
Distance-Bounding Protocols(Extended abstract)Stefan Brands1 and David Chaum21 CWI, Amsterdam, email: brands@cwi.nl2 CWI & DigiCash, Amsterdam, email: david@digicash.nlAbstract. It is often the case in applications of cryptographic protocolsthat one party would like to determine a practical upper-bound on thephysical distance to the other party. For instance, when a person con-ducts a cryptographic identi�cation protocol at an entrance to a building,the access control computer in the building would like to be ensured thatthe person giving the responses is no more than a few meters away.The \distance bounding" technique we introduce solves this problem bytiming the delay between sending out a challenge bit and receiving backthe corresponding response bit. It can be integrated into common iden-ti�cation protocols. The technique can also be applied in the three-partysetting of \wallets with observers" in such a way that the intermediaryparty can prevent the other two from exchanging information, or evendeveloping common coinips.1 IntroductionA prover convincing a veri�er of some assertion is a frequently recurring elementin many applications of cryptography. One potentially useful such assertion isthat the prover is within a certain distance. It seems that this problem has notbeen speci�cally adressed, let alone solved in the literature. We introduce a tech-nique called \distance bounding" that enables the verifying party to determinea practical upper-bound on the physical distance to a proving party.In the literature, so-called \ma�a frauds" have been adressed in which a partyidenti�es himself to a verifying party using the identity of a third party, withoutthat third party being aware of it. With our distance-bounding technique we canprevent these frauds as a special case.Our distance-bounding protocols can be integrated with known public-keyidenti�cation schemes, such that the veri�er cannot obtain information that hecould not have computed himself.In the recently proposed setting of \wallets with observers," distance bound-ing can be incorporated in such a way that the verifying party can determinea practical upper-bound to the observer, whereas the intermediary party canprevent the other two parties from exchanging or developing information whichcan be used to compromise privacy.This paper is organized as follows: In Section 2 we introduce the distance-bounding principle. We introduce our solution in parts and then unify them.
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In Section 3, we describe how distance bounding can be integrated into knownpublic key identi�cation schemes. In Section 4, we describe a problem in thesetting of wallets with observers. We then show how to use the distance-boundingtechnique to solve it. A �nal section ends this paper with some open problems.2 Distance-bounding protocolsIn this section, we �rst present the basic distance-bounding principle. We thendiscuss ma�a frauds and previously proposed countermeasures. We show howdistance bounding can be used to prevent these frauds. We go on to show howdistance bounding can prevent frauds in which a party having access to the secretkeys convinces a verifying party that he is within a certain distance whereas heis not. Both protocols are then merged into one protocol that prevents bothattacks.2.1 The distance-bounding principleThe essential element of a distance-bounding protocol is quite simple. It consistsof a single-bit challenge and rapid single-bit response. In practice, a series of theserapid bit exchanges is used, the number being indicated by a security parameterk. Each bit of the prover P is to be sent out immediately after receiving abit from the veri�er V. The delay time for responses enables V to compute anupper-bound on the distance.What makes this approach really practical is that today's electronics caneasily handle timings of a few nanoseconds, and light can only travel about 30cmduring one nanosecond. For instance, even the timing between two consecutiveperiods of a 50 Mghz clock allows light to travel only three meters and back.(Later on we introduce exclusive-or operations on the bits exchanged, but 10113chips have several such gates each with a throughput of two nanoseconds.)2.2 Ma�a fraudsA ma�a fraud , �rst described in [9], is a real-time fraud that can be appliedin zero-knowledge or minimum disclosure identi�cation schemes by fraudulentprover P and veri�er V, cooperating together. It enables P to convince an honestveri�er V of a statement related to the secret information of an honest proverP, without actually needing to know anything about this secret information. Tothis end, when P is about to perform the protocol with V , the latter establishes,say, a radio link with P, and will send any information transmitted to him byP straight on to P , who in turn sends it on to V . The same strategy is appliedby P, who sends information received from V on to V, who in turn sends it onto P . In e�ect, V and P act as a single transparent entity, sitting in the middlebetween P and V . This enables P to identify himself to V as being P , withoutany of P and V noticing the fraud.
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P V (radio link) P V(Repeat k times)Ri 2R Z�n R2i�������! R2i�������! R2i�������!�i ������� �i ������� �i ������� �i 2R f0; 1gX�i Ri�������! X�i Ri�������! X�i Ri�������!(End of Repeat) verify responsesFig. 1. A ma�a fraud in the basic Fiat-Shamir identi�cation scheme.

In Figure 1, a ma�a fraud is shown as it would be applied in the basic Fiat-Shamir identi�cation scheme (see [12]). In order to enhance readability of the�gures, we de�ne the subscript i to run over the set f1; : : : ; kg, and computationsare modulo n. In the most basic form of the Fiat-Shamir scheme P identi�eshimself to V by proving knowledge of a square root X of X2 mod n, whereX2 mod n in some way is related to P 's identity or has been published in atrusted directory. As usual, n is the product of two distinct primes.In [9], Desmedt proposed a countermeasure to ma�a frauds which requires Pto sign a message that contains his physical location on earth, and then proveto V knowledge of the signature. Usually in an identi�cation scheme, P will berepresented by some user-module, so it will be impracticable to implement thissolution without requiring position detection or cooperation of the user. Also, itcannot guarantee that the veri�er in the long run does not learn anything aboutthe secret key of the prover.In [2], Beth and Desmedt propose that all transmission times be accuratelymeasured. This seems to be useless owing to the signi�cant possible variationsin speed of computation.In [1], Bengio et al suggested that V shield P's module from the outside world(e.g., in a Faraday cage) when the protocol takes place. This countermeasurerequires trust by P that V does not secretly modify his module in some waywhile shielded. One would rather like to identify oneself in such a way that themodule remains visible (an infrared channel would be even better, the user-module never needing to leave the hands of the user). Futhermore, it requiresspecial hardware equipment.
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P V�i 2R f0; 1g �i 2R f0; 1gStart of rapid bit exchange�i �����������i����������!End of rapid bit exchangem �1j�1j � � � j�kj�k sign(m)����������! m �1j�1j � � � j�kj�kverify sign(m)Fig. 2. Distance bounding to prevent ma�a frauds.2.3 Preventing ma�a frauds using distance boundingConsider how the distance-bounding principle can be used to prevent ma�afrauds. We can assume that the distance between P and the fraudulent partiesis not less than the accuracy that can be achieved with the apparatus beingused, since otherwise obvious countermeasures can be taken. To ensure thatthe distance between V and the party P having access to the secret keys ismeasured, after the rapid bit exchanges have taken place the message formed byconcatenating all the 2k bits sent back and forth in the distance-bounding stageis signed by P, using his secret key (see Figure 2):Step 1 V generates uniformly at random k bits �i, and P generates uniformlyat random k bits �i. (Note: this can take place well beforehand.)Step 2 Now the low-level distance-bounding exchanges can take place. The fol-lowing two steps are repeated k times, for i = 1; : : : ; k.{ V sends bit �i to P.{ P sends bit �i to V immediately after he receives �i.Step 3 P concatenates the 2k bits �i and �i, signs the resulting message mwith his secret key, and sends the signature to V. We denote concatenationby the symbol\j."Now V can determine an upper-bound on the distance to P using the maximumof the delay times between sending out bit �i and receiving bit �i back, fori = 1; : : : ; k. V accepts if and only if P is close by, and the received signature isa correct signature of P on m = �1j�1j � � � j�kj�k.Proposition1. If the signature scheme is secure and P is not close by to V,then a ma�a fraud has probability of success at most 1=2k.
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That is, the probability of successful cheating decreases exponentially in thenumber of repetitions of the rapid bit exchange. The simple proof of this propo-sition is very similar to the proof of Proposition 3 in the next section.2.4 Preventing the prover from sending bits out too soonIn this subsection we study a setting in which P has access to the secret keys,and V wants to be ensured that P is close by. A remarkable thing about thedistance bounding stage in the protocol of the previous subsection is that thebits that P sends to V do not have to depend on the bits that V sends to P. IfP knows at what times V will send out bits, he can have V accept by sending �iout to V at the correct time before he receives �i, regardless of the distance to V .Hence, the protocol we described for preventing ma�a frauds does not preventthis fraud.Two solutions suggest themselves. The �rst solution consists of V sendingbits out with randomly chosen delay times. Since P cannot anticipate when Vexpects to have received back a bit, he cannot send out bits �i before he hasreceived bit �i (since V will not accept if a response bit �i arrives before hehas sent out bit �i). In fact, it is su�cient if V sends out bit �i at random atone of two discrete times, say, at the rising edge of clock pulse 3i or 3i+ 1, for1 � i � k. The probability of the strategy having success is at most 1=2k if thechoices are made independently.The second solution consists of ensuring V that P must choose bits �i de-pending on �i. One way to do this involves creating a public bitstringm1j � � � jmkonce (the choice of the bits mi is irrelevant). The following protocol implementsthis (see Figure 3):Step 1 V generates uniformly at random k bits �i.Step 2 Now the low-level distance-bounding exchanges can take place. The fol-lowing steps are repeated k times, for i = 1; : : : ; k.{ V sends bit �i to P .{ P sends bit �i = �i �mi to V immediately after receiving bit �i from V.V veri�es whether the bit-string (�1 � �1)j � � � j(�k � �k) equals the public bit-string. If so, V computes an upper-bound on the distance to P using the max-imum of the delay times between sending out bit �i and receiving bit �i back,for i = 1; : : : ; k. V accepts if and only if P is close by.As before, it is easy to see that the probability that V accepts when P is notclose by is at most 1=2k.2.5 Preventing both types of fraudBy combining the two protocols, we can prevent both types of fraud. As before,it is assumed that a bit-string m1j � � � jmk is published. The following protocolcan be used (see Figure 4):Step 1 V generates uniformly at random k bits �i.
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P V�i 2R f0; 1gStart of rapid bit exchange�i �����������i  mi � �i �i����������!End of rapid bit exchange verify responsesFig. 3. Preventing the response bits from being sent out too soon.Step 2 P generates uniformly at random k bitsmi. As before, both P and V cando so well beforehand. P commits to k bits mi using a secure commitmentscheme.Step 3 Now the low-level distance-bounding exchanges can take place. The fol-lowing steps are repeated k times, for i = 1; : : : ; k.{ V sends bit �i to P.{ P sends bit �i = �i �mi to V immediately after he receives �i.Step 4 P opens the commitment(s) on the bits �i by sending the appropriateinformation to V . P concatenates the 2k bits �i and �i, signs the resultingmessage m with his secret key and sends the resulting signature to V .With the information received in Step 4, V veri�es whether the bits �i � �i areindeed those commited to in Step 2. If this holds, then V computes m in thesame way as P did and veri�es whether the signature he received is indeed acorrect signature of P on m. If so, he computes an upper-bound on the distanceto P using the maximum of the delay times, and accepts if and only if P is closeby.3 Integration with public key identi�cation schemesThe fact that a secure signature scheme must be used in the protocols of Sub-section 2.3 and 2.5 can be a problem when the prover wishes only to identifyhimself by for example proving knowledge of a square root X of X2 mod n (asin the basic Fiat-Shamir identi�cation scheme): it is not clear how he should signthe message by using his secret information X ; also, since V receives informationthat he could not have computed himself, it is not clear whether he obtains use-ful information for computing the secret keys. In this section, we show how tointegrate distance bounding with known public key identi�cation schemes suchthat no useful information is transferred.
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P Vmi 2R f0; 1g �i 2R f0; 1gcommit(m1j � � � jmk)��������������������������!Start of rapid bit exchange�i ���������������������������i  �i �mi �i��������������������������!End of rapid bit exchangem �1j�1j � � � j�kj�k (open commit), sign(m)��������������������������! verify commitm �1j�1j � � � j�kj�kverify sign(m)Fig. 4. Distance bounding to prevent both types of fraud.3.1 Preventing ma�a fraudsTo prevent ma�a frauds, we have the distance-bounding protocol dictate that Prespond to challenges formed as the exclusive-or of the bits sent and received,instead of signing the concatenation. We illustrate this with the basic Fiat-Shamir scheme:Step 1 P generates uniformly at random k numbers Ri 2 Z�n, and sends theirsquares R2i mod n to V . P also generates uniformly at random k bits �i andcommits to these bits (and their order) by sending a commitment on themto V .Step 2 V generates uniformly at random k bits �i.Step 3 Now the low-level distance-bounding exchanges can take place. Hereto,the following steps are repeated k times, for i = 1; : : : ; k.{ V sends bit �i to P .{ P sends bit �i to V immediately after he receives �i from V .Step 4 P opens the commitment on the bits �i made in Step 1 by sending theappropriate information to V . Furthermore, P determines the k responsesXciRi corresponding to challenges ci = �i � �i, for 1 � i � k, and sendsthem to V .V determines the k challenges ci in the same way as P did, and veri�es that the kresponses are correct. Then V veri�es whether the opening of the commitmentsby P is correct. If this holds, V computes an upper-bound on the distance to P
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P V�i 2R f0; 1gRi 2R Z�n : : : ; R2i ; : : : ; commit(: : : ; �i; : : :)��������������������������! �i 2R f0; 1gStart of rapid bit exchange�i ���������������������������i��������������������������!End of rapid bit exchange: : : ; X�i��iRi; : : : ; (open commit)��������������������������! verifyFig. 5. Distance bounding in the Fiat-Shamir identi�cation scheme.using the maximum of the delay times between sending �i and receiving �i, fori = 1; : : : ; k. V accepts if and only if P is close by.Proposition2. If the commitment scheme is secure, then this protocol is a proofof knowledge of a square root of X2 mod n that does not reveal any useful infor-mation for computing a root of X2 mod n.Sketch of proof. In e�ect, this protocol is the parallel version of the basic Fiat-Shamir identi�cation protocol. In [11] it is proven that this protocol reveals nouseful information.Since the binary challenges are chosen mutually random, the veri�er cannotchoose them as the outcome of a collision-free hash-function of the informationknown to him before Step 2. That is, the veri�er does not receive informationthat he cannot compute himself. In particular, the transcript of an execution ofthe protocol cannot be used as a digital signature to convince others that theexecution took place.Proposition3. If the commitment scheme is secure, P is not close by to V andboth follow the protocol, then the ma�a fraud has probability of success at most1=2k.Sketch of proof. In order to have any chance at all of having V accept, the fraud-sters P and V must perform the rapid bit exchange �rst entirely with V andthen with P (or vice versa), otherwise V will not accept because the computedupper-bound on the distance will not be tight enough (see Figure 6).However, since a commitment was sent in Step 2, it is clear that with prob-ability 1 � 1=2k the fraudsters cannot prevent P and V from ending up with
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P V and P Vi 2R f0; 1gRi 2R Z�n: : : ; R2i ; : : : ; commit(: : : ; i; : : :)���������������! �i 2R f0; 1gStart of rapid bit exchange�i ���������������i���������������!End of rapid bit exchange�i 2R f0; 1gRi 2R Z�n : : : ; R2i ; : : : ; commit(: : : ; �i; : : :)���������������!�i 2R f0; 1gStart of rapid bit exchange�i ����������������i���������������!End of rapid bit exchange(open commit); : : : ; X�i��iRi; : : :���������������! verify???(open commit); : : : ; X�i�iRi; : : :���������������! verifyFig. 6. Can P and V apply a ma�a fraud?at least one di�erent challenge (i.e. �i � �i 6= �i � i). Therefore, at least oneresponse of P is correct with respect to a challenge that is complementary to thechallenge V expects a response to. Clearly, one cannot convert XcR to Xc�1Rwithout knowing X .Note that if at least one of P and V generates the challenge bits according to adistribution other than the uniform one (i.e., does not follow the protocol), thisonly increases the probability of successful cheating for P and V .Although we had the prover commit himself, it does not really matter whetherthe prover or the veri�er commits. This holds for the protocol in the next sectionas well.
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P V�i 2R f0; 1gw 2R Zqa gw mod p a; commit(�1; : : : ; �k)������������������! �i 2R f0; 1gStart of rapid bit exchange�i �������������������i������������������!End of rapid bit exchangec �1j�1j � � � j�kj�kr  w + cx mod q (open commit); r������������������! c �1j�1j � � � j�kj�kgr ?= hca mod pFig. 7. Distance bounding in the Schnorr identi�cation scheme.3.2 Preventing both types of fraudIn order to prevent both types of frauds, as in Subsection 2.5, one can straight-forwardly modify this protocol. To this end, in Step 1 P commits to k bits mi,and in Step 3 P will reply with response bits �i = �i � mi. Finally, the re-sponses of P in Step 4 must be computed with respect to the multi-bit challenge�1j�1j � � � j�kj�k (using the concatenation of the xor-values does not preventma�a frauds). This technique can be integrated in (minimum disclosure) identi-�cation schemes with multi-bit challenges, such as [5, 14, 15, 17], retaining thesame security level for P . Observe that the same propositions hold for this mod-i�ed protocol; the only distinction is that the challenge bits can be chosen asthe outcome of a collision-free hashfunction, and hence the transcript can serveas a digital signature.Figure 7 shows how one might incorporate distance bounding into the Schnorridenti�cation scheme. In this protocol, (p; q; g; h = gx mod p) is the public keyof P(as in [17]).4 Distance bounding in wallets with observersUp to now, we have considered distance-bounding protocols in a model with twolegitimate parties. In this section, we will discuss distance bounding in a certainthree-party setting. The goal of V is to determine an upper-bound to P , andthe task of the intermediary is to prevent undesired ow of information between
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P and V . Our technique allows the intermediary to prevent common coinipsbetween V and P . This can be thought of as a generalization of the \warden'sproblem" (see [18]).Recently, transaction systems based on \wallets with observers" have beenproposed (see [6]). This setting can simultaneously o�er privacy and security toan unprecedented extent. This is achieved by embedding within each user-modulea tamper-resistant device called an observer. The observer is incorporated in auser-module in such a way that any message it sends to the outside world has topass through the user-module. That is, the user-module acts as an intermediaryparty. The bene�t of this setting is that one can design protocols such thatthe observer and the user-module both have to participate in order to have averi�er accept. In this way, a user cannot, say, double-spend the same coin in anelectronic cash system since the observer will not participate a second time (seee.g. [3]).Often, it will be su�cient to prevent outow (any information going from theobserver to the veri�er not speci�ed by the protocol) and inow (any informationgoing from the veri�er to the observer not speci�ed by the protocol). Inow andin particular outow can be a serious threat to the privacy of the user.In [8] the privacy aspect of the wallet with observer setting has been inves-tigated under an even more stringent requirement: even if an observer were tostore all information it receives during the period it is embedded within a user-module, it still should be impossible (independent of computing resources) tolink a payment to a user by examining afterwards the information inside the ob-server and all information gathered by the verifying parties. This possibility isnot excluded by preventing inow and inow, since for example a single randomnumber known to both an observer and a shop would enable linking: the factthat the user-module took part in generating it (so that no information couldbe encoded within it, thus preventing both inow and outow) is irrelevant inthis matter. That is, one must also prevent \common coinips." In [8], the term\shared information" is proposed, encompassing inow, outow, and commoncoinips. The essential technique (\divertability") needed to prevent shared in-formation in such a setting has been proposed earlier by Desmedt in [9], andwas generalized in [16]. Prevention of shared information in some instances canbe viewed as a slight generalization of divertability, in that the keys have to beshared together with the intermediary in a suitable way.A fraud that can be applied in this three-party setting is one in which a userillegitimately uses an observer embedded within someone else's wallet. A possiblemotivation for doing so is that typically observers will gather (part of) negativecredentials which can prevent the user from doing transactions he would like todo (see e.g. [7]). Also, another observer might have (part of) certain positivecredentials the user would like to make use of. One can imagine a fraudulentorganization specializing in lending, at a distance, observers with positive cre-dentials (or without certain negative ones) to users who are willing to pay forthis. In e�ect, when the user wants to do a transaction for which he needs certainpositive credentials, he could use a radio link with the fraudulent organization
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and lets an appropriate observer authorize the transaction. We will call this the\observer fraud."4.1 Preventing the observer fraudUsing our distance-bounding technique we show how the veri�er in the three-party setting can determine an upper-bound on the distance to the observer,such that the user-module can prevent shared information. We only describeone protocol that meets the most stringent requirements: no shared information,no release of useful information for computing the secret key, and the veri�erobtains no information that he could not have computed himself (transcriptscannot serve as proof that the protocol took place). For easy comparison withthe distance-bounding protocol shown in Section 3, our discussion will be basedon the three party version of the Fiat-Shamir protocol (see [9, 16]).We need a new notion called a \xor-commitment scheme." This is a com-mitment scheme which enables one to commit to the exclusive-or � � � of twobits � and �, whereas one only knows a commitment on � but not � itself. Inaddition, one should be able to open the xor-commit if and only if one knowshow to open the commitment on �, and this opening information must leak noShannon information on the bits � and �, and the random choices involved inthe commitment on �.An implementation of an xor-commitment scheme can be realized with RSA,based on the technique of probabilistic encryption (see [13]). Let n be a Bluminteger. In order to encrypt a bit �, the commiter chooses r 2 Z�n at randomand computes commit(�) := (�1)�r2 mod n: According to the quadratic resid-uocity assumption (see [13]), it is infeasible to decide whether commit(�) isa quadratic residue or not (i.e., whether � = 1 or 0), unless one knows thefactorization of n. Given a commitment commit(�) = (�1)�r2 mod n of a bit� and a commitment commit(�) = (�1)�s2 mod n of a bit �, it follows thatcommit(� � �) = (�1)���r2s2 mod n is an xor-commitment on � � �. Whenopening this commit, one reveals rs mod n, which does not contain any infor-mation on s.We denote the observer by O, the veri�er by V and the user-module by U .For clarity, we leave out the fact that to prevent shared information the secretand public keys must be shared between the observer and the user-module in asuitable way. It is not hard to see how to do this using some of the techniquessuggested in [7].In the protocol, O knows a square root X of X2 mod n, and O wishes toconvince V of this fact in such a way that U does not learn it, whereas U can beensured that there is no shared information. V wants to be convinced not onlyof the fact that O knows a square root of X2 mod n, but also that O is closeby. In essence, this is the setting of the ma�a fraud, with the intermediary party(P and V in ma�a frauds, and U in this situation) also trying to prevent sharedinformation.The protocol is as follows (see Figure 8):.
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O U VRi 2R Z�n�i 2R f0; 1gcommit(: : : ; �i; : : :); : : : ; R2i ; : : :�����������������������������!Si 2R Z�ni; �i 2R f0; 1gcommit(: : : ; �i � �i; : : :); : : : ; R2i � S2i (X2)i��i ; : : :�����������������������������!�i 2R f0; 1gStart of rapid bit exchange �i ������������������������������i � i ������������������������������i�����������������������������! �i � �i�����������������������������!End of rapid bit exchangeopen commits; : : : ; RiX�i��i�i ; : : :�����������������������������!open commits; : : : ; Ci Si �RiX�i��i�i ; : : :�����������������������������!Fig. 8. Diverted Fiat-Shamir identi�cation protocol with distance bounding.Step 1 O generates k random numbers Ri 2R Z�n and sends the squaresR2i mod n of these numbers to U . O also generates k bits �i, and sends a xor-commitment on them to U . (Clearly, if we use the speci�c xor-commitmentjust described, a commitment for each bit would be needed.)Step 2 U �rst veri�es that the numbers received from O all have Jacobi symbol1. If this is the case, he generates at random k bits i 2R f0; 1g as well as kbits �i 2R f0; 1g. U also generates k numbers Si 2R Z�n. He then computesthe k products R2i � S2i (X2)i��i mod n and sends them to V. U also sendsxor-commitment(s) on �i � �i to V .Step 3 V generates k challenge bits �i 2R f0; 1g, which he will use for the rapidbit exchange.Step 4 Now the rapid exchange of bits can take place. Hereto, the followingfour exchanges are repeated k times, for i = 1; : : : ; k:{ V sends bit �i to U .{ U sends �i � i to O immediately after receiving �i.{ O sends challenge bit �i to U immediately after receiving �i � i.
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{ U sends �i � �i to V immediately after receiving �i.Step 5 O opens the k commits on the bits �i to U O also computes the kresponses RiX�i��i�i mod n and sends them to U .Step 6 U veri�es whether the responses ofO are correct with respect to the chal-lenges �i���i and the squares received fromO in Step 3. V veri�es whetherthe bits that O sent to him in Step 4 are those he commited to. If all the ver-i�cations hold, then U computes the k responses Ci Si �RiX�i�i��i mod nby multiplying, for 1 � i � k, the i-th response of O by Si mod n and acorrection-factor Ci. The correction-factor is equal to X2 mod n if and onlyif i � �i = 1 and �i � �i � �i = 1, otherwise it is equal to 1. U sends allthese responses to V. Furthermore, U opens the xor-commitments to the kvalues �i � �i to V .Afterwards, V veri�es whether the responses of U are correct with respect to thechallenges �i��i��i and the squares received from V in Step 3. He also veri�eswhether the bits received from U in Step 4 are those U commited to. If all theveri�cations hold, then V derives an upper-bound on the physical distance toO by using the maximum of the delays between sending out �i and receiving�i � �i from U , for 1 � i � k. V accepts if and only if O is close by.Although we write commit(: : : ; �i; : : : ;) we do not mean to imply with thisthat a multi-bit commitment must necessarily be used: one might as well use ksingle-bit commitments.It is straightforward to show that V accepts if all parties follow the protocol,and that Propositions 2 and 3 hold.Since one can easily show that for each view of V and for each view of O inthis protocol, there is exactly one set of random choices that could have beenmade by U such that the views are from the same execution of the protocol,there is no shared information. Clearly, for the protocol as we described it, thisonly holds for executions concerning proof of knowledge of the particular numberX2 mod n. However, as we noted before, if the knowledge of X2 mod n is dividedbetween O and U in a suitable way (as described in [8]), the property of absenceof shared information holds for the set of all proofs of knowledge, regardless ofthe particular number X2 mod n that the proof is concerned with.Finally, as in Proposition 3 it is easy to see that the following must hold.Proposition4. If O and V follow the protocol, then U cannot (with probabilityof success greater than 1=2k) trick V into believing that O is close by if this isnot the case.As before, if at least one of O and V generates challenge bits according toa distribution other than the uniform one, then U 's probability of successfulcheating will only increase.5 Open problems and further workWe would like to present two potentially fruitful areas for further investigation.
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