen commitments were introduced by Chaum et al. [CDvdG87].
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The verifier checks this proof (given πDLog, g, C〈g〉(s)) as follows:

1. Let t′ = gu(C〈g〉(s))c.

2. Accept the proof as valid if c = HDLog(g, C〈g〉(s), t′).

NIZK Proof-of-Equivalence of Commitments. Here, given commitments C〈g〉(s) =
gs and C〈g,h〉(s, r) = gshr to the same value s for generators g, h ∈ G and s, r ∈ Zp, a prover
proves that she knows s and r such that C〈g〉(s) = gs and C〈g,h〉(s, r) = gshr. We denote
this by

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z3
p. (2.2)

The proof is equivalent to zero-knowledge proofs of knowledge used by Canetti et al. in
their adaptive secure DKG [CGJ+99]. It is generated as follows:

• Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .

• Compute hash c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t1, t2), where H≡Com : G6 → Zp is
a random oracle hash function.

• Let u1 = v1 − c · s and u2 = v2 − c · r.

• Send the proof π≡Com = (c, u1, u2) along with C〈g〉(s) and C〈g,h〉(s, r).

The verifier checks this proof (given π≡Com, g, h, C〈g〉(s), C〈g,h〉(s, r)) as follows:

• Let t′1 = gu1C〈g〉(s)c and t′2 = hu2(
C〈g,h〉(s,r)
C〈g〉(s)

)c.

• Accept the proof as valid if c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t′1, t′2).

NIZK Proof-of-Equality of Two Discrete Logarithms. Here, given C〈g〉(s) = gs

and C〈h〉(s) = hs, a prover proves equality of the associated discrete logarithms. We denote
this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z2
p. (2.3)

The proof is standard [CP92] and is generated as follows:

• Pick v ∈R Zp and let t1 = gv, t2 = hv.

• Compute hash c = H≡DLog(g, h, C〈g〉(s), C〈h〉(s), t1, t2), where H≡DLog : G6 → Zp is a
random oracle hash function.
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• Let u = v − c · s.

• Send the proof is π≡DLog = (c, u) along with C〈g〉(s) and C〈h〉(s).

The verifier checks this proof (given π≡DLog, g, h, C〈g〉(s), C〈h〉(s)) as follows:

• Let t′1 = guC〈g〉(s)c and t′2 = huC〈h〉(s)c.

• Accept the proof as valid if c = H≡DLog(g, h, C〈g〉(s), C〈h〉(s), t′1, t′2).

There exists an easier way to prove this equality of DLogs if a pairing between the groups
generated by g and h is available. Using a technique due to Joux and Nguyen [JN03] to
solve the DDH problem over pairing-friendly groups, given gx and hx

′
the verifier checks

if e(g, hx
′
)

?
= e(gx, h) to see whether x

?
= x′. However, when using a type 3 pairing, in

the absence of an efficient isomorphism between G and Ĝ, if both g and h belong to the
same group then the pairing-based scheme does not work. It also does not work for a
type 2 pairing if g, h ∈ G. In these situations, NIZKPK≡DLog provides a less efficient but
completely practical alternative there.
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Distributed Key Generation
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Chapter 3

Polynomial Commitments and Their
Applications to Secret Sharing

3.1 Preliminaries

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved
using distributed computing techniques in the information-theoretical setting, but in the
computational security setting, where Shamir’s secret sharing methodology is prominent,
it is achieved by committing to a polynomial φ(x) ∈ Zp[x].

Suppose φ has degree t and coefficients φ0, . . . , φt. The most obvious way to commit
to φ(x) is to commit to the string (φ0||φ1|| . . . ||φt), or to some other unambiguous string
representation of φ. Based on the commitment function used, this option may have a
constant-size commitment that uniquely determines φ. However, it limits the options for
opening the commitment; an opening reveals the entire polynomial. This is not always
suitable for cryptographic applications, most notably VSS, that require evaluations φ(i)
for indices i ∈ Zp of polynomial φ(x) be revealed to different parties or at different points
in the protocol.

In the VSS literature, this is achieved using homomorphic commitments. VSS schemes
in the literature utilize the DLog and Pedersen commitments that we discused in Sec-
tion 2.6. For example, one commits to the coefficients of φ(x) as ~C = (gφ0 , . . . , gφt), where
each element is a DLog commitment to a coefficient. This allows anybody to easily confirm
that an opening φ(i) for index i is consistent with commitment ~C. However, the size of a
commitment to polynomial φ(x) of degree t is not constant; it is t+ 1 = ω(1).

Contributions. Our main contribution here is an efficient scheme to commit to poly-
nomials φ(x) ∈ Zp[x], called PolyCommit (PolyCommitDL in [KZG10]), with the following
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main features:

• The size of the commitment is constant, a single group element.

• The committer can efficiently open the commitment to any correct evaluation φ(i)
along with an element called the witness, which allows a verifier to confirm that φ(i)
is indeed the evaluation at i of the polynomial φ(x).

The construction is based on an algebraic property of polynomials φ(x) ∈ Zp[x] that (x− i)
perfectly divides the polynomial φ(x) − φ(i) for any i ∈ Zp. When a set of evaluations
{φ(s) : s ∈ S} is opened at the same time, what we term batch opening, the overhead still
remains a single witness element. The hiding property of the scheme is based on the DLog
assumption. The binding property of the main scheme is proven under the t-strong Diffie-
Hellman (t-SDH) assumption [BB04b], while the security of batch opening assumes that
the bilinear version of the t-SDH problem [Goy07] is hard. Further, our scheme PolyCommit
is homomorphic and easily randomizable.

We use PolyCommit to define a computational VSS protocol in the synchronous com-
munication model. The new VSS protocol requires a broadcast with size O(1) as compared
to O(n) required in the best known protocols (where n is the number of nodes). We then
transform the above the VSS protocol into a synchronous DKG protocol.

In the rest of section, we cover some preliminary related work. In Section 3.2, we
describe our cryptographic assumptions. Section 3.3 defines polynomial commitments,
and presents and prove our construction. In Section 3.4, we describe our synchronous VSS
scheme, while in Section 3.5, we convert it to a DKG protocol.

Related Work. Similar to our scheme, a Merkle hash tree [MOV97] allows many values
to be committed to with a single element. Here, the leaves of a binary tree are the
messages. Each non-leaf node has the value H(L||R), where L and R are its children and
H is a collision-resistant hash function. One can open the commitment to an individual
message by revealing the message, and a path up the tree to the root. The opening has size
O(log n) as compared to O(1) in our scheme. Further, this scheme is not homomorphic.

Chase et al. [CHL+05] introduce mercurial commitments to construct zero-knowledge
sets, which eventually led to commitment schemes for committing to a vector of mes-
sages [CFM08, LY10]. Catalano et al. [CFM08], and Libert & Yung [LY10] construct
vector commitment schemes under the name trapdoor t-mercurial commitments. The secu-
rity of both the commitment schemes is based on “SDH-like” assumptions and their system
parameters have size O(t), as in our scheme. In [CFM08], all messages must be revealed
when opening, while in [LY10], the committer may open a commitment to a single message.
However, for commitments in [LY10], as each of the t committed messages is associated
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with an element in the system parameters gα
i

for i = 1, . . . , t, they are indexed from 1
to t. It is not possible to have arbitrary indices for the committed values and generate
a commitment for a set of (key/index, value) pairs. Our scheme does not have any such
restriction on the domain for the indices and it can be used to generate a commitment for
any set of (key, value) pairs in Zp × Zp.

Another related primitive is a cryptographic accumulator [BdM93], which aggregates
a large set of input elements into a single element and can provide a witness as evi-
dence that an element is included in the accumulator. Further, it is possible to use a
witness to prove (in zero-knowledge) that the element is included in the accumulator.
Camenisch and Lysyanskaya [CL02] extend the concept to dynamic accumulators, which
support efficient updates. Au et al. [AWSM07] observe that a paring-based accumulator
by Nguyen [Ngu05] is a bounded accumulator; that is, only a fixed number of elements can
be accumulated. They then go on to use bounded accumulators to construct a compact e-
cash scheme [ASM08]. However, the accumulated elements in this scheme are not ordered,
which makes it inappropriate for accumulating polynomials. While PolyCommit provides
the same features as non-dynamic accumulators, it has additional features (hiding, batch
opening, homomorphism) and is more general since we can commit to a polynomial instead
of a set.

3.2 Assumptions

In this section, we describe the cryptographic primitives and the number-theoretic assump-
tions that we utilize in this chapter.

We use the concepts of bilinear pairing and NIZKPK of a discrete logarithm. For three
cyclic multiplicative pairing groups G, Ĝ, and GT of the same prime order p, e is a bilinear
pairing map e : G× Ĝ→ GT . For C〈g〉(s) = gs for g ∈ G and s ∈ Zp, NIZKPK of a discrete
logarithm is described as NIZKPKDLog(s, C〈g〉(s)) = πDLog ∈ Z2

p. The mathematical details
of these concepts are already discussed in Section 2.5 and Section 2.7 respectively.

Further, we use the DLog assumption described in Section 2.4, and the t-strong Diffie-
Hellman (t-SDH) assumption [BB04b] to prove the security of the basic PolyCommit scheme.
The security of two additional properties of the scheme requires a generalization of the t-
Diffie-Hellman inversion (t-DHI) assumption defined in Section 2.4, and the bilinear version
of t-SDH, the t-BSDH assumption [Goy07].

The t-DHI problem is, on input 〈g, gα, . . . , gαt〉 ∈ Gt+1 to output g1/α, or equivalently
(see [BBG05]), gα

t+1
. In this work, we use a generalization of the t-DHI assumption, where

A has to output a pair 〈φ(x), gφ(α)〉 ∈ Zp[x] × G such that 2κ � deg(φ) > t. We call
this assumption the t-polynomial Diffie-Hellman (t-polyDH) assumption. This assumption
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was implicitly made by [AWSM07, ASM08] to support their claim that the accumulator of
[Ngu05] is bounded.

Definition 3.1. t-Polynomial Diffie-Hellman (t-polyDH) Assumption. Let α ∈R
Z∗p. Given as input a (t + 3)-tuple 〈g, gα, . . . , gαt , ĝ, ĝα〉 ∈ Gt+1 × Ĝ2, for every adversary

At-polyDH, the probability Pr[At-polyDH(g, gα, . . . , gα
t
, ĝ, ĝα) = 〈φ(x), gφ(α)〉] = ε(κ) for any

freely chosen φ(x) ∈ Zp[x] such that 2κ � deg(φ) > t.

Boneh and Boyen [BB04b] defined the t-SDH assumption that is related to but stronger
than the t-DHI assumption and has exponentially many non-trivially different solutions,
all of which are acceptable.

Definition 3.2. t-Strong Diffie-Hellman (t-SDH) Assumption. Let α ∈R Z∗p. Given

as input a (t+ 3)-tuple 〈g, gα, . . . , gαt , ĝ, ĝα〉 ∈ Gt+1 × Ĝ2, for every adversary At-SDH, the

probability Pr[At-SDH(g, gα, . . . , gα
t
, ĝ, ĝα) = 〈c, g

1
α+c 〉] = ε(κ) for any value of c ∈ Z∗p\{−α}.

Security of the batch opening extension of our PolyCommit scheme requires the bilinear
version of the t-SDH assumption, the t-BSDH assumption [Goy07]. Here, we consider the
asymmetric pairing version of this assumption.

Definition 3.3. t-Bilinear Strong Diffie-Hellman (t-BSDH) Assumption. Let α ∈R
Z∗p. Given as input a (2t+2)-tuple 〈g, gα, . . . , gαt , ĝ, ĝα, . . . , ĝαt〉 ∈ Gt+1×Ĝt+1, for every ad-

versary At-BSDH, the probability Pr[At-BSDH(g, gα, . . . , gα
t
, ĝ, ĝα, . . . , ĝα

t
) = 〈c, e(g, ĝ)

1
α+c 〉] =

ε(κ) for any value of c ∈ Z∗p\{−α}.

A similar assumption for symmetric pairings was made in [GMC07], but with a different
solution: 〈c, e(g, h)1/(α+c)〉, where h ∈R G is an additional system parameter.

3.3 Constant-Size Polynomial Commitment

In this section, we provide a formal definition of a polynomial commitment scheme, followed
by an efficient construction based on the DLog and t-SDH assumptions. We also prove the
security properties and discuss some special useful features of our construction.

3.3.1 Definition

A polynomial commitment scheme consists of six algorithms: Setup, Commit, Open, Veri-
fyPoly, CreateWitness, and VerifyEval.
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Setup is run by a trusted or distributed authority. Setup performs the basic setup
for the commitment scheme and generates a secret key SK and a public key tuple PK.
Notably, the trapdoor SK is not required in the rest of the protocol, but may be used
by a simulator to “forge” openings consistent with any commitment. Any party P may
use Commit to commit to a polynomial φ(x). Denote this commitment C. Open simply
opens the commitment by revealing φ(x), which can be verified by VerifyPoly. Most of the
cryptographic applications of a polynomial in Zp[x] use its evaluations φ(i) for some i ∈ Zp.
CreateWitness provides a witness wi for the evaluation φ(i) of the committed polynomial
for an index i. The receiver uses VerifyEval and wi to verify if the index-value pair 〈i, φ(i)〉
is consistent with C.

Importantly, the size of commitments and individual witnesses should be independent
of the degree of the committed polynomial.

Setup(1κ) generates an appropriate algebraic structure G and a commitment public-private
key pair 〈PK, SK〉. For simplicity, we add G to the public key PK. Setup is run by
a trusted or distributed authority. Note that SK is not required in the rest of the
scheme.

Commit(PK, φ(x)) outputs a commitment C to a polynomial φ(x) for the public key PK.

Open(PK, C, φ(x)) outputs the polynomial φ(x) used while creating the commitment.

VerifyPoly(PK, C, φ(x)) verifies that C is a commitment to φ(x). If so the algorithm
outputs 1, otherwise it outputs 0.

CreateWitness(PK, φ(x), i) outputs 〈i, φ(i), wi〉, where wi is a witness for the evaluation
φ(i) of φ(x) at the index i.

VerifyEval(PK, C, i, φ(i), wi) using wi as a witness, verifies that φ(i) is indeed the evalua-
tion at the index i of the polynomial committed in C. If so the algorithm outputs 1,
otherwise it outputs 0.

Informally, in terms of security, a malicious committer should not be able to convinc-
ingly present two different values as φ(i) with respect to C. Further, until more than
deg(φ) points are revealed, the adversary should not be able to compute the polynomial
φ(x). Next, we formally define security and correctness of a polynomial commitment.

Definition 3.4. Let 〈PK, SK〉 ← Setup(1κ) and C ← Commit(PK, φ(x)). We say (Setup,
Commit, Open, VerifyPoly, CreateWitness, and VerifyEval) is a secure polynomial commit-
ment scheme if it satisfies the following properties.

Correctness. For all φ(x) ∈ Zp[x] and all commitments C output by Commit(PK, φ(x))
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• the output of Open(PK, C, φ(x)) is successfully verified by VerifyPoly(PK, C, φ(x))
and

• any 〈i, φ(i), wi〉 output by CreateWitness(PK, φ(x), i) is successfully verified by
VerifyEval(PK, C, i, φ(i), wi).

Polynomial Binding. For all adversaries A:

Pr


PK← Setup(1κ), 〈C, φ(x), φ′(x)〉 ← A(PK) :

VerifyPoly(PK, C, φ(x)) = 1 ∧
VerifyPoly(PK, C, φ′(x)) = 1 ∧

φ(x) 6= φ′(x)

 = ε(κ).

Evaluation Binding. For all adversaries A:

Pr


PK← Setup(1κ), (〈C, i, φ(i), wi, φ

′(i), w′i〉)← A(PK) :
VerifyEval(PK, C, i, φ(i), wi) = 1 ∧
VerifyEval(PK, C, i, φ′(i), w′i) = 1 ∧

φ(i) 6= φ′(i)

 = ε(κ).

Hiding. Given 〈PK, C〉 and {〈ij, φ(ij), wφij〉}
deg(φ)
j=1 , no adversary A can determine φ with

non-negligible probability.

3.3.2 Construction: PolyCommit

We now provide an efficient construction of a polynomial commitment scheme, as defined
in Section 3.3.1. PolyCommit is based on an algebraic property of polynomials φ(x) ∈ Zp[x]:
(x− i) perfectly divides the polynomial φ(x)− φ(i) for i ∈ Zp. In the literature, Herzberg
et al. [HJKY95] have used this technique in their proactive share recovery scheme.

Our construction uses a parameter t, which is not present in the general definition.
This is a bound on the degree of polynomials that may be committed. In Section 3.3.4,
we show that it is not possible to commit to a polynomial of degree higher than t provided
the t-polyDH assumption holds.

Setup(1κ, t) computes three groups G, Ĝ and GT of prime order p (providing κ-bit se-
curity) such that there exists a bilinear pairing e : G × Ĝ → GT and for which
the t-SDH assumption holds. We denote the generated bilinear pairing group as
G = 〈e,G, Ĝ,GT 〉. Choose random generators g ∈ G and ĝ ∈ Ĝ. Let α ∈R Z∗p be SK,
generated by a (possibly distributed) trusted authority. Setup also generates a (t+3)-
tuple 〈g, gα, . . . , gαt , ĝ, ĝα〉 ∈ Gt+1 × Ĝ2 and outputs PK = 〈G, g, gα, . . . , gαt , ĝ, ĝα〉 as
output. Note that SK is not required by the other algorithms of the commitment
scheme, and it can be discarded by the authority if t is fixed.
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Commit(PK, φ(x)) computes the commitment C = gφ(α) ∈ G for polynomial φ(x) ∈ Zp[X]

of degree t or less. For φ(x) =
∑deg (φ)

j=0 φjx
j, it outputs C =

∏deg (φ)
j=0 (gα

j
)φj as the

commitment to φ(x).

Open(PK, C, φ(x)) outputs the committed polynomial φ(x).

VerifyPoly(PK, C, φ(x)) verifies that C ?
= gφ(α). If C =

∏deg (φ)
j=0 (gα

j
)φj the algorithm out-

puts 1, else it outputs 0. Note that this only works when deg(φ) ≤ t.

CreateWitness(PK, φ(x), i)) computes ψi(x) = φ(x)−φ(i)
(x−i) ∈ Zp[x] and outputs 〈i, φ(i), wi〉,

where the witness wi = gψi(α). As mentioned above, (x− i) perfectly divides φ(x)−
φ(i).

VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is the evaluation at the index i of the poly-

nomial committed to by C. If e(C, ĝ)
?
= e(wi, ĝ

α/ĝi)e(g, ĝ)φ(i), the algorithm outputs
1, else it outputs 0.

3.3.3 Analysis

Theorem 3.5. PolyCommit is a secure polynomial commitment scheme (as defined in
Definition 3.4) provided the DLog and t-SDH assumptions hold in G.

Proof. We prove that the all properties of Definition 3.4 hold.

Correctness. Correctness of VerifyPoly is obvious. VerifyEval is correct because

e(wi, ĝ
α/ĝi)e(g, ĝ)φ(i) = e(gψi(α), ĝ(α−i))e(g, ĝ)φ(i)

= e(g, ĝ)ψi(α)(α−i)+φ(i)

= e(g, ĝ)φ(α) as φ(x) = ψi(x)(x− i) + φ(i).

Polynomial Binding. Suppose there exists an adversary A that breaks polynomial bind-
ing for a commitment C by outputting two polynomials φ(x) and φ′(x) that are accepted
by VerifyPoly. We construct an algorithm B that uses A to efficiently compute SK = α.

For φ(x) and φ′(x) generated by A, C = gφ(α) = gφ
′(α). For a polynomial φ′′(x) = φ(x)−

φ′(x) ∈ Zp[x], the corresponding Cφ′′ = gφ
′′(α) = gφ(α)/gφ

′(α) = 1 as the commitment scheme
is homomorphic in nature. Therefore, φ′′(α) = 0, i.e., α is a root of polynomial φ′′(x) and
by factoring φ′′(x) [Sho06, Chap. 21], B can easily find SK = α.1 After computing α, B
can solve the instance of the t-SDH problem given by the system parameters.

1There may be up to t choices here; but the correct one is easy to verify using PK.
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Evaluation Binding. Suppose there exists an adversary A that breaks the evaluation
binding property of commitment C and computes two witness tuples 〈i, yi, wi〉 and 〈i, y′i, w′i〉
for index i that are accepted by VerifyEval. We show how to construct an algorithm B,
using A, that can break the t-SDH assumption.

B presents the t-SDH instance 〈G, g, gα, gα2
, . . . , gα

t
, ĝ, ĝα〉 as PK to A. A outputs a

commitment C, and two witness tuples 〈i, yi, wi〉 and 〈i, y′i, w′i〉 for an index i ∈ Zp such that
e(C, ĝ) = e(wi, ĝ

α−i)e(g, ĝ)yi = e(w′i, ĝ
α−i)e(g, ĝ)y

′
i and yi 6= y′i. Note that yi 6= y′i ⇒ i 6= α.

For v = logg wi and v′ = logg w
′
i, we have

v(α− i) + yi = v′(α− i) + y′i
v − v′

y′i − yi
=

1

α− i
.

Therefore, algorithm B computes (
wi
w′i

) 1
y′
i
−yi

= g
v−v′
y′
i
−yi

= g
1
α−i

and returns 〈−i, g
1
α−i 〉 as a solution for the t-SDH instance. It is easy to see that the success

probability of solving the instance is the same the success probability of A, and the time
required is a small constant larger than the time required by A.

Hiding. Suppose there exists an adversary A that breaks the hiding property of com-
mitment C and correctly computes polynomial φ(x) (without loss of generality deg φ = t)
given t valid witness tuples 〈i, yi, wi〉. We show how to use A to construct an algorithm B
than can break the DLog assumption.

Let 〈g, ga〉 ∈ G2 be a DLog instance that B needs to solve. B generates PK for A by
randomly picking α ∈R Z∗p and computing PK = 〈G, g, gα, . . . , gαt , ĝ, ĝα〉. B sets 〈j, yj〉 ∈R
Z2
p as polynomial φ(x)’s evaluations at indices j. It then assumes φ(0) = a, which is the

answer for the DLog instance and computes gφ(α) using t + 1 exponentiated evaluations:
〈0, ga〉 and t other chosen pairs 〈j, gyj〉. Finally, B computes witnesses wj for t chosen

evaluations 〈j, yj〉 as wj = (gφ(α)/gyj)
1

α−j , and sends PK and t witness tuples 〈j, yj, wj〉 to
A. Once A returns polynomial φ(x), B returns the constant term φ(0) as the solution for
the DLog instance.

It is easy to see that the success probability of solving the DLog instance is the same
the success probability of A, and the time required is a small constant larger than the time
required by A.

Note that the above hiding property is computational and consequently weak. In
[KZG10], we have recently extended our results to define a scheme (PolyCommitPed) with
the unconditional hiding property.
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3.3.4 Features

Now, we discuss some important non-fundamental features of PolyCommit.

Homomorphism. The PolyCommit scheme is homomorphic in nature. Observe that
given commitments Cφ1 and Cφ2 associated with polynomials φ1(x) and φ2(x) respectively,
one can compute the commitment Cφ for φ(x) = φ1(x) + φ2(x) as Cφ = Cφ1Cφ2 . Further,
given two witness-tuples 〈i, φ1(i), wφ1 i〉 and 〈i, φ2(i), wφ2 i〉 at index i associated with poly-
nomials φ1(x) and φ2(x) respectively, the corresponding tuple for index i for polynomial
φ(x) = φ1(x) + φ2(x) can be given as 〈i, φ1(i) + φ2(i), wφ1 iwφ2 i〉.

Unconditional Hiding. When k < deg(φ) evaluations have been revealed, PolyCommit
unconditionally hides any unrevealed evaluation φ(ik′) for an index ik′ ∈R Zp, since the
k + 1 points 〈α, φ(α)〉, 〈i1, φ(i1)〉, . . . , 〈ik, φ(ik)〉, are insufficient to recover φ(ik′).

Trapdoor Commitment. This construction is also a trapdoor commitment scheme,
where SK = α is the trapdoor. Given α, a simulator can create witnesses for arbitrary
values with respect to C = gd for an unknown d. For example, to “prove” φ(i) = r (where

φ is the polynomial supposedly committed to by C), output w = [C · g−r]1/(α−i). It can
easily be checked that VerifyEval(PK, C, i, r, w) = 1.

Revealing Exponentiated Evaluations. Some applications require a polynomial eval-
uation φ(i) to be opened only in an exponentiated form gφ(i). In that case, the correctness,
hiding and polynomial binding properties of PolyCommit remain intact; however, the eval-
uation binding property is no longer valid. For a commitment C = gφ(α) for polynomial
φ(x), let 〈i, gφ(i), wi〉 be the correct opening for index i. The adversary can present wrong
openings of the form 〈i, gφ(i)−r(α−i), wig

r〉 for r ∈R Zp, which will be accepted by VerifyEval.

Notably, in any of the above wrong openings, the committer does not know the dis-
crete logarithm of the exponentiated evaluations gφ(i)−r(α−i). Therefore, to avoid the
above attack we utilize NIZKPKDLog described in Section 2.7. The modified CreateWit-
ness (CreateWitness’) returns 〈i, gφ(i), wi, πDLog = NIZKPKDLog(φ(i), gφ(i))〉. Correspond-
ingly, the modified VerifyEval (VerifyEval′(PK, C, i, gφ(i), wi, πDLog)) checks πDLog along with

e(C, ĝ)
?
= e(wi, ĝ

α/ĝi)e(gφ(i), ĝ). Similar to the binding proof of the original PolyCommit
scheme, an adversary that can generate two valid tuples〈i, gφ(i), wi,NIZKPKDLog(φ(i), gφ(i))〉
and 〈i, gφ′(i), w′i,NIZKPKDLog(φ

′(i), gφ
′(i))〉 can be used to break the t-SDH assumption to

compute g
1
α−i . Note that the challenger has to extract φ(i) and φ′(i) from the adversary

in the proof; this can be achieved using a standard rewinding technique [ADW09, Sec. 4].
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Strong Correctness. As discussed in Section 2.2, VSS may require an additional prop-
erty of PolyCommit, namely, that t+ 1 correct shares (evaluations) are sufficient to recon-
struct the polynomial. In other words, it is not possible to commit to a polynomial of
degree greater than t. This is referred as the strong correctness property of VSS.

Defining strong correctness for PolyCommit is problematic, since for z ∈R Zp, there are
many polynomials φ of degree greater than t such that φ(α) = z, and so gz is trivially a
commitment to some polynomial of degree t′ > t. To avoid this triviality, we require that
an adversary A must convince a challenger B that he knows φ with the following game. A
creates a commitment to a claimed polynomial φ of degree t′. B challenges A with t′ + 1
indices I ⊂ Zp. A wins if he is able to produce 〈i, φ(i), wi〉i∈I accepted by VerifyEval such
that the interpolation (in exponents) of any t′ and t′+1 witnesses do not differ. The second
condition ensures that deg(φ) = t′ by ensuring that the degree of the polynomial whose
exponentiated evaluations are witnesses is t′ − 1.

Theorem 3.6. PolyCommit has the strong correctness property if the t-polyDH assumption
holds in G.

Proof. Suppose there exists an adversary A that verifiably commits to a polynomial of
degree greater than t using PK = 〈G, g, gα, . . . , gαt〉. We construct an algorithm B that
uses A to break the t-polyDH assumption.

B presents the t-polyDH instance 〈G, g, gα, . . . , gαt〉 as PK to A. A outputs a commit-
ment C and t′, where t′ is the claimed degree of the committed polynomial. If t′ ≤ t, then
B returns failure and stops, else B chooses and sends a set I of t′ + 1 random indices to
A. A returns t′ + 1 evaluation tuples of the form 〈i, yi, wi〉 for i ∈ I. B verifies these t′ + 1
evaluation tuples using VerifyEval. If a verification fails, then B returns failure and stops.
Once all verifications are successful, B interpolates the t′ + 1 values yi to compute the
claimed committed polynomial φ′(x). If deg(φ′) < t′, then B returns failure and stops, else
B is assured that deg(φ′) = t′ and therefore deg (φ) ≥ t′. t′+ 1 verifications do not confirm
that φ′(x) is the committed polynomial φ(x) as φ(x) can be of degree > t′. The verifi-
cations only assure that the evaluations of φ′(x) at the verified indices are equal to those

of φ(x). We can represent ψi(x)|x=α = ψi(α) = φ(α)−φ(i)
α−i = φ(i)−φ(α)

i−α = ψα(i) = ψα(x)|x=i.
To confirm that the committed polynomial is of degree t′ and consequently φ(x) = φ′(x),
B interpolates (in exponent) the t′ + 1 wi values from the evaluation set to generate ex-
ponentiated coefficients of the polynomial ψα(x). If deg(φ) > t′, then ψα(x) should be of

degree > t′ − 1. Therefore, if the coefficient ψt′ associated with gα
t′

is non-zero, then B
returns failure and stops, else B returns φ(x) and C as an answer to the t-polyDH instance.
Although it is possible that ψα(x) is of degree t′ − 1 for φ(x) with degree greater than t′,
the success probability of A to achieve that is negligible for the indices randomly chosen
by B.
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It is easy to see that the success probability of solving the instance is negligibly less
than the success probability of A in verifiably committing to a polynomial of degree greater
than t, and the time required is a small constant larger than the time required by A.

Batch Opening. In the case when multiple evaluations in a commitment must be
opened, the opening may be batched to reduce the computation and the communication
of both the committer and the verifier. That is, opening multiple evaluations at the same
time is cheaper than opening each of those evaluations individually using CreateWitness
and VerifyEval. Let B ⊂ Z∗p, |B| < t be a set of indices to be opened, for a com-

mitment C = gφ(α) created using PolyCommit. The witness for the values φ(i), for all

i ∈ B, is computed as wB = gψB(α) for the polynomial ψB(x) = φ(x)−r(x)Q
i∈B(x−i) where r(x) is

the remainder of φ(x)/(
∏

i∈B(x − i)). That is, φ(x) = ψB(x)
(∏

i∈B(x− i)
)

+ r(x) and
for i ∈ B, φ(i) = r(i). We define two algorithms for batch opening. The algorithm
CreateWitnessBatch(PK, φ(x), B) outputs 〈B, r(x), wB〉 and the algorithm VerifyEvalBatch

(PK, C, B, r(x), wB) outputs 1 if e(C, ĝ)
?
= e(wB, ĝ

Q
i∈B(α−i))e(g, ĝr(α)) holds. We observe

that the setup has to generate 〈ĝα2
, . . . , ĝα

t−1〉 along with the usual PK for the verification
to work.

In terms of security, since commitments are formed in the same way as the Commit
algorithm and CreateWitnessBatch reveals no more information than running CreateWitness
for all batch elements individually, the hiding property (proven in Theorem 3.5) still holds.
For binding, an adversary should not be able to open a batch B containing an index i,
in a manner that conflicts with the value φ(i) output in an individual opening of index i.
Formally, we say that batch opening is binding if the following holds:

Pr


PK← Setup(1κ, t), (C, 〈B,wB, r(x)〉, 〈i ∈ B,wi, φ(i)〉)← A(PK) :

VerifyEvalBatch(PK, C, B, r(x), wB) = 1 ∧
VerifyEval(PK, C, i, φ(i), wi) = 1 ∧

φ(i) 6= r(i)

= ε(κ).

Theorem 3.7. The construction of CreateWitnessBatch, VerifyEvalBatch is binding pro-
vided the t-BSDH assumption holds in G.

Proof. Suppose an adversary outputs a commitment C and two openings 〈B,wB, r(x)〉,
and 〈i ∈ B,wi, φ(i)〉. We show this adversary can be used to solve the instance of the
t-BSDH problem given by the system parameters with non-negligible probability. Let
p(x) =

∏
i∈B(x− i), and define p′(x) = p(x)/(x− i). Write wB = gb and wi = gy for some

b, y ∈ Zp.

Since the verification equations of VerifyEval and VerifyEvalBatch hold,

e(C, ĝ) = e(wB, ĝ
p(α))e(gr(α), ĝ) = e(wi, ĝ

α−i)e(g, ĝφ(i))
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and so from the exponents:

p(α)b+ r(α) = (α− i)y + φ(i)

p(α)b− (α− i)y = φ(i)− r(α) .

Now, write r(α) = r′(α)(α − i) + r(i) for r′(x) = r(x)−r(i)
x−i , and substitute for r(α), which

gives

p(α)b− (α− i)y = φ(i)− r′(α)(α− i)− r(i)
(α− i)[p′(α)b− y + r′(α)] = φ(i)− r(i)

1

α− i
=

p′(α)b− y + r′(α)

φ(i)− r(i)
.

Note that since φ(i) 6= r(i) their difference is nonzero, and we can compute r′(x) since we
know r(x). Therefore the solution to the t-BSDH problem is

e(g, ĝ)
1

(α−i) = e(wB, ĝ
p′(α))e(

gr
′(α)

wi
, ĝ)1/(φ(i)−r(i)) .

Practicality and Efficiency Improvements. Here, we discuss the practicality of Setup
(1κ, t) = 〈SK,PK〉. It is trivial in presence of a trusted authority. In absence of a single
trusted party, Setup can be distributed. Here, SK = α is computed in a distributed form
(i.e., shared by multiple parties forming a distributed authority) using the concept of
distributed key generation [Ped91b] over Zp. PK is computed using a distributed multipli-
cation protocol over Zp [BOGW88, GRR98]. As we do not require SK during our protocols
and as anybody can verify the correctness of PK using pairings, it is possible to consider
PK as a global reusable set, shared in many systems.

Further, the exponentiations required when committing and creating witnesses can be
trivially parallelized. Also, since C = gφ(α) is computed as a product of powers (sometimes
called a multi-exponentiation), we suggest using fast exponentiation techniques [Pip76]
instead of a näıve implementation. It is also possible to precompute e(C, ĝ) and e(g, ĝ) for
use during verification.

3.4 Applying PolyCommit to VSS

In Section 2.2, we introduced the concept of VSS. Feldman [Fel87] developed the first
efficient VSS protocol, which forms the basis of all synchronous VSS schemes defined in the
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Sh Phase

1. To share a secret s ∈ Z∗p, the dealer Pd chooses a random degree t polynomial φ(x) =∑t
j=0 φjx

j ∈ Zp[x] such that φ(0) = φ0 = s. It then broadcasts C = Commit(PK, φ(x)).

2. For ` ∈ [1, n], Pd computes a share s` = φ(`), a witness w` = CreateWitness(PK, φ(x), `) and
sends 〈`, φ(`), w`〉 to node P` over a secure and authenticated channel.

3. After receiving 〈i, φ(i), wi〉 from Pd, node Pi runs VerifyEval(PK, C, i, φ(i), wi). If the verifica-
tion fails, Pi broadcasts an accusation message against Pd.

4. If more than t nodes accuse Pd, then it is clearly faulty and is disqualified. If not, for each
accusing party P`, Pd broadcasts the corresponding share and witness 〈`, φ(`), w`〉 such that
VerifyEval holds.

5. If any of the revealed shares fails VerifyEval, Pd is disqualified and the protocol stops. If there
is no disqualification, each node P` accepts the received share s`.

Rec Phase
During reconstruction, any t + 1 or more nodes Pi braodcast their accepted shares and witnesses
〈i, si, wi〉. All t + 1 (or more) nodes verify each of the broadcast shares 〈i, φ(i), wi〉 using VerifyEval

and then interpolate the pairs 〈i, φ(i)〉 to determine the secret s = φ(0).

Figure 3.1: eVSS: An efficient Feldman VSS using PolyCommit

literature. In the literature, the discrete logarithm commitment or Pedersen commitment
is used in Feldman VSS to achieve the binding (correctness) and the hiding (secrecy)
properties. Both of these commitment schemes trivially satisfy the strong correctness (VSS-
SC) property of VSS (defined in Section 2.2) by the fact that the size of a commitment
to a polynomial φ(x) ∈ Zp[x] is equal to deg(φ) + 1, which is O(n) (since for optimal
resiliency of deg(φ) = t = bn−1

2
c). However, the commitment to a polynomial has to be

reliably broadcast to all nodes, which results in a linear-size broadcast for Feldman VSS and
their variants and a linear complexity gap between the message and the bit complexities.
Our goal is to close this gap using PolyCommit. Next, we apply PolyCommit to existing
polynomial-based VSS schemes. By doing so, we reduce the reliable broadcast message size
of VSS by a linear factor, making it equal to the message complexity. Although PolyCommit
can be used in any univariate polynomial-based VSS scheme, we choose the Feldman VSS
for ease of exposition.

Our efficient Feldman VSS (eVSS) scheme requires Setup(1κ, t) of PolyCommit be run
once, which outputs PK = 〈G, g, gα, . . . , gαt , ĝ, ĝα〉. Further, as we are working in the
synchronous communication model, a resiliency bound of n ≥ 2t+ 1 is required for VSS to
provide correctness against a t-limited adversary as the n− t honest nodes available during
the Sh and Rec phases should at least be equal to t+ 1 (the required threshold).

In Figure 3.1, we present eVSS that uses the PolyCommit scheme in the Feldman VSS.
In the Sh and the Rec phases of the eVSS scheme, the VSS methodology remains exactly
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the same as that of Feldman VSS except here t + 1 commitments of the form gφj for
φ(x) =

∑t
j=0 φjx

j are replaced by a single polynomial commitment C = gφ(α). In addition,
along with a share si, Pd now sends a witness wi to node Pi. Overall, the eVSS sharing
protocol needs O(1) broadcast instead of O(n) required by the Feldman VSS. Further,
in case of multiple accusations, dealer Pd can use the batch opening feature described in
Section 3.3.4 to provide a single witness for the complete batch.

Theorem 3.8. The eVSS protocol implements a synchronous VSS scheme with VSS-wS
and VSS-SC properties for n ≥ 2t+1 provided the DLog, t-SDH and t-polyDH assumptions
hold in G.

We need to prove the secrecy, correctness and strong correctness properties of a syn-
chronous VSS scheme. Secrecy and correctness result directly from Theorem 3.5, while
Theorem 3.6 provides the strong correctness property. The secrecy provided by eVSS is
computational against a t-bounded adversary, and unconditional against a t− 1 bounded
adversary. Share correctness is computational.

3.5 Applying PolyCommit to DKG

In Section 2.3, we introduced the concept of DKG. Using the homomorphic nature of
PolyCommit, the eVSS scheme can easily be converted to a DKG protocol. Here, we apply
the PolyCommit commitment scheme to Joint Feldman DKG (JF-DKG) [GJKR07, Section
3] to define a DKG construction that achieves weak correctness and secrecy guarantees
(DKG-wC and DKG-wS) defined in Section 2.3.

Our construction (eJF-DKG) does not guarantee the uniform randomness of the shared
secret; it rather creates a shared secret with a hard DLog instance. It is nearly equivalent
to running an instance of eVSS protocol (Figure 3.1) by each node in the group.

Here, in order to generate the public key Y = gs, along with the usual commitment C of
an eVSS instance, each node Pi also broadcasts gzi , wi0 and NIZKPKDLog(zi, g

zi). For poly-
nomial φi(x) ∈ Zp[x] contributed by node Pi, zi = φi(0) and wi0 = gψi0(α) is the correspond-

ing witness with ψi0(x) = φi(x)−φi(0)
x−0

. NIZKPKDLog(zi, g
zi) is a NIZKPK of the shared value

zi. Upon receiving broadcast from P`, each node verifies 〈gz` , w`0,NIZKPKDLog(z`, g
z`)〉.

At the end of Sh phase, each node Pi computes the public key Y =
∏

P`∈Q g
z` , where

Q is the set nodes whose eVSS instances complete without disqualification. Figure 3.2
describes the protocol in detail. The setup remains same as that of the eVSS protocol.
Note that in eJF-DKG the random oracle assumption is required solely for the NIZKPK.
It may be avoided using NIZKPK in the common reference string model [BFM88] or using
an interactive ZKPK.
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Sh Phase
Generating shared secret s:

1. Each node Pi chooses a random degree t polynomial φi(x) =
∑t
j=0 φijx

j ∈ Zp[x]. Let
φi(0) = φi0 = zi. Pi computes Yi = gzi , and its witness wi0 = CreateWitness(PK, φi(x), 0)
and a NIZKPK πDLogi = NIZKPKDLog(zi, Yi) of zi. It then broadcasts 〈Ci =
Commit(PK, φi(x)), Yi, wi0, πDLogi〉.

2. For ` ∈ [1, n], Pi computes a subshare si` = φi(`) a witness wi` = CreateWitness(PK, φi(x), `))
and sends 〈`, φi(`), wi`〉 to node P` over a secure and authenticated channel.

3. After receiving broadcast 〈C`, Y`, w`0, πDLog`〉 from P`, node Pi runs
VerifyEval′(PK, C`, 0, Y`, w`0, πDLog`) from Section 3.3.4. If the verification fails, then P`
is disqualified.

4. After receiving 〈i, φ`(i), w`i〉 from P`, node Pi runs VerifyEval(PK, C`, i, φ`(i), w`i). If the veri-
fication fails, Pi broadcasts an accusation message against P`.

5. If more than t nodes accuse Pi, then it is clearly faulty and is disqualified. If not, for each
accusing node P`, Pi broadcasts the corresponding 〈`, si`, wi`〉, such that the above verification
holds.

6. If any of the shares revealed by P` fails the verification, P` is disqualified. If there is no
disqualification, each node Pi adds P` to its qualified nodes set Q.

7. Each node Pi computes its share si =
∑
P`∈Q s`i, witness wi =

∏
P`∈Q w`i, commitment

C =
∏
P`∈Q C` and the public key Y =

∏
P`∈Q Y` of the shared secret s =

∑
P`∈Q z`.

Rec Phase
During reconstruction, any t + 1 or more nodes Pi braodcast their accepted shares 〈i, si, wi〉. All
t + 1 (or more) nodes verify each of the broadcast shares 〈i, si, wi〉 against C, and then interpolate
the pairs 〈i, si〉 to determine the secret s.

Figure 3.2: eJF-DKG: An efficient JF-DKG using PolyCommit

We prove the DKG-wC and DKG-wS properties of DKG (Section 2.3) for the above
eJF-DKG protocol.

Theorem 3.9. The eJF-DKG protocol implements a synchronous DKG scheme with DKG-
wC and DKG-wS properties for n ≥ 2t + 1 provided the DLog, t-SDH and t-polyDH as-
sumptions hold in G.

Proof. We prove that DKG-wC and DKG-wS properties are hold.

Weak Correctness (DKG-wC). Firstly, we need to prove that there is an efficient
algorithm that on input shares from 2t+ 1 nodes and the public information produced by
the DKG protocol, output the same unique value s, even if up to t shares are submitted by
malicious nodes. This can easily be proven using the strong correctness (VSS-SC) property
of eVSS in Theorem 3.8. For a qualified eVSS instance by node P`, this property assures
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that any 2t + 1 nodes (or t + 1 honest nodes) will reconstruct the same z` shared by P`.
As the secret s =

∑
P`∈Q z`, the final share for every node Pi is si =

∑
P`∈Q s`i and the

reconstruction algorithm (Lagrange-interpolation) is homomorphic in nature, shares from
any 2t+ 1 nodes and the public information result into the same unique value s.

Further, we also need to prove that at the end of Sh phase, all honest nodes have
the same value of public key Y = gs, where s the unique secret guaranteed above. Im-
portantly, the set Q computed by every honest node is the same as it is decided solely
based on the broadcast messages. Now to prove that Y =

∏
P`∈Q g

z` = g
P
P`∈Q

z` = gs,
the only thing that needs to be proven is that gz` is correct for every P` ∈ Q. Given
〈gφ`(0), w`0,NIZKPKDLog(φ`(0), gφ`(0))〉 , we prove this in Section 3.3.4.

Weak Secrecy (DKG-wS). Here, we need to prove that the adversary with t shares and
the public key Y = gs cannot compute the secret s. This follows directly from the secrecy
property (VSS-wS) of eVSS in Theorem 3.8, except with slight modifications in the form
of creating a witness for the individual contribution z` by node P` towards s and a random
oracle implementation to simulate NIZKPK of discrete logarithms.

Our eJF-DKG protocol does not achieve the strong correctness and secrecy properties
(DKG-C and DKG-S), which is a direct effect of the computational nature of secrecy and
correctness of the underlying commitment scheme PolyCommit. In the next chapter, we
present a DKG protocol that achieves the strong properties using Pedersen commitments.
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Chapter 4

Distributed Key Generation for Use
over the Internet

4.1 Preliminaries

As we discussed in the introduction, DKG protocols are the fundamental building blocks
of both symmetric and asymmetric threshold cryptography. Numerous applications based
on DKG have been proposed; e.g., see [CGS97, NPR99, BF01, GJKR01, Nie02, KKA03,
GJKR07, KZG07]. However, the existing DKG protocols assume a synchronous communi-
cation model or a (reliable) broadcast channel, which are not guaranteed over the existing
Internet [AWL05]. As a result, the systems issues to be considered while realizing DKGs
over the Internet have largely been ignored and there is no implementation available. This
need for a practical DKG forms the motivation of our work on distributed key generation
in the asynchronous communication setting.

In this chapter, we present the first practical DKG protocol [KG09] that we have de-
veloped for use over the Internet.

• Section 4.2 defines a realistic system model over the Internet. We combine the
standard Byzantine adversary with crash recovery and network failures in an asyn-
chronous setting. We also analyze the asynchronous versus partially synchronous
dichotomy for the Internet and justify the choice of treating crashes and network
failures separately.

• In Section 4.3, we present a VSS scheme (HybridVSS) that works in our system model.
Observing the necessity of a protocol for agreement on a set for asynchronous DKG,
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we define and prove a practical DKG protocol in the next section. We use a leader-
based agreement scheme in our DKG, as we observe a few pragmatic issues with the
usually suggested randomized agreement schemes.

• Finally, in Section 4.5, we discuss the uniform randomness of the shared secret and
modify our DKG protocol to achieve uniform randomness in the random oracle model.

We leave discussions about the proactive security and group modification protocols and
our implementation and tests over the PlanetLab platform to Chapter 5 and Chapter 8
respectively.

Asynchronous VSS. As we discussed in Section 3.4, Feldman [Fel87] developed the first
efficient VSS protocol and Pedersen [Ped91a] presented a modification to it. Nevertheless,
these protocols do not guarantee a correct completion in the asynchronous communication
model and we need a VSS scheme that works in the asynchronous setting. Before shifting to
the asynchronous VSS protocols, it is important to see why the synchronous VSS protocols
fail once the synchrony assumption is removed. We choose our eVSS protocol defined
in Section 3.4 to demonstrate that. eVSS uses the Feldman VSS methodology [Fel87],
which forms the basis of all synchronous VSS schemes defined in the literature; the attack
described below can be applied to all these schemes.

In eVSS, as described in Figure 3.1, if the synchrony assumption is violated, then one or
more honest nodes might not complete the Sh phase. For example, an accusation broadcast
by an honest node might not reach other honest nodes before they complete the Sh phase.
This makes the protocol run unreliable, as one or more honest nodes do not complete the
Sh phase, while other honest nodes complete the Sh phase assuming that all nodes have
successfully completed or would eventually complete the Sh phase. In some scenarios, this
may hamper liveness or the completion guarantee of the Rec phase as not all t+ 1 honest
nodes have their shares. Further, by breaking the correctness of the broadcast channel, it
is also possible for a malicious adversary to break the correctness of the VSS scheme. Note
that the secrecy property, however, always remains intact.

Although the literature for VSS has been vast, asynchronous VSS has not yet received
the required attention. Canetti and Rabin [CR93] developed the first complete VSS scheme
with unconditional security in the asynchronous communication model having no bounds
on message transfer delays or processor speeds. However, this scheme and its succes-
sors [ADH08, PCR08], due to their Ω(n5) bit complexities, are prohibitively expensive for
any realistic use.

Compromising the unconditional security assumption, Cachin et al. (AVSS) [CKAS02],
Zhou et al. (APSS) [ZSvR05], and more recently Schultz et al. (MPSS) [SLL08] suggested
more practical asynchronous VSS schemes. Of these, the APSS protocol is impractical for
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any reasonable system size, as it uses a combinatorial secret sharing scheme by Ito, Saito
and Nishizeki [ISN87], which leads to an exponential

(
n
t

)
factor in its message complexity.

MPSS, on the other hand, is developed for a more mobile setting where set of the system
nodes has to change completely between two consecutive phases to maintain the secrecy
and correctness properties.

AVSS is the most general and practical scheme in the asynchronous communcation
model against Byzantine adversaries, but it does not handle crash recoveries. It assimilates
a bivariate polynomial into Bracha’s reliable broadcast [Bra84] and can provide complete
flexibility with the sets used without hampering the security. In asynchronous VSS, any two
participants need to verify the dealer’s commitment with each other to achieve correctness;
thus, a protocol with o(n2) message complexity does not seem to be possible and AVSS,
with its optimal message complexity, is optimal in that sense. As a result, AVSS forms the
basis for our VSS and DKG protocols.

4.2 Hybrid System Model

In this section, we discuss the assumptions and the system model for our protocols, giving
special attention to their practicality over the Internet. This generic system model will
also be applicable to many other distributed protocols over the Internet.

4.2.1 Communication Model

Our DKG protocol should be deployable over the Internet. The expected message-transfer
delay and the expected clock offset there (a few seconds, in general) is significantly smaller
than the required timespan of a system phase (a few days). With such an enormous
difference, a failure of the network to deliver a message within a fixed time bound can be
treated as a failure of the sender; this may lead to a retransmission of the message after
appropriate timeout signals. As this is possible without any significant loss in the synchrony
of the system, the asynchronous communication assumption seems to be unnecessarily
pessimistic here. It is tempting to treat the Internet as a synchronous network (bounded
message delivery delays and processor speeds) and develop more efficient protocols using
well-known message delivery time bounds and system run-time assumptions.

Deciding these time bounds correctly is a difficult problem to solve. Further, even if it
is possible to determine tight bounds between the optimistic and pessimistic cases, there is
a considerable difference between the selected time bounds and the usual computation and
communication time. Protocols explicitly based on synchronous assumptions invariably use
these time bounds in their definitions, while those based on the asynchronous assumption
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solely use numbers and types of messages. A real-world adversary, with knowledge of any
time bounds used, can always slow down the protocols by delaying its messages to the verge
of the time bounds. In asynchronous protocols, although it is assumed that the adversary
manages the communication channels and can delay messages as it wishes, a real-world
adversary cannot control communication channels for all the honest nodes. It is practical
to assume that network links between most of the honest nodes are perfect. Consequently,
even if the adversary delays its messages, an asynchronous protocol completes without
any delay when honest nodes communicate promptly. Thus, the asynchrony assumption
may increase message complexity or the latency degree (number of communication rounds),
but in practice does not increase the actual execution time. Observing this, we use the
asynchronous communication assumption for our protocols.

Weak Synchrony Assumption (only for liveness). For liveness (the protocol even-
tually terminates), but not safety (the protocol does not fail or produce incorrect results),
we need a (weak) synchrony assumption. Otherwise, we could implement consensus in an
asynchronous system with adversary nodes, which is impossible [FLP85]. We use a weak
synchrony assumption by Castro and Liskov [CL02] to achieve liveness. Let delay(T ) be
the time between the moment T when a message is sent for the first time and the moment
when it is received by its destination. The sender keeps retransmitting the message until
it is received correctly. We assume that delay(T ) does not grow faster than T indefinitely.
Assuming that network faults are eventually repaired and DoS attacks eventually stop,
this assumption seems to be valid in practice.

Note that this assumption is also strictly weaker than the partially synchronous com-
munication assumptions defined by Dwork, Lynch and Stockmeyer [DLS88]). In their first
partial synchrony assumption message delivery delays and processor speeds are bounded,
but the bounds are not known a priori, while in their second partial synchrony assumption,
the bounds are known, but are only guaranteed to hold starting some unknown time. In the
asymptotic notation, both of these delay notations are Θ(1). However, the weak synchrony
assumption is o(t), and therefore, weaker than the partial synchrony assumptions.

4.2.2 Byzantine Adversary, Crash-Recoveries and Link Failures

Most of the distributed computing protocols in the literature assume a t-limited Byzantine
adversary and a compromised node remains Byzantine and unused after recovery. We also
aim at proactive security for our DKG (Chapter 5), where the t-limited mobile Byzantine
adversary can change its choice of t nodes as time progresses. There, a node compromised
during a phase remains unused, after recovery, for the remainder of that phase as its share
is already compromised. Any intra-phase share modification for a recovered node leads to
intra-phase share modification to all the nodes, which is unacceptable in general.
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This does not model failures over the Internet in the best way. Other than malicious
attacks leading to compromise, some nodes (say f of them) may just crash silently without
showing arbitrary behaviours or get disconnected from the rest of the network due to
network failures or partitioning. Importantly, secrets at these f nodes are not available
to the adversary and modelling them as Byzantine failures not only leads to sub-optimal
resilience of n ≥ 3(t + f) + 1 instead of n ≥ 3t + 2f + 1, but it also increases the bit
complexity with added security requirements (t + f instead of t). Keeping such nodes
inactive, after their recovery, until the start of next phase is not ideal. This prompts us to
use a hybrid model.

Our system adopts the hybrid model by Backes and Cachin [BC03], but with a modifi-
cation to accommodate broken links. From any honest node’s perspective, a crashed node
behaves similarly to a node whose link with it is broken and we model link failures in the
form of crashes. For every broken link between two nodes, we assume that at least one of
two nodes is among the list of currently crashed nodes. A node that is crashed means that
some of its links are down, not necessarily that they all are. Further, all non-Byzantine
nodes may crash and recover repeatedly with a maximum of f crashed nodes at any in-
stant and a recovering honest node recovers from a well-defined state using, for example,
a read-only memory. In addition to these nodes that crash completely (losing any keys
they may have) and subsequently recover from that state, other non-Byzantine nodes may
remain up, but have some of their links down; those links remain down throughout the
protocol (otherwise, they are simply normal asynchronous links), and the nodes may or
may not realize that the links are down. These nodes will not need to recover their keys,
since they have not lost them. As long as the size of the list of crashed nodes, including all
completely crashed nodes, and one of the endpoints of every broken link, does not exceed
f at any time, our protocols will succeed. We also assume that the adversary (eventually)
delivers all the messages between two uncrashed nodes.

Formally, we consider an asynchronous network of n ≥ 3t+ 2f + 1 nodes P1, . . . , Pn of
which the adversary may corrupt up to t nodes during its existence and may crash another
f nodes at any time. For f = 0, 3t+ 1 nodes are required as a differentiation between slow
honest nodes and Byzantine nodes is not possible in an asynchronous network, while for
t = 0, 2f + 1 nodes are mandatory to achieve consistency. At least n− t− f nodes, which
are not in the crashed state at the end of a protocol, are termed finally up nodes.

4.2.3 Complexity and Cryptographic Assumptions

Cryptographic Assumptions. Our adversary is computationally bounded with a se-
curity parameter κ and it has to break the DLog assumption (Definition 2.5) of size κ-bits
to break the security of the protocols. Further, as discussed in Section 2.4, our t-limited
adversary is also static.
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We use a PKI infrastructure in the form of a PKI hierarchy with an external certifying
authority (CA) or web-of-trust among nodes to achieve authenticated and confidential
communication with TLS links, and message authentication with any digital signature
scheme secure against adaptive chosen-message attacks [GMR88]. Each node also has a
unique identifying index. We assume that indices and public keys for all nodes are publicly
available in the form of certificates. It is possible to achieve similar security guarantees in
a symmetric-key setting with long-term keys.

Complexity Assumptions. In our hybrid model, nodes may crash and recover repeat-
edly with a maximum of f crashed nodes at any instant. We still need to bound the
crashes as an unbounded number of crashes can cause the protocol execution time to be
unbounded. We restrict the adversary by a function d(·) that represents the maximum
number of crashes that it is allowed to perform during its lifetime and parametrize d(·)
with the security parameter κ. Note that, based on the system requirements, it is possible
to make d(·) constant or parametrize it with n, t or f .

Work done by honest parties can be measured by a protocol statistic X, which is a
family of real-valued non-negative random variables {XA(κ)}, parametrized by adversary
A and κ. Each XA(κ) is a random variable induced by running the system with A. A
protocol statistic X is called uniformly bounded if there exists a fixed polynomial T (κ)
such that for all adversaries A, there is a negligible function εA, such that for all κ ≥ 0,
Pr[XA(κ) > T (κ)] ≤ εA(κ). As we consider a computationally bounded adversary, we
aim at polynomially bounded system execution space and time and bounding protocol
complexities by a polynomial in the adversary’s running time.

For crash-recovery situations, Backes and Cachin introduce the notion of d-uniformly
bounded statistics [BC03, Def. 1]. Here, a bounded protocol statistic X is considered to be
d-uniformly bounded (by T1 and T2) for a function d(κ) if there exist two fixed polynomials
T1 and T2 such that for all adversaries A, there exists a negligible function εA(κ) such that
for all κ ≥ 0, Pr[XA(κ) > d(κ)T1(κ) + T2(κ)] ≤ εA(κ). In order words, the complexity
of the protocol is uniformly bounded if no crash occurs (which is ensured by T2), and the
computational overhead caused by each crash is also uniformly bounded (ensured by T1).
Similar to [BC03], we expect that the bit complexity of a protocol is d-uniformly bounded
for some polynomial d.

4.3 Verifiable Secret Sharing for the Hybrid Model

VSS is the fundamental building block for DKG. Our VSS protocol modifies the AVSS
protocol [CKAS02] for our hybrid model. We include recovery messages similar to those
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from the reliable broadcast protocol by Backes and Cachin [BC03]. We achieve a constant-
factor reduction in the protocol complexities using symmetric bivariate polynomials.

4.3.1 Construction: HybridVSS

As usual, our VSS protocol is composed of a sharing protocol (Sh) and a reconstruction pro-
tocol (Rec). In protocol Sh, a dealer Pd upon receiving an input message (Pd, τ, in, share, s),
shares the secret s, where a counter τ and the dealer identity Pd forms a unique session
identifier. Node Pi finishes the Sh protocol by outputting a (Pd, τ, out, shared, C, si) mes-
sage, where C is the commitment and si is its secret share. Any time after that, upon
receiving an input message (Pd, τ, in, reconstruct), Pi starts the Rec protocol. The Rec pro-
tocol terminates for a node Pi by outputting a message (Pd, τ, out, reconstructed, zi), where
zi is Pi’s reconstructed value of the secret s. Note that, for the simplicity of discussion, we
use DLog commitments instead of the Pedersen commitments used in the original AVSS
protocol and achieve VSS-wS secrecy (as defined in Section 2.2). It is easily possible to
use Pedersen commitments instead and achieve VSS-S secrecy.

Definition 4.1. In session (Pd, τ), protocol VSS in our hybrid model (HybridVSS) having
an asynchronous network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary
and f -limited crashes and network failures satisfies the following conditions:

Liveness. If the dealer Pd is honest and finally up in the sharing stage of session (Pd, τ),
then all honest finally up nodes complete protocol Sh.

Agreement. If some honest node completes protocol Sh of session (Pd, τ), then all honest
finally up nodes will eventually complete protocol Sh in session (Pd, τ). If all honest
finally up nodes subsequently start protocol Rec for session (Pd, τ), then all honest
finally up nodes will finish protocol Rec in session (Pd, τ).

Correctness. Once t+ 1 honest nodes complete protocol Sh of session (Pd, τ), then there
exists a fixed value z such that

• if the dealer is honest and has shared secret s in session (Pd, τ), then z = s, and

• if an honest node Pi reconstructs zi in session (Pd, τ), then zi = z.

This is equivalent to the strong correctness (VSS-SC) property defined in Section 2.2.

Secrecy. If an honest dealer has shared secret s in session (Pd, τ) and no honest node has
started the Rec protocol, then, except with negligible probability, the adversary cannot
compute the shared secret s. This is equivalent to the VSS-wS secrecy property defined
in Section 2.2.
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Sh protocol for node Pi and session (Pd, τ)

upon initialization:
for all C do
AC ← ∅; eC ← 0; rC ← 0
cnt← 0; cnt` ← 0 for all ` ∈ [1, n]

upon a message (Pd, τ, in, share, s): /* only Pd */
choose a symmetric bivariate polynomial φ(x, y) =

∑t
j,`=0 φj`x

jy` ∈R Zp[x, y] such that φ00 = s

C ← {Cj`}tj,`=0 where Cj` = gφj` for j, ` ∈ [0, t]
for all j ∈ [1, n] do
aj(y)← φ(j, y); send the message (Pd, τ, send, C, aj) to Pj

upon a message (Pd, τ, send, C, a) from Pd (first time):
if verify-poly(C, i, a) then

for all j ∈ [1, n] do
send the message (Pd, τ, echo, C, a(j)) to Pj

upon a message (Pd, τ, echo, C, α) from Pm (first time):
if verify-point(C, i,m, α) then
AC ← AC ∪ {(m,α)}; eC ← eC + 1
if eC = dn+t+1

2 e and rC < t+ 1 then
Lagrange-interpolate a from AC
for all j ∈ [1, n] do

send the message (Pd, τ, ready, C, a(j)) to Pj

upon a message (Pd, τ, ready, C, α) from Pm (first time):
if verify-point(C, i,m, α) then
AC ← AC ∪ {(m,α)}; rC ← rC + 1
if rC = t+ 1 and eC < dn+t+1

2 e then
Lagrange-interpolate a from AC
for all j ∈ [1, n] do

send the message (Pd, τ, ready, C, a(j)) to Pj
else if rC = n− t− f then
si ← a(0); output (Pd, τ, out, shared, C, si)

upon a message (Pd, τ, in, recover):
send the message (Pd, τ, help) to all the nodes
send all messages in B

upon a message (Pd, τ, help) from P`:
if cnt` ≤ d(κ) and cnt ≤ (t+ 1)d(κ) then
cnt` ← cnt` + 1; cnt← cnt+ 1
send all messages of B`

Figure 4.1: HybridVSS protocol (Sharing step)

Efficiency. The bit complexity for any instance of HybridVSS is d-uniformly bounded.
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Rec protocol for node Pi and session (Pd, τ)

upon a message (Pd, τ, in, reconstruct):
c← 0; S ← ∅
for all j ∈ [1, n] do

send the message (Pd, τ, reconstruct-share, si) to Pj

upon a message (Pd, τ, reconstruct-share, σ) from Pm:

if (gσ =
∏t
j=0(Cj0)m

j

) then
S ← S ∪ {(m,σ)}; c← c+ 1
if c = t+ 1 then

interpolate constant term (zi) from S; output (Pd, τ, out, reconstructed, zi)

Figure 4.2: HybridVSS protocol (Reconstruction step)

Figure 4.1 describes the Sh protocol and Figure 4.2 describes the Rec protocol. We
use pseudo-code notation and include a special condition upon to define actions based on
messages received from other nodes or system events. C is a matrix of commitment entries
and eC and rC are Pi’s associated counters for echo and ready messages, respectively. In
order to facilitate recovery of the crashed nodes, each node Pi stores all outgoing messages
along with their intended recipients in a set B. B` indicates the subset of B intended for
the node P`. Counters cnt and cnt` keep track of the numbers of overall help requests
and help requests sent by each node P` respectively. In presence of crash-recoveries and
malicious nodes, a node may receive a message identified by Pd, τ and C multiple times.
According to the protocol definition, it processes the message only the first time it receives
it, and ignores subsequent receipts. We use the following predicates in our protocol.

verify-poly(C, i, a) verifies that the given polynomial a of Pi is consistent with the com-
mitment C. Here, a(y) =

∑t
`=0 a`y

` is a degree t polynomial. The predicate is true if

and only if ga` =
∏t

j=0(Cj`)i
j

for all ` ∈ [0, t].

verify-point(C, i,m, α) verifies that the given value α corresponds to the polynomial eval-
uation φ(m, i). It is true if and only if gα =

∏t
j,`=0 (Cj`)m

ji` .

Note that the AVSS and our HybridVSS schemes use bivariate polynomials, as they
guarantee that the interpolated polynomials a are of degree t or less. If the univariate
polynomials with the constant term equal to the secret s are instead used by dealers in
the send messages and the univariate polynomials with the constant term equal to their
shares si are instead used by nodes in the echo and ready messages, then degrees of the
interpolated polynomials a will be greater than t with overwhelming probability.
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4.3.2 Analysis

The main theorem for HybridVSS is as follows.

Theorem 4.2. With the DLog assumption, protocol HybridVSS implements asynchronous
verifiable secret sharing in the hybrid model for n ≥ 3t+ 2f + 1.

Proof. We need to show liveness, agreement, correctness, secrecy, and efficiency. We com-
bine proof strategies from AVSS [CKAS02, Sec. 3.3] and reliable broadcast [BC03, Sec.
3.3] to achieve this. We start by referring to two lemmas.

Lemma 4.3 (Lemma 1 [BC03]). Let Pi be a finally up party during session (Pd, τ). Then
every distinct message sent to Pi by another finally up party Pj during session (Pd, τ) will
be received by Pi in a non-crashed state, provided all associated messages are delivered.

Lemma 4.4 (Lemma 2 [CKAS02]). Suppose an honest node Pi sends a ready message
containing commitment Ci and a distinct honest node Pj sends a ready message containing
commitment Cj. Then Ci = Cj.

Liveness. Here, we prove that if the dealer Pd is honest and finally up during the sharing
stage of session (Pd, τ), then all honest finally up nodes complete protocol Sh.

We assume that the dealer Pd is honest and finally up. According to Lemma 4.3,
send messages of the form (Pd, τ, send, C, ai) sent by Pd to each finally up node Pi will
eventually be received and verified by each such Pi. Each of these honest and finally up
nodes (at least n − t − f) will send an echo message of the form (Pd, τ, echo, C, ai(j)) to
each system node Pj. Using Lemma 4.3, every finally up honest node will thus receive at
least n − t − f valid echo messages. A valid echo and ready message is one that satisfies
verify-point. As n − t − f ≥ dn+t+1

2
e for n ≥ 3t + 2f + 1, every honest finally up node

Pj will send ready message (Pd, τ, ready, C, aj(m)) to every system-node Pm as either the
received echo messages are greater than required bound (dn+t+1

2
e) or it has already received

t + 1 ready messages. As all ready messages will be eventually received by the finally up
nodes according to Lemma 4.3, each finally up honest node will receive at least n− t− f
verifiably correct ready messages. Consequently, each honest finally up node will complete
the protocol Sh by outputting (Pd, τ, shared) messages.

Agreement. We first show that if some honest node completes protocol Sh of (Pd, τ),
then all honest finally up nodes will eventually complete protocol Sh during session (Pd, τ).
An honest node completes the sharing when it receives n− t− f valid ready messages. At
least t+ f + 1 of those have been sent by honest nodes. Using the definitions of verify-poly
and verify-point, the honest node sends only valid ready messages. Further, when sending,
an honest node sends ready messages to all system nodes. Thus, using Lemma 4.4, every
honest finally up node receives at least t + f + 1 valid ready messages with the same
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commitment C and sends a ready message containing C. Consequently, every honest finally
up node receives n− t− f valid ready messages with commitment C and completes the Sh
protocol.

For protocol Rec, we show that if all honest finally up nodes subsequently begin protocol
Rec for session (Pd, τ), then all honest finally up nodes will finish protocol Rec during session
(Pd, τ) by reconstructing s′i. As discussed above, at the end of the sharing step, every honest
finally up node Pi computes the same commitment C. Moreover, Pi has received enough
valid echo or ready messages with commitment C and it computes valid ready messages and a
valid share si with respect to C (si such that (gsi =

∏t
j=0(Cj0)m

j
) holds). Thus, if all honest

servers subsequently start the reconstruction stage, then every server receives enough valid
shares to reconstruct some value, provided the adversary delivers all associated messages.

Correctness (VSS-SC). Suppose an honest dealer has shared a degree-t symmetric bi-
variate polynomial φ(x, y) with constant term equal to the shared secret s. As the dealer
is honest, an echo message that an honest node Pi receives from another honest node Pj
contains C, φ(j, i). As the required number of echo messages before interpolating the final
univariate polynomial at a node is equal to dn+t+1

2
e, it is impossible for faulty nodes to

make a node accept commitment C ′ different from commitment C suggested by the dealer.
Subsequently, such an honest node Pi, after verification with verify-point, interpolates a
polynomial a(y) such that a(y) = φ(i, y). Assume an honest node receives t+ 1 ready mes-
sages before obtaining dn+t+1

2
e commitment C echo messages. Using Lemma 4.4 all these

ready messages have the same commitment and with at least of one of them from an honest
node, it is equal to C. The honest node will interpolate the same a(y) as in the case of the
echo messages. Using the agreement property, if a node completes the protocol Sh, then all
honest nodes will eventually finish it. Let S be any set of t+1 honest nodes (Pj) that have
finished the sharing. Let sj,d represent the share for node Pj such that sj,d = a(0) = φ(j, 0).
Let λSj be Lagrange interpolation coefficients for the set S and position 0. We have

z =
∑
Pj∈S

λS,0j sj,d

=
∑
Pj∈S

λS,0j φ(j, 0)

= s

and if the dealer is honest and has shared secret s during session (Pd, τ), then z = s.

To prove the second part, assume that two distinct honest servers Pi and Pj reconstruct

values zi and zj by interpolating two distinct sets Si = {`, s(i)
` } and Sj = {`, s(j)

` } of t + 1
shares each, which are valid with respect to the unique commitment C using Lemma 4.4.
As the shares in Si and Sj are verified against commitment C and they are valid, it is easy
to see that gzi = C00 = gzj . As g is a generator for a prime order group, zi = zj.
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Secrecy (VSS-wS). To prove the secrecy property, we use the DLog assumption. The
adversary’s view consists of polynomials φ(i, y) for these Byzantine nodes i, and the com-
mitment matrix C and the generator g provided by the dealer. Assume that there is an
adversary algorithm A that can compute the shared secret s given g, C and t degree-t
univariate polynomials consistent with C. We prove that a challenger B with an oracle
access to such an adversary algorithm A can solve any DLog instance (g, gα).

Given a DLog instance (g, gα), the challenger B generates t degree-t polynomials ri(y) ∈
Zp[y] and associates them with non-zero indices i. It then computes gri(0) for each index
i, sets gr0(0) = gα and computes C0,k = Ck,0 for k ∈ [0, t] by interpolation. Proceeding
similarly, for each 0 < ` ≤ t, it uses C0,` and gri(`) for each index i and computes C`,k = Ck,`
and completes the symmetric commitment matrix C which is consistent with gα as C0,0

and polynomials ri(y). B can then present this matrix C along with polynomials ri to the
adversary algorithm A and return the output s = α as the DLog value for tuple (g, gα).
As this is not possible, except with negligible probability, we have proven that if an honest
dealer has shared secret s during session (Pd, τ) and no honest node has started the Rec
protocol, then the adversary cannot compute the secret s except with negligible probability.

Note that, using Pedersen commitments instead of DLog commitments, we can easily
achieve and prove the VSS-S property that the adversary has no information about the
shared secret s.

Efficiency. Initially, we discuss complexities when there are no crashes. A protocol
execution without any crashes has O(n2) message complexity and O(κn4) bit complexity
where the size of the message is dominated by the commitment matrix C having t(t+1)/2 =
O(n2) entries. Using a collision-resistant hash function, Cachin el al. [CKAS02, Sec. 3.4]
suggest a way to reduce the bit complexity to O(κn3). In this approach, commitments are

generated using the exponentiated form of bivariate polynomial evaluations (A
(i)
j = gφ(i,j)).

Let A(j) = 〈A(j)
0 , A

(j)
1 , . . . , A

(j)
n 〉. In this case, the bit complexity gets reduced by a linear

factor using the A(0) vector and a vector h = 〈h1, . . . , hn〉, where H is collision-resistant
hash function and hj = H(A(j)).

Now, assume there are crashes and there are subsequent recoveries. As defined ear-
lier, d(κ) bounds the number of possible crashes in the system. In addition, each of the
Byzantine nodes may produce unlimited false help messages, out of which first d(κ) will
be answered by honest nodes. Therefore, each honest node will in total answer up to
(t + 1)d(κ) help messages. The recovery mechanism requires O(n2) messages from the
recovering node and O(n) messages from each helper node. Therefore, the total message
and bit complexity of HybridVSS are O(tdn2) and O(κtdn3) respectively and we obtain a
uniform polynomial bound on the bit complexity.
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PolyCommit to Asynchronous VSS. The above VSS uses commitments of size Θ(κn)
in the case of commitment vectors and Θ(κn2) in the case of commitment matrices. This
leads to bit complexities of Θ(κn3) and Θ(κn4) respectively. We are currently working on a
bivariate version of our PolyCommit scheme defined in Section 3.3, which with its constant
size commitments, may reduce this bit complexity further to Θ(κn2).

4.4 Distributed Key Generation for the Hybrid Model

HybridVSS requires a dealer (Pd) to select a secret and to initiate a sharing. DKG, going
one step further, generates a secret in a completely distributed fashion, such that none
of the system nodes knows the secret, while any t + 1 nodes can combine their shares to
determine it. Although it seems that a DKG is just a system with n nodes running their
VSSs in parallel and summing all the received shares together at the end, it is not that
simple in an asynchronous setting. Agreeing on t+1 or more VSS instances such that all of
them will finish for all the honest nodes (the agreement on a set problem [BOCG93]), and
the difficulty of differentiating between a slow node and a faulty node in the asynchronous
setting are the primary sources of the added complexity.

In our hybrid system model, with no timing assumption, the node cannot wait for more
than n − t − f VSSs to finish. The adversary can certainly make agreeing on a subset of
size t+ 1 among those nodes impossible, by appropriately delaying its messages. Cachin et
al. [CKAS02] solve a similar agreement problem in their proactive refresh protocol using a
multi-valued validated Byzantine agreement (MVBA) protocol. Known expected constant-
round MVBA protocols [CKPS01] require threshold signature and threshold coin-tossing
primitives [CKS00]. The algorithms suggested for both of these primitives in [CKS00]
require either a dealer or a DKG. As we aim to avoid the former (dealer) in this work and
the latter (DKG) is our aim itself, we cannot use their MVBA protocol.

In more technical terms, randomization in the form of distributed coin tossing or equiv-
alent randomization functionality is necessary for an expected constant-round Byzantine
agreement such as MVBA [CKPS01]; it thwarts the attack possible with an adversary
knowing the pre-defined node selection order by making completely random selections.
However, an efficient algorithm for dealerless distributed coin tossing without a DKG is
difficult to achieve. Canetti and Rabin [CR93] define a dealerless distributed coin tossing
protocol without DKG; however, their protocol requires n2 VSSs for each coin toss and is
consequently inefficient. Therefore, we refrain from using randomized agreement.

We follow a much simpler approach with the same bit complexity as MVBA protocols.
We use a leader-initiated reliable broadcast system with a faulty-leader change facility,
inspired by Castro and Liskov’s view-change protocol [CL02]. We choose this (optimistic
phase + pessimistic phase) approach, as we expect the Byzantine failures to be infrequent
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in practice. The probability that the current leader of the system is not behaving correctly
is small and it is not worth spending more time and bandwidth by broadcasting proposals
by all the nodes during every MVBA. With this background, we now define and analyze
our DKG protocol (HybridDKG).

4.4.1 Construction: HybridDKG

In HybridDKG, for session τ and leader L, each node Pd selects a secret value sd and shares
it among the group using protocol Sh of HybridVSS for session (Pd, τ). Each node finishes
the HybridDKG protocol by outputting a (L, τ,DKG-completed, C, si) message, where si and
C are its share and the commitment respectively and L is the finally agreed upon leader.

Definition 4.5. In session τ , protocol HybridDKG in our hybrid model having an asyn-
chronous network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary and
f -limited crashes and network failures satisfies the following conditions:

Liveness. All honest finally up nodes complete protocol HybridDKG in session τ , except
with negligible probability.

Agreement. If some honest node completes protocol HybridDKG in session τ , then, except
with negligible probability, all honest finally up nodes will eventually complete protocol
HybridDKG in session τ .

Correctness. Once an honest node completes the HybridDKG protocol for session τ , then
there exists a fixed value s such that, if an honest node Pi reconstructs zi in session
τ , then zi = s. This is equivalent to the weak correctness (DKG-wC) property defined
in Section 2.3.

Secrecy. If no honest node has started the Rec protocol, then, except with negligible prob-
ability, the adversary cannot compute the shared secret s. This is equivalent to the
DKG-wS secrecy property defined in Section 2.3.

Efficiency. The bit complexity for any instance of HybridDKG is d-uniformly bounded.

We first describe the optimistic phase of our HybridDKG protocol. For each session τ ,
one among n nodes works as a leader. The leader L, once it finishes the VSS proposal
by t + 1 nodes with (Pd, τ, out, shared, Cd, si,d), broadcasts the n − t − f ready messages

(set R̂) it received for each of those t+ 1 finished VSSs (set Q̂). Nodes include signatures
with ready messages to enable the leader to provide a validity proof for its proposal. In
this extended HybridVSS protocol, shared messages look like (Pd, τ, out, shared, Cd, si,d,Rd),
where a set Rd includes n − t − f signed ready messages for session (Pd, τ). Once this

52



Optimistic phase for node Pi in Session (τ) with Leader L
upon initialization:
eL,Q ← 0; rL,Q ← 0 for every Q; Q ← ∅; Q̂ ← ∅
M← R̂ ← n− t− f signed lead-ch messages for L
cnt← 0; cnt` ← 0 for all ` ∈ [1, n]; lcL ← 0 for each L; lcflag ← false ; Lnext ← L+ n− 1
for all d ∈ [1, n] do

initialize extended-HybridVSS Sh protocol (Pd, τ)
upon (Pd, τ, out, shared, Cd, si,d,Rd) (first time):

Q̂ ← {Pd}; R̂ ← {Rd}
if |Q̂| = t+ 1 and Q = ∅ then

if Pi = L then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
delay ← delay(T ); start timer(delay)

upon a message (L, τ, send,Q,R/M) from L (first time):
if verify-signature(Q,R/M) and (Q = ∅ or Q = Q) then

send the message (L, τ, echo,Q)sign to each Pj

upon a message (L, τ, echo,Q)sign from Pm (first time):
eL,Q ← eL,Q + 1
if eL,Q = dn+t+1

2 e and rL,Q < t+ 1 then
Q ← Q; M← dn+t+1

2 e signed echo messages for Q
send the message (L, τ, ready,Q)sign to each Pj

upon a message (L, τ, ready,Q)sign from Pm(first time):
rL,Q ← rL,Q + 1
if rL,Q = t+ 1 and eL,Q < dn+t+1

2 e then
Q ← Q; M← t+ 1 signed ready messages for Q
send the message (L, τ, ready,Q)sign to each Pj

else if rL,Q = n− t− f then
stop timer, if any; wait for shared output-messages for each Pd ∈ Q
si ←

∑
Pd∈Q si,d; ∀p,q : Cp,q ←

∏
Pd∈Q(Cd)p,q; output (L, τ,DKG-completed, C, si)

upon timeout:
if lcflag = false then

if Q = ∅ then
lcflag ← true; send msg (τ, lead-ch,L+ 1, Q̂, R̂)sign to each Pj

else
lcflag ← true; send msg (τ, lead-ch,L+ 1,Q,M)sign to each Pj

upon (L, τ, in, recover):
send the message (L, τ, help) to all the nodes; send all messages in BL,τ

upon a message (L, τ, help) from P`:
if cnt` ≤ d(κ) and cnt ≤ (t+ 1)d(κ) then
cnt` ← cnt` + 1; cnt← cnt+ 1; send all messages of B`(L,τ)

Figure 4.3: HybridDKG protocol (Optimistic phase)
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Leader-change for node Pi in session (τ) with Leader L
upon a msg (τ, lead-ch,L,Q,R/M)sign from Pj(first time):

if L > L and verify-signature(Q,R/M) then
lcL ← lcL + 1; Lnext ← min (Lnext,L)
if R/M = R then Q̂ ← Q; R̂ ← R
else Q ← Q; M←M
if (
∑
lcL = t+ 1 and lcflag = false) then

if Q = ∅ then
send the msg (τ, lead-ch,Lnext, Q̂, R̂) to each Pj

else
send the msg (τ, lead-ch,Lnext,Q,M) to each Pj

else if (lcL = n− t− f) then
M← R̂ ← n− t− f signed lead-ch messages for L
L ← L; lcL ← 0; Lnext ← L− 1; lcflag = false
if Pi = L then

if Q = ∅ then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
send the message (L, τ, send,Q,M) to each Pj

else
delay ← delay(T ); start timer(delay)

Figure 4.4: HybridDKG protocol (Pessimistic phase)

broadcast completes, each node knows t + 1 VSS instances to wait for. Once a node Pi
finishes those, it sums the shares si,d to obtain its final share si.

If the leader is faulty or slow and does not proceed with the protocol or sends arbitrary
messages, the protocol enters into a pessimistic phase. Here, other nodes use a leader-
change mechanism to change their leader with a pre-defined cyclic permutation and provide
liveness without damaging system safety. Without loss of generality, we assume that the
permutation is a linear sorted order of node indices. Every unsatisfied node sends a signed
leader-change (lead-ch) request to all the nodes for the next leader L + 1 if it receives an
invalid message from the existing leader L or if its timer timed out. Timeouts are based
on the function delay(T ) described in Section 4.2.1. When a node collects t + 1 lead-ch
messages for leaders L + δ for small positive integers δ, it is confirmed that at least one
honest node is unsatisfied and it sends a lead-ch message to all the nodes for the smallest
leader among those requested, if it has not done that yet. Once a node receives n− t− f
lead-ch requests for a leader L > L, it accepts L as the new leader and enters into the
optimistic phase.

The new leader enters into the optimistic phase by sending a send message for set Q if
it is non-empty or else for set Q̂. Set Q̂ contains the indices of nodes whose VSS instances
have completed at one more nodes, while set Q is a set of nodes broadcast by the current
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or a previous leader such that an honest node might have completed that broadcast. In
case of leader change, set Q avoids two honest nodes finishing with two different VSSs
sets with two different leaders. Once a node receives dn+t+1

2
e echo messages or t+ 1 ready

messages, Q̂ is assigned to Q as some or all honest nodes might complete the broadcast
even if other times out. Q ensures that the new leader broadcasts the same set Q̂ and
all honest nodes delivers the same set in the agreement. Set M attached to Q contains
dn+t+1

2
e signed echo messages or t + 1 signed ready messages for Q. Along with condition

(|Q̂| = t + 1 and Q = ∅), set M avoids wrong broadcast sets from the dishonest nodes.
While sending its proposal, L also includes lead-ch signatures received from n− t−f nodes
to prove its validity to the nodes who have not received enough lead-ch messages. As in
HybridVSS, the set B contains all outgoing messages at a node along with their intended
recipients and B` represents the subset of messages destined for node P`. Counters cnt
and cnt` keep track of the numbers of overall help requests and help requests sent by
each node P` respectively. Figures 4.3 and 4.4 present the optimistic and the pessimistic
phases of the HybridDKG protocol. Protocol HybridDKG-Rec remains exactly the same as
HybridVSS Rec protocol in Figure 4.2. We denote these Sh and Rec as HybridDKG-ShDLog

and HybridDKG-RecDLog. For node Pi, they are declared as follows.(
C(s)
〈g〉, si

)
= HybridDKG-ShDLog(n, t, f, t̃, g, αi) (4.1)

s = HybridDKG-RecDLog(t, C
(s)
〈g〉, si) (4.2)

Here, t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t+1), g ∈ G is a commitment

generator, αi ∈ Zp is a secret shared by Pi, and C(s)
〈g〉 = [gs, gφ(1), · · · , gφ(n)] is the discrete

logarithm commitment vectors for φ ∈ Zp[x] of degree t with s = φ(0) and si = φ(i).

4.4.2 Analysis

The main theorem for our HybridDKG is as follows.

Theorem 4.6. With the DLog assumption, protocol HybridDKG provides an asynchronous
distributed key generation mechanism in the hybrid model for n ≥ 3t+ 2f + 1.

We need to show the liveness, agreement, correctness, secrecy, and efficiency of our
HybridDKG protocol.

Liveness. In HybridVSS, if the dealer is honest and finally up, then all honest finally up
nodes complete the sharing initiated by it. With n− t− f honest finally up nodes in the
system, each honest finally up node will eventually complete t + 1 HybridVSS sharings,
as required. Each such node will start a timer upon completing these t + 1 HybridVSS
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instances. If the leader is honest and uncrashed, it also completes t+1 HybridVSS instances,
and broadcasts its proposal; based on the liveness property of reliable broadcast [BC03],
each honest finally up node delivers the same verifiable proposal. Honest finally up nodes
stop their timers when they complete this reliable broadcast. To finish, according to the
HybridVSS agreement properties, all honest finally up nodes complete protocol Sh for nodes
in this proposal.

If the leader is compromised, crashed or does not finish its broadcast before a timeout at
an honest node, then a signed lead-ch request is broadcast by that honest node (pessimistic
phase). After receiving n−t−f lead-ch requests, the new leader takes over, each honest node
starts a timer for the proposal from the new leader, and the protocol reenters the optimistic
phase. As the number of crashes is polynomially bounded and the network eventually gets
repaired resulting in message delays becoming eventually bounded by delay(T ), an honest
finally up leader will eventually reliably broadcast a proposal and protocol HybridDKG will
complete. The requirement of n−t−f lead-ch requests for a leader replacement makes sure
that nodes do not complete the leader-change too soon. An honest node sends a signed
lead-ch message for the smallest leader (among the received set) if it receives t+ 1 lead-ch
messages, even if it has not observed any fault, as this indicates that at least one honest
node has observed some fault and the node does not want to start the leader-change too
late.

Agreement. An honest node completes HybridDKG when it completes a reliable broadcast
of the current leader’s sharing proposal, finishes HybridVSS sharing by t+ 1 nodes in that
proposal, and computes its final share as a summation of the shares obtained from these
t+1 sharings. According to the agreement property of the reliable broadcast, if one honest
node completes the protocol, then all honest finally up nodes will eventually complete the
protocol. Further, when only some (but not all) nodes complete the reliable broadcast
before a leader-change, sets Q and M ensure that all nodes complete a reliable broadcast
for the same Q after the leader-change. According to the agreement property of the
HybridVSS, once an honest node completes a set of t + 1 sharings, then all honest finally
up nodes will eventually complete all of these t+ 1 sharings. Consequently, once an honest
node completes HybridDKG then all honest finally up nodes will eventually complete the
HybridDKG protocol.

Correctness (DKG-wS). According to the agreement property, once an honest node
completes the HybridDKG for session (τ), then all (n− t− f) honest finally up nodes will
eventually complete the HybridDKG protocol. According to the correctness property of the
reliable broadcast protocol, each of these nodes will decide the same set of t+ 1 sharings.
Further, when only some (but not all) nodes complete the reliable broadcast before a
leader-change, sets Q and M make sure that all nodes complete a reliable broadcast for
the same Q after the leader-change. For each of the completed sharings, if run individually,
each node Pi will reconstruct the same shared secret zi,d where Pd is the dealer for the
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sharing. Let zi =
∑

Pd∈Q zi,d. As nodes add their shares for the completed t + 1 sharings
as the HybridDKG finishes and as Lagrange-interpolation is homomorphic over addition, on
reconstruction after the HybridDKG protocol each node will output the same zi = s.

Secrecy (DKG-wS). In HybridDKG sharings by t + 1 nodes are used, where at least
one of those shared secrets was proposed by an honest party. In a reliable broadcast, two
honest nodes always finish the protocol with the same message; therefore, the same t + 1
sharings are completed by all the honest nodes. For a HybridVSS execution, if the dealer
Pd is honest then until the reconstruction protocol starts, the adversary cannot compute
the shared secret sd. Therefore, at the end of HybridDKG protocol, the adversary does not
know at least one of the t + 1 shared secrets. As the system’s secret s =

∑
Pd∈Q sd, the

adversary cannot compute the shared secret s.

Efficiency. The message and bit complexities of HybridVSS are O(tdn2) and O(κtdn3) re-
spectively. In the HybridDKG protocol with the asynchronous communication assumption,
the system may complete all n VSS executions, even though the required execution count is
just t+ 1; thus, the message and bit complexities of the possible n HybridVSS Sh protocols
in HybridDKG are O(tdn3) and O(κtdn4) respectively. If the HybridDKG protocol completes
without entering into the pessimistic phase, then the system only needs one reliable broad-
cast of message of size O(κn), message complexity O(tdn2) and bit complexity O(κtdn3).
As a result, the optimal message and bit complexities for the HybridDKG protocol are
O(tdn3) and O(κtdn4) respectively. In the pessimistic case, the total number of leader
changes is bounded by O(d). Each leader change involves O(tdn2) messages and O(κtdn3)
communication bits. For each faulty leader, O(tdn2) messages and O(κtdn3) bits are com-
municated during its administration. Therefore, in the worst case, O(td2n2) messages and
O(κtd2n3) bits are communicated before the HybridDKG completes and worst case message
and bit complexities of the HybridDKG protocol are O(tdn2(n + d)) and O(κtdn3(n + d))
respectively. Note that considering just a t-limited Byzantine adversary (and not also
crashes and link failures), the above complexities become O(n3) and O(κn4) respectively.
These are same as the complexities of the share refresh protocol for AVSS [CKAS02].

4.5 Achieving Uniform Randomness in HybridDKG

The shared secret in the above HybridDKG may not be uniformly random; this is a direct
effect of using only the discrete logarithm commitments (see [GJKR07, Section 3] for
details). In many cases, we do not need a uniformly random secret key; the security of
these schemes relies on the assumption that the adversary cannot compute the secret.
However, a uniformly random shared secret may be required in some protocols. In that
case, we use Pedersen commitments, but we do not employ the methodology defined by
Gennaro et al. [GJKR07], which increases the latency in the system. We observe instead
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that with the random oracle assumption, the communicationally demanding technique by
Gennaro et al. can be replaced with the much simpler NIZK proof of equality of committed
values (NIZKPK≡Com) described in Equation 2.2 in Section 2.7. Here, given a discrete
logarithm commitment C〈g〉(s) and a Pedersen commitment C〈g,h〉(s, s′) for s, s′ ∈ Zp, a
prover proves that she knows s and s′ such that C〈g〉(s) = gs and C〈g,h〉(s, s′) = gshs

′
. We

represent HybridDKG protocols using Pedersen commitments as HybridDKGPed. For node
Pi, the corresponding HybridDKG-Sh and HybridDKG-Rec schemes are defined as follows.(

C(s,s′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)
= HybridDKG-ShPed(n, t, f, t′, g, h, αi, α

′
i) (4.3)

s = HybridDKG-RecPed(t, C(s,s′)
〈g,h〉 , si, s

′
i) (4.4)

Here, t′ is the number of VSS instances to be chosen (t < t′ ≤ 2t+1), g, h ∈ G are commit-
ment generators, αi, α

′
i ∈ Zp are respectively a secret and randomness shared by Pi, and

C(s)
〈g〉 = [gs, gφ(1), · · · , gφ(n)] and C(s,s′)

〈g,h〉 = [gshs
′
, gφ(1)hφ

′(1), · · · , gφ(n)hφ
′(n)] are respectively

the discrete logarithm and Pedersen commitment vectors for φ, φ′ ∈ Zp[x] of degree t with
φ(0) = s and φ′(0) = s′. The optional NIZKPK≡Com is a vector of zero-knowledge proofs

of knowledge that the corresponding entries of C(s)
〈g〉 and C(s,s′)

〈g,h〉 commit to the same values.

In the HybridDKGPed protocol, we use Pedersen commitments in HybridVSS. At the
end, each node adds the discrete logarithm commitment of its share and the correspond-
ing NIZKPK≡Com in its DKG-completed message and sends this DKG-completed message
removing the share to each of the other nodes. HybridDKGPed achieves the same liveness
and agreement guarantees as those of HybridDKGDLog, while for correctness and secrecy
it respectively achieves DKG-C and DKG-S properties instead of their weaker version in
HybridDKGDLog.

Proof. The liveness and agreement proofs are the same as those of HybridDKGDLog.

Correctness (DKG-C). For DKG-C, we need to prove the following three properties.

1. There is an efficient algorithm that on input shares from 2t+ 1 nodes and the public
information produced by the HybridDKG protocol, output the same unique value s,
even if up to t shares are submitted by malicious nodes.

2. At the end of Sh phase of HybridDKGPed, all honest nodes have the same value of
public key Y = gs, where s the unique secret guaranteed above.

3. s and Y are uniformly distributed in Zn and G respectively.

The first two properties are the same as those in HybridDKGDLog and we only need to prove
the third property.
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Algorithm for Simulator S
Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run by
the simulator). Without loss of generality, B = [P1, Pt′ ] and G = [Pt′+1, Pn], where t′ ≤ t. Let Y ∈ G
be the input public key and H≡Com : G6 → Zp is a random oracle hash table for NIZKPK≡Com.

1. Perform all steps on behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly as in the HybridDKG
protocol until the DKG-completed message. Once a node is ready to sent the DKG-completed
message, the following holds:

• Set Q is well defined with at least one honest node in it.

• The adversary’s view consists of polynomials φ(j)(x, y) for j ∈ B, the share polynomials
a
(i)
j y = φ(i)(j, y) for Pi ∈ Q, Pj ∈ B, and commitments Ci for Pi ∈ Q.

• S knows all polynomials φ(i)(x, y) for Pi ∈ Q as it knows n− t′ shares for each of those.

2. Perform the following computations for each i ∈ [t+ 1, n] before starting Step 6:

(a) Compute s′j for Pj ∈ [1, n] and sj for Pj ∈ B. Interpolate (in exponent) (0, Y ) and
(j, gsj ) for j ∈ [1, t] to compute C〈g〉(s∗i ) = gs

∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenge ci ∈R Zp
and responses ui,1, ui,2 ∈R Zp, computing the commitments ti,1 = (gs

∗
i )cigui,1 and ti,2 =

C〈g,h〉(si,ri)

C〈g〉(s∗i )

ci

hui,2 and include entry 〈(g, h, C〈g〉(s∗i ), C〈g,h〉(si, ri), ti,1, ti,2), ci〉 in the hash
table H≡Com so that πDLogn = (ci, ui,1, ui,2).

3. In the end, s =
∑
Pi∈Q αi such that Y = gs.

Figure 4.5: Simulator for HybridDKG with the uniform randomness property

Here, s =
∑

Pi∈Q αi. As long as there is one value αi in this sum that is chosen at
random and independently from the other values in the sum, the uniform distribution of s
is guaranteed. All αi values are only available in the form a Pedersen commitment until set
Q is finalized. From Theorem 4.4 of [Ped91b], in VSS using the Pedersen commitments,
the view of the t-limited adversary is independent of the shared secret. Therefore, with at
least one VSS from the honest nodes in the t + 1 chosen VSSs, s is uniformly distributed
and so is Y = gs.

Secrecy (DKG-S). We need to prove that no information about s can be learned by the
adversary except for what is implied by Y = gs. More formally, we prove that for every
PPT adversary A that has up to t nodes, there exists a PPT simulator S that on input
Y ∈ G produces an output distribution which is polynomially indistinguishable from A’s
view of a run of the HybridDKG protocol that ends with Y as its public key. Our proof is
based on the proof of secrecy in [GJKR07, Section 4.3].

In Figure 4.5, we describe the simulator S for our HybridDKG protocol. An informal
description is as follows. S runs a HybridDKG instance on behalf of all honest nodes. For
the most of the protocol (until message DKG-completed is to be sent), it follows the protocol
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HybridDKG as instructed. For DKG-completed messages, it changes the public key shares
Yi = gsi to “hit” the desired public key Y . S knows all gsj and gs

′
j values for all Pj ∈ B,

as it chooses φ(j)(x, y) for good nodes and has received enough shares from bad nodes to
reconstruct the bivariate polynomials shared by them. For i ∈ [t + 1, n], S sets gs

∗
i as

interpolation (in exponent) of (0, Y ) and (j, gsj) for j ∈ [1, t]. It creates the corresponding
NIZKPK≡Com using the random oracle hash table.

We show that the view of the adversary A that interacts with S on input Y is the same
as the view of A that interacts with the honest nodes in a regular run of the protocol that
outputs the given Y as the public key.

In a regular run of protocol HybridDKG, A sees the following probability distribution
of data produced by the honest nodes:

• Values φi(j, y), φ′i(j, y) for i ∈ G, j ∈ B, uniformly chosen in Zp

• Values Ci and gsi for Pi ∈ G, that correspond to randomly chosen polynomials.

As we are interested in runs of HybridDKG that end with Y as the public key, we note that
the above distribution of values is induced by the choice (of the good parties) of polynomials
φi(x, y), φ′i(x, y) for Pi ∈ Q, uniformly distributed in the family of t-degree polynomials
over Zp such that

∏
Pi∈Q g

φi(0,0) = Y . Without loss of generality, assume Pn ∈ G belongs to

Q. The above distribution is characterized by the choice of polynomials φi(x, y), φ∗i (x, y)
for Pi ∈ (G ∩ Q) − {Pn} as random independent t-degree bivariate polynomials over Zp

and of φn(x, y) as a uniformly chosen polynomial from the family of t-degree bivariate
polynomials over Zp that satisfy the constraint φn(0, 0) = s−

∑
Pi∈Q\{n} φi(0, 0).

We show that the simulator S outputs a probability distribution which is identical to the
above distribution. First note that the above distribution depends on the set Q decided as
the broadcast by the current leader is complete. Since all actions of the simulator until Q is
(eventually) delivered to all nodes are identical to the actions of honest parties interacting
with A in a real run of the protocol, we are assured that the set Q defined in this simulation
is identical to its value in the real protocol.

We now describe the output distribution of S in terms of t-degree bivariate poly-
nomials φ∗i corresponding to the choices of the simulator. It is defined as follows: For
Pi ∈ (Q − B − {Pn}), set φ∗i to φi and φ′∗i to φ′i. Define φ∗n such that the values
φ∗n(0, 0) = logg(

YQ
j∈(Q−B−{Pn}) g

α∗
j
) and φ∗n(j, y) = φn(j, y) for j ∈ [1, t]. Finally, define

φ′∗n(x, y) such that φ∗n(x, y) + Λφ′∗n(x, y) = φn(x, y) + Λφ′n(x, y), where Λ = logg(h). It can
be seen by this definition that the univariate polynomial evaluations of these polynomials
evaluated at the indices for Pj ∈ B coincide with the values φi(j, y) which are seen by the
corrupted parties in the protocol. Note that the above DLog values φ∗n(0, 0) and φ′n

∗(0, 0)
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are unknown to the simulator. Also, the commitments of these polynomials agree with Ci
published by the simulated honest parties in the protocol as well as with the exponentials
gs
∗
i for Pi ∈ G published by the simulator at the end on behalf of the honest parties. Thus,

these values pass the verifications in the real protocol.

It remains to be shown that polynomials φ∗i and φ′∗i belong to the right distribution.
Indeed, for Q−G−{Pn} this is immediate since they are defined identically to φi which are
chosen according to the uniform distribution. For φ∗n we see that this polynomial evaluates
in points j = [1, t] to random values (φn(j, y)) while at 0 it evaluates logg(g

α∗n) as required
to hit Y . Finally, φ′∗n is defined as φ′∗n(x, y) = Λ−1(φn(x, y)−φ∗n(x, y) +φ′n(x, y)) and since
φ′∗n(x, y) is random and independent then so is φ′∗n(x, y).
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Chapter 5

Proactive Security and Group
Modification Protocols

The most common attacks on security mechanisms are system attacks, where the sys-
tem’s cryptographic keys are directly exposed, rather than cryptanalytic attacks. Due to
the endless supply of security flaws in almost all existing software, these system attacks
are often easy to implement. Threshold cryptography enhances security against system
break-ins, but its effect is limited. Given sufficient time, a mobile attacker can break into
system nodes one by one (gradual break-in) and eventually compromise the security of
the whole system [OY91]. Proactive secret sharing [HJKY95], which combines distributed
trust with periodic share renewal, protects a system against these gradual break-ins. Here,
the system’s time is divided into phases. At the start of each phase, nodes’ secret shares
are renewed such that new shares are independent of previous ones, except for the fact
that they interpolate to the same secret key. With an assumption that the adversary may
corrupt at most t nodes in each phase, the system now becomes secure.

Further, on a long-term basis, it is inevitable that the set of nodes in the system will
need to be modified; new nodes may join or old nodes may leave. To maintain the resilience
bound n ≥ 3t+ 2f + 1, this may also lead to a modification in the security threshold t or
the crash-limit f of the system.

In this chapter, we provide the proactive security and group modification protocols
for our HybridDKG protocol presented in Chapter 4. In Section 5.1, we introduce the
notion of phase in our hybrid model defined in Section 4.2. In Section 5.2, we present
the protocol for share renewal and recovery protocols. Along with proactive security,
observing the importance of group modifications for a long-term system sustainability, we
devise and prove protocols for group modification agreement, node addition, node removal
and threshold and crash-limit modification in Section 5.3. Finally, in Section 5.4, we
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briefly discuss the utility of our constant-size PolyCommit commitment to the synchronous
proactive VSS scheme of Herzberg et al. [HJKY95].

5.1 Hybrid System Model for Proactive Security

In this section, we describe the proactive system model. We discuss the concept of common
phase, adversary behaviour and forward secrecy for our proactive protocols.

Common Phase. In the asynchronous communication model, without a common clock,
realizing the concept of a common phase is difficult. Similar to Cachin et al. [CKAS02], we
use local clocks with clock ticks at pre-defined intervals. The number of clock ticks received
by a honest node defines its local phase. In order to achieve the required synchronization
without hampering safety, nodes start the proactive protocol with their local clock tick,
but wait for t other nodes to start the phase before proceeding with it.

Due to the eventual nature of the liveness condition, any timing constraint always
affects liveness of an asynchronous protocol. A share renewal protocol in our model might
not terminate within the same phase. It is possible to achieve liveness at the cost of
safety/secrecy by continuing with the shares from the previous phase until new shares are
determined. However, we give importance to safety rather than liveness and system nodes
delete their shares as the renewal protocol starts; there are no shares available at honest
nodes until the renewal protocol completes and there is no phase overlap.

Byzantine Adversary. The adversary can corrupt at most t nodes in any local phase
τ ≥ 0 of any honest party. We assume that it is possible to remove the adversary from a
node by rebooting it in a trusted way using a read-only device. As the adversary could
have extracted the private key from a recovering node, once rebooted the node should ask
the CA to put its old certificate on its certificate revocation list, generate a new key pair
and get the new public key signed.

To maintain liveness in a proactive system with simultaneous Byzantine and crash-
recovery nodes, we assume that the crash-recovery time is more than the message transfer
delay between two uncrashed nodes; specifically, the time the adversary takes to shift
from one crashed node to another is larger than required by a send message between two
honest uncrashed nodes. Note that this assumption is required exclusively due to the
crash-recovery and link failure assumption; we justify it in Section 5.2.1. The adversary
may continue to hold a node in consecutive phases.
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It is also possible to use an asynchronous proactive secure message transmission mech-
anism [BCS03] to avoid frequent public-private key pair modifications. However, this
requires a hardware secure co-processor.

Forward Secrecy. If a private communication channel between two honest nodes is not
forward secret, the adversary may decipher their secret communication by compromising
one of them in a later phase. [DvOW92] To overcome this problem, we use an ephemeral
Diffie-Hellman cipher suite while creating TLS links and reconstruct them at the start of
each new phase. This makes sure that a message sent in a local phase τ of the sender is
delivered to the receiver in the same local phase or it is lost.

5.2 Realizing Proactiveness

In proactive security, nodes modify their shares at phase changes such that an adversary’s
knowledge of t shares from one phase becomes useless in the next phase. Here, although
the adversary is restricted to t nodes during any phase, it may corrupt more than t nodes
in its complete lifetime without learning anything about the secret. In this section, to
realize proactiveness in our DKG system, we design share renewal and recovery protocols.

5.2.1 Share Renewal Protocol

A share renewal protocol enables DKG nodes to renew their shares such that protocol Rec
will output the same secret and the adversary does not learn anything about it. From a
share renewal protocol, we expect liveness, correctness, secrecy and efficiency similar to
the HybridDKG protocol, under the assumption that the adversary delivers all associated
messages within phase τ .

Definition 5.1. Suppose nodes hold shares of a secret s shared using a HybridDKG instance
for a phase τ −1. An asynchronous share renewal protocol (Renew) for phase τ in a hybrid
model having a network of n ≥ 3t + 2f + 1 nodes with t-limited Byzantine adversary and
f -limited crashes and network failures satisfies the following conditions:

Liveness. If the adversary delivers all associated messages within phase τ , then all honest
nodes complete the Renew protocol, except with negligible probability.

Correctness. If at least t + 1 honest nodes complete the Renew protocol during phase τ
before detecting a subsequent clock tick, the system maintains a sharing of s.
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Secrecy. The t-limited adversary cannot compute the shared secret s after an execution of
the Renew protocol, except with negligible probability.

Efficiency. The communication complexity for any instance of verifiable share renewal is
d-uniformly bounded.

Construction. As already discussed, if the adversary restricts the network from deliv-
ering all the protocol messages within the phase, secrecy is still preserved, but the secret
may get lost, hampering the liveness. This definition is analogous to the definition of a
share refresh protocol by Cachin et al. [CKAS02]. We design a share renewal protocol by
making three modifications to HybridDKG, which are motivated by the refresh protocol in
[CKAS02].

• On receiving a clock tick for phase τ , instead of running HybridVSS for a random key,
node Pi reshares its share si,τ−1. It then erases the old share, the bivariate polynomial
used during resharing, and the univariate polynomials from the send messages, and
broadcasts its clock tick. While retransmitting send messages during a node recovery,
only the commitments are sent.

• A node waits for t + 1 identical clock ticks before proceeding with protocol Sh in-
stances.

• Once a node Pi receives n − t − f ready messages for a decided set Q, instead of
adding shares si,d for Pd ∈ Q, it Lagrange-interpolates them for index 0 to obtain

the new share. Commitments are accordingly modified as V` =
∏

Pd∈Q((Cd,τ )`0)λ
Q,0
d

for ` ∈ [0, t].

Analysis. The main theorem for protocol Renew is as follows.

Theorem 5.2. With the DLog assumption, the Renew protocol implements asynchronous
verifiable share renewal in the hybrid model for n ≥ 3t+ 2f + 1.

We need to show liveness, correctness, secrecy, and efficiency.

Liveness. Expect for a small modification to maintain forward secrecy, the liveness analy-
sis is exactly same as that for the HybridDKG protocol. We delete the univariate polynomials
from the send messages stored to facilitate recovery, as their compromise can lead to com-
promise of the node’s previous-phase share and subsequently the system’s secret. However,
this does not affect the liveness of the system. We observe that among the d(n+ t+ 1)/2e
echo messages received during an Sh instance of HybridVSS, each honest node need only
receive t+1 consistent shares of its univariate polynomial in order that the protocol Sh can
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continue. With the assumption that at least t+ 1 honest and uncrashed nodes receive the
send messages transmitted by an honest and uncrashed node before the adversary can crash
them, liveness is guaranteed for each such Sh instance. The remaining liveness discussion
remains exactly the same as that of the HybridDKG protocol.

Correctness. According to the correctness property of protocol HybridDKG, for each of
the completed sharings, if run individually, each node Pi will reconstruct the same shared
secret zi,d where Pd ∈ Q is the dealer for the sharing. Here, instead of summing shares
received from all t + 1 selected dealers, nodes Lagrange-interpolate them for index 0.
As Lagrange-interpolation is homomorphic to addition and scalar multiplication, as with
HybridDKG, during reconstruction each node will reconstruct same secret (say) z.

We also need to prove that z = s. Let S represent a set of t+ 1 nodes that completes
the Renew protocol in a phase τ and have not yet received the next clock tick. Here,

z =
∑
Pi∈S

λS,0i si,τ

=
∑
Pi∈S

λS,0i (
∑
Pd∈Q

λQ,0d si,d)

=
∑
Pd∈Q

λQ,0d (
∑
Pi∈S

λS,0i si,d)

=
∑
Pd∈Q

λQ,0d sd,τ−1

= s

Thus, if at least t + 1 honest nodes complete the share renewal protocol during phase τ
before detecting a subsequent clock tick, the system maintains a verifiable sharing of s.

Secrecy. Secrecy is proven in exactly the same way as the secrecy of our HybridDKG
protocol.

Efficiency. The efficiency discussion remains similar to the efficiency discussion in the Hy-
bridDKG protocol. The worst-case message and communication complexities of the Renew
protocol are O(tdn2(n+ d)) and O(κtdn3(n+ d)) respectively.

5.2.2 Share Recovery Protocol

The adversary may crash, isolate or compromise some of the nodes. This may get detected
by the node itself or by the system as a whole using system-level techniques beyond the
scope of this paper. After detection of crash and compromise, a node will be rebooted
using read-only memory, which however does not provide it with its share. In a proactive
DKG system, the ability of a node to recover its lost share, when rebooted as above or
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alienated from the part of the network, must be ensured. Otherwise, the adversary can
destroy the complete system by gradually crashing or isolating n− t nodes.

The recover and help messages in our HybridVSS, HybridDKG and Renew protocols suffice
to handle share recoveries. To achieve automatic share recovery upon reboot, we add a
recover message to nodes’ reboot procedure.

5.3 Group Modification Protocols

Here, we present protocols to achieve node addition, node removal, and security-threshold
and crash-limit modification.

5.3.1 Group Modification Agreement

For group modification protocols, it is important to include a mechanism to propose and
agree on group modification proposals. Leaving this to node administrators can not only
create bottlenecks in the system, but it can also provide new avenues of attack. Using the
reliable broadcast methodology, we propose a simple agreement protocol for this. To avoid
inefficient atomic or causal broadcast primitives [HT93], we impart commutativity to the
group modification proposals. Node addition and removal operations for different nodes
are commutative in nature; however, the threshold and crash-limit modifications are not.
We solve this problem by attaching threshold and crash-limit modification requests to node
addition or removal proposals. With every node addition or removal proposal, a proposer
has to specify whether change in the size of the group made by its proposal should affect
the security-threshold or the crash-limit. An interested node will send such a proposal to
all the nodes and nodes who agree with the proposal continue with echo messages from
a reliable broadcast [BC03]. Once it receives n − t − f ready messages, a node adds the
proposal into its modification queue. Assuming that the n − t − f nodes finish with the
same set of proposals during a phase, liveness is assured; additionally, safety is always
assured.

5.3.2 Node Addition

We can increase the redundancy of the system by adding new nodes. It is easily possible
to provide shares to the added nodes at the start of a new phase by including those into
the list of nodes. Although the new nodes cannot contribute with send messages, for any
node-additions with new threshold smaller than the old honest-uncrashed count, sufficient
renewal proposals are available. However, considering possible large durations of phases
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or even the absence of proactivity, we need a node-addition protocol that does not rely on
share renewal.

Definition 5.3. Suppose nodes hold shares of a secret s shared using a HybridDKG instance
for a phase τ . A node addition protocol (NodeAdd) to add a new honest node Pnew during
phase τ in a hybrid model having a network of n ≥ 3t+2f+1 nodes with t-limited Byzantine
adversary and f -limited crashes and network failures satisfies the following conditions:

Liveness. If the adversary delivers all associated messages within phase τ , then the new
honest node Pnew completes the protocol NodeAdd except with negligible probability.

Correctness. Once node Pnew completes protocol NodeAdd during phase τ , then there
exists a fixed value z such that if Pnew reconstructs zi during phase τ , then zi = s.

Secrecy. The t-limited adversary cannot compute the shared secret s after an execution of
protocol NodeAdd, except with negligible probability.

Efficiency. The communication complexity for any instance of protocol NodeAdd is d-
uniformly bounded.

Construction. We obtain this by making three modifications to our HybridDKG protocol.

• On receiving a Node-Add request, instead of running protocol Sh of HybridVSS for
a random key, node Pi reshares its current share si,τ and broadcasts the Node-Add
request received. It then waits for t other identical Node-Add requests before pro-
ceeding.

• Once a node Pi receives n − t − f ready messages for a decided set Q, it Lagrange-
interpolates si,d for Pd ∈ Q for index new and provides subshare si,new to node Pnew
with commitments V` =

∏
Pd∈Q((Cd,τ )`,new)λ

Q,new
d for ` ∈ [0, t].

• Node Pnew, upon obtaining t + 1 shares for the same commitment vector V` for
` ∈ [0, t], interpolates them for index 0 to obtain its share snew.

Analysis. The main theorem for protocol NodeAdd is as follows.

Theorem 5.4. With the DLog assumption, protocol NodeAdd implements asynchronous
verifiable node addition during a phase in the hybrid model for n ≥ 3t+ 2f + 1.
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We need to show liveness, correctness, secrecy, and efficiency. The liveness and efficiency
analysis exactly mirrors that of the HybridDKG protocol. The worst-case message and
communication complexities of the Renew protocol are O(tdn2(n+d)) and O(κtdn3(n+d))
respectively. However, the correctness and secrecy analysis are quite interesting.

Correctness. According to the correctness property of the reliable broadcast protocol,
each of the nodes will complete the same set of t + 1 sharings started for the Node-Add
protocol. Assume that set S represents a set of nodes, which provide t+ 1 valid subshares
to node Pnew. Here, snew computed by node new is a valid share of the secret s such that

snew =
∑
Pi∈S

λS,0i si,new

=
∑
Pi∈S

λS,0i (
∑
Pd∈Q

λQ,newd si,d)

=
∑
Pd∈Q

λQ,newd (
∑
Pi∈S

λS,0i si,d)

=
∑
Pd∈Q

λQ,newd sd.

Node new can check the correctness of the received subshares using the commitment vector
V` for ` ∈ [0, t] and protocol Rec at node new will reconstruct shared secret s. It is
interesting to observe that it is not possible for a new node to generate its share, if we
rely on subshares generated during protocol Renew instead of running a new DKG while
adding the nodes.

Secrecy. Here, it assumed that the addition of new nodes does not change the security
threshold of the system. If the node to be added is honest, secrecy can proven exactly in
the same way as secrecy in our HybridDKG protocol. If it is dishonest, then it is one of the
t nodes which can be compromised by the adversary and knowing subshares of its share
does not provide enough information to the adversary to extract the secret key.

5.3.3 Node Removal

This protocol involves removing a node from the system such that it should no longer be
able to reconstruct the secret. Without modifying the shares for the other nodes, it is not
possible to remove a node in the middle of a phase and we are restricted to removing it at
the start of a new phase. To remove a node from the group involves simply not including
it in the next share renewal protocol. An honest node should not carry out a node removal
if that would invalidate the resilience bound n ≥ 3t+ 2f + 1.
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5.3.4 Security Threshold and Crash-Limit Modification

Security threshold and crash-limit modification involves changing the threshold limit t or
the crash-limit f of the system. For the same reason as node removal, it is not possible
to modify the threshold and crash limits in the middle of a phase. With their lack of
commutativity, we avoid direct threshold t and crash-limit f modifications. We modify
t and f at the phase change based on the all the node addition and removal requests
confirmed during the previous phase. Nodes update their t and f values accordingly and
start their HybridVSS instances with updated parameters. As a feature of protocol Renew,
t and f can be easily changed by just correctly changing the degrees of the resharing
polynomials.

5.4 PolyCommit to Proactive Schemes

As we are not able to use our PolyCommit commitments in AVSS [CKAS02], we are not able
to use it in the above proactive and group modification protocols the hybrid system model.
However, it is trivial to use it in the share renewal and recovery protocols for synchronous
VSS protocols by Herzberg et al. [HJKY95]. For both protocols, use of PolyCommit reduces
the broadcast size by a linear factor.

For the share renewal protocol, a dealer node has to prove that the constant term of the
shared polynomial is zero, which it does by simply publishing the corresponding witness.
In the share recovery protocol, a dealer has to prove the evaluation of the polynomial at
the index of the recovering node is zero, which again it can do by simply publishing the
corresponding witness. Due to their triviality, we do not discuss these modifications in any
further detail.
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Part II

Applications
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Chapter 6

Distributed Private Key Generators
for Identity-Based Cryptography

6.1 Preliminaries

In 1984, Shamir [Sha84] introduced the notion of identity-based cryptography (IBC) as
an approach to simplify public-key and certificate management in a public-key infrastruc-
ture (PKI) and presented an open problem to provide an identity-based encryption (IBE)
scheme. After seventeen years, Boneh and Franklin [BF01] proposed the first practical and
secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the last few
years, significant progress has been made in IBC in the forms of hierarchical IBE schemes,
identity-based signature (IBS) schemes, identity-based authentication and key agreement
protocols, and other identity-based primitives [JN08].

In an IBC system, a client chooses an arbitrary string such as her e-mail address to
be her public key. Consequently, with a standardized public-key string format, an IBC
scheme completely eliminates the need for public-key certificates. As an example, in an
IBE scheme, a sender can encrypt a message for a receiver knowing just the identity of
the receiver and importantly, without obtaining and verifying the receiver’s public-key
certificate. Naturally, in such a system, a client herself is not capable of generating a
private key for her identity. There is a trusted party called a private-key generator (PKG)
which performs the system setup, generates a secret called the master key and provides
private keys to clients using it. As the PKG computes a private key for a client, it can
decrypt all of her messages passively. This inherent key escrow property asks for complete
trust in the PKG, which is difficult to find in many realistic scenarios.
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Need for a Distributed PKG. Importantly, the amount of trust placed in the holder
of an IBC master key is far greater than that placed in the holder of the private key of a
certificate authority (CA) in a PKI. In a PKI, in order to attack a client, the CA has to
actively generate a fake certificate for the client containing a fake public key. In this case, it
is often possible for the client to detect and prove the malicious behaviour of the CA. The
CA cannot perform any passive attack; specifically, it cannot decrypt a message encrypted
for the client using a client-generated public key and it cannot sign some document for the
client, if the verifier gets a correct certificate from the client. On the other hand, in IBC,

• knowing the master key, the PKG can decrypt or sign the messages for any client,
without any active attack and consequent detection (key escrow),

• in a key revocation system based on validity periods [BF01], bringing down the PKG
is sufficient to bring the system to a complete halt (single point of failure), once the
current validity period ends.

Therefore, the PKG in IBC needs to be far more trusted than the CA in a PKI. This
has been considered as a reason for the slow adoption of IBC schemes outside of closed
organizational settings.

Boneh and Franklin [BF01] suggest distributing a PKG in their BF-IBE scheme to solve
these problems. In an (n, t)-distributed PKG, the master key is distributed among n PKG
nodes such that a set of nodes of size t or smaller cannot compute the master key, while a
client extracts her private key by obtaining private-key shares from any t+1 or more nodes;
she can then use the system’s public key to verify the correctness of her thus-extracted key.
Boneh and Franklin [BF01] propose to design a distributed PKG using VSS of the master
key among multiple PKGs and also hint towards a completely distributed approach using
the DKG scheme of Gennaro et al. [GJKR99]; however, they do not provide a formal model
and a security proof. Further, none of the IBE schemes defined after [BF01] consider the
design of a distributed PKG. As discussed in Chapter 4, from a practicality standpoint,
the DKG schemes [GJKR99] suggested in [BF01] to design a distributed PKG are not
advisable for use over the Internet.

As a whole, although various proposed practical applications using IBE, such as key
distribution in ad-hoc networks [KKA03], pairing-based onion routing [KZG07] (see Chap-
ter 7) or verifiable random functions from identity-based key encapsulation [ACF09], have
a distributed PKG as a fundamental need, there is no distributed PKG available for use
over the Internet yet. Defining efficient distributed PKGs for various IBE schemes which
can correctly function over the Internet has been an open problem for some time. This
practical need forms the motivation of this work.
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Related Work. Although we are defining protocols for IBE schemes, as we are concen-
trating on distributed cryptographic protocols, we do not include a comprehensive account
of IBE here. We refer readers to [Boy08] for a detailed discussion on the various IBE
schemes and frameworks defined in the literature. Pursuant to this survey, we work in the
random oracle model for efficiency and practicality reasons.

None of the IBE schemes except BF-IBE considered distributed PKG setup and key
extraction protocols in their design. Recently, Geisler and Smart [GS09] defined a dis-
tributed PKG for Sakai and Kasahara’s IBE (SK-IBE) [SK03]; however, their solution
against a Byzantine (malicious) adversary has an exponential communication complexity
and a formal security proof is also not provided. We overcome both of these barriers in
our distributed PKG for SK-IBE: our scheme is secure against a Byzantine adversary and
has the same polynomial communication complexity as their scheme, which is secure only
against an honest-but-curious adversary; we also provide a formal security proof. Other
than [GS09], there have been a few other efforts in the literature to counter the inherent
key escrow and single point of failure issues in IBE, and next, we compare these alternatives
with distributed PKG.

Al-Riyami and Paterson [ARP03] introduce certificateless cryptography (CLC) to ad-
dress the key escrow problem by combining IBC with PKC. Their elegant approach, how-
ever, does not address the single point of failure problem. Although it is possible to solve
the problem by distributing their PKG using a VSS (which employs a trusted dealer to gen-
erate and distribute the key shares), which is inherently cheaper than a DKG-based PKG
by a linear factor, it is impossible to stop a dealer’s active attacks without completely dis-
tributed master-key generation. Further, as private-key extractions are less frequent than
encryptions, it is certainly advisable to use more efficient options during encryption rather
than private-key extraction. Finally, with the requirement of online access to the receiver’s
public key, CLC becomes ineffective for systems without continuous network access, where
IBC is considered to be an important tool. Lee et al. [LBD+04] and Gangishetti et al.
[GGDS07] propose variants of the distributed PKG involving a more trustworthy key gen-
eration centre (KGC) and other key privacy authorities (KPAs). As observed by Chunxiang
et al. [CJZ05] for [LBD+04], these approaches are, in general, vulnerable to passive attack
by the KGC. In addition, the trust guarantees required by a KGC can be unattainable in
practice. Goyal [Goy07] reduces the required trust in the PKG by restricting its ability to
distribute a client’s private key. This does not solve the problem of single point of failure.
Further, the PKG in his system still can decrypt the clients’ messages passively, which
leaves a secure and practical implementation of distributed PKGs wanting.

Threshold versions of signature schemes obtained from some IBE schemes using the
Naor transform have been proposed and proved previously [Bol03, WZF05]. However, these
solutions do not work for the corresponding IBE scheme. This is due to the inherent secret
nature of a client’s private keys and corresponding shares as compared to the inherent
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public nature of signatures and corresponding signature shares. While designing IBE
schemes with a distributed PKG, we have to make sure that a PKG node cannot derive
more information than the private-key share it generates for a client and that private-key
shares are not available in public as commitments.

Contributions. We present distributed PKGs for all three important IBE frameworks:
namely, full-domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs
[Boy08]. We propose distributed PKG setups and distributed private-key extraction pro-
tocols for Boneh and Franklin’s IBE (BF-IBE) [BF01], Sakai and Kasahara’s IBE (SK-
IBE) [SK03], and Boneh and Boyen’s (modified) BB1-IBE [Boy08, BM07] schemes for use
over the Internet. The novelty of our protocols lies in achieving the secrecy of a client pri-
vate key from the generating PKG nodes without compromising the efficiency. We realize
this with an appropriate use of non-interactive proofs of knowledge, bilinear-pairing-based
verifications and DKG protocols with and without the uniform randomness property. Based
on the choice of the DKG protocol, our distributed PKGs can work in the synchronous or
asynchronous communication model. In terms of feasibility, we ensure that our protocols
work for all three bilinear pairing types defined by Galbraith et al. [GPS08].

We prove adaptive chosen ciphertext security (IND-ID-CCA) of the defined schemes in
the random oracle model. Interestingly, compared to the security proofs for the respective
IBE schemes with a single PKG, there are no additional security reduction factors in our
proofs, even though the underlying DKG protocol used in the distributed PKGs does not
provide a guarantee about the uniform randomness for the generated master secrets. To the
best of our knowledge, there is no threshold cryptographic protocol available in the litera-
ture where a similar tight security reduction has been proven while using a DKG without
the (more expensive) uniform randomness property. Finally, using operation counts, key
sizes, and possible pairing types, we compare the performance of three distributed PKGs
and also briefly discuss the proactive security and group modification primitives for them.

In Section 6.2, we discuss our assumptions and describe cryptographic tools that we use.
With this background, in Section 6.3, we define and prove distributed PKG protocols for
the BF-IBE, SK-IBE and BB1-IBE schemes. In Section 6.4, we compare the IBE schemes
based on their distributed PKGs and touch upon proactive security and group modification
protocols for the system.

6.2 Cryptographic Tools

In this section, we describe important cryptographic tools required to design distributed
PKGs in the hybrid model. Note that these tools are the efficient versions of their original
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forms in [BOGW88, BIB89, GRR98] that utilize the presence of random oracles and the
pairing-based DDH problem solving technique [JN03] and are also useful in other asyn-
chronous computational multiparty settings. We start by describing the system and cryp-
tographic assumptions that we make in this chapter.

Assumptions. We follow the hybrid system model of Chapter 4 as it closely depicts the
Internet and as the corresponding DKG forms the basis of our distributed PKGs. As a
result, our system model has an asynchronous network of n ≥ 3t + 2f + 1 nodes with a
t-limited Byzantine adversary and f -limited crashes and network failures.

As mentioned a number of times above, for efficiency reasons, we use the random oracle
framework. Further, our adversary is computationally bounded with a security parameter
κ. We assume an instance of a pairing infrastructure of multiplicative groups G, Ĝ and
GT , whose common order p is a prime with κ-bit security. For the security of the IBE
schemes, we use the BDH and BDHI assumptions, while for commitments and proofs of
knowledge, we use the DLog assumption. Refer to Chapter 2 for their definitions.

DKG over Zp. We use the HybridDKG protocol defined in Section 4.4. For our distributed
PKG, we also require the HybridDKG version having the uniform randomness property.
Recall their definition in Equations (4.1) through (4.4).

We also need distributed random sharing over Zp that generates shares of a secret
z chosen jointly at random from Zp. For the generator g ∈ G, every node generates a
random ri ∈ Zp and shares that using the HybridDKG-Sh protocol with DLog or Pedersen
commitments as HybridDKG-Sh(n, t, f, t̃ = t + 1, g, [h], ri, [r

′
i]) where the generator h ∈

G and randomness r′i are only required if Pedersen commitments are used. Liveness,
agreement, correctness, secrecy and message and communication complexities remain the
same as those of the HybridDKG-Sh protocol. We represent the corresponding protocols as
follows: (

C(z)
〈g〉 , zi

)
= RandomDLog(n, t, f, g) (6.1)(

C(z,z′)
〈g,h〉 , [C

(z)
〈g〉 ,NIZKPKDLog], zi, z

′
i

)
= RandomPed(n, t, f, g, h). (6.2)

Recall that C(z)
〈g〉 = [gz, gφ(1), · · · , gφ(n)] and C(z,z′)

〈g,h〉 = [gzhz
′
, gφ(1)hφ

′(1), · · · , gφ(n)hφ
′(n)] are

respectively the DLog and Pedersen commitment vectors for z, where φ, φ′ ∈ Zp[x] are of
degree t with φ(0) = z, φ′(0) = z′, φ(i) = zi and φ′(i) = z′i.

Distributed Addition over Zp. Let α, β ∈ Zp be two secrets shared among n nodes
using the HybridDKG-Sh protocol with DLog commitments. Let polynomials φ(x), ψ(x) ∈
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Zp[x] be the respectively associated degree-t polynomials and let c ∈ Zp be a non-zero
constant. Due to the linearity of Shamir secret sharing [Sha79], a node Pi with shares αi
and βi can locally generate shares of α + β and cα by computing αi + βi and cαi, where
φ(x) +ψ(x) and cφ(x) are the respective polynomials. φ(x) +ψ(x) is random if either one
of φ(x) or ψ(x) is, and cφ(x) is random if φ(x) is. Commitment entries for the resultant

shares respectively are
(
C(α+β)
〈g〉

)
i

=
(
C(α)
〈g〉

)
i

(
C(β)
〈g〉

)
i

and
(
C(cα)
〈g〉

)
i

=
(
C(α)
〈g〉

)c
i
. An analogous

statement holds when Pedersen commitments are used.

Distributed Multiplication over Zp. Unlike addition, local distributed multiplication
of two shared secrets α and β looks unlikely. We use a distributed multiplication protocol
against a computational adversary by Gennaro et al. [GRR98, Section 4]. However, instead
of their interactive zero-knowledge proof, we utilize the pairing-based DDH problem solving
technique [JN03] to verify the correctness of the product value shared by a node non-
interactively. For shares αi and βi with DLog commitments gαi and ĝβi , given a commitment

gαiβi of the shared product, other nodes can verify its correctness by checking if e(gαi , ĝβi)
?
=

e(gαiβi , ĝ) provided the groups generated by g and ĝ are pairing friendly. We observe that
it is also possible to perform this verification when one of the involved commitments is a
Pedersen commitment. However, if both commitments are Pedersen commitments, then
we have to compute DLog commitments for one of the values and employ NIZKPKDLog to
prove its correctness in addition to using the pairing-based verification. In such a case,
the choice between the latter technique and the non-interactive version of zero-knowledge
proof suggested by Gennaro et al. [GRR98] depends upon the implementation efficiencies
of the group operation and pairing computations.

In our IBC schemes, we always use the multiplication protocol with at least one DLog
commitment. We denote the multiplication protocol involving two DLog commitments as
MulDLog and the one involving a combination of the two types of commitments as MulPed.(

C(αβ)
〈g∗〉 , (αβ)i

)
= MulDLog(n, t, f, g

∗,
(
C(α)
〈g〉 , αi

)
,
(
C(β)
〈ĝ〉 , βi

)
) (6.3)(

C(αβ,αβ′)

〈ĝ,ĥ〉 , (αβ)i, (αβ
′)i

)
= MulPed(n, t, f, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
,
(
C(β,β′)

〈ĝ,ĥ〉 , βi, β
′
i

)
) (6.4)

For MulDLog, g
∗ = g or ĝ. For MulPed, without loss of generality, we assume that β is

distributed with the Pedersen commitment. If instead α uses Pedersen commitment, then
the Pedersen commitment groups for (αβ) change to g and h instead of ĝ and ĥ.

Briefly, the protocol works as follows. Every honest node runs the HybridDKG-Sh(n, t, f,
t̃ = 2t+ 1, ĝ, [ĥ], αiβi, [αiβ

′
i]) from Eq. 4.1 or 4.3. As discussed above, pairing-based DDH

solving is used to verify that the shared value is equal to the product of αi and βi.
1 At

1For type 3 pairings, a careful selection of commitment generators is required to make the pairing-based
verification possible.
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the end of the HybridDKG-Sh protocol, instead of adding the subshares of the selected VSS
instances, every node interpolates them at index 0 to get the new share (αβ)i of αβ.

This protocol is almost equivalent to the share renewal protocol in Section 5.2.1 which
is a slight modification of protocol HybridDKG-Sh. The liveness and agreement proofs are
exactly the same as those of HybridDKG-Sh. The basic correctness proof remains the same
as that of the share renewal protocol except the starting polynomial is of degree 2t+1 here.
On the other hand, the pairing-based DDH problem solving technique assures that the value
shared by a node Pi is equal to the product of its shares αi and βi. The basic secrecy proof
is same as that of the renewal protocol. Further, the adversary cannot determine α or β
even after αβ is reconstructed as the final shared polynomial for αβ is independent of the
shared polynomials for α and β individually. The message and communication complexities
are the same as those of the DKG protocol.

As the distributed addition can be performed locally, the above Mul protocols can be
seamlessly extended for distributed computation of any expression having binary products
(BPs). For ` shared secrets x1, x2, · · · , x`, and their corresponding DLog commitments

C(x1)
〈g〉 , C

(x2)
〈g〉 , · · · , C

(x`)
〈g〉 , shares of any binary product x′ =

∑m
i=1 kixaixbi with known constants

ki and indices ai, bi can be easily computed by extending the protocol in Eq. 6.3. We denote
this generalization as follows:(

C(x′)
〈g∗〉, x

′
i

)
= MulBP(n, t, f, g∗, {(ki, ai, bi)},

(
C(x1)
〈g〉 , (x1)i

)
, · · · ,

(
C(x`)
〈g〉 , (x`)i

)
) (6.5)

Node Pj shares
∑

i ki(xai)j(xai)j. For a type 1 pairing, verification of the correctness of
the sharing is done by other nodes as follows.

e(g
P
i ki(xai )j(xbi )j , g)

?
=
∏
i

e((g(xai )j)ki , g(xbi )j)

For type 2 and 3 pairings, NIZKPK≡DLog is used to provide DLog commitments to the
(xbi)j with generator ĝ, and then a pairing computation like the above is used. We use
the protocol in Eq. 6.5 during distributed private-key extraction in Boneh and Boyen’s
BB1-IBE scheme in Section 6.3.5.

Sharing the Inverse of a Shared Secret. Given an (n, t, f)-distributed secret α,
computing shares of its inverse α−1 in distributed manner (without reconstructing α)
can be done trivially but inefficiently using a distributed computation of αp−2; this in-
volves O(log p) distributed multiplications. However, using a technique by Bar-Ilan and
Beaver [BIB89], this can be done using just one Random, one Mul and one HybridDKG-Rec
protocol. Note that the inverse operation is not possible for α = 0; that α 6= 0 can easily
be verified before beginning the protocol by any party from commitment C(α)

〈g〉 .
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This protocol involves a HybridDKG-Rec, which outputs the product of the shared secret
α with a distributed random element z. If z is created using DLog commitments and is
not uniformly random, the product αz may leak some information about α. We avoid this
by using Pedersen commitments while generating z. We represent this protocol as follows:(

C(α−1)
〈g∗〉 , (α

−1)i

)
= Inverse(n, t, f, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
) (6.6)

Here g∗ belongs to any group of order p. The liveness, agreement and secrecy properties of
the protocol are the same as those of HybridDKG-Sh except secrecy is defined in the terms
of α−1 instead of α; for the correctness property, along with recoverability to a unique value

s, this protocol additionally mandates that s = α−1. For a distributed secret
(
C(α)
〈g〉 , αi

)
,

protocol Inverse works as follows: every node Pi:

1. runs
(
C(z,z′)

〈ĝ,ĥ〉 , zi, z
′
i

)
= RandomPed(n, t, f, ĝ, ĥ);

2. computes shares of (w,w′) = (αz, αz′) as
(
C(w,w′)

〈ĝ,ĥ〉 , wi, w
′
i

)
= MulPed(n, t, f, ĝ, ĥ,(

C(α)
〈g〉 , αi

)
,
(
C(z,z′)

〈ĝ,ĥ〉 , zi, z
′
i

)
);

3. sends (wi, w
′
i) to each node and reconstructs w = HybridDKG-RecPed(t, C(w,w′)

〈ĝ,ĥ〉 , wi, w
′
i).

If w = 0, which happens with negligible probability (when z = 0), repeats the above
two steps, else locally computes (α−1)i = w−1zi;

4. computes the commitment C(α−1)
〈g∗〉 using w−1, C(z,z′)

〈ĝ,ĥ〉 , and if required, any of the

NIZKPK techniques.

A modified form of this protocol is used in Section 6.3.4.

This protocol is a combination of the RandomPed, MulPed and HybridDKG-Rec protocols
along with some local computations. Therefore, its liveness and agreement properties
follow directly from the corresponding properties of protocol HybridDKG. Uniqueness of
the recovered value follows from the correctness property of protocol HybridDKG, while its
equality to α−1 can be proven as follows: a share computed by a node Pi at the end of

protocol Inverse is equal to zi
zα

, where C( z
zα

)

〈g∗〉 is the associated commitment vector. When

reconstructed, it provides α−1 as follows:

HybridDKG-RecDLog(t, C
( z
zα

)

〈g〉 ,
zi
zα

) =
1

zα
HybridDKG-RecDLog(t, C

(z)
〈g〉 , zi) =

z

zα
= α−1

Secrecy of protocol Inverse follows directly from secrecy of protocols HybridDKG-ShPed and
Mul. After the reconstruction of w = zα, the distributed uniformly random element z and
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α remain private by the secrecy properties of protocol Mul. As the final shares of α−1

are generated using a local computation, there is no secrecy loss in the last step either.
It has the same asymptotic message and communication complexities as those of protocol
HybridDKG-Sh.

6.3 Distributed Private Key Generators (PKGs) for

Identity-Based Encryption (IBE) Schemes

We present and prove distributed PKG setup and private key extraction protocols for
three IBE schemes: namely, Boneh and Franklin’s IBE (BF-IBE) [BF01], Sakai and Kasa-
hara’s IBE (SK-IBE) [SK03], and Boneh and Boyen’s IBE (BB1-IBE) [Boy08]. Each of
these schemes represents a distinct important category of an IBE classification defined
by Boyen [Boy07]. They respectively belong to full-domain-hash IBE schemes, exponent-
inversion IBE schemes, and commutative-blinding IBE schemes. Note that the distributed
PKG architectures that we develop for each of the three schemes apply to every scheme
in their respective categories. Our above choice of IBE schemes is influenced by an
identity-based cryptography standard (IBCS) [BM07] and also a comparative study by
Boyen [Boy08], which finds the above three schemes to be the most practical IBE schemes
in their respective categories. In his classification, Boyen [Boy07] also includes another cat-
egory for quadratic-residuosity-based IBE schemes; however, none of the known schemes
in this category are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a user’s private-key extraction. The
distributed form of the PKG does not affect the encryption and decryption steps of IBE.
Consequently, we concentrate only on the distributed PKG setup and private-key extrac-
tion steps of the three IBE schemes under consideration. However, we recall the original
encryption and decryption definitions for our proofs. We start by describing a bootstrap-
ping procedure required by all IBE schemes.

6.3.1 Bootstrapping Procedure

Each of the IBE schemes under consideration here requires the following three bootstrap-
ping steps.

1. Determine the node group size n, the security threshold t and the crashed-nodes
threshold f such that n ≥ 3t+ 2f + 1.

2. Choose the pairing type to be used and select three groups G, Ĝ, and GT of prime
order p such that there exists a bilinear pairing e : G× Ĝ→ GT of the decided type.
The group order p is determined by the security parameter κ.
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3. Choose two generators g ∈ G and ĝ ∈ Ĝ required to generate public parameters as
well as the commitments. With a type 1 or 2 pairing, set g = ϕ(ĝ).

Any untrusted entity can perform these offline tasks. Honest DKG nodes can verify the
correctness of the tuple (n, t, f) and confirm the group choices G, Ĝ, and GT as the first
step of their distributed PKG setup. If unsatisfied, they may decline to proceed. We
denote the generated bilinear pairing group as G = 〈e,G, Ĝ,Gt〉.

6.3.2 Formal Security Model

An IBE scheme with an (n, t, f)-distributed PKG consists of the following four components:

• A distributed PKG setup protocol for node Pi that takes the above bootstrapped
parameters n, t, f , and G as input and outputs a share si of a shared master secret s
and a corresponding public-key vector Kpub of a master public key and n public-key
shares.

• A distributed private key-extraction protocol for node Pi that takes a client identity
ID, the public key vector Kpub and the master-secret share si as input and outputs
a verifiable private-key share (dID)i. The client computes the private key dID after
verifying the received shares (dID)i.

• An encryption algorithm that takes a receiver identity ID, the public key vector Kpub

(specifically, the master public key) and a plaintext message M as input and outputs
a ciphertext C.

• A decryption algorithm for client with identity ID that takes a ciphertext C and the
private key dID as input and outputs a plaintext M .

Note that the above distributed PKG setup protocol does not require any dealer and
that we mandate verifiability for the private-key shares rather than obtaining robustness
using error-correcting techniques. During private-key extractions, we insist on minimal
interaction between clients and PKG nodes—transferring identity credentials from the
client at the start and private-key shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we consider the following game that
a challenger plays against a polynomially bounded t-limited Byzantine adversary with
f -limited crashes and link failures.

Setup. The adversary chooses to corrupt a fixed set of t nodes. To run a distributed
PKG setup protocol, the challenger simulates the remaining n − t nodes. Of these, the
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adversary can further crash any f nodes at any instant. Modelling these f crashed nodes
is trivial. The adversary informs the indices of the crashed nodes to the challenger, who
makes sure not to use the inputs corresponding to those f nodes during the period they are
crashed. It, however, computes the internal states of the crashed nodes using the outputs
corresponding to other n− t−f nodes that it runs. When the adversary modifies its choice
of crashed nodes, the challenger models the associated recoveries using the internal states
computed during the protocol. Note that, for the simplicity and clarity of the protocols
and the proofs, we ignore these f crashes in exposition of our distributed PKG setup and
private-key extraction protocols.

At the end of the protocol execution, the adversary receives t shares of a shared master
secret for its t nodes and a public key vector Kpub. The challenger knows the remaining
n− t shares and can derive the master secret as n− t− f ≥ t+ 1.

Phase 1. The adversary adaptively issues private-key extraction and decryption queries to
the challenger. For a private-key extraction query 〈ID〉, the challenger runs the distributed
key extraction protocol for its n− t nodes, interacts with the t adversary nodes, and sends
verifiable private-key shares for its n − t − f nodes. For a decryption query 〈ID, C〉, the
challenger decrypts C by generating the private key dID or using the master secret.

Challenger. The adversary chooses two equal-length plaintexts M0 and M1, and a chal-
lenge identity IDch such that IDch does not appear in any private-key extraction query
in Phase 1. The challenger chooses b ∈R {0, 1} and encrypts Mb for IDch, and gives the
ciphertext Cch to the adversary.

Phase 2. The adversary adaptively issues more private-key extraction and decryption
queries to the challenger except for a key extraction query for 〈IDch〉 and decryption queries
for 〈IDch, Cch〉.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Security against IND-ID-CCA attacks means that, for any polynomially bounded ad-
versary, b′ = b with probability negligibly greater than 1/2.

6.3.3 Boneh and Franklin’s BF-IBE

BF-IBE [BF01] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG
generates a master key s ∈ Zp and an associated public key gs ∈ G, and derives private

keys (d ∈ Ĝ) for clients using their well-known identities and s. A client with identity

ID receives the private key dID =
(
Ĥ(ID)

)s
= hsID ∈ Ĝ, where Ĥ : {0, 1}∗ → Ĝ∗ is a

full-domain cryptographic hash function. (Ĝ∗ denotes the set of all elements in Ĝ except
the identity.) The security of BF-IBE is based on the BDH assumption.
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Distributed PKG Setup. The distributed PKG setup involves the generation of the
system master key and the associated system public-key tuple in the (n, t)-distributed
form among n nodes. Each node Pi participates in a common DKG over Zp to generate its
share si ∈ Zp of the distributed master key s. The system public-key tuple is of the form

C(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain this using our RandomDLog protocol from Eq. 6.1 as(

C(s)
〈g〉, si

)
= RandomDLog(n, t, g)

Private-key Extraction. As a client needs t + 1 correct shares, it is sufficient for the
client to contact any 2t + 1 nodes (say set Q). The private-key extraction protocol works
as follows.

1. Once a client with identity ID contacts every node in Q, every honest node Pi ∈ Q
authenticates the client’s identity and returns a private-key share hsiID ∈ Ĝ over a
secure and authenticated channel.

2. Upon receiving t + 1 valid shares, the client can construct her private key dID as
dID =

∏
Pi∈Q(hsiID)

λi ∈ Ĝ, where the Lagrange coefficient λi =
∏

Pj∈Q\{i}
j
j−i .

3. The client can verify the correctness of the computed private key dID by checking

e(g, dID)
?
= e(gs, hID). If unsuccessful, she can verify the correctness of each received

hsiID by checking if e(g, hsiID)
?
= e(gsi , hID). An equality proves the correctness of the

share, while an inequality indicates misbehaviour by the node Pi and its consequential
removal from Q.

In asymmetric pairings, elements of G generally have a shorter representation than
those of Ĝ. Therefore, we put the more frequently accessed system public-key shares in
G, while the occasionally transferred client private-key shares belong to Ĝ. This also leads
to a reduction in the ciphertext size. However, for type 2 pairings, an efficient hash-to-Ĝ
is not available for the group Ĝ [GPS08]; in that case we compute the system public key
shares in Ĝ and use the more feasible group G for the private key shares.

Encryption and Decryption. Boneh and Franklin obtain an IND-ID-CCA secure IBE
encryption protocol (FullIdent) [BF01, Section 4.2] secure against the BDH assumption by
applying the Fujisaki-Okamoto transformation [FO99] to their IND-ID-CPA secure scheme
(BasicIdent). Along with Ĥ : {0, 1}∗ → Ĝ∗, this scheme uses three more random oracles:
H2 : Gt → {0, 1}κ

′
, H3 : {0, 1}κ′ × {0, 1}κ′ → Zp, and H4 : {0, 1}κ′ → {0, 1}κ′ . Here κ′ is a

security parameter that must be at least 2κ.
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Encryption: To encrypt a message M of fixed bit length κ′ for a receiver of identity
ID, a sender chooses σ ∈R {0, 1}κ

′
, computes r = H3(σ,M) and hID = Ĥ(ID), and sends

C = (u, v, w) = (gr, σ ⊕H2(e(gs, hID)
r),M ⊕H4(σ)) to the receiver.

Decryption: To decrypt a ciphertext C = (u, v, w) using the private key dID, the receiver
successively computes σ = v⊕H2(e(u, dID)), M = w⊕H4(σ), and r = H3(σ,M). If gr 6= u,
then the receiver rejects C, else it accepts M as a valid message.

Proof of Security. We prove the IND-ID-CCA security of BF-IBE with the (n, t)-
distributed PKG ((n, t)-FullIdent) based on the BDH assumption in the random oracle
model. Hereafter, qE, qD and qHi denote the number of extraction, decryption and random
oracle Hi queries respectively.

Theorem 6.1. Let Ĥ, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA
adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-FullIdent making
at most qE, qD, qĤ , qH2, qH3, and qH4 queries. Then, there exists an algorithm B that
solves the BDH problem in G with advantage roughly equal to ε1(κ)/(qĤqH2(qH3 + qH4)) and
running time O(t1(κ), qE, qD, qĤ , qH2 , qH3 , qH4).

For their proof, Boneh and Franklin define two additional public key encryption schemes:
IND-CPA secure BFBasicPub [BF01], and its IND-CCA secure version BFBasicPubhy [BF01].
We use distributed versions of these schemes: (n, t)-BFBasicPubhy and (n, t)-BFBasicPub
respectively. Both (n, t)-BFBasicPubhy and (n, t)-BFBasicPub protocols have three steps:
keygen, encrypt and decrypt. We first define the protocol (n, t)-BFBasicPub:

keygen: Given a bilinear group G for a security parameter κ, a set of n nodes runs the
BF-IBE distributed PKG setup for threshold t (n ≥ 3t + 1) to generate individual

private keys si and a public key tuple C(s)
〈g〉. n nodes also run protocol HybridDKG-Sh

to generate ĥID ∈R Ĝ. Assuming a random oracle H2 : G→ {0, 1}κ′ , where κ′ is the

message length, the system public key is 〈G, g, ĝ, C(s)
〈g〉, ĥID, H2〉. Every node generates

its private-key share (dID)i = ĥsiID corresponding to the system’s private key dID.

encrypt: To encrypt M ∈ {0, 1}κ′ , choose r ∈R Z∗p and set the ciphertext C = (gr,M ⊕
H2(e(gs, hID)

r)).

decrypt: To decrypt the ciphertext C = (u, v) using the private key shares (dID)i, compute
and share e(u, (dID)i) with every other node or with a common accumulator. Inter-
polate these pairing values to generate e(u, dID) and compute M = v⊕H2(e(u, dID)).

Protocol (n, t)-BFBasicPubhy only modifies the encrypt and decrypt steps of the above
protocol using the Fujisaki-Okamoto transformation [FO99], and random oracles H3 :
{0, 1}κ′ × {0, 1}κ′ → Zp and H4 : {0, 1}κ′ → {0, 1}κ′ .
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Boneh and Franklin prove the security of FullIdent in the following proof sequence:
FullIdent → BFBasicPubhy → BFBasicPub → BDH. Galindo [Gal05] corrects a flaw in
their proof maintaining the same proof sequence. We also follow the same proof sequence
through Lemmas 6.2, 6.3 and 6.4 to prove Theorem 6.1:

(n, t)-FullIdent→ (n, t)-BFBasicPubhy → (n, t)-BFBasicPub→ BDH.

Lemma 6.2. Let Ĥ, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA
adversary that has advantage ε(κ) in running time t(κ) against (n, t)-FullIdent. Suppose
A1 makes at most qE, qD, qĤ , qH2, qH3, and qH4 queries. Then there exists an IND-CCA
adversary A2 that has advantage at least ε(κ)/qĤ against (n, t)-BFBasicPubhy. Its running
time is at most t(κ) + c(nqE + qD + qĤ) where c is the average time of exponentiation in

Ĝ.

Proof. (Outline) The game between the challenger and the adversary A2 starts with the
challenger running the keygen step of (n, t)-BFBasicPubhy. A2 simultaneously starts adver-
sary A1 and forwards all messages from the challenger to A1 and vice versa. As a result,
in this simulation game, t out of n nodes are run by A1, while the challenger runs the
remaining n − t nodes. A2, however, knows all information gathered by A1. At the end
of the distributed PKG setup, along with A1’s public parameters, A2 also knows secret
shares si for the t nodes run by A1. The rest of the game and the analysis remains the
same as that of [Gal05], except during key extraction queries. Here, instead of a private
key dID, A2 has to provide t+ 1 private-key shares to A1. This is, however, easily possible
knowing A1’s t secret shares and the randomness νi used in the Ĥ random oracle hash
table 〈IDi, hi, νi, biti〉 ∈ {0, 1}∗ × Ĝ∗ × Z∗p × {0, 1}. Refer to [Gal05, Section 3] for the rest
of the proof.

Lemma 6.3 (Fujisaki-Okamoto [FO99]). Let H3 and H4 be random oracles. Let A2 be
an IND-CCA adversary that has advantage ε2(κ) against (n, t)-BFBasicPubhy making at
most qD, qH3, and qH4 queries in running time t2(κ). Then there exists an IND-CPA
adversary A3 that has advantage at least 1

2(qH3
+qH4

)
[(ε2(κ) + 1)(1 − 2/p)qD − 1] against

(n, t)-BFBasicPub. Its running time is at most t2(κ) + O((qH3 + qH4)κ′), where κ′ is the
message length.

Lemma 6.4. Let H2 be a random oracle. Let A3 be an IND-CPA adversary that has ad-
vantage ε3(κ) in running time t3(κ) against (n, t)-BFBasicPub making at most qH2 queries.
Then there exists an algorithm B that solves the BDH problem in 〈e,G, Ĝ,Gt〉 with advan-
tage at least 2ε3(κ)/qH2 and a running time O(t3(κ)).

Proof. Algorithm B is given a random instance of the BDH problem 〈g, ĝ, ga, ĝa, gb, ĝc〉 in
a bilinear group G. Let D = e(g, ĝ)abc ∈ Gt be the solution to this problem. Algorithm B
finds D by interacting with A3 as follows:
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Setup: B runs the keygen step of (n, t)-BFBasicPub using the BDH instance. Let PBad
be the set of t parties corrupted or owned by A3. Let PGood be the set of remaining
good parties which will be run by B. B wants to make sure that the challenge ga and
ĝc are included respectively in gs ∈ C(s)

〈g〉 and ĥID of (n, t)-BFBasicPub. As in protocol
HybridDKG-Sh, the VSSs selection may not be under B’s control, B cannot “hit” ga as the
system public key corresponding to s. It rather uses (ga)µi and (ĝc)µ

′
i for µi, µ

′
i ∈R Z∗p

as its contributions towards respectively s and ĥID in keygen for every Pi ∈ PGood. More
specifically, for every Pi ∈ PGood, B chooses µi, µ

′
i ∈R Z∗p and sij, s

′
ij ∈R Zp for every

Pj ∈ PBad, where si,j and s′ij are subshares for Pj of VSSs run by Pi. Although B does not

know the contributions µia and µ′ic, it can provide consistent commitment vectors C(µia)
〈g〉

and C(µ′ic)

〈ĝ〉 to A3 knowing sij, s
′
ij for Pj ∈ PBad, µi, µ

′
i, g

a, and ĝc. For VSSs run by the

adversary nodes Pj ∈ PBad, B can reconstruct the exact contributions νj and ν ′j using n− t
subshares obtained from Pj. Therefore, for any subset of VSSs Q and Q′ chosen finally,

s = a
∑

Pi∈QGood µi +
∑

Pj∈QBad νi and ĥID = ĝ
c

P
Pi∈Q′Good

µ′i+
P
Pj∈Q′Bad

ν′i . Note that B knows

ν =
∑

Pj∈QBad νi, ν
′ =

∑
Pj∈Q′Bad

ν ′i µ =
∑

Pi∈QGood µi and µ′ =
∑

Pi∈Q′Good
µ′i. Let si be

the final share of s for each node Pi. Observe that the (unknown) associated private key
dID = ĝ(aµ+ν)(cµ′+ν′) = ĝµµ

′(ac)+µν′(a)+µ′ν(c)+νν′ . B runs random oracle H2 for A3 creating a
list H list

2 of 〈Gt, {0, 1}κ
′〉. An entry 〈xi, hi〉 indicates that hi = H2(xi). Finally, it is easy

to see that this simulated view of A3 is identically distributed as in a real execution of
keygen.

The rest of the game and the analysis remains the same as that of [BF01, Lemma 4.3],
except during the Guess step. Here, instead of returning xi from a random tuple 〈xi, hi〉
from H list

2 as answer to the BDH problem, B returns(
xi

e(gb, ĝa)µν′e(gb, ĝc)µ′νe(gb, ĝ)νν′

)(µµ′)−1

.

Here, if xi is the correct choice, then xi is equal to e(g, ĝ)abcµµ
′+abµν′+bcµ′ν+bνν′ instead

of e(g, ĝ)abc in the original BF-IBE proof.

6.3.4 Sakai and Kasahara’s SK-IBE

SK-IBE [SK03] belongs to the exponent-inversion IBE family. The PKG setup here remains
exactly same as BF-IBE and the PKG generates a master key s ∈ Zp and an associated
public key gs ∈ G just as in BF-IBE. However, the key extraction differs significantly.

Here, a client with identity ID receives the private key dID = ĝ
1

s+H1(ID) ∈ Ĝ, where H1 :
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{0, 1}∗ → Zp. Chen and Cheng [CC05] prove the security of SK-IBE based on the BDHI
assumption.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as that
of BF-IBE, where si ∈ Zp is the master-key share for node Pi and C(s)

〈g〉 = [gs, gs1 , · · · , gsn ]
is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightfor-
ward as that for BF-IBE. We modify the Inverse protocol described in Section 6.2; specifi-
cally, here a private-key extracting client receives wi from the node in step 3 and instead
of PKG nodes, the client performs the interpolation step of HybridDKG-Rec. In step 4,
instead of publishing, PKG nodes forward ĝzi and the associated NIZKPKDLog directly to
the client, which computes ĝz and then dID = (ĝz)w

−1
. The reason behind this is to avoid

possible key escrow if the node computes both ĝz and w. Further, the nodes precompute

another generator ĥ ∈ Ĝ for Pedersen commitments using
(
C(r)
〈ĝ〉, ri

)
= RandomDLog(n, t, ĝ),

set ĥ =
(
C(r)
〈ĝ〉

)
0

= ĝr, and discard their shares ri.

1. Once a client with identity ID contacts all n nodes the system, every node Pi authen-

ticates the client’s identity, runs
(
C(z,z′)

〈ĝ,ĥ〉 , zi, z
′
i

)
= RandomPed(n, t, ĝ, ĥ) and computes

sIDi = si + H1(ID) and for 0 ≤ j ≤ n,
(
C(sID)
〈g〉

)
j

=
(
C(s)
〈g〉

)
j
gH1(ID) = gsj+H1(ID). If(

C(sID)
〈g〉

)
0

= 1, which happens with negligible probability, abort the protocol because

sID = 0.

2. Node Pi performs
(
C(w,w′)

〈ĝ,ĥ〉 , wi, w
′
i

)
= MulPed(n, t, ĝ, ĥ,

(
C(sID)
〈g〉 , s

ID
i

)
,
(
C(z,z′)

〈ĝ,ĥ〉 , zi, z
′
i

)
),

where w = sIDz = (s + H1(ID))z and w′ = (s + H1(ID))z′ and sends
(
C(w,w′)

〈ĝ,ĥ〉 , wi

)
along with NIZKPKDLog(wi, w

′
i,
(
C(w)
〈ĝ〉

)
i
,
(
C(w,w′)

〈ĝ,ĥ〉

)
i
) to the client, which upon receiv-

ing t + 1 verifiably correct shares (wi) reconstructs w using Lagrange interpolation.
If w 6= 0, then it computes w−1 or else starts again from step 1.

3. Node Pi sends
(
C(z)
〈ĝ〉

)
i

= ĝzi and
(
C(z,z′)

〈ĝ,ĥ〉

)
along with NIZKPKDLog(zi, z

′
i,
(
C(z)
〈ĝ〉

)
i
,(

C(z,z′)

〈ĝ,ĥ〉

)
i
) to the client.

4. The client verifies
(
C(z)
〈ĝ〉

)
i
using the received NIZKPKDLog, Lagrange-interpolates t+1

valid ĝzi to compute ĝz and derives her private key (ĝz)w
−1

= ĝ
1

(s+H(ID)) .
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This protocol can be used without any modification with any type of pairing. Further,
online execution of the RandomPed computation can be eliminated using batch precompu-

tation of distributed random elements
(
C(z,z′)

〈ĝ,ĥ〉 , zi, z
′
i

)
.

Encryption and Decryption. Chen and Cheng [CC05] define an IND-ID-CCA secure
version of the SK-IBE scheme secure against the BDHI assumption. Here, the random
oracle Ĥ in BF-IBE is replaced by H1 : {0, 1}∗ → Zp. The other random oracles H2, H3

and H4 remain the same. This scheme also uses Fujisaki-Okamoto transformation [FO99]
to achieve IND-ID-CCA security.

Encryption: To encrypt a message M of some fixed bit length κ′ for a receiver of identity
ID, a sender chooses σ ∈R {0, 1}κ

′
, computes r = H3(σ,M) and hID = H1(ID), and sends

C = (u, v, w) = ((gsghID)r, σ ⊕H2(e(g, ĝ)r),M ⊕H4(σ)) to the receiver.

Decryption: To decrypt a ciphertext C = (u, v, w) using the private key dID, the receiver
successively computes σ = v ⊕ H2(e(u, dID)), M = w ⊕ H4(σ), and r = H3(σ,M). If
(gsghID)r 6= u, then the receiver rejects C, else it accepts M as a valid message.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is
based on the BDHI assumption.

Theorem 6.5. Let H, H1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA
adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-SK-IBE making
at most qE, qD, qH1, qH2, qH3, and qH4 queries. Then, there exists an algorithm B that
solves the BDHI problem in G with advantage roughly equal to ε1(κ)/(qH1qH2(qH3 + qH4))
and running time O(t1(κ), qE, qD, qH , qH1 , qH2 , qH3 , qH4).

Chen and Cheng use the same technique as that of BF-IBE (with the modification by
Galindo) to obtain the proof sequence SK-IBE → SKBasicPubhy → SKBasicPub → BDHI.
We also use the same proof sequence. Here, however, we divert from the proof of Theorem
6.1 for (n, t)-FullIdent. To prove Theorem 6.5 for (n, t)-SK-IBE, we show that (n, t)-SK-IBE
→ SKBasicPubhy, where SKBasicPubhy is a public key encryption scheme based on SK-IBE
as defined in [CC05, Section 3.2]. Note that SKBasicPubhy is not a distributed scheme.
Therefore, recalling Lemma 2 and 3 from [CC05] to prove SKBasicPubhy → SKBasicPub
and SKBasicPub → BDHI respectively we complete the proof of Theorem 6.5. Next, we
prove (n, t)-SK-IBE → SKBasicPubhy.

Lemma 6.6. Let H1, H2 be random oracles. Let A1 be an IND-ID-CCA adversary that
has advantage ε(κ) in running time t(κ) against (n, t)-SK-IBE. Suppose A1 makes at most
qE, qD, and qH1 queries. Then there is an IND-CCA adversary A2 that has advantage at
least ε(κ)/qH1 against SKBasicPubhy. Its running time is at most t(κ) + c(nqE + qD + qH1)
where c is the average time of exponentiation in Ĝ.
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Proof. We construct an IND-CCA adversary A2 that uses A1 to gain advantage against
SKBasicPubhy. (For the definition of SKBasicPubhy, refer to [CC05, Section 3.2].) The
game between a challenger and A2 starts with the challenger running algorithm keygen of

SKBasicPubhy to generate a public key Kpub = 〈G, g, ĝ, gs, h0, (h1, ĝ
1

h1+s ), . . . , (hi, ĝ
1

hi+s ), . . . ,

(hqH1
, ĝ

1
hqH1

+s
), H2, H3, H4〉. Let ĝ

1
h0+s be the corresponding private key. The challenger

gives Kpub to A2, which is supposed to launch an IND-CCA attack on SKBasicPubhy using
A1. A2 simulates the challenger for A1 as follows.

Setup: As the distributed PKG setup in SK-IBE is same as that of BF-IBE, we reuse much
of the Setup simulation of (n, t)-BFBasicPub in Lemma 6.4. However, we do not require
their ĥID computation and ga is replaced by gs. The master key finally generated is equal to
s′ = s

∑
Pi∈QGood µi +

∑
Pj∈QBad νi, where A2 knows ν =

∑
Pj∈QBad νi and µ =

∑
Pi∈QGood di.

To make the pairs (hi, ĝ
1

hi+s ) compatible with s′, A2 defines h′i = µhi − ν and ĝ′ = ĝµ. To

answer H1 and key extraction queries for A1, A2 uses pairs (h′i, ĝ
′

1
h′
i
+s′ ), where A2 uses h′i

as a hash value and ĝ′
1

h′
i
+s′ as the corresponding private key. Further, A1 is provided ĝ′

instead of ĝ as a public parameter. A2 also runs random oracles H1 and H for A1, where
H is a random oracle required in NIZKPKDLog.

H1 queries: Same as in [CC05, Section 3.2].

Phase 1 - Extraction Queries: Though private keys in the form of (h′i, ĝ
′

1
h′
i
+s′ ) tuples are

available, A2 has to generate those for A1 in a distributed way as defined in the private-key
extraction protocol. This is non-trivial for A2 as it has to provide shares of w = (s′+h′i)z to
A2 without knowing its shares of s′. To achieve this, it first chooses w ∈R Z∗p and computes

ĝ′
w

h′
i
+s′ = ĝ′zw , where zw is the randomness which A2 wants to obtain from RandomPed. It

then completes the actual RandomPed and MulPed protocols normally by playing the part
of good parties. It determines z and z′ generated by RandomPed using its n − t shares
and also knows wi, w

′
i for Pi ∈ PBad. Using w and wi for Pi ∈ PBad, it generates wi and

ĝwi for all parties. To provide the required NIZKPKDLog for ĝwi , A2 randomly generates
challenge τ and response (u1, u2), computes commitments (t1, t2) and includes an entry
〈(ĝ′, ĥ, F, P, t1, t2), τ〉 in the hash table of H before forwarding πDLog = (τ, u1, u2) to A1.

Similarly, using ĝ′zw = ĝ′
w

h′
i
+s′ and ĝ′zwi = ĝ′zi for Pi ∈ PBad, it generates ĝ′zwi for each Pi

and provides its NIZKPKDLog, which results in A1 generating ĝ′
1

h′
i
+s′ as its private key.

The rest of the game and the analysis remains exactly the same as [CC05, Section 3.2].
It is interesting to observe that despite the different master keys (s for SKBasicPubhy and
s′ = sµ+ ν for (n, t)-SK-IBE), the ciphertext queries C = 〈u, v, w〉 remain the same when
transferred from A1 to the challenger during decryption queries and from the challenger
to A1 during the challenge phase.
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6.3.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Boneh and Boyen [BB04b]
proposed the original scheme with a security reduction to the decisional BDH assump-
tion [Jou02] in the standard model against selective-identity attacks. However, with a
practical requirement of IND-ID-CCA security, in the IBCS standard [BM07], Boyen and
Martin proposed a modified version of BB1, which is IND-ID-CCA secure in the random
oracle model under the BDH assumption. In [Boy08], Boyen rightly claims that for prac-
tical applications, it would be preferable to rely on the random-oracle assumption rather
than using a less efficient IBE scheme with a stronger security assumption or a weaker
attack model. Here, we consider the modified BB1-IBE scheme as described in [Boy08]
and [BM07].

In the BB1-IBE setup, the PKG generates a master-key triplet (α, β, γ) ∈ Z3
p and an

associated public key tuple (gα, gγ, e(g, ĝ)αβ). A client with identity ID receives the private
key tuple dID = (ĝαβ+(αH1(ID)+γ)r, ĝr) ∈ Ĝ2, where H1 : {0, 1}∗ → Zp.

Distributed PKG Setup. In [Boy08], Boyen does not include the parameters ĝ and ĝβ

from the original BB1 scheme [BB04b] in his public key, as they are not required during
key extraction, encryption or decryption (they are not omitted for security reasons). In
the distributed setting, we in fact need those parameters to be public for efficiency reasons;
a verifiable distributed computation of e(g, ĝ)αβ becomes inefficient otherwise. To avoid

key escrow of clients’ private-key components (ĝr), we also need ĥ and C(β)

〈ĥ〉 ; otherwise,

parts of clients’ private keys would appear in public commitment vectors. As in SK-IBE in
Section 6.3.4, this extra generator ĥ ∈ Ĝ is precomputed using the RandomDLog protocol.
Distributed PKG setup of BB1 involves distributed generation of the master-key tuple
(α, β, γ). Distributed PKG node Pi achieves this using the following three RandomDLog

protocol invocations: (
C(α)
〈g〉 , αi

)
= RandomDLog(n, t, f, g),(

C(β)
〈ĝ〉 , βi

)
= RandomDLog(n, t, f, ĝ),(

C(γ)
〈g〉 , γi

)
= RandomDLog(n, t, f, g).

Here, (αi, βi, γi) is the tuple of master-key shares for node Pi. We also need C(β)

〈ĥ〉 ; each

node Pi provides this by publishing
(
C(β)

〈ĥ〉

)
i

= ĥβi and the associated NIZKPK≡DLog(βi, ĝ
βi ,

ĥβi). The tuple
(
C(α)
〈g〉 , e(g, ĝ)αβ, C(γ)

〈g〉 , C
(β)

〈ĥ〉

)
forms the system public key, where e(g, ĝ)αβ
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can computed from the public commitment entries. The vector C(β)
〈ĝ〉 , although available

publicly, is not required for any further computation.

Private-key Extraction. The most obvious way to compute a BB1 private key seems to
be for Pi to compute αiβi+(αiH1(ID)+γi)ri and provide ĝαiβi+(αiH1(ID)+γi)ri , ĝri to the client,
who now needs 2t+1 valid shares to obtain her private key. However, αiβi+(αiH1(ID)+γi)ri
here is not a share of a random degree-2t polynomial. The possible availability of ĝri to the
adversary creates a suspicion about the secrecy of the master-key share with this method.

For private-key extraction in BB1-IBE with a distributed PKG, we instead use the
MulBP protocol in which the client is provided with ĝwi , where wi = (αβ+(αH1(ID)+γ)r)i
is a share of random degree t polynomial. The protocol works as follows.

1. Once a client with identity ID contacts all n nodes the system, every node Pi au-

thenticates the client’s identity and runs
(
C〈ĥ,ĝ,〉(r, r′), C

(r)

〈ĥ〉,NIZKPKDLog, ri, r
′
i

)
=

RandomPed(n, t, f, ĥ, ĝ). RandomPed makes sure that r is uniformly random.

2. Pi computes its share wi of w = αβ + (αH1(ID) + γ)r using protocol MulBP in Eq.
6.5.(
C(w)
〈g∗〉, wi

)
= MulBP(n, t, f, g∗, desc,

(
C(α)
〈g〉 , αi

)
,
(
C(β)

〈ĥ〉 , βi

)
,
(
C(γ)
〈g〉 , γi

)
,
(
C(r)

〈ĥ〉, ri

)
)

where the list desc = 〈(1, 1, 2), (H1(ID), 1, 4), (1, 3, 4)〉 describes the required binary
product under the ordering (α, β, γ, r) of secrets. To justify our choices of commit-
ment generators, we present the pairing-based verification in protocol MulBP:

e(gαiβi+(αiH1(ID)+γi)ri , ĥ)
?
= e(gαi , ĥβi)e((gαi)H1(ID)gγi , ĥri).

For type 2 and 3 pairings, g∗ = g, as there is no efficient isomorphism from G
to Ĝ. However, for type 1 pairings, we use g∗ = ĥ = φ−1(h). Otherwise, the
resultant commitments for w (which are public) will contain the private-key part
gαβ+(αH1(ID)+γ)r.

3. Once the MulBP protocol has succeeded, Node Pi generates ĝwi and ĝri and sends
those to the client over a secure and authenticated channel.

4. The client interpolates the valid shares to generate her private key (ĝαβ+(αH1(ID)+γ)r,
ĝr). For type 1 and type 2 pairings, the client can use the pairing-based DDH solving
to check the validity of the shares. However, for type 3 pairings, without an efficient
mapping from Ĝ to G, pairing-based DDH solving can only be employed to verify
ĝwi . As a verification of ĝri , node Pi includes a NIZKPK≡DLog(ri, ĥ

ri , ĝri) along with
ĝwi and ĝri .
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As in SK-IBE in Section 6.3.4, online execution of the RandomDLog computation can be

eliminated using batch precomputation of distributed random elements
(
C(r)

〈ĥ〉, ri

)
.

Encryption and Decryption. Similar to the PKG setup and the key extraction pro-
tocols for BB1-IBE in Section 6.3.5, we use the BB1-IBE version defined in [Boy08] and
[BM07] for the encryption and decryption protocols here. Boyen [Boy08] claims IND-
ID-CCA security of this system against the BDH assumption. This scheme uses H ′3 =
Gt × {0, 1}κ

′ ×G×G→ Zp along with H1 and H2 from SK-IBE.

Encryption: To encrypt a message M of some fixed bit length κ′ for a receiver of identity
ID, a sender chooses σ ∈R {0, 1}κ

′
, computes k = (e(g, ĝ)αβ)σ and hID = Ĥ(ID), and sends

the ciphertext C = (ρ, ρ0, ρ1, t) = (M ⊕H2(k), gσ, (gγ(gα)hID)σ, σ + H ′3(k, ρ, ρ0, ρ1)) to the
receiver.

Decryption: To decrypt a ciphertext C = (ρ, ρ0, ρ1, t) using the private key dID =
(ĝαβ+(αH1(ID)+γ)r, ĝr) = (d0, d1) (say), the receiver successively computes k = e(ρ0, d0)/e(ρ1,
d1) and σ = t−H3(k, ρ, ρ0, ρ1). If k 6= (e(g, ĝ)αβ)σ or ρ0 6= gσ, then the receiver rejects C,
else it accepts M = ρ⊕H2(k) as a valid message.

Proof of Security. We prove IND-ID-CCA security of the BB1-IBE scheme with the
(n, t)-distributed PKG ((n, t)-BB1-IBE) based on the BDH assumption. To the best of our
knowledge, an IND-ID-CCA security proof for the modified BB1-IBE scheme has not been
published yet and a non-distributed version of our proof is the first to provide IND-ID-CCA
security for this protocol.

Theorem 6.7. Let H, H1, H2 and H ′3 be random oracles. Let A be an IND-ID-CCA
adversary that has advantage ε(κ) in running time t(κ) against (n, t)-BB1-IBE making at
most qE, qD, qH1, qH2, qH′3, and qH4 queries. Then, there exists an algorithm B that solves
the BDH problem in G with advantage roughly equal to ε(κ)/(qH1qH′3) and running time
O(t(κ), qE, qD, qH , qH1 , qH2 , qH′3 , qH4).

Proof. Algorithm B is given a random BDH problem 〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear group
G as input. Let D = e(g, ĝ)abc ∈ Gt be the solution to this problem. Algorithm B finds D
by interacting with A as follows:

Setup: B makes a virtual network of n parties and runs the distributed setup of (n, t)-
BB1-IBE using the given BDH instance. Let PBad be the set of t parties corrupted or
owned by A. Let PGood be the set of remaining good parties which will be run by B. B
wants to make sure that the challenge ga is included in both gα ∈ C(α)

〈g〉 and gγ ∈ C(γ)
〈g〉 , and

the challenge ĝb is included in ĝβ ∈ C(β)
〈ĝ〉 . Similar to the (n, t)-FullIdent BF-IBE and (n, t)-

SK-IBE proofs, the generated master key tuple (α, β, γ) = (µ1a + ν1, µ2b + ν2, µ3a + ν3).
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Let µ3a + ν3 = −αh∗ID + α′, where h∗ID = −µ3/µ1 is a challenge identity-hash and α′ =
ν3− ν1µ3/µ1 = αh∗ID + γ. α′ is completely random as the µ and ν values are not under B’s

control. Finally, B outputs
(
C(α)
〈g〉 , e(g, ĝ)αβ, C(γ)

〈g〉 , C
(β)

〈ĥ〉 ,NIZKPK≡DLog

)
as the system public

key.

H1 queries: Before initializing H list
1 , B chooses j ∈R {1, . . . , qH1}. When A queries H1

for IDi, B proceeds as follows: if i 6= j, it picks hIDi ∈R Zp, adds a tuple 〈IDi, hIDi〉 and
gives back hIDi to A. If i = j, it sets 〈IDj, h∗ID〉. Note that multiple queries for the same
identity are answered with the corresponding entry in its H list

1 . Further, the output of H1

is uniformly distributed in Zp and independent of A’s view.

H2 and H ′3 queries: Initially, these lists are empty. When a query for H2 or H ′3 arrives,
B first checks if an entry for the query input already exists in the corresponding list. If it
is present, B responds with the associated response, else B sends a random element of the
appropriate size as its response, and adds an input and response tuple in the oracle list. The
corresponding (random) oracle list entries look as follows: H list

2 (Gt, {0, 1}κ
′
) = 〈ki, hki〉, and

H ′list3 (Gt, {0, 1}κ
′
,G,G,Zp) = 〈ki, ρi, ρ0i, ρ1i, h3i〉, where κ′ is the message length.

Phase 1 - Extraction Queries: When A asks for the private key for IDi, B first gets
H1(IDi) = hIDi . If i = j, then B aborts the game and the attack fails. If i 6= j, B
starts the distributed private-key extraction protocol by running

(
C〈ĥ,ĝ,〉(r, r′), ri, ri

)
=

RandomPed(n, t, f, ĥ, ĝ). B knows r, r′ as well as shares of the nodes as it runs n − t

nodes. It then computes ĥr̃ = ĥr

(ĥβ)∆h
= ĥr−β/∆h where ∆h = hIDi − h∗ID. Using ĥr̃

and the t adversary commitments ĥri for i ∈ PBad, B computes the commitments C(r̃)

〈ĥ〉.

To provide the required NIZKPKDLog for each entry in C(r̃)

〈ĥ〉, A randomly generates chal-

lenge τi and response (u1i, u2i), computes commitments (t1i, t2i) and includes an entry
〈(ĝ′, ĥ, ĥr̃i , ĥri ĝr′i , t1i, t2i), τi〉 in the hash table of H before forwarding πDLog = (τi, u1i, u2i)
to A.

B then computes d′0 = (g∗)−βα
′/∆h(g∗)αr∆h+α′r = (g∗)αβ+(αhIDi+γ)r̃ and using known

shares of αi, βi and γi for Pi ∈ PBad, it runs MulBP for w = αβ+ (αhIDi + γ)r̃. Note that B
does not know its shares, but it can compute their commitments using d′0 and the inputs
from PBad. With its (n, t) subshares, it also knows the final shares wi for Pi ∈ PBad. It
then computes the required private key shares ĝwi and ĝr̃i for Pi ∈ PGood and forwards
them to A.

Phase 1 - Decryption Queries: B answers A’s decryption queries (IDi, Ci) as follows.
B first gets H1(IDi) = hIDi . If i 6= j, B obtains the private key (ĝαβ+(αhIDi+γ)r̃, ĝr) and
decrypts Ci = (ti, ρi, ρ0i, ρ1i). If i = j, then B cannot compute the private key and it uses
H2 and H ′3 instead. B searches H ′list3 for 〈·, ρi, ρ0i, ρ1i〉. If this tuple belongs to a valid
ciphertext by A, then there must be one or more corresponding entries in H ′list3 . For each
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such entry, retrieve ki and the hash value h′3i. Compute si = ti − h′3IDi and check if the

component-wise equality (ki, ρ0i)
?
= (e(g, ĝ)s, gs) holds. As e(g, ĝ), g and ρ0i are fixed for

a query, this equality only holds for a single or no ki value and correspondingly a single or
no entry in H ′list3 . If there is no such entry, then B discards the ciphertext and aborts, else
B searches for ki in H list

2 . If there is no entry, then B adds a random entry h2i for ki in
H list

2 . Finally, it returns the plaintext M as M = ρi ⊕ h2i.

Challenge: A outputs an identity IDch and two messages M0 and M1. If IDch 6= IDj,
then it aborts the game and the attack fails, else B sends (ρb ∈R {0, 1}κ

′
, ρ0b = gc, ρ1b =

(gc)α
′
, tb ∈R Zp) as a challenge ciphertext Cb to A.

Phase 2 - Extraction Queries: B proceeds as in Phase 1, expect the extraction query
for IDch is rejected.

Phase 2 - Decryption Queries: B proceeds as in Phase 1, expect the decryption query
for 〈IDch, Cb〉 is rejected.

Guess: A outputs its guess b′ ∈ {0, 1}. Now, there must be one or more entries for
〈·, ρb, ρ0b, ρ1b〉 in H ′list3 . B randomly picks one of those tuples 〈ki, ρi, ρ0i, ρ1i〉 and returns ki
as its answer D.

For a random BDH problem 〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear group G, A’s view is identical
to its view in a real attack game. It is easy to observe that B outputs the correct D with
probability ε(κ)/(qH1qH′3).

Using a more expensive DKG protocol with uniformly random output, all of our proofs
would become relatively simpler. However, it is important to note that our use of DKG
without uniformly random output does not affect the security reduction factor in any proof.
This is something not achieved by the known previous protocols with non-uniform DKG
such as threshold Schorr signatures [GJKR07]. Further, we do not discuss the liveness and
correctness properties for our asynchronous protocols as liveness and correctness of all the
distributed primitives provides liveness and correctness for the distributed PKG setup and
distributed key extraction protocols. Finally, for simplicity of the discussion, it would have
been better to combine the three distributed PKG proofs. However, that looks difficult, if
not impossible, as the distributed computation tools used in these distributed PKGs and
the original IBE security proofs vary a lot from a scheme to scheme.

6.4 Comparing Distributed PKGs

In this section, we concentrate on the performance of the setup and key extraction pro-
cedures of the three distributed PKGs defined in Section 6.3. For a detailed comparison
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Table 6.1: Operation count and key sizes for distributed PKG setups and distributed
private-key extractions (per key)

BF-IBE SK-IBE BB1-IBE
Setup Extraction Setup Extraction Setup Extraction

Operation Count
Generator h or ĥ X X X
HybridDKG-Sha

(precomputed) - 0 - 1P - 1P

(online) 1D 0 1D 1P 3D 1D

Parings
@PKG Node 0 0 0 2n 1b 2n
@Client - 2(2t+ 2) - 0 - 2nb

NIZKPK 0 0 0 2n nb 2nb

Interpolations 0 1 0 2 1 2
Key Sizes

PKG Public Key (n+ 2)Gc (n+ 3)G (2n+ 3)G, (n+ 2)Ĝ, (1)GT

Private-key Shares (2t+ 1)Ĝc (3n)Zp, (3n+ 1)Ĝ (2n)Zpb, (2n)Ĝ

aFor HybridDKG-Sh D indicates use of DLog commitments, while P indicates Pedersen commitments.
bFor type 1 and 2 pairings, n NIZKPKs can be replaced by 2n extra pairings and the 2n Zp elements

are omitted from the private-key shares.
cFor type 2 parings, the groups used for the PKG public key and the private-key shares are interchanged.

of the encryption and decryption algorithms of BF-IBE, SK-IBE and BB1-IBE, we refer
readers to the survey by Boyen [Boy08]. The general recommendations from this survey
are to avoid SK-IBE and other exponent-inversion IBEs due to their reliance on the strong
BDHI assumption, and that BB1-IBE and BF-IBE both are good, but BB1-IBE can be a
better choice due to BF-IBE’s less efficient encryption.

Table 6.1 provides a detailed operation count and key size comparison of our three
distributed PKGs. We count HybridDKG-Sh instances, pairings, NIZKPKs and interpo-
lations, and list public and private key sizes. We leave aside the comparatively small
exponentiations and other group operations. As mentioned in Section 6.3.5, for BB1-IBE,
with bilinear pairings of type 1 and 2, there is a choice that can be made between us-
ing n NIZKPKs and 2n pairing computations. The table shows the NIZKPK choice (the
only option for type 3 pairings), and footnote b shows where NIZKPKs can be traded off
for pairings. As discussed in Section 6.3.3, for curves with type 2 pairings, an efficient
algorithm for hash-to-Ĝ is not available and we have to interchange the groups used for
the system public-key shares and client private-key shares. Footnote c indicates how that
affects the key sizes.

In Table 6.1, we observe that the distributed PKG setup and the distributed private-key
extraction protocols for BF-IBE are significantly more efficient than those for SK-IBE and
BB1-IBE. Importantly, for BF-IBE, distributed PKG nodes can extract a key for a client
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without interacting with each other, which is not possible in the other two schemes; both
BB1-IBE and SK-IBE require at least one DKG instance for every private-key extraction;
the second required instance can be batch precomputed. Therefore, for IBE applications in
the random oracle model, we recommend the use of the BF-IBE scheme, except in situations
where private-key extractions are rare and efficiency of the encryption step is critical to
the system. For such applications, we recommend BB1-IBE as the small efficiency gains
in the distributed PKG setup and extraction protocols of SK-IBE do not well compensate
for the strong security assumption required. BB1-IBE is also more suitable for type 2 and
3 pairings, where an efficient map-to-group hash function Ĥ is not available. Further,
BB1-IBE can also be proved secure in the standard model with selective-identity attacks.
For applications demanding security in the standard model, our distributed PKG for BB1-
IBE also provides a solution to the key escrow and single point of failure problems, using
pairings of type 1 or 2.

Proactive Security and Group Modification. We observe that the proactive security
and group modification protocols defined in Chapter 5, for the DKG protocol used in our
distributed PKGs, are directly applicable to our distributed PKGs. We suggest the use of
these protocols to achieve proactive security of our master keys and group modification of
our PKGs. Note that this is possible only due to the nature of the master keys for the
three IBE schemes that we use. All master key elements in these three schemes belong
to Zp, which is also the output domain for the DKG protocol. In contrast to the three
IBEs that we consider, we leave as an open problem the possibility of providing proactive
security and group modification protocols to the master keys for IBE schemes such as the
original BB1-IBE [BB04b] or Waters’ IBE [Wat05].

In this chapter, we designed and compared distributed PKG setup and private key
extraction protocols for BF-IBE, SK-IBE, and BB1-IBE. We observed that the distributed
PKG implementation for BF-IBE is the most simple and efficient among all and we suggest
its use when the system can support its relatively costly encryption step. In the next
chapter, we use it to define an onion routing circuit construction in the identity-based
setting. It solves the key escrow problem in this privacy-enhancing setting over the Internet.
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Chapter 7

Pairing-Based Onion Routing and
Extensions

7.1 Preliminaries

Chaum [Cha81] introduced the concept of digital pseudonyms and mix networks in 1981.
Over the years, a significant number of anonymity networks have been proposed and im-
plemented. Common to many of them is onion routing [RSG98], a technique whereby a
message is wrapped in multiple layers of encryption, forming an onion. A common real-
ization of an onion routing system is to arrange a collection of onion routers (abbreviated
ORs, also called hops or nodes) that will relay traffic for users of the system. Users then
randomly choose a path through the network of onion routers and construct a circuit—a
sequence of nodes which will route traffic. After the circuit is constructed, each of the
nodes in the circuit shares a symmetric key with the user, which will be used to encrypt
the layers of future onions. Upon receiving an onion, each node decrypts one of the layers,
and forwards the message to the next node.

Pairing-based cryptography has drawn an overwhelming amount of research attention
in the last decade. In one of the pioneering works in the field, Sakai, Ohgishi, and Kasa-
hara [SOK00] presented a non-interactive key agreement scheme in the identity-based
setting. As the first contribution of this chapter, we enhance their protocol to develop
provably secure one- or two-way privacy-preserving authentication and key agreement
schemes [KZG07]. After one-way authentication between Alice (who will remain anony-
mous) and Bob (who is to be authenticated), Alice has confirmed Bob’s identity and Bob
learns nothing about Alice, except perhaps that she is a valid user of a particular system.
In a two-way scheme, each user can confirm the other is a valid user without learning who
the other is.
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We then use our one-way anonymous key agreement protocol to build onion routing
circuits for anonymity networks like Tor [DMS04] and prove security-related properties of
the new construction called pairing-based onion routing (PB-OR). Our PB-OR protocol,
which first appeared in [KZG07], constructs a circuit in a single pass and also provides a
practical way to achieve eventual forward secrecy (forward secrecy once the private keys
are rotated, as defined in [ØS07]). Observing the performance trade-off between eventual
and immediate forward secrecy (traditional forward secrecy, effective once any session ends)
in onion routing circuit construction, we develop a λ-pass circuit construction [KZG09],
which obtains immediate forward secrecy at λ nodes by incorporating λ single-pass circuit
constructions. Finally, we define a practical generic onion routing circuit construction
protocol that achieves security in the universal composability (UC) framework [Can01]
and apply that protocol to the PB-OR protocol to define its UC-secure version. [KG10b]
We achieve this using Sphinx, an efficient message format for mix networks, defined by
Danezis and Goldberg [DG09].

The performance of PB-OR, λ-pass PB-OR and their UC-secure versions surpass that
of Tor, requiring significantly less computation, fewer network communications and shorter
message sizes. Further, they do not require the public keys of onion routers to be authenti-
cated and consequently, reduce the load on directory servers which improves the scalability
of anonymity networks.

However, as we discussed in the previous chapter, key escrow and single point of failure
problems are inherent to IBC. A private-key generator (PKG) in IBC can decrypt all
messages encrypted for its clients. As our schemes use the same setup as BF-IBE, to
mitigate this problem, we use our distributed PKG for BF-IBE that we developed in
Section 6.3.3, where the master key is generated in a completely distributed way.

In the rest of this section, we cover the previous work related to anonymity networks and
pairing-based key exchange. We describe and prove the anonymous key agreement protocol
in the BF-IBE setting in Section 7.2, and build an onion routing circuit construction (PB-
OR) protocol based on it in Section 7.3. In Section 7.4, we describe our λ-pass PB-OR
circuit construction. In Section 7.5, we reduce the sizes of PB-OR circuit construction
messages using the Sphinx methodology. In Section 7.6, we compare the computational
and communication costs and the message sizes of our constructions to those of Tor.

Related Work. The concept of onion routing plays a key role in many efforts to provide
anonymous communication [Dai98, DMS04, FM02, RSG98, RP02] while a number of other
papers discuss formalizations and the security of onion routing [CL05, MVdV04, Möl03,
STRL00]. To date, the largest onion routing system is Tor, which has thousands of onion
routers and hundreds of thousands of users [Tor10]. These numbers (and their growth)
underscore the demand for anonymity online.
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In the original Onion Routing project [GRS96, RSG98, STRL00] (which was superseded
by Tor) circuit construction was done as follows. The user created an onion where each layer
contained the symmetric key for one node and the location of the next node, all encrypted
with the original node’s public key. Each node decrypts a layer, keeps the symmetric key
and forwards the rest of the onion along to the next node. The main drawback of this
approach is that it does not provide forward secrecy (as defined in [DMS04]). Suppose a
circuit is constructed from the user to the sequence of nodes A ⇔ B ⇔ C, and that A
is malicious. If A records the traffic, and at an arbitrary time in the future compromises
B (at which point he learns the next hop is C), and then compromises C, the complete
route is known, and A learns who the user has communicated with. A possible fix for this
problem is to frequently change the public keys of each node. This limits the amount of
time A has to compromise B and C, but requires that the users of the system frequently
contact the directory server to retrieve authentic keys.

Later systems constructed circuits incrementally and interactively (this process is some-
times called telescoping). The idea is to use the node’s public key only to initiate a com-
munication during which a temporary session key is established via the DH key exchange.
Tor constructs circuits in this way, using the Tor authentication protocol (TAP). TAP is
described and proven secure in [Gol06].

Trade-offs exist between the two methods of constructing circuits. Forward secrecy is
the main advantage of telescoping, but telescoping also handles nodes that are not accepting
connections; if the third node is down during the construction of a circuit, for example,
the first two remain, and the user only needs to choose an alternate third. Information
about the status and availability of nodes is therefore less important. The drawback of
telescoping is cost; establishing a circuit of length ` requires O(`2) network communications,
and O(`2) symmetric encryptions/decryptions. In the existing Tor implementation, this
results in a latency of a few seconds. As a result, users find Tor to be very slow for
their usual communication over the Internet, and employ it only in situations where their
anonymity is indispensable to them. Efficiency is essential for widespread use of anonymity
networks; therefore, defining a more efficient onion routing circuit construction protocol is
an interesting research problem.

Øverlier and Syverson [ØS07] improve the efficiency of telescoping-based circuit con-
struction using a half-certified DH key exchange [MOV97, Sec. 12.6]. They further define
an efficient single-pass circuit construction and a few variants using the pre-distributed
DH values; we call this scheme Tor-preDH. The proposed variants offer different levels of
forward secrecy, which are traded off against computation and communication. For ex-
ample, their eventual forward secret variants use frequent rotation of nodes’ public keys,
presenting the same issues as in first-generation onion routing; their immediate forward
secrecy variant uses the same amount of communication as the current Tor (O(`2)), but
less computation.
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In related efforts, Camenisch and Lysyanskaya [CL05] formally define the requirements
of a secure onion routing construction in the UC framework and present a generic construc-
tion of onion routing circuits. Although formally secure, their construction is less efficient
than other constructions due to the additional mechanisms required to prove security in
the UC framework. Our Sphinx-based design achieves UC security without compromising
the efficiency of the circuit construction.

The work of Okamoto and Okamoto [OO05] presents schemes for anonymous authen-
tication and key agreement. In Rahman et al. [RIO+06], an anonymous authentication
protocol is presented as part of an anonymous communication system for mobile ad-hoc
networks. The protocols in both papers are complex, and limited motivation is given for
design choices. Further, both papers neglect to discuss the security of their proposed pro-
tocols. Our anonymous key agreement protocols are a great deal simpler than previous
protocols. This allows them to be more easily understood, and simplifies the discussion of
their security. Huang [Hua07] presents a pseudonym-based encryption scheme similar to
our anonymous key agreement protocol in Section 7.2, but differs in its method of private-
key extraction as well as in the motivation behind its use. All these protocols owe a lot
to the identity-based non-interactive key exchange protocol of Sakai et al. [SOK00] (SOK
key agreement) and we begin the next section by reviewing it.

7.2 Anonymous Key Agreement in the BF-IBE Set-

ting

In one of the pioneering works of pairing-based cryptography, Sakai et al. suggested an
identity-based non-interactive key agreement scheme using bilinear pairings [SOK00]. In
this section, we extend this key agreement scheme. We replace the identities of the partic-
ipants by pseudonyms; the resulting scheme provides unconditional anonymity to partici-
pating users.

Consider the usual bilinear pairing setting having groups G, Ĝ and GT of order p such
that e : G × Ĝ → GT . In the BF-IBE setup, as we discuss in Section 6.3.3, a PKG
generates private keys (di) for clients using the clients’ well-known identities (IDi) and a
master secret s ∈ Z∗p. A client with identity IDi receives the private key di = Ĥ(IDi)

s ∈ Ĝ∗,
where Ĥ : {0, 1}∗ → Ĝ∗ is a full-domain cryptographic hash function.

Sakai et al. observed that, if the pairing is symmetric (type 1), any two clients of
the same PKG in a BF-IBE setup can compute a shared key using only the identity of
the other participant and their own private keys. Only the two clients and the PKG can
compute this key. For two clients with identities IDA and IDB, the shared key is given by
KA,B = e(hA, hB)s = e(hA, dB) = e(dA, hB) where hA = Ĥ(IDA) and hB = Ĥ(IDB).
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Note that this protocol does not work with pairings of type 2 as it requires the feasibility
of hashing to both groups G and Ĝ. For type 3 pairings, the protocol does not work in
its current form as the private keys of the two participants must be in different groups for
the protocol to work. In the absence of an isomorphism between G and Ĝ with type 3
pairings, the PKG will need to generate two private keys for each user for the protocol to
work.

7.2.1 Constructions

For pairings of type 1, we observe that by replacing the identity hashes with pseudonyms
generated by users, a key agreement protocol with unconditional anonymity is possible. In
this protocol, a participant cannot determine the identity of the other participant. Each
client can, on her own, randomly generate many possible pseudonyms and the correspond-
ing private keys.

Suppose Alice, with (identity, private key) pair (IDA, dA), is seeking anonymity. She
generates a random rA ∈ Z∗p and creates the pseudonym and corresponding private key

(αA = hrAA = Ĥ(IDA)rA , drAA = αsA). In a key agreement protocol, she sends the pseudonym
αA instead of her actual identity to another participating client, who may or may not be
anonymous. For two participants (say Alice and Bob) with pseudonyms αA and αB, the
shared session key is given as

KA,B = e(αA, αB)s = e(hA, hB)rArBs

where rA and rB are random numbers generated respectively by Alice and Bob. If Bob
does not wish to be anonymous, he can just use rB = 1 instead of a random value, resulting
in αB = hB. If persistent pseudonymity is desired instead of anonymity, the random values
can easily be reused.

Two participants can perform a session key agreement by exchanging pseudonyms.
Further, two participants can also perform an authenticated key agreement by modifying
any secure symmetric-key based mutual authentication protocol and simply replacing their
identities by their pseudonyms. Finally, this two-way anonymous key agreement protocol
does not work with the pairings of type 2 and 3 for the reasons same as those for the SOK
key agreement scheme.

One-Way Anonymous Key Agreement. Anonymous communication often requires
anonymity for just one of the participants; the other participant works as a non-anonymous
service provider and the anonymous participant needs to confirm the service provider’s
identity. In this one-way anonymous key agreement protocol, the service provider uses her
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actual identity rather than a pseudonym. Further, in this one-way anonymity setting two
participants can agree on a session key in a non-interactive manner.

Suppose Bob is a client of a PKG and functions as a service provider for Alice and other
users. Here, to make protocol suitable for all three types of pairings, we assume that the
PKG provides a public pair (g, gs) for the users. Alice, who wishes to remain anonymous
to Bob, uses this public pair instead of her identity IDA and private key dA.

1. Alice computes hB = Ĥ(IDB) for Bob (the service provider). She chooses a random
integer rA ∈ Z∗p, generates the corresponding pseudonym αA = grA and private key
(gs)rA = αsA, and computes the session key KA,B = e(αsA, hB) = e(g, hB)srA . She
sends her pseudonym αA to Bob.

2. Bob, using αA and his private key dB, computes the session key KA,B = e(αA, dB) =
e(g, hB)srA .

Note that in step 1, Alice can also include a message for Bob symmetrically encrypted with
the session key; we will use this in Section 7.3. Note also that in practice, the session key is
often derived from KA,B, and is not just KA,B itself. We only need a hash function mapping

to one of G or Ĝ here. Therefore, the protocol works for all three types of pairings. For
type 2 pairings, in the absence of a hash function mapping to Ĝ, the groups for the public
key and a service provider’s private key have to be interchanged.

Key Authentication and Confirmation. In most one-way anonymous communication
situations, it is also required to authenticate the non-anonymous service provider. With the
non-interactive protocols of this section, the key is implicitly authenticated; Alice is assured
that only Bob can compute the key. If Alice must be sure Bob has in fact computed the
key, explicit key confirmation can be achieved by incorporating any symmetric-key based
challenge-response protocol.

7.2.2 Analysis

We make the following claims in the random oracle model.

Unconditional Anonymity. It is impossible for the other participant in a protocol run,
the PKG, or any third party to learn the identity of an anonymous participant in a
protocol run.

Session Key Secrecy. It is infeasible for anyone other than the two participants or the
PKG to determine a session key generated during a protocol run.
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No Impersonation. It is infeasible for a malicious client of the PKG to impersonate an-
other non-anonymous client in a protocol run. In the case of persistent pseudonymity,
it is not feasible for a malicious entity to communicate using a different entity’s
pseudonym.

Next, we prove each of our claims.

Unconditional Anonymity. Here, we prove that it is impossible for an adversary A
to learn the identity of an anonymous participant in a protocol run. For ease of com-
prehension, we first briefly outline the argument in an informal manner. In the one-way
anonymous key agreement setting, it is easy as the anonymous clients do not use their
identities. In the two-way anonymous key agreement protocol, for an anonymous client
with identity IDA, the pseudonym αA = hrAA ∈ G is the only parameter exchanged during

the protocol that is derived from her identity. Because Ĝ is a cyclic group of prime order,
hA is a generator, so exponentiating with the random rA blinds the underlying identity
from the adversary A, which can be the other participant in the protocol run, the PKG
for the system or any third party. To formalize our proof, we consider the following game
between an adversary and a challenger.

Setup. The adversary A publishes the system parameters: a group Ĝ of prime order p
and a hash function Ĥ : {0, 1}∗ → Ĝ∗.

Challenge. A chooses two identity strings IDA and IDB and sends them to the challenger.
The challenger computes hA = Ĥ(IDA) and hB = Ĥ(IDB). He then uniformly at
random chooses r ∈ Z∗p and b ∈ {0, 1}, then

1. if b = 0, computes a pseudonym α = hrA or

2. if b = 1, computes a pseudonym α = hrB

and sends α to A.

Guess. A wins the game if she can guess the correct value of b with probability 1/2+ ε(κ)
for a non-negligible function ε.

As Ĝ is a cyclic prime order group, both hA and hB are generators of Ĝ. For the
uniform random element r ∈ Z∗p, the pseudonym α equal to hrA or hrB is also a uniform

random element of Ĝ∗. Therefore, an attacker cannot determine which of the two ways
the challenger generated α and consequently cannot guess the value of b with probability
greater than 1/2 to win this game. The inability of the attacker to win this game for
system parameters of their choosing, even with unbounded computation power, proves our
unconditional anonymity claim.
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Session Key Secrecy. Dupont and Enge [DE06] prove the security of the SOK key
agreement scheme in the random oracle model under the BDH assumption using an analysis
technique by Coron [Cor00]. According to their proof, an attacker cannot compute the
shared key if the BDH assumption holds and Ĥ is modelled by a random oracle. Here, we
modify their proof to prove that it is infeasible for anyone other than the two participants
or the PKG to determine a session key generated during a protocol run of the one-way or
two-way anonymous key agreement.

Consider the following game to prove key secrecy in the one-way anonymous case.

Setup. The challenger generates groups G, Ĝ and GT of order p, a cryptographic hash
function Ĥ : {0, 1}∗ → Ĝ∗, a bilinear pairing e : G × Ĝ → GT and a master secret
s ∈ Z∗p.

Extraction Queries. The adversary A1 issues q extraction queries for identities ID1, ID2,
. . . , IDq to the challenger. The challenger queries Ĥ to compute the corresponding

private keys Ĥ(ID1)s, Ĥ(ID2)s, . . . , Ĥ(IDq)
s and sends them back to A1.

Challenge. Once A1 informs the challenger that it has collected enough information, the
challenger picks an element αA ∈ G∗ and sends it to A1.

Guess. A1 outputs a binary string (an identity) IDB different from the identities IDi asked
in the above extraction queries and KA,B ∈ GT .

The attacker’s advantage can be defined as

Adv(A1) = Pr[e(αA, Ĥ(IDB))s = KA,B]

We say A1 (t1, ε1)-wins the game, if it runs in time at most t1 and has advantage ε1.

Next, consider the following game to prove key secrecy in the two-way anonymous case
and type 1 pairing.

Setup. The challenger generates groups G, Ĝ and GT of order p, a cryptographic hash
function Ĥ : {0, 1}∗ → Ĝ∗, a bilinear pairing e : G × Ĝ → GT and a master secret
s ∈ Z∗p.

Extraction Queries. The adversary A2 issues q extraction queries for identities ID1, ID2,
. . . , IDq ∈ G to the challenger. The challenger queries Ĥ to compute the correspond-

ing private keys Ĥ(ID1)s, Ĥ(ID2)s, . . . , Ĥ(IDq)
s and sends them back to A2.

Challenge. Once A2 informs the challenger that it has collected enough information, the
challenger picks two elements αA ∈ G∗ and αB ∈ Ĝ∗ and sends them to A2.
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Guess. A2 outputs KA,B ∈ GT .

The attacker’s advantage can be defined as

Adv(A2) = Pr[e(αA, αB)s = KA,B]

We say A2 (t2, ε2)-wins the game, if it runs in time at most t2 and has advantage ε2.

Suppose that there is an adversary A1 who (t1, ε1)-wins the one-way anonymous game
and an adversary A2 who (t2, ε2)-wins the two-way anonymous game. We now show that
an algorithm B can make use of A1 or A2 to solve a random instance of the BDH problem.

Theorem 7.1. Let the hash function H be modelled by a random oracle. Suppose there
exist adversaries A1 and A2 such that A1 (t1, ε1)-wins the one-way anonymous protocol
security game and A2 (t2, ε2)-wins the two-way anonymous protocol security game. Then
there exists an algorithm B which solves the BDH problem

• using A1 with probability ε1
e(1+q)

in time t1 + wq + tT + tinv or

• using A2 with probability ε2 in time t2 + wq.

Here e is the base of natural logarithms, w is a small constant, q is an upper bound on
the number of extraction queries performed by an adversary, tT is the time required for
exponentiation in GT and tinv is the time required to invert an element of Z∗p.

Proof. Let 〈g, ĝ, ga, ĝa, gb, ĝc〉 be a random and uniformly distributed instance of the BDH
problem, which algorithm B receives as input. To find the solution e(g, ĝ)abc, B simulates
the challenger for A1 or A2. This means that B must simulate the random oracle Ĥ and
answer the private key extraction queries by A1 or A2. As the steps for Ĥ-queries and
extraction queries are the same in both A1 or A2, we denote both of them by A.

Ĥ-queries. At any time, A can query the random oracle Ĥ. To respond to these queries,
B maintains an initially empty list L of quadruples (X, h, v, β) ∈ {0, 1}∗ × Ĝ∗ ×
Z∗p × {0, 1}. When A queries for the hash value of some bit-string Xi, algorithm B
responds as follows:

1. If L contains a quadruple (Xi, hi, vi, βi), B responds by sending hi.

2. Otherwise, B generates at random βi ∈ {0, 1}, so that Pr[βi = 0] = δ, where δ
depends on B’s choice for the attacker (A1 or A2) and will be determined below.

3. Algorithm B picks a random vi ∈ Z∗p. If βi = 0, set hi = ĝvi , else set hi = (ĝc)vi .

Note that either way, hi is uniformly random in Ĝ∗ and independent of A’s
current view.
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4. Finally, algorithm B adds the quadruple (Xi, hi, vi, βi) to the list L and responds
with hi.

Extraction queries. A can ask for extraction queries for identity strings. For an input
string IDi for private key extraction, B responds as follows:

1. Algorithm B runs the above Ĥ-query algorithm for input Xi = IDi to obtain
(IDi, hi, vi, βi).

2. If βi = 1 then B reports failure.

3. Otherwise, B computes the private key (ĝa)vi = hai and sends it to algorithm A.

Challenge. After completing the extraction queries, B challenges A1 with αA = gb or A2

with αA = gb and αB = ĝc.

Guess. A1 outputs (IDB, KA,B) ∈ {0, 1}∗ ×GT or A2 outputs KA,B ∈ GT . In the case of
adversary A2, B outputs σ = KA,B as its guess for the solution to the BDH problem.
For the adversary A1, algorithm B performs following steps:

1. B obtains the quadruple (IDB, hB, vB, βB) from the list L. Absence of the
quadruple (IDB, hB, vB, βB) in the list L indicates that A1 did not ask the ran-
dom oracle for Ĥ(IDB). As the probability of the adversary’s success in this case
is negligible1, we safely assume the presence of the quadruple (IDB, hB, vB, cB).

2. If βB = 1, B outputs σ = K
v−1
B
A,B as its guess for the BDH instance.

3. If βB = 0, B reports failure.

Suppose that B does not report failure and outputs σ while using A1. As βB = 1,
Ĥ(IDB) = (ĝc)vB and with probability ε1, σ = e(gb, (ĝc)vB)av

−1
B = e(g, ĝ)abc. Therefore B

will guess correctly with probability ε1, when it does not abort. The probability that B
does not abort while extracting a single private key query is δ; for q queries, the probability
is δq. The probability that B does not abort while guessing the BDH solution is 1 − δ.
Therefore, the overall probability of non-abortion is δq(1−δ). Maximizing this probability,
the optimal value can be obtained at δ = q

1+q
and by choosing the value of δ optimally, the

overall probability of non-abortion is qq

(1+q)q+1 . Therefore, B outputs the correct solution

to the BDH instance with probability at least ε1qq

(1+q)q+1 ≥ 1
e(1+q)

as (1 − 1
q+1

)q ≥ 1/e. The
solution is computed in time t1 +wq+ tT + tinv, where t1 is the time required by A, w is the
time required to answer an extraction query (generate a random element r and compute

1 If A1 does not query the random oracle for Ĥ(IDB), the probability it can guess this value is negligible.
As there is a bijection between x and e(αA, x) for a given αA, the probability that A1 can output KA,B =
e(αA, Ĥ(IDB)) is also negligible. Thus, A1’s advantage in this case is negligible.
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(ĝa)r), q is an upper bound on the number of such queries, and tT + tinv is the time to
compute an exponentiation of KA,B ∈ GT and to invert an element of Z∗p in the guessing
phase.

For adversary A2, we simply set the value of δ to 1. Suppose that B does not report
failure and outputs σ while using A2. With probability ε2, σ = e(gb, ĝc)a = e(g, ĝ)abc, which
is the correct solution to the BDH problem. The solution is computed in time t2 +wq.

Note that it is possible to prove the security of the two-way anonymous key agreement
protocol without random oracles, if we do not consider the query extraction phase. Assume
that only one identity hash and private key pair (g, gs) is publicly available and each user
uses the same pair to generate a pseudonym and corresponding private key. Given an
adversary A to (t, ε)-compute KA,B = e(αA, αB)s when challenged by αA and αB, a random
instance (g, ĝ, ga, ĝa, gb, ĝc) of the BDH problem can be solved in time t with probability ε
by publishing (g, ga) as the publicly available identity hash and private key and challenging
A with αA = gb and αB = ĝc.

No Impersonation. We claim that it is infeasible for a malicious client of the PKG to
impersonate another (non-anonymous) client in a protocol run. To successfully impersonate
a non-anonymous participant IDN in our one-way anonymous key agreement protocol, given
a pseudonym and IDN , an adversary needs to determine the corresponding session key. We
observe that the adversary game for non-anonymous participant impersonation is the same
as the key secrecy game of the one-way anonymous key agreement and consequently the
corresponding theorem and proof carry over.

In the case of persistent pseudonymity, we claim that it is not feasible for a malicious
entity to communicate using a different entity’s pseudonym. Here, the malicious entity
needs to find the shared secret key for a persistent pseudonym generated and used by some
other anonymous entity and an arbitrary identity or pseudonym for which it does not know
the private key. In the one-way anonymous communication protocol, the corresponding
adversary game remains the same as that for impersonation of the non-anonymous entity,
and in the two-way anonymous case, the game is the same as the one used to prove key
secrecy. Consequently, the theorem and proof for the corresponding game are same as
those used to prove key secrecy.

Applications of Our Anonymity Schemes. Our anonymous key agreement schemes
can be used to perform anonymous communication in any setting having a BF-IBE setup.
In recent years, numerous BF-IBE based solutions have been suggested for various practical
situations such as ad-hoc networks [CL06, KKA03] and delay-tolerant networks [SK05].
Our anonymous key agreement schemes can be used in all of these setups without any
extra effort. As an example, we refer readers to our secure anonymous communication
scheme for delay-tolerant networks [KZH07].
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In this thesis, we focus on a new pairing-based onion routing protocol which achieves
forward secrecy and constructs circuits without telescoping. We describe this protocol in
the next section.

7.3 Pairing-Based Onion Routing (PB-OR)

Low-latency onion routing requires one-way anonymous key agreement and forward secrecy.
In this section, we describe a new pairing-based onion routing protocol using the non-
interactive key agreement scheme defined in Section 7.2.1.

Our onion routing protocol has a significant advantage over the original onion routing
protocol [GRS96] as well as the protocol used in Tor [DMS04]; it provides a practical way
to achieve forward secrecy without building circuits by telescoping. Though this is possible
with the original onion routing protocol, that method involves regularly communicating
authenticated copies of onion routers’ (ORs’) public keys to the system users; forward
secrecy is achieved by periodically rotating these keys. This does not scale well; every
time the public keys are changed all users must contact a directory server to retrieve the
new authenticated keys. However, our onion routing protocol uses ORs’ identities, which
users can obtain or derive without repeatedly contacting a central server, thus providing
practical forward secrecy without telescoping.

Design Goals and Threat Model. As our protocol only differs from existing onion
routing protocols in the circuit construction phase, our threat model is that of Tor. For
example, adversaries have complete control over some part (but not all) of the network, as
well as control over some of the nodes themselves.

We aim at frustrating attackers from linking multiple communications to or from a
single user. Like Tor, we do not try to develop a system secure against a global observer,
which can in theory follow end-to-end traffic. Further, it should not be feasible for any
node to determine the identity of any node in a circuit other than its two adjacent nodes.
Finally, we require eventual forward secrecy: after some amount of time, the session keys
used to protect node identities and the contents of messages are irrecoverable, even if all
participants in the network are subsequently compromised.

PB-OR Circuit Construction Protocol. An onion routing protocol involves a service
provider, a set of onion routers, and users. In our protocol, a user does not build the circuit
incrementally via telescoping, but rather in a single pass. The user chooses ` ORs from the
available pool and generates separate pseudonyms for communicating with each of them.
The user computes the corresponding session keys and uses them to construct a message
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with ` nested layers of encryption. This process uses the protocol given in Section 7.2.1 `
times.

There are two time-scale parameters in our protocol: the master key validity period
(VPMK) and the private key validity period (VPPK). Both of these values relate to the forward
secrecy of the system. The VPPK specifies how much exposure time a circuit has against
compromises of the ORs that use it. That is, until the VPPK elapses, the ORs have enough
information to collectively decrypt circuit construction onions sent during that VPPK. After
each VPPK, ORs discard their current private keys and obtain new keys from the PKGs.
This period can be short, perhaps on the order of an hour.

The VPMK specifies the circuit’s exposure time against compromises of the (distributed)
PKG which reveal the master secret s. Because changing s involves the participation of all
of the ORs as well as the PKGs, we suggest the VPMK be somewhat longer than the VPPK,
perhaps on the order of a day.2 Remember that in the (n, t)-distributed PKG, if at least
n− t PKG members are honest and not compromised, no one will ever learn the value of
a master secret.

Setup. Given the security parameter κ, the distributed PKGs generate a threshold signa-
ture key pair. Using the bootstrapping procedure described in Section 6.3.1, they also
generate a prime p, groups G, Ĝ and GT of order p and a bilinear map e : G×Ĝ→ GT .
Finally, they choose a full-domain cryptographic hash function Ĥ : {0, 1}∗ → Ĝ∗.
The distributed PKGs publish all of these values except its private signature key.

Key Generation. During the key generation step, the distributed PKGs perform follow-
ing steps.

1. For each VPMK, the distributed PKGs generate a random master key s ∈ Z∗p and
a random g ∈ G, and calculates gs using the distributed PKG protocol for BF-
IBE (see Section 6.3.3). The PKG publishes a signed copy of (vm, g, g

s), where
vm is a timestamp for the VPMK in question. This triple is to be shared by all
users of the system.

2. For every valid OR with identity ORi, and for every VPPK v that overlaps with
the VPMK, the distributed PKGs generate the private key dv,i = Ĥ(v‖ORi)s us-
ing the distributed private-key extraction protocol (see Section 6.3.3), where ‖
represents the usual concatenation operation.

3. The distributed PKGs distribute these private keys, as well as the signed copy
of (vm, g, g

s), to the appropriate ORs over a secure authenticated forward-secret
channel. If an OR becomes compromised, the PKG can revoke it by simply no
longer calculating its values of dv,i.

2Note that VPMK and VPPK both are deployment parameters and do not affect the security analysis.
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Note that this key distribution can be batched; that is, the distributed PKGs can
precompute the private keys in advance (say a few hours at a time), and deliver
them to the ORs in batches of any size from one VPPK at a time on up. This batching
reduces the amount of time the distributed PKGs have to be online, and does not
sacrifice forward secrecy. On the other hand, large batches will delay the time until
a revocation becomes effective.

User Setup. Once during each VPMK, every user has to obtain the signed triple (vm, g, g
s)

from any OR or from a public website. Once during each VPPK, every user has to
compute the following pairing for each OR i and store the results locally:

γv,i = e(gs, hv,i) = e(g, hv,i)
s where hv,i = Ĥ(v‖ORi) .

Circuit Construction. During a VPPK v, a user U chooses ` ORs (say OR1, OR2, . . . , OR`)
and constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR` with the following steps.

1. For each ORi in the circuit, the user generates a random integer ri ∈ Z∗p and
computes the pseudonym αUi = gri and the value γv,i

ri = e(g, hv,i)
sri . From

γv,i
ri two session keys are derived: a forward session key KU,i and a backward

session key Ki,U . Finally, the following onion is built and sent to OR1, the first
OR in the circuit:

gr1 , {OR2, g
r2 , {· · · {OR`, gr` , {∅}KU,`} · · · }KU,2}KU,1 (7.1)

Here {· · · }KU,i is symmetric-key encryption and ∅ is an empty message which
informs OR` that OR` is the exit node.

2. After receiving the onion, the OR with identity ORi uses the received gri and its
currently valid private key dv,i to compute e(gri , dv,i) = e(g, hi)

ris = γv,i
ri . It

derives the forward session key KU,i and the backward session key Ki,U . It de-
crypts the outermost onion layer {· · · }KU,i to obtain the user’s next pseudonym,
the nested ciphertext, and the identity of the next node in the circuit. The OR
then forwards the pseudonym and ciphertext to the next node. To avoid replay
attacks, it also stores pseudonyms. The process ends when an OR (OR` in this
case) gets ∅.

3. The exit node OR` sends a confirmation message encrypted with the backward
session key {Confirm}K`,U to the previous OR in the circuit. Each OR encrypts
the confirmation with its backward session key and sends it to the previous
node, until the ciphertext reaches the user. The user decrypts the ciphertext
layers to verify the confirmation.

4. If the user does not receive the confirmation in a specified time, she selects a
different set of ORs and repeats the protocol.
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Figure 7.1: A user builds a circuit with three ORs.

The circuit construction is further illustrated in Figure 7.1, where a user builds a
three-node circuit.

Anonymous Communication. After the circuit is constructed, communication pro-
ceeds in the same manner as in Tor. The user sends onions through the circuit
with each layer encrypted with the forward keys KU,i, and each hop decrypts one
layer. Replies are encrypted at each hop with the backward key Ki,U , and the user
decrypts the received onion.

Note that as an optimization, one or more messages can be bundled inside the original
circuit construction onion, in place of ∅.

This PB-OR circuit construction provides forward secrecy only after ORs’ private keys
are rotated. In other words (as defined by Øverlier and Syverson [ØS07]), it only provides
eventual forward secrecy rather than immediate forward secrecy. In the next section, we
resolve this issue, without a significant increase in circuit construction time, by introducing
a partially interactive onion routing circuit construction.

7.4 λ-pass Onion Routing

Tor achieves immediate forward secrecy using telescoping. Telescoping can also be consid-
ered as an `-pass circuit construction, where ` is the circuit length, with immediate forward
secrecy at each of the OR nodes. In practice however, it is sufficient to have immediate
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forward secrecy at fewer than ` nodes, as an adversary will be stymied when it encoun-
ters any such node. In this section, we define λ-pass onion routing circuit construction,
which achieves immediate forward secrecy at λ nodes (for 2 < λ ≤ `) with reduced circuit
construction cost over telescoping.

Impossibility of Immediate Forward Secrecy in Single-pass Circuit Construc-
tion. To motivate multiple pass circuit construction, we will describe why it is impossible
to obtain immediate forward secrecy in any single-pass circuit construction, regardless of
the cryptographic setting.

In an immediately forward secret circuit construction, compromise of OR private keys
after a circuit is built should not allow any information about the circuit path to be
recovered. Further, after the circuit is destroyed and the keys are dropped, it should not
be possible for any honest user and an OR to re-compute their shared keys for that session.
To achieve these properties, both parties must contribute some randomness to the creation
of the the session key and they must drop these random values once the session keys are
generated. Consequently, before the user can generate the forward session key, the random
values (in some modified form) have to be exchanged between the user and the OR. The
modified forms should enable only the authentic receiver to compute the session key. In
an immediate forward secret circuit construction like Tor, these session-dependent random
values are realized using the DH exponents (x, y), while the DH parameters (gx, gy) provide
the publicly exchanged forms of the randomness.

In any single-pass circuit construction, an OR does not reply immediately after receiving
an onion (except for exit nodes). Therefore, addition of any randomness from the OR in the
forward session key is not possible, before that session key can be used to convey the OR
its successor. Consequently, any time later in the same VPPK, an adversary can compromise
the OR, use the OR’s private key to generate the session keys and exploit those to find the
next node in the circuit path. Further, although it is possible for nodes to send their part
of randomness for session keys along with the (backward) confirmation onion, this does
not provide any advantage as the adversary can always find the circuit path by decrypting
the forward onion. Thus we see that it is not possible to obtain immediate forward secrecy
in a single-pass circuit construction.

λ-pass Circuit Construction Protocol. As replies from the last node of single-pass
circuit constructions are direct, immediate forward secrecy is easy to achieve at this node.
Here, we consider λ − 1 additional single-pass circuit constructions to achieve immediate
forward secrecy at λ nodes. We note that Øverlier and Syverson [ØS07, Protocol 3] propose
a similar circuit construction, but their focus is on dealing with replay attacks. Our λ-pass
protocol adds message flows to provide partial immediate forward secrecy, whereas their
protocol uses an increased number of flows to prevent replay of construction onions.
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Although our λ-pass circuit construction can be applied in any public-key setting, for
simplicity, here we present it for pairing-based onion routing, as defined in Section 7.3.

Setup, Key Generation, User Setup. Same as that of PB-OR in Section 7.3.

Circuit Construction. During a VPPK v, a user U chooses a set of ORs (say OR1, OR2, . . . ,
OR`) and constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR` with the following steps.

1. The user selects λ indices Λ1 < Λ2 < · · · < Λλ−1 < Λλ = `.

2. As in Section 7.3, for each ORi in the circuit, the user generates a random
integer ri ∈ Z∗p and computes the pseudonym αUi = gri and the value γv,i

ri =
e(g, hv,i)

sri . From γv,i
ri two session keys are derived: a forward session key KU,i

and a backward session key Ki,U . At this stage, the user erases the random
values ri for all but rΛ1 , rΛ2 , . . . , rΛλ .

3. The user then creates the following onion and sends it to OR1.

gr1 , {OR2, g
r2 , {· · · {ORΛ1 , g

rΛ1 , {∅}KU,Λ1
} · · · }KU,2}KU,1

Here {· · · }KU,i is symmetric-key encryption and ∅ is an empty message which
informs ORΛ1 that it is the last node.

4. Each node ORi with i ≥ 1, uses gri and its currently valid private key dv,i to
compute e(gri , dv,i) = e(g, hi)

ris = γv,i
ri . It derives the forward session keys

KU,i and the backward session keys Ki,U . It decrypts the outermost onion
layer {· · · }KU,i to obtain the user’s next pseudonym, the nested ciphertext,
and the identity of the next node in the circuit. The OR then forwards the
pseudonym and ciphertext to the next node. To avoid replay attacks, it also
stores pseudonyms. The process ends when ORΛ1 gets ∅.

5. The last node in the partial circuit ORΛ1 generates a random integer rU1 ∈
Z∗p, and computes a pseudonym (hv,Λ1)rU1 . It then generates γ

rΛ1
rU1

v,Λ1
, derives

modified forward and backward session keys (K∗U,Λ1
and K∗Λ1,U

) and sends a
confirmation message encrypted with the backward session key {Confirm}K∗Λ1,U

along with the pseudonym (hv,Λ1)rU1 to the previous OR in the circuit. To obtain
immediate forward secrecy, it also erases the random integer rU1 and the value
γ
rΛ1

rU1
v,Λ1

right away, and will erase K∗U,Λ1
and K∗Λ1,U

immediately after the circuit
is no longer in use.

6. Each OR encrypts the confirmation with its backward session key and sends it
to the previous node, until the ciphertext reaches the user. The user decrypts
the ciphertext layers to verify the confirmation and in the process, generates the
modified session keys for ORΛ1 using the received pseudonym hv,Λ1

rU1 and the
stored random value rΛ1 . After this, the user drops the random value rΛ1 .

117



Figure 7.2: A user builds a circuit with four ORs and λ = 3.

7. Now, the partial circuit U ⇔ A · · · ⇔ ORΛ1 is used to extend the circuit to ORΛ2

by sending the following onion to OR1.

{{· · · {ORΛ1+1, g
rΛ1+1 , {· · · {ORΛ2 , g

rΛ2 , {∅}KU,Λ2
} · · · }KU,Λ1+1

}K∗U,Λ1
· · · }KU,2}KU,1

8. The user completes λ passes to construct the complete circuit U ⇔ OR1 ⇔
OR2 ⇔ · · · ⇔ OR`.

9. If the user does not receive any of the λ confirmations in specified times, she
selects a different set of ORs and repeats the protocol.

Anonymous Communication. Same as that of PB-OR in Section 7.3.

This circuit construction is further illustrated in Figure 7.2, where a user builds a
four-node circuit with λ = 3.
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Value of λ and node placement. For λ = `, the above circuit becomes a telescoping
circuit construction. Øverlier and Syverson [ØS07] observe that, in Tor, there is always
forward secrecy at the entry node, as the link between the user and the entry node in
the circuit is encrypted using TLS. Therefore, our circuit construction defined in Section
7.3, without any significant modification, can easily be a 2-pass circuit construction having
immediate forward secrecy at the entry node and the exit node.

Considering an adversary who controls some of the OR network (but not all, as in our
threat model, Section 7.3), it is certainly advantageous to keep 2 < λ ≤ `. We observe that
for Tor, with a network of more than a thousand nodes, assuming a non-global and non-
adaptive adversary, with access to an infrequently changing small part of the network, it
is sufficient to have λ = 3; that is, immediate forward secrecy at the entry node, exit node
and one of the nodes in between. In this case, after the circuit is closed, the adversary’s
successive compromise of the ORs in a circuit is thwarted once it reaches the immediate
forward secret node. In other words, assuming that the adversary has access to a few ORs
in a circuit and can compromise all others in the network in the future, it still cannot link
the two parts of the circuit divided at the immediate forward secret node. However, for a
stronger adversary in a network with longer circuits, a larger value of λ may be required.

An immediate question is the placement of the immediate forward secret nodes in the
circuit path. It is easy to observe that a circuit with two adjacent immediate forward secret
nodes is more difficult to attack using traffic analysis than one where those two nodes are
separated. Further, as the ultimate goal of onion routing is anonymity for the sender and
receiver, it is good to have immediate forward secret nodes at the start and at the end of
the circuit. Therefore, we suggest dλ/2e immediate forward secret nodes at the start of the
circuit and remaining bλ/2c immediate forward secret nodes at the end of the circuit. In
cases when the recipient does not require anonymity (e.g. it is a web server), the efficiency
of the construction can be improved by placing the first λ− 1 nodes closest to the sender;
that is, by selecting Λi = i for 1 ≤ i ≤ λ − 1 and Λλ = `. An attacker who observes the
onion past the last forward secret node may be able to decrypt the remaining layers, but
the first λ− 1 forward secret nodes have already provided anonymity for the sender.

Once the random parameters rUi and rΛi are dropped by the ORΛi and the user U
respectively, deriving their session keys becomes the BDH problem, even if ORΛi gets com-
promised during the VPPK. Therefore, we achieve immediate forward secrecy at λ ORs and
the VPPK could be longer, or made equal to the VPMK. The latter would also eliminate the
need to attach validity periods to OR identities.
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7.5 Using Sphinx in PB-OR

Mix message formats have been a point of interest in research on mix networks [MCPS03,
Möl03, DDM03, DL04, CL05, SSH08, DG09]. Recently, Danezis and Goldberg [DG09]
proposed Sphinx as the most compact and efficient cryptographic mix message format and
proved its security in the UC model. In this section, we present PB-OR circuit construction
using the Sphinx methodology and discuss its security properties in the UC model.

The Sphinx Message Format. In Sphinx, an adversary is computationally bounded
by a security parameter κ. Let G be a cyclic group of order p. Sphinx makes the cir-
cuit construction message size independent of the length of the circuit, `; we denote the
maximum length of a circuit as ν. Node identifiers are κ-bit strings. Each node has a
public/private key pair. Further, Sphinx assumes a message authentication code (MAC)
µ, a pseudo-random generator (PRG) ρ and corresponding random oracle hash functions
Hµ, Hρ : G∗ → {0, 1}κ. It also needs a random oracle hash function Hb : G∗ ×G∗ → Z∗p.

Cryptographically, the most elegant feature of the Sphinx message format is its session
key derivation technique based on a repeatedly modified random element of G. We call
this technique Sphinx’s blinding logic. The mentioned random element (α) and its repeated
modified forms are called pseudonyms since each of these random elements is a temporary
public key whose private key is held by the user. In the Sphinx blinding logic, each mix
node uses a pseudonym supplied by its predecessor and its own private key to compute
the session key with the user. To provide unlinkability, a pseudonym must not remain
the same across the circuit. In the onion routing literature, this is done by including
separate random pseudonyms in a construction message for each node in the circuit. In
Sphinx’s blinding logic, this is achieved using a single repeatedly changing pseudonym. At
every node, a blinding factor is extracted from the current pseudonym αi and the newly
computed session key si. The pseudonym is then exponentiated with the blinding factor
to generate the next pseudonym. In other words,

αi+1 = α
Hb(αi,si)
i . (7.2)

The session key si in Sphinx is computed as in the half-certificated Diffie-Hellman key
agreement [MOV97, Section 12.6]; we will soon see that our construction in the identity-
based setting is different.

To send an anonymous message, a sender first chooses her mix nodes and obtains their
public keys. She then computes αi and si and wraps the message in multiple layers of
encryption using the PRG ρ to generate ciphertext values βi. To check the integrity of the
message header, she calculates and includes a MAC γi at each mixing stage. Upon receiving
a message header (αi, βi, γi), each mix node IDi extracts session keys using its private key
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xi and the pseudonym αi received from the predecessor. It uses those to verify the MAC
γi and to decrypt a layer of encryption of βi. It also extracts the routing information,
computes the pseudonym αi+1 for the next node using Equation (7.2) and forwards the
message to IDi+1. As we are working towards using Sphinx in OR circuit construction, we
ignore Sphinx’s payloads and reply blocks.

Note that we are here concerned only with the circuit construction messages. Our
methodologies are not required for OR communications in already constructed circuits.

Recent Enhancements in OR Circuit Construction. Along with already discussed
Tor-preDH and PB-OR, more recently Catalano, Fiore and Gennaro [CFG09] suggested
improvements to Tor circuit construction. These schemes use a one-way anonymous key
agreement [KZG07] strategy in the PKC, IBC and certificateless cryptography (CLC)
settings respectively. Here, a user chooses a random element of Z∗p per circuit node and
computes an associated pseudonym. A session key is computed using the node’s public key
and the random element at the user end, and using the pseudonym received and the node’s
private key at the node’s end; the precise session-key computation and the cryptographic
assumption vary with the OR circuit construction protocol. Most importantly, unlike the
Tor authentication protocol (TAP), the user does not encrypt the pseudonyms in these
schemes, which is a direct result of the inclusion of the private key of an OR node in the
session key generation. Therefore, it is possible to incorporate Sphinx’s blinding logic into
these schemes. In this section, we concentrate on using Sphinx’s Blinding logic in PB-OR.

Using Sphinx in PB-OR. In PB-OR, a user generates a random ri ∈R Z∗p and sends a
pseudonym αi = gri to node ORi over the already-formed circuit (if any). The session key
si is generated at the user end as si = e(y, Ĥ(IDi))

ri and at the node ORi as si = e(αi, di).

For the Sphinx-based PB-OR circuit construction, we slightly modify the Sphinx nota-
tion. In the original Sphinx format, a destination address (∆) and a reply block identifier
I ∈ {0, 1}κ are present. Since we do not require circuit construction messages to be deliv-
ered to external parties, we can remove these portions of the Sphinx format, saving 2κ bits
in the size of βi. As the sets to which the session keys si belong changes to GT for PB-OR,
we also modify the definition of our hash functions as follows: Hµ, Hρ : GT → {0, 1}κ and
Hb : G∗ ×GT → Z∗p.

To create a PB-OR circuit construction message, we use Sphinx’s mix header creation
algorithm ([DG09, Section 3.2]) with a modification to the session key generation. The
original Sphinx message format is based on the half-certified DH key agreement [MOV97,

Section 12.6], where a session key si is generated as si = y
xb0b1···bi−1

i at the user’s end
and as si = αxii at node ORi, where (yi, xi) is the public/private key pair for ORi, αi is
a pseudonym for node ORi, x is the session-specific randomness and b0, . . . , bi−1 are the
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blinding factors, bi = Hb(αi, si). For our PB-OR design using Sphinx, αi can be generated

as αi = α
Hb(αi−1,si−1)
i−1 , while the computation of si remains the same as that of the original

PB-OR, except here ri = xb0b1 · · · bi−1 for an x ∈R Z∗p chosen by the user.

Note that, although Sphinx is defined for single-pass constructions, its blinding logic is
also useful in multi-pass constructions, where it can avoid the transfer of pseudonyms in
circuit extension messages. However, here, we concentrate on the single-pass version.

Security Analysis. Camenisch and Lysyanskaya [CL05] design a framework for onion
routing with provable security in the UC model. They define onion-correctness, onion-
integrity and onion-security properties for an OR scheme and prove Theorem 7.2.

Theorem 7.2 (Theorem 1 [CL05]). An onion routing scheme satisfying onion-correctness,
integrity and security, when combined with secure point-to-point secure channels, yields a
UC-secure OR scheme.

Danezis and Goldberg [DG09] separate a wrap-resistance property from onion-security
to simplify the onion-security definition and prove the resulting four security properties
of the Sphinx message format using random oracles. We use their security discussion to
define the security requirements for our PB-OR circuit design.

Onion-correctness. According to [CL05], an OR circuit construction is correct if a mes-
sage reaches the intended recipient in a constructed circuit whenever an onion is
formed correctly, processed by the right routers in the right order, and these routers
follow the protocol. It is easy to observe that a Sphinx-based PB-OR circuit con-
struction works correctly.

Onion-integrity. An OR circuit construction has integrity if it is not possible for an
adversary to build a circuit of more than N honest nodes, for some predefined bound
N , except with negligible probability. As we only change the session key generation
step in the original Sphinx message format, our proof of integrity remains exactly
the same as that of Sphinx in [DG09, Sec. 4.2] except in our case N = ν instead of
ν + 1 as we reduce the size of βi by 2κ bits.

Wrap-resistance. Camenisch and Lysyanskaya [CL05] also suggest a security property
such that it should not be possible for an OR node to wrap an existing onion; that is,
given a target onion (say) Oi+1, it must not be possible for an adversary to construct
onion Oi such that a node ORi processing Oi would output Oi+1. This must remain
true even if the adversary can select ORi’s private key. In Sphinx, the wrap-resistance
property is based on the difficulty of computing αi given αi+1 = α

Hb(αi,si)
i . As this

blinding logic remains unchanged in our design, our wrap-resistance discussion is
same as that of [DG09, Sec. 4.3].
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Onion-security. As defined by [CL05], the onion-security property requires that an at-
tacker controlling all but one honest node (say OR∗) in a circuit should not be able to
distinguish OR circuit construction messages entering into the unattacked node OR∗.
Onion-security for our construction differs in three places from the original Sphinx
format.

1. There are no reply messages and there is no need for indistinguishability of
forward and reply messages.

2. There are no destination addresses ∆ and no message payloads.

3. Generation of the session key varies with the circuit construction protocol.

We observe that the first two differences do not affect the security proof. The third
difference is related to the infeasibility of the adversaries to distinguish between si
generated while creating circuit and a random si ∈R GT . In PB-OR with Sphinx,
except with negligible probability, it should not be feasible for an adversary to dis-
tinguish si = e(g, Ĥ(IDi))

sri ∈ GT from a random element of GT , given gs, αi = gri

and Ĥ(IDi) ∈ Ĝ. For the bilinear pairing tuple (e,G, Ĝ,GT ), given an instance of

the DBDH problem 〈g, ga, gb, ĝ, ĝa, ĝc, z : z
?
= e(g, ĝ)abc〉, it can be modelled as the

above indistinguishability game using the following mapping: αi = ga, gs = gb and
Ĥ(IDi) = ĝc. Therefore, the onion security property is achieved under the DBDH
assumption for a tuple (e,G, Ĝ,GT ).

7.6 Performance Comparison

In this section, we consider the cost of single pass and λ-pass circuit constructions from a
user through ` onion routers. We estimate the computational cost, and count the number
of AES-encrypted network communications. We compare the performance of our systems
to that of Tor. We also analysis the performance of the Sphinx-based circuit construction
in terms of message size and computational cost.

7.6.1 Performance of PB-OR and λ-pass PB-OR

Security Levels and Parameter Sizes. Before comparing the costs of the cryptogra-
phy in the schemes we determine the parameter sizes required to provide the same level of
security currently provided by Tor.

Tor uses public key parameters to provide security at the 80-bit level [Gol06]. The
discrete log problem is in a 1024-bit field, and the RSA problem uses a 1024-bit modulus.

123



The symmetric parameters provide significantly more security, by using AES with a 128-
bit key. We must choose appropriate groups G, Ĝ and GT over which our pairing will
be defined in order to offer similar strength. For simplicity, we work with the symmetric
pairing (G = Ĝ); performance of PB-OR will only improve if we use the pairing of types 2
and 3. The current favourite choice is the group of torsion points of an elliptic curve group
over a finite field, with either the Weil or Tate pairing. To achieve an 80-bit security level,
the elliptic curve discrete log problem an attacker faces must be in a group of at least 160
bits. Due to the reduction of Menezes, Okamoto and Vanstone [MOV91], we must also
ensure that discrete logs are intractable in the target group, GT . In our case, GT = Fpk ,
where k is the embedding degree of our curve taken over Fp. We must then choose our
curve E, a prime p, and embedding degree k such that E(Fp) has a cyclic subgroup of
prime order n ≈ 2160, and pk is around 21024. This can be achieved in a variety of ways,
but two common choices are k = 2, p ≈ 2512 and k = 6, p ≈ 2171. Pairing implementations
with both sets of parameters are available in the PBC library [Lyn09]. Efficiency studies
suggest that k = 2 and the Tate pairing can offer better performance at this security level
[KM05], so we make that choice.

Cost of Building a Circuit with Tor. Tor builds circuits by telescoping. A user Uriel
chooses a Tor node (say Alice), and establishes a secure channel using an encrypted DH
exchange. She then picks a second node, Bob, and over this secure channel, establishes
a new secure channel to Bob with another (end-to-end) encrypted DH exchange. She
proceeds in this manner until the circuit is of some desired length `. For details, see the Tor
specification [DM08]. Note that Uriel cannot use the same DH parameters with different
nodes, lest those nodes be able to determine that the same user was communicating with
each of them.

Each DH exchange requires Uriel to perform two modular exponentiations with 1024-bit
moduli and 320-bit exponents. Likewise, each server also performs two of these exponen-
tiations. Uriel RSA-encrypts the DH parameter she sends to the server, and the server
decrypts it. The AES and hashing operations involved have negligible costs compared to
these.

Uriel’s circuit construction to Alice takes two messages: one from Uriel to Alice, and
one from Alice to Uriel. When Uriel extends this circuit to Bob (via Alice), there are
four additional messages: Uriel to Alice, Alice to Bob, Bob to Alice, and Alice to Uriel.
Continuing in this way, we see that the total number of messages required for Tor to
construct a circuit of length ` is `(` + 1). Note that each of these messages needs to be
encrypted and decrypted at each hop.

Cost of Building a Circuit with Pairing-Based Onion Routing. In order to create
a circuit of length ` with our single-pass circuit construction, the user Uriel must choose
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Operation Time Tor PB-OR λ-Pass PB-OR
(ms) user OR user OR user efs-OR ifs-OR

Pairing 2.9 0 0 0 1 λ 1 1
RSA decryption 2.7 0 1 0 0 0 0 0

Exponentiation (Tor) 1.5 2` 2 0 0 0 0 0
Exponentiation in G 1.0 0 0 ` 0 ` 0 1

Exponentiation in GT 0.2 0 0 ` 0 ` 0 1
RSA encryption 0.1 ` 0 0 0 0 0 0

Total time (ms) 3.1` 5.7 1.2` 2.9 1.2` + 2.9λ 2.9 4.1
Total AES-encrypted messages `(`+ 1) 2` 2λΛavg

Table 7.1: Comparison of costs of setting up a circuit of length `. The values in the
Tor column are based on the Tor specification [DM08]. PB-OR represents our pairing-
based onion routing schemes. efs-OR indicates eventual forward secret ORs, while ifs-OR
indicates immediate forward secret ones. Λavg represents the average of the indices of the
λ immediate forward secret nodes.

` random elements ri of Z∗p. As above, Uriel should not reuse these values. She then
computes grS and γS

rS , and derives the forward and backward keys KU,S and KS,U from
γS

rS , for each server S in the circuit. Note that the γS values were precomputed, and cost
nothing during each circuit creation. Each server computes e(grS , dS) = γS

rS for its current
private key dS and derives KU,S and KS,U .

Uriel creates one message, as in Figure 7.1, and sends it to the first server in the chain.
This server decrypts a layer and sends the result to the second server in the chain, and so
on, for a total of ` hop-by-hop encrypted messages. At the end of the chain, the last server
replies with a confirmation message that travels back through the chain, producing ` more
messages, for a total of 2`.

Cost of Building a λ-Pass Pairing-Based Onion Routing Circuit. Our λ-pass
pairing-based onion routing circuit construction is similar to that of our single-pass con-
struction. Additional tasks that the immediate forward secret nodes must do are generation
of a random integer rUi , computation of the pseudonym H

rUi
vΛi

, and computation of γ
rΛi
vΛi

rUi .
Uriel correspondingly has to perform λ pairing computations to generate modified session
keys using the received pseudonyms HvΛi

rUi from λ immediate forward secret nodes. The
number of messages and corresponding AES encryptions depends on the positions of the
λ immediate forward secret nodes in the circuit. It is equal to 2

∑λ
i=1 Λi = 2λΛavg, where

Λavg is the average of the indices of the immediate forward secret nodes in the circuit.
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Comparison and Discussion We summarize the results of the previous three sections
in Table 7.1. We count the number of “bignum” operations for each of the client and the
servers, both for Tor and for our pairing-based onion routing protocols. We ignore the
comparatively negligible computational costs of AES operations and hashing. For each
bignum operation, we include a benchmark timing. These timings were gathered on a
3.0 GHz Pentium D desktop using the PBC pairing-based cryptography library (version
0.4.7) [Lyn09].

We can see that the total computation time to construct a circuit of length ` using
our single-pass method is 61% less on the user side and 49% less on the OR side as
compared to using Tor. In addition, this circuit construction uses only a linear number
of AES-encrypted messages, while Tor uses a quadratic number. As compared to single-
pass circuit construction, our λ-pass circuit construction requires an additional λ pairing
computations by the user, requiring a total of 1.2`+ 2.9λ ms, and on average 2.9 + 1.2λ/`
ms for each of the ORs. For proposed values of λ = 3, 4, or 5, these are certainly reasonable
times, considering the advantage of immediate forward secrecy, and having VPPK = VPMK.

7.6.2 Message Compactness using Sphinx

Along with the UC model security, message compactness is an important advantage of using
Sphinx. It is easy to observe that the major savings in the length of a circuit construction
message comes from reuse of a pseudonym to which blinding is added at each circuit node.

To mitigate a recent attack on Tor by Evans, Dingledine and Grothoff [EDG09], which
uses long circuit paths that loop back, the maximum circuit length for recent versions of
Tor is set as 8. Therefore, we set ν = 8 for our Sphinx-based design. However, while
comparing, we give an advantage to the original PB-OR protocol by using Tor’s default
circuit size ` = 3 for them; using ν = 3 in our design will only increase our advantage.

In the Sphinx-based PB-OR construction, the user sends the tuple (α1, β1, γ1) to node
OR1. The lengths of the elements in this tuple are p, (2ν − 1)κ and κ respectively. The
total length, therefore, is equal to p + 2νκ. In the chosen ECC setting (κ = 80, p = 512),
this is equal to 512 + 2 ∗ 8 ∗ 80 = 1792 bits. In the original PB-OR protocols, this cost
is equal to ν(p + 2κ) as each layer of onion in those constructions requires p bits for a
pseudonym, κ bits for identity of the nodes and κ bits for message integrity. With κ = 80,
p = 512 and ` = 3, this length is equal to 2016 bits, which is larger than the message size
in our Sphinx-based format that can make circuits of any length up to 8. For ν = 3, the
difference will be significant.

Although Sphinx achieves partial independence from the circuit size ν with a single
pseudonym, ν is still present in the message-size expression due to node addresses and the
integrity mechanism. In onion routing, a user should be able to choose its nodes from
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the available pool in an arbitrary fashion [SB08, MW08], so information theoretically, it is
impossible to make the message size independent of ν.

Increase in the Computational Cost. Compact messages and security in the UC
model do not come without some additional computational cost. However, importantly,
there is no addition to the computations done by users (possibly hundreds of thousands of
them), while the increase is easily manageable for OR nodes.

The computation at a user end remains the same except for a few additional low-level
operations such as a finite field multiplication, a pseudorandom number generation and a
few hashes having computational costs in µs. Each node in a circuit has to perform an
additional exponentiation in G as it prepares the pseudonym for the next node. However,
timing values computed using the pairing-based cryptography (PBC) library [Lyn09] in-
dicate that one exponentiation in G costs around 1 ms on a desktop machine. This does
not affect the overall circuit construction cost in practice, which is in seconds due to the
network latency.
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Part III

Implementation
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Chapter 8

Distributed Key Generation
Implementation over PlanetLab

We implemented our HybridDKG protocol from Chapter 4 and analyzed its performance
over the PlanetLab platform [PACR03]. In this chapter, we discuss our implementation and
experiments along with other system aspects of distributed key generation. We observed
HybridDKG to be practical for use over the Internet, which is further illustrated in the next
chapter, where we use HybridDKG for robust communication over DHTs.

In Section 8.1, we briefly describe the design and implementation of HybridDKG. In Sec-
tion 8.2, we analyze the results from our experiments over PlanetLab and discuss resilience
against denial-of-service (DoS) attacks and Sybil attacks. In Section 8.3, we propose some
system-level optimizations for the HybridDKG protocol based on our analysis. These op-
timizations improve the performance of the protocols, without hampering its liveness or
safety, when a leader behaves honestly and delays in the system remain within reasonable
limits.

8.1 Software Design and Implementation

We design our DKG nodes as state machines (using the state machine replication ap-
proach [Lam78, Sch90]), where nodes move from one state to another based on the messages
received. These messages are categorized into three types: operator messages, network mes-
sages and timer messages. The operator messages define interactions between nodes and
their operators and are of two types: in and out. In an in message, an operator provides
some input to the protocol, while an out message presents the protocol results to the oper-
ator. The network messages realize the protocol flow between nodes. Almost all messages
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in the HybridVSS and HybridDKG pseudocode in Figures 4.1, 4.2, 4.3 and 4.4 are of this
type. Finally, the timer messages implement the weak synchrony assumption described in
Section 4.2.1 in the form of start timer, stop timer and timeout. Our node will be in one of
the following seven states: leader unconfirmed, under recovery, functional, agreement started,
agreement completed, leader change started and dkg completed. leader unconfirmed is a start-
ing phase, which indicates that a node does not have a sufficient number of lead-ch
signatures to confirm a new leader. We also differentiate between agreement completed
and dkg completed as a node may complete the broadcast by the leader before it com-
pletes the associated VSS instances. The rest of the states (under recovery, functional,
agreement started, dkg completed, and leader change started) have their apparent meanings.

We aim at building the distributed PKGs protocols that we defined in Chapter 6 and
required for the PB-OR protocol in Chapter 7. Therefore, we consider a DKG implemen-
tation over pairing-friendly elliptic curves. We develop our object-oriented C++ imple-
mentation over the PBC library [Lyn09] for the underlying elliptic-curve and finite-field
operations and a PKI infrastructure with DSA signatures based on GnuTLS [MFS+09]
for confidentiality and message authentication.1 However, our DKG code is generic and
can easily be modified to work with any other C/C++ number theoretic library. When
using a different library, a C++ interface layer will have to be developed over that library,
which will provide a cyclic group interface in the form of a C++ class as required for our
polynomials, commitments and shares.

Our implementation replicates our HybridVSS and HybridDKG pseudocode and therefore
has an event- (or message-) driven architecture. The similarity between the code and the
pseudocode is intentional; it helped identify several errors in the code and omissions in
the pseudocode. DKG nodes are single-threaded and the code is structured as a set of
event handlers. This set contains a handler for each operator and network message, and
a handler for each timer. Each handler corresponds to an input action and there are also
methods that correspond to the internal actions in the system. The event handling loop
works as follows: nodes wait in a select call for a network message to arrive, for an operator
instruction or for a timer deadline to be reached and then they call the appropriate handler.
The handler performs computations similar to the corresponding action in the pseudocode
and then it invokes any methods corresponding to internal actions whose preconditions
have become true. In most of the cases, it results in sending a message to an operator or
over the network. Each message has a 3-byte generic header, which contains a tag that
identifies the message type (1 byte) and the total size of the rest of the message (2 bytes).
The structure of the message bodies varies from message type to message type.

1Note that nodes have TLS PKI certificates, which does not conflict with the goal of providing IBE
private keys to clients in distributed PKGs.
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8.2 Performance Analysis

Experimental Setup and Testing. In order to examine its realistic performance, we
test our DKG implementation on the PlanetLab platform.

A typical PlanetLab machine configuration is 4×2.4 GHz cores with 4 GB RAM and 500
GB hard disk. [Pla07] In terms of network capacity, the average bandwidth between Plan-
etLab nodes is 64 Mbps [LSB+05]. For our experiments, we chose the required number of
PlanetLab nodes randomly from nodes having near-average configuration and bandwidth,
and a reasonable liveness history. In terms of the geographical distribution, although our
selections were baised towards nodes in Europe and America, we had a significant num-
ber (around 20 percent) of nodes choosen from the other continents. Taking advantage
of the uniform operating system distribution and configuration over all PlanetLab nodes,
we compiled and statically linked our code on a single node and replicated the executable
over the rest. Note that we did not consider the loads of machines while selecting our
nodes; those loads were unpredictable and varied a lot during our experiments. In order
to determine an average performance, we ran the experiments at least three times for each
parameter set.

During our tests, we studied the following aspects: possible sizes of the system, the
average completion time of the protocol and the applicability of the weak synchrony as-
sumption from Section 4.2.1 that we make for HybridDKG. Our HybridDKG protocol handles
Byzantine attacks and the performance of the implementation against these malicious at-
tacks should have been verified during the testing. However, in our HybridDKG analyses in
Section 4.4.2, we observe that a t-limited Byzantine adversary cannot launch any attack
other than delaying the network messages; this is a direct effect of working in the com-
putational security setting. The verification mechanism in our HybridDKG and HybridVSS
protocols can easily catch any modification to network messages, commitments or shares
and messages that fail verification are dropped by the honest nodes without any further
processing. As a result, we do not include any special Byzantine adversary code in our
tests. Note that we still need to follow the security threshold t for the shared polynomials
as otherwise the adversary can break the secrecy of the protocol.

Evaluation and Analysis. Based on our experiments over the PlanetLab platform, we
make the following observations:

• We test the performance of our DKG implementation for systems of up to 40 nodes
and measure the average HybridDKG completion time. Figure 8.1 presents our results
in a graphical form. The values range from few seconds for 5 nodes to a little over
an hour for 40 nodes. Further, we observe an approximately cubic growth in the
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average completion time. With the cubic complexity and the average completion
time of more than an hour for 40 nodes, we observe that DKGs for larger distributed
systems (n > 50) are not practical for the Internet. We kept the t and f values as
close as possible in our experiments in this section, each around (n− 1)/5.

• In Figure 8.1, we also measure minimum and maximum completion times for the
experiments. The large gaps between those values demonstrate the robustness of the
DKG system against the Internet’s asynchronous nature and varied resource levels
of the PlanetLab nodes that we chose.

• To check the applicability of the weak synchrony assumption [CL02] that we use
in HybridDKG, we also tested the system with crashed leaders. In such scenarios,
the DKG protocol successfully completed after a few leader changes. However, we
observe that the average completion time of a system critically varies with the choice
of delay(T ) function.

During our experiments, we observed that, for delay(T ) = T , the leader change takes
significantly more time than that required to reliably broadcast the chosen instances.
As a result, when a leader is crashed, most of the other nodes end up waiting for
long periods even though the next possible leader is available. Further, this waiting
period grows significantly in the case of multiple crashes.

We observed that delay(T ) = T/δ for δ = 2 or 3 is a better choice in terms of a
compromise between allowing an honest leader enough time to complete its broadcast
and reducing the waiting period between leader changes. However, an appropriate
delay(T ) function may change as the system parameters vary and we suggest that
delay(T ) should only be finalized for a system after some rigorous testing.

• Further, we compared the (CPU) execution time for nodes against the time they
spend on network transmission or waiting for other nodes. We observe that the
the protocol execution time per node is significantly smaller than their completion
periods (Table 8.1). This proves that the completion time periods are larger not
because of the required computation; they are high rather due to network delays
and will drop significantly if a more reliable network with better bandwidth (e.g., an
internal network in an organization or a cloud computing environment) is provided.

Defence against DoS and Sybil Attacks. The distributed nature of HybridDKG pro-
vides an inherent protection against DoS attacks and the inclusion of the crashed-node
and network-failure assumptions makes DoS attacks less feasible. Although leaders might
become primary targets, we mitigate this issue with an efficient leader-changing mecha-
nism. Further, as all valid communication is done over TLS links, nodes can easily reject

134



Figure 8.1: Completion time (with min/max bars) vs system size (log-log plot) for Hybrid-
DKG

messages arriving from non-system entities. Sybil attacks [Dou02] are not a major concern,
as ad-hoc additions of nodes is not a feature of our system. Nodes are added using the
group modification agreement protocol, which involves administrative interaction at each
node.

8.3 System-Level Optimizations

The completion time values of our HybridDKG implementation that we observe in Fig-
ure 8.1 are practical for applications such as PB-OR, where DKG phase sizes are in days.
However, these values are not sufficient for many other practical systems such as our ro-
bust communication protocols for DHTs in the next chapter. During our experiments
we observed that some system-level optimizations can significantly reduce the completion
time values and make HybridDKG practical enough for these applications. We next discuss
these optimizations. Note that these optimizations make HybridDKG more practical in the
normal course of operation, when a leader behaves honestly and its messages flow without
any significant delay. They may not the best in the worst-case scenarios having multiple
leader-change operations. However, they never hamper the safety and liveness properties

Table 8.1: Median values of HybridDKG completion time and CPU time per node for
various n values

n t f Completion Time (sec) CPU Seconds/Node
10 1 3 5.73 0.76
15 2 4 18.0 1.94
20 2 6 68.0 2.55
25 3 7 290.9 6.13
30 3 10 336.7 7.27
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Figure 8.2: Completion time vs system size (log-log plot) for commitment matrices and
commitment vectors

of the protocol.

shared Messages. With the PKI infrastructure in place, digital signatures are readily
available in our system. Our HybridVSS scheme does not make use of these signatures.
In the HybridDKG protocol, it is important for the leader to be one of first nodes
to complete any HybridVSS instance. That helps the leader to send its DKG send
message before the timer timeouts at fast nodes.

To help the leader, we add a new shared network message that a node having 2t+f+1
signed VSS ready messages for a completed HybridVSS instance sends to a leader. The
leader can then include this HybridVSS instance in its DKG send without completion
of the VSS instance at its own machine. Note that 2t+ f + 1 signed ready messages
confirms that the corresponding HybridVSS instance will complete at all honest finally
up nodes.

Commitment Matrices versus Commitment Vectors. In theory, linear size commit-
ment vectors which use collision-resistant hash functions as introduced in [CKAS02]
for AVSS, provide linear speedup over quadratic size commitment matrices. However,
measuring precisely, the commitment size is (t+1)2 for matrices and (approximately)
2(3t+ 2f + 1) for vectors. Even if f = 0, the required elements and computations for
the matrix commitments are less than those for the vector commitments for t < 6.
For f > 0, this upper limit will only increase.

Our experiments confirm this computation. We observed that the commitment ma-
trices, although asymptotically inefficient, are more efficient in systems of size less
than 20 (see Figure 8.2). We suggest the usage of commitment matrices instead of
commitment vectors for systems of size less than 20.

Running only 2t+ f + 1 VSS instances. We observed that the VSS instances are more
resource consuming than the agreement required at the end. Generally, we only
need t + 1 VSS instances to succeed. Assuming t + f VSS instances might fail

136



during a DKG, it is sufficient to start HybridVSS instances at just 2t + f + 1 nodes
instead of at all n nodes. Nodes that do not start a VSS initially may utilize the
weak synchrony assumption to determine when to start a VSS instance if required.
Comparing the DKG completion time values in Figure 8.1 and Table 8.1, we observe
that this optimization significantly reduces the completion time for HybridDKG.

We utilize these system optimizations in the next chapter, where we use our HybridDKG
protocol to implement threshold signatures to achieve two robust communication protocols
in peer-to-peer systems.

137





Chapter 9

Robust Communication in DHTs

9.1 Preliminaries

The peer-to-peer (P2P) paradigm is a popular approach to providing large-scale decentral-
ized services. However, the lack of admission control in many such systems makes them
vulnerable to malicious interference [SM02, Wal02]. This is a practical concern since large-
scale P2P systems are in existence today such as the Azureus DHT [FPJ+07] and the KAD
DHT [SENB07], each of which see more than one million users per day. In addition to
file sharing, there are proposals for using P2P systems to protect archived data [GKLL09],
mitigate the impact of computer worms [ARS07] and re-implement the Domain Name
System [PMTZ06]; such applications would likely benefit from increased security.

There are a number of results on peer-to-peer (P2P) systems that can provably tolerate
Byzantine faults [AS06b, AS07, AS06a, SY08, FSY05, NW03, HK04, JAvR06]. To date, the
majority of results pertain to distributed hash tables (DHTs); these DHTs are called robust.
A common technique in robust DHTs is the use of quorums, which are sets of peers such
that a minority of the members suffer adversarial faults. A quorum replaces an individual
peer as the atomic unit and adversarial behaviour can be overcome by majority action
allowing for communication between correct peers; we call this robust communication.
Since critical operations such as data queries are performed in concert by members of a
quorum, robust communication must be efficient.

Several protocols using quorums have been proposed; however, there is a common
theme in the way such quorums are utilized. A message m originating from a peer P
traverses a sequence of quorums Q1, Q2, . . . , Q` until a destination peer is reached. A
typical example is a query for content where the destination is a peer Q holding a data
item. Initially P notifies its own quorum Q1 that it wishes to transmit m. Each peer in Q1

forwards m to all peers in Q2. A peer in Q2 determines the correct message by majority
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filtering on all incoming messages and, in turn, sends to all peers in the next quorum.
This forwarding process continues until the quorum Q` holding Q is reached. Assuming a
majority of correct peers in each quorum, transmission of m is guaranteed. Unfortunately,
this simple protocol is costly. If all quorums have size n and the path length is `, then
the message complexity is `n2. Typically, for a DHT of η nodes, n = Θ(log η) and, as in
Chord [SMK+01], ` = O(log η) which gives O(log3 η) messages; this is likely too costly for
practical values of η.

Saia and Young [SY08] give a randomized protocol which provably achieves O(log2 η)
messages in expectation. While communication between two quorums incurs an expected
constant number of messages, the analysis in [SY08] yields a prohibitively large constant.
The protocol also employs a link architecture between peers requiring the use of a Byzantine
agreement protocol. Finally, maintenance and asynchronicity issues remain unresolved.

Therefore, while results exist on the feasibility of robust communication, work on the
practicalities has lagged behind. This dearth presents an impediment to the deployment
of such systems. In this chapter, we discuss our recent results [YKGK10] that address this
outstanding problem.

Contributions. In the computational setting, for an adversary that controls up to an
ρ < 1/3-fraction of any quorum of size at most n, we present two efficient protocols for
achieving robust communication of a message m to a set of peers D ⊆ Qi for some quorum
Qi over a path of length `.

For our Robust Communication Protocol I (RCP-I), the total message complexity and
the message complexity of the sending peer is each at most 2n + 4n(` − 2) + |D|. The
message complexity of every non-sending peer along the lookup path is at most 4 and the
communication latency is at most 2(`− 2) + 2. For our Robust Communication Protocol
II (RCP-II), the expected total message complexity and the expected message complexity

of the sending peer is each at most 2s + (`−2)
(1−ρ)c

+ (` − 2) + |D|. The expected message

complexity of a non-sending peer on the lookup path is at most 2
(1−ρ)cn

and the expected

latency is at most (`−2)
(1−ρ)c

+ 2. Here, the constant c > 0 is the probability that the response
time of an honest peer is at most some constant value ∆.

Using the Chord-based construction of [FSY05], the message complexity of RCP-I is
O(log2 η) and for RCP-II it is O(log η) in expectation. We tolerate a large fraction of
adversarial peers; strictly less than a 1/3-fraction compared to the roughly 1/4-fraction
in [SY08]. Our use of a distributed key generation (DKG) scheme allows for security
without a trusted party or costly updating of public/private keys outside of each quorum.
To the best of our knowledge, this is the first use of DKG in a Byzantine-tolerant P2P
setting.
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Finally, we provide microbenchmark results involving two quorums using PlanetLab.
Our experimentation demonstrates that our protocols perform well under significant levels
of churn and faulty behaviour. In particular, for a 105-node system with ` = 20, our results
imply RCP-I and RCP-II complete in under 4 seconds and 5 seconds, respectively.

Related Work. State machine replication is a standard method for implementing highly
fault-tolerant services [Sch90]. Services are replicated and run over multiple servers provid-
ing a high-integrity distributed system whereby operations can be invoked by clients. Over
the past several years, a large body of literature has been established on implementing
Byzantine fault-tolerant replication protocols. Peer-to-peer systems do not align perfectly
with the state machine replication paradigm; however, these results are relevant in the
context of implemented Byzantine fault-tolerant systems.

Pioneering work by Reiter [Rei95] yielded a toolkit of protocols for Byzantine agree-
ment and atomic broadcast. More recently, Castro and Liskov [CL01, CL02] demonstrated
that Byzantine fault tolerant state machine replication could be accomplished while main-
taining satisfactory system performance. However, their protocol is unsuitable for peer-to-
peer environments due to issues of scaling. Several other Byzantine fault-tolerant systems
have been implemented such as SINTRA [CP02], FARSITE [ABC+02], the Query/Update
(Q/U) protocol [AEMGG+05] and the HQ system [CML+99]; however, scalability is an
obstacle to the adaptation of these protocols to peer-to-peer environments.

Two implemented large-scale Byzantine fault tolerant storage architectures are the
Oceanstore [KBC+00] and Rosebud [RL03]. The latter system scales for up to tens of
thousands of nodes and allows for changing membership. However, experimental results
indicate that Rosebud may tolerate only low numbers of Byzantine faults in practice.
Another concern is that the system relies on a crucial component known as the configuration
service (CS) which is responsible for tracking system membership, ejecting faulty nodes,
and handling new nodes; a similar component known as a primary tier of replicas is used in
Oceanstore. The CS can be implemented over a set of nodes; however, the CS introduces
a hierarchy that can become a bottleneck for the system and a point of vulnerability.

There are proposals for applying the state machine replication approach on a large scale.
In [RKB07], the authors propose the ShowByz system which utilizes a set of nodes acting
as a configuration manager whose job is to track system members, addresses, public keys
and the responsibilities of replica groups. A similar concept is proposed by Rodrigues et
al. in [RLS02]; a peer-to-peer system is proposed that relies, again, on a configuration
service. Neither work provides empirical results and the details of secure data retrieval
and message passing are not discussed.

There are a number of theoretical results on Byzantine fault-tolerance. As previously
mentioned, there is a large body of literature describing DHTs that can tolerate adver-
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sarial faults [FS02, NW03, HK04, FSY05, AS06b]. These results make use of quorums,
which are sets of Θ(log η) peers with a majority of the peers in a quorum being honest.
However, an adaptive adversary may have its peers join and leave the network until obtain
a some quorum has a majority of faulty peers. The current state of the art in protecting
against such attacks is due to results by Awerbuch and Scheideler [AS06a, AS06b, AS07]
which describe a DHT that remains robust even if the number of join and leave events is
polynomial in the size of the network. Recent work by Saia and Young [SY08] shows how
routing with quorums can be made less resource intensive; however, as discussed earlier,
several issues remain unresolved as obstacles to deployment.

Castro et al. [CDG+02], Halo [KT08], and Salsa [NW06] handle Byzantine faults by
routing along multiple diverse routes. The proposal in [CDG+02] requires a CA whereas
we do not rely on any trusted third party. In both [KT08] and [NW06], the guarantees are
unclear against an adversary who owns a large IP-address space or adaptively targets iden-
tifiers over time as described in [AS06b]. In contrast, defences for quorum-based protocols
are known [AS06a, AS06b, AS07].

9.2 Quorum Topology and Threshold Cryptography

Each peer P is assumed to have a unique identifier, PID, and a network address, Paddr.
Peers P and Q are said to communicate directly if each has the other in its routing table.
The target of m is a set of peers D within a single quorum; m may be a data item request
and D may consist of a single peer or multiple peers depending on how data is stored.

Quorum Topology. There are several different approaches to how quorums are created
and maintained [NW03, AS06b, SY08]. Despite these different approaches, we may view
the setup of quorums as a graph where nodes correspond to quorums and edges correspond
to communication capability between quorums; we refer to this as the quorum topology.
We assume the following four simple invariants are true:

Goodness. each quorum has size n = Ω(log η) and possesses at most an ρ-fraction of
Byzantine peers for ρ < 1/3.

Membership. every peer belongs to at least one quorum.

Intra-Quorum Communication. every peer can communicate directly to all other mem-
bers of its quorums.

Inter-Quorum Communication. if Qi and Qj share an edge in the quorum topology,
then P ∈ Qi may communicate directly with any member of Qj and vice versa.
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These four invariants are standard in the sense that previous works on quorums in DHTs
ensure they hold with high probability. For example, results for maintaining the goodness
invariant in DHTs are known [AS06a, AS06b, AS07]. In terms of the membership invari-
ant, there exist quorum topologies where a peer may belong to several different quorums
simultaneously [NW03, FSY05].

Finally, to the best of our knowledge, no implementation of a quorum topology exists;
this represents another gap between theory and practice. A number of challenges remain in
bridging this gap and such an endeavour is outside the scope of this current work. However,
the literature suggests that, with the proper deployment, maintaining these four invariants
in real-world DHTs is plausible.

Assumptions. We adopt our Hybrid system model from Section 4.2 and work in the
asynchronous communication model with a Byzantine adversary, and crashes and link
failures. For liveness in HybridDKG and in the RCP-II protocol, we use the weak synchrony
assumption by Castro and Liskov [CL02].

The adversary is assumed to have full knowledge of the network topology and control
all faulty peers, which forms a constant fraction of all nodes in the system. In concert with
the goodness invariant, strictly less than 1/3 of the peers in any quorum can be faulty.
These peers may collude and coordinate their attacks. Our adversary is computationally
bounded with the security parameter κ and it has do 2κ computation to solve the Gap
Diffie-Hellman (GDH) problem [BLS01] in an appropriate group.

Threshold Signatures. We use threshold signatures to authenticate the communication
between quorums. In an (n, t)-threshold signature scheme, a signing (private) key k is
distributed among n parties by a trusted dealer using VSS or in a dealerless fashion using
DKG. Along with private key shares ki for each party, the distribution algorithm also
generates a verification (public) key K and the associated public key shares K̂. To sign a
message m, any subset of t + 1 or more parties use their shares to generate the signature
shares σi. Any party can combine these signature shares to form a message-signature pair
S = (m,σ) = [m]k that can be verified using the public key K; however, this does not
reveal k. We refer to a message-signature pair S as a signature. It is also possible to
verify the individual signature shares σi using the public key shares K̂. We assume that
no computationally bounded adversary that corrupts up to t parties can forge a signature
S ′ = (m′, σ′) for a message m′. Further, malicious behaviour by up to t parties cannot
prevent generation of a signature.

Many threshold signature schemes have been constructed in the literature. However,
the threshold signature schemes other than [GJKR96, Sho00, Bol03] are not useful for a
variety of reasons such as impractical adversary assumptions. Out of these three practical
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schemes, the threshold DSS scheme [GJKR96] requires a significant amount of interaction
among all the parties for every signature generated, while removing the requirement of a
trusted dealer is a difficult multiparty computation problem in the threshold RSA signa-
ture scheme [Sho00]. The threshold version [Bol03] of the Boneh-Lynn-Shacham (BLS)
signature scheme [BLS01] avoids all of the above problems. Its key generation does not
mandate a trusted dealer. The signature generation protocol does not require any interac-
tion among the signing parties or any zero-knowledge proofs. Further, the BLS signature
size and generation algorithm are more efficient than RSA and DSS signatures. Therefore,
to authenticate the communication between the quorums, we use the threshold BLS sig-
nature scheme. This scheme uses the bilinear pairings setting and its security is based on
the difficulty of solving the GDH problem (refer to [Bol03] for a detailed description).

In absence of a trusted party in the P2P paradigm, we use our DKG scheme to generate
the (distributed) private key for each quorum. Our HybridDKG protocol is the first DKG
for an asynchronous setting; therefore, it is uniquely suitable for a P2P network. Along
with a Byzantine adversary, this protocol also tolerates crash failures. For a quorum of size
n, with t Byzantine nodes and f honest nodes that can crash, the DKG protocol requires
that n ≥ 3t+2f+1. In our case, this security threshold holds due to the goodness invariant.

9.3 Our Robust Communication Protocols

We propose two robust communication protocols: RCP-I and RCP-II. Here we outline a
general scheme in Figure 9.1 that is later refined to give our two protocols. Consider a
sending peer P who wishes to send a message m to peer Q. We assume m is associated
with a key value which yields information necessary for distributed routing; that is, the
next peer to which m should be forwarded is always known. Peer P notifies its quorum
Q1 that it is performing robust communication and receives Proof(Q1) that shows that
P ’s actions are authorised by quorum Q1. Peer P sends this to Q2 as proof that P ’s
actions are legitimate; the form of this proof is discussed later. Depending on the scheme,
one or more members of Q2 examines the proof and, upon verifying it, sends to P : (1)
routing information for Q3 and (2) Proof(Q2), which will convince Q3 that P ’s actions
are legitimate. This continues iteratively until P contacts the quorum holding Q and m is
delivered. We employ the following concepts:

Quorum Public/Private Keys: Each quorum Qi is associated with a (distributed) pub-
lic/private key pair (KQi , kQi); however, there are two crucial differences between how
such a key pair is utilized here in comparison to traditional architectures. First, only
those quorums linked to Qi in the quorum topology, and not everyone in the network,
need to know KQi . Second, (KQi , kQi) is created using the DKG protocol and K̂Qi is
the associated set of public key shares.
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Figure 9.1: Our general robust communication scheme. At step i = 1, . . . , ` − 1, peer P
presents proof, Proof(Qi), that quorum Qi sanctions P ’s action, and receives new proof
from Qi+1 in addition to routing information for the next hop. At the final step `,peer P
sends Proof(Q`−1) and m.

Individual Public/Private Key Shares: Each peer P ∈ Qi possesses a private key
share (kQi)P of kQi produced using DKG. Unlike the quorum public/private key pair
of Qi which must be known to all quorums to which Qi is linked in the quorum
topology, only the members of Qi need to know the corresponding public key shares
K̂Qi , which allow members of Qi to verify the validity of the signature shares sent to
P .

9.3.1 Robust Communication Protocol I

In this section, we outline RCP-I. The path m takes through quorums is denoted by
Q1, . . . ,Q`. We assume that P ∈ Q1 and the target of the message is a set of peers
D ⊆ Q`. Initially, the honest peers of Q1 must acquiesce to P ’s request. Peer P begins
by sending [PID, Paddr, key, ts1] to all peers in its quorum Q1. The value key corresponds to
the intended destination of m and ts1 is a time stamp. The message m can also be sent,
and its hash can be added inside the signature below; however, for simplicity, we assume
m is sent only in the last step. Each honest peer Q ∈ Q1 then sends its signature share to
P if P is not in any quorum-level violation. Peer P interpolates these signature shares to
generate the signature: S1 ← [PID, Paddr, key, ts1]kQ1

.
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In each intermediate step i = 2, . . . , `− 1, P sends its most recent signature Si−1 and a
new time stamp tsi to each peer Q ∈ Qi along the lookup path. Since Qi is linked to Qi−1 in
the quorum topology, each Q knows the public key KQi−1

to verify Si−1. If Si−1 is verified
and tsi is valid, Q sends back its signature share, KQi+1

and the routing information. Peer
P collects the shares to form Si and majority filters on the routing information for Qi+1.
Finally, for Q`, P sends m along with S`−1 to peers in the target set D. More details of
the protocol are provided in [YKGK10].

9.3.2 Robust Communication Protocol II

RCP-II utilizes signed routing table information. As a concrete example, we assume a
Chord-like DHT although other DHT designs can be accommodated. For a peer U ∈ Qi,
each entry of its routing table has the formRT Qj = [Qj, PID, P

′
ID, KQj , ts]. Here P ∈ Qj and

P ′ ∈ Qj−1 where (1) Qi links to Qj and Qj−1 in the quorum topology, (2) Qj−1 immediately
precedes Qj clockwise in the identifier space and (3) P and P ′ are respectively located
clockwise of all other peers in Qj and Qj−1. KQj is the quorum public key of Qj, and ts
is a time stamp for when this entry was created. Note that any point in the identifier
space falls between unique points PID and P ′ID. Given this property, and that entries are
signed by a quorum, any attempt by a malicious peer along the lookup path to return
incorrect routing information can be detected. [KQj]kQi

is the quorum public key of Qj

signed using the private quorum key of Qi; recall that neighbours in the quorum topology
know each others’ public keys. [RT Qj ]kQi

is the routing entry for Qj signed with the private
key of Qi; entries of the routing table are signed separately. Routing table information is
time stamped and re-signed periodically when the HybridDKG share renewal protocol (see
Section 5.2.1) is executed.

We next outline RCP-II. For simplicity, we temporarily assume that peers act correctly;
see [YKGK10] for a full specification and discussion of the protocol. Initially, each correct
peer in Q1 receives [PID, Paddr, key, ts] from P . The time stamp ts is chosen by P and peers
in Q1 will acquiesce to the value if it agrees with the rule set to within some bound to
compensate for clock drift. If the request does not violate the rule set, then the information
is signed allowing P to form M1 = [PID, Paddr, key, ts]kQ1

.

In the second step of the protocol, P knows the membership of Q2 and selects a peer
Q2 ∈ Q2 uniformly at random without replacement. Peer P then sendsM1 toQ2. Assuming
Q2 is correct, it verifies M1 using KQ1 and checks that the ts is valid. Once verified, Q2

sends P the information [KQ1]kQ2
, [RT Q3

]kQ2
and [KQ3]kQ2

. Peer P knows KQ2 since Q1

links to Q2 and verifies [KQ1]kQ2
, [RT Q3

]kQ2
and [KQ3]kQ2

, and checks that the time stamp
on the routing information is valid. If so, P constructs M2 = [M1, [KQ1]kQ2

]. Here [KQ1]kQ2

will allow some peer in Q3 to verify KQ1 and M1, while the signed verified KQ3 will allow
P to check the response from that peer in Q3.
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This process repeats with minor changes for the remaining steps. Using RT Q3
from

the previous step, P selects a peer Q3 randomly from Q3 and sends M2. Since Q3 is
linked with Q2 in the quorum topology, Q3 knows KQ2, which it uses to verify [KQ1]kQ2

;
this allows Q3 to verify M1 signed with kQ1. Peer Q3 then confirms that ts is valid
and sends [KQ2]kQ3

, [RT Q4
]kQ3

and [KQ4]kQ3
to P . Peer P has a verified public key KQ3

from the previous step and uses it to verify [KQ2]kQ3
, [RT Q4

]kQ3
, and [KQ4]kQ3

. Then P
constructs M3 = [M2, [KQ2]kQ3

] = [M1, [KQ1]kQ2
, [KQ2]kQ3

] and sends that to a peer Q4

selected randomly from Q4. This process continues until P reaches the destination quorum
Q`. For Q`, P sends m along with M`−1 to peers in the target set D. The full details of
the protocol are provided in [YKGK10].

9.4 Experimental Results

In this section, we examine the performance of our two protocols over PlanetLab. Based
on our experimental results and known churn rates, we propose parameters for DHTs using
our protocols.

9.4.1 Microbenchmarks

Distributed Key Generation. DKG is a crucial component of our protocols. It is
required to initiate a threshold signature system in a quorum and to securely manage
membership changes. We use our HybridDKG implementation from Chapter 8. We incor-
porate threshold BLS signatures into this implementation and realize our two protocols
using this setup on PlanetLab. We use the completion time and median CPU usage values
from Table 8.1 for quorum sizes n = 10, 15, 20, 25, 30. The median completion periods vary
from 6 seconds for n = 10 to more than 5 minutes for n = 30. As we observe in Section 8.2,
the bulk of this latency is due to network delays; in contrast, the required CPU time is far
smaller than the completion periods.

In the next subsection, we examine the feasibility of these completion periods. Our
DKG experiments assume that 30% of the peers may crash and 10% of the peers may be
Byzantine. While we can tolerate any fraction of Byzantine peers less than 1/3, we use
these numbers since in many practical scenarios we expect the fraction of Byzantine faults
to be less than 10% and modest compared to the fraction of crash failures.

RCP-I and RCP-II. For our RCP-I and RCP-II experiments, we set n = 30, t = 3, and
f = 10. In RCP-I, a node requires 0.14 seconds on average to obtain a threshold signature
from a quorum, if all of the obtained signature shares are correct. The average execution
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time increases to 0.23 seconds in case of a share corruption attack. Extrapolating to a path
length `, an operation should take 0.14` to 0.23` seconds on average. With 105 nodes, the
average total time for RCP-I is then 3 to 4 seconds with ` = 20.

In RCP-II, a node takes 0.04 seconds on average to obtain the required signed public
keys and the signed routing information from a correct peer. A single signature verification
takes 0.004 seconds on average. The median latency value over PlanetLab is roughly 0.08
seconds [DLS+04]; half of the total number of messages over PlanetLab get delivered
in 0.08 seconds and the message transmission delay ∆ = 0.08 seconds for probability
c = 0.5. With a chain of signed public keys of length `, the total communication time is
0.14 + 0.04(` − 1) + ∆(`−2)

c(1−ρ)
+ 0.004 `(`−1)

2
which for 10% Byzantine peers, is 4.68 seconds

in expectation. To a first approximation, the execution times of our protocols seem quite
reasonable.

System Load. We address the issue of system load under the assumption that signature
verification is the most significant computational operation. We make back-of-the-envelope
calculations to obtain the expected order of magnitude for our performance figures. For
RCP-I, from the above discussion, each signature verification takes 0.004 seconds; thus, the
total CPU time required per execution is 0.004`(1 + n+ n2); this includes the costs due to
share corruption attacks. For ` = 20 and n = 30, this value is 75 CPU seconds, spread out
over 600 nodes. Therefore, the number of executions of RCP-I that can be started per second
on average is n/75 ≈ 103 when n = 105. Note this rate value is for the entire system. Now,
if no share corruption attacks occur, the total CPU time required per execution becomes
0.004`(1 +n) which, for the same parameter values, is 2.5 CPU seconds. This implies that
4 ·104 executions can be started per second on average in the entire system. For RCP-II, the

total CPU time required for execution is given by 0.004
(
`+ (`−1)`

2(1−ρ)

)
which, for the same

parameters and ρ = 1/10 is roughly 1 CPU second on average. Therefore, approximately
105 executions can be started per second on average in the entire system.

9.4.2 Analysis and Discussion

As mentioned in Section 9.2, important questions remain with regards to translating theo-
retical results to a practical setting. In particular, two quantities of interest are the size of
quorums, n, and the number of quorums to which each peer belongs, nQ. Unfortunately,
pinning down these quantities is non-trivial; only asymptotic analysis is present in the
literature. Furthermore, it is not a simple case of substituting hard numbers because n
depends on a number of parameters: (1) the exact guarantees being made, (2) algorithms
for quorum maintenance, (3) the tools of analysis (i.e. form of Chernoff bounds used) and
many more. Evaluating these parameters is outside the scope of this work. Instead, we
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Table 9.1: The expected number of seconds before a quorum experiences a membership
change (rQ)

n 10 15 20 25 30

nQ 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rQ 526 351 175 350 234 117 263 132 88 210 140 70 175 87 58

assume a range of values for n and nQ. As our protocols appear to be the most efficient to
date, the following results illuminate what currently seems possible in practice.

System Churn and DKG. The performance of our two protocols will likely depend on
system churn. A common metric for measuring the degree of churn is session time: the time
between when a node joins the network and when it leaves [RGRK04]. In this work, we
make the standard assumption that the cost of joining the network is large enough so as to
prevent the adversary from substantially increasing the rate of churn through rapid rejoin
operations. This can be achieved using monetary costs as in [CDG+02] or CAPTCHAs as
suggested in [NW06].

Argument for Batching. Investigations have yielded differing measurements for me-
dian session times. The Kazaa system was found to have a median session time of 144
seconds [GDS+03]. In the Gnutella and Napster networks, the median session time was
measured to be approximately 60 minutes [SGG02]. Measurements of the Skype P2P
network yielded a median session time of 5.5 hours for super-peers [GDJ06]. Here, we
temporarily assume a median session time of 60 minutes and a standard Poisson model of
peer arrivals/departures as in [LNBK02, RGRK04]. To calculate churn rate, r (number of
arrivals/departures per second), based on the median session time tmed (in seconds), we use
the formula of [RGRK04]: r = (η · ln 2)/tmed. For η = 105 and tmed = 3600 seconds, r ≈ 19.
Assuming that join and leave events occur independently of each other, Table 9.1 gives
the expected number of seconds, rQ, at which point a quorum will undergo a membership
change when each peer belongs to nQ quorums. Our choice of nQ ≤ 3 is based upon the
reasonable assumption that overlap occurs only with immediate neighbouring quorums in
the ID space.

In several cases, the rQ values are less than the corresponding median DKG completion
times in Table 8.1. Therefore, a quorum may not be able to execute DKG often enough
to accommodate each membership change. However, join operations can be queued and
performed in batches. Executing DKG for a batch of joins does not increase the message
complexity and message size increases only linearly in the batch size (see Chapter 5).
Therefore, batching can mitigate the effects of churn and it seems plausible that peers
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Table 9.2: Median session times (in seconds) derived from values for n, nQ and rDKG (in
seconds)

n 10 15 20
rDKG 600 900 1200
nQ 1 2 3 1 2 3 1 2 3

tmed 1400 2800 4199 2386 4772 7159 2930 5859 8789

25 30
1500 1800

1 2 3 1 2 3

4433 8867 13300 4442 8883 13325

would tolerate some delay in joining in exchange for security.

Batching and the Security Threshold: Batching join events improves performance;
however, many peers might leave a quorum before a new batch is added, thus violating the
security threshold. Hence, we are interested in the session time value required such that
this is not likely to occur. Based on Table 8.1 for n = 20 and nQ = 1, DKGs complete
within 68 seconds. The number of leave events a quorum can suffer while not exceeding
the crash limit is f = 6. If Byzantine peers leave, more crashes are tolerable; however,
identifying such events is impossible, so we assume the worst case of f = 6. Assuming
DKG executes every rDKG = 1200 seconds, we seek the median session time such that
at most 6 peers leave the system within 1268 seconds. With η/n = 5000 quorums in the
system, each experiencing 6 leave events within 1268 seconds, the system churn rate is
r = 6 · 5000/1268 = 23.7. This gives tmed = (η · ln 2/r) = 2930 or, equivalently, 49 minutes.
Therefore, with this tmed, we expect the system to remain secure. Moreover, a quorum
only spends 68/1268 = 5.4% of the time executing DKG.

Certain parameters can be tuned to offer performance trade-offs. Decreasing rDKG
yields smaller required median session times; however, the percentage of time spent on DKG
increases. Such tuning would depend on the desired system performance, the application,
and n and nQ. Table 9.2 gives session time calculations for other values of n, rDKG and
nQ. Our choice of nQ ≤ 3 is based upon the assumption that quorums only overlap with
their immediate neighbours in the ID space.

Required session times increase with n. Notably, for n = 30 and nQ = 1, tmed does
not far exceed the 60 minutes in [SGG02]. As nQ increases, the required session times
grow linearly. However, our maximum of 3.7 hours is still less than the tmed measured for
super-peers in the Skype network [GDJ06]. We tentatively conclude that our protocols can
be deployed in applications where session times range from 10 minutes to a few hours and
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that such applications currently exist.

Finally, the implementation of the DKG protocol used here is an academic version, and
more efficient implementations may be possible. In terms of performance improvements,
using the aggregate signature scheme [BGLS03], messages can be made more compact yield-
ing a savings in RCP-II. For certain applications, it may be possible to restrict membership
to those peers that meet certain latency and bandwidth criteria. In terms of fault-tolerance,
our experiments were performed with 10% of nodes suffering Byzantine faults; however, we
generally expect the fraction of Byzantine nodes to be less, thus reducing execution times.

The performance of a complete system is an important open question. The quorum
topology chosen is crucial and optimizing this in practice is a topic of future work. While
we focus on DHTs, our results likely apply to other P2P designs and more general settings
where groups of machines, some with untrustworthy members, must communicate; it would
be of interest to identify more such applications.
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Chapter 10

Conclusions

The most important conclusion that we draw from this thesis is that the practical dis-
tributed key generation is possible for use in the Internet-scale applications.

Distributed Key Generation. While working towards a realistic DKG architecture,
we first investigated the differences between the partially synchronous and asynchronous
communication models and observed that only the asynchronous communication model
realistically fits the existing Internet. We also incorporated crash-recoveries and network
failures in the system along with the traditional Byzantine adversary.

We defined a VSS scheme (HybridVSS) that works in our hybrid communication model.
We then observed the requirement of a Byzantine agreement while implementing DKG in
the asynchronous communication setting and presented a leader-based system to achieve
that in our HybridDKG protocol. We also implemented our DKG protocol and tested its
practicality and efficiency over the PlanetLab platform.

To achieve proactive security, we revisited our system model and suggested amendments
to introduce the concept of phases into the asynchronous communication model and to
maintain liveness and safety in the system. We presented share renewal and recovery
mechanisms for our DKG protocol. We then observed the importance of group modification
primitives for long-term system sustainability and proposed protocols to achieve group
modification agreement, node addition, node removal, and security-threshold and crash-
limit modification.

We also made a cryptographic contribution by defining a constant-size commitment
scheme (PolyCommit) for polynomials and extended it to define a synchronous VSS scheme
that requires constant-size broadcast instead of the linear broadcast required previously.
We then extended it to define an efficient synchronous DKG scheme. We are currently
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working towards using a similar commitment technique in the asynchronous communication
model to reduce the bit complexity of our HybridVSS protocol.

In future, we plan to make our HybridDKG protocol secure against adaptive adversaries
by introducing the rewinding adversary similar to the one in [CGJ+99]. Further, we use
the random oracle assumption to achieve uniform randomness of the shared secret in Hy-
bridDKG. It would be interesting to obtain uniform randomness without random oracles
using some distributed commitment techniques or the common reference string model.

Applications. In this thesis, we worked on two cryptographic applications of HybridDKG
and one system-level application of our HybridDKG implementation.

As the first application, we designed and compared distributed PKG setup and private
key extraction protocols for Boneh and Franklin’s BF-IBE, Sakai and Kasahara’s SK-
IBE, and Boneh and Boyen’s BB1-IBE. Each of the above three schemes represents a
separate category of IBE schemes and our designs can be applied to other schemes in
those categories as well. In terms of practical use, we observed that the distributed PKG
implementation for BF-IBE is the most simple and efficient among all and we suggest
its use when the system can support its relatively costly encryption step. For systems
requiring a faster encryption, we suggest the use of BB1-IBE instead. However, during
every distributed private key extraction, it requires a DKG and consequently, interaction
among PKG nodes. That being said, during private-key extractions, we successfully avoid
any interaction between clients and PKG nodes except the necessary identity at the start
and key share transfers at the end.

As the second application, we presented new identity-based approaches for circuit con-
struction in onion routing anonymity networks. We defined one-way and two-way anony-
mous and pseudonymous key agreement protocols in the BF-IBE setting and used this
scheme to produce new onion routing circuit construction protocols. Our distributed PKG
for BF-IBE solves the key escrow problem in this setting. Our single pass circuit con-
struction uses significantly less computation and communication than the corresponding
protocol in Tor, and reduces the load on the network support infrastructure. To achieve im-
mediate forward secrecy instead of eventual forward secrecy, we also defined λ-pass circuit
construction. These improvements can be used to improve the efficiency and to enhance
the scalability of low-latency anonymity networks.

Observing that the Sphinx message format defined for mix networks is also applicable
to OR circuit constructions, we designed a generic OR circuit construction that is compact
as well as secure in the UC model. Further, we used this generic construction to improve
the circuit constructions for the PB-OR protocol. From a practical perspective, we then
compared the messages in the new circuit constructions with the original protocol and
noted that the new messages are significantly smaller.
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Finally, we used our HybridDKG implementation to define two robust communication
protocols for DHTs that do not require any trusted third party. These protocols, using the
threshold BLS signature scheme, asymptotically improve the communication cost of robust
communication in the quorum-based DHTs with a Byzantine adversary. Our first protocol
is deterministic and achieves O(log2 η) message complexity and our second protocol is
randomized and achieves O(log η) message complexity in expectation for DHTs of size
η. We performed experiments over PlanetLab involving two quorums and provided the
microbenchmark results. Our experimentation demonstrates that our protocols perform
well under significant levels of churn and faulty behaviour.
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