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Abstract

The subject of this thesis is the study of iterated block ciphers. The �rst part

deals with the cryptanalysis of block ciphers. Most attacks on block ciphers are

variants of di�erential and linear cryptanalysis. Firstly the principles of di�er-

ential and linear cryptanalysis are explained. Afterwards a number of modi�-

cations are presented that allow these attacks to be extended. Techniques from

probability theory allow the data processing phase of attacks to be improved in

such a way that cryptanalysis of block ciphers used in special modes becomes

possible. Attacks are then introduced that use relations that have key depen-

dent probabilities, to cryptanalyse ciphers that rely on a nonlinear key addition

(e.g.: IDEA, MAA). A new attack is presented and applied to the block cipher

CAST.

The second part of this thesis deals with the design of iterated block ciphers.

Further building upon the Wide Trail design strategy, construction methods for

the building blocks of a round transformation are developed. Two new designs

are presented, together with a �rst analysis of these designs.
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Chapter 1

Introduction

In contemporary society the science of cryptology is continually attracting more

and more attention. Whereas in the past cryptology was an art, almost solely

practiced by diplomats and military commanders (think of the Caesar cipher),

the publication of the DES [39] in 1977 has been a trigger for academics to

start public research in this �eld. Today the main activity of many companies

is selling cryptographic products and performing consultancy on data security.

Cryptology is used in everyday life by banks and credit card companies.

Cryptology receives a lot of attention because it deals with the protection of

information. Information is nowadays a valuable resource. The development of

fast electronic equipment for processing, transportation and storage of digital

information has led to a new industrial revolution. Digital technology allows

people all over the world to communicate with each other in a reliable way and

at low cost. With the 
ick of a few keys it is possible to consult libraries of infor-

mation on topics that range from the ancient abacus to the latest developments

in zoology. On the one hand, the rapid spread of information allows people

to make decisions based on recent information. On the other hand, sifting the

interesting bits from the enormous amount of available, rapidly outdating, in-

formation has become a Sisyphean task. Thus, while most raw information is

available for free and does not need any protection, processed information has

good value, becomes an item of commerce and consequently needs protection.

Equally important as economically valuable information, personal communica-

tion needs also protection against nosy individuals and organisations.

Digital information is transported over publicly accessible channels and can

be as easily tapped as it can be processed. One of the goals of cryptology is

to secure the transportation of information. This is done by encryption: the

information is encoded by an algorithm that depends on a small piece of secret

information, the key, in a way that makes it impossible to decode it without

1



2 CHAPTER 1. INTRODUCTION

knowledge of the key. Even if the information is not transported but only stored

locally, it may be encrypted in order to prevent hackers from `stealing' (copying)

the information.

Nowadays cryptology no longer deals exclusively with the encryption of in-

formation. New concepts like cryptographic hash functions and public key algo-

rithms have led to new applications like digital signatures and electronic money.

1.1 Cryptography and Cryptanalysis

The security of a design can be de�ned in three di�erent ways [102]. The �rst

de�nition is based on information theory: a system is called unconditionally

secure if it can not be broken, even if the adversary has unlimited computing

power. The second de�nition is based on complexity theory. The approach starts

by de�ning a certain computational unit of operation. An algorithm is then

`feasible' if it can be executed in a number of operations that is (asymptotically)

polynomial in the size of the input. The algorithm is considered secure if it can

be proven that breaking the algorithm is an NP-complete problem. There is

a con�dent and widespread belief that solving NP-complete problems requires

a number of operations that increases exponentially in terms of the size of

the input of the cipher. The study of the possible attacks on cryptographic

algorithms is called `cryptanalysis', while `cryptography' concerns the research

of new algorithms and applications.

The third approach is based on practical methods. The security of an al-

gorithm is evaluated by estimating the computing power that would be needed

to break it. The estimates are based on the results of known attacks and the

scrutiny of experienced cryptanalysts. This last approach has the advantage

that it demands the weakest requirements from the algorithms and thus makes

it the easiest approach for the production of practical algorithms that can be

used in real life applications. In this approach there is a strong interaction be-

tween cryptography and cryptanalysis. The validity of the security level that

is through this process assigned to an algorithm depends on the quality of the

cryptanalysis that has been previously performed.

1.2 This Thesis

This thesis deals with the cryptanalysis and design of an important subset of

cryptographic algorithms: block ciphers. In their simplest mode of use, block

ciphers can be considered as Electronic Code Books (ECB [40]). Under the

control of a relatively short key (56 bits to a few hundred bits) message blocks

of a �xed size are replaced by other blocks. The encryption is symmetric because
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the same key has to be used to decrypt the message.

There exist more sophisticated modes of use that give better secrecy [40].

Block ciphers are also often used as the compression function of hash functions

[82, 103] and MAC algorithms [49]. In this thesis a construction is given that

uses block ciphers for asymmetric encryption, where the encryption key can be

revealed without endangering the secrecy because the decryption key cannot be

easily recovered from it.

The security model most often used in the design of block ciphers, and also

in this thesis, is the one based on the practical approach. Much attention is

given to the analysis of existing designs. In this way it is possible to learn from

existing failures and successes. And of course, every design that can be broken

is one competitor less for our own designs !

1.3 Outline and Main Contributions

The �rst part of the thesis deals with the analysis of existing designs. Chapters 2

and 3 introduce basic de�nitions and well-known cryptanalytic techniques. Our

original work for these chapters consists of Proposition 3.2, and the analysis of

MacGu�n and a reduced version of Blow�sh. The analysis of Blow�sh is a joint

work with Bart Van Rompay and Jan Verelst. The analysis of MacGu�n is a

joint work with Bart Preneel and has been published in [110].

In Chapter 4 our improvements to di�erential cryptanalysis are presented.

They involve the use of Bayes' rule and maximum likelihood estimators during

the data processing phase of a di�erential or a linear attack. Also, the cryptanal-

ysis of hash functions based on block ciphers is improved. These improvements

are illustrated on the DES: used in 8-bit CFB mode and as compression function

of a hash algorithm. This is a joint work with Bart Preneel and the results have

been published in [105, 109].

In Chapter 5 we demonstrate that the average resistance against attacks of

a cipher is not a good security measure. We present attacks that exploit dif-

ferential characteristics with a probability that varies signi�cantly over the key

space. We illustrate this with two new attacks on IDEA, which were developed

in cooperation with Lars R. Knudsen and Johan Borst and has been published

in [14], and an attack on MAA, which was developed in cooperation with Bart

Preneel and have been published in [106].

Chapter 6 introduces a new attack on block ciphers with an unbalanced

round function and a small number of rounds. This attack is shown to break

several members of the CAST block cipher family. It was developed in cooper-

ation with Bart Preneel and Erik De Win and has been published in [112, 113].

The second part of the thesis deals with the design of new block ciphers.

Chapter 7 elaborates on the function of the di�erent components of the round
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transformation and their construction. The emphasis lies on the construction of

mappings with good di�usion properties. By associating mappings with linear

codes we are able to give elegant constructions for optimal di�usion mappings.

The chapter ends with a construction method for trapdoor ciphers, which was

developed in cooperation with Bart Preneel and has been published in [114].

Chapter 8 presents two new block ciphers that were designed as part of

the research. Shark was developed in a joint e�ort with Antoon Bosselaers,

Joan Daemen, Erik De Win and Bart Preneel and has been published in [111].

Square was designed in cooperation with Joan Daemen and Lars R. Knudsen

and has been published in [27, 28].

Chapter 9 concludes and discusses some open problems.

Appendix A gives a survey of existing block ciphers and known attacks.
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Cryptanalysis of Iterated

Block Ciphers
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Chapter 2

Basic Concepts

In this chapter iterated block ciphers are de�ned. The Feistel structure and the

uniform round structure are introduced and illustrated with examples. Block

ciphers can be used, and will be studied, in several operation modes that are

introduced in Section 2.2. A survey of the applications of block ciphers is

presented. There then follows a discussion of the attack models that are most

commonly used to analyse the security o�ered by a cipher.

2.1 Iterated Block Ciphers

The origin of iterated block ciphers appears to have been lost in time. C.E. Shan-

non describes product ciphers [122], that are formed by concatenating di�erent

transformations. The �rst to use a product of identical round transformations

seems to have been H. Feistel [37].

De�nition 2.1 An iterated block cipher is an algorithm that transforms a

plaintext block of a �xed size l into a ciphertext block of a �xed size l

0

under

the in
uence of a key k, by a repeated application of an invertible transfor-

mation �, called the round transformation. Denoting the plaintext with x

0

, the

ciphertext with x

R

and the intermediate values with x

r

, the encryption operation

can be written as:

x

r+1

= �[k

r

](x

r

) r = 0; 1; : : : ; R� 1 : (2.1)

The values k

r

are the round keys, that are derived from k by means of a key

scheduling.

Here only block ciphers that do not expand the blocks will be considered (l = l

0

).

The round transformation � is often built from di�erent components, each with

7



8 CHAPTER 2. BASIC CONCEPTS

a di�erent functionality. The choice of the di�erent components is an important

part of the design strategy and will be treated in detail in part 2. For now, the

following general description su�ces:

key addition: The key addition inserts the unknown round key and mixes it

with the intermediate value.

substitution layer: The substitution layer provides a complex nonlinear mix-

ing of bits that are `close' to one another in the bitstring that is processed.

Since this layer involves complex operations on a few bits at a time, it is

usually implemented with table lookups in substitution boxes (or S-boxes).

di�usion layer: The di�usion layer rearranges the bits such that bits that are

`close' to each other in round r, are not close to each other in round

r + 1. The di�usion layer usually consists of a simple operation that can

be e�ciently implemented without table lookups.

Not every block cipher follows this structure, e.g., the substitution layer some-

times depends on the key.

The main motivation for iterated block ciphers is the observation that a

repeated application of a round transformation that is weak by itself can lead

to a strong cipher [37]. It is clear that the round transformation � determines

for a large part the resistance of the cipher to cryptanalysis. The two most used

round transformation structures are the Feistel network [37] and the Uniform

Transformation structure [36].

2.1.1 Feistel Network

In a Feistel network, the intermediate value x

r

is split into two halves: s

r

and

t

r

. The round transformation � uses a round function F , also called the F -

function. The function F depends on the round key and takes one of the halves

as input. The output of F is added to the other half. Subsequently both halves

are swapped.

(s

r+1

; t

r+1

) = �[k

r

](s

r

; t

r

),

�

s

r+1

= t

r

t

r+1

= s

r

� F [k

r

](t

r

)

(2.2)

Here `�' stands for the bitwise exor operation, but can be replaced by any other

reversible operation. In the last round the swap of both halves is omitted. In

this way the decryption operation is the same as the encryption operation with

the round keys used in reverse order, independent of the choice for the round

function F . Note that t

R�1

, the text input of the round function in the last

round is visible in the ciphertext.
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The best known example of an iterated block cipher, the Data Encryption

Standard (DES) [39], is a Feistel network. The DES uses 16 rounds, two of which

are shown in Figure 2.1. The DES operates on 64-bit text blocks and uses a

56-bit key. The round function starts with an expansion E, which duplicates

some of the 32 input bits to produce 48 output bits. The expanded input is

then exored with the round key k

r

. The result is split into eight 6-bit values

that are used as indices in eight di�erent lookup tables with 4-bit entries (the

so-called S-boxes). The eight 4-bit entries of the tables are mixed by the bit

permutation P to produce the output of the F -function. The DES also features

an initial permutation IP of the plaintext block and a �nal permutation IP

�1

.

The cryptographic signi�cance of these permutations remains unclear (but see

Section 4.2.4 for some consequences that these permutations have on the security

of certain modes of use).

�
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Figure 2.1: Two rounds of the DES, the most famous block cipher. It is a Feistel

network. The full DES has 16 rounds.
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The Feistel network can be generalized [12]: instead of splitting the interme-

diate value x

r

into two equal halves, it is proposed that `unbalanced' divisions

be made. MacGu�n, the �rst example of a cipher that uses this generalized

structure, is analysed in Section 3.5. Also the structure of IDEA [69] can be

seen to be a generalisation of a Feistel network, in which the output of the F -

function is added to both halves of x

r

. A more detailed description of IDEA is

provided in Chapter 5.

2.1.2 Uniform Transformation Structure

The uniform transformation structure is sometimes called `the substitution-

permutation structure (SP-structure)'. The round transformations of this block

cipher structure are built by alternating nonlinear (`substitution') layers that

operate on all the bits of the intermediate values and linear di�usion layers

(`permutations'). (A `linear functions' is de�ned in De�nition 3.2.) Note that

both the nonlinear layers and the linear layers have to be invertible, and are thus

permutations. In the context of a linear layer, the term `permutation' usually

means `bit permutation'. Because of this ambiguity and since the linear layer is

not restricted to bit permutations, the classi�cation `SP-structure' is somewhat

misleading. Figure 2.2 shows one round of Shark, a block cipher with the

uniform transformation structure.

The �rst block cipher with this round structure is an early version of Lucifer,

described by Feistel in [36]. The best known example is probably SAFER [75].

Other examples are Shark [111] and Square [27], described in this thesis (cf.

Chapter 8), and Threeway [24].

The uniform transformation structure is a very general round transforma-

tion. In fact, for any Feistel Network there exists an equivalent description in

terms of a uniform transformation structure with a rather peculiar nonlinear

layer.

2.2 Modes of Operation and Applications

A block cipher is a cryptographic primitive that substitutes l-bit strings under

the in
uence of a key. It can be used in di�erent modes and di�erent crypto-

graphic applications.

Encryption Modes

Four standard `encryption' modes [40, 52] have been de�ned for block ciphers.

These modes can be used in a symmetric encryption scheme, but also in the

construction of a MAC, an asymmetric encryption scheme or a digital signature

scheme.
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PLAINTEXT

�

�

�

�

?

key addition

? ? ? ? ? ? ? ?

S S S S S S S S

? ? ? ? ? ? ? ?

linear di�usion layer

?

�

�

�

�

CIPHERTEXT

Figure 2.2: One round of Shark, a block cipher with the uniform transformation

structure. The nonlinear layer is implemented with eight parallel S-boxes.

The modes process a number of bits m at a time. For some modes m = l, for

other m < l. If the string to be processed has a bit-length that is not a multiple

of m, then it has to be padded using a padding rule. Let the text string consist

of t l-bit blocks and denote one operation of the block cipher by y = E[k](x),

where k is the key. The blocks of the input string are denoted p

i

(`plaintext'),

the blocks of the output are denoted c

i

(`ciphertext'), 0 � i < t.

The four standard `encryption' modes are the following.

1. The Electronic Code Book (ECB) mode is the basic encryption mode.

Every block of the plaintext is encrypted independently. The blocks of

the ciphertext are given by

c

i

= E[k](p

i

) :

Since the blocks are encrypted independently, a repetition of blocks in the

plaintext will lead to a repetition of blocks in the ciphertext.

2. In the Cipher Block Chaining (CBC) mode every ciphertext block depends

on the corresponding plaintext block and on the previous ciphertext block.
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E

- -

a) The ECB mode

E

?

- -

?

i

c) The OFB mode

E

-

6

- -
i

b) The CBC mode

E

?

- -

?

i

d) The CFB mode

Figure 2.3: The four standardized encryption modes of operation for block

ciphers.

The �rst block depends on an initial value IV that can be public or secret.

c

0

= E[k](p

0

� IV )

c

i

= E[k](p

i

� c

i�1

) 1 � i < t

Repeated blocks in the plaintext will no longer lead to repetitions in the

ciphertext. By varying the initial value it is even possible to have di�erent

ciphertexts corresponding to the same plaintext.

3. The Output Feed Back (m-bit OFB) mode uses the block cipher to emulate

a stream cipher. The ciphertext is produced by exoring a pseudo-random

key-stream to the plaintext. The key-stream is generated by repeated

encryption of the initial value. After every encryption the m leftmost bits

of the output are concatenated to the key stream (1 � m � l). Denoting

by p

i

m

; c

i

m

the i-th m-bit block of plaintext and ciphertext (0 � i < tl=m),

by left

m

(x) the block that consists of the m leftmost bits of x and by

right

m

(x) the m rightmost bits, the encryption process can be described
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as follows.

x

0

= IV

x

i

= E[k](x

i�1

) 1 � i < tl=m

c

i

m

= p

i

m

� left

m

(x

i

) 0 � i < tl=m

The initial value has to be changed for every message in order to produce

a di�erent key stream. This is required to avoid a known plaintext attack.

The blocks are encrypted independently, but the ciphertext blocks depend

on the position of the blocks in the plaintext, so that repetitions in the

plaintext will not lead to repetitions in the ciphertext.

4. The second stream mode is the Ciphertext Feed Back (m-bit CFB) mode.

The di�erence between the OFB mode and the CFB mode lies in the

updating of x. In the CFB mode x

i

depends on x

i�1

and c

i�1

m

.

x

0

= IV

x

i

= right

l�m

(x

i�1

)kc

i�1

m

1 � i < tl=m

c

i

m

= p

i

m

� left

m

(E[k](x

i

)) 0 � i < tl=m

Here `k' denotes concatenation of two bit strings. Each ciphertext block

depends on the previous ciphertext block.

A pictorial representation of the modes is given in Figure 2.3. In this thesis only

the ECB mode of the studied block ciphers is considered, except for the DES,

where the ECB mode is already studied in depth in the literature [10, 29, 77]

and thus the CFB mode is analysed here.

Hashing Modes

Block ciphers can also be used as the compression function of an iterated hash

function. Iterated hash functions have a state variable h that is initialized to

an initial value IV . In every iteration the round function (of the hash function)

takes as input the state variable and a message block to update the value of the

state variable. The main motivation behind using block ciphers to construct

hash functions is the minimisation of design and implementation e�ort. In the

simplest con�gurations the length of the hash result is equal to the block length

l. A well-established example uses the following round function:

h

0

= IV

h

i

= f(p

i

; h

i�1

) = E[h

i�1

](p

i

)� p

i

:

This mode is illustrated in Figure 2.4.

This scheme was proposed by S.M. Matyas, C.H. Meyer and J. Oseas [82],

and is described in [103] together with eleven variants with an equivalent security
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E

-

?

?

?

�
m

h

i
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i

h

i�1

Figure 2.4: A hash mode for a block cipher.

level. Other con�gurations like MDC-2 and MDC-4 [16] produce results with a

length of 2l. B. Preneel and L.R. Knudsen give schemes with even larger lengths

[63].

2.3 Applications

Block ciphers are used in many di�erent cryptographic publications. Two im-

portant applications have already been mentioned in the previous section: sym-

metric encryption schemes are built from any of the four encryption modes;

hash functions are built from the hashing modes.

Authentication Schemes

Another widely used scheme that uses a block cipher is the CBC-MAC [49, 51].

Section 2.4 explains the functionality of a MAC. The CBC-MAC uses a block

cipher in CBC mode to process the message. The IV is initialized to zero. The

last `ciphertext' block gives the output of the MAC algorithm.

c

0

= E[k](p

0

)

c

i

= E[k](p

i

� c

i�1

) 1 � i < t

MAC[k](p) = c

t�1

A digital signature is an authentication scheme that uses asymmetric en-

cryption. In [86] R.C. Merkle describes a digital signature scheme that uses a
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block cipher as a cryptographic primitive. The scheme is based on the fact that

for a secure block cipher the equation

y = E[k](x)

is di�cult to solve for k if x and y are given. To sign a one-bit message with

the basic signature scheme, the user selects two secret keys k

0

and k

1

and an

arbitrary string x. The values x; y

0

= E[k

0

](x) and y

1

= E[k

1

](x) are placed

in a public directory. If the user wants to sign a bit with value b, he reveals

k

b

. Everyone can verify that y

b

= E[k

b

](x). The values y

0

; y

1

can be used only

once; therefore they are called one-time signatures. Merkle has shown a way to

reduce the need for y-values.

Asymmetric Encryption

By building trapdoors into block ciphers it is possible to construct an asym-

metric encryption scheme. In such a scheme the block cipher is the public key,

and the trapdoor is the secret key. If Bob wants to send a message to Alice,

he chooses a random key, encrypts his message with Alice's block cipher and

sends it. Only Alice knows the trapdoor in her cipher and is able to recover the

message without knowing the key. A practical realisation of such a scheme is

given in Chapter 7.

Pseudo-Random Noise Generation

Block ciphers can be used as pseudo-random noise generators. The OFB mode

in fact uses the block cipher to produce a pseudo-random bit sequence. Another

possibility is to use the block cipher in counter mode: the pseudo-random stream

is built by successive encryptions of a counter's output.

2.4 MAC Algorithms

A MAC scheme is a symmetric technique that is used to provide data origin

authentication and data integrity. It associates with an input p and a secret

key k a short bitstring c = MAC[k](p). The sender sends c along with p. The

receiver, who shares the key k with the sender, will recompute the MAC on the

received data and verify whether it matches the transmitted value.

MAC schemes can be built by using block ciphers (cf. supra) or by using

algorithms that are developed only for this purpose. In Chapter 5 an attack is

presented on MAA, a MAC algorithm that is very similar to a block cipher.
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2.4.1 Attacks on MACs

Finding an arbitrary message and a corresponding MAC value without knowl-

edge of the key is called an existential forgery . If a cryptanalyst has control

over the message, this attack is called a selective forgery . A forgery is called

veri�able when an adversary knows that the MAC is correct with probability

close to 1. However, for some applications it might be su�cient that a MAC is

correct with probability signi�cantly higher than 1/(the number of all possible

MAC values). A key recovery attack is more serious than a forgery attack: an

adversary who can recover the key can perform arbitrary selective forgeries.

2.5 Security and Security

When the security of an algorithm is evaluated, di�erent approaches are possible,

which may result in di�erent answers to the question: \Is this cipher secure ?"

In a real-world top secret application, every detail of an algorithm is likely to

be a well-kept secret. Under these conditions a cryptanalyst faces a very tough

job in trying to recover the key or the plaintext. Nevertheless most people

will consider a block cipher secure only if it resists attacks under Kerckho�s'

assumption. This assumption states that the enemy cryptanalyst knows all the

details of the algorithm, except for the value of the secret key.

A �rst classi�cation of attacks can be made according to the result that the

attack has [59]:

� A key recovery attack enables the cryptanalyst to recover the actual key

that was used.

� A global deduction provides the cryptanalyst with enough information

about the key to encrypt and decrypt messages at will, but without re-

vealing the actual key that was used.

� A local deduction occurs when the cryptanalyst can encrypt or decrypt

one message (without asking the legitimate user to do it for him).

� An information deduction occurs when the cryptanalyst learns something

about the key, plaintexts or ciphertexts. This might be, for instance, the

distribution of the plaintext or a relation between some bits of the key.

A second classi�cation can be made according to the access that is given to

the cryptanalyst. If a cryptanalyst mounts an attack using only the information

he gets under Kerckho�s' assumption and the values of some ciphertexts, this

attack is called a ciphertext-only attack. This requires that the cryptanalyst

knows some general statistics about the corresponding plaintexts, e.g., that it is
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ASCII-coded text. An attack is considered successful not only if it recovers the

key but also if it allows the plaintext to be obtained from a given ciphertext in

any other way. A ciphertext-only attack is the most dangerous attack because it

is arguably the most realistic. If a cipher can be broken using a ciphertext-only

attack, then its use in practice is very limited. For most ciphers designed today

there are no known ciphertext-only attacks. An example of a ciphertext only

attack is the linear attack on the DES, reduced to eight rounds [77].

An easier attack is a known plaintext attack. The assumption here is that the

cryptanalyst has access to some ciphertexts and the corresponding plaintexts.

An attack needing only a few known plaintexts might be practical if the system is

used to send documents in standard format or with (partly) predictable contents,

or if plaintext is later on released, before the key has been changed. Notice that

known plaintext attacks always exhibit a certain symmetry, since they make no

functional distinction between plaintext and ciphertext. Most linear attacks are

known plaintext attacks [77]. Another variant is the attack on CAST described

in Chapter 6, that is based on the fact that the round function of CAST is not

surjective. A known plaintext attack is successful if it recovers the key or if it

allows a previously unknown plaintext to be calculated from a ciphertext.

A chosen plaintext attack gives even more access and capacity to the crypt-

analyst, since he is allowed to choose some plaintexts and then to get the corre-

sponding ciphertexts encrypted under the unknown key. Variants of this attack

are the chosen ciphertext attack and the adaptive chosen plaintext attack, where

the cryptanalyst can choose the next plaintext after processing the ciphertext

corresponding to the previous choice. Practical situations where this attack

can be mounted are very rare indeed. Di�erential attacks are typically chosen

plaintext attacks [10, 14].

In a related-key attack the cryptanalyst has ciphertexts at his disposal that

are the results of encrypting a set of plaintexts under di�erent keys. Related-key

attacks are studied in [11, 58, 55].

It is clear that the attacks in this list are ordered such that they become less

and less applicable in practice. Cryptographers sometimes object to the practice

of evaluating the strength of their designs against chosen plaintext related-key

attacks, since they are not very realistic. Cryptanalysts however argue that the

di�erent attacks make it possible to rank di�erent ciphers: a cipher that does

not succumb to a related-key attack is considered to be more secure than one

that does, irrespective of the actual usage in practice. Since the security of a

practical cipher can almost never be proven, considering these \impractical"

attacks o�ers a kind of safety margin. Also, most chosen plaintext attacks

involve a certain freedom in the choice of plaintexts and thus they can often be

converted into a known plaintext attack by simply collecting known plaintexts

until some desired texts have been obtained.
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2.6 Conclusions

This introductory chapter presented the de�nition of an iterated block cipher.

The Feistel Network and the Uniform Transformation Structure, the two most

used round transformations in an iterated block cipher were explained. The

standard modes of operation for a block cipher were shown and a taxonomy

was given for attack models used in block cipher cryptanalysis.



Chapter 3

Basic Cryptanalytic Tools

If the only tool you have is a hammer,

you tend to see every problem as a nail.

This chapter introduces the necessary mathematical tools for discussing lin-

ear and di�erential cryptanalysis.

The standard versions of the di�erential and linear attacks are explained.

Also, the principles of a di�erential-linear attack and truncated di�erentials are

presented. A new characterisation of a di�erential is given. All these attacks

share a number of underlying assumptions that are made in order to simplify

the problem of estimating the performance of the attacks, or equivalently the

resistance of the analysed ciphers against the attacks. Limitations of the validity

of the assumptions are shown.

The last sections are illustrations of the basic attacks: a linear and a dif-

ferential attack on MacGu�n [12], which have been published in [110], and a

second order di�erential attack on a reduced version of Blow�sh [121]. In later

chapters ciphers will be analysed where these basic assumptions are no longer

valid.

3.1 Mathematical Tools

This section introduces de�nitions for Boolean functions and substitution boxes.

The link between both is made by a special Boolean function: the characteristic

function of the substitution box. The Walsh transform allows the tables that

will be used in di�erential and linear cryptanalysis to be e�ciently calculated.

19
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3.1.1 Boolean Functions

The de�nition of a Boolean function that is used in cryptography deviates a bit

from the formal mathematical approach as presented in [117]. In cryptographic

literature, usually only two-element Boolean algebra is used. Furthermore the

zero element and the unit element of this algebra are often identi�ed with the

integers 0 and 1, so that addition and other functions over ZZ of the `Boolean'

variables are well-de�ned. Let G

n

denote the vector space of binary n-tuples.

Elements of G

n

are represented as row vectors x = (x

1

; x

2

; : : : ; x

n

).

De�nition 3.1 A Boolean function f is de�ned as a mapping from G

n

to the

set f0; 1g.

f : G

n

! f0; 1g : (x

1

; x

2

; : : : x

n

) = x 7! f(x)

Addition modulo two, also known as exor, will be denoted by �. The associated

function

^

f of the Boolean function f , is de�ned as

^

f(x) = 1� 2f(x). Because

of the limited range of a Boolean function, this relation can also be expressed

as

^

f(x) = (�1)

f(x)

. It is easy to verify that h = f � g ,

^

h =

^

f � ĝ.

De�nition 3.2 A Boolean function f is linear if and only if 8x; y : f(x� y) =

f(x)� f(y).

Denote by e

i

the vector with e

i

j

= 0;8j 6= i and e

i

i

= 1. Since every vector x

can be written as a linear combination of e

i

; i = 1; : : : n:

x =

n

M

i=1

x

i

e

i

;

a linear function is completely characterized by its images of the basis fe

1

; : : : ; e

n

g:

f(x) = f(

n

M

i=1

x

i

e

i

) =

n

M

i=1

x

i

f(e

i

) : (3.1)

Equation (3.1) implies that every linear function l

!

can be written as

l

!

(x) = ! � x ;

where the vector ! is de�ned as !

i

= f(e

i

) and the dot product of two vectors

is de�ned as

x � y = x � y

t

=

n

M

i=1

x

i

� y

i

: (3.2)
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The associated function

^

l

!

can be written as

^

l

!

(x) = 1� 2(! � x) = (�1)

!�x

:

The Hamming distance between two functions f; g is equal to the number of

function values in which they di�er.

d(f; g) , #fx 2 G

n

j f(x) 6= g(x)g (3.3)

=

X

x2G

n

f(x)� g(x) (3.4)

= 2

n�1

�

1

2

X

x2G

n

^

f(x)ĝ(x) (3.5)

The Hamming weight of a function f is equal to its distance from the constant

zero function f

0

. The Hamming weight of a vector x is equal to the number of

non-zero components.

w

h

(x) , #fi j x

i

6= 0g (3.6)

The correlation between two functions f; g is related to the probability that

their values are equal.

c(f; g) = 2

�n

� (#fx j f(x) = g(x)g �#fx j f(x) 6= g(x)g) (3.7)

= 1� 2

1�n

� d(f; g) (3.8)

= 2

�n

X

x

^

f(x)ĝ(x) (3.9)

This can be rewritten as:

Pr(f(x) = g(x)) =

1 + c(f; g)

2

: (3.10)

Lemma 3.1 The correlation between two di�erent linear functions is zero.

Proof: The correlation between two linear functions l

�

; l

�

is given by:

c(l

�

; l

�

) = 2

�n

X

x

^

l

�

^

l

�

= 2

�n

X

x

(�1)

��x

(�1)

��x

= 2

�n

X

x

(�1)

(���)�x

:
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If � 6= � the sum is zero. If � = �, the functions are equal and the correlation

is one.

The autocorrelation function r̂

f

: G

n

! ZZ of the function

^

f is de�ned as the

convolution of the function with itself.

r̂

^

f

(x) ,

X

v

^

f(v)

^

f (x� v) (3.11)

The cross-correlation function ĉ

^

f;ĝ

(x) of two functions

^

f and ĝ is equal to

the convolution of the functions.

ĉ

^

f;ĝ

(x) � (

^

f 
 ĝ)(x) =

X

v

^

f(v)ĝ(x� v) (3.12)

The correlation between f and g can be calculated from the cross-correlation

function:

c(f; g) = 2

�n

ĉ

^

f;ĝ

(0):

3.1.2 Walsh Transform

The Walsh transform can be de�ned for any real-valued function with domain

G

n

[8].

De�nition 3.3 The Walsh transform F : G

n

! R of a real-valued function

f : G

n

! R is de�ned by:

F (!) ,W(f)(!) ,

X

x

f(x) � (�1)

!�x

=

X

x

f(x) �

^

l

!

(x)

The Walsh transform of the associated function is denoted with

^

F (!).

^

F (!) , W(

^

f)(!) (3.13)

=

X

x

^

f(x) � (�1)

!�x

(3.14)

=

X

x

^

f(x) �

^

l

!

(x) (3.15)

= 2

n

ĉ(f; l

!

) (3.16)

The relation between

^

F (!) and F (!) is given by:

^

F (!) = 2

n

�(!)� 2F (!) ;
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where the function �(!) equals zero, except when ! = 0, where it is one. The

evaluation of the Walsh transform of a Boolean function at a point ! gives the

correlation of the Boolean function and the linear function

^

l

!

.

Analogous to the fast Fourier transform routines, there also exists a fast

algorithm for the Walsh transform, requiring O(n 2

n

) operations. Another par-

allel with the Fourier transform is that the inverse Walsh transform only di�ers

in a constant factor from the forward Walsh transform:

f(x) =W

�1

(F )(x) = 2

�n

W(F )(x) : (3.17)

Equations (3.16) and (3.17) show that like the Fourier transform, which can be

seen as the decomposition of a function into sinusoidal components, the Walsh

transform of a Boolean function can be seen as the decomposition of the function

into its linear components

^

l

!

.

There is a Walsh version of Parseval's theorem:

X

!

(

^

F (!))

2

= 2

n

X

x

(

^

f(x))

2

: (3.18)

When f is a Boolean function this becomes

X

!

(

^

F (!))

2

= 2

2n

;

and using (3.16) this results in a bound on the correlations of an arbitrary

Boolean function with all the linear functions:

X

!

ĉ

2

(

^

f;

^

l

!

) = 1 : (3.19)

It is easy to see that (3.19) implies that for any Boolean function f

max

!

ĉ

2

(

^

f;

^

l

!

) � 2

�n

:

The functions that reach this lower bound, are called bent functions [116].

De�nition 3.4 f is a bent function if and only if

8! : j

^

F (!)j = 2

n=2

:

Bent functions only exist if n is even.

The Walsh transform of the convolution of two functions equals the product

of the Walsh transforms of the functions.

W(

^

f 
 ĝ)(!) =

^

F (!) �

^

G(!) (3.20)

The Wiener-Khintchine theorem is a corollary of (3.20):

^

R

^

f

(!) = (

^

F (!))

2

: (3.21)
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3.1.3 Substitution Boxes

De�nition 3.5 An n�m substitution box (S-box) is a mapping

s : G

n

! G

m

: (x

1

; : : : ; x

n

) 7! (y

1

; : : : ; y

m

) = s((x

1

; : : : ; x

n

))

S-boxes are usually studied in terms of their component functions and the linear

combinations of their component functions.

s

i

(x) = e

i

� s(x); i = 1; : : : ;m

s(x) =

m

M

i=1

s

i

(x) � e

i

To study the properties of the component functions, the characteristic function

of an S-box is de�ned [18].

De�nition 3.6 The characteristic function �

s

of an S-box is the Boolean func-

tion

�

s

: G

n+m

! f0; 1g : (xky) = (x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 7!

�

1 if s(x) = y

0 else

This leads to the following relation between the characteristic function and

the component functions in the Walsh domain:

�

s

(�k�) = W(�

s

)(�k�)

=

X

x

X

y

�(xky) �

^

l

(�k�)�(xky)

=

X

x

^

l

(�k�)�(xks(x))

=

X

x

\

(� � s(x)) �

^

l

�

(x)

= W(

\

� � s(x))(�)

The table that lists �

s

(�k�) for all values of �k� is called the Linear Approxi-

mation Table (LAT), and is used in linear cryptanalysis. From (3.16) it follows

that the LAT entries are proportional to the correlations between linear combi-

nations of the outputs of the S-box and linear functions of the input, sometimes

called input-output correlations.

LAT

s

(�k�) = 2

n

c(� � s(x); � � x) (3.22)
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The �-parameter of an S-box is de�ned as the maximal input-output correlation

of the S-box.

�

s

= max

�;� 6=0

c(� � s(x); � � x) (3.23)

The use of the characteristic function in di�erential cryptanalysis will be

discussed in Section 3.2.

An S-box is called a linear S-box if all its component functions are linear

functions. A linear n � m S-box can be described using an n � m Boolean

matrix. Let !

ij

= s

j

(e

i

), then

y = s(x)

m

(y

1

; y

2

; : : : ; y

m

) = (x

1

; x

2

; : : : ; x

n

) �

2

6

6

4

!

11

!

12

: : : !

1m

!

21

!

22

: : : !

2m

: : : : : : : : : : : :

!

n1

!

n2

: : : !

nm

3

7

7

5

m

y = x � 
 :

For a linear S-box it holds that all the linear combinations of the component

functions of the S-box are also linear functions.

8b 2 G

m

; 9a 2 G

n

: b � s(x) � a � x (3.24)

This follows from straightforward calculation:

b � s(x) = b � y

t

= b �


t

� x

t

= a � x

t

;

where a = b � 


t

, or a = s

t

(b).

3.2 Di�erential Cryptanalysis

E. Biham and A. Shamir were the �rst to give a general description of the

cryptanalytic technique that is known as di�erential cryptanalysis [10]. Similar

techniques had already been used in the public world to cryptanalyse a speci�c

cipher proposal on an ad-hoc basis [43, 90]. Also, the designers of the DES

claim to have known about di�erential cryptanalysis back in 1974, when they

designed the algorithm [21].
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3.2.1 Di�erences

Di�erential cryptanalysis is a chosen plaintext attack. In fact only the plaintext

di�erences are chosen. Plaintext di�erences can be de�ned in several ways:

every group operation �, that is well-de�ned over the set of plaintexts, has a

corresponding di�erence operation �: if inv(a) denotes the inverse element of a

with respect to �, then

a�b = a � inv(b) : (3.25)

The di�erence between two instances of the same variable is written as a

0

=

a�a

�

. The di�erence table of a mapping is a compact way to present the

information about its di�erential properties.

De�nition 3.7 Let s : V ! W be an arbitrary mapping. The di�erence table

e

s

of s is de�ned by

e

s

((a; b)) = #fc 2 V j s(c � a)�s(c) = bg

Later, e

s

((a; b)) will be abbreviated to e

s

(akb). The value e

s

(0k0) is always

equal to the cardinality of V . If s is linear with respect to the � operation,

s(c � a) = s(c) � s(a). In this case e

s

(akb) is always zero, except if s(a) = b, in

which case e

s

(akb) is equal to e

s

(0k0).

The �-parameter of a mapping s is de�ned by

�

s

=

1

e

s

(0k0)

� max

a6=0;b

e

s

(akb)

The product �

s

� e

s

(0k0) is called the di�erential uniformity of the mapping s.

Sometimes the input di�erence and the output di�erence are only partially

speci�ed, e.g. in the case of truncated di�erentials (cf. Section 3.2.4). In this

situation the reduced di�erence table can be used.

De�nition 3.8 Let �;  be two surjective mappings, � : V ! V

1

and  : W !

W

1

, with V

1

� V and W

1

� W . Then the reduced di�erence table of s is

de�ned as the di�erence table that merges the rows where �(a

1

) = �(a

2

) and the

columns where  (b

1

) =  (b

2

).

r

s

(ab) = #fc; d 2 V j �(c)��(d) = a and  (s(c))� (s(d)) = bg

=

X

�(c)=a

X

 (d)=b

e

s

(cd)

Usually the sets V and W are identi�ed with G

n

and G

m

and the di�erence

used is exor. The corresponding di�erence table is called an exor-table.
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The exor-table of a mapping can be calculated as the convolution of the

characteristic function with itself:

(�

s


 �

s

)(vkw) =

X

xky

�(xky) � �((xky)� (vkw))

=

X

x

�((xks(x)) � (vkw))

= #fx 2 G

n

j s(x� v) = s(x)� wg

= e

s

(vkw)

3.2.2 Di�erential Characteristics

A di�erential attack is based on the fact that, for an adequate choice of �, given

a pair of plaintexts with a certain input di�erence x

0

= x�x

�

, it is possible to

predict the di�erences of the intermediate values in each round of the encryption

algorithm with a certain overall probability p, even if the used key is unknown.

The tuple (x

0

0

; x

1

0

; : : : x

R�1

0

) consisting of the known input di�erence of the

�rst round and the predicted di�erences of the intermediate values is called a

di�erential characteristic. Pairs of plaintexts that exhibit the predicted inter-

mediate di�erences are called good pairs, they follow the characteristic. The

other pairs are wrong pairs. Typically � and the di�erences x

r

0

are chosen to

maximize p.

The cryptanalyst �nds the key in the following way. He chooses plaintext

pairs with the correct di�erence and gets the corresponding ciphertext pairs. For

each pair of ciphertexts he veri�es whether the output di�erence and the actual

output values are compatible with the predicted di�erences x

R�1

0

. If not, he

knows that this pair is a wrong pair, and he discards it, the pair is �ltered. If the

pair is compatible, the cryptanalyst starts making assumptions about (a part

of) the key. With the assumed value of the key the cryptanalyst can partially

calculate some of the intermediate values of the encryption algorithm. For most

assumed values of the key, there will again arise incompatibilities between the

calculated intermediate di�erences and the intermediate di�erences predicted

by the di�erential characteristic.

If the cryptanalyst only calculates intermediate values of the last round, the

di�erential attack is called a 1R-attack. In an nR-attack intermediate values

of the last n rounds are calculated. How far back a cryptanalyst can calculate

depends on the speci�c structure of the cipher.

Key values that cause no incompatibilities are called suggested key values.

For good pairs, the correct key value will be among the suggested key values.

Wrong and good pairs will suggest wrong key values. Only if the correct key

value is suggested signi�cantly more often than the wrong key values will the
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di�erential attack succeed. It is often assumed that the wrong suggested key

values are randomly distributed. The signal-to-noise ratio (S=N) of the attack

is de�ned in the following way. Let f be the probability that a wrong pair

survives the �ltering. De�ne s as the probability that a wrong key value is

suggested (s equals the average number of suggested key values divided by the

number of possible key values). Then

S=N = p=(f � s) : (3.26)

The number of required pairs is proportional to p

�1

if S=N is well above one.

For S=N values close to one the number of required pairs increases very fast.

Active and Passive Components

An encryption algorithm often contains transformations that are composed of

a number of parallel mappings. For instance, the round function of the DES

contains eight parallel S-boxes. A nonzero input di�erence to the transforma-

tion does not necessarily lead to a nonzero input di�erence for all the parallel

component mappings. If the two inputs to a mapping are equal, its outputs

are also equal. Thus a zero input di�erence leads to a zero output di�erence

with probability one. A mapping with zero (predicted) input di�erence is called

passive, an active component is one that has a nonzero input di�erence.

3.2.3 Di�erentials

In [69] X. Lai and J.L. Massey observe that in a di�erential attack often only a

few of the predicted di�erences x

r

0

are actually used. TheR-tuple (x

0

0

; x

1

0

; : : : x

R�1

0

)

can be reduced to a tuple (x

0

0

; x

r

1

0

; : : : ; x

r

a�1

0

) that only contains the predicted

values that are actually used in the attack. A tuple that does not specify all

of the intermediate di�erences, is called a di�erential. The probability of a dif-

ferential is calculated by adding the probabilities of all the characteristics that

reduce to this di�erential. The probability of the di�erential is a more accurate

measure for the success rate of a di�erential attack.

De�ne the maximal di�erential as the tuple that speci�es only the interme-

diate di�erences that are actually used in the di�erential attack. The following

proposition is a new result; it provides new insight into the relation between the

S/N-ratio and the success probability of a di�erential attack.

Proposition 3.2 In a di�erential attack (as described previously in Section 3.2.2)

the correct key value is only suggested by a pair that follows the maximal di�er-

ential of the attack.

Proof: Suppose the pair survives the �ltering. This means that it exhibits ci-

phertext di�erences that are compatible with the di�erential. To verify whether
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a particular key value k is suggested, the intermediate di�erences are calculated,

using k as the key. Only if the calculated di�erences agree with the di�erences

predicted by the di�erential is the key value suggested.

If k is the correct key value, the calculated di�erences are equal to the ac-

tual di�erences. Therefore, if the calculated di�erences of the pair agree with

the predicted di�erences of the di�erential, the actual di�erences agree with the

predicted di�erences and the pair follows the maximal di�erential.

Thus if the correct key value is suggested, this implies that the pair is a good

pair.

Wrong key values are suggested both by the good and the wrong pairs. If

f � p, the number of wrong pairs that survives �ltering vastly exceeds the

number of good pairs. In this case, the contribution of the good pairs to the

number of suggestions for a wrong key value can be neglected.

From this observation it follows that a di�erential attack can work in two

di�erent ways: if p � f � s, or S=N � 1 the correct key value can be found

by looking for the most suggested key value. This is the standard di�erential

attack. If p� f �s, or S=N � 1, the correct key value can be found by searching

for the least suggested key value. This is because the `noise' of the wrong pairs

will not be added to the counts of the correct key. In Section 5.2.4 an attack

is described that uses this principle. Only if S=N � 1 does a di�erential attack

become very di�cult. Note that it is not a trivial task to �nd an attack with

S=N � 1.

3.2.4 Truncated Di�erentials

The �rst description of the concept of truncated di�erentials was given by

L.R. Knudsen in [60]. The most successful attack using truncated di�erentials

is the attack on �ve rounds of SAFER [62, 75].

The naming `truncated di�erential' is a bit confusing, since the concept ap-

plies to di�erential characteristics as well as to di�erentials. The basic idea

however is very simple. Recall that a di�erential characteristic predicts the dif-

ference of all intermediate values in the encryption algorithm, while a di�erential

predicts only the di�erence of a few intermediate values. The idea of a `truncated

characteristic' is to predict only a part of each intermediate value. For instance

in the byte-oriented algorithm SAFER, a truncated characteristic typically only

predicts which intermediate bytes are equal to zero, as opposed to a prediction of

the individual bits in an ordinary di�erential characteristic. A truncated di�er-

ential would logically be de�ned as a tuple that predicts only a few intermediate

values, and then only partially. Since a truncated characteristic itself can be

seen as a collection of ordinary characteristics, L.R. Knudsen prefers to make

no distinction between a truncated characteristic and a truncated di�erential,
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combining both concepts under the name `truncated di�erential'.

The concept of truncated di�erentials seems particularly useful for attack-

ing ciphers that do not operate on individual bits, but rather on higher level

entities, e.g. the byte-oriented SAFER and the 16-bit word oriented IDEA [69].

Section 5.2.4 discusses a truncated di�erential attack on a reduced version of

IDEA.

3.2.5 Higher Order Di�erentials

The derivative of a mapping s at the point a is de�ned as [59]:

�

a

s(x) = s(x � a)�s(x) :

The connection with a di�erential of an encryption algorithm is clear. The de�-

nition can be extended to higher order derivatives [59]. The nth order derivative

of the mapping s at the points a

1

; : : : a

n

is given by:

�

(n)

a

1

;:::;a

n

s(x) = �

a

n

(�

(n�1)

a

1

;:::;a

n�1

s(x)) :

Higher order derivatives, or di�erences, can be used in a di�erential attack in

the same way as �rst order derivatives. It seems that in practice higher order

di�erences are most useful against ciphers with a small number of rounds [54].

Section 3.6 describes a second order di�erential attack on a reduced version of

Blow�sh.

3.3 Linear Cryptanalysis

Linear cryptanalysis was �rst described by M. Matsui in [77]. In [21] D. Cop-

persmith admits that to the best of his knowledge even the design team of the

DES did not know about linear cryptanalysis.

Linear cryptanalysis is a known plaintext attack. Typically only a fraction of

the bits of each plaintext have to be known. Also, if the cryptanalyst has only

statistical information about the plaintext, he can apply a slightly modi�ed

version of the linear attack (this is in fact a ciphertext-only attack). As in

di�erential cryptanalysis, the cryptanalyst can freely choose which operation to

use as the `linear' operation.

A linear attack uses a linear relation between the inputs and outputs of the

encryption algorithm that holds with a certain probability. Linear relations

for an algorithm are constructed by summing linear relations for the di�erent

components of the algorithm. Below, a linear attack is described where the

bitwise exor is chosen as the linear operation and where the linear expression

approximates the �rst R � 1 rounds. In this case the linear relation contains
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some bits of the input, some bits of the key and some bits of the input of the

last round. Let

� � x

0

=

l

M

i=1

�

i

x

0

i

denote the sum of plaintext bits that are selected by the l-bit vector �, and

de�ne with � and � similar sums for the input of the last round x

R�1

and the

key k. The linear relation

(� � x

0

)� (� � x

R�1

)� (� � k) = 0 (3.27)

is called e�ective when it holds with a probability P that is not equal to 0.5.

The deviation d = jP � 0:5j is a measure for the e�ectiveness of the relation.

Since the key is �xed, the relation

(� � x

0

)� (� � x

R�1

) = 0 (3.28)

will hold with probability P or 1�P , depending on the value of ��k. Therefore

(3.28) will have the same deviation as (3.27).

The input of the last round can be expressed as a nonlinear function �

�1

of

the output x

R

and the last round key k

R

. In general the cryptanalyst chooses

� in such a way that � � x

R�1

= � � �

�1

[k

R

](x

R

) depends only on a small part

of k

R

. Substituting � � x

R�1

in (3.28) gives

(� � x

0

)� (� � �

�1

[k

R

](x

R

)) = 0 : (3.29)

The attack now proceeds in the following way. For each possible value of k

R

,

the cryptanalyst calculates the deviation of (3.29) over a large set of encrypted

texts. Because of the nonlinearity of �

�1

[k

R

](x

R

) the deviation of (3.29) will

be largest when the guess for k

R

is correct. This e�ect is called `wrong key

randomisation' [45]. The number of required texts is proportional to d

�2

.

Since the basic linear attack is a known-plaintext attack, there is an inherent

equivalence between ciphertext and plaintext. A linear attack can be optimized

by eliminating the �rst round linear relation from Relation (3.28). In this way

only R � 2 rounds are approximated, and parts of the subkeys of the �rst and

the last round are searched for at the same time. This optimisation becomes

impractical when too large a part of the key is involved, since a counter is

required for every possible key value.

The Linear Approximation Table of a mapping forms the linear cryptanal-

ysis equivalent of the di�erence table of di�erential cryptanalysis. If the exor

operation is chosen as the linear operation, the LAT of a mapping can be cal-

culated e�ciently by using the fast Walsh transform. A comparison of (3.27)



32 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS

with (3.10) shows that the deviation of a linear relation for a mapping is in fact

equivalent to the correlation between a linear combination of the input bits and

a linear combination of the output bits of the mapping, also called input-output

correlation.

3.3.1 Di�erential-Linear Cryptanalysis

Di�erential-linear cryptanalysis was invented by S.K. Langford and M.E. Hell-

man [70]. A di�erential-linear attack is essentially a linear attack that is opti-

mized by using chosen plaintexts. The attack uses an e�ective linear relation

between the input of the last round and an intermediate value x

e

, resulting in

a relation similar to (3.29):

(� � x

e

)� (� � �

�1

[k

R

](x

R

)) = 0 : (3.30)

The intermediate value x

e

is determined with a certain probability by a di�er-

ential characteristic.

For most ciphers it is easy to �nd di�erential characteristics with a high

probability over a small number of rounds, whereas this probability decreases

rapidly for an increasing number of rounds. Typically a di�erential-linear at-

tack is very e�ective for ciphers with a small number of rounds, e.g. FEAL-8

succumbs to a di�erential-linear attack using as few as 12 chosen plaintexts [6]

(but the attack has a high workload, cf. Appendix A).

3.4 Common Assumptions

In a di�erential attack the cryptanalyst needs to estimate the probability of a

characteristic, in linear cryptanalysis an estimation for the deviation of a linear

relation is required. These are necessary in order to estimate the probability of

success, but also to select the best possible characteristic or relation, i.e. the

one that gives the largest expected success probability for the attack.

To facilitate the estimation of the probability of a di�erential characteristic

or a linear relation the following assumptions are often implicitly made.

1. One characteristic dominates the probability.

In Section 3.2 it was explained that the probability of a di�erential is

a better measure than the probability of a characteristic. However, often

cryptanalysts assume that one characteristic has a much larger probability

than the other characteristics of the di�erential. The probability of the

characteristic is taken as an estimate of the probability of the di�erential.

The analogous concept in linear cryptanalysis is less known: it is the
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linear hull [59, 94]. The deviation of a linear hull is also estimated by the

deviation of a linear relation.

2. The rounds are independent.

The cryptanalyst estimates the probability of an r-round characteristic

(or linear relation) by the product of the probabilities of the r component

1-round characteristics (or linear relations). This approach assumes that

the probabilities of the di�erent rounds are independent.

3. The hypothesis of stochastic equivalence [69].

Since the key is unknown, the cryptanalyst often averages the probabil-

ity over all keys and uses this as an estimate for the probability of the

characteristic/relation. This is actually a �rst order approximation: the

stochastic variable is estimated by its mean value.

These assumptions are necessary because it is clearly infeasible to calculate

the correct probability of a di�erential or a linear relation for each possible

key. Due to the inherent complexity of an encryption algorithm, this calcula-

tion would involve encrypting all plaintexts with all keys and storing all the

corresponding ciphertexts.

A clear example that shows the limitations of two of these assumptions is

given by a double encryption scheme. Let D[k](x) denote the decryption op-

eration that is the inverse of the encryption E[k](x). The speci�c choice for

the encryption algorithm is not important, provided that it exhibits no charac-

teristics with probability one. A double encryption scheme can be constructed

as E2[k

1

kk

2

](x) = D[k

2

](E[k

1

](x)). The probability of the di�erentials of this

scheme is clearly key dependent. If k

1

equals k

2

, there exist di�erentials with

probability one, and linear hulls with deviation 0.5. The probability of the dif-

ferentials cannot be approximated by the probability of a characteristic. The

same applies to the linear equivalents.

There are also more practical examples where the assumptions are violated.

A common example is the existence of `weak keys,' where some characteristics

have higher probability than for other keys. In Chapter 5 it is shown that for

certain keys the Message Authenticator Algorithm (MAA) exhibits many more

collisions than the average case. In the same chapter it is shown that there

are many key dependent di�erentials in IDEA. Also an attack is presented that

makes use of a set of linear relations. While the average deviation of the relations

is low, for each key there exists at least one relation with a high deviation.

Nevertheless, there are situations where the assumptions hold and a basic

analysis breaks the cipher. Two examples are given in the next sections.
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3.5 Cryptanalysis of MacGu�n

Under the assumptions of the previous section, the problem of �nding the dif-

ferential characteristic with the highest probability or the linear relation with

the highest deviation can be translated into the search for the shortest path

through a graph. It is then possible to apply the A

�

-algorithm [91] to solve the

problem. In [79] M. Matsui proposes a simple implementation of this algorithm.

He uses it to �nd the best di�erential characteristic and the best linear relation

of the DES. Algorithm 3.1 searches for the best di�erential characteristic over

n rounds, using over-estimations for the probabilities of the best characteristics

over 1, : : : , n � 1 rounds, and an under-estimation for the probability of the

best n-round characteristic. The more accurate the estimations are, the faster

the search algorithm can prune wrong paths (corresponding to characteristics

with a low probability).

It is possible to optimize the program by taking restrictions on the form of

a characteristic into account [7]. The A

�

-algorithm was implemented and used

to cryptanalyse the block cipher MacGu�n [12]. These results on MacGu�n

have been published in [110].

3.5.1 MacGu�n

B. Schneier and M. Blaze [12] introduce a new kind of round transformation: the

Generalized Unbalanced Feistel Network. Together with the general architecture

they give a complete speci�cation of an example: the cipher MacGu�n. The

basic idea is to split the input of each round into unequal parts. In MacGu�n,

the 64-bit input is split into a 48-bit input of the round function, and a 16-bit

part that is exored with the output of the round function. After four rounds all

64 bits have been exored once with the output of the round function. Figure 3.1

sketches four rounds of MacGu�n. The round function consists of the eight

S-boxes of the DES, but the two middle output bits of each S-box are neglected

in order to obtain a 16-bit output. Since the round function only modi�es half

as many bits of the intermediate value as in the case of the DES, the designers

have chosen to use twice as many rounds: 32.

3.5.2 Di�erential Cryptanalysis

The analysis of MacGu�n [110] was done in an `automatic' way by running

Algorithm 3.1. Figure 3.1 shows the four-round iterative building block of the

best di�erential characteristic for MacGu�n. It has a probability of

1

149

, which

should be compared with

1

234

for the best two-round iterative building block for

a DES-characteristic. Table 3.1 gives the probabilities of the best di�erential

characteristics of MacGu�n. The di�erence values are given in hexadecimal
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Algorithm 3.1 A simple algorithm to search for the best di�erential charac-

teristic. The values b

r

are estimations for the probability of the best r-round

characteristic: b

1

, : : : b

n�1

are over-estimations, b

n

is an under-estimation.

x

i

; y

i

denote the input and output di�erence of the round function of round

i, Pr(x

i

7! y

i

) denotes the transition probability.

round-1()

for every x

1

p

1

= max

y

1

Pr(x

1

7! y

1

);

if (p

1

� b

n�1

� b

n

) then round-2();

return; /* exit program */

round-2()

for every x

2

, y

2

p

2

= Pr(x

2

7! y

2

);

if (p

1

� p

2

� b

n�2

� b

n

) then round(3);

return;

round(r) /* r = 3, : : : , n-1 */

x

r

= x

r�2

�y

r�1

;

for every y

r

p

r

= Pr(x

r

7! y

r

);

if (p

1

� p

2

� : : :� p

r

� b

n�r

� b

n

) then

if (r+1 < n) then round(r+1);

else round-n();

return;

round-n()

x

n

= x

n�2

�y

n�1

;

p

n

= max

y

n

Pr(x

n

7! y

n

);

if (p

1

� p

2

� : : : p

n

� b

n

) then b

n

= p

1

� p

2

� : : : p

n

;

return;

notation, which is denoted by the subscript

x

. It turns out that the probability

of the best 2n-round characteristic of MacGu�n is signi�cantly larger than the
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Figure 3.1: Four rounds of MacGu�n and the iterative building block of the

best di�erential characteristic.

probability of the best n-round characteristic of the DES. From this viewpoint

32 rounds of MacGu�n is weaker than 16 rounds of the DES.

E. Biham and A. Shamir [10] used a 13-round characteristic for their attack

on the full DES. The �rst round is passed with probability one by enciphering

large structures of plaintexts. The last two rounds are treated by the 2R-attack.

An attack on MacGu�n can be mounted using a 27-round characteristic from

the second to the 28th round. Extended to the �rst round, this characteristic has

an input exor that is di�erent from zero for S-box eight only. Since each S-box

has only two output bits, only four di�erent output exors are possible. Therefore

the �rst round is passed with probability one by enciphering structures of only
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MacGu�n DES

n log

2

(p) n log

2

(p)

8 -11.6 4 -9.6

12 -19.4 6 -20.0

16 -27.7 8 -30.5

20 -34.8 10 -38.4

24 -42.7 12 -46.2

26 -46.4 13 -47.2

27 -47.9

28 -49.9 14 -54.1

29 -51.6

32 -57.2 16 -62.0

Table 3.1: The probabilities of the best characteristics for MacGu�n and the

DES.

eight plaintexts (in comparison to 8192 for the DES). Such a structure consists

of the messages x� (v; 0000

x

; 0000

x

; 0000

x

), x� � � (v; 0000

x

; 0000

x

; 0000

x

),

where � = (4040

x

; 2000

x

; 0001

x

; 0000

x

) and v takes the values from the set

f0000

x

, 0001

x

, 0002

x

, 0003

x

g.

Because the di�usion per round of MacGu�n is weaker than that of the

DES, it becomes possible to mount a 4R-attack. This attack gives the round

key of the last round. Since the relation between master key and round keys

is di�cult to invert, the attack proceeds by peeling o� the last round and by

repeating the attack on the reduced version of MacGu�n. This step does not

signi�cantly add to the complexity of the attack.

Taking the DES S-boxes and reducing the output by chopping o� the middle

output bits, is a rather arbitrary design decision. It turns out that the resistance

against di�erential cryptanalysis can be improved by selecting the �rst two

output bits from the DES S-boxes and swapping them. The probability for the

best 27-round characteristic becomes 2

�50:8

. Better still would be to design

S-boxes speci�cally for MacGu�n.

3.5.3 Linear Cryptanalysis

A linear relation can be viewed as the tracing of bits through the di�erent

rounds of the algorithm. Every `forked branch' is then a `crossroads' where

the cryptanalyst can choose which way to follow the bits. As a consequence

of the imbalance of MacGu�n, there are 50 % more forked branches in each

round than for the DES (48 `forked' bits instead of 32). On the other hand,
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the reduction of the output of the S-boxes reduces the number of possible linear

relations for each S-box by 80 % (only 3 possible output masks instead of 15).

The e�ect of reducing the number of output bits on the expected value of the

probability of the best linear relation is discussed by K. Nyberg in [95].

MacGu�n DES

n log

2

(jp� 0:5j) n log

2

(jp� 0:5j)

4 -2.0 2 -1.7

8 -5.0 4 -4.0

12 -9.7 6 -8.0

16 -13.7 8 -10.7

20 -18.4 10 -14.4

24 -21.9 12 -16.8

28 -26.6 14 -20.8

30 -28.6 15 -21.8

32 -30.1 16 -23.4

Table 3.2: The probabilities of the best linear relations for MacGu�n and the

DES.

The probabilities of 2n-round relations for MacGu�n are lower than the

probabilities of n-round DES-relations (cf. Table 3.2). A straightforward appli-

cation of the linear attack, using an approximation for 30 rounds, would require

2

2�(28:6�20:8)

� 2

43

= 2

58:6

plaintexts in order to �nd 12 bits of the round keys

of the �rst and the last round. This is still faster than exhaustive key search.

In order to determine the remaining part of these two round keys, other linear

relations should be used. The structure of the best 30-round linear relation is

shown in Figure 3.2.

structure: - - E - - - A - B C D - - - A - B C D - - - A - B C D - - -

box (1-8) � � 2jp� 0:5j

E 4 3

x

2

x

0.1250

A 4 38

x

1

x

0.3125

B 2 26

x

1

x

0.1875

C 6 15

x

1

x

0.1875

D 4 2F

x

1

x

0.3125

Figure 3.2: Structure of the optimal 30-round linear relation.

In Section 3.5.2 it was shown that MacGu�n could be strengthened against



3.6. A DIFFERENTIAL ATTACK ON BLOWFISH 39

di�erential cryptanalysis by selecting other output bits from the DES S-boxes.

Selecting the �rst two output bits produced the cipher with the highest resis-

tance to di�erential cryptanalysis. It has approximately the same resistance to

linear cryptanalysis as the original version.

3.6 A Di�erential Attack on Blow�sh

Blow�sh is a block cipher designed by B. Schneier [121]. Vaudenay published a

di�erential attack on Blow�sh [131]. The attack assumes that the key dependent

S-boxes are known to the cryptanalyst. It works on eight rounds for all keys

and on sixteen rounds for some weak keys (a fraction of 2

�17

of the keys are

weak). The di�erential attack presented here [129] works on Blow�sh reduced

to four rounds, for all keys and with unknown S-boxes.

3.6.1 Blow�sh

Blow�sh operates on 64-bit plaintexts and has a variable key size (with a max-

imum of 448 key bits). It has a 16-round Feistel structure with some slight

modi�cations: the round keys are added in a di�erent place and there are two

extra round keys at the end of the algorithm. The round transformation for the

�rst 15 rounds is given by

t

r

= s

r�1

� k

r�1

s

r

= t

r�1

� F (t

r

); r = 1; 2; : : : ; 15:

In the last round this becomes:

s

16

= s

15

� k

15

� k

17

t

16

= t

15

� F (s

15

� k

15

)� k

16

:

The F -function uses four S-boxes with eight input bits and 32 output bits. The

32-bit input of the F -function is split into four bytes a

i

, i = 0; 1; 2; 3.

F (a

0

a

1

a

2

a

3

) = ((S

0

[a

0

] + S

1

[a

1

])� S

2

[a

2

]) + S

3

[a

3

]

Here `�' stands for the exor operation and the `+' operation transforms the 32-

bit values to integers and adds them modulo 2

32

. The four S-boxes and the 18

k

r

-values are obtained from the user key by a complex setup scheme. Figure 3.3

shows four rounds of Blow�sh.
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Figure 3.3: Four rounds of Blow�sh.

Incompatible operations + and �

The F -function of Blow�sh uses two di�erent operations to combine the out-

puts of the S-boxes: modular addition and bitwise exor. It is hoped that the

incompatibility of these operations increases the security of the cipher.

However, modular addition and the exor operation are strongly related to

each other. The same holds for their associated di�erence operations: modular

subtraction and exor. Knowing x� y, one can determine x� y and x+ y with

a certain probability, and vice versa. Values of x� y correspond to a small set

of possible values for x � y. This is used in the attack: given the exor values

x

i

� y

i

of a set of pairs (x

i

; y

i

) with a constant but unknown di�erence x

i

� y

i

,

it is possible to determine this di�erence. Only a small number of exors is
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required to determine the di�erence. Note that the sign of the di�erence cannot

be determined, since exor commutes while subtraction does not.

For some values of x, special relationships hold. If y 2 f0; 8000

x

g, x + y =

x�y = x�y. For other values of x, the exor and the subtraction have identical

output for a large subset of the input space (e.g. x = 4000

x

).

Key equivalence classes

The Blow�sh scheme can be simpli�ed. For every set of S-boxes and k-values it is

possible to determine an equivalent set of S-boxes and k-values, where k

0

equals

0, by `pushing' the exor with k

0

through the algorithm. Table 3.3 shows how

the new S-boxes and k-values relate to the old ones. This simpli�cation permits

a small speed-up of implementations since one exor operation can be omitted.

The presented analysis assumes that this simpli�cation has been carried out.

original simpli�ed

k

0

0

k

1

k

1

� k

0

k

2

k

2

k

3

k

3

: : : : : :

k

n

k

n

k

n+1

k

n+1

� k

0

k

n+2

k

n+2

� k

0

F (x) F (x� k

0

)

Table 3.3: Simplifying the Blow�sh scheme.

There are other key equivalences: the most signi�cant bit of all entries in

any two S-boxes can be 
ipped without changing the input-output mapping of

the cipher. Any value can be added to all entries of S

0

and subtracted from all

entries of S

1

. Thus it is always possible to �nd an equivalent key with S

0

[0] = 0.

These equivalences are between expanded keys. Due to the substantial ex-

pansion, only a small fraction of the keys from the expanded key space corre-

sponds to actual cipher keys. It is very unlikely that there also exist equivalent

cipher keys.



42 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS

3.6.2 The Attack

Part One: exors of F -values

From the description of Blow�sh [121] it follows that

s

4

= t

0

� F (s

0

)� k

1

� F (s

0

� F (s

1

� F (s

0

)� k

1

)� k

2

)� k

3

� k

5

: (3.31)

The attack uses a second order di�erential. It uses quartets of plaintexts, de-

noted (a; b); (a; b

�

); (a

�

; b� �); (a

�

; b

�

� �). The second order di�erence of (3.31)

is given by

s

4

� s

4

�

� s

4

��

� s

4

���

= F (a� F (b� F (a)� k

1

)� k

2

)

� F (a� F (b

�

� F (a)� k

1

)� k

2

)

� F (a

�

� F (b� � � F (a

�

)� k

1

)� k

2

)

� F (a

�

� F (b

�

� � � F (a

�

)� k

1

)� k

2

) :

(3.32)

If � = F (a)� F (a

�

), then (3.32) reduces to

s

4

� s

4

�

� s

4

��

� s

4

���

= F (a� x)

� F (a� y)

� F (a

�

� x)

� F (a

�

� y) ; (3.33)

with x = F (b � F (a)� k

1

) � k

2

and y = F (b

�

� F (a) � k

1

)� k

2

. For random

values of �, (3.32) will be zero with a certain probability p; (3.33) will be zero

with a larger probability because when x = y it is always zero. This observation

can be used to determine F (a)� F (a

�

).

The attack works as follows. Firstly a set of plaintexts is encrypted with s

0

�xed to a. A second set is then encrypted with s

0

�xed to a

�

. Quartets are

built from these sets by taking two texts from each set. A quartet is valid if the

sum of the t

0

values equals zero. The sum of the four s

4

values then equals the

second order di�erential of (3.31). If this is zero, it gives two candidate values

for F (a)�F (a

�

): the �rst text from the �rst set can be combined with the �rst

or the second text from the second set.

The candidate values are veri�ed by experimentally verifying the probability

that (3.32) is zero. For wrong values of F (a) � F (a

�

) the probability will be

much lower. This test was implemented for a reduced version of Blow�sh, with

only 32-bit block length. For the correct value the probability was 0.14%, for

wrong values it was .01%.



3.7. CONCLUSIONS 43

Part Two: F -values

The technique of Part one allows values for the output exor of arbitrary input

values of the round function F to be obtained. This technique is used with two

inputs that di�er only in the input of S

3

in the �rst round.

a = a

0

a

1

a

2

a

3

a

�

= a

0

a

1

a

2

a

�

3

The di�erence of the two outputs is given by:

F (a)� F (a

�

) = S

3

[a

3

]� S

3

[a

�

3

] :

Because of the similarity between exor and subtraction, this di�erence can be

determined with a certain probability. By repeating the operation with di�erent

values for a

0

; a

1

; a

2

the di�erence can be determined uniquely, except for the

sign bit.

In this way it is possible to collect enough information about exors and

di�erences of the F -values to determine the absolute values, except for the sign

bit. In the next step the absolute values of S

3

are determined. Subsequently

S

2

; S

1

and S

0

can be recovered, making use of the equivalence classes.

Once the F -function is known, the k

r

-values can be easily recovered us-

ing standard techniques. Finally the most signi�cant bits can be recovered by

exhaustive search.

Plaintext requirements

On the reduced version of Blow�sh with block length 32, about 8000 chosen

plaintexts are required to determine one output exor value of the round func-

tion. The complete attack requires about 210 output exor values, or 2

21

chosen

plaintexts. The number of required plaintexts for Blow�sh with block length 64

can be estimated as follows. The number of plaintexts to determine an output

exor of the function will increase to approximately 2

25

. The number of entries

in the S-boxes increases, but each individual entry becomes easier to recover.

The number of required exor values increases to 2

13

. This gives a total of 2

38

required chosen plaintexts.

3.7 Conclusions

This chapter started with the de�nition and basic properties of Boolean func-

tions, linear functions, the Walsh transform and the other mathematical tools
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that will be used in the following chapters. The principles of di�erential crypt-

analysis were explained, and some extensions were discussed: the use of di�er-

entials instead of characteristics, truncated di�erentials and higher order di�er-

entials. The new concept of maximal di�erential was de�ned and it was shown

that this allows the number of cases where a di�erential attack is applicable

to be extended in a simple way. The principles of linear cryptanalysis and

di�erential-linear cryptanalysis were explained. The underlying assumptions of

both techniques were clearly stated and their limitations were shown.

Although these attacks have been known for some time, new designs have

continued to be proposed that can be broken using these techniques. The block

cipher MacGu�n has been broken by both linear and di�erential cryptanalysis.

The di�erential characteristic and the linear relation were found by a search

program that is guaranteed to �nd the best relations. This result has been

published in [110]. The second order di�erential attack was illustrated with a

new analysis of Blow�sh, reduced to four rounds.



Chapter 4

Improved Di�erential

Cryptanalysis

The ideas of di�erential and linear cryptanalysis can be extended in various

ways. Several extensions have been described in the cryptographic literature.

In [45] C. Harpes discusses a binary generalisation and a group generalisation

of linear cryptanalysis. In [53] T. Jakobsen presents the generalisation of linear

attacks to correlation attacks and discusses the links with di�erential attacks.

While these extensions or generalisations are based on sound theoretical princi-

ples, few of them have been shown to improve an existing attack on any practical

block cipher. The extensions to di�erential and linear cryptanalysis presented in

this chapter were developed with applicability in mind and result in an improved

attack on a practical block cipher (e.g., the DES).

This chapter is organized as follows: in Section 4.1 concepts of probability

calculus are introduced into the framework of di�erential cryptanalysis. The

new framework makes an improvement of di�erential cryptanalysis possible that

extends the attack to cases where only a limited part of the cipher's output is

visible. In Section 4.2 this extended attack is successfully applied to the DES

in CFB-mode with a reduced number of rounds. The results on the DES have

been published in [105].

In Section 4.3 a second extension introduces the idea of maximum likelihood.

This technique is used to increase the number of recoverable key bits in an attack

on the DES in CFB mode. It is also explained how to apply this technique to

improve a linear attack.

The third extension is to block ciphers used as a hash function. Hash func-

tions that are based on block ciphers can be analysed using a di�erential at-

tack. For these attacks a special kind of di�erential characteristic is required.

45
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Section 4.4 introduces a new approach to di�erential cryptanalysis of hash func-

tions. These results have been published in [109].

4.1 Probability Calculus

and Di�erential Analysis

This section introduces some elements of probability calculus. It starts with the

de�nition of probability space that will be used, because this de�nition deviates

from that which might be expected. Afterwards the operation of the standard

di�erential attack is described and the extensions are shown.

4.1.1 De�nition of Probability

Strictly speaking, the knowledge of one or two plaintexts and their corresponding

ciphertexts is in most cases su�cient to determine the used encryption key

uniquely. The required number of plaintexts is known as the unicity distance

[126] of the cipher. For a block cipher that operates on blocks of l bits and uses

p-bit keys, on average 2

p�nl

keys are expected that map n given plaintexts to

n given ciphertexts. For most practical ciphers p � l and the unicity distance

is approximately one.

Under these conditions it seems a bit strange to talk about the probability

distribution of a key. Even if only a few bits of the output are visible, and

l is reduced accordingly, a few known plaintexts su�ce to bring the expected

number of possible keys down to one. However, the equations that describe the

key as a function of the known plaintext and ciphertext bits are highly nonlinear

and, currently, the only known way to solve them is by exhaustive search of the

key space, resulting in a very high work factor for the cryptanalyst.

In a di�erential attack, as in many other attacks, there is a trade-o� between

work and plaintext requirements. By using only statistical information from the

plaintexts and ciphertexts, the cryptanalyst is able to reduce the work factor

signi�cantly. It is in this statistical context that the probability distribution of

the key is de�ned.

Let an experiment be de�ned as the encryption of one pair of plaintexts

(p; p

�

) under the unknown key. The result of the experiment consists of the

partial information about the pair of plaintexts and the corresponding pair of

ciphertexts that will be used in the attack. If the ciphertext is only partially

visible, then this is a �rst restriction on the information that is included in

the result of the experiment. Further restrictions follow from the speci�c data

processing stages of the attack. Let X be the key dependent function that takes

as input the number of the experiment and produces as output the result of

the experiment. x denotes a particular outcome of the experiment. If the key
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is not known, X can be considered as a stochastic variable. Often an attack

recovers only part of the unknown key, which we denote by K. The probability

distribution for K conditional on the result of an experiment is de�ned as:

Pr(K j X) =

Pr(K;X)

Pr(X)

: (4.1)

As explained in Section 3.2, a di�erential attack is based on a di�erential

characteristic. Let G(X) denote the event that the encrypted pair follows the

characteristic: G(X) = 1 for a good pair and G(X) = 0 for a wrong pair. By

Bayes' rule

Pr(K j X;G(X) = 1) =

Pr(X j K;G(X) = 1) � Pr(K j G(X) = 1)

Pr(X j G(X) = 1)

(4.2)

In what follows, this probabilistic model is used to explain the underlying

principles of a di�erential attack and to illustrate the simpli�cations that are

made in a standard di�erential attack. It is then shown how the removal of

some of the simpli�cations leads to an improvement of the attack.

4.1.2 The Basic Di�erential Attack Revisited

A di�erential attack consists of performing some experiments and deciding which

key value is the most probable, based on the results of the performed exper-

iments. Standard di�erential cryptanalysis uses the concept of suggested key

values. A key value is suggested if, under the assumption that the encrypted pair

follows the characteristic, the probability of the key producing the experimental

result is non-zero.

Pr(K = k j X = x;G(x) = 1) > 0, Pr(X = x j K = k;G(x) = 1) > 0

The conditional probability Pr(X = x j K = k;G(x) = 1) can be calculated

from the extended di�erence table.

De�nition 4.1 Let s be a mapping from G

n

to G

m

. The extended di�erence

table is then given by:

ee

s

: G

n

�G

n

�G

m

! G :

ee

s

(i; i

�

; u) =

�

1 if s(i)�s(i

�

) = u

0 else

(4.3)
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The extended di�erence table of a mapping s(�) is equivalent to the characteristic

function of s(i)�s(i

�

), and can be visualised as a table that results from the

splitting up of the rows of the di�erence table:

X

j2G

n

ee

s

(j; j�i; u) = e

s

(i; u) (4.4)

The set of table entries with the same value of i and i

�

is called a row, the set

of entries with a common u-value is called a column.

The relation between the extended di�erence table and the conditional prob-

ability distribution of the key is now illustrated for the case of a 1R-attack on

a Feistel network.
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Figure 4.1: The last round of a Feistel Network. The values s

R

; t

R

; s

R

�

; t

R

�

; t

R�1

and t

(R�1)

�

are visible in the ciphertext; s

R�1

0

is predicted by the characteristic

of the 1R-attack.

Figure 4.1 shows the situation. The used di�erential predicts the di�erence

at the input of the last round. The output di�erence of the round function

F in the last round can be calculated from the ciphertext di�erence and the

predicted input di�erence of the last round. The inputs of the round function

F of the last round are visible in the ciphertext. The input values are denoted

by i and i

�

, the di�erence is denoted by i

0

= i�i

�

, the output value di�erence

is u

0

. The key addition operation is denoted by `+'. The following then holds:

Pr(x j k;G(x) = 1) � ee

F

(i+ k; i

�

+ k; u

0

) (4.5)

If ee

F

(i+k; i

�

+k; u

0

) > 0, then by (4.2) it follows that Pr(k j x;G(x) = 1) > 0,

and the key value k is suggested. If ee

F

(i + k; i

�

+ k; u

0

) = 0, then k is not

suggested.
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If the pair does not suggest any keys, it is �ltered. After encrypting a certain

number of plaintext pairs, the most suggested key is likely to be the encryption

key actually used. Since the attack only distinguishes between suggested key

values and not suggested key values, it works only if not too many key values are

suggested by each experiment. For the extended di�erence table, this means that

in general the attack works if there are many zero entries. If Pr(k j x;G(x) =

1) > 0, then for all values of k the experimental result x suggests all key values. If

this is true for all possible results, then the basic di�erential attack fails, because

all key values will be suggested by all pairs. It follows from De�nition 4.1 and

(4.5) that this situation cannot occur if the complete input value and output

di�erence of the mapping are visible.

This situation changes when only a part of the input value or the output

di�erence is visible. Entries that di�er only in invisible parts of the input or

the output have to be joined. Thus a partly visible output results in the joining

of columns, and a partly visible input results in the joining of rows. Input or

output values that di�er only in invisible parts will be called indistinguishable

values. Example 4.1 illustrates that this reduction can make the basic di�er-

ential attack impossible. In this case there is a de�nite advantage in using the

more sophisticated attack that is presented below.

Example 4.1 Consider the mapping x 7! x

3

+ 1 mod 4 in ZZ. Table 4.1 shows

the extended di�erence table and its reduced form.

4.1.3 The Extended Attack

It is possible to get more information about the conditional probability Pr(K j

X;G(X) = 1) than the simple zero versus non zero distinction that is made in

basic di�erential cryptanalysis. The extended di�erential attack does this.

Assuming that the absolute values of the ciphertext output are almost uni-

formly distributed, the probability distribution of the key conditional on the

result of one experiment is easily expressed as a function of the entries of the

extended di�erence table:

Pr(K = k j i; i

�

; u

0

; G(x) = 1)

=

Pr(K = k j G(x) = 1) � Pr(i; i

�

; u

0

j K = k;G(x) = 1)

Pr(i; i

�

; u

0

j G(x) = 1)

: (4.6)

The factors on the right hand side can be calculated. Assuming that the char-

acteristic is key independent, Pr(K = k j G(x) = 1) equals Pr(K = k). The
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inputs output di�erence

i i

�

00 01 10 11

00 00 1 0 0 0

00 01 0 0 0 1

00 10 1 0 0 0

00 11 0 1 0 1

01 00 0 1 0 0

01 01 1 0 0 0

01 10 0 1 0 0

01 11 0 0 1 0

10 00 1 0 0 0

10 01 0 0 0 1

10 10 1 0 0 0

10 11 0 1 0 0

11 00 0 0 0 1

11 01 0 0 1 0

11 10 0 0 0 1

11 11 1 0 0 0

0x 1x

0x 0x 3 1

0x 1x 3 1

1x 0x 1 3

1x 1x 3 1

Table 4.1: The extended di�erence table of the example mapping (left), and the

reduced version if only the most signi�cant bit of input and output are visible

(right). Variable x denotes an invisible bit. The di�erence is subtraction in ZZ

modulo four.

uniform distribution of the absolute values implies:

Pr(i; i

�

; u

0

j K = k;G(x) = 1)

= Pr(i j K = k;G(x) = 1)Pr(i

�

j K = k;G(x) = 1)

�Pr(u

0

j i; i

�

;K = k;G(x) = 1)

= Pr(i) Pr(i

�

)

ee

F

(i+ k; i

�

+ k; u

0

)

P

v

0

ee

F

(i+ k; i

�

+ k; v

0

)

:

Here

P

v

0

means the sum over all distinguishable output di�erences, and likewise

in the following,

P

l

means the sum over all distinguishable input values.

Pr(i; i

�

; u

0

j G(x) = 1)

= Pr(i j G(x) = 1)Pr(i

�

j G(x) = 1)Pr(u

0

j i; i

�

; G(x) = 1)

= Pr(i) Pr(i

�

)

P

l

ee

F

(i+ l; i

�

+ l; u

0

)

P

l

P

v

0

ee

F

(i+ l; i

�

+ l; v

0

)

: (4.7)

If the di�erence operation corresponds to the key addition operation, (4.7) is
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equivalent to:

Pr(i; i

�

; u

0

; j G(x) = 1) = Pr(i) Pr(i

�

)

e

F

(i�i

�

; u

0

)

P

v

0

e

F

(i�i

�

; v

0

)

: (4.8)

Combining (4.6) and (4.8) gives

Pr(K = k j i; i

�

; u

0

; G(x) = 1)

= Pr(K = k)

ee

F

(i+ k; i

�

+ k; u

0

)

P

v

0

e

F

(i�i

�

; v

0

)

e

F

(i�i

�

; u

0

)

P

v

0

ee

F

(i+ k; i

�

+ k; v

0

)

: (4.9)

Table 4.2 illustrates this for the example mapping.

inputs output di�erence

i i

�

0x 1x

0x 0x 1/2 1/2

0x 1x 3/4 1/4

1x 0x 1/4 3/4

1x 1x 1/2 1/2

Table 4.2: Pr(K = 0 j i; i

�

; u

0

; G(x) = 1) calculated for the example mapping,

assuming that Pr(K = 0) before the experiment equals 1/2.

Equation (4.9) gives the conditional probability distribution after one good

pair. Denoting the probability of the characteristic with p, the probability

distribution after one pair becomes:

Pr(K j X) =

Pr(K) Pr(X j K)

Pr(X)

= Pr(K)

Pr(X j K;G(X) = 1)p+Pr(X j K;G(X) = 0)(1� p)

Pr(X j G(X) = 1)p+Pr(X j G(X) = 0)(1� p)

:

(4.10)

In an extended di�erential attack, the probability distributions resulting

from the separate experiments are combined. If su�ciently many experiments

are combined then it is possible to determine the correct value of the key with

high probability. The following propositions show how the results of di�erent

experiments are to be combined.

Proposition 4.1 Let q

1

(K) and q

2

(K) denote the key probability distributions

resulting from two experiments x

1

, x

2

. Let the a priori probability distribution
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of the key be uniform. The combined probability distribution Q(K) is then given

by:

Q(k) = q

1

(k) � q

2

(k);

where the operation `�' is de�ned by

q

1

(k) � q

2

(k) �

q

1

(k)q

2

(k)

P

l

q

1

(l)q

2

(l)

:

To prove this proposition the following lemma is used several times.

Lemma 4.2 The conditional distribution of the results of an experiment, con-

ditional on the key, does not depend on the results of other experiments.

Pr(x

i

j x

j

;K) = Pr(x

i

j K) (4.11)

No formal proof is given for the lemma because it is intuitively clear: if the key is

known, then the results of the experiments are determined. Now Proposition 4.1

can be proven.

Proof: By de�nition,

Q(k) = Pr(K = k j x

1

; x

2

) :

With Bayes' rule this becomes

Q(k) =

Pr(K = k) � Pr(x

1

; x

2

j K = k)

Pr(x

1

; x

2

)

=

Pr(K = k) � Pr(x

1

j K = k) � Pr(x

2

j x

1

;K = k)

Pr(x

1

) � Pr(x

2

j x

1

)

:

Using (4.11) and the de�nition of q

1

this becomes

Q(k) = q

1

(k)

Pr(x

2

j K = k)

Pr(x

2

j x

1

)

=

q

1

(k) � Pr(x

2

j K = k)

P

l

Pr(x

2

j x

1

;K = l) � Pr(K = l j x

1

)

=

q

1

(k) � Pr(x

2

j K = k)

P

l

Pr(x

2

j K = l) � q

1

(l)

:

In these equations

P

l

means the sum over all possible key values. Since the a

priori probability distribution of the key is uniform,

Pr(K = k) = Pr(K = l);8l:
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The combined probability distribution can now be expressed as:

Q(k) =

q

1

(k) � Pr(x

2

j K = k) Pr(K = k)=Pr(x

2

)

P

l

q

1

(l) Pr(x

2

j K = l) Pr(K = l)=Pr(x

2

)

=

q

1

(k) � q

2

(k)

P

l

q

1

(l) � q

2

(l)

:

Let �(k) denote the Kronecker delta function: �(0) = 1 and �(k) = 0;8k 6= 0.

Let the uniform distribution be denoted by �(k). A straightforward calculation

shows that for any distributions q; r; s:

q(k) � �(k) = q(k) (4.12)

�(k�k

0

) � q(k) = �(k�k

0

) (4.13)

(q(k) � r(k)) � s(k)) = a(k) � (r(k) � s(k)) =

q(k)r(k)s(k)

P

l

q(l)r(l)s(l)

(4.14)

The �rst equation reveals that if an experiment gives no information about the

key, then the conditional probability distribution remains unchanged. If the

probability distribution equals �(k�k

0

), then the correct key value is known to

be k

0

. The second equation states that the results of any additional experiment

will not change this. The third equation is the associativity law.

These properties can be used to prove the following proposition:

Proposition 4.3 The combined outcome from pairs 1; 2; : : : ; j can be calculated

from q

1

(k); q

2

(k); : : : q

j

(k) in the following recursive way:

Q

j

(k) =

q

j

(k) �Q

j�1

(k)

P

l

q

j

(l) �Q

j�1

(l)

for j = 1; 2; : : : ;M

and Q

0

(k) = �(k).

In an extended di�erential attack, pairs will be encrypted and the results

will be processed with Formulae (4.9) and (4.3) until Q

M

(k) allows the value

of k to be predicted with high probability. An estimate of the value of M that

makes Q

M

(k) close to �(k�k

0

) will be developed in the next section.

4.2 Cryptanalysis of the DES in the CFB mode

The extended di�erential attack can be applied to the DES in the CFB mode

[105]. As the key addition in the DES is an exor, it is natural to use exor as

the di�erence operation �. In the m-bit CFB mode, only m bits of the 64-bit
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output of the DES are visible. As a consequence, only partial information about

the input and the output of the last round is available, as indicated in Table 4.3.

It is clear that a di�erential attack requires that information on both input and

output bits of a single S-box is available. This means that in 1-bit CFB this

approach is restricted to the trivial case of two rounds. If three rounds or more

are used, then it follows from Table 4.3 that m has to be at least three. In

the following, the di�erential attack will be described for 8-bit CFB. In this

case most information is available on S-box three, namely one input bit and two

output bits.

S-box known inputs accessible outputs

1 a = 7

2 e = 1

3 a = 1 � = 4, � = 6

4 e = 3

5 a = 3 � = 2

6 e = 5

7 a = 5 � = 8

8 e = 7

Table 4.3: Input bits of S-boxes that are known and output bits that are ac-

cessible in the case of m-bit CFB (m � 8); the six inputs bits of an S-box are

denoted by a to f , the four outputs are denoted by � to �, and the CFB bits

are denoted by the digits 1 to 8.

4.2.1 Mode Speci�c Problems

Because only a limited subset of the input bits and output bits of the last round

is visible, the exor-table has to be reduced. However, for the 8-bit CFB mode

all values in the reduced exor-table are equal. Furthermore, when X and K

are restricted to the visible bits and the key bits that are added with visible

input bits, Pr(K j X) becomes uniform for all values of X , meaning that no

information about the key can be extracted.

Part of the problem can be solved by using the di�erential characteristic to

predict the input exor of the last round. This technique avoids the collapsing of

rows in the exor-table. The characteristic predicts only di�erences, not absolute

values. Since the key addition is linear, the input di�erence of the S-boxes is

completely determined by the input di�erence of the round; it is independent

of the value of the key bits that are added in the last round. Therefore it is

only possible to recover key bits that are added to bits that are visible in the
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output. Only for these bits can the absolute value of the corresponding bits at

the input of the S-boxes be expressed as a function of the unknown key bits and

the known output bits. For the case of the DES in 8-bit CFB, this means that

only three key bits can be recovered: one that enters S3 in the last round, one

that enters S5 and one that enters S7.

Input exor prediction makes a di�erential attack possible, because now for

some values of X not all values of K are possible. This e�ect is visible in

the reduced form of the extended exor-table: some zero entries appear (cf.

Table 4.4). However, for the most probable experimental results x, the entries

are non zero for all key values k (because only one input bit is visible, there

are only two k-values). This means that using the conventional approach, most

pairs that pass �ltering will suggest both key values, resulting in a dramatic

increase in the chosen plaintext requirements.

Note that Proposition 3.2 does not apply here. Only a part of the output of

the cipher is visible, and a part of the invisible output is predicted and actually

used to extract information about the key. Therefore, there will be pairs that

do not have the predicted di�erences (`wrong pairs') but that do suggest the

correct value for the key.

Table 4.4 gives a part of the reduced form of the extended exor-table of S3.

We denote by i and i

�

, the bits that enter S3 in the last round in position a. Bit

7 of the visible output equals i� k, resp. i

�

� k. Only one input bit is visible,

but the rest of the input di�erence can be predicted by the characteristic. When

bit a of the input exor is zero, the two rows of the extended exor-table have

di�erent entries, only in this case, the conditional probability distribution is

non-uniform. The fact that the two rows of the extended exor-table are equal

when bit a = 1 can be easily understood. For every input pair (p; p

�

) with

(i; i

�

) = (0; 1), there is a corresponding pair (p

�

; p) with (i

�

; i) = (1; 0). Since

the exor operation commutes, the output exors of both pairs are the same. In

the remaining analysis only input exors with the bit a equal to zero will be

considered.

Table 4.4 contains all the information needed to calculate Pr(K j X;G(X) =

1) using (4.9). Before (4.10) can be used to calculate Pr(K j X), a remark

should be made about the characteristic's probability. Both the input exor and

the output exor are only known with a certain probability. These probabilities

are close to one another, but are generally not equal; which of the two is best

known depends on the �ltering. However, to simplify the analysis it will be

assumed that both exors are known with the same probability. This turns out

to be a good approximation.

The extended di�erential attack can be applied to determine k. If Q

M

(0) >

0:5, we decide that k = 0. In practice it is expected that, after a su�cient

number of experiments, 1 � Q

M

(0) will be a reliable estimate for k and will

be close to 1 (or 0) with high probability. An important question is how the
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input exor S3

0

E

output exor S3

0

O

quality H

(i; i

�

) 00xx

x

01xx

x

10xx

x

11xx

x

Eq. (4.17)

01

x

2 18 18 26 0.719

(0; 0) 2 14 10 6

(1; 1) 0 4 8 20

02

x

2 10 26 26 0.688

(0; 0) 0 8 16 8

(1; 1) 2 2 10 18

04

x

4 8 24 28 0.688

(0; 0) 4 8 8 12

(1; 1) 0 0 16 16

10

x

4 24 12 24 0.688

(0; 0) 0 8 8 16

(1; 1) 4 16 4 8

20

x

0 16 8 40 0.5

(0; 1) 0 8 4 20

(1; 0) 0 8 4 20

24

x

26 22 10 6 0.5

(0; 1) 13 11 5 3

(1; 0) 13 11 5 3

Table 4.4: This table was formed by joining parts of the reduced forms of the

exor-table and of the extended exor-table for S3. The rows are rearranged such

that rows with a common input exor are near to one another. The only visible

input bit is a, but the complete input exor is predicted by the characteristic.

Variable x denotes an invisible bit, and the subscript

x

indicates hexadecimal

notation.

required number of pairs depends on the required error probability.

Denote by N(z) the required number of right pairs to predict a key bit with

an error probability equal to z. Let

q[i; u

0

] = Pr(K = 0 j i; i

�

; u

0

) ; (4.15)

where i

�

is left omitted from the notation because for a good pair it is determined

by i and the characteristic. An estimation of N(z) is given by N

0

(z), where

N

0

(z) is de�ned by

N

0

(z) = 64 �

ln

�

1

z

� 1

�

ln (�)

; with � =

3

Y

v=0

�

1

q[0; v]

� 1

�

ee

F

(0;0;v)�ee

F

(1;1;v)

;

(4.16)
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where v indexes the four columns of the extended exor-table.

This formula is motivated by the following. Suppose k = 0, and consider

64 right pairs distributed according to the entries in the extended exor-table.

Then

Q

64

(0) =

Q

q

i

(0)

Q

q

i

(0) +

Q

(1� q

i

(0))

=

1

1 +

Q

(

1

q

i

(0)

� 1)

=

1

1 + (

1

q[0;0]

� 1)

ee

F

(0;0;0)

� � � � � (

1

q[1;3]

� 1)

ee

F

(1;1;3)

:

From (4.15) it follows that q[0; v] + q[1; v] = 1, therefore

1

q[1; v]

� 1 =

1

1� q[0; v]

� 1 = (

1

q[0; v]

� 1)

�1

:

This gives

Q

64

(0) =

1

1 + (

1

q[0;0]

� 1)

ee

F

(0;0;0)�ee

F

(1;1;0)

� � � � � (

1

q[0;3]

� 1)

ee

F

(0;0;3)�ee

F

(1;1;3)

=

1

1 + �

:

For an arbitrary number of right pairs n this becomes

Q

n

(0) =

1

1 + �

n=64

:

To predict k = 0 with an error probability z, it is required that Q

n

(0) � 1� z.

Equation (4.16) de�nes N

0

(z) such that Q

N

0

(z)

(0) = 1� z.

If the wrong pairs are randomly distributed then their in
uences on Q cancel

one another out. This follows from the fact that q[0; v] = 1� q[1; v] (the key bit

is either 0 or 1). In this case

q[0; v] � q[1; v] =

q[0; v](1� q[0; v])

q[0; v](1� q[0; v]) + (1� q[0; v])q[0; v]

=

1

2

:

Thus it is expected that wrong pairs will produce the uniform distribution for

Q(0). The total number of required pairs M(z) can then be estimated by

p

�1

N

0

(z).

Note that (4.16) can be extended to the case where certain output exors

are �ltered: one can simply modify the corresponding table entries such that

ee

s

(0; 0; u

0

) = ee

s

(1; 1; u

0

), yielding q[0; u

0

] = q[1; u

0

] = 0:5.
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The optimisation of this attack, or equivalently the minimisation ofM is not

easy, since it also depends on the properties of the characteristic: the probability

p, the possibility of �ltering and the non-uniformity in the extended exor-table.

A good heuristic measure for the entries in the extended exor-table for a given

input exor i is the expression

H =

P

3

v

0

=0

max(ee

F

(0; 0; v

0

); ee

F

(1; 1; v

0

))

P

3

v

0

=0

ee

F

(0; 0; v

0

) + ee

F

(1; 1; v

0

)

: (4.17)

This measure is indicated in Table 4.4. H = 0:5 means that the extended attack

is not applicable.

4.2.2 An Attack on 4 Rounds

It follows from the previous section that the optimal input exor of S3 in the

last round is 01

x

. The characteristic has to predict only the input exor of S3

in the last round and the exor of two bits that are added to the output of

S3 in the last round. This means that a truncated characteristic can be used,

which has a higher probability. Figure 4.2 shows a di�erential characteristic

with high probability that produces the required input exor in the last round.

The input exor to the �rst round is equal to (40 08 00 00

x

; 04 00 00 00

x

). The

characteristic has then a probability of 1=4 in the �rst round. In the third round,

it is su�cient that the input exor to S3 is correct. This gives a probability of 3=4

for the truncated characteristic in the third round. A close inspection reveals

that all pairs that go wrong in the third round result in an input exor of zero

for S3 in the last round. If the pairs with output exor 00xx

x

for S3 are �ltered,

these wrong pairs can be �ltered out. Of the pairs that go wrong in the �rst

round, approximately one quarter will produce an output exor 00xx

x

. Only a

fraction of

2

64

of the right pairs are lost. Further �ltering of the wrong pairs can

be done on the visible input bit of S3. From this it follows that the fraction of

right pairs after �ltering is equal to

~p =

p

1

p

3

62

64

p

1

p

3

62

64

+ (1� p

1

) �

3

4

�

1

2

= 0:392 :

The following equation for q

0;v

the follows from (4.15) and (4.10):

q

0;v

=

1

2

�

~p �

ee

F

(0;0;v)

30

+ (1� ~p) �

1

3

~p �

e

F

(0;v)

62

+ (1� ~p) �

1

3

: (4.18)

This assumes that the wrong pairs yield a uniform distribution of output exors,

a fact which has been con�rmed by computer experiments. This gives q

0;1

=

0:609, q

0;2

= 0:527, and q

0;3

= 0:383.
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Figure 4.2: The optimal characteristic for an attack on 4 rounds.

For an error probability of 5% (or z = 0:95), (4.16) gives M

0

= 16:6 and M

is estimated to be M

0

=p = 89, which was con�rmed by computer simulations.

A similar attack can be applied to determine a key bit entering S-boxes 5 and

7; it will only be discussed for a larger number of rounds.

If m = 8, a di�erential attack allows three key bits to be determined (namely

one bit corresponding to S3, S5 and S7), and if m = 16 this increases to six key

bits. Even in that case, the maximal number of output bits of a single S-box is

equal to two.

4.2.3 5 Rounds and More

In order to develop an attack that is extendible to more rounds, an iterative

characteristic will be used. Detailed calculation shows that the best result is

obtained with the iterative characteristic � (s

0

0

= 19 60 00 00

x

; t

0

0

= 0

x

) [10].

For �ve rounds, the fraction of right pairs after �ltering becomes 9:40 �10

�3

. For
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an error probability of 5% (or z = 0:95), (4.16) predicts that 370; 000 pairs are

su�cient to obtain a key bit (only 1 characteristic has been used). Computer

simulations show that the actual number of pairs is even smaller.

For S-boxes 6 and 7, a similar strategy can be followed. The best iterative

characteristic for both S-boxes has input exor s

0

0

= 00 00 1D 40

x

; t

0

0

= 0. The

fraction of right pairs after �ltering is equal to 5:92 � 10

�3

and 3:33 � 10

�3

, from

which it can be estimated that the number of required pairs is equal to 12 and

8:4 million.

To attack six rounds, the �rst round trick [10] can be used. The estimated

number of pairs to �nd 1 and 3 key bits for 8-bit CFB are indicated in Table 4.5.

The attack for R = 7 (without the �rst round trick) was implemented as

a distributed application on a heterogeneous, non-dedicated farm of 30 DEC

workstations, using the PVM (Parallel Virtual Machine) software [42] for inter-

process communication. The program was generated and run from the HeNCE

(Heterogeneous Network Computer Environment) software [9]. The correct key

bits were retrieved from 2

35:2

pairs using a quartet structure; the attack took

about 40 hours. Table 4.5 gives the required number of pairs for the DES re-

duced to six, eight or ten rounds, and for the full DES. Since there are only 2

63

di�erent pairs, the maximum number of rounds that can be broken, in theory,

is ten.

# rounds probability p # pairs

1 bit 3 bits 1 bit 3 bits

6 9:40 � 10

�3

3:33 � 10

�3

2

18:5

2

23:0

8 4:05 � 10

�5

1:15 � 10

�5

2

34:2

2

39:4

10 1:73 � 10

�7

3:93 � 10

�8

2

50:0

2

55:8

16 1:35 � 10

�14

1:57 � 10

�15

2

97:2

2

104:7

Table 4.5: Probability of the characteristic and number of pairs to �nd 1 and 3

key bits in 8-bit CFB.

4.2.4 Discussion

Independent of our research, K. Ohta and M. Matsui developed a di�erential

attack [99] that can be used against reduced versions of the DES in m-bit CFB

mode. Their attack can be applied to the DES, reduced to eight rounds, if

m � 24.

If m increases, our attack becomes also more e�cient, and more key bits can

be found (�ve if m � 15). If m � 18, three output bits of a single S-box are
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known, which implies that a smaller reduction has to be applied to the exor-

tables. This results in a reduction of the required number of chosen ciphertext

pairs. If m � 15, two bits of S8 in the last round are known, and the input to

the last round but one can be estimated. Only if m � 28 can information on

both input and output of a single S-box be obtained in this way, thus allowing

key bits in this round to be determined.

This di�erential attack would be impossible without IP

�1

. In the absence

of IP

�1

only information on the output of S-boxes of the last round would be

available. The security of the DES in 1-bit CFB could be improved if the bit

is selected from the left half of the ciphertext. Selecting all the CFB bits from

the left half of the ciphertext thwarts the proposed di�erential attacks for small

values of m. Another way to strengthen the DES in the CFB mode against

di�erential attacks could be a redesign of the S-boxes in the last round in order

to decrease the di�erence between the 0 � 0 and 1 � 1 entries in the reduced

exor-table. Finally, a completely di�erent structure for the computation of the

CFB bits from the inputs to the last round could be used.

4.3 Maximum Likelihood

Maximum likelihood techniques can be used to improve di�erential cryptanalysis

of a large class of block ciphers. As explained in the previous sections, when

the output of the cipher is only partially visible, the basic di�erential attack

can recover only a small number of key bits. The maximum likelihood attack

recovers more key bits.

The optimisations can be used for any block cipher of the Feistel type (cf.

Section 2.1.1 and [37]). More generally, the analysis is applicable to all ciphers

where the input of each round is �rst combined with a part of the key and

subsequently transformed with a substitution.

The technique is also applicable to linear cryptanalysis. In that case however,

the improvement is only marginal for the cases that have been studied.

4.3.1 General Idea

Consider a probabilistic relation � between plaintext, ciphertext and the key.

The probability of this relation depends on the actual values of the input of the

substitution. It follows that

�(H;Z) = 0 with probability p = p(I); I = G�K ; (4.19)

where

G;H are di�erent sets of plaintext or ciphertext bits;
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K;Z are di�erent sets of key bits;

I is a set of input bits of the S-boxes in the �rst and/or last rounds.

Any kind of relation will su�ce, provided that p is su�ciently large: for example

a di�erential relation (such as in [10]) which requires a chosen plaintext attack,

or a linear relation (such as in [77, 78]) which corresponds to a known plaintext

attack.

Firstly the dependence of p on I is analysed. This o�-line analysis gives the

theoretical pattern p

t

(i).

De�nition 4.2 Let �(H;Z) be a relation between Z, a set of key bits, and H, a

set of plaintext and ciphertext bits, which holds with probability p. Let p depend

on I. The table that for each value i of the variable I gives the value of p(I) is

called the theoretical pattern p

t

(I).

Subsequently plaintext-ciphertext pairs for the secret key k are taken into

account. Since the input of each round is added modulo 2 to the unknown key,

the actual values of this input I are not known. However, for a constant value

of the key k, identical g-values yield identical i-values. By combining plaintexts

with the same value g and noting for which z �(H = h; Z = z) = 0, the observed

pattern p

p

(G) is constructed.

De�nition 4.3 Let �(H;Z) be a probabilistic relation between Z; a set of key

bits and H; a set of plaintext and ciphertext bits. Assume that the probability p

only depends on I, the actual input of certain S-boxes. Let I = G �K, where

K denotes unknown key bits, and G denotes bits that are visible in the plaintext

or the ciphertext. Consider a number N of plaintext-ciphertext pairs. The table

that gives, for each row g and for each column z, the fraction of text pairs for

which �(h; z) = 0, is called the observed pattern p

p

. The row g is denoted p

p

(g).

Proposition 4.4 Under the above mentioned conditions, the a posteriori distri-

bution of K and Z only depends on the theoretical pattern p

t

(I) and the observed

pattern p

p

.

Proof: Bayes' rule says:

Pr(Z;K j p

p

) =

Pr(p

p

j Z;K) Pr(Z;K)

Pr(p

p

)

: (4.20)

Pr(Z;K) is given by the a priori distribution of Z and K. Application of the

sum rule gives

Pr(p

p

) =

X

z;k

Pr(p

p

j Z = z;K = k) Pr(Z = z;K = k) ;
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which is independent of the values of Z and K. Therefore (4.20) reduces to

Pr(Z;K j p

p

) � Pr(p

p

j Z;K) : (4.21)

Application of the product rule gives

Pr(p

p

j Z;K) =

Y

g

Pr(p

p

(G = g) j Z;K) :

Under the condition that p only depends on I , Pr(p

p

(G) j Z;K) follows from

the binomial statistic with probability p = p

t

(G�K).

Assuming that each value of G occurs with the same probability, one can

conclude that the most probable value of Z;K is the one that gives the closest

match for p

p

(G�K) and p

t

(I), after a guess for Z. Figure 4.3 gives a graphical

example where Z is a single bit and K can take values between 0

x

and 3F

x

. A

matching for p

p

and p

t

is good if peaks are mapped to peaks, and valleys to

valleys.

An advantage of this approach is that it results in the complete a posteriori

distribution of Z;K. This can be used to reduce the required number of texts.

Instead of processing a �xed number of texts, one can look at the probability

distribution after processing N texts and decide whether the attack requires

more texts, or make a guess about the correct key value. The optimal value of N

is determined by the relative cost of an encryption versus the cost of computing

the distribution. However, the most important e�ect is the decoupling between

the number of visible output bits and the number of recoverable key bits. This

is now illustrated with two examples.

4.3.2 Application of the Maximum Likelihood technique

Two maximum likelihood based attacks are presented. The �rst attack was

meant to improve the linear attack on the DES. However, the expected im-

provement was not observed. The second example improves the di�erential

attack on the DES in CFB-mode.

4.3.3 The Linear Attack

Description of the attack

For �(H;Z) the relations given by M. Matsui [78] are used. In order to analyse

R rounds of the DES, an (R�2)-round linear relation is required. For the linear

attack the parameters from (4.19) correspond to:

H: the exor of the plaintext and ciphertext bits that appear in the relation;
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x
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x

3F

x

G = K � I

Figure 4.3: Graphical example of a match between p

t

and p

p

. The best match

is given for k = 01

x

and z = 0.
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Z: the exor of the key bits that appear in the relation;

I: the 12 input bits that enter the S-boxes that are approximated in the �rst

or last round;

G: the 12 corresponding plaintext and ciphertext bits;

K: the 12 corresponding key bits.

The relation can be divided into two parts: over the middle R � 2 rounds it

has a �xed probability p

R�2

, over the �rst and the last round it holds with

probability 1 or 0, depending on the value of I . The most probable value z; k is

the value that gives the closest match for

p

p

(G) and p

0

t

(G) ;

where the pattern p

0

t

is de�ned as follows: for every g,

p

0

t

(g) = (1� z)p

t

(g � k) + z(1� p

t

(g � k)) :

Algorithm 4.1 can be used to determine the closest match.

Algorithm 4.1 Using maximum likelihood principles to optimize a linear at-

tack.

calculate the theoretical pattern p

t

p

t

(i) = 1 if �(i; 0) = 0 with probability p

R�2

initialize p

p

(hkg) = 0, for hkg = 0::2

13

� 1

repeat

for i = 1::N do

take an encryption

increment counter p

p

(g + 2

12

� h)

calculate the a posteriori distribution of ZkK

until a posteriori distribution satisfies stop criterion

It is clear that the data collecting phase is identical to the one described

in [78]. The di�erence is in the information extraction phase. The original

linear attack assumes that wrong subkey guesses will yield a low probability

for the relation �. This assumption is known as the hypothesis of wrong key

randomisation [45]. Since the maximum likelihood method looks at the complete

pattern of the information, it will remain e�ective even when this hypothesis

does not hold and two or more guesses for the subkey in a round yield about

the same probability for the relation �. Referring to the graphical example of
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Figure 4.3, the original linear attack only examines whether the highest peak of

p

p

is mapped to the highest peak of p

t

, while the maximum likelihood technique

considers the mapping of all peaks and valleys.

Experimental results

Application to the DES: The algorithm was applied to the DES and im-

plemented on a cluster of DEC and HP workstations with the tool PVM3.3.3

[42].

The results of the maximum likelihood method and Matsui's method are

almost identical. Experiments were performed for the DES reduced to eight

and twelve rounds with various numbers of plaintexts. Also the experimental

probability that the right 13 bit key is among the t highest ranked candidates for

both methods was measured, with t = 1; 2; : : : ; 32: This also gives very similar

results for both methods.

Figure 4.4 gives the probability of success as a function of the number of

plaintexts used for the case of the DES, reduced to eight rounds, for t = 1 and

t = 30: Similar curves are obtained for the case of the DES, reduced to twelve

rounds.

The probability of �nding k does not increase signi�cantly. A possible ex-

planation is that for the linear relation which is used, the most likely subkey has

a higher probability than the other ones (there is only one peak). Therefore,

Matsui's straightforward approach is su�cient.

Akelarre: Akelarre [5] is a block cipher that was proposed at SAC'96. The

cipher has a block length of 128 bits and a variable key length (always a multiple

of 64 bits). Its round function is built from components of IDEA [69] and RC5

[115]. As can be seen in Figure 4.5, Akelarre uses modular addition, exors

and rotations. The round function has the typical IDEA structure, where the

Multiplication-Addition structure has been replaced by an Addition-Rotation

structure. This AR-structure is based on RC5, but for the purposes of this

attack, it can be considered as a black box.

The round function of Akelarre has a serious weakness. Denoting the four

input words with u

1

; u

2

; u

3

; u

4

and the four output words with v

1

; v

2

; v

3

; v

4

, the

following invariant holds:

(v

1

� v

3

)k(v

2

� v

4

) = rot

rmod64

(u

1

� u

3

)k(u

2

� u

4

); (4.22)

where r denotes the rotation key. This invariant can be concatenated for any

number of rounds (Akelarre was originally proposed with four rounds). The ci-

pher can be broken with a linear attack, using only ciphertexts. This is done by

guessing the least signi�cant bytes of some keys in the input and output trans-

formation and verifying whether (4.22) holds with high probability. Once the
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Figure 4.4: Probability of success as a function of the number of plaintexts used

for the DES, reduced to eight rounds (t denotes the number of candidates for

zkk).

least signi�cant bytes are determined, we proceed with the next bytes. However,

because the input and output transformation have no strong nonlinear elements,

the hypothesis of wrong key randomisation does not hold. It has been experi-

mentally veri�ed that the standard linear attack does not work here, whereas

the maximum likelihood technique allows the keys to be found very easily. The

attack was tested by encrypting the L

A

T

E

X source of this text: 5000 ciphertexts

(625 kbyte) su�ce to break the cipher.

4.3.4 The Di�erential Attack on the m-bit CFB mode

Description

In order to simplify the discussion, only the attack on the DES reduced to 4

rounds in the 8-bit CFB mode will be explained. The extension to attacks on

more rounds as described in Section 4.2 is straightforward.

In 8-bit CFB mode, the extended di�erential attack from Section 4.1 allows

information on key bit k

44

, which enters S3 in the last round, to be obtained.
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Figure 4.5: Computational graph of Akelarre.
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In Section 4.2 it was shown that in order to achieve this goal, the characteristic

of Figure 4.2 is optimal. This characteristic yields an input exor of 01

x

for S3

in the last round.

Only a single input bit of S3 is visible in the output: in the extended dif-

ferential, pairs for which this input exor equals 1 are �ltered. As explained in

Section 4.2.2, the attack can be improved by �ltering in addition the pairs with

output exor 00xx

x

for S3. The fraction of right pairs after �ltering is now equal

to 0:392, assuming that the wrong pairs yield a uniform distribution of output

exors.

In the �rst round, only S2 is active. The input exor is equal to 08

x

, and

the corresponding right output exor is equal to A

x

; it has a probability of 1=4.

The corresponding row of the exor-table is the last row of Table 4.6. The

upper rows of Table 4.6 are rows from the extended exor-table of S2. Only

the rows with input exor 08

x

are shown. Rows that di�er only in the third or

fourth input bit are merged. Due to the symmetry of the exor operation, the

rows corresponding to the values (a; a � 08

x

) and (a � 08

x

; a) must always be

merged. This means that the value of the third input bit from the left has no

in
uence. In this particular case, it turns out that the value of the fourth bit

also has no in
uence on the output exor.

The pairs that follow the characteristic in the �rst round follow the charac-

teristic in the last round with a probability of 3=4; in this case they are �ltered

with probability 2=64. If the pair does not follow the characteristic in the last

round then it is �ltered with probability 5=8. This yields a probability of �ltering

of

3

4

�

2

64

+

1

4

�

5

8

=

23

128

:

For pairs which do not follow the characteristic in the �rst round, the probability

of �ltering is equal to 5=8 = 80=128.

The �ltering probability of a pair depends on the probability that it passes

the �rst round of the characteristic. This probability depends only on the value

of four input bits, that are given by the exor of four known plaintext bits and

four unknown key bits. This means that the relation � can be de�ned as follows:

� = 1, the pair is �ltered :

Experimental results

Finding the 4 key bits with a success probability of 90% requires on average

280 pairs; in order to increase this probability to 98% the attack requires on

average 330 pairs. For the 8-bit CFB mode one of these 4 key bits overlaps with

the 3 bits found with the extended di�erential attack from Section 4.2. It is
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output exors (hexadecimal)

input values 0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

A

x

B

x

C

x

D

x

E

x

F

x

00xx00

x

� 00xx00

x

0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0

00xx01

x

� 00xx01

x

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

00xx10

x

� 00xx10

x

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

00xx11

x

� 00xx11

x

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2

01xx00

x

� 01xx00

x

0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0

01xx01

x

� 01xx01

x

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

01xx10

x

� 01xx10

x

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

01xx11

x

� 01xx11

x

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2

10xx00

x

� 10xx00

x

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

10xx01

x

� 10xx01

x

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

10xx10

x

� 10xx10

x

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

10xx11

x

� 10xx11

x

0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0

11xx00

x

� 11xx00

x

0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0

11xx01

x

� 11xx01

x

0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0

11xx10

x

� 11xx10

x

0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0

11xx11

x

� 11xx11

x

0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0

input exor = 08

x

0 0 0 4 0 4 0 8 0 10 16 6 6 0 6 4

Table 4.6: The rows with input exor 08

x

from the exor-table and the extended

exor-table of S2. Rows that only di�er in the third or the fourth bit are merged.

possible to exploit this overlap to reduce the number of required pairs, but this

optimisation has not been implemented.

It is clear that these results can be extended directly to the attacks on more

rounds. The main di�erence is that these attacks use another characteristic,

which activates di�erent S-boxes. The number of key bits which can be found is

equal to the number of input exor bits equal to 0 in the active S-boxes, minus the

number of input bits which give no information (like the fourth input bit of S2

above). In addition overlap between key bits should be taken into account. Due

to the nature of the attack, only probabilities in the �rst round are modi�ed,

resulting in an increase in the number of chosen ciphertext pairs with a constant

factor between three and four. The attack still presents no serious threat for

the full DES in the CFB mode, but the attack on eight rounds becomes more

realistic, since it can �nd ten key bits with about 2

41

chosen ciphertexts. Note

that in some implementations of the CFB mode, the number of rounds was

reduced from 16 to 8 in order to improve the performance. In comparison with

the CBC mode of the full DES, the 8-bit CFB mode with the DES reduced
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to eight rounds requires 64=8 � 8=16 = 4 times more work and gives a smaller

security margin against a di�erential attack.

4.4 Di�erential Cryptanalysis of Hash Functions

In this section an improvement of the di�erential attack on hash functions based

on block ciphers is presented [109]. In Chapter 2 it is explained how hash

functions can be constructed from block ciphers. Twelve secure variants for

constructions where the length of the hash result equals the block length are

described in [103]. Only four of these variants can be attacked with the described

di�erential attack, since it requires the cryptanalyst to have explicit control over

the plaintext input of the block cipher, and that the key is �xed. The hash

function studied here uses the DES as compression function in the following

construction:

h

i

= f(x

i

; h

i�1

) = DES[h

i�1

](x

i

)� x

i

: (4.23)

A di�erential attack on block cipher based hash functions is similar to an

attack on the underlying block cipher, but there are some important di�erences.

By using the speci�c properties of the collision attack on hash functions, the

work factor to �nd a pair that follows the characteristic can be reduced. A

new family of di�erential characteristics is proposed that are especially useful

in combination with the improved attack. Attacks on a hash function based on

DES variants reduced to 12, 13 or 15 rounds become faster than brute force

collision attacks. These results have been published in [109]

4.4.1 Properties of the Hash Mode

An attack that is always applicable to hash functions is a brute force collision

search. Because of the birthday paradox this attack requires approximately

2

(l+1)=2

encryptions to produce a collision for a hash function with an l-bit

output. For the case of the DES, l = 64 and about 2

32:5

encryptions are required.

Di�erential cryptanalysis can be applied to hash functions in the same way

as to the corresponding block ciphers, but there are some important di�erences

[104].

� For the case of a collision attack, the plaintext input can be controlled.

This a the di�erential attack on the hash function feasible. A di�erential

attack on a block cipher used as an encryption device, in contrast, is

mainly of theoretic interest.

� The key is known. Sometimes the key can be chosen freely, or the best

alternative can be chosen out of a set of possible keys. This can be ex-

ploited in several ways. Firstly, when searching for a collision, input values
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can be selected that follow the characteristic with probability one in cer-

tain rounds. Precomputation of a few tables allows the inputs of four or

�ve consecutive rounds to be chosen (cf. Section 4.4.2). Secondly, the

probability of some characteristics is key-dependent. If the key can be

controlled then it is chosen to be optimal for the used characteristic, oth-

erwise a characteristic with optimal probability for the given key can be

selected. Thirdly, an early abort strategy can be used: as soon as it is

clear that the pair is a wrong pair, it is discarded. For most inputs, only

a few rounds have to be computed.

� There are more restrictions on the characteristic: in block cipher analysis

the most probable characteristic can be used. For hash functions, the

characteristic has to produce a collision, i.e., the output exor of the round

function f must be zero. For the construction of (4.23), this means that

the output exor of the block cipher has to match the input exor. Moreover,

the characteristic must cover all the rounds: 1R-, 2R-, or 3R-attacks do

not apply. This reduces the probability of the characteristic.

� Only one right pair is required to �nd a collision or a second preimage.

In the rest of the section only collision attacks are considered.

4.4.2 Choosing Inputs

In a collision attack, the input values (or messages) are chosen arbitrarily. This

freedom is used to enhance the success probability. A naive approach is to select

messages that will follow the proposed characteristic in the �rst two rounds with

probability one. Algorithm 4.2 allows four rounds to be passed with probability

one. A very simple extension of the algorithm allows �ve rounds to be passed

by adding an extra round at the beginning. Figure 4.6 de�nes the notation for

intermediate values of the hashing.

4.4.3 Good Characteristics

It has already been observed in [104, 59] that it is a non trivial problem to �nd

good even-round characteristics for the hash function of (4.23). Since all known

Feistel ciphers have an even number of rounds, the even-round characteristics

are of most interest. One-round iterative characteristics can have an arbitrary

number of rounds, but they have a very low probability of

1

234

per round (cf.

Figure 4.7). Two-round iterative characteristics have the highest probability for

seven rounds or more [80], but in hash functions they can only be applied to DES

variants with an odd number of rounds. This can be concluded from Figure 4.7.

Each 0 x

0

round has on average a probability of

1

234

. Dependent on the round
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Figure 4.6: Four rounds of the DES.
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Algorithm 4.2 An algorithm to easily �nd the good pairs of a given four round

di�erential characteristic.

Step 1:

For a given key k calculate table T

1

that lists all values of t

1

that follow the

characteristic in round 1. Repeat this for tables T

2

and T

3

that list the values of

f

2

and t

3

respectively. Since in each round only a few S-boxes are active, these

tables can be reduced in size by the use of `don't cares': the inputs of non-active

S-boxes are arbitrary and thus not speci�ed.

Step 2:

Match these three tables and look for all possible values of (t

1

; f

2

; t

3

).

Step 3:

Calculate table T

4

with all values for t

4

. For every (t

1

; f

2

; t

3

) `invert' round two

and try to match the possible values of t

2

, F [k](t

3

) and t

4

.

Step 4:

For each match found, calculate the inputs to the �rst round.

key, this probability is

1

146

or

1

585

. For 13 rounds, the attack requires the same

number of encryptions as the brute-force collision attack. However, since the

DES has 16 rounds, any serious attack requires a characteristic with an even

number of rounds.
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Figure 4.7: One-round and two-round iterative characteristics.

In [104], B. Preneel proposes the search for an input value x

0

that is a good

�xed point (x

0

 x

0

) and a good building block for an iterative characteristic

(0 x

0

). In [59], L.R. Knudsen shows that such a characteristic cannot have a

high probability. The problem is that all x

0

with a high probability for 0 x

0

have low probability for x

0

 x

0

, and vice versa. L.R. Knudsen therefore pro-

poses the use of an iterative characteristic based on a special four round building

block (cf. Figure 4.8). This building block has probability 2

�23:6

, averaged over

all keys, and 2

�23:0

for optimal keys. For a DES variant with eight rounds, the

work factor is comparable to a brute-force collision search.

The following approach gives a better result, especially in combination with
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Figure 4.8: The 4-round iterative characteristic of L. Knudsen.
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Figure 4.9: Two alternatives for the transient part of an iterative characteristic.

the algorithm of Section 4.4.2. Take a value x

0

with good probability for 0  

x

0

. Instead of inserting one x

0

 x

0

round, insert �ve `transient' rounds (cf.

Figure 4.9). These �ve rounds have a low probability that is, however, better

than the �xed point construction. The low probability is not a problem since

the input values of these transient rounds can be chosen in such a way that the

rounds are passed with probability one. A computer search has indicated that

the best transient rounds have a symmetrical pattern. The computer search

considered the 50 x

0

-values with the best 0  x

0

probabilities. For each x

0

,

all possible a

0

-values and b

0

-values were examined. The best combination is

x

0

= 0019 6000

x

and a

0

= b

0

= 0445 0180

x

. The probabilities of the di�erent

rounds are given in Table 4.7. Note that there exist x

0

-values that yield a lower

probability for which the optimal a

0

and b

0

are di�erent.

The fact that the probability of these rounds depends on the key can be

exploited to reduce the work/success ratio: eliminate the keys that give the

characteristic a low (or zero) probability. For this choice of x

0

and a

0

(cf. Fig-

ure 4.7), 4.5% of the keys have a non-zero probability. Stronger selection criteria

for the keys are possible. Table 4.8 gives the theoretical probabilities and work
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structure probability comments

0 x

0

2

�8

key independent

a

0

 x

0

2

�10:8

2

�9:95

for 50% of the keys

x

0

� a

0

 a

0

2

�20:5

2

�18:1

for 4.7% of the keys

Table 4.7: The di�erent rounds in the characteristic and their probabilities.

# rounds probability work factor

(log

2

) (log

2

)

8 -65.8 8

9 -28.8 5

12 -81.8 21.4

13 -43.2 18.9

14 -89.8 29.2

15 -50.3 25.9

16 -97.8 37.0

Table 4.8: A survey of probabilities of the characteristics and theoretical work

factors for reduced versions of the DES.

factors for DES variants with various number of rounds. The probability of the

given characteristic, is averaged over the keys with non-zero probability only.

The work factors are calculated as follows: the reciprocal of the probability of

the rounds where the input values cannot be controlled multiplied by a reduc-

tion factor that takes the early abort strategy into account. The numbers for

DES variants with an odd number of rounds are obtained by choosing input

values for �ve arbitrarily chosen consecutive rounds. The characteristic is the

best 2-round iterative characteristic of [10].

4.5 Conclusions

Three extensions to di�erential cryptanalysis were introduced and successfully

applied in practical situations.

The �rst extension improves the di�erential attack on block ciphers in m-

bit CFB mode (m small). The basic di�erential attack performs badly in this

situation because most good pairs will suggest all key values and therefore the

number of requested good pairs increases signi�cantly. The extended attack

allows the number of required plaintexts to be decreased. For an attack on the

DES reduced to eight rounds, 2

40

pairs are required to recover three key bits.
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This result has been published in [105].

The second extension introduces the principle of maximum likelihood to

improve di�erential and linear attacks. The number of recoverable key bits by a

di�erential attack on encryption modes that hide a part of the output is raised.

This is again very useful to extend the attack on block ciphers in m-bit CFB

mode, where previously the number of recoverable key bits was upper bounded

by m. For the case of the DES in 8-bit CFB mode, the number of recoverable

key bits is increased from three to ten. The information extraction phase of a

linear attack is also optimised. This makes it possible to extend the linear attack

to cases where the `hypothesis of wrong key randomisation' does not hold, e.g.

in a ciphertext-only attack on Akelarre.

The third extension is an improvement of the di�erential attack on hash

functions that are based on block ciphers. By making use of the speci�c ad-

vantages of the hash function context, a better attack is developed. A special

kind of di�erential characteristic is introduced, optimally suited for this attack.

When applied to a hash function that uses the DES as its round function, the

di�erential attack becomes faster than the birthday attack if the DES is reduced

to 12, 13 or 15 rounds. This result has been published in [109].
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Chapter 5

Key Dependent Analysis

What we see depends on mainly what we look for.

John Lubbock

The hypothesis of stochastic equivalence (cf. Section 3.4 and the work of

X. Lai [69]) assumes that the probability of a di�erential characteristic (or the

deviation of a linear relation) for a given �xed key can be approximated by the

average probability of the characteristic (or deviation of the relation) over all

key values (cf. Section 3.4).

In this chapter the distinction between the unconditional probability of a

di�erential and its probability conditioned on the key value is explained. A

completely equivalent distinction can be made between unconditional and con-

ditional input-output correlations.

By taking into account the key dependence of di�erential characteristics and

input-output correlations it is possible to mount e�ective attacks, for instance

on ciphers with nonlinear key addition. This is illustrated with two attacks

on reduced IDEA, which have been published in [14], and an attack on MAA,

which has been published in [106].

5.1 Probability of a Di�erential

One Round

Consider one round of an iterative block cipher. The stochastic variable that

produces the text input is denoted by X , the key input by K and the output by

Y ; � denotes the number of possible text inputs and � the number of possible

keys. The probability that the round transformation �[k](x) transforms an input

79
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di�erence x

0

into an output di�erence y

0

is given by:

Pr(X

0

= x

0

7! Y

0

= y

0

) =

#fx; k j �[k](x � x

0

)��[k](x) = y

0

g

� � �

=

P

x

P

k

P

y

�

�[k]

(x � x

0

; y � y

0

) � �

�[k]

(x; y)

� � �

;

where �

�[k]

is the characteristic function of the round transformation �[k]. Ap-

plication of the sum rule leads to

Pr(X

0

= x

0

7! Y

0

= y

0

) =

X

k

Pr(X

0

= x

0

7! Y

0

= y

0

j K = k) � Pr(K = k) ;

(5.1)

where

Pr(X

0

= x

0

7! Y

0

= y

0

j K = k) =

#fx j �[k](x � x

0

)��[k](x) = y

0

g

�

=

P

x

P

y

�

�[k]

(x � x

0

; y � y

0

) � �

�[k]

(x; y)

�

:

Since determining Pr(X

0

7! Y

0

j K = k) for all values k is often not feasible,

and since the actual value of K is not known to the cryptanalyst, it is usually

assumed that for most values k it holds that Pr(X

0

7! Y

0

j K = k) � Pr(X

0

7!

Y

0

). This assumption is known as `the hypothesis of stochastic equivalence' [69].

The validity of this assumption depends on the structure of the round transfor-

mation. A necessary condition is that the key addition is linear with respect

to the di�erence operation �. The next example shows a round transformation

where Pr(X

0

7! Y

0

j K = k) � Pr(X

0

7! Y

0

). For a generic round transforma-

tion, the conditional probability may heavily depend on the actual key value.

For the round transformation of the DES, this was already observed in [57].

Example 5.1 Let the round transformation be de�ned as �[k](x) = 
(x � k),

with 
 an arbitrary substitution and � the commutative operation that is used

for �, then

Pr(X

0

= x

0

7! Y

0

= y

0

j K = k) = �

�1

�#fx j �[k](x � x

0

)��[k](x) = y

0

g

= �

�1

�#fx j 
(x � x

0

� k)�
(x � k) = y

0

g

= �

�1

�#fx j 
(x � x

0

)�
(x) = y

0

g :

Therefore Pr(X

0

7! Y

0

j K = k) � Pr(X

0

7! Y

0

).
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More Rounds

Since encryption algorithms necessarily involve nonlinear elements in the round

transformation, the conditional probability of di�erentials over more than one

round always depends on the key value. Example 5.2 illustrates this. Equiva-

lent observations can be made about the di�erence between unconditional and

conditional input-output correlations.

Example 5.2 Consider the round transformation �[k](x) = x

3

�k, de�ned over

GF (2

3

). If � is taken as the di�erence operation, the conditional probability

of the one-round di�erentials is key independent. The �rst column of Table 5.1

gives these probabilities for a �xed input di�erence 1

x

, and all the possible output

di�erences. The two-round transformation can be written as �[k

2

](�[k

1

](x)) =

((x� k

1

)

3

� k

2

)

3

. The probability of the two-round di�erentials depends on the

value of k

2

, which is also shown in Table 5.1.

y

0

p

1

p

2

(k

2

)

k

2

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

0

x

0 0 0 0 0 0 0 0 0

1

x

0.25 1 0.25 0 0.25 0 0.25 0 0.25

2

x

0 0 0 0 0.25 0.5 0 0 0.25

3

x

0.25 0 0.25 0 0 0.5 0.25 0 0

4

x

0 0 0 0 0.25 0 0.25 0.5 0

5

x

0.25 0 0.25 0 0 0 0 0.5 0.25

6

x

0 0 0 0.5 0 0 0.25 0 0.25

7

x

0.25 0 0.25 0.5 0.25 0 0 0 0

Table 5.1: The conditional probabilities Pr(X

0

= 1

x

7! Y

0

= y

0

j K) for

Example 5.2. The rows correspond to the di�erent values of y

0

. The �rst

column list the (key independent) probabilities for one-round di�erentials (p

1

),

the next columns list the probabilities for di�erent values of the second round

key (p

2

(k

2

)).

Markov Ciphers

De�nition 5.1 (X. Lai [67]) An iterated cipher is a Markov cipher if and

only if their exists a di�erence operation � such that the round operation of the

block cipher has the property that for all nonzero input di�erences the probability

Pr(X

0

7! Y

0

) = Pr(X

0

7! Y

0

j X = x);
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if the round key is uniformly random.

The de�nition uses probability distributions that are not conditional on the

value of the key; they are thus averaged over all the key values. This means that

from the point of view of key dependent analysis, there is no di�erence between

Markov ciphers and other ciphers.

Exploitation of Key Dependence

Four approaches are discussed to exploit the key dependence of characteristics

and relations.

1. If the conditional probability distribution of a di�erential is strongly non-

uniform it is sometimes possible to mount an attack that works only for

keys with

Pr(X

0

= x

0

7! Y

0

= y

0

j K = k)� Pr(X

0

= x

0

7! Y

0

= y

0

) :

These keys are called weak keys. This approach is illustrated in [23] and

in Section 5.3.

2. Another approach is to use a set of di�erentials f(x

i

0

; y

i

0

)g

n

i=1

. The success

rate of an attack will typically be determined by the maximum of the

probabilities of the di�erentials of the set. This approach is illustrated in

Section 5.2.3.

3. In Section 5.2.4 an attack is presented that works if the conditional prob-

ability is either higher or lower than the unconditional probability. The

success rate of the attack is determined by the di�erence between the

probabilities. This is reminiscent of the key search method in a linear

attack (cf. Section 3.3 and [77, 79]), where the correct key is identi�ed by

measuring the correlation between input bits and output bits.

4. A fourth approach is to measure experimentally the probability of a dif-

ferential and use this to determine the used key.

The attacks presented in the next sections show that key dependent di�er-

entials and/or linear approximations can be used successfully to cryptanalyse

ciphers that have no useful key independent di�erentials or input-output corre-

lations.
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5.2 Application to IDEA

5.2.1 Description of IDEA

The block cipher IDEA (International Data Encryption Algorithm) was pro-

posed by X. Lai, J. Massey and S. Murphy in [69] as a strengthened version

of PES (Proposed Encryption Standard) proposed in [68]. IDEA is an iterated

block cipher, consisting of 8 rounds followed by an output transformation. It

has a 128-bit key and operates on data blocks of 64 bits. The round transforma-

tion divides the data into four 16-bit blocks and uses three di�erent operations:

bitwise exor, addition modulo 2

16

and multiplication modulo 2

16

+ 1 (0000

x

representing the element 2

16

). \Mixing operations from three di�erent algebraic

groups," is an important design concept of the cipher. Figure 5.1 shows the

computational graph of IDEA. The two multiplications and the two additions

in the middle of the round transformation correspond to the F-function in a

Feistel Network and are called the MA-structure. The four 16-bit blocks that

enter round r (r = 0; : : : ; 7) are denoted x

r

i

, where i = 0; 1; 2; 3. The inputs

of the output transformation are denoted x

8

i

, and the ciphertext blocks are x

9

i

.

Every round uses six 16-bit subkeys z

r

i

that are derived from the key with a

simple rotating selection scheme.

The following expression will be used to denote one round of IDEA:

(a; b; c; d) ! (e; f; g; h)

(e�g;f�h)!(k;l)

�����������! (e� l; g � l; f � k; h� k) :

Here (a; b; c; d) denotes the input, consisting of four 16-bit words. The key

addition transforms the input to (e; f; g; h). The MA-structure has input (e �

g; f � h) and output (k; l). The output of the round is then given by (e� l; g�

l; f � k; h� k). A di�erential characteristic is denoted in the same way as:

(a; b; c; d)

p

1

! (e; f; g; h)

(e�g;f�h)

p

2

!(k;l)

�����������! (e� l; g � l; f � k; h� k) :

Now a; b; c; d; e; f; g; h; k; l denote di�erences of 16-bit words. Let p

1

and p

2

denote the probabilities of the transition. Note that the given probabilities will

always be calculated assuming independent transitions.

IDEA was developed to resist di�erential cryptanalysis. In [67] X. Lai argues

that for 3 rounds of IDEA there are no useful di�erentials and concludes that

IDEA is resistant against a di�erential attack after 4 of its 8 rounds. In his work,

di�erences are de�ned corresponding to the modular addition and multiplication

operations of IDEA, in order to allow Markov theory to be applied (IDEA is a

Markov cipher). However, in the analysis presented here the di�erence operation

will always be the exor operation, to which the Markov theory does not apply

here.
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: 16-bit text sub-block

z

r

i

: 16-bit key sub-block

L

: bit-by-bit exor of 16-bit sub-blocks

+

: addition modulo 2

16

of 16-bit integers

J

: multiplication modulo 2

16

+ 1 of 16-bit integers

with the zero sub-block corresponding to 2

16

Figure 5.1: Computational graph for the encryption process of the IDEA cipher.
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5.2.2 Key Dependent Di�erentials and Relations

Modular multiplication and, to a lesser extent, modular addition, have the prop-

erty that the unconditional probability of the di�erentials is low. Table 5.2 shows

this for multiplication modulo 2

8

+ 1 and addition modulo 2

8

. However, from

Table 5.2 it is also clear that the conditional probability of a di�erential more

often takes a high value.

Multiplication Addition

p unconditional conditional unconditional conditional

0 0.8 80.2 85.9 96.5

0 < � < 2

�8

2.1 0 0 0

2

�8

94.7 0 0 0

2

�7

2.3 7.3 4.4 0

2

�6

0.07 6.6 4.7 0.3

2

�5

0.008 4.6 3.0 0.8

2

�4

0.005 1.1 1.4 1.0

2

�3

0.003 0.2 0.5 0.8

2

�2

0.002 0.04 0.1 0.4

2

�1

0 0.01 0.02 0.2

1 0 0.003 0.002 0.03

Table 5.2: Distribution of the conditional and unconditional probabilities of

di�erentials for multiplication modulo 2

8

+ 1 and addition modulo 2

8

. The

entries are in percentages.

Table 5.3 gives the distribution of input-output correlations of these opera-

tions.

It can be observed that modular multiplication has no di�erentials with

unconditional probability one (except for the trivial 0 7! 0) and neither does

it have input-output correlations with value 0.5. Modular addition has one

di�erential with probability one (change the most signi�cant bit) and one linear

relation with correlation one (in the least signi�cant bit, because of the absence

of a carry bit). In [23] the di�erentials with conditional probability one are

chained to build di�erentials with (conditional) probability one for seven and

eight rounds of IDEA. The key values for which this characteristic holds are

called weak keys. There are 2

51

key values that exhibit a seven-round di�erential

with probability one.

In the following a di�erential-linear and a truncated di�erential attack will

be presented that use key dependent di�erentials.
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Multiplication Addition

c unconditional conditional unconditional conditional

0 0.8 18.0 66.7 77.8

2

�7

0.001 0 3.0 0

2

�6

1.9 25.8 7.6 6.3

2

�5

57.8 17.9 9.9 3.6

2

�4

39.5 25.9 7.8 5.9

2

�3

0.003 10.5 3.9 3.8

2

�2

0 1.7 1.1 1.8

2

�1

0 0.1 0.09 0.6

1 0 0.008 0.002 0.1

Table 5.3: Distribution of the conditional and unconditional input-output cor-

relations of multiplication modulo 2

8

+ 1 and addition modulo 2

8

. The entries

are in percentages.

5.2.3 Di�erential-Linear Cryptanalysis

In this section a di�erential-linear attack on IDEA, reduced to three rounds,

is presented [14]. The �nal swap of the second and the third output block are

omitted. The notation is de�ned in Figure 5.1.

A Set of Relations

Firstly we de�ne the words e

i

= 2

15�i

, i = 0; : : : ; 15. We now consider the

following set of linear relations:

e

15

� ((k � x)� (k � (x � e

i

))) = 0 ; (5.2)

with unconditional input-output correlation c

i

and conditional correlations c

i

(k).

Table 5.4 lists the values of c

i

and the distributions of the c

i

(k) for some values

of i. The table also gives the distribution of c(k) = max

i

c

i

(k); which is of the

greatest interest for the purposes of this attack. Observe that c(k) � c

i

for all

i and almost all k.

This set of relations will be used in the linear-di�erential attack. The next

section gives a di�erential characteristic that produces the di�erence e

i

at the

input of a multiplication in the second round. The attack produces pairs for

every value of e

i

. The relation that has the highest correlation determines the

data requirements of the attack.
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e

0

e

2

e

8

e

15

c(k)

c

i

2

�1

2

�1

2

�1

2

�1

c

i

(k) = 0 0.02 0.003 0.06 0 0

0 < c

i

(k) � 2

�9

0.3 0.1 0.2 0 0

2

�9

< c

i

(k) � 2

�6

1.9 2.0 1.8 2.1 0

2

�6

< c

i

(k) � 2

�4

6.6 6.7 6.7 6.7 0

2

�4

< c

i

(k) � 2

�3

8.8 8.8 8.8 8.9 0

2

�3

< c

i

(k) � 2

�2

17.7 17.7 17.7 17.7 0.03

2

�2

< c

i

(k) � 2

�1

35.3 35.3 35.3 35.3 2.1

2

�1

< c

i

(k) � 1 29.3 29.3 29.3 29.3 97.9

Table 5.4: The correlation of Relation (5.2) for a subset of fe

i

g

15

i=0

. The distribu-

tions for di�erent e

i

-values are close to one another. The �rst row gives the un-

conditional correlations c

i

. The next rows give the distribution of the conditional

correlations c

i

(k). The last column gives the distribution of c(k) = max

i

c

i

(k).

The distribution entries are in percentages.

The Di�erential Characteristics

The attack starts with guessing the value of z

0

3

. The �rst round of the charac-

teristic looks like the following:

(0; e

i

; 0; �

i

)

0:5

! (0; e

i

; 0; e

i

)

(0;0)

1

!(0;0)

�������! (0; 0; e

i

; e

i

) :

With the (assumed) knowledge of z

0

3

it is possible to choose the values of x

0

3

and

�

i

such that (x

0

3

� z

0

3

)� ((x

0

3

��

i

)� z

0

3

) = e

i

. The probability of the �rst round

then equals the probability of the transition e

i

7! e

i

in modular addition, which

is 0.5. The �rst half of the second round of the characteristic can be described

as follows:

(0; 0; e

i

; e

i

)

0:5

! (0; 0; e

i

; �)

(e

i

;�)

p

2

!(�;�)

�������! (�; �; �; �) :

The value of � is not important for the attack and is not speci�ed. This means

that the di�erential becomes a truncated di�erential. The probability of the

truncated di�erential at the MA-structure of the second round equals 0.25. For

good pairs the input exor of the �rst multiplication in the MA-structure of the

second round equals e

i

. It follows from (5.2) that for every key there exists

at least one e

i

such that the value of the least signi�cant bit of the output of

this multiplication is highly biased. From now on the di�erential is truncated

even further by specifying only the least signi�cant bit of the 16-bit words. The

modular addition now reduces to an exor operation. Denoting the output exors
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of the multiplications of the MA-structure with 
 and �, the second round of

the characteristic can be completed:

(0; 0; e

i

; e

i

)

0:5

! (0; 0; e

i

; �)

(e

i

;�)

p

2

!(
��;�)

����������! (�; e

i

� �; 
 � �; 
 � � � �) :

Figure 5.2 shows the second round of the characteristic.
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Figure 5.2: Second round of the characteristic for the linear-di�erential attack

on three rounds of IDEA. At the end, only the least signi�cant bits of the words

are considered, such that the addition operation becomes equal to the exor

operation.

Recovering z

2

4

The key input of the �rst multiplication of the MA-structure in the last round

is z

2

4

. The text input of this multiplication can be calculated as x

3

1

� x

3

3

. These

values are visible in the ciphertext because the ciphertext is formed by the

outputs of the third round. Denote the least signi�cant bit of the output of this
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multiplication �, and denote the least signi�cant bit of the output of the second

multiplication of the MA-structure with �. Then � can be expressed as follows.

x

3

2

0

= � � e

i

� � � � (5.3)

x

3

3

0

= � � 
 � � (5.4)

x

3

2

0

� x

3

3

0

= e

i

� � � 
 : (5.5)

By assuming a value z

2

4

it is possible to calculate �, and thus also 
.

The attack proceeds as follows. A counter is initialised for every possible z

2

4

.

For every possible z

0

3

and e

i

, a set of plaintext pairs is enciphered. Filtering of

the wrong pairs is not possible. For every pair the value x

3

1

� x

3

3

is calculated

and by assuming a value for z

2

4

it is possible to calculate 
 using (5.5). If 
 = 0,

the counter corresponding to the key value is incremented. The calculation is

repeated for every value z

2

4

. If z

0

3

was guessed correctly, then only two values

for z

2

4

will be suggested after enough pairs have been encrypted: the correct z

2

4

and its additive inverse modulo 2

16

+ 1. Experimental results con�rm that for

wrong guesses of z

0

3

no key value will be suggested.

Since the best e

i

is not known, the attack is tried with all e

i

-values. Com-

puter experiments show that for a correct guess of z

0

3

, the attack requires at

most 2

14

chosen plaintext pairs. On average, a correct guess is made after 2

15

trials, resulting in 2

29

required plaintext pairs. Examining one plaintext pair

takes a few exor operations and 2

16

table look-ups, one for each value of z

2

4

.

Since 16 di�erentials are examined, the attack requires about 2

20

simple opera-

tions, i.e., addition or exor, for each pair. The workload is therefore about 2

49

simple operations. For a rough estimate of the equivalent number of encryp-

tions, the required time for an addition is taken to be equal to the required time

for an exor. The required time for a modular multiplication is estimated to be

3.5 times this time. This results in a workload of about 0:75 �2

44

3-round IDEA

encryptions.

5.2.4 Truncated Di�erential Cryptanalysis

In this section a truncated di�erential attack on a reduced version of IDEA is

presented [14]. The reduced version consists of three rounds and the output

transformation. The notation is the same as in the previous section. Note that

the ciphertext consists now of the words x

4

i

.
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Probability of the Truncated Characteristic

The three-round truncated di�erential characteristic used in the attack is the

following:

(a; 0; b; 0)

2

�16

! (c; 0; c; 0)

(0;0)

1

!(0;0)

�������! (c; c; 0; 0)

(c; c; 0; 0)

1

! (d; e; 0; 0)

(d;e)

2

�32

! (e;d)

���������! (0; d; 0; e)

(0; d; 0; e)

2

�16

! (0; f; 0; f)

(0;0)

1

!(0;0)

�������! (0; 0; f; f)

(0; 0; f; f)

1

! (0; g; 0; h) :

(5.6)

In each intermediate result, only the zero di�erences are predicted. The

di�erences denoted with the letters a to h can take any non-zero value. The

di�erential has a mirror image with the same probability:

(0; a; 0; b)

2

�16

! (0; c; 0; c)

(0;0)

1

!(0;0)

�������! (0; 0; c; c)

(0; 0; c; c)

1

! (0; 0; d; e)

(d;e)

2

�32

! (e;d)

���������! (d; 0; e; 0)

(d; 0; e; 0)

2

�16

! (f; 0; f; 0)

(0;0)

1

!(0;0)

�������! (f; f; 0; 0)

(f; f; 0; 0)

1

! (g; 0; h; 0) :

(5.7)

To estimate the unconditional probability of the di�erential, all operations

are assumed to have independent inputs. The estimated unconditional proba-

bility of the truncated di�erential is 2

�64

.

Determination of the distribution of the conditional probability of the di�er-

ential requires too much computational power. Therefore, the analysis is applied

to reduced versions of IDEA. Firstly IDEA(16) is analysed. This cipher uses

the same operations as IDEA, but operates on four nibbles (four bit quantities)

instead of four 16-bit words [67]. For this cipher, the estimated unconditional

probability of (5.6) becomes 2

�16

. The conditional probability of the di�erential

is determined by encrypting the 2

16

di�erent plaintexts under each of the 2

32

possible keys. The resulting distribution is shown in Table 5.5. The main cause

for the non-uniformity in the distribution is the second round of the di�eren-

tial, where a di�erence (d; e) in the inputs to the MA-structure must result in

di�erence (e; d) in the outputs of the MA-structure. The correct value of the

unconditional probability of the di�erential can be calculated using (5.1); it is

equal to 2

�16:5

, which is slightly less than the �rst estimate.

For IDEA(32), operating on four bytes, it is no longer possible to determine

the conditional probability for all keys. The conditional probability distribu-

tion of Table 5.6 is an estimate, based on the encryption of the 2

32

possible

plaintexts under 160 randomly selected key values. Based on these results, the
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Probability #Keys/All keys

0 13 %

0 < p � 2

�18

12 %

2

�18

< p � 2

�17

21 %

2

�17

< p � 2

�16

30 %

2

�16

< p � 2

�15

14 %

2

�15

< p � 1 10 %

Table 5.5: Distribution of the conditional probability of the di�erential (5.6) for

IDEA(16).

unconditional probability is estimated to be 2

�32:7

, which should be compared

with the 2

�32

that results from the �rst estimate.

Probability #Keys/All keys

0 � p � 2

�35

14 %

2

�35

< p � 2

�33:0

10 %

2

�33:0

< p � 2

�32:5

31 %

2

�32:5

< p � 1 45 %

Table 5.6: Distribution of the conditional probability of the di�erential (5.6) for

IDEA(32).

It can be expected that the behavior of IDEA can be extrapolated from these

results.

Using the Truncated Di�erential

The attack uses structures of chosen plaintexts. A structure consists of 2

32

texts: x

0

1

and x

0

3

are �xed, x

0

0

and x

0

2

take on all possible values. From such a

structure it is possible to generate 2

32

� (2

32

� 1)=2 � 2

63

pairs that have the

correct truncated input exor for (5.6). Filtering is possible since the di�erential

requires that x

4

0

0

= x

4

2

0

= 0. On average, only one out of 2

32

pairs will survive

this test, or f = 2

�32

.

Each surviving pair suggests values for two 16-bit words of the �rst round

key. A value (z

0

0

; z

0

2

) is suggested if

(x

0

0

� z

0

0

)� (x

0

0

�

� z

0

0

) = (x

0

2

+ z

0

2

)� (x

0

2

�

+ z

0

2

) : (5.8)

The expected number of suggested values (z

0

0

; z

0

2

) by a pair can be estimated

to be 2

16

. Each pair also suggests values for two 16-bit words of the key in the
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output transformation. A value (z

3

1

; z

3

3

) is suggested if

(x

4

1

� (z

3

1

)

�1

)� (x

4

1

�

� (z

3

1

)

�1

) = (x

4

3

� z

3

3

)� (x

4

3

�

� Z

3

3

) : (5.9)

In total, each pair that survives the �ltering is expected to suggest 2

32

64-

bit key values, or s, the probability for a wrong key to be suggested, equals

2

32

=2

64

= 2

�32

(cf. Section 3.2.2). Since f � s = 2

�64

and every structure

contains 2

63

pairs, it can be expected that every structure will suggest 2

63

keys

and every value of the key will on average be suggested 0:5 times per structure

used.

An important side remark can be made about the number of key bits at a

time the attack has to search for. The key scheduling of IDEA consists of a

simple rotation. This causes an overlap of 14 bits between (z

0

0

; z

0

2

) and (z

3

1

; z

3

3

).

Furthermore, because of the absence of a carry bit after the highest order bit

of the modular addition, key values z

0

2

and z

3

1

that di�er only in the highest

order bits are indistinguishable. These two observations are very important

to reduce the memory requirements of the attack. Instead of 64, only 48 key

bits are searched simultaneously, reducing the number of counters by a factor

of 2

16

. The actual attack has only been implemented for the reduced versions

of IDEA previously de�ned. The key schedule for these reduced versions was

adapted to produce an overlap of relatively as many key bits. (For IDEA(32)

and IDEA(16), seven and three bits overlap, respectively.) This means that in

these cases only 23 bit and 11 bit key values are searched for. To �nd other key

bits, a similar attack with the second di�erential (5.7) can be performed.

Exploitation of the Key Dependence

The signal-to-noise ratio of the attack can be calculated as:

S=N =

p

f � s

=

p

2

�64

:

Previous it was believed [10] that a di�erential attack can only be successful

if S=N > 1. However, in Section 3.2 it was already mentioned that a di�erential

attack can also �nd the used key if S=N < 1, provided that the signal-to-noise

ratio is calculated with p equal to the probability of the maximal di�erential.

From the �ltering, and from the Equations (5.8) and (5.9), it is clear that

the maximal di�erential only speci�es the values a; b; c; f; g and h. The maximal
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di�erential containing (5.6) is then given by:

(a; 0; b; 0)

2

�16

! (c; 0; c; 0)

(0;0)

1

!(0;0)

�������! (c; c; 0; 0)

(c; c; 0; 0)

1

! (d; e; 0; 0)

(d;e)!(�;�)

�������! (�; �; �; �)

(�; �; �; �) ! (�; �; �; �)

(�;�)!(�;�)

������! (0; 0; f; f)

(0; 0; f; f)

1

! (0; g; 0; h) :

(5.10)

The problem of how to determine the probability of this maximal di�erential

arises. Further analysis shows, however, that all the pairs that follow the maxi-

mal di�erential (5.10) also follow the truncated di�erential (5.6). Therefore the

probability of the maximal di�erential equals the probability of (5.6).

Since the unconditional probability of the maximal di�erential is estimated

to be 2

�64

, the signal-to-noise ration is one, and a di�erential attack seems

impossible. For the case of IDEA it turns out that the conditional probability

of the di�erential strongly depends on the actual key value. Thus for many keys,

the signal-to-noise ratio will either be signi�cantly higher than one, or it will be

signi�cantly lower than one. Since the cryptanalyst does not know beforehand

whether S=N > 1 or S=N < 1, both the least suggested and the most suggested

key value will be outputs of the analysis. The more the conditional probability

of the di�erential deviates from f � s, the easier it becomes to recover the key.

It is interesting to see that for IDEA(16), about 1 in every 8 possible values of

the key result in a zero conditional probability for the used di�erential.

The numbers in Table 5.5 also indicate that the attack will not work for

some classes of keys, namely the classes of keys for which the probabilities are

too close to f � s.

The relation between number of required plaintexts, the workload of the

attack and the fraction of recoverable keys, was determined experimentally for

the two reduced versions of IDEA.

IDEA(16): Table 5.7 lists the results of 1000 runs of the attack on IDEA(16)

for an increasing number of chosen plaintexts. The key ranking technique [79]

was used: the attack was considered successful if the correct key value was

among the eight least and eight most suggested values. Thus the attack returns

16 suggestions for 11 bits of the secret key. If all the plaintexts are used, the

correct value of the key is among those 16 values in about 67 % of all cases.

Note that there are a total of 2

16

plaintexts of IDEA(16) and that an exhaustive

search for the key will take about 2

32

encryptions. The workload is the estimated

number of operations required to perform the attack, measured as the number

of encryptions of the cipher. For each pair that survives the �ltering process,

the 2

4

possible values of the a�ected keys of each side of (5.8) are tried.
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The attack can be speeded up by pre-calculation of a table to avoid the

expensive multiplication operation. This table has a size of 2

8

nibbles. Under

the assumption that a multiplication takes the equivalent of 3.5 additions, and

that an addition, an exclusive-or and a table-lookup take about the same time,

the workload becomes about 18 encryptions of IDEA(16) for every pair. In total,

the workload is about 2

8

encryptions for every structure. Due to the overlap of

key bits in this �rst round test with the key bits in the output transformation,

the second part of the key search, i.e. using (5.9), is much faster than the �rst

and can be ignored in the workload estimation.

#Keys/All keys # Structures # Chosen plaintexts Workload

25% 16 2

12

2

12

40% 32 2

13

2

13

51% 64 2

14

2

14

59% 128 2

15

2

15

67% 256 2

16

2

16

Table 5.7: Fraction of recovered keys with an increasing number of chosen plain-

texts for the attack on IDEA(16) with 3.5 rounds. (1000 runs of the attack were

performed.)

IDEA(32): The attack on IDEA(32) has a much higher workload. Table 5.8

lists the results of 50 runs of the attack, using up to 2

11

structures. In order

to reduce the workload of the tests, 7 bits of the key were assumed to be al-

ready known, leaving only 16 key bits to search for. The attack was considered

successful if the correct value was among the 12 least and four most suggested

values. Thus the attack returns 16 suggestions for 16 bits of the secret key.

IDEA: The above results on reduced versions of IDEA allow an estimate of

the complexity of the attack on IDEA to be made. Table 5.7 shows that it is

possible to �nd 25 % and 51 % of the keys using 2

16�3=4

and 2

16�7=8

chosen

plaintexts respectively for IDEA(16). Table 5.8 shows that it is possible to

�nd 28 % and 64 % of the keys using 2

32�3=4

and 2

32�13=16

chosen plaintexts

respectively for IDEA(32). The estimated complexity of the attack on IDEA

is given in Table 5.9, using the results on the reduced versions. For at least

one key out of every hundred, 2

40

chosen plaintexts and an e�ort of about

2

51

encryptions su�ce to recover the key. More than 83 % of the keys can be

recovered with 2

56

chosen plaintexts and an e�ort of about 2

67

encryptions. Note

that an exhaustive key search has an expected workload of 2

127

encryptions.
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#Keys/All keys # Structures # Chosen plaintexts

1 % 16 2

20

7 % 64 2

22

15 % 128 2

23

31 % 256 2

24

54 % 512 2

25

65 % 1024 2

26

83 % 2048 2

27

Table 5.8: Fraction of recovered keys with an increasing number of chosen plain-

texts for the attack on IDEA(32) with 3.5 rounds. (50 runs of the attack were

performed.)

#Keys/All keys # Chosen plaintexts Workload

> 1 % 2

8

� 2

32

2

51

> 31 % 2

16

� 2

32

2

59

> 83 % 2

24

� 2

32

2

67

Table 5.9: Estimated fraction of recovered keys with an increasing number of

chosen plaintexts for the attack on IDEA with 3.5 rounds.
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Finding Additional Key Bits

The attack outlined above �nds 48 bits of the 128-bit key of IDEA. However,

once these key bits have been found, a similar attack using the second truncated

di�erential can be performed. As noted earlier, the key-dependency of the

probability of the �rst di�erential comes mostly from the second round of the

di�erentials. Since the second round is the same for the two di�erentials, it can

be expected that for a �xed key, the probabilities of the two di�erentials are

very close. After doing the attack with the second di�erential all 64 key bits in

the beginning of the �rst round and all 64 key bits of the output transformation

are obtained. Subsequently, similar attacks can be done on a further reduced

version of IDEA with a negligible complexity.

5.3 Application to MAA

In [107], B. Preneel and P.C. van Oorschot presented a generic attack on MAC

algorithms; in [108] this attack was applied to MAA, and a class of weak keys

for MAA was identi�ed. This section shows that some keys exhibit clusters of

collisions, which is an undesirable property. In theory, a collision cluster could

be used to recover the used key. These results on MAA have been published in

[106].

5.3.1 The Message Authenticator Algorithm MAA

MAA is one of the primary MAC algorithms used historically, the other one

being CBC-MAC [49, 51]. The Message Authenticator Algorithm (MAA) is an

ISO standard [49] which dates back to 1984 [31]. It is currently being used by

several large �nancial institutions. While it was originally designed for use on

mainframe computers, it is very fast on present PCs and workstations (about

the same speed as SHA-1 [41]). A complete description of MAA can be found

in [32]. All variables in the description are 32-bit words. The 64-bit key is split

into two 32-bit words: j and k. The algorithm consists of three parts. During

the prelude the 64-bit key is used to initialise the chaining variables x

0

and y

0

and to calculate four parameters v

0

, w, t, and s. The input m to MAA is of

arbitrary length; it is divided into q 32-bit words denoted by x

1

through x

q

.

The main loop takes the ith 32-bit message word m

i

, the chaining variables

x

i�1

and y

i�1

, and the parameters v and w as input, and produces as output

the updated chaining variables x

i

and y

i

. The last part is the coda; it simply

adds s and t as �nal message blocks (m

q+1

= s and m

q+2

= t) and computes

the 32-bit MAC as MAA[j; k](m) = x

q+2

� y

q+2

.

The ith iteration of the main loop (1 � i � q + 2) performs the following

operations:
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v

i

= rol(v

i�1

);

x

i

= (x

i�1

�m

i

)


1

M

1

((v

i

� w) + (y

i�1

�m

i

));

y

i

= (y

i�1

�m

i

)


2

M

2

((v

i

� w) + (x

i�1

�m

i

)); .

Here 


1

denotes multiplication modulo 2

32

�1, 


2

denotes multiplication mod-

ulo 2

32

� 2, + is addition modulo 2

32

, and � is bitwise exor. Functions M

1

(�)

andM

2

(�) are masking operations that each �x eight bits (four to zero and four

to one):

M

1

(x) = (x _ A) ^ C M

2

(x) = (x _ B) ^D ;

where A = 02040801

x

, B = 00804021

x

, C = BFEF7FDF

x

, and D = 7DFEFBFF

x

.

In the following, v

i

� w is denoted by z

i

(or z, when the superscript is clear

from the context).

During the prelude the six variables x

0

, y

0

, v

0

, w, s, and t are checked for

bytes that are equal to 00

x

or FF

x

. The prelude calls a special procedure to

alter these bytes, the BYT procedure, because they are considered to be worth

avoiding. If no 00

x

or FF

x

values are encountered, x

0

; v

0

and s depend only on

j, whereas y

0

; w and t depend only on k.

ISO 8731 [49] limits the size of the messages to 4 � 10

6

bytes (� 3.8 Mbyte).

Also, the standard de�nes a special mode for messages longer than 1024 bytes

(256 blocks). In this mode, MAA is applied to the �rst 1024 bytes, and the

corresponding 4-byte MAC is concatenated to the next 1024 bytes of the message

to form the new input of MAA. This procedure is repeated with the next 1024-

byte block, until the end of the message is reached.

5.3.2 Known classes of weak keys

In [108] two classes of weak keys for MAA have been identi�ed. The �rst class

of weak keys are external keys which result in an internal key v

0

of rotational

period < 32. For such keys, rotating v

0

over 2, 4, 8, or 16 positions will yield v

0

again (there are no keys v

0

of period 1 since the all zero and all one values are

eliminated). There are respectively 2, 14, 254, and 64 516 values of v

0

for which

this holds. Exhaustive examination can be used to determine which values of

the �rst 32-bit word of the input key (j) yield such values of v

0

. The the number

of weak keys is independent of the second input key word (k), and is thus 2

32

times larger. If v

0

has period r then a forgery attack can be mounted, requiring

r � (2

31

� 2) zero blocks. Verifying the forgery allows a cryptanalyst to obtain

information on v

0

, which is undesirable since it leaks partial key bits. It is

relatively easy to detect whether a key is weak, leading to a key recovery attack

on these keys [108].
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Proposition 5.1 For MAA, one can detect, using 2

27

chosen messages of about

1 Kbyte each, whether a key belongs to a subclass of 2

48

weak keys.

The second class of weak keys allows the size of the message required for

another existential forgery attack described in [108] to be reduced. These weak

keys are not a problem if the long message mode is used.

5.3.3 Collision Clusters for MAA

Consider two di�erent messagesm and m

�

of length q. If x

q

= x

q

�

and y

q

= y

q

�

an internal collision is said to have occurred. If no internal collision occurs, but

nonetheless MAA(m) = MAA(m

�

), then an external collision is said to have

occurred. If the two messages have the �rst q � 1 blocks in common, then

x

q�1

= x

q�1

�

and y

q�1

= y

q�1

�

. Denote the di�erence in the last message

block by d = m

q

�

�m

q

. The two messages form an internal collision i�

(x

q�1

�m

q

)


1

M

1

((v

q

� w) + (y

q�1

�m

q

)) =

(x

q�1

�m

q

� d)


1

M

1

((v

q

� w) + (y

q�1

�m

q

� d)) (5.11a)

(y

q�1

�m

q

)


2

M

2

((v

q

� w) + (x

q�1

�m

q

)) =

(y

q�1

�m

q

� d)


2

M

2

((v

q

� w) + (x

q�1

�m

q

� d)) : (5.11b)

For a given value of d,

Pr ((x

q

; y

q

) = (x

q

�

; y

q

�

)) � 2

�64

:

The expected number of internal collisions among the 2

32

messages that have

the �rst q � 1 blocks in common and take on all possible values for the last

block, is equal to 1/2. In this section the existence of large classes of keys

(� 2

33

elements) for which there exists a value of d such that

2

�21

� Pr ((x

q

; y

q

) = (x

q

�

; y

q

�

)) � 2

�13

;

will be demonstrated. For these keys, between 2

11

and 2

19

collisions occur

between all q-block messages that di�er only in the last block. All collisions

have the same value of d. In this context a key is called `weak' if it has a

number of collisions that is substantially larger than two. Several classes of

weak keys can be distinguished. The �rst class described here in detail is the

most easy to �nd. Afterwards other types of weak keys are mentioned.

This property allows the detection and subsequent recovery of weak keys

using about 2

23

chosen texts. Also, a small subset of the messages can be

forged using this property. Precisely which messages are forgeable depends on

the actual key value.
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Simple Weak Keys

In the following, �

i

denotes x

i

� y

i

. In the analysis, the superscript of z, �, x,

y, v and w is omitted. A su�cient set of conditions for a collision is:

x�m = M

1

(z + (x �m� �� d)) (5.12a)

x�m� d = M

1

(z + (x �m� �)) (5.12b)

x�m� � = M

2

(z + (x �m� d)) (5.12c)

x�m� �� d = M

2

(z + (x �m)) : (5.12d)

The Equations (5.12) can be written at bit level. In this analysis, the bits of

the words are numbered from the right to the left (the least signi�cant bits

get number 0, the most signi�cant bits number 31). The carry bits of addition

modulo 2

32

(`+') into bit i are denoted by u

i

, v

i

, w

i

, and t

i

. The equations for

the carry bits become (with u

0

= v

0

= w

0

= t

0

= 0):

u

i+1

= u

i

(z

i

� x

i

�m

i

� �

i

� d

i

)� z

i

(x

i

�m

i

� �

i

� d

i

)

v

i+1

= v

i

(z

i

� x

i

�m

i

� �

i

)� z

i

(x

i

�m

i

� �

i

)

w

i+1

= w

i

(z

i

� x

i

�m

i

� d

i

)� z

i

(x

i

�m

i

� d

i

)

t

i+1

= t

i

(z

i

� x

i

�m

i

)� z

i

(x

i

�m

i

) :

The masking of bit i determines the rest of the bit level equations. Four cases

can be distinguished:

0. When both M

1

and M

2

leave bit i unchanged:

u

i

= v

i

= w

i

= t

i

= z

i

� �

i

� d

i

:

1. When M

1

sets or clears bit i, but M

2

does not:

w

i

= t

i

= z

i

� �

i

d

i

= 0

x

i

�m

i

= M

1i

:

2. When M

2

sets or clears bit i, but M

1

does not:

u

i

= v

i

= z

i

� �

i

d

i

= 0

x

i

�m

i

� �

i

= M

2i

:

3. When both M

1

and M

2

determine bit i:

d

i

= 0

�

i

= M

1i

�M

2i

x

i

�m

i

= M

1i

:
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The next step is to write down these equations for the 32 bits. The result is

three sets of equations:

� A set of conditions on z and �: these conditions determine the class of weak

keys. The class of keys where z

1

and �

0

satisfy the equations is called the

base class of weak keys. If z

1

and �

0

do not satisfy the equations then it

is still possible that z

i

and �

i�1

(1 < i) do. These keys can be attacked

by using messages consisting of i + 1 blocks, where the �rst i blocks are

common. This means that by doing more work, the probability of success

can be enhanced. In the generic case there are 32 di�erent values for

z (because of the rotation operation). By varying the choice of common

blocks, all values of � can be created (but the values cannot be controlled).

� Equations that give d as a function of z and �.

� Conditions on x�m that determine for given x a vector space of messages.

These equations were solved for a reduced version of MAA that operates

on 14-bit words instead of 32-bit words. For this version of MAA there are

about 2

14:6

keys in the base weak key class. Each weak key has an associated

di�erence d and an associated vector space. Two messages that have di�erence

d will produce a collision with a probability of 2

�4

, 2

�5

, or 2

�6

. The probability

depends on the size of the vector space of messages associated with the weak

key. The expected number of basic weak keys for the full MAA is 2

33

. For each

key there exists an associated di�erence d such that between 2

11

and 2

19

block

messages with this di�erence will collide.

To demonstrate the existence of weak keys, a key that produces a z

2

satis-

fying the equations was searched for. Afterwards, a �rst message block m

1

was

searched for such that �

1

is also a solution.

Example 5.3 Let j = e8813bb2

x

, k = 45cfb69c

x

, and m

1

= 56e2

x

. There

exist 2

18

pairs of two block messages with the �rst message block equal to m

1

and

the second message blocks di�ering by d = 1c081098

x

, that produce an internal

collision.

The Use of a Collision Cluster in an Attack

The existence of a collision cluster of size 2

p

can be used in a di�erential attack

to recover the key. Two messages with di�erence d will produce a collision with

probability 2

p�32

. The �rst step is to recover d. Thirteen bits of d are known

to be zero. The message space can be divided into 2

13

subspaces, with constant

values for these 13 bits. The collision cluster will be situated in one of these

subspaces. In this subspace the di�erence will have a collision probability equal

to 2

p�19

. Since it is not known beforehand which subspace is the correct one,
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the attack has to be repeated for all of them. The 19 unknown bits of d can

be found by encrypting randomly selected messages from the same subspace.

With 2

n

texts, 2

2n�1

pairs can be generated. A pair with the correct di�erence

d will generate a collision with probability 2

p�19

. A collision will occur with

high probability when

2

2n�1

�

�

2

�19

� 2

p�19

�

�1

m

n �

39� p

2

:

For the largest clusters, p = 19, and only 2

13

� 2

10

= 2

23

texts are required.

When p = 11, 2

27

texts are required. Once d is known the bit equations can

be used to determine bits of x

0

; y

0

; x

0

� y

0

, and z

0

. O�-line built tables (with

size 2

32

) of x

0

(j); v

1

(j); y

0

(k), and w(k) allow j and k to be determined. The

following proposition summarises this result.

Proposition 5.2 A key that has an associated di�erence with a collision clus-

ter of size 2

p

, can be detected with a di�erential attack using 2

13

� 2

(39�p)=2

=

2

(65�p)=2

chosen messages. The value of the di�erence and the colliding mes-

sages gives su�cient information for recovery of the key with a lookup table.

The collision cluster can be used for forging messages that lie in the subspace

of the cluster. As explained above, a message m

�

will produce the same MAC

as the message m with probability 2

p�19

� 2

�19

= 2

p�38

. This probability varies

between 2

�19

and 2

�27

. However, which of the 2

13

subspaces is forgeable,

depends on the actual key value.

Involved Weak Keys

The set of collisions with the same di�erence d that occurs for weak keys, can be

seen as a `burst' of collisions. Knowledge of one collision enables a cryptanalyst

to very easily create the whole vector space of collisions. The interaction between

masking and the two modular multiplications causes many other `bursts' of

collisions. Below, one other example is presented.

Example 5.4 Consider a reduced version of MAA, operating on 14-bit words

instead of 32-bit words. Let j = 72d

x

, k = 3a39

x

. There exist 2

9

one block

message pairs (m;m� 31d8

x

) that produce a collision.

To explain the phenomenon, the example is analysed in some detail. Equa-

tion (5.11a) gives:

(1dce

x

�m)


1

M

1

(1 + (13cb

x

�m)) = (2c16

x

�m)


1

M

1

(1 + (2233

x

�m)) :

(5.13)
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The solution m = c22

x

is called the base solution. Filling in gives:

11ec

x

�M

1

(1 + 1fe9

x

) = 11ec

x

� 1fcb

x

= 130b

x

+ 8e7

x

� (2

14

� 1)

2034

x

�M

1

(1 + 2e11

x

) = 2034

x

� 2e13

x

= 130b

x

+ 172f

x

� (2

14

� 1)

Now consider the slightly modi�ed Equation (5.13):

(11ec

x

+m

0

)


1

(1fcb

x

+m

00

) = (2034

x

�m

00

)


1

(2e13

x

�m

0

) ; (5.14)

which can be rewritten as

11ec

x

� 1fcb

x

� 2034

x

� 2e13

x

+ (1fcb

x

+ 2034

x

)m

0

+ (11ec

x

+ 2e13

x

)m

00

= 0 mod (2

14

� 1) :

The base solution corresponds to m

0

= m

00

= 0. Since 11ec

x

+ 2e13

x

= 2

14

� 1

and 1fcb

x

+ 2034

x

= 2

14

� 1, all values of m

0

;m

00

will satisfy Equation (5.14).

It can be concluded that every m

�

for which an m

0

and an m

00

can be found

such that

1dce

x

�m

�

= 11ce

x

+m

0

M

1

(1 + (13cb

x

�m

�

)) = 1fcb

x

+m

00

2c16

x

�m

�

= 2034

x

�m

00

M

1

(1 + (2233

x

�m

�

)) = 2e13

x

�m

0

;

will be a solution of (5.13). A similar equivalence between addition and the

interaction of M

2

, z, and exor has to exist for Equation (5.11b). The example

shows that there exist keys and m-values in practice with a large cluster of m

�

values.

Conclusion

For some values of z it is possible to �nd collision clusters that can be used in

a di�erential attack. For the `weakest' values of z the attack requires only 2

23

chosen texts to recover the key. The previous best known attack on MAA was

a forgery attack which requires about 2

24

chosen texts with 250 trailing blocks

[108]. The problem could be eliminated in several ways: applying the BYT

function to z, updating z in a more complex way or having di�erent values of z

in the equations for x

i

and y

i

.

5.4 Conclusions

In this chapter it was demonstrated that the hypothesis of stochastic equivalence

[69] does not always hold. The consequence is the existence of di�erential char-

acteristics with key dependent probabilities and key dependent input-output
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correlations. The keys for which these relations lead to an attack on the cipher,

are called `weak keys'. By considering key dependent relations and character-

istics it is possible to mount attacks that perform better than the previously

known attacks.

Two attacks on reduced versions of IDEA were presented. The �rst attack

works on IDEA reduced to three rounds and recovers the key by using a set

of linear relations. The relations of the set are chosen such that, for each key,

at least one relation has high correlation values. The attack requires at most

2

29

chosen plaintexts and has a workload of about 2

44

encryptions. The second

attack uses truncated di�erentials and works on IDEA reduced to three rounds,

followed by the output transformation. For 1% of the keys, the attack requires

only 2

40

chosen plaintexts and has a workload of 2

51

encryptions. By using more

plaintexts the attack will recover more keys. Both attacks demonstrate that

successful attacks can be mounted, even if the resistance of the cipher is good

on average. As stated in Section 3.4, the average probability of a characteristic

or a relation is only of approximate value. The attacks have been published in

[14].

The analysis of MAA leads to a similar conclusion. The value of the key

dependent parameter z is essential for the security of the algorithm. Weak values

of z lead to collision clusters that can be used in a key recovery attack. A new

key recovery attack has been presented which requires fewer chosen plaintexts

than the best previously known attack on MAA, which is only a forgery attack.

The results on MAA have been published in [106].
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Chapter 6

Non-Surjective Attack

If it 's provably secure,

it 's probably not.

L.R. Knudsen

An important design criterion for block ciphers is performance. In order to

build on the experience gathered from the cryptanalysis of DES, most designers

preserve the structure of a Feistel network, but suggest new structures for the

round function that exploit in a more e�cient way the present day computer

architectures. In this way they try to achieve a better trade-o� between security

and speed. Examples of such block ciphers are FEAL [88], LOKI91 [17], Blow�sh

[121], and the CAST cipher family [2, 3, 48]. One approach is the use of large

highly nonlinear (or random) S-boxes. This allows the designers to reduce the

number of rounds and optimise the speed of the algorithm, while maintaining or

improving the resistance against di�erential and linear cryptanalysis. However,

reducing the number of rounds may introduce new vulnerabilities.

This chapter focuses on a new attack on Feistel ciphers that exploits a weak-

ness that is introduced by the use of non-surjective or, more generally, non-

uniform round functions. The attack demonstrates that the round function of

a Feistel cipher with six to eight rounds needs to be surjective and su�ciently

uniform. The attack is explained in Section 6.1, and applied in Section 6.2

to some members of the CAST family and LOKI91. These results have been

published in [112, 113].

6.1 General Principle

Firstly the notation is introduced. Next, the attack is presented, followed by an

extension. Afterwards, a chosen plaintext variant is explained.

105
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6.1.1 Notation

Consider a Feistel cipher with R rounds (R even and R � 4), operating on

text blocks of width l. The values s

r

, t

r

and k

r

, r = 0; : : : R are de�ned in

Section 2.1.1. A function is called unbalanced or non-uniform if it does not take

all the outputs in its range equally often. De�ne �

�

as:

�

�

(s

0

; t

0

; k) =

�=2

M

r=1

F (k

2r

� t

2r�1

); � even and � 2 : (6.1)

Under the assumption of independent and uniformly distributed round keys, it

holds that for an unbalanced round function F , the sum �

�

will be unbalanced.

It can be expected that this also holds for most key schedulings. Setting � equal

to R, (6.1) becomes:

�

R

(s

0

; t

0

; k) =

R=2

M

r=1

F (k

2r

� t

2r�1

) = t

0

� s

R

: (6.2)

If not all the values of �

R

have the same probability, a cryptanalyst can gather

statistical information about the plaintext by analysing the ciphertext. In a

known plaintext setting, the value of �

R�2

can provide information about the

key, as will be explained in the following section.

6.1.2 Basic Attack

In the following, the concept of a random function is required. A random

function is de�ned as a function that is selected at random from the set of all

possible mappings from the domain to the range of the function.

Taking the last round out of the sum, (6.2) becomes

�

R�2

(s

0

; t

0

; k) =

R=2�1

M

r=1

F (k

2r

� t

2r�1

) = t

0

� s

R

� F (k

R

� t

R

) : (6.3)

Random non-surjective round functions F will result in a non-surjective �

R�2

for small R. This is quanti�ed in the following lemmas.

Lemma 6.1 A random function with equal input and output size takes on av-

erage a fraction of 1� e

�1

of the possible outputs.

Proof: Denote the number of inputs and outputs by p. The problem can be

described in terms of balls and bins. Every input corresponds to a ball thrown

into a randomly chosen bin (there are 2

p

balls and bins). Of interest is the
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number of empty bins after all the balls have been thrown. The probability of

a bin remaining empty after one ball is thrown is given by 1 � 2

�p

. After 2

p

balls, this probability is (1� 2

�p

)

2

p

. This value quickly approximates e

�1

if p

is large (e.g., for p = 16 the error is less than .001 percent).

Lemma 6.2 Denote by f the fraction of p-bit vectors that are possible outputs

of the round function, and by f

t

the fraction of possible values for �

t

. If the

round function is a random function and has independent inputs in di�erent

rounds then:

f

2

= f and f

�+2

= 1� (1� f

�

� f)

2

p

; � � 2 : (6.4)

Proof: From the de�nition of �

�

:

�

�+2

= �

�

� F (k

�+2

� t

�+1

) :

Variable �

�+2

can take the value x if there exists at least one y such that y is

a possible value for �

�

and y � x is a possible output of F . Conversely, x is an

impossible value for �

�+2

if and only if there exists no such y. For a random

round function with independent inputs, the product rule can be applied to

obtain

1� f

�+2

= (1� f

�

� f)

2

p

;

from which (6.4) follows.

A non-surjective �

R�2

makes the following attack possible. For all k

R

, cal-

culate the right hand side of (6.3) by use of the known plaintext (s

0

; t

0

) and the

ciphertext (s

R

; t

R

). Check whether this is a possible value for �

R�2

. Wrong key

guesses will eventually produce an impossible value for �

R�2

. If there are 2

�

possible round keys k

R

, on average ��= log

2

(f

R�2

) plaintext/ciphertext pairs

are required to determine the right value of k

R

. Indeed, the number m of known

plaintexts can be solved from the equation

2

�

� f

m

R�2

= 1 :

The work factor of the attack can be calculated as follows. Start with 2

�

possible

keys and verify for each key whether it could produce the �rst known plaintext-

ciphertext pair. A fraction of f

R�2

of the keys survives this test. For these

2

�

f

R�2

keys, test whether they could produce the second plaintext-ciphertext

pair, etc. This leads to a work factor of

m�1

X

j=0

2

�

� f

j

R�2

�

2

�

1� f

R�2

: (6.5)
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For small values of �, or when consecutive round keys are strongly related,

several round keys can be searched for at once. In this way, f

R�j

can be used

(where j > 2) instead of f

R�2

, which will make the attack more e�ective, as can

be seen from (6.4) and (6.5). In general, let �(j) denote the number of key bits

that have to guessed if j rounds are peeled o�. Let w(R � j) denote the work

factor of the attack for one key guess, and �(R) the total number of key bits.

The maximum value for j for which the attack is less e�ort than an exhaustive

key search, is then determined by

2

�(j)

w(R � j) < 2

�(R)

;

or

�(j) + log

2

(w(R � j)) < �(R) : (6.6)

6.1.3 Statistical Attack

Equation (6.4) shows that for larger values of R, f

R�2

approaches 1 very quickly,

but �

R�2

will not be uniformly distributed: all outputs are possible, but they do

not occur with the same probability. For still larger values of R, �

R�2

becomes

close to a `random function,' which should be a design goal. The attack can be

modi�ed to deal with surjective but non-uniform functions �

R�2

. Firstly the

extension of the basic attack is described. The computation of the distribution

of �

R�2

and the expected number of known plaintexts is then explained.

Outline

The �rst step consists of computing the relative probabilities of each value of

�

R�2

. Then the right hand side of (6.3) is computed for every k

R

and for every

known plaintext-ciphertext pair. It is then possible to calculate the a posteriori

probability of the key candidates.

By Bayes' rule, the probability Pr(k

R

jt

0

; s

R

; t

R

) that k

R

is the right key,

given t

0

, s

R

, and t

R

, can be expressed as:

Pr(k

R

jt

0

; s

R

; t

R

) =

Pr(k

R

) Pr(t

0

; s

R

; t

R

jk

R

)

Pr(t

0

; s

R

; t

R

)

=

Pr(k

R

) Pr(�

R�2

)

Pr(�

R

)

:

Denote by Pr

i

(k

R

), the a posteriori probability that k

R

is the right key after

the processing of the ith known plaintext (Pr

0

(k

R

) = 1=2

�

). Then

Pr

i

(k

R

) =

Pr

i�1

(k

R

) Pr(�

i

R�2

)

Pr(�

i

R

)

=

1

2

�

i

Y

j=1

Pr(�

j

R�2

)

Pr(�

j

R

)

: (6.7)
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This expression can be evaluated for each key candidate; it assigns to each round

key a probability that can be used to rank the keys according to decreasing

probability. In a practical implementation the logarithms of the probabilities

can be added, rather than multiplying the values.

Distribution of �

R�2

The calculation of the probability of each �

R�2

turns out to be a non-trivial

step. One strategy is to count the occurrences of each �

R�2

for each possible

input of the round functions, but this is infeasible for realistic values of R. A

more convenient strategy uses the Walsh transform to compute the distribution

of �

R�2

from the distribution of its components. Suppose the Boolean vector

y depends on the Boolean vectors v and w in the following way: y = v � w.

Denote by f

k

(x) the distribution of k, i.e. the number of times that k equals x.

The Boolean vector y is equal to x if v = s and w = s � x, and this holds for

all possible values of s. Therefore

f

y

(x) =

X

s

f

v

(s)f

w

(x� s) ;

which means that f

y

is the convolution of f

v

and f

w

. The convolution of func-

tions of Boolean vectors can be calculated by multiplying their Walsh trans-

forms [8]. The Walsh transform of p-bit functions can be computed in O(p 2

p

)

integer operations.

To �nd the distribution of �

R�2

, �rst the Walsh transform of the distribution

of the round function (or equivalently of �

2

) is calculated. This distribution can

be obtained from a counting operation, or it can be calculated by a Walsh trans-

form itself if the round function exors the outputs of several S-boxes (e.g., the

CAST round function, see Section 6.2.1). Since (R� 2)=2 round functions con-

tribute to �

R�2

, the distribution of �

R�2

is equal to the inverse Walsh transform

of the (R � 2)=2th power of the transformed distribution of �

2

.

In this way, a probability for each value of �

R�2

is obtained. However,

to estimate the number of plaintexts, is convenient to have a more compact

representation. De�ne d(r) = d(Pr(�

R�2

)) as the frequency distribution of

�

R�2

, with mean value 2

�p

. Replacing the variable r by its logarithm l =

ln(r) = ln(Pr(�

R�2

)), the distribution d(l) is obtained, with mean value �

ln(2

�p

). The standard deviation is a measure of the imbalance of �

R�2

. A large

standard deviation means that there are values of �

R�2

that occur much more,

or much less frequently, than on average. In the subsequent sections, d(l) will

be called `the distribution of �

R�2

.'
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Estimation of the Number of Plaintexts

Equation (6.7) enables a cryptanalyst to calculate the a posteriori probability

of each round key. If only a small number of known plaintexts are available, it

is very unlikely that the right round key has the highest rank, i.e., the largest

probability. As the number of plaintexts increases the probability that the

right round key gets the highest rank will increase. Now the number m of

known plaintexts that are required for the right key to have the highest rank

with probability 1=e (e is the base of the natural logarithm) will be estimated.

Instead of multiplying probabilities in (6.7), the logarithms of the values will be

added.

In order to estimate this number, it is examined in detail what happens for

a candidate round key

~

k

R

. For each

~

k

R

,

~

�

R�2

=

~

�

R�2

(

~

k

R

) = t

0

� s

R

� F (

~

k

R

� t

R

)

is calculated from the plaintext and the ciphertext and l = ln(Pr(

~

�

R�2

)) is

obtained from the precalculated table and added to

~

k

R

's counter. The idea

is that for the right round key, values of

~

�

R�2

with a higher (logarithm of)

probability, will occur more frequently. Therefore, high values of l will be added

to

~

k

R

's counter more frequently than low values of l. In contrast, for a wrong

~

k

R

,

there is no correlation between the probability of

~

�

R�2

and the value added to

the counter; the increment is chosen more or less at random from the distribution

of �

R�2

. After many plaintexts, the di�erence between a right and a wrong key

is likely to become clear.

If all

~

�

R�2

's occur with the same probability then this whole operation cor-

responds to adding stochastic variables with a distribution equal to the distribu-

tion of �

R�2

. If

~

k

R

is not the right round key then this is actually what happens,

because choosing the wrong round key can be thought of as adding an extra

round instead of peeling one o� [46]. This means that in fact

~

�

R�2

= �

R+2

,

which is almost uniform compared to �

R�2

, since the imbalance is strongly re-

duced as the number of rounds increases. However, if

~

k

R

is the right round key

then

~

�

R�2

= �

R�2

, so that values of

~

�

R�2

with a higher probability, and thus

with a higher l = ln(Pr(

~

�

R�2

)), will occur more frequently. This means that

the adding operation corresponds to adding a stochastic variable with a similar

distribution, but slightly distorted to higher values of l.

For one plaintext, there will be a large overlap between these two distribu-

tions, which makes it almost impossible to distinguish between them. However,

if the procedure is repeated a number of times, each of the two distributions

is convoluted with itself. Let �

w

, �

w

and �

r

, �

r

be the mean and standard

deviation of the distributions for a wrong and the right round key respectively.

After m plaintexts, the distributions can be approximated by normal distribu-

tions. The mean values are multiplied by m, but the standard deviations only
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by

p

m, which implies that the distributions will be easier to distinguish. The

probability that a counter c

w

for a wrong round key is greater than the counter

c

r

for the right round key after m plaintexts is Pr(c

w

> c

r

) = Pr((c

r

� c

w

) < 0).

The probability that c

r

is the largest of all the counters is

(1� Pr((c

r

� c

w

) < 0))

2

p

:

If Pr((c

r

� c

w

) < 0) = 2

�p

then this probability equals e

�1

. The distribution of

c

r

� c

w

has mean m�

r

�m�

w

and standard deviation

p

m�

2

r

+m�

2

w

. Hence,

Pr((c

r

� c

w

) < 0) = 2

�p

m

�

 

m(�

r

� �

w

)

p

m(�

2

r

+ �

2

w

)

!

= 2

�p

m

m =

 

�

�1

(2

�p

)

p

�

2

r

+ �

2

w

�

r

� �

w

!

2

;

where �(x) = (1 + erf(x=

p

2))=2 is the integral from �1 to x of the normal

probability density function, and �

�1

(x) is its inverse. The parameters �

w

and �

w

can be obtained from the distribution of �

R�2

, but for �

r

and �

r

the

`distorted' distribution for the right round key is required. A straightforward

way to obtain an approximation of this distribution is to simulate it. However,

the probability that the right round key 's counter is augmented by a value l as

the result of one plaintext can also be theoretically calculated.

Pr(l) =

X

�

R�2

Pr(lj�

R�2

) Pr(�

n�2

)

=

X

�

R�2

:ln(Pr(�

R�2

))=l

Pr(�

R�2

)

� d(l) Pr(�

R�2

)

� d(l) exp(l) ;

where d(l) is the distribution of �

R�2

, as de�ned in Section 6.1.3. This implies

that for the right round key, the distribution of �

R�2

is multiplied by an ex-

ponential function and a constant factor. The parameters �

r

and �

r

can be

calculated from this new distribution.

6.1.4 A Chosen Plaintext Variant

The principles of the known plaintext attack can be used to mount a chosen

plaintext attack if the round function of the cipher consists of an addition of the
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outputs of the S-boxes. By a careful choice of plaintexts, it is possible to �x the

input to some S-boxes in the �rst rounds. S-boxes with �xed input are called

inactive. The distribution of the output of an inactive S-box is an impulse.

The attack then works as follows. Guess a part of the subkey in the �rst

round, such that for given inputs x and x� x

0

, it becomes possible to calculate

the output di�erence y

0

= F (x)�F (x�x

0

). Typically this means that the part

of the subkey that enters one or two S-boxes has to be guessed. Encrypt several

plaintexts that have the following properties: the only active S-boxes in the �rst

round are the boxes from which the inputs can be calculated by guessing the key

(this gives a condition on t

0

0

); the resulting y

0

is compensated for by choosing

appropriate s

0

0

. This ensures that all S-boxes in round two are inactive, and

that in round three the same S-boxes as in round one are active. The resulting

distribution of �

R

is less uniform than for random plaintexts, provided that the

guess for the round key was correct. By comparing the distributions for all

possible key guesses, the correct key can be determined.

The main advantage of this attack is that it no longer requires extensive

precalculations and storage of huge �

R

-tables. Moreover, it allows the subkey

to be attacked part by part, thereby greatly reducing the required disk space,

the memory usage, and the workload per plaintext. However, the attack requires

about the same number of plaintexts as the known plaintext attack.

6.2 Application to CAST and LOKI91

The CAST design procedure was introduced in [2]. The common feature of all

known members of the CAST family is that the round function uses S-boxes

with fewer input bits than output bits. In [2] it was suggested that the S-

boxes be suggested from bent functions. Later, CAST with random S-boxes

was proposed [48]. For the purposes of the presented attack, this makes no

di�erence.

There are also several varieties of key schedulings for CAST ciphers. The

ciphers from [2, 3] use a 64-bit key, and round keys that have an entropy of

16 bits (this is explained in the next section). The key scheduling of [2] adds

the round key after the S-boxes of the round function. This feature probably

weakens the cipher with respect to the proposal of [3]. In the remainder of this

section the cipher from [3] will be called CAST

16

. Other versions of CAST may

use round keys with 32 bit entropy and will be denoted by CAST

32

.

The attack is applied to CAST

16

and CAST

32

: the complexity of the attack

and the number of required known plaintexts is estimated and veri�ed with

experimental results.

Finally it is explained how to apply the attack to LOKI91.
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# S-boxes f

1 5:96� 10

�8

2 1:53� 10

�5

3 3:90� 10

�3

4 6:32� 10

�1

Table 6.1: Fraction f of possible output values for the combination of 1 to 4

typical CAST S-boxes.

6.2.1 CAST

The round function of a CAST cipher is constructed as follows. De�ne four

tables S

1

; S

2

; S

3

; and S

4

, with eight input and 32 output bits. If b

1

b

2

b

3

b

4

denotes

the four byte input, the output is obtained by adding the output of the four

S-boxes:

F (b

1

b

2

b

3

b

4

) = S

1

[b

1

]� S

2

[b

2

]� S

3

[b

3

]� S

4

[b

4

] :

Since each S-box has only eight input bits, its output can only take 256 values

in G

32

. If the four S-boxes are selected at random, Lemma 6.1 states that the

expected number of possible outputs is (1� e

�1

)� 2

32

. This value can also be

computed from (6.4), since adding the outputs of the S-boxes is equivalent to

concatenating rounds. Table 6.1 gives the fraction f of possible output values

for the combination of 1, 2, 3 and 4 S-boxes.

Some CAST

16

S-boxes are constructed from 8-bit bent functions that are

the Walsh transforms of the concatenation of four 6-bit bent functions. S-boxes

following this design principle were constructed. Typically they have the same

value of f .

The CAST

16

key scheduling is characterised by the following procedure: for

each round, �rstly an `initial value' of two bytes is calculated from the master

key. This calculation is simple for the �rst rounds, and more complicated for

the last rounds. These two bytes are expanded in a nonlinear way to the 32-bit

round key. The entropy of each round key is therefore at most 16 bits. This

enables a cryptanalyst to perform an exhaustive key search for three round keys

at once (see (6.6)).

The basic attack can be applied to a CAST

16

variant, reduced to six rounds.

Equation (6.3) becomes:

�

2

= F (k

2

� t

1

)

= t

0

� s

6

� F (k

4

� t

6

� F (k

5

� s

6

� F (k

6

� t

6

))) � F (k

6

� t

6

):

Value t

0

is part of the plaintext, s

6

and t

6

form the ciphertext, and k

4

, k

5

, and

k

6

are the round keys that are searched. Note that by swapping plaintext and
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6 rounds 8 rounds

4� 16 2

15

2

23

5� 20 2

19

2

27

6� 24 2

23

2

38

8� 32 2

32

2

62

Table 6.2: Estimates for the number of plaintexts for various reduced versions

of CAST

32

.

ciphertext, the same attack can be applied to �nd k

1

, k

2

, and k

3

. The work

factor of the attack is then 1:5 � 2

48

. The number of required texts is only

� log(2

48

)= log(1� e

�1

) � 82. Note that in [48] it is estimated that at least 2

18

known plaintexts are required to break CAST

16

reduced to six rounds with a

linear attack. For CAST

32

it is not feasible to search for several round keys at

once.

Since the sum of two CAST round functions is surjective, the basic attack

is not applicable to more than six rounds. The statistical attack requires a

table of size 2

32

. Although this is not infeasible, an implementation of this

attack is very demanding. Therefore the attack was implemented for several

mini-versions of CAST

32

that use S-boxes of size 4 � 16, 5 � 20, and 6 � 24

respectively. The properties of the 8� 32 S-boxes were approximated by using

bent functions or (for the 5 � 20 case) random functions with bent function-

like imbalance; the experiments indicate that the imbalance of the individual

functions has very little in
uence on the distribution of �

R�2

and consequently

on the e�ectiveness of the attack.

Since it is possible to search for three round keys of CAST

16

at once, an

attack on R rounds of CAST

16

would require about the same number of known

plaintexts as an attack on R � 2 rounds of CAST

32

. Presumably, however, a

much higher work factor is involved in the former case.

The precalculations for �

R�2

composed of six up to twelve S-boxes were

carried out, 4r S-boxes being equivalent to 2(r + 1) rounds. In Figure 6.1,

the distribution of �

R�2

is shown for various numbers of 4 � 16 S-boxes (the

distribution is translated over ln(2

p

) such that it has zero mean). Figure 6.2

shows the resulting estimates for the number of required plaintexts. The results

are summarised in Table 6.2. Based on Figure 6.2, it can be extrapolated that

for CAST

16

with 8� 32 bit S-boxes and eight rounds, 2

32

known plaintexts are

required, and about 2

62

known plaintexts for CAST

32

.



6.2. APPLICATION TO CAST AND LOKI91 115

−0.5 0 0.5
0

0.01

0.02

0.03

0.04

0.05

−0.5 0 0.5
0

2

4

6

8
x 10

−3

−0.05 0 0.05
0

0.5

1

1.5
x 10

−3

−0.05 0 0.05
0

1

2

3

4
x 10

−3

PSfrag replacements

ln(Pr(�

R�2

))

F

r

a

c

t

i

o

n

o

f

�

R

�

2

6 S-boxes

ln(Pr(�

R�2

))

F

r

a

c

t

i

o

n

o

f

�

R

�

2

8 S-boxes

ln(Pr(�

R�2

))

F

r

a

c

t

i

o

n

o

f

�

R

�

2

10 S-boxes

ln(Pr(�

R�2

))

F

r

a

c

t

i

o

n

o

f

�

R

�

2

12 S-boxes

Figure 6.1: Fraction of values of �

R�2

with the same probability as a function

of the natural logarithm of that probability (translated over ln(2

p

)) for reduced

versions of CAST
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Veri�cation

To verify the estimates, the attack was implemented. The attack is very suitable

for a parallel implementation: each slave handles a set of plaintexts, and the

master collects the results from all slaves and draws conclusions. The idle cycles

of 50 workstations were used.

The reduced version with 4� 16 S-boxes and �

R�2

composed of 6 S-boxes,

i.e., 6 rounds with only 2 S-boxes in the fourth round, was veri�ed extensively,

and also the case of eight 4-bit S-boxes. Some results of the former are collected

in Figure 6.3.
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Figure 6.3: Cumulative probability for the rank of the right round key with, as

parameter, the number of known plaintexts (for reduced CAST with six 4� 16

S-boxes).

Also, a number of attacks for ten 4-bit S-boxes, twelve 4-bit S-boxes, six 5-

bit S-boxes, eight 5-bit S-boxes and six 6-bit S-boxes were executed. The attack

on eight 5-bit S-boxes took about one day on the 50 workstations. The major

conclusion of all the experiments is that the estimates made in the previous

paragraph seem quite accurate.

This can also be seen from Figure 6.2, where some experimental results for

four bits are plotted, together with the theoretical estimates. The numbers

plotted are the mean values (and standard deviations) of the number of plain-

texts required to get the �rst ranking for the right round key. For six and

seven S-boxes, the mean is taken over about 100 experiments; for eight, nine

and ten S-boxes it is taken over 30 and for eleven S-boxes taken over only two
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experiments.

Complexity

A �rst parameter is the disk space required for the calculation and storage of

the table of �

R�2

. For l = 32, this calculation requires 256 Kbyte, for l = 48

this increases to 64 Mbyte, to become 16 Gbyte for l = 64.

Other limiting factors are the memory usage and execution time per plaintext

of the actual attack, because of the large number of counters (one for each key

candidate) that have to be in memory and updated for every plaintext. Memory

can be traded o� for time by dividing the attack into multiple passes, considering

only part of the key candidates and/or �

R�2

-values in one pass.

6.2.2 LOKI91

The round function of LOKI91 takes a 32-bit message input and exors this with

a 32-bit round key. These 32 bits are expanded to 48 bits and split into four

parts. Each part enters the 12 � 8-bit S-box. This produces the 8 � 4 = 32

output bits. Note that of the 48 input bits to the nonlinear part, 32 bits are

pairwise equal. In [59] L.R. Knudsen observed that this implies that the output

can only take a fraction of

8

13

of the possible values.

Each round key consists of 32 bits. The key scheduling of LOKI91 is such

that k

2r

is obtained by rotating k

2r�1

over 12 positions to the left. Therefore

it is possible to search for the round keys of two rounds at once, and the basic

attack can be applied to �ve rounds of LOKI91. Since f is about the same for

LOKI91 and CAST, comparable results for the extended attack are expected,

except for the fact that only two rounds can be peeled o�. In [127] the strength

of various reduced versions of LOKI91 against linear and di�erential attacks is

examined. The results are summarised in Table 6.3, together with the estimates

of the strength against the new attack. For 9 rounds or more, the new attack

becomes less e�cient. Note that a di�erential attack requires chosen plaintexts,

while the two other attacks require only known plaintexts.

5 rounds 7 rounds 9 rounds

linear attack 2

23

2

40

2

50

di�erential attack 2

8

2

16

2

30

non{uniform attack 2

6

2

32

2

62

Table 6.3: Comparison of the data complexity of a linear attack, and estimates

for the data complexity of a di�erential attack and the new attack for reduced

versions of LOKI91.
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6.3 Conclusions

A new attack has been presented that is applicable to Feistel ciphers with a small

number of rounds (R � 8), that use a non-surjective round function. The attack

easily breaks six rounds of CAST

16

, requiring 2

32

known plaintexts. By peeling

o� two additional rounds, the number of required plaintexts can be lowered to

82, or eight rounds can be broken with the same number of plaintexts, but with

a much higher work factor. It is estimated that the attack also breaks eight

rounds of CAST

32

if 2

62

known plaintexts are available. The attack leads to the

following design criterion. Feistel ciphers with non-surjective round functions

should use a number R of rounds that is large enough to make �

R�2

surjective,

where the sum �

r

is de�ned in (6.1). In order to counter the statistical attack,

�

R�2

should have a distribution which is close to uniform.

There exist block ciphers that are based on the Luby-Racko� [73] construc-

tion. The construction uses pseudo-random round functions to obtain a pseudo-

random permutation. It is believed that a pseudo-random permutation is a good

block cipher. Designers argue that the pseudo-randomness of the round function

allows the number of rounds of the block cipher to be reduced to four. However,

pseudo-random functions are non-surjective and the attack of this section also

applies to these ciphers. It imposes a lower bound on the number of rounds that

should be used.

With respect to the key scheduling of CAST [3], it can be seen that round

keys with 16 bit entropy are inadequate. The computational cost for a cryptan-

alyst to peel o� several rounds is too low. This makes CAST

16

more vulnerable

to the new attack than LOKI91. CAST

32

with R rounds achieves the same

resistance against the attack as R+1 rounds of LOKI91. The attack on CAST

has been published in [112, 113].
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Block Cipher Design
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Chapter 7

Design Strategy &

Components

The protection provided by encryption

is based on the fact that most people

would rather eat liver than do mathe-

matics.

Bill Neugent

This chapter starts with explaining the Wide Trail design strategy [26]. The

strategy is extended to include resistance to related-key attacks [55] and the

interpolation attack [54]. Since the nonlinear components of block ciphers have

already been studied extensively in the cryptographic literature, this chapter

mainly focuses on the linear components. An important advantage of the Wide

Trail strategy is that it allows block ciphers to be designed with a high and

uniform resistance to linear and di�erential cryptanalysis. The last section

shows how block ciphers can be designed that have exactly one selection of

input and output bits with a strong correlation, while the correlation for the

other selections are weak. This property is actually a trapdoor. This result has

been published in [114].

7.1 Wide Trail Design Strategy

The Wide Trail design strategy was introduced by J. Daemen [26] as a means to

construct cryptographic algorithms that resist di�erential and linear cryptanal-

ysis. After a short historic overview the strategy is explained and the proposed

extensions are formulated.

123
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7.1.1 Historic Overview

The �rst theory behind the design of encryption algorithms can be found in

[122], where C.E. Shannon proposes the building of strong ciphers by alternat-

ing simple substitutions with mixing transformations. The result of the com-

bination is that \any signi�cant statistics from the encryption algorithm must

be of a highly involved and very sensitive type|the redundancy has been both

di�used and confused by the mixing transformation." He observes that while

it is easy to `move' known quantities through the mixing transformations, this

is quite di�cult for unknown key dependent quantities, which are produced by

the substitutions.

Feistel proposes in [36] the connection of small substitution boxes with a

\properly chosen wire-crossing pattern" to provide di�usion. Confusion is pro-

vided by the substitution boxes. The design principles of the DES (partially

revealed to the public world in [21]) give a �rst speci�cation of the requirements

for the S-boxes and the permutation P in order to achieve adequate confusion

and di�usion. Since then, a number of di�erent approaches has been developed.

X. Lai, J. Massey and S. Murphy use a mix of operations over di�erent alge-

braic groups to achieve strong ciphers [68, 69]. L.R. Knudsen and K. Nyberg

have built ciphers with a provable resistance to various forms of cryptanalysis

[96, 97]. The Wide Trail strategy was developed by J. Daemen in [26].

7.1.2 Description

In the Wide Trail strategy, the round transformation is composed of a number

of uniform transformations. Let x denote the text input and k the (round) key

input of the round transformation �[k](x). The input x is divided into q p-bit

blocks x

i

, 0 � i < q. The transformations are:

1. a nonlinear substitution layer 
 operating separately on each p-bit block,

2. a linear di�usion layer � mixing the p-bit blocks, and

3. an a�ne key addition �[k].

Here, only nonlinear substitution layers using p�p S-boxes are considered. The

S-boxes are selected in such a way that there are no nonzero input exors that lead

with high probability to certain output exors, and the input-output correlations

are small. The linear di�usion layer is chosen so that there are no di�erential

characteristics or linear relations over a small number of active S-boxes. The

key addition speci�es how the round keys are mixed with the input of every

round. A fourth important component of a block cipher is the key schedule. It

speci�es how the round keys are derived from the key. The last two operations
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have no role in the original Wide Trail strategy, as described in [26]. The round

transformation is then given by

y = �[k](x) = � � 
 � �[k](x) : (7.1)

The ordering of the di�erent transformations can vary in speci�c designs.

The use of the term `linear' implies a choice concerning the operation that

will be considered as the linear operation: exor, modular addition, division,

: : : . The Wide Trail strategy works for any choice of operation, but a choice

must be made. The results obtained with respect to di�erential cryptanalysis

are then only valid for the di�erence operation corresponding to the chosen

linear operation. Since the exor operation is by far the most common choice

of operation for successful cryptanalysis, in what follows it will be used as the

linear operation.

By considering each component separately, a Wide Trail design becomes

robust. The di�usion layer is selected to have uniform and good di�usion prop-

erties; the S-boxes are selected to have uniform nonlinear properties. The prop-

erties of the components are evaluated without taking the details of their inter-

action into account: there is no attempt made to compensate for weaknesses in

the nonlinear layer by additional properties of the linear di�usion layer, or vice

versa.

7.1.3 Di�erential and Linear Cryptanalysis

The probability of the best di�erential characteristic is often used as a measure

of the resistance of the cipher to di�erential cryptanalysis. As a rule of thumb,

the number of chosen plaintexts that are required for a di�erential attack is

proportional to the inverse of the probability of the used di�erential [10]. The

resistance to linear cryptanalysis is often measured by the highest input-output

correlation [77]. The number of known plaintexts required for a linear attack is

proportional to the inverse of the squared input-output correlation. For most

proposed block ciphers it is di�cult to calculate this probability or correlation.

Usually it is not feasible to calculate all probabilities in order to select the best

one. For some ciphers the search for the best characteristic or linear relation can

be performed by using techniques from arti�cial intelligence (such as branch and

bound or pruning) [7, 80], but in general these techniques are not su�cient to

make the search practical. This is a problem for a designer who wants to verify

the resistance of his design to these two general attacks. On the other hand,

it opens up the possibility of constructing a trapdoor cipher by deliberately

inserting a linear relation that has high deviation (cf. Section 7.5).

The Wide Trail strategy solves this problem by giving an upper bound for

the probability of a di�erential characteristic and for the input-output corre-

lation. The upper bound for the probability of a di�erential characteristic is
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determined as follows. Firstly observe that for the linear di�usion layer and the

a�ne key addition, the output di�erence is determined uniquely by the input

di�erence. The only place where the probability of a di�erential characteristic

is lower than one, is in the inactive S-boxes of the nonlinear layer. If � is the

maximal probability of a nonzero input di�erence leading to a certain output

di�erence, and B is a lower bound for the number of active S-boxes in a di�eren-

tial characteristic, then the probability of a di�erential characteristic is clearly

upper bounded by:

p � �

B

: (7.2)

Since the S-boxes are selected to have a low value for �, and the linear di�u-

sion layer is selected to have a high value for B, this upper bound can be very

low. Note that this upper bound assumes that the rounds are independent (cf.

Section 3.4). While in practice this assumption usually gives a good approxima-

tion, it has to be handled with care, and the following remarks have to be made.

Firstly, if l is the block length in bits of the cipher then for any value of the key,

the probability of any di�erential will either be zero, or an integer multiple of

2

1�l

. Secondly, statistical techniques allow the following upper bound for the

probability of the best di�erential characteristic of a general l-bit block cipher

to be determined [98]:

p � l2

1�l

:

For a reasonable number of rounds, this bound is usually higher than (7.2). A

prudent approach might be to regard the highest of the bounds as an estimate of

the probability of the best di�erential characteristic. The designer should keep

in mind that the fact that all di�erential characteristics have low probabilities,

does not guarantee that the cipher resists di�erential cryptanalysis, because the

success probability actually depends on the probability for a �xed key of the

di�erential.

The input-output correlation can be bounded in the same way. For the

linear layers, every selection of input bits has correlation one with exactly one

selection of output bits, and correlation zero with all other selections. If the

maximal input-output correlation of an active S-box is given by � and B is

a lower bound for the number of active S-boxes in a linear relation, then the

input-output correlation for the cipher is upper bounded by:

c � �

B

: (7.3)

7.1.4 Di�erentials, Linear Hulls & Truncated Di�erentials

The Wide Trail strategy gives upper bounds for the probability of di�erential

characteristics and the input-output correlation of a chain of linear relations
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over the rounds of a block cipher, assuming that the round transformations act

independently. In fact the strategy gives no strict guarantees of the resistance

of the cipher to di�erential and linear attacks, because then the probability of

di�erentials and linear hulls has to be used and the dependency of the rounds

has to be considered. The Wide Trail approach di�ers from the designs with

provable security to linear and/or di�erential cryptanalysis by L.R. Knudsen en

K. Nyberg [96, 97]. It should also be noted that the `provably secure' designs

assume independent rounds and that the security proofs consider only a limited

set of the possible attacks. At the moment neither the Wide Trail strategy, nor

the provably secure approach take truncated di�erentials or new attacks into

account.

However, the Wide Trail strategy emphasises the importance of di�usion as

well as nonlinearity, which are, according to C.E. Shannon [122], both necessary

for a strong algorithm.

7.1.5 Extensions

Mathematical structure

The building blocks of the round transformation can be selected in several ways.

A �rst approach is to put forward a selection criterion and perform a random

search until a candidate has been found that meets the criterion. A second

approach is to use a mathematical construction that guarantees the required

properties of the mappings. The second approach is usually much faster. How-

ever the inherent mathematical structure can also be exploited by the crypt-

analyst. The designer has to ensure that the mathematical structure of the

mappings does not translate to a mathematical structure for the cipher. An

example of an attack that exploits the mathematical structure in the cipher is

the interpolation attack [54]: if the operation of the cipher can be described as

a mathematical function with a small number of key dependent coe�cients then

the cryptanalyst can collect a number of plaintext-ciphertext pairs and solve for

the unknown coe�cients. Once the coe�cients are known, encryption and/or

decryption of other messages can be done at will.

This means that during the design, the di�erent components of the round

function cannot be considered independently: if both exhibit mathematical

structure then the design has to ensure that the structures are not compati-

ble.

Key schedule

The key schedule is an important component for the resistance of the cipher to

related-key attacks or attacks in which part of the key is known. If the block
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cipher is used in the compression function of a hash function, the cryptanalyst

can choose the key. Neglecting the key schedule will almost certainly lead to

weaknesses.

The next sections discuss the required properties and construction methods

for the separate round transformation components.

7.2 Di�usion Layer

In Chapter 3, basic de�nitions are introduced of functions and S-boxes that

operate on bit vectors, i.e. mappings from G

n

to G

m

. These de�nitions are

now extended to mappings from G

p�n

to G

p�m

. (G

p�n

is the vector space of

dimension n, where the vectors have as components p-bit tuples.) The p-bit

tuples are considered as elements from the �nite �eld GF (2

p

). Since the vectors

of G

p�n

can also be considered as elements of G

(pn)

, the vector space of binary

(pn)-tuples, mappings with domain G

p�n

can be studied from two di�erent

viewpoints. Sometimes it will be more convenient to consider the mappings as

Boolean mappings, other times the representation with p-bit elements will be

preferred.

From now on the Hamming weight of a vector means its number of non-zero

components, where a component now has p bits. The Hamming distance of two

vectors is still de�ned as the Hamming weight of their di�erence.

The addition of two elements from GF (2

p

) can be performed by exoring the

individual bits of the elements. This leads to the following lemma.

Lemma 7.1 All functions that are linear over GF (2

p

) can be considered as

S-boxes with component functions that are linear over GF (2), and vice versa.

Proof: The proof follows from the de�nition of a linear function.

f : (GF (2

p

))

n

! GF (2

p

) : x 7! f(x) is linear

m

8x; y 2 (GF (2

p

))

n

: f(x� y) = f(x)� f(y)

m

8x; y 2 (GF (2))

pn

: f

i

(x� y) = f

i

(x)� f

i

(y); i = 1; : : : ;m

m

f

i

: (GF (2))

pn

! GF (2) : x 7! f

i

(x) is linear; i = 1; : : : ;m :

This lemma is used later, when di�usion layers are constructed that are linear

in GF (2), based on codes that are linear over GF (2

p

). An important di�erence

between linear functions from (GF (2))

n

to GF (2) and linear functions from

(GF (2

p

))

n

to GF (2

p

) is the following. If a function f from (GF (2))

n

to GF (2)
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is linear then it can be described as a vector product. There always exists a

vector a 2 (GF (2))

n

such that

f(x) � a � x =

n

M

i=1

a

i

� x

i

:

This property does not hold for linear functions from (GF (2

p

))

n

to GF (2

p

). The

simplest counterexample is the squaring operation. In a �eld with characteristic

q, it holds that (x � y)

q

= x

q

� y

q

[66]. Thus, in GF (2

p

) (x � y)

2

= x

2

� y

2

;

but there exists no a 2 GF (2

p

) such that x

2

� a � x.

The extension of di�erential cryptanalysis to functions operating on p-bit

values is straightforward. A meaningful extension of linear cryptanalysis is less

obvious. The key element for linear cryptanalysis is the concept of correlation.

It is not clear how this concept can be extended and used in GF (2

p

). Therefore

only bitwise linear relations will be considered. To simplify the notation, the

correlation between two functions from (GF (2

p

))

n

to GF (2

p

) will be de�ned

as the maximum of the correlations between all linear combinations of their

component functions:

c(f(x); g(x)) = max

�;�2GF (2

p

)

c(� � f(x); � � g(x)) : (7.4)

7.2.1 Measuring Di�usion

A necessary condition for a block cipher is completeness: every ciphertext bit

has to depend on every plaintext bit and on every key bit. This objective is met

by the block cipher in two steps:

1. The most e�cient way to implement a nonlinear function is usually by

means of table lookups. Since a function with n input bits and m output

bits requires a table of m2

n

bits, n and m are always chosen to be smaller

than l. If the nonlinear layer is implemented with p-bit S-boxes, each of

the output bits is only in
uenced by the p input bits of the S-box from

which it is an output, which depend on a restricted set of key bits and

plaintext bits.

2. The di�usion layer ensures the mixing of the sets, such that after a few

rounds completeness is reached. In the Wide Trail strategy, the p-bit

output from an S-box is considered as one input value for the di�usion

layer. Completeness for the di�usion layer means then that every p-bit

output depends on every p-bit input.

The key addition is not used to provide di�usion.
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The requirement for completeness is a very weak and easily met requirement.

To provide resistance to cryptanalysis it is necessary that every ciphertext bit is

a complex function of all the plaintext bits and all the key bits. In the context

of di�erential cryptanalysis this means that small input changes should cause

large output changes, and conversely, to produce a small output change, a large

input change should be necessary. Here a `small change' means a change in

only a few p-bit values, whereas a `large change' means that many p-bit values

are changed. To provide resistance to linear cryptanalysis there should be no

correlations between linear combinations of a small set of (p-bit) inputs and

linear combinations of a small set of (p-bit) outputs.

In the literature several measures of the di�usion of a mapping have been

proposed.

A mapping �(x) displays the avalanche e�ect [36] if on average one half of

the component functions of �(x) are complemented when one component of x

is complemented.

If complementing one component of x causes every component of �(x) to

complement with probability 0.5, � obeys the strict avalanche criterion (SAC)

[132].

A function f satis�es the propagation criterion of degree k, PC(k) (1 �

k � n), if f(x) changes with probability 0.5 whenever i (1 � i � k) bits of x

are complemented. The function satis�es the propagation criterion of degree k

and order m if any function obtained from f by keeping m input bits constant

satis�es PC(k) [102].

Three problems with the avalanche e�ect and SAC are evident from the

de�nitions. A �rst problem is that only input changes of Hamming weight one

are considered. When larger changes are applied, the situation might be far

worse.

Example 7.1 Consider the mapping

�(x) = y , y

i

=

n

M

j=1;j 6=i

x

j

� x

i

:

It is easy to verify that � satis�es the SAC. However, if two components x

t

; x

u

are changed at the same time, only y

t

and y

u

change with probability 0.5. All

the other components of y remain constant.

A second problem is that the properties are probabilistic. If the di�usion is

good on average, cryptanalysts may be able to exploit an occasion where the

di�usion is much lower than the average value. A third problem is that the

de�nitions only deal with resistance to di�erential attacks, and not with linear

or other correlation-based attacks. The propagation criterion allows the �rst

two problems to be solved by raising k and m. The third problem remains.
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The branch number B of a mapping is a measure that does not su�er from

any of these problems [26]. The branch number is especially useful to measure

the performance of the di�usion layer in a design that follows the Wide Trail

strategy. In order to get a more general result the de�nition of the branch

number of a mapping presented here deviates slightly from the de�nition given

by J. Daemen [26]. It will be discussed under what conditions the de�nitions

are equivalent.

7.2.2 Branch Numbers: Three De�nitions

J. Daemen de�nes the branch number B(�) of a linear mapping � as follows:

De�nition 7.1 (J. Daemen [26]) The branch number of a linear mapping is

given by

B(�) = min

a6=0

fw

h

(a) + w

h

(�(a))g : (7.5)

Here the branch number of a general mapping will be de�ned. It is necessary

to make a distinction between the di�erential and the linear branch number.

De�nition 7.2 The di�erential branch number of a mapping (linear or non-

linear) is de�ned by

B

d

(�) = min

a;b6=a

fw

h

(a� b) + w

h

(�(a)� �(b))g (7.6)

= min

a6=0;b;e

�

(akb)6=0

fw

h

(a) + w

h

(b)g : (7.7)

The following proposition relates the value of B

d

(�) to the worst case di�usion

of � in a di�erential context.

Proposition 7.2 For any iterated block cipher with S-boxes, the number of

active S-boxes in a two-round di�erential characteristic is lower bounded by the

di�erential branch number of the mapping that is used in the di�usion layer.

Proof: Consider two rounds of a block cipher, with di�usion layer �.

�[k

2

] � �[k

1

](x) = � � 
 � �[k

2

] � � � 
 � �[k

1

](x)

Let a; b be two inputs, where w

h

(a� b) = d. Since � and 
 do not mix di�erent

p-bit values, the number of active S-boxes in 
 of the �rst round is given by

w

h

(�[k

1

](a)� �[k

1

](b)) = d, and the number of active inputs of � is

w

h

(
(�[k

1

](a))� 
(�[k

1

](b))) = d :
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Let the number of active outputs of � be denoted by e, where

e = w

h

(�(
(�[k

1

](a)))� �(
(�[k

1

](b)))) :

The number of active S-boxes in 
 of the second round is then also e. Equa-

tion (7.6) guarantees that d+ e � B

d

(�).

For a linear mapping �(a)� �(b) = �(a� b), and (7.6) reduces to (7.5).

De�nition 7.3 The linear branch number of a mapping is de�ned as

B

l

(�) = min

�;�;c(��x;���(x))6=0

fw

h

(�) + w

h

(�)g (7.8)

This de�nition is the equivalent of De�nition 7.2 in linear cryptanalysis. It can

be shown that B

l

(�) gives a lower bound for the number of active S-boxes in

a linear relation. If � is a linear mapping, characterised by the matrix 
 (cf.

Section 3.1.3), then (7.8) can be reduced in the following way.

B

l

(�) = min

� 6=0

fw

h

(�) + w

h

(�

t

(�))g ; (7.9)

where �

t

is the mapping characterised by transposed matrix 


t

(cf. Section 3.1.3).

Note that in general (7.9) is not equivalent to (7.5).

7.2.3 Branch Numbers and Coding Theory

The branch numbers of linear mappings can be studied using the framework of

linear codes over GF (2

p

) [74, 101, 130].

De�nition 7.4 A linear [n; k; d] code over GF (2

p

) is a k-dimensional subspace

of the vector space (GF (2

p

))

n

, where any two di�erent vectors of the subspace

have a Hamming distance of at least d (and d is the largest number with this

property).

The distance d of a linear code equals the minimum weight of any nonzero

codeword. A linear code can be described by each of the two following matrices:

� A generator matrix G for an [n; k; d] code C is a k � n matrix whose rows

form a vector space basis for C (only generator matrices of full rank are

considered). Since the choice of a basis in a vector space is not unique,

a code has many di�erent generator matrices that can be reduced to one

another by performing elementary row operations. If permutation of the

coordinate positions is allowed, it is always possible to �nd a generator

matrix having the form

G

e

= [I

k�k

A

k�(n�k)

] :

This form is called the echelon form, or standard form of the generator

matrix. The code is then in systematic form.
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� A parity check matrix H for an [n; k; d] code C is an (n � k) � k matrix

with the property that a vector x is a codeword of C if and only if

Hx

t

= 0 :

If G is a generator matrix and H a parity check matrix of the same code, then

GH

t

= 0 :

Moreover, if G = [I C] is a generator matrix of a code, then H = [�C

t

I ] =

[C

t

I ] is a parity check matrix of the same code.

The dual code C

?

of a code C is de�ned as the set of vectors that are orthog-

onal to all the vectors of C;

C

?

= fx j x � y = 0;8y 2 Cg :

It follows that a parity check matrix of C is a generator matrix of C

?

and vice

versa.

Codes can be associated with mappings in the following way.

De�nition 7.5 Let � be a mapping from (GF (2

p

))

n

to (GF (2

p

))

n

. The associ-

ated code of �, C

�

, is the code that has codewords given by the vectors (xk�(x)).

The code C

�

has 2

n

codewords and has length 2n.

If � is de�ned as �(x) = x �A, then C

�

is a linear [2n; n; d] code. Code C

�

consists

of the vectors (xk(x �A)), where x takes all possible input values. Equivalently,

the generator matrix G

�

of C

�

is given by

G

�

= [I A] ;

and the parity check matrix H

�

is given by

H

�

= [�A

t

I ] = [A

t

I ] :

It follows from De�nition 7.6 that the di�erential branch number of a mapping

� equals the distance of the associated code C

�

. The theory of linear codes

addresses the problem of determining the distance of a linear code extensively.

This theory can be used to determine the di�erential branch number of a linear

mapping.

Proposition 7.3 (The Singleton bound) If C is an [n; k; d] code, then d �

n� k + 1.
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A code that meets this bound, is called a Maximal Distance Separable (MDS)

code. Applied to an n-dimensional linear mapping, this proposition states that

B

d

� n+ 1 :

The upper bound is easily explained. For every mapping � it holds that w

h

(�(x)) �

n. Since it is possible to choose x such that w

h

(x) = 1, it follows that B

d

(�) �

n+1. Mappings that reach this bound are called optimal (di�erential) di�usion

mappings.

Proposition 7.4 A linear code C has distance d if and only if every d � 1

columns of the parity check matrix H are linearly independent and there exists

some set of d columns that are linearly dependent.

An MDS-code has distance n�k+1, thus every n�k columns of the parity

check matrix are linearly independent. This property can be translated to a

requirement for the matrix A [74]:

Proposition 7.5 An [n; k; d]-code with generator matrix G = [I

k�k

A

k�(n�k)

]

is a maximum distance separable (MDS) code if and only if every square sub-

matrix of A is nonsingular.

Corollary 7.6 All linear optimal (di�erential) di�usion mappings are invert-

ible.

This follows from the fact that A is nonsingular.

The following proposition relates the linear branch number of a linear map-

ping to the dual of the associated code.

Proposition 7.7 If C

�

is the associated code of the linear mapping �, then the

linear branch number of � is equal to the distance of the dual code of C

�

.

Proof: Lemma 3.1 states that the correlation between two linear functions

can take only two values: if the linear functions are di�erent, the correlation

is zero, otherwise it is one. Therefore in (7.8) only the values for (�; �) where

c(� � x; � � �(x)) = 1 have to be considered. From (3.9) it follows that the

correlation is one if

X

x

(�1)

��x����(x)

= 2

n

:

This is equivalent to the requirement that for all codewords (xk�(x)) of C

� � x� � � �(x) = (xk�(x)) � (�k�) = 0;

or (�k�) 2 C

?

. The linear branch number of s is de�ned to be the minimum

weight of the vectors (�; �), which is by de�nition the distance of C

?

.
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Corollary 7.8 The linear branch number of the linear mapping � : x 7! x � A

is equal to the di�erential branch number of the mapping �

t

: x 7! x �A

t

.

Example 7.2 shows that the di�erential and the linear branch number of a

linear mapping need not to be equal.

Example 7.2 Consider the mapping � : x 7! x �A over GF (4), with

A =

2

4

1 0 0

2 1 2

2 2 1

3

5

:

Since H = [A

t

I ] has two equal columns, B

d

(�) = 2. For [A I ], all sets of two

columns are independent, and there are three linearly dependent columns. Thus

B

l

(�) = 3.

There do exist classes of mappings with equal di�erential and linear branch

number. An obvious su�cient condition is the requirement that A be symmetric.

A second class is the mappings that have an associated code that is MDS.

Indeed, if all submatrices of A are nonsingular, then this holds also for A

t

.

Thus all mappings with optimal di�erential di�usion also have optimal di�usion

against linear attacks. A third important class is the mappings with a circulant

matrix A.

De�nition 7.6 An n�n matrix A is circulant if there exist n constants a

1

; : : : ; a

n

and a `step' c 6= 0 such that for all i; j ( 0 � i; j < n)

a

i;j

= a

i+cj mod n

:

If gcd(c; n) = 1 then the branch numbers of � are equal.

7.2.4 MDS-Codes

A well-known subclass of MDS-codes is formed by the Reed-Solomon codes (RS-

codes). RS-codes over the �eld GF (2

p

) can have lengths of up to 2

p

� 1 [74].

RS-codes can be constructed very e�ciently as follows.

Let a codeword b correspond to a polynomial

b(x) =

n

M

i=1

b

i

x

i�1

:

Choose � as a primitive element in GF (2

t

). Then the polynomial

g(x) = (x � �) � (x� �

2

) � : : : � (x� �

n

)



136 CHAPTER 7. DESIGN STRATEGY & COMPONENTS

generates a (2n; n; n + 1)-Reed-Solomon code. The codewords are formed by

the polynomials of degree < 2n that are multiples of g(x).

The standard form of the generator matrix can be constructed in the follow-

ing way [101]. Let a

i

(x) be the remainder after dividing x

i

by g(x):

x

i

= g(x) � q(x) � a

i

(x) :

Then,

x

i

� a

i

(x) = g(x) � q(x)

is a codeword. We take these codewords for i = 2n� 1; 2n� 2; : : : ; n, as rows

of G. It follows that

G = [I

n�n

A

n�n

]

is the standard form of the generator matrix.

MDS codes can also be generated by a random search for the matrix A. Due

to the large number of square submatrices and the non-negligible probability

(2

�p

) that a determinant is 0, this approach is only suitable for small values of

n and becomes computationally infeasible as n grows. The number of square

submatrices is

n

m

=

n

X

i=1

�

n

i

�

2

;

and the expected number of trials is

n

t

= (1� 2

�p

)

�n

m

:

Table 7.1 gives the values of n

m

and n

t

for various values of n, if p = 8.

Note that n

t

can be reduced by looking for codes for which the matrix A

is circulant. In a circulant matrix many of the submatrices are equivalent.

This results in a signi�cant reduction of n

t

. A closed formula for the number

of equivalence classes is di�cult to obtain. Table 7.1 shows the numbers for

n = 1; : : : ; 8, which were all determined experimentally.

7.2.5 Multi-Level Di�usion

In the mappings discussed in the previous sections, every output block can

depend on every input block. Under this condition it is possible to construct

mappings with a high branch number, that guarantee many active S-boxes in

every two-round di�erential characteristic or linear relation. It is possible to use

a combination of incomplete mappings and still obtain adequate di�usion. This
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n n

m

n

t

generic circulant generic circulant

1 1 1 1 1

2 5 3 1 1

3 19 7 1.1 1

4 69 17 1.3 1.1

5 251 41 2.7 1.2

6 923 111 37 1.5

7 3431 309 7 � 10

5

3.4

8 12869 935 7 � 10

21

39

Table 7.1: The number of square submatrices in a generic matrix of order n, the

number of non-equivalent determinants in a circulant matrix of the same order

and the expected number of trials to �nd a matrix which has all submatrices

nonsingular.

section deals with the most simple extension: two-level di�usion. Only the case

of a di�erential characteristic is considered, since the linear case is equivalent.

Two-level di�usion in the n-dimensional vector space proceeds in several

stages. The n inputs of the mappings are divided into n

2

classes of n

1

inputs

each, n = n

1

n

2

. There are two mappings �

1

; �

2

, both incomplete, that will be

used alternately to produce the strong di�usion:

� Mapping �

1

mixes only inputs of the same class; it can be considered as

the parallel application of n

2

mappings h

i

, each having n

1

inputs.

�

1

(x) = (h

1

(x

1

; : : : ; x

n

1

); h

2

(x

n

1

+1

; : : : ; x

2n

1

); : : : ; h

n

2

(x

(n

2

�1)n

1

+1

; : : : ; x

n

))

Mapping �

1

is clearly incomplete and its di�erential branch number is the

minimum of the di�erential branch numbers of the mappings h

i

.

� Mapping �

2

mixes the inputs of di�erent classes. The di�usion of �

2

is

measured in terms of classes rather than in terms of the n individual

inputs. If one class is considered as one input, then the di�usion of �

2

can

also be measured by the di�erential branch number. In the following, B

�

d

will denote the di�erential branch number with respect to classes.

Proposition 7.9 bounds the di�usion in a construction with two-level di�usion.

Proposition 7.9 Consider the following transformation:

A

�

1

;�

2

(x) = 
 � �

1

� 
 � �

2

� 
 � �

1

� 
(x) ;
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where �

1

and �

2

are di�usion mappings and 
 is a nonlinear layer, implemented

with S-boxes. The total number of active S-boxes in a four-round di�erential

over A is lower bounded by B

d

(�

1

)� B

�

d

(�

2

).

Proof: De�ne A

�

1

= 
 � �

1

� 
 and A

�

1

;�

2

= A

�

1

� �

2

� A

�

1

. Proposition 7.2

implies that the number of active S-boxes in the transformation A

�

1

is lower

bounded by B

d

(�

1

). Since �

1

does not mix inputs of di�erent classes, the number

of active classes stays invariant under A

�

1

and the number of active S-boxes is

lower bounded by B

d

(�

1

) times the number of active classes. Thus, the number

of active S-boxes in a characteristic overA

�

1

;�

2

is lower bounded by B

d

(�

1

) times

the sum of the number of active classes before and after �

2

. By de�nition, the

latter sum is lower bounded by B

�

d

(�

2

), which proves the proposition.

Application in a Design

For some applications, the implementation of a di�usion layer that is based on

a complete mapping is not acceptable because of the computational e�ort that

is required to evaluate it. Mappings with good two-level di�usion can provide a

good alternative. An example is given in Chapter 8: the block cipher Square

has a block length of 128 bits, which makes the computation of the result of a

complete mapping very expensive.

The most obvious way to apply the result of Proposition 7.9 is to de�ne a

block cipher with two di�erent round operations, that are used alternately. In

principle this construction is no longer an iterated block cipher. Since most

fast implementations of block ciphers unroll loops, it might be that there are no

practical objections. However, there is a way to unify the two di�erent round

transformations again. De�ne an extra transformation � that permutes the

p-bit values. Let � = � � �

1

. The round transformation becomes:

�[k](x) = � � �

1

� 
 � �[k] � � � �

1

� 
 � �[k](x) : (7.10)

Since 
 operates on each p-bit value separately, it commutes with �:

� � 
(x) = 
 � �(x) :

Also, under �[k] the tuples are transformed independently of one another:

� � �[k](x) = �[�(k)] � �(x) :

Consider now the following transformation, where � is left out to simplify no-

tation:

T = � � � � � � �

= � � �

1

� 
 � � � �

1

� 
 � � � �

1

� 
 � � � �

1

� 


= � � �

1

� � � 
 � �

1

� 
 � � � �

1

� � � 
 � �

1

� 


= � � �

1

� � � A

�

1

;���

1

��

:
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The transformation A is de�ned as in Proposition 7.9, where �

2

equals � �

�

1

� �. The di�usion of the transformation T is then bounded by the results

of Proposition 7.9. Square (cf. Section 8.2) is an example of a cipher with

two-level di�usion, but identical round operations.

In general, t-level di�usion can be accomplished by de�ning t mappings �

i

:

�

1

operates separately on classes of n

1

inputs, �

2

operates on super-classes of

n

2

classes, and so on for �

3

; : : : This can be implemented e�ciently if the round

functions are permitted to vary; if all the round functions have to be equal then

the analysis becomes di�cult.

7.3 Nonlinear Layer

The nonlinear layer provides resistance to linear and di�erential cryptanalysis.

It is implemented with S-boxes. A large number of S-box criteria, sometimes

contradictory, have been published (see, for example, [21, 33, 56, 92, 93]).

As explained above, the Wide Trail strategy uses p � p S-boxes where �,

the maximal probability that a non-zero input exor leads to a certain output

exor, and �, the maximal input-output correlation, are low. Only construction

methods for p� p S-boxes will thus be discussed.

As in the case of the di�usion layer, there are essentially two approaches

possible for generating S-boxes: either generate a set of random S-boxes and

select the instances that perform best with respect to the criterion, or search for

explicit constructions. Section 7.3.1 discusses a method of constructing S-boxes

with optimal nonlinearities. Section 7.3.2 discusses a method of removing reg-

ularities that may result from explicit construction methods, and Section 7.3.3

discusses the results that can be achieved by random search methods.

7.3.1 Explicit Construction

The construction of nonlinear S-boxes has already been discussed extensively

in the cryptographic literature [1, 56, 93]. For S-boxes with the same number

of inputs and outputs, the lowest values for � and � are obtained using the

construction methods presented in [93]. The following mappings are presented:

� s(x) = x

2

k

+1

in GF (2

p

):

This mapping has the following properties: � = 2

�p

�gcd(k; p); if p=gcd(k; p)

is odd, then s is invertible and � = 2

(gcd(p;k)�p)=2

. Note that p=gcd(p; k)

can only be odd if p has an odd factor (p cannot be a power of two). The

component functions and all the linear combinations of the component

functions then have nonlinear degree 2.
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� s(x) = x

�1

in a �nite �eld:

If p is odd, then � = 2

1�p

, otherwise � = 2

2�p

. Also, � � 2

(2�p)=2

. The

nonlinear degree of the component functions and all the linear combina-

tions of the component functions is p� 1.

� s(x) = u

x

in a prime �eld GF (q):

If the order of u is t, then � = q

�1

(1 + (q � 1)=t).

The disadvantage of any explicit construction is that the resulting S-boxes

contain some structure which could be exploited by a cryptanalyst in an in-

terpolation attack [54]. One technique of destroying this structure is to apply

an invertible bitwise a�ne transformation to the output bits of the S-box. In

this way, the description of the mapping s as a polynomial over GF (2

p

) can

be made very complex. Note that any p-bit mapping can be represented as

a polynomial or a rational form in GF (2

p

). Therefore it seems plausible that

the application of an a�ne transformation can make the constructed S-box as

secure as a random S-box against attacks that exploit existing structure.

7.3.2 Modi�cations

Another approach to destroying the structure of a mapping that is constructed

as in the previous section is to apply some random changes to the output. The

disadvantage of this approach is that � and/or � will increase.

Some experiments were performed starting from the mapping s(x) = x

�1

over GF (2

8

) as described in Section 7.3.1. This mapping has � = 4 � 2

�8

and

� = 8 � 2

�6

. In this mapping a number of entries were randomly swapped and

the resulting values of � and � were recorded. For the swapping of two entries,

all possibilities were tried; for the swapping of more entries, the best results out

of 300 000 samples were recorded for each case. Table 7.2 shows the results of

these experiments.

7.3.3 Random Search

Among many cryptographers there is a strongly held belief that the existence of

any structure in the components of a block cipher should be avoided. According

to this line of thought, a good block cipher is a block cipher with as many

randomly selected elements as possible. A consequence of this belief is that

the best S-box is a random S-box. In [98] the average di�erential properties of

permutations are investigated and a bound for the expected value of � is given.

For an m-bit permutation,

lim

m!1

E[�2

m

]

2m

� 1 :



7.3. NONLINEAR LAYER 141

modi�cations (%) � �

0 4 � 2

�8

8 � 2

�6

0.8 4 � 2

�8

9 � 2

�6

1.6 4 � 2

�8

9 � 2

�6

3.1 6 � 2

�8

10 � 2

�6

4.7 6 � 2

�8

10 � 2

�6

6.3 6 � 2

�8

11 � 2

�6

12.5 6 � 2

�8

12 � 2

�6

25 8 � 2

�8

13 � 2

�6

50 8 � 2

�8

15 � 2

�6

Table 7.2: Experimental values of � and � obtained by randomly swapping

entries from the mapping s(x) = x

�1

over GF (2

8

). For the second row, all

possibilities were tried. For the other rows, the best results out of 300 000

samples were recorded.

Often a collection of random S-boxes are generated and evaluated against

some design criteria. The S-box that performs best is selected. In order to get

an idea of what the typical � and � values are for a random S-box, 1.5 million

samples were generated and evaluated. Table 7.3 shows the results. The S-

boxes with the highest resistance to both linear and di�erential cryptanalysis

have � = 10 � 2

�8

and � = 15 � 2

�6

. The experimental results give

E[�2

m

]

2m

=

11:3 � 2

�8

� 2

�8

2 � 8

= 0:71 :

It is an open question as to whether the approach of generate-and-test re-

sults in S-boxes without structure: it might well be that the evaluation criteria

implicitly impose a certain structure on the S-boxes. If this is the case, then the

`randomly' selected S-boxes with the highest performance values with respect

to the criteria would also have the most structure.

Randomly selected S-boxes have a second important problem. If the designer

does not present the user with an unambiguous construction method for the S-

boxes, then the user has to trust the designer that the S-boxes do not exhibit

some hidden properties (trapdoors). In Chapter 8 it is explained how trapdoor

ciphers can be built by using S-boxes that are computationally indistinguishable

from randomly selected S-boxes.

7.3.4 Branch Numbers

The branch numbers of nonlinear mappings can also be calculated and used

as a design criterion. For example, in DES-like ciphers, where the individual



142 CHAPTER 7. DESIGN STRATEGY & COMPONENTS

� � 2

�6

� � 2

�8

8 10 12 14 16 18 20

15 0 0.07 0.07 0.006 0.0001 0 0

16 0.0003 4.77 5.58 0.58 0.04 0.002 0

17 0.002 15.63 20.55 2.24 0.15 0.007 0.0004

18 0.0002 12.21 17.17 1.96 0.13 0.007 0.0005

19 0.0004 4.91 7.31 0.87 0.05 0.003 0

20 0 1.52 2.34 0.28 0.02 0.001 0

21 0 0.41 0.64 0.08 0.004 0.001 0

Table 7.3: Maximum input-output correlation and di�erence propagation prob-

ability of randomly generated 8-bit permutations. The entries denote the per-

centage of the generated mappings that have the indicated � and �.

output bits are permuted to the inputs of di�erent S-boxes in the next round, it

makes sense to have S-boxes with high branch numbers in order to ensure good

di�usion properties.

In the framework of the Wide Trail strategy, the branch numbers of the

S-boxes used in the nonlinear layer are not important. However, it is possible

to use a nonlinear di�usion layer instead of a linear layer. By doing so, the

di�usion layer can be selected from a much larger set of mappings. Also, it can

be argued that a nonlinear mapping is more random-like than a linear mapping.

As argued in the previous section, branch numbers are important parameters

for a di�usion layer.

As already mentioned, the linearity of a mapping is not an absolute notion,

but always used in relation to a speci�c choice of `linear operation'. A di�usion

layer that is linear for one choice will be nonlinear for other choices. However,

without the support from linear coding theory, not much can be said about

the branch numbers of a mapping. There are no general and e�cient methods

known to determine the branch numbers of nonlinear mappings, or to construct

nonlinear mappings with high branch numbers. The only remaining result is

given in the following proposition.

Proposition 7.10 If a mapping s from (GF (2

p

))

n

to (GF (2

p

))

n

is not invert-

ible, then its di�erential and linear branch number are upper bounded by n.

Proof: A mapping s is not invertible if and only if there exist at least two

di�erent vectors x; y such that s(x) = s(y). Since w

h

(x�y) � n, the di�erential

branch number is bounded by:

B

d

(s) � w

h

(x � y) + w

h

(s(x) � s(y)) � n+ w

h

(0) = n :
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A mapping s is not invertible if and only if there exists a non-trivial linear

combination of the output bits that is not balanced [72, p. 350]. This means

that there exists a � such that c(0 � x; � � s(x)) 6= 0, and

B

l

(s) � w

h

(0) + w

h

(�) � n :

Other Choices of Di�erences

Recall the upper bound for the probability of a di�erential characteristic, given

by (7.2):

p � �

B

:

This bound depends on the speci�c choice of the di�erence operation � in the

following way. A di�erent choice for � will change � in an unpredictable way.

However it can be seen that if a box is active for one choice of �, it will be

active for any choice of �. Thus, B stays constant. Note that (7.2) assumes

that the key addition is a�ne. If the key addition is not a�ne (this depends on

the choice for �) then the probability of a di�erential characteristic might be

even further reduced.

7.4 Key Schedule

The key schedule expands the cipher key k to the round keys k

r

; r = 1; : : : R. It

is used to achieve the following goals:

� Provide resistance to attacks in which part of the key is known or guessed

by the cryptanalyst, and against attacks that recover �rst a part of a

round key, and then use this knowledge to attack the rest of the cipher.

� Provide resistance to related-key attacks. In a related-key attack, the

cryptanalyst compares the encryption of the same plaintexts under a set

of keys that di�er only in a few bits. Related-key attacks can be successful

if keys that di�er only in a few bits produce round keys that have a small

and predictable di�erence.

� Provide resistance to attacks where the key can be chosen, e.g., if the

cipher is used as the compression function of a hash function.

� Remove any symmetry between the rounds by ensuring that the distance

between the round keys of any two rounds is large.
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� Remove any symmetry in the round transformation.

The �rst two objectives bene�t from a key schedule with high di�usion, the

last three ask for a key schedule that behaves irregularly with respect to the

components of the round transformation. More generally, the key schedule can

be designed in such a way that when some bits of one round key are known,

it is not possible to calculate many bits of any of the other round keys. The

di�erential attack on the full DES [10] exploits the fact that this calculation of

round key bits can be done quite easily.

The key schedule should also be e�cient for applications that need to change

the key frequently. At the same time, when the round keys corresponding to a

key k are known, the calculation of the round keys for another key k

0

should

not be more e�cient than the original key schedule, so that a cryptanalyst who

performs an exhaustive key search gains no obvious advantages. Two kinds of

key schedules can be distinguished.

Pseudo-Random

The cipher key is used to seed a pseudo-random noise (PRN) generator. The

round keys are the output of the PRN generator. Examples are RC5 [115],

CAST (some versions) [4], Blow�sh [121] and Shark [111]. The latter two use

the encryption algorithm itself as a PRN generator.

This scheme has several advantages. It is very easy to make the key length

variable. The relation between the cipher key and the round keys is quite

complex. This removes symmetry and provides resistance against the aforemen-

tioned attacks, in the sense that it becomes almost impossible for a cryptanalyst

to describe the dependencies between the round keys of di�erent rounds or the

round keys derived from di�erent cipher keys. It is, however, equally di�cult

for the designer to `prove' the resistance.

The most important disadvantages are that the schemes are slow and that

the round keys cannot be generated during the encryption process, which can

pose a problem for implementations on processors with a very limited amount

of memory (such as smart cards).

Key Evolution

The basic construction takes the cipher key as the �rst round key. The keys

of the next rounds are derived from the previous round key by means of a

transformation  , called the key evolution:

k

0

= k

k

i

=  (k

i�1

) :
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A more general construction uses an initial transformation ', state variables �

i

,

and a selection function �. The state variables are produced from the cipher

key by means of the transformations ' and  . The round keys are produced by

selecting bits from the state variables; as follows:

�

0

= '(k)

�

i

=  (�

i�1

)

k

i

= �(�

i

) :

The transformations  ; ' can take many forms: bit permutations (e.g., the DES

[39]), rotations (e.g., IDEA [69], LOKI [17]), addition with a round constant

(e.g., Threeway [24]), or more general linear (e.g., Square [27]) or nonlinear

functions (e.g., Safer [75], CAST [3] (other versions)). In order to counter

related-key attacks, the transformations  and ' have to be invertible.

The advantages of this scheme are that the key evolution  and the selection

� can be made fast and simple, hence the round keys can be generated as the

encryption proceeds. Similarly to Section 7.2, coding theory can be used to

prove properties of the key schedule. Consider the code C

k

, de�ned as

C

k

= f(�('(k))k�( ('(k)))k�( ( ('(k)))k : : : )g : (7.11)

The distance of C

k

gives the minimum di�erence between the round keys of two

di�erent cipher keys.

A disadvantage of the key evolution scheme is that the structure may also

be exploited in attacks.

7.5 Trapdoors

A trapdoor cipher contains some hidden structure; knowledge of this structure

allows a cryptanalyst to obtain information on the key or to decrypt certain

ciphertexts; without this trapdoor information, the block cipher seems to be

secure. Researchers have been wary of trapdoors in encryption algorithms ever

since the DES [39] was proposed in the seventies [124]. In spite of this, no

one has been able to show how a practical block cipher with a trapdoor can

be constructed. For most current block ciphers it is relatively easy to provide

strong evidence for the non-existence of full trapdoors. A full trapdoor is de�ned

to be some secret information which allows a cryptanalyst to obtain knowledge

of the key by using a very small number of known plaintexts, no matter what

these plaintexts are, or what the key is.

This section presents several methods of constructing block ciphers with a

partial trapdoor, i.e. a trapdoor that does not necessarily work for all keys, or
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that gives a cryptanalyst only partial information on the key [114]. It is demon-

strated that for certain block ciphers, trapdoors can be built-in that make the

cipher very susceptible to linear cryptanalysis; however, �nding these trapdoors

can be made very hard, even if the general form of the trapdoor is known. A

trapdoor is said to be detectable (undetectable) if it is computationally feasible

(infeasible) to �nd even if the general form of the trapdoor is known.

Finally, it is demonstrated how such a trapdoor can be used to design a

public key encryption scheme based on a conventional block cipher.

7.5.1 Trapdoor m� n S-boxes

In this section the construction and hiding of trapdoors in S-boxes is discussed.

Construction

The construction starts with an m� (n� 1) S-box S(x). The n� 1 component

functions f

i

, i = 1; : : : ; n, i 6= q are selected randomly (or following an arbi-

trary design criterion). Parameter q can take any value between 1 and n. The

trapdoor m�n S-box T (x) is derived from S(x) by adding an extra function in

the following way. An n-bit Boolean vector � is chosen with �

q

= 1, then f

q

is

chosen such that

f

q

(x) =

n

M

i=1;i 6=q

�

i

� f

i

(x) ; (7.12)

with probability p

T

. Now,

� � T (x) = 0 (7.13)

holds with probability p

T

(�). This is equivalent to a correlation

c

T

(�) = 2 � p

T

(�)� 1

between the output bits that are selected by �. The trapdoor information is the

vector �.

Hiding the Trapdoor

If the S-box is claimed to be randomly selected according to a uniform distri-

bution from all m � n S-boxes, then it is not di�cult to hide a trapdoor in

it. Indeed, for large values of m and n, the function f

q

(x) is computationally

indistinguishable from a randomly selected one. Firstly, it is proven that this

construction in fact introduces only one �-vector with a high correlation value,

not accompanied by a range of �-vectors with `slightly smaller' correlation val-

ues. The di�culty of �nding this trapdoor vector is then discussed.
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Introducing no more than one � with high correlation: Suppose that

S(x) is an m� (n� 1) S-box with input-output correlations bounded by �: for

all n-bit vectors 
, c

S

(
) � � : Consider now the m� n S-box T (x) that results

from adding f

q

(x) to S(x). For all 
 with 


q

= 0 it holds that

c

T

(
) = c

S

(
) � � ;

so only the cases where 


q

= 1 remain. If p

T

= 1, then � � T (x) = 0 and


 � T (x) = (
 � T (x))� (� � T (x))

= (
 � �) � T (x) : (7.14)

Since 


q

� �

q

= 0, for all 
 6= �,

c

T

(
) = c

S

(
 � �) � � : (7.15)

In practice, (7.14) holds with probability p

T

< 1 and (7.15) may not hold.

In this case, consider the S-box T

0

(x) that results from (7.12) if p

T

= 1. All

correlations of T

0

(x) are less than �. Thus T (x) can be thought of as being

constructed by applying (1 � p

T

) � 2

m

random changes to one component of

T

0

(x). The probability that these random changes to the random S-box will

result in a signi�cant change of � is very small.

Recovering � If a cryptanalyst suspects a relation of the form (7.13), then the

2

n

� 1 non-zero values of � can be exhaustively examined. For each value of �,

verifying p

T

requires the computation of a Walsh-Hadamard transform on anm-

bit Boolean function [8], which requires O(m�2

m

) operations. If (m;n) = (8; 32)

this is feasible and the trapdoor is detectable, but for (m;n) = (8; 64), this

requires about 2

64

Walsh-Hadamard transformations on 8-bit functions, which

is currently quite hard. For (m;n) = (10; 80), an exhaustive search is currently

not feasible. The speed of search can possibly be increased by lattice methods

(such as LLL [71]) or coding theory techniques, but the applicability of these

techniques is still an open problem.

The search for the �-vector that has the highest correlation is equivalent

to the problem of determining a parity function in the presence of noise. The

Parity Assumption [13] suggests that this problem is probably NP-hard. This

classi�cation only deals with the general problem; speci�c instances might be

easier to solve. For instance, if p

T

is very close to one, then it is possible to use

Gaussian elimination to solve the problem.

De�ne the n Boolean vectors a

j

, j = 1; : : : ; n, as a

j

i

= f

j

(i), i = 0; : : : 2

m

�1.

Equation (7.12) can then be translated into

n

M

i=1

�

i

� a

i

= � : (7.16)
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If (7.12) holds with probability one, or p

T

(�) = 1, then � = 0. In this case the

a

i

's are linearly dependent and the linear relation between the vectors can be

recovered in a very e�cient way using Gaussian elimination on (7.16). If the

probability of (7.12) is smaller than one, then the vectors a

i

are independent;

� 6= 0 is unknown to the cryptanalyst, and the Hamming weight of � is given by

w

h

(�) = 2

m

(1� p

T

) :

The cryptanalyst can still try to recover � by guessing a value for � and solving

the set of Equations (7.16). Equation (7.16) will only have a solution when the

guess for � is correct. A better strategy for the cryptanalyst may be to use the

following equations:

n

M

i=1

�

i

� a

i

=

d

M

i=1




i

� �

i

: (7.17)

The d vectors �

i

are guessed by the cryptanalyst. If the unknown � can be

expressed as a linear combination of the vectors �

i

, then the cryptanalyst can

hope to �nd the trapdoor by solving (7.17) for � and 
. The probability that �

is a linear combination of the d vectors �

i

increases with d.

If the �

i

vectors are linearly independent, then they generate a vector space

of size 2

d

. To simplify the discussion, only the case of a large positive input-

output correlation is considered here. In that case the Hamming weight of � will

be low. Also it will be assumed that all the �

i

-vectors have Hamming weight

one. The number of vectors in a d-dimensional space with Hamming weight

� D is given by

D

X

k=1

�

d

k

�

:

Table 7.4 shows the numerical values for several choices of D and d.

For example, with a 10� 40 S-box, there are 2

10

inputs. For each input the

equations may or may not hold, resulting in a number of 2

2

10

possible �-vectors;

2

202

of them have Hamming weight � 32. If d = 64, then the probability

p

lc

that � is a linear combination of d randomly chosen �

i

vectors is equal to

2

63

=2

202

. The work factor of this algorithm is determined by p

lc

and by the

work necessary to solve (7.17), which is O((2

m

+ n + d)

3

) (note that the best

asymptotic algorithms reduce the exponent from 3 to 2.376 [20]).

It is possible to increase p

lc

by increasing d. However, if d becomes larger

than a certain threshold value, then spurious solutions for � will start to appear

that have a large Hamming weight. These unwanted solutions correspond to

� vectors with low correlation values. This e�ect limits the use of Gaussian

elimination. This algorithm will be be more useful than exhaustive search for

� if D and n are small, and m is large.
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D d = 64 d = 128 d = 256 d = 1024

1 2

6

2

7

2

8

2

10

10 2

37

2

44

2

58

2

78

20 2

55

2

68

2

98

2

139

32 2

63

2

86

2

136

2

202

40 2

64

2

92

2

156

2

240

Table 7.4: The number of vectors in a d-dimensional space with Hamming weight

� D.

Bent Functions

The construction method can be extended to deal with additional constraints

imposed on the functions f

i

(x). For example, in some block ciphers (such as the

CAST family [2]), it is necessary that the component functions f

i

(x) are bent

functions. The Maiorana construction for bent functions [35] can then be used

to obtain an S-box satisfying Property (7.13): an m-bit bent function f(x) (m

is even) is obtained from an m=2-bit permutation �(y) and an arbitrarym=2-bit

function g(z) as follows:

f(x) = f(y; z) = �(y)� z � g(z) :

Here `�' denotes multiplication in GF (2

m=2

). If two component functions f

i

(x)

and f

j

(x) are derived from the same permutation �(y) then,

f

i

(y; z)� f

j

(y; z) = g

i

(z)� g

j

(z) ;

which can be chosen arbitrarily close to a constant function. Hiding (7.13) in

a bent function based S-box can be done as follows. A � with even Hamming

weight is chosen randomly. The set of indices where �

i

= 1 is divided arbitrar-

ily into pairs. For each pair of indices a di�erent mapping x 7! (y; z) and a

di�erent permutation � are selected. The m=2-bit functions g

i

(z) are de�ned,

and extended to full m-bit functions by adding zero values. It then follows that

� � T (x) =

m

M

i=1

�

i

� g

i

(x) = 0

with probability p

T

.

This construction shows that it is possible to �nd a set of bent functions

that sum to an almost constant function.
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7.5.2 Trapdoor Ciphers

This section proposes several constructions for trapdoors in block ciphers start-

ing from the building blocks, i.e., the round functions.

Trapdoor Round Functions

Trapdoors in S-boxes can be extended to trapdoors in the round function of a

Feistel cipher [37]. The round functions of variants on CAST [48] and LOKI91

[17] are considered.

tCAST: The CAST ciphers are described in Chapter 6. Using four S-boxes

with the same trapdoor � (but with a di�erent value of c

T

, denoted by c

T

i
),

� � F (x

1

; x

2

; x

3

; x

4

) =

4

M

i=1

� � T

i

(x

i

) :

Hence some output bits of the round function have a correlation

c

F

= c

T

1

c

T

2

c

T

3

c

T

4

:

As previously mentioned, 8�32 S-boxes can be checked for this type of trapdoor.

However, if CAST is extended in a natural way to an 128-bit block cipher

by using 8 � 64-bit S-boxes, then �nding this trapdoor becomes very di�cult.

The technique can be extended to CAST variants where the exor operation is

replaced by a modular addition or multiplication.

tLOKI: The expansion in the round function of LOKI91 [17] allows for a

subtle trapdoor, not visible in the individual S-boxes, but only in the round

function.

The round function of LOKI91 uses the same 12� 8 S-box four times, and

is de�ned as:

F (x

1

; : : : ; x

32

) = P (S(x

29

; x

30

; x

31

; x

32

; x

1

; : : : ; x

8

) k

S(x

5

; x

6

; : : : ; x

16

) kS(x

13

; x

14

; : : : ; x

24

) kS(x

21

; x

22

; : : : ; x

32

)) :

In this analysis the bit permutation P is not relevant and will be ignored.

Since some of the bits are used as input to the S-boxes twice, it is possible

to hide a trapdoor in this round function. The trapdoor involves nonlinear

functions of the bits that are used twice. Note that the use of nonlinear relations

together with a linear relation has already been studied by L.R. Knudsen and

M. Robshaw [64]. Let a

1

(x), a

2

(x), a

3

(x), and a

4

(x) be four 8-bit (nonlinear)
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Boolean functions and � = �

1

k�

2

k�

3

k�

4

a 32-bit Boolean vector. Suppose the

following relations hold with probabilities p

1

, p

2

, p

3

, p

4

respectively:

�

1

� S(x

1

; : : : x

12

) = a

1

(x

1

; x

2

; x

3

; x

4

)� a

2

(x

9

; x

10

; x

11

; x

12

)

�

2

� S(x

1

; : : : x

12

) = a

2

(x

1

; x

2

; x

3

; x

4

)� a

3

(x

9

; x

10

; x

11

; x

12

)

�

3

� S(x

1

; : : : x

12

) = a

3

(x

1

; x

2

; x

3

; x

4

)� a

4

(x

9

; x

10

; x

11

; x

12

)

�

4

� S(x

1

; : : : x

12

) = a

4

(x

1

; x

2

; x

3

; x

4

)� a

1

(x

9

; x

10

; x

11

; x

12

) :

The trapdoor is based on the fact that the nonlinear functions are all used

twice with the same input bits, and thus cancel out. The correlation between

the output bits selected by

� � F (x

1

; : : : ; x

32

) = �

1

� S(x

29

; : : : ; x

8

) � �

2

� S(x

5

; : : : ; x

16

)

� �

3

� S(x

13

; : : : ; x

24

) � �

4

� S(x

21

; : : : ; x

32

) ;

is now given by (2p

1

�1)(2p

2

�1)(2p

3

�1)(2p

4

�1). For the parameters of LOKI91

this is probably a detectable trapdoor, at least for someone who knows what

to look for. Again, larger block sizes and S-boxes would make such trapdoors

harder to detect.

Trapdoor Ciphers

The trapdoor round functions de�ned above can be used to construct a trapdoor

cipher. The resulting cipher will have iterative linear relations that approximate

the output of every other round. For a cipher with R rounds, about R=2 round

approximations are required.

For example, consider a version of tCAST with 16 rounds, block size 80

bits, and using four 10 � 40 S-boxes. If p

T

= 1 � 2

�5

then the round key of

the �rst and the last round can be recovered using a linear attack [80], using

approximately 875 known plaintexts. Since the Hamming weight of � is 32, the

Gaussian elimination technique to �nd the trapdoor will not work faster than

exhaustive search.

7.5.3 Extensions

The trapdoors considered here, all use `type II' linear relations, as de�ned in

[79]: correlations that exist between the output bits of the round function. It

is also possible to hide `type I' linear relations: correlations between input and

output bits of the round function. For example, S-boxes can be constructed

such that

� � S(x) = � � x (A)

and � � S(x) = � � x (B) ;
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with high probability. It is easy to see that these relations can be concatenated

in the following way: AB � BA � AB � : : : The main advantage of this type

of relation is that there are more of them than the number of type II relations:

2

n+m

instead of 2

n

. If (m;n) = (8; 32), as in CAST, then there are already 2

40

cases to verify.

When building the trapdoor into the round function of tLOKI, the fact that

in LOKI91 the key is added before the expansion is used. In the DES, the key is

added after the expansion; in this case trapdoors can also be introduced. A �rst

approach consists of choosing the functions a

i

(x) as linear functions. In this

way the absolute value of the correlation between bits is independent of the key.

However this imposes a severe restriction on the number of possible trapdoors,

which makes them easy to detect. (The DES was checked for these trapdoors,

but none was found.) Another option is to hide several key dependent trapdoors.

The key schedule could be carefully adapted in such a way that only a small

number of key bits have an in
uence.

In a similar way, di�erentials can be hidden in block ciphers, in order to

make them vulnerable to di�erential cryptanalysis [10]. However, exploitation

of such trapdoors requires chosen, rather than known, plaintexts, which is much

less practical.

7.5.4 Public Key Encryption

Besides the obvious use by government agencies for law enforcement purposes,

trapdoor block ciphers can also be used for public key cryptography. For this

application, a block cipher with variable S-boxes is selected and made widely

available (it is a system-wide public parameter). Bob generates a set of S-boxes

with a secret trapdoor. These S-boxes form his public key. If Alice wants to

send a con�dential message to Bob, then she generates a random session key,

encrypts her message and a �xed set of plaintexts, and sends the ciphertexts to

Bob. The set of plaintexts can be �xed, or can be generated from a short seed

using a pseudo-random bit generator. Bob uses the trapdoor and the known

plaintexts to recover the session key and decrypts the message.

There seems to be no obvious way to extend this construction to digital

signatures.

7.6 Conclusions

The Wide Trail strategy of [26] was developed to design cryptographic algo-

rithms that resist linear and di�erential cryptanalysis. In this chapter the strat-

egy was extended and construction methods for the di�erent components were

developed.
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The framework of linear codes over a �nite �eld GF (2

p

) enables the e�cient

construction of di�usion layers with strong di�usion properties. A code C

�

can

be associated with every mapping �, where

C

�

= f(xky) j y = �(x)g:

If the mapping � corresponds to a matrix multiplication,

�(x) = x � A;

then the associated code C

�

is a linear code. The distance of C

�

is equal to the

di�erential branch number of �. The distance of the dual code of C

�

is equal to

the linear branch number of �. If C

�

is a Maximum Distance Separable code,

then � has optimal di�usion properties. Reed-Solomon codes are an example of

MDS-codes that can be constructed very easily and have the typical dimensions

that are required for the di�usion layer of a block cipher. Mappings with optimal

di�usion are always complete mappings. The di�usion of incomplete mappings

can never be as fast as for MDS-codes. Multi-level di�usion constructions are a

means of combining incomplete mappings in such a way that over a number of

rounds that depends on the level of di�usion a well-de�ned amount of di�usion

can be guaranteed.

The construction of nonlinear S-boxes has already received a great deal of

attention in the cryptographic literature. Algebraic constructions have the dis-

advantage that they exhibit internal structure which might be exploited in an

interpolation attack. This structure can be removed by applying a�ne mappings

to the output, which conserve the nonlinear properties, or by applying nonlinear

modi�cations, which usually weaken the nonlinear properties. It is also possible

to generate S-boxes at random and test them against some nonlinearity criteria.

However, it remains an open question as to whether S-boxes generated in this

way exhibit less structure than (modi�ed) algebraic constructions.

The key schedule originally had no place in the Wide Trail strategy. However,

it is necessary to include it in order to provide resistance to related-key attacks,

or when considering the case that a block cipher is used as the compression

function of a hash algorithm. Two approaches are possible. The �rst approach

uses the key as a seed for a pseudo-random noise generator; the round keys are

derived from the output of the PRN generator. This construction is di�cult to

analyse and hopefully also di�cult to cryptanalyse. The second approach is to

derive each round key from the key by means of a few a�ne operations, rotations

and permutations. This approach has two advantages: the key setup time is

usually much smaller, and the theory that was developed for the di�usion layers

can also be applied here, e.g., to �nd the minimum distance between round keys

derived from a di�erent key.

The last section of this chapter discussed a way of hiding trapdoors in

random-looking S-boxes. The basic construction introduced a high correlation
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between some of the output bits of the S-boxes. If the dimensions of the S-boxes

are su�ciently large (e.g., 10�80), then it is impossible to detect the trapdoor.

A second method uses the expansion function of the round transformation to

hide a trapdoor. The conclusion is that a user cannot trust a random S-box

that has been generated by someone else, unless the generation process is clearly

explained. If the algorithm as a whole is secret, like Skipjack, then the problem

is even worse. The results of this section have been published in [114].



Chapter 8

Block Cipher Proposals

It is your job to devise a code that is

so di�cult that your opponent cannot

break it. At the same time, you try to

break your opponent's code, using the

minimum number of moves.

This chapter presents two block ciphers, published in [111, 27, 28]. The

ciphers are constructed following the Wide Trail design strategy (cf. Chapter 7

and [26]), and in the light of the remarks from Chapter 7.

8.1 Shark

Shark [111] is an iterated block cipher. It uses highly nonlinear S-boxes and a

Reed-Solomon code to guarantee a good di�usion. The cipher resists linear and

di�erential cryptanalysis after a small number of rounds. Shark is oriented

towards 64-bit architectures.

8.1.1 Structure

Shark has a block length of 64 bits, but it can easily be extended to larger

block lengths. The key length is variable; it is advised to use a key length

between 64 and 128 bits. Shark is not a Feistel cipher, but uses a uniform

round transformation, consisting of three operations, selected using the Wide

Trail strategy: a nonlinear substitution 
, a linear di�using layer �, and an a�ne

key addition �. The arrangement of the three operations is shown in Figure 8.1.

155
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Figure 8.1: The structure of Shark. The cipher uses a linear key addition �[k

r

],

a nonlinear substitution 
 and a linear di�usion layer �.
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The nonlinear substitution 


Shark uses eight instances of the same 8 � 8 invertible S-box, based on the

mapping s(x) = x

�1

over GF (2

8

) and given by:


(x) = (S[x

1

]; S[x

2

]; : : : ; S[x

8

]) :

The maximum entry in the exor-table of the S-box is four (except from the trivial

entry at (0; 0)), or � = 2

�6

and the maximal correlation � = 2

�3

. This is the only

construction from Section 7.3.1 that can be used to produce invertible mappings

with the given dimensions. In order to get a more complicated description of

the mapping and to distort other internal structure caused by the construction

method, the output bits are transformed by an invertible a�ne transformation

in (GF (2))

8

.

The di�usion layer �

The di�usion layer � is a linear mapping from (GF (2

8

))

8

to (GF (2

8

))

8

. It is

based on a [16; 8; 9]-Reed-Solomon-code: � can be written as a matrix multipli-

cation,

�(x) = x � A; (8.1)

where the matrix A is the right hand side of the standard form of the gener-

ator matrix of the RS-code. As explained in Section 7.2.3, this construction

guarantees that the branch number of � is 9.

The key addition �[k

r

]

The basic version of Shark exors the 64-bit round key with the round input.

If c

k

denotes the vector of 8-bit components that is de�ned by k, then the key

addition is given by

�[k](x) = x� c[k] :

This method is fast and uniform and there are no weak keys, in the sense that

the nonlinear layer and the di�usion layer have the same properties for all keys.

There is also an extended version of Shark where the round keys have 128

bits. In this version every key k corresponds to an 8 by 8 diagonal matrix B[k]

and a vector c[k]. The key addition is then de�ned as:

�[k](x) = x �B[k]� c[k] :

The matrix B[k] has to be invertible. If this is accounted for, there are no weak

keys. The advantage of this method is that the round key space is much larger;
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this provides resistance against attacks where one round key has to be guessed

by the cryptanalyst. The computational overhead, however, is signi�cant. In

Section 8.1.2 it is explained how to implement this variant in an e�cient way.

Properties

In the next section the following properties of the key addition and the di�usion

operation are used to develop an e�cient implementation:

1. For every key k there is a key l such that �[k]

�1

� �[l]. This key l is given

by B[l] = B[k]

�1

and c[l] = c[k], and is denoted k

�1

.

2. The order of the key addition and the di�usion operation can be inter-

changed:

� � �[k](x) = (x � B[k]� c[k]) � A

= x � A � A

�1

�B[k] �A� c[k] � A

= �[t

�

(k)] � �(x) : (8.2)

The operation t

�

is de�ned as follows:

t

�

(k) = l , B[l] = A

�1

�B[k] � A and c[l] = c[k] � A :

3. If B[k] is the identity matrix, then k

�1

= k and t

�

(k) � �(k).

Key Schedule

Shark uses a key schedule based on a pseudo-random noise generator (cf. Sec-

tion 7.4). The cipher key is concatenated with itself until it has a length of

7 � 64 bits, or 7 � 128 bits for the extended version. This string is encrypted with

Shark in CFB-mode [52], using a �xed key. The �rst 448 bits of the output

form the round keys c[k

r

]. For the extended version, the next 448 bits are used

to form the diagonal elements of the matrices B[k

r

]. If one of these elements is

zero, then it is discarded and all the following values are shifted down one place.

An extra encryption of the all-zero string is added at the end to provide the

extra diagonal elements. The �xed key used during the key schedule is formed

in the following way. The matrices B[k

r

] are equal to the identity matrix. The

vectors c[k

r

] are the �rst 7 entries of the expanded substitution table T

0

, that

will be de�ned in Section 8.1.2.

The Cipher Shark

The round transformation of Shark is denoted by �[k] and given by:

�[k] = � � 
 � �[k] :
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Figure 8.1 shows that Shark consists of 6 rounds, followed by an extra key

addition and an extra di�usion layer, which is the inverse of the round di�usion

layers. The encryption function is given by

Shark[k] = �

�1

� �[k

6

] � �[k

5

] � �[k

4

] � � � � � �[k

0

] : (8.3)

The purpose of the extra key addition is to prevent a cryptanalyst from peeling

o� the last round. The extra di�usion layer is required to make the structure

of the decryption similar to the structure of the encryption. Section 8.1.2 ex-

plains how the di�erent operations can be combined in table-lookups, in order

to optimise the performance.

8.1.2 Implementation

At �rst, the complexity of the di�usion operation of Shark seems to be a serious

drawback. Instead of a simple permutation or a few exor operations, a matrix

multiplication is required to calculate the output of the di�usion layer. This

section shows how the di�usion operation can be combined in an e�cient way

with the S-boxes.

Let the row vector x = (x

1

; : : : ; x

8

) represent the input of a round, and y

the output. Layer � maps x to x �A. The entries of the matrix A are denoted by

a

i;j

, a row is denoted by a

i

. The combined operation � � 
 can then be written

as:

y = (S(x

1

); S(x

2

); : : : ; S(x

8

)) � A

= S(x

1

) � a

1

� S(x

2

) � a

2

� � � � � S(x

8

) � a

8

: (8.4)

Here `�' is used to denote addition of elements of GF (2

8

) and of vectors of

(GF (2

8

))

8

; `�' is used to denote multiplication in GF (2

8

) and the scalar mul-

tiplication of a vector by an element of GF (2

8

). We now de�ne the expanded

substitution tables T

i

(x):

T

i

(x) = S(x) � a

i

= (S(x) � a

i;1

; S(x) � a

i;2

; : : : ; S(x) � a

i;8

) :

Equation (8.4) then becomes:

y = T

1

(x

1

)� T

2

(x

2

)� � � � � T

8

(x

8

) : (8.5)

This operation requires only eight table lookups and seven exor operations (of

64-bit values). The memory requirements increase: the eight T -tables each have

2

8

entries of eight bytes. This sums to 32 kilobytes, which should be compared

with a straightforward implementation of the operations, where S(x) and A

take only 320 bytes.
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The key addition �[k

r

] can also be incorporated into the S-boxes. This can

be done by de�ning the key dependent tables

U

r

i

(x) = T

i

(�[k

r

](x)) :

Since every round has di�erent U -tables, the memory requirements increase by

a factor of six. If the key addition is a simple exor, then the U -tables are formed

by a simple rearrangement of the rows of the T -tables.

If the key addition includes a key dependent a�ne transformation and the

U -tables are not calculated beforehand, then the round operation becomes very

slow.

8.1.3 Inverse Cipher

One of the properties of the Feistel structure is that, for any choice of the round

function, the encryption mode and the decryption mode of the cipher di�er

only in the ordering of the round keys. Block ciphers that use a uniform round

transformation lose this general property. However for Shark, the structure of

the decryption algorithm is equal to the structure of the encryption algorithm.

The used components however, are di�erent. Note that this situation di�ers

from the block cipher IDEA, where encryption and decryption have identical

structure and components.

The following analysis demonstrates how the components for the decryption

mode can be derived from the encryption mode components. For the sake of

simplicity, the number of rounds is reduced to two. The encryption operation

is then given by:

y = �

�1

� �[k

2

] � � � 
 � �[k

1

] � � � 
 � �[k

0

](x) : (8.6)

In Section 8.1.2 it was explained how � � 
 can be combined into one e�cient

operation. An e�cient implementation of Shark will use a slightly di�erent

round operation for the last round. Application of (8.2) to (8.6) results in:

y = �[t

�1

�

(k

2

)] � 
 � �[k

1

] � � � 
 � �[k

0

](x) : (8.7)

In an implementation that follows this formula, the additional inverse di�usion

layer does not cause any overhead.

The decryption operation is given by:

x = �[(k

0

)

�1

] � 


�1

� �

�1

� �[(k

1

)

�1

] � 


�1

� �

�1

� �[(k

2

)

�1

] � �(y) : (8.8)

Application of (8.2) to (8.8) results in:

x = �[(k

0

)

�1

] � 


�1

� �[t

�

�1
((k

1

)

�1

)] � �

�1

� 


�1

� �[t

�

�1
((k

2

)

�1

)](y) : (8.9)

This equation has the same structure as (8.7) where 
 and � are replaced by




�1

and �

�1

, and the round keys are di�erent.
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8.1.4 Cryptanalysis

Linear and di�erential cryptanalysis

Shark was designed according to the principles of the Wide Trail strategy

(cf. Chapter 7) in order to make it resistant to linear and di�erential cryptanal-

ysis. Table 8.1 gives the upper bounds for the probability of an R-round di�er-

ential characteristic and the input-output correlation (squared) after R rounds,

using Formulae (7.2) and (7.3). These values are compared to the corresponding

values for the DES. Since the DES is a Feistel cipher, a fair comparison can only

be made if the number of rounds in the DES is doubled.

Shark DES

R p (dc) c

2

(lc) R p (dc) c

2

(lc)

2 2

�54

2

�54

4 2

�9:6

2

�6

4 2

�108

2

�108

8 2

�30:5

2

�19:5

6 2

�162

2

�162

12 2

�46:2

2

�33:5

48 2

�128

2

�148

Table 8.1: Probabilities for the best di�erential characteristics and linear ap-

proximations as a function of the number of rounds, calculated with Formulae

(7.2) and (7.3).

Note that an attack on an R-round scheme does not necessarily require an R-

round di�erential characteristic. It can be assumed that for a di�erential attack

on R rounds of Shark, a characteristic of at least R�2 rounds will be required.

The same remark has to be made for a linear attack. Also, the probability of

the best di�erential can be several times higher than the probability of the best

characteristic. Equivalently, the correlation between input bits and output bits

of the cipher is only approximated by the product of the correlations in each

round. When the probability of a di�erential characteristic or the correlation

between a linear combination of input bits and a linear combination of output

bits drops below 2

�63

, it can be considered as irrelevant.

Therefore the values of Table 8.1 can only be used as an indication of the

safety margin against linear and di�erential attacks. For applications that re-

quire only 40 bits security, four rounds may su�ce. For applications where a

conservative security margin is much more important than encryption speed,

eight or ten rounds can be used. According to Table 8.1, eight rounds of Shark

give a security level that is comparable to triple-DES (assuming that a charac-

teristic covering R � 2 rounds is necessary for an attack).
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Interpolation attack

The danger of algebraic structures present in the design of a block cipher is

demonstrated by the interpolation attack of T. Jakobsen and L.R. Knudsen

[54]. They consider a modi�ed version of Shark, that has S-boxes based on

s(x) = x

�1

, but without the a�ne transformation of the output bits. The

relation between round outputs and round inputs is then given by:

y

j

=

8

M

i=1

(c

i

� x

i

)

�1

a

i;j

:

More generally, the relation between the outputs after r rounds and the inputs

can be expressed as

y

j

=

p

1

(x

1

; : : : ; x

8

)

p

2

(x

1

; : : : ; x

8

)

; (8.10)

where p

1

and p

2

are polynomials over GF (2

8

). It can be shown [54] that the

number of unknown coe�cients in p

1

and p

2

after R rounds is 2(8

R�1

+ 1)

8

.

The complexity of p

1

and p

2

is determined by the number of di�usion layers

encountered. The coe�cients can be determined by an extension of the La-

grange interpolation formula to multivariate polynomials [120]. Since r rounds

of Shark count only R�1 di�usion layers, the number of coe�cients is actually

only 2(8

R�2

+1)

8

. Given an equal number of known plaintexts it is possible to

build and solve the set of equations

p

2

(x

1

; : : : ; x

8

)y

j

� p

1

(x

1

; : : : ; x

8

) = 0;

which are linear in the coe�cients of p

1

and p

2

. Solving a set of u linear

equations requires O(u

2

) memory locations and O(u

3

) operations.

Equation (8.10) can be used to determine the round key of the last round

in the following way. The cryptanalyst guesses the byte of the last round key

that is added to the output byte y

i

from the last round. Given the ciphertext

it is then possible to compute one output byte of the last round. Subsequently

2(8

R�3

+ 1)

8

known plaintexts are used to determine p

1

and p

2

. Once p

1

and

p

2

are determined, a few additional plaintexts are used to verify whether (8.10)

holds. If it does not hold then the key byte guess was wrong and the attack has

to be repeated using another guess.

The attack can be optimised using a meet-in-the-middle approach. The

meet-in-the-middle attack reduces the complexity of the attack by searching for

a round key of a round in the middle of the cipher, instead of for the last round.

Brie
y, R-round Shark can be split up into two parts:

y = g � f(x)

and g

�1

(y) = f(x);
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where f and g correspond approximately to R

1

and r

2

rounds of Shark (R

1

+

R

2

= R). Six-round Shark involves �ve e�ective di�usions, which have to

be divided as evenly as possible over f and g. There exist then polynomials

p

1

; p

2

; p

3

; p

4

such that

p

1

(x

1

; : : : ; x

8

)

p

2

(x

1

; : : : ; x

8

)

=

p

3

(y

1

; : : : ; y

8

)

p

4

(y

1

; : : : ; y

8

)

p

1

(x

1

; : : : ; x

8

)p

4

(y

1

; : : : ; y

8

) = p

2

(x

1

; : : : ; x

8

)p

3

(y

1

; : : : ; y

8

) :

The last equation has 2(8

R

1

�1

+ 1)

8

(8

R

2

�2

+ 1)

8

unknown coe�cients (the dif-

ference in the exponents comes from the fact that the last di�usion layer of f

does not vanish). Table 8.2 gives the complexities for versions of Shark with

three to six rounds. In a chosen plaintext attack, some of the bytes of the input

can be �xed. This allows the complexity of the attack to be decreased, but if too

many bytes are �xed, not enough plaintexts are left. If c bytes are �xed, then

the number of unknown coe�cients is given by 2(8

R

1

�1

+ 1)

8�c

(8

R

2

�2

+ 1)

8

.

The solving of the set of equations dominates the memory requirements and the

workload of the attack.

# rounds type # texts memory workload

3 chosen 2

11

2

22

2

33

3 known 2

17

2

34

2

51

4 chosen 2

22

2

44

2

66

4 known 2

35

2

70

2

105

5 chosen 2

39

2

78

2

117

5 known 2

52

2

104

2

156

6 known 2

75

2

150

2

225

Table 8.2: Complexities for the meet-in-the-middle interpolation attack.

Structure attack

Shark reduced to three rounds is vulnerable to a dedicated attack that exploits

the structure of the cipher. The attack was originally developed for Square

in [27], but it is also applicable to Shark. The attack is independent of the

choice of S-boxes, the key scheduling, and the particular choice of � (as long as

it has a di�erential branch number of 9). It is a chosen plaintext attack, using

structures of 256 plaintexts that have seven constant bytes and one byte that

takes every value from 0 to 255 exactly once. Such a structure is called a �-set.

De�nition 8.1 Let � be a set of indices. A �(�)-set is a set of 256 vectors
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such that

8x; y 2 �

�

x

i

6= y

i

if i 2 �

x

i

= y

i

else

:

Since �[k] and 
 operate on each byte separately, application of �[k] or 
 to a

�-set gives another �-set with the same �. Also, it is easy to see that applying

� to �(fig) results in a set of the type �(f1; 2; : : : ; 8g).

The attack starts with a �(fig)-set. After one round of encryption, the

set becomes a �(f1; 2; : : : ; 8g)-set. In the second round, � and 
 leave the set

invariant. The operation � destroys this property. However, the sum of the

values that a byte takes over all texts of the set remains zero, since every byte

y

i

of the output of � is a linear combination of the components of the input

vector x: y

i

=

L

8

j=1

x

j

a

i;j

. The sum over all values in the set is then given by:

255

M

l=0

y

i

=

255

M

l=0

8

M

j=1

a

i;j

x

j

=

8

M

j=1

a

i;j

255

M

l=0

x

j

=

8

M

j=1

a

i;j

0 = 0 : (8.11)

In the third round � conserves Property (8.11), but 
 does not. If the third

round is the last round, the � operation is canceled by the �

�1

operation at the

end. The cryptanalyst guesses a value for one byte of the key in the last key

addition (a byte of t

�1

�

(k

3

) is guessed, cf. (8.7)). The last � and 
 operations

are inverted for the corresponding ciphertext byte for all texts in the set and

a check is made as to whether (8.11) is ful�lled. If it is, the guessed key value

is correct with high probability. A second �-set can be used to make sure that

every byte of the last round key is determined uniquely. The cryptanalyst can

reuse the chosen plaintexts to determine all bytes of the key.

On Shark reduced to three rounds, the attack requires 2

9

chosen plaintexts

and a memory of size 2

8

. It has a workload of approximately 2

17

encryptions.

There seems to be no obvious way to extend the attack to more than three

rounds.

8.1.5 Performance

Since Shark operates on 64-bit words, it will bene�t from a 64-bit architecture.

Table 8.3 compares the performance of implementations of Shark, SAFER and

IDEA on a 266 MHz DEC{Alpha and on a 90 MHz Pentium. The Alpha imple-

mentations are written in C, the implementations on the Pentium are partially

written in assembler. On a Pentium ,Shark runs at approximately the same

speed as SAFER. Experiments with smaller S-boxes show that this degradation

of performance is due to the limited on-chip cache size. On a Pentium II, which

has a double cache size, Shark will run at a speed of 5.4 Mbyte/s, assuming
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the same clock speed of 90 MHz. With a more realistic clock speed of 166 MHz

this scales up to 10 Mbyte/s [15].

ALPHA Pentium

Shark 6.30 Mbyte/s 1.23 Mbyte/s

SAFER 1.03 Mbyte/s 0.725 Mbyte/s

IDEA 1.53 Mbyte/s 1.22 Mbyte/s

Table 8.3: Performance of Shark, SAFER and IDEA on a 64-bit workstation,

and on a Pentium.

8.2 Square

Square [27, 28] is an iterated block cipher. The structure of the cipher is

designed to permit e�cient implementations on a wide range of processors. The

di�erent transformations have been chosen to optimise resistance to di�erential

and linear cryptanalysis. The main di�erence between Square and Shark is

that the linear transformation of the former is more suitable for implementation

on smaller processors. A consequence is that the di�usion in Square is slower;

therefore the number of rounds is increased.

8.2.1 Structure

Square has a block length and a key length of 128 bits. However, its modular

design approach allows extensions to larger block lengths in a straightforward

way. The cipher has a uniform round transformation, composed of four distinct

transformations that are selected according to the Wide Trail strategy. Sec-

tion 8.2.2 shows how these four transformations can be combined into a single

set of table-lookups and exor operations.

To make the description of Square more compact, the input of the trans-

formations is represented by a 4� 4 matrix of bytes. The element of an input

X in row i and column j is speci�ed as x

i;j

. Both indices start from 0. The

32-bit value that is formed by row i of the matrix A is denoted by x

i

. Figure 8.2

shows three of the round operations.
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-




a

S[a] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

S[�] S[�] S[�] S[�]

-

-

-

-

�

a

b

c

d

a

b

c

d

-

�

Figure 8.2: Geometrical representation of the basic operations of Square. Op-

eration � consists of 4 parallel linear di�usion mappings, 
 consists of 16 separate

substitutions, and � is a transposition.

The Linear Transformation �

Operation � is de�ned as a matrix multiplication (over GF (2

8

)): � : X 7! Y =

X �A, where A is a circulant matrix:

A =

2

6

6

4

a

0

a

1

a

2

a

3

a

3

a

0

a

1

a

2

a

2

a

3

a

0

a

1

a

1

a

2

a

3

a

0

3

7

7

5

:
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It can be seen that � operates separately on each of the four rows of its input,

since

y

i;j

= a

j

x

i;0

� a

j�1

x

i;1

� a

j�2

x

i;2

� a

j�3

x

i;3

;

where the indices of a must be taken modulo 4. The linear code associated with

� has generator matrix

G =

2

6

6

4

A 0 0 0

0 A 0 0

0 0 A 0

0 0 0 A

3

7

7

5

:

Therefore � has a linear and di�erential branch number 5 if and only if all sub-

matrices of A are nonsingular. Table 7.1 shows that for a random choice of coef-

�cients the probability of not having a singular submatrix is (1�

1

256

)

17

� 0:93.

This means that most choices for a

i

will be good. In a smart card implementa-

tion there is only a small amount of memory available and there is no place for

large tables. This means that � and 
 cannot be combined into one set of tables,

as in Section 8.1.2 and � has to be implemented as a matrix multiplication. The

following choice is probably optimal for a smart card implementation:

�

a

0

a

1

a

2

a

3

�

=

�

2

x

1

x

1

x

3

x

�

:

Multiplication with 1

x

costs nothing, multiplication with 2

x

can be implemented

with one shift and one exor for the reduction and, �nally, multiplication with

3

x

can be implemented as the sum of the �rst two. Operation �

�1

corresponds

to a multiplication with B = A

�1

, also a circulant matrix, where

�

b

0

b

1

b

2

b

3

�

=

�

E

x

9

x

D

x

B

x

�

:

The Nonlinear Transformation 


Transformation 
 is a nonlinear byte substitution, identical for all bytes. It uses

an invertible 8-bit S-box that is constructed by taking the mapping s(x) = x

�1

over GF (2

8

) and applying a bitwise a�ne transformation to the output bits (cf.

Section 7.3.1). For this choice, � = 2

�6

and � = 2

�3

.

The Byte Permutation �

The e�ect of � is a transposition of the input: � : X 7! X

t

. Clearly � is an

involution.
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The Key Addition �

The key addition �[K

r

] consists of the bitwise addition of a round key matrix

K

r

: �[K

r

] : X 7! X �K

r

, and is also an involution.

Properties

As in Shark, the order of the � and � can be changed:

�[K

r

] � �(X) = X �A�K

r

= (X �K

r

�A

�1

) � A

= � � �[�

�1

(K

r

)] :

The same property holds for � and �.

Since � only transposes the bytes x

i;j

, and 
 only operates on the individual

bytes, independent of their position (i; j), the order of � and 
 can also be

changed: 


�1

� � = � � 


�1

:

The Round Key Evolution  

The round keysK

r

are derived from the cipher key K in the following way. Key

K

0

equals the cipher key K. The other round keys are derived iteratively by

means of the invertible a�ne transformation  :

K

r

=  (K

r�1

) ;

where  is de�ned in terms of the rows of the matrix that is formed by the key.

The left byte-rotation operation rotl(k

i

) is de�ned by

rotl[k

i;0

k

i;1

k

i;2

k

i;3

] = [k

i;1

k

i;2

k

i;3

k

i;0

] ;

and the right byte-rotation rotr(k

i

) as its inverse. The key evolution is de�ned

by:

 (K

r�1

) = K

r

,

k

r

0

= k

r�1

0

� rotl(k

r�1

3

)� C

r�1

k

r

1

= k

r�1

1

� k

r

0

k

r

2

= k

r�1

2

� k

r

1

k

r

3

= k

r�1

3

� k

r

2

:

The round constants C

t

are also de�ned iteratively: C

0

= 1

x

and C

r

= 2

x

�C

r�1

.

This choice removes regularities in the round function.

The 128 bits of the round keys k

r

can be divided over eight sets l

i

of 16 bits:

two bits are in the same set if their positions in the vector k are equal, modulo
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eight. The input of each S-box of 
 is in
uenced by one bit from each set of

round key bits, and  acts separately on each set l

i

:

 (l

i

) = l

i

�

2

6

6

4

I I I I

0 I I I

0 0 I I

J J J J � I

3

7

7

5

= l

i

�D ;

where I is the 4� 4 unity matrix, and

J =

2

6

6

4

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

:

The round keys can be described using eight instances of the linear code C

 

,

that has the following generator matrix:

G

 

= [I D D

2

D

3

: : : D

8

] :

Since the distance of this code is 32, the round keys that are derived from two

di�erent keys di�er in at least 32 bits. Since D is invertible, these di�erences are

spread over the nine round keys. It would be possible to have better di�usion,

but only by making the key schedule slower to execute.

The Cipher Square

The building blocks are combined into the round transformation denoted by

�[K

r

]:

�[K

r

] = �[K

r

] � � � 
 � � : (8.12)

Square is de�ned as eight rounds, preceded by a key addition �[K

0

] and by

�

�1

:

Square[K] = �[K

8

] � �[K

7

] � � � � � �[K

1

] � �[K

0

] � �

�1

: (8.13)

For critical applications the number of rounds can be increased. This can be

done in a straightforward way and requires no adaptation of the key schedule.

8.2.2 Implementation

In a similar way to Shark, the di�erent operations of the Square round trans-

formation can be e�ciently combined in table lookups. While Shark uses

64-bit words, Square uses only 32-bit words. Furthermore, the operations of

Square have been chosen such that implementations on platforms with smaller

word lengths can also be e�cient.
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8-bit Processor

On an 8-bit processor Square can be programmed by simply implementing

the di�erent component transformations. This is straightforward for � and

�. The transformation 
 requires a table of 256 bytes. Operation � requires

multiplication in the �eld GF (2

8

). The matrix A has been chosen to make

this very e�cient. The key evolution  has been chosen to make it easy to

calculate the round keys during the encryption. J. Daemen has written an

Assembler implementation for Motorola's M68HC05 microprocessor, typical for

Smart Cards. The code occupies a total of 547 bytes of ROM, requires 36 bytes

of RAM, and one encryption (including the key schedule) takes about 7500

cycles. This corresponds to less than 2 msec using a 4 MHz Clock.

Since �

�1

has a higher complexity than �, an implementation of the inverse

cipher uses more memory and the decryption is signi�cantly slower than the

encryption. In practical applications, often only the encryption operation is

needed on a smart card.

32-bit Processor

Analogously to Shark, the following succession of steps

� � �[K

r

] � � � 
 = �[K

0

r

] � � � � � 
 ;

with K

0

r

= �(K

r

), occur in Square. The operations � �� �
 can be combined,

and Y = �(�(
(X))) can be expressed for each row y

i

as

y

i

= (S(x

0;i

); S(x

1;i

); S(x

2;i

); S(x

3;i

)) �A

= S(x

0;i

) � a

0

� S(x

1;i

) � a

1

� S(x

2;i

) � a

2

� S(x

3;i

) � a

3

: (8.14)

The expanded substitution tables T

i

(x) are de�ned by

T

i

(x) = S(x) � a

i

:

Since A is circulant, its rows a

i

are rotated versions of row a

0

. Thus, the entries

of the tables T

i

are also rotations of the entries of T

0

. Equation (8.14) then

becomes:

y

i

=

M

j

rotr

j

(T

0

(x

ji

)) :

This means that � � � � 
 can be done using 16 table lookups, 12 rotations

and 12 exors of 32-bit words. The table T

0

has 256 entries of 32 bits, or one

kilobyte in total. Alternatively, the four tables T

i

might be used, eliminating

the requirement for rotations, but increasing the memory requirement for the

tables to 4 kilobytes.
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Analogously to Shark, the application of �

�1

will lead to the canceling of

� in one round. Consider the �rst round, and the preceding � and �

�1

:

�[k

1

] � �[k

0

] � �

�1

= �[k

1

] � � � 
 � � � �[k

0

] � �

�1

= �[k

1

] � � � 
 � �[�(k

0

)] :

For the �rst round, � � 
 has to be implemented instead of � �� � 
. This would

mean that the table S also has to be in memory. However, since a

1

= 1

x

, the

entries of the S-box S[x] can be extracted from T

0

, removing the extra storage

requirement for S.

8.2.3 Inverse Cipher

It will be shown that the structure of the inverse cipher is equal to the structure

of the cipher itself. The components and the round keys are di�erent. Consider

a one-round version of Square. The decryption operation is given by

� � �[K

0

] � �[K

1

]

�1

= � � �[K

0

] � �

�1

� 


�1

� � � �[K

1

] :

Using the transformation's properties, this can be rewritten as:

� � �[K

0

] � �[K

1

]

�1

= �[�(K

0

)] � � � 


�1

� �[K

1

]

= �[�(K

0

)] � � � 


�1

� �[K

1

] � �

�1

� �

= �[�(K

0

)] � � � 


�1

� �

�1

� �[�(K

1

)] � �

= �

0

[�(K

0

)] � �[�(K

1

)] � �;

where the new round transformation is de�ned as

�

0

[K

r

] = �[K

r

] � � � 


�1

� �

�1

:

This derivation can be generalized in a straightforward way to include more

than one round. Hence the inverse cipher is equal to the cipher itself with 


replaced by 


�1

, � by �

�1

, and with di�erent round key values.

8.2.4 Cryptanalysis

Linear and Di�erential Cryptanalysis

Square was designed according to the principles of the Wide Trail strategy (cf.

Chapter 7). It is an example of a cipher with two-level di�usion. Consider four

rounds of Square, without key addition to simplify the discussion:

� � � � � � � = � � 
 � � � � � 
 � � � � � 
 � � � � � 
 � �

= � � 
 � � � 
 � � � � � � � 
 � � � 
 � � � �

= A

�;�����

:
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The results of Proposition 7.9 can be applied to determine the minimum number

of active S-boxes in a di�erential characteristic or a linear approximation. It

has already been shown that � operates separately on each row of its input and

has linear and di�erential branch number 5. It remains to determine what the

branch numbers of �

2

= � �� �� are with respect to the rows of the input. From

the de�nitions of � and �, it follows that �

2

: X 7! A

t

�X . Expressing this in

terms of the rows yields:

y

i

= a

�i

� x

0

� a

1�i

� x

1

� a

2�i

� x

2

� a

3�i

� x

3

:

The associated code of �

2

, with the rows x

i

; y

i

as components, has generator

matrix

G = [I A

t

] :

The choice of A in Square makes the code MDS, and B

�

d

(�

2

) = B

�

l

(�

2

) = 5.

Therefore the minimum number of active S-boxes over four rounds is 5�5 = 25.

Application of (7.2) and (7.3) results in an upper bound of (2

�6

)

25

= 2

�150

for

the probability of a four-round di�erential characteristic and (2

�3

)

25

= 2

�75

for

input-output correlation over four rounds. As mentioned before, these numbers

give only an indication of the security level of the cipher.

Structure attack

The structure of Square allows for an e�cient dedicated attack, that is an

extension of the structure attack on Shark (cf. Section 8.1.4). The attack

is faster than an exhaustive key search for versions of Square with up to six

rounds. After describing the basic attack on four rounds, the extension to �ve

and six rounds will be discussed.

Four Rounds Recall the de�nition of a �-set from Section 8.1.4. The set

of indices � becomes a set of index pairs (i; j). Application of 
 or �[k],

still results in a �-set with the same �. Application of � to a �-set with

� = f(i

1

; j

1

); : : : (i

u

; j

u

)g, results in a �-set with � = f(j

1

; i

1

); : : : (j

u

; i

u

)g.

Application of � to a �-set with � = f(i; j)g, results in a �-set with � =

f(i; 0); (i; 1); (i; 2); (i; 3)g. A second application of � results in a �-set containing

all 16 index pairs.

The attack starts with a �(f(i; j)g)-set. Since the � of the �rst round is

canceled, the �rst round does not in
uence the index set. In the second round

the �-set is converted to a �-set with � = f(i; 0); (i; 1); (i; 2); (i; 3)g. After the

third round, there is still a �-set, with � now containing all index pairs. After �
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of the fourth round, for each byte the sum over all values in the set equals zero:

255

M

l=0

y

i;j

=

255

M

l=0

M

v

a

j�v

x

i;v

=

M

w

a

w

255

M

l=0

x

i;w+j

=

M

w

a

w

0 = 0 :

This balance is destroyed by the subsequent application of 
. The cryptanalyst

guesses a value for one byte of the last round key. The last �, � and 
 operations

are inverted for one ciphertext byte in all texts of the set and the balance of

this sum is checked. If the sum is not balanced, the guess for the key byte

was wrong. A second �-set may be necessary to catch all wrong guesses. The

plaintexts can be reused to determine all bytes of the last round key.

Extension by a round at the end Since the single-round di�usion of

Square is rather limited, the above technique can still be applied when a round

is added at the end. Any byte from the output of � in the �rst round can be

calculated from the ciphertext by guessing the corresponding byte of the fourth

round key, and the four bytes of the �fth round key that are involved.

In this 5-round attack, 2

40

key values must be checked, and this must be

repeated four times in order to determine the �fth round key. Checking a single

�-set leaves only 1=256 of the wrong key assumptions as possible candidates.

Therefore only �ve sets are required to recover the key.

Extension by a round at the beginning The basic idea is to choose a set

of plaintexts that result in a �-set at the output of the second round with only

one index pair in �. This requires the assumption of values of four bytes of the

round key k

0

.

The cryptanalyst starts with a pool of 2

32

chosen plaintexts, that have a

constant value for all bytes in three of the four `columns'. The fourth column

takes all possible values. The four key bytes of the �rst key addition are guessed

and 256 plaintexts are selected that will produce the required �-set after the

second round, assuming that the �rst round key guess is correct. The standard

four-round attack is performed to recover the last round key. If the attack fails

to suggest a single key value, the initial guess for the four bytes of the �rst round

key must be wrong. The cryptanalyst then assumes another value for the �rst

round key and selects another set of 256 texts from the pool.

Complexity of the attacks Combining both extensions results in a six round

attack. Although infeasible with current technology, this attack is faster than

exhaustive key search. Table 8.4 summarises the attacks.

There seems to be no obvious way in which the attack can be extended to

seven rounds or more.
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Attack Plaintexts Time Memory

4-round 2

9

2

9

small

5-round type 1 2

11

2

40

small

5-round type 2 2

32

2

41

2

32

6-round 2

32

2

73

2

32

Table 8.4: Complexities of the attack on Square.

8.2.5 Performance

The reference implementation is written in C and runs at 2.63 Mbyte/s on a

100 MHz Pentium with the Windows95 operating system. An assembler imple-

mentation of the algorithm [15] runs at 4.94 Mbyte/s on the same computer.

The M68HC05 Smart Card implementation �ts in 547 bytes and takes less

than 2 msec. (4 MHz Clock). The high degree of parallelism allows compact

hardware implementations in Gbit/s range with current technology.

8.3 Extensions

The modular design of the ciphers makes it easy to extend both block ciphers

to larger block lengths. This can be done by increasing the number of parallel

S-boxes and/or by increasing the size of the S-boxes.

Both ciphers use a uniform round transformation. It is also possible to design

a Feistel cipher using the same building blocks. This Feistel cipher would have

twice the block length of the original designs, and the round transformation

would be

s

r+1

= t

r

t

r+1

= s

r

� �(t

r

; k

r

) :

An advantage of this approach is that the inverse of cipher does not require the

inverse of �. This allows more freedom in the choice of S-boxes, because they

no longer have to be invertible. Also, the di�usion layer and the key addition

do not have to be interchangeable. This means that it becomes possible to use

a nonlinear di�usion layer �. In order to be able to apply � with a single set

of table lookups (cf. Section 8.1.2), the mapping � should still be additively

separable.

De�nition 8.2 A mapping � is additively separable if

f(x; y) � f(x; 0)� f(0; y) :
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Considering the expanded tables T [x] as the `real' S-boxes, such a cipher

would be very similar to the CAST algorithms. Both ciphers use S-boxes with

small input size and large output size. The important di�erence is that the

round transformation of the presented designs has a guaranteed di�usion and

nonlinearity. If � is chosen to be invertible, then the round function is balanced

and is not vulnerable to the attack that is presented in Chapter 6.

8.4 Conclusions

Two new block ciphers have been presented. Both ciphers have a uniform round

structure. Shark is a 64-bit block cipher oriented towards 64-bit architectures.

The key length can vary between 64 and 128 bits. Since it has optimal di�usion,

the cipher is proposed with only six rounds. On a 266 MHz DEC Alpha, a C

implementation of Shark runs at 6.30 Mbyte/s. While the performance on

PC's is not impressive, Shark will be very fast on tomorrow's computers. The

assembler implementation runs at 1.23 Mbyte/s on a 90 MHz Pentium, but it

will run at 10 Mbyte/s on a 166 MHz Pentium II. There exists one attack on

three rounds, requiring 2

9

chosen plaintexts, a memory of size 2

8

and an e�ort

of about 2

17

encryptions. A second attack breaks four rounds of a modi�ed

version of Shark, but it is not applicable to the actual algorithm. The design

of Shark has been published in [111].

Square is a 128-bit block cipher with a 128-bit key. It can be e�ciently

implemented on a wide range of processors, including smart cards. The cipher

uses a two-level di�usion structure and is proposed with eight rounds. On a

100 MHz Pentium Square runs at 4.94 Mbyte/s. The same attack that breaks

three rounds of Shark, breaks six rounds of Square. It requires 2

32

chosen

plaintexts, a memory of size 2

32

and an e�ort of about 2

73

encryptions. The

design of Square has been published in [27, 28].
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Chapter 9

Conclusions and Open

Problems

In this thesis a number of block ciphers have been studied. Block ciphers are

necessarily algorithms with a sophisticated structure. The complexity of the

structure makes the design and the analysis very di�cult. The �rst part of this

thesis groups our contributions to the analysis of block ciphers. The second part

groups our contributions to the design of new block ciphers.

9.1 Cryptanalysis of Block Ciphers

During the last decade a number of simple statistical techniques have been de-

veloped that can be used in the study of cryptographic algorithms. Di�erential

cryptanalysis [10] studies the propagation of di�erences through the various

stages of an algorithm and linear cryptanalysis [77] studies the correlation be-

tween linear combinations of input bits and output bits. Both techniques are

described in Chapter 3 together with the most common variants and extensions.

A theoretical derivation leads to the observation that di�erential attacks in prin-

ciple can also be applied when the signal-to-noise ratio, as de�ned by E. Biham

and A. Shamir, is smaller than one, contrary to what was believed earlier. This

is illustrated in Chapter 5 with an attack on a reduced version of IDEA.

In order to make the analysis of block ciphers more tractable, it is often nec-

essary to make a number of simplifying assumptions. The �rst basic assumption

is that the di�erent rounds of the cipher operate independently of one another

and that they can be decoupled. Moreover, it is often assumed that the separate

building blocks of the round transformation operate independently and can be

studied separately. A third simpli�cation is made by averaging the key depen-

177
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dent behaviour of the transformations over all possible keys. In this way a kind

of `average behavior' for the block cipher is studied, that is independent of the

key. These approximations are useful, but they also have limitations. Chapter 4

and 5 discuss our extensions of the known analysis techniques that have been

obtained by removing some of the simpli�cations.

Chapter 4 discusses the introduction of probability theory techniques. The

use of maximum likelihood estimators and Bayes' rule instead of the customary

counters allows the extension of di�erential cryptanalysis to modes where the

output of the block cipher is only partially visible, e.g., the m-bit CFB mode

with small m. Other optimisations have been made in order to analyse block

ciphers that are used as the compression function of a hash algorithm. The

optimisations are based on the fact that in this situation the cryptanalyst has

much more control over the inputs of the cipher than in the encryption modes.

Chapter 5 introduces techniques that exploit key dependent relations. Some

algorithms (such as IDEA and MAA) rely to a great extent on nonlinear key

addition in order to provide the security of the algorithm. In this case there are

often `weak keys', for which the nonlinear addition can be approximated very

easily. For these weak keys, the algorithm becomes highly vulnerable to certain

attacks. Di�erentials with a probability that is too low `on average' turn out to

be useful because for a large number of the keys their probability is signi�cantly

higher than the average. Another presented attack strategy combines attacks

that each work for a class of `weak keys'. By performing the attacks in parallel

it is possible to recover any key belonging to any of the classes.

In Chapter 6 a new attack has been presented. While the attack was origi-

nally developed to break algorithms of the CAST family, it is also applicable to

reduced versions of LOKI and Luby-Racko� constructions.

The main conclusion that can be drawn is that the analysis of block ciphers

is still in its infancy. There are a few basic analysis techniques that can be

applied with some success to most designs, but these techniques have to be

extended and adapted for almost every new design that is investigated. The

complexity and the nature of existing block cipher analyses could result in an

amount of frustration: on a �rst view it is not easy to distinguish a strong block

cipher from a weak one. There are no known techniques for a designer to prove

the security of his block cipher. On the other hand, demonstrating weaknesses

in bad block ciphers designs may actually require more work than the design

itself. Most block ciphers lie in the twilight zone between probably secure and

provably not.

Regrettable as it is, this situation must not lead to a careless attitude where

\since nothing is proven, everything is allowed." The cryptanalysis of MacGu�n

shortly after its publication, the devastating attack on Akelarre and the fact

that several important design 
aws in early members of the CAST family of

algorithms have been pointed out, show that there are situations where an
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incautious design can be corrected. Also, the extensions and modi�cations of

the basic techniques that are made during the analysis of practical designs, lead

to a better understanding of the inherent trade-o�s in block cipher design.

9.2 Design of Block Ciphers

The second part of this thesis elaborates on the Wide Trail design strategy

of J. Daemen [26]. Chapter 7 extends the strategy and discusses construction

methods for the building blocks of the round transformation of block ciphers.

Here the most important contribution consists of the application of the theory

of linear codes to construct mappings with good di�usion properties. Linear

codes de�ne associated mappings; the di�erential and linear branch number of

the mappings are equal to the distance of the associated code and the distance

of the dual of the associated code, respectively. Optimal di�usion layers can be

built from Maximum Distance Separable Codes. It is shown how incomplete

mappings can be used in the round transformation and still provide good dif-

fusion by means of a multi-level di�usion construction. For the nonlinear layer,

S-boxes can be derived from the inverse mapping in the �nite �eld GF (2

8

) [93],

or they can be randomly generated and tested. Coding theory can also be used

to construct a key scheduling with provable properties. Alternatively, the key

scheduling can be based on a pseudo-random noise generator that is seeded with

the key.

Finally, in Chapter 8 two new block ciphers have been proposed that were

designed using the wide trail strategy. Shark is a 64-bit cipher with optimal

di�usion, oriented towards 64-bit architectures. Square is a 128-bit cipher that

uses two-level di�usion and that can be implemented e�ciently on a wide range

of processors, from smart cards to 64-bit processors. Both ciphers use expanded

tables that combine the di�usion layer with the nonlinear layer to reduce the

extra work that has to be done for the more complex di�usion layer.

Probably the most important result from this part of the thesis is the ob-

servation that it is possible to construct mappings with good cryptographic

properties by using results from other sub�elds of mathematics. An advantage

is that this allows to construct block ciphers with some provable properties, al-

though it is still not possible (yet) to prove the security of the resulting ciphers.

9.3 Open Problems

The following problems were encountered during the research that was per-

formed for this thesis, and are still unsolved.
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Truncated di�erentials are an interesting extension of di�erential cryptanal-

ysis. Unlike for ordinary di�erentials, the probability of truncated di�erentials

is to a large extent independent of the nonlinear elements of a round transfor-

mation. It would be interesting to develop a heuristic rule to determine the

resistance of a given cipher against truncated di�erential attacks. Also it re-

mains an open question whether there exists an equivalent concept for linear

cryptanalysis.

Key dependent relations can be a very powerful tool for a cryptanalyst, but

at the moment there exists no e�cient way to �nd the best relations and the

weakest keys. Key dependent relations could be very useful to analyse a cipher

like Blow�sh, with key dependent S-boxes.

The CAST block cipher family has given birth to new members, with an as

yet unknown security level.

A problem with optimal di�usion mappings is that they require many op-

erations to execute. Using the theory of linear codes it is probably possible to

investigate the trade-o� between fast di�usion and fast executing.

It remains an open question as to whether it is possible to �nd S-boxes

with maximal distance to all linear functions, and with minimal di�erential

uniformity, without at the same time introducing mathematical structure. And

if it is theoretically possible, is it practically feasible ?

In Chapter 7 it was indicated how trapdoor block ciphers can be used to build

a public key encryption scheme, but this matter requires further investigation

before a practical design can be proposed.

The ciphers Shark and Square await further cryptanalysis.
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Appendix A

Block Cipher Survey

In recent years there has been a considerable number of new block cipher pro-

posals. This appendix attempts to provide a survey of the most important

proposals, and the best published attacks on them. (Speaking about Sisyphean

tasks, : : : )

The following abbreviations are used:

l block length

k key length

R number of rounds

F or U the type of the block cipher: F stands for Feistel network, U stands for

uniform transformation

For theoretical attacks the work e�ort to obtain the required plaintext-ciphertext

pairs is not counted.

The block ciphers are listed in alphabetical order.

Blow�sh : l = 64, k � 448, R = 16, F [121].

Blow�sh uses key dependent S-boxes. If the S-boxes are known, there is

a di�erential attack [131] that works for a fraction 2

�17

of the keys. It

requires 2

51

chosen plaintexts, a memory of 2

32

and an e�ort of about 2

57

encryptions. The attack breaks eight rounds for any key with 2

48

chosen

plaintexts, a memory of size 2

32

and an e�ort of about 2

45

encryptions.

Section 3.6 describes an attack on four rounds that recovers the full key.

CAST : l = 64, k = 64 to 128, R = 8 to 16, F [1, 2, 3, 4].

CAST is actually a design procedure. Ciphers designed according to this

193
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procedure inherit its name. Chapter 6 describes an attack on eight rounds

[112, 113]. The attack requires 2

62

chosen plaintexts. For CAST [2, 3]

with 16-bit round keys the attack requires a memory of size 2

16

and an

e�ort of about 2

75

encryptions. For CAST with 32-bit round keys or 37-

bit round keys [4] this becomes a memory of size 2

32

or size 2

37

and an

e�ort of about 2

91

or 2

96

encryptions respectively. For versions reduced

to six rounds, the attack becomes very practical.

DES : l = 64, k = 56, R = 16, F [39].

The best theoretical attack known is the linear attack [77], requiring 2

43

known plaintexts, a memory of size 2

13

and an e�ort of about 2

19

encryp-

tions. Due to the short key, an exhaustive key search is feasible [133].

FEAL : l = 64, k = 64, R = 8; 16; 24 or 32, F [123].

The best attack known on eight rounds is a di�erential-linear attack [6].

It requires 12 (twelve) chosen plaintexts, 2

18

bytes of memory and has

a workload of 35 days computer time. The versions with 16, 24 or 32

rounds are vulnerable to a di�erential attack that requires 2

30

; 2

46

or 2

67

chosen plaintexts and has a workload of 2

30

; 2

46

or 2

67

encryptions [10].

The 16-round and 24-round versions are also vulnerable to a linear attack,

requiring 2

19

or 2

42

known plaintexts [89]. The di�erential attacks also

apply to FEAL-X and FEAL-NX [10].

GOST : l = 64, k = 256, R = 32, F [19]. The S-boxes of GOST are not

speci�ed.

The only published attack is a related-key chosen plaintext attack [55].

The probability of the di�erential characteristic depends on the S-boxes.

Over a large set of randomly selected S-boxes this probability varies be-

tween 2

�43

and 2

�80

for a characteristic that may be used in an attack on

twelve rounds.

IDEA : l = 64, k = 128, R = 8(8:5), F (generalised). The output transforma-

tion is sometimes counted as an extra half-round [69].

The best attack known is a truncated di�erential attack on three rounds

including the output transformation [14] (cf. Section 5.2). About 1% of

the keys can be recovered using 2

40

chosen plaintexts, a memory of 2

48

and an e�ort of about 2

51

encryptions. To �nd 31% of the keys, 2

48

chosen

plaintexts are required, the same amount of memory and an e�ort of 2

59

encryptions.

Khafre : l = 64, k = 64 or 128, R = 16; 24; 32; : : : , F [87].

The best attack known is a chosen plaintext attack on 24 rounds [10]. It

requires 2

53

chosen plaintexts, a memory of 2

8

and one hour of computer

time.
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Khufu : l = 64, k � 512, R = 16; 24; 32; : : : , F [87].

The best attack is a chosen plaintext attack on 16 rounds [44]. It re-

quires 2

43

chosen plaintexts, a memory of 2

25

and an e�ort of about 2

43

operations.

LOKI91 : l = 64, k = 64, R = 16, F [17].

There is a chosen plaintext attack on LOKI91 that breaks 13 rounds [59].

It requires 2

58

chosen plaintexts. The memory requirements are negligible

and the e�ort can be estimated at about 2

48

encryptions. By using 2

33

chosen plaintexts, it is possible to speed up an exhaustive key search by

a factor of four: only 2

61

encryptions need be done on average [59]. The

best known plaintext attack breaks 12 rounds [119]. It requires 2

63

known

plaintexts, a memory of 2

21

and an e�ort of about 2

63

encryptions.

MISTY : l = 64, k = 128, R = 8; 12, F (generalized)[81]. There are actually

two MISTY algorithms: MISTY1 is an eight-round Feistel cipher with a

new kind of key addition, MISTY2 has a more generalized Feistel structure

and has 12 rounds.

To date no attack has been published.

RC5 : l; k and R are variable. The \nominal" values for the parameters are

l = 64, k = 128, R = 12, U [115]. Every round of RC5 is composed of two

Feistel rounds.

The best attack on this version is a chosen plaintext attack [65]. It requires

2

54

chosen plaintexts and a small amount of memory and work. For some

weak keys, these numbers are lowered. If l is increased to 128, then an

attack on 24 rounds would require 2

123

chosen plaintexts.

REDOC-II : l = 70, k = 70, R = 10, U [22]

The best attack is a chosen plaintext attack on four rounds [10]. It requires

2

66

chosen plaintexts and a memory of size 2

15

.

SAFER : l = 64, k = 64 or 128, R = 6, 8 or 10, U [75, 76]. Currently there are

four versions of SAFER published: SAFER K-64 has k = 64 and R = 6,

SAFER SK-64 has k = 64 and R = 8, SAFER K-128 and SAFER SK128

have k = 128 and R = 10. The key scheduling of the K versions has a

weakness [61].

The best attack is a truncated di�erential attack on �ve rounds of SAFERK-

64 [62]. It requires 2

45

chosen plaintexts, a memory of 2

32

and has a work-

load of 2

46

encryptions. The attack also recovers 32 key bits of SAFER K-

128, reduced to �ve rounds.

Shark : l = 64, k = 64 to 128, R = 6, U [111] (cf. Section 8.1).

The best attack is a structure attack on three rounds (cf. Section 8.1.4).
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It requires 2

9

chosen plaintexts, a memory of size 2

8

and has a workload

of 2

17

encryptions.

Square : l = 128, k = 128, R = 8, U [27, 28] (cf. Section 8.2).

The best attack is a structure attack on six rounds (cf. Section 8.2.4, [27]).

It requires 2

32

chosen plaintexts, a memory of size 2

32

and has a workload

of 2

73

encryptions.

3DES : l = 64, k = 112 or 168, R = 48, F. 3DES consists of three DES

encryptions in cascade. The three DES operations can use three di�erent

keys, or the �rst and the last key can be equal [50].

The best attack on three-key 3DES is the meet-in-the-middle attack: it

uses two known plaintexts, a memory of 2

56

and has a workload of 2

112

encryptions. The best chosen plaintext attack on two-key 3DES requires

2

56

chosen plaintexts, a memory of size 2

56

and has a workload of 2

56

encryptions [85]. The best known plaintext attack involves a trade-o�

[128]. When given 2

n

known plaintexts, it requires a memory of 2

56

and

a work e�ort of about 2

120�n

encryptions.

3-Way : l = 96, k = 96, R = 11, U [24].

To date no attack has been published.



Nederlandse Samenvatting

Dit proefschrift behandelt de analyse en het ontwerp van een bepaalde klasse

van cryptogra�sche algoritmen: iteratieve blokcijfers. De blokcijfers worden

geanalyseerd in verschillende modes: de standaard ECB mode waarin elk blok

apart vercijferd wordt, de `Cipher Feed Back' mode [40] en een mode waarin ze

gebruikt worden als hutsfunctie.

1 Inleidende Begrippen

In de huidige maatschappij wint cryptologie elke dag aan belang. Waar het ver-

cijferen en ontcijferen van boodschappen vroeger enkel een militaire aangelegen-

heid was, is in 1977 met de publicatie van de Amerikaanse encryptie-standaard,

de DES [39], het startschot gegeven voor uitgebreid academisch onderzoek op

dit terrein. Vandaag de dag verdienen mensen hun brood met het verkopen van

cryptogra�sche producten voor niet-militaire toepassingen.

Het belang van cryptologie volgt uit het feit dat deze wetenschap bestudeert

hoe informatie beschermd kan worden. Informatie is h�et handelsproduct van

deze tijd. Moderne digitale technieken maken het mogelijk om informatie snel

en goedkoop op te slaan en uit te wisselen, zodat beslissingen steeds kunnen

gebaseerd worden op recente informatie. De keerzijde van de medaille is dat

informatie snel veroudert en dat het overzichtelijk catalogeren van de bergen

informatie een ware Sisyphus-arbeid is. Hoewel informatie in ruwe vorm zeer

goedkoop is, kan verwerkte informatie dus waardevol zijn, en moet zij beschermd

worden.

Informatie kan beschermd worden tijdens het transport of wanneer ze op-

geslagen wordt, tegen ongeoorloofde modi�catie en tegen `diefstal' (copi

�

eren).

Traditioneel wordt bescherming geboden door encryptie: de informatie wordt ge-

codeerd met een algoritme dat afhankelijk is van een kleine hoeveelheid geheime

informatie, de sleutel, op zo'n manier dat het onmogelijk is om de informatie

weer te decoderen als de sleutel niet gekend is.

De ontwikkeling van nieuwe technieken zoals hutsfuncties en publieke-sleu-

197
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telalgoritmes heeft geleid tot de ontwikkeling van nieuwe toepassingen zoals

digitale handtekeningen en elektronisch geld.

1.1 Cryptogra�e en Cryptanalyse

De veiligheid van een algoritme kan gede�nieerd worden op drie verschillende

manieren [102]. De eerste de�nitie komt uit de informatietheorie: een algoritme

is onvoorwaardelijk veilig als het niet kan gebroken worden door een tegenstander

met onbeperkte rekenkracht. De tweede de�nitie komt uit de complexiteitsthe-

orie: een algoritme is veilig als men kan bewijzen dat het aantal bewerkingen

dat nodig is om het te breken exponentieel toeneemt als functie van het aantal

bewerkingen dat men nodig heeft om te coderen. De studie van de aanvallen

op cryptogra�sche algoritmes wordt cryptanalyse genoemd; in de cryptogra�e

bestudeert men het ontwerp van nieuwe algoritmes en toepassingen.

De derde aanpak is gebaseerd op de praktijk. De veiligheid van een algo-

ritme wordt bepaald door zo nauwkeurig mogelijk te schatten hoeveel tijd en

rekenkracht een aanvaller nodig zal hebben om het algoritme te breken. De

schatting wordt gebaseerd op de resultaten van gekende analysetechnieken en

een onderzoek door ervaren cryptanalysten. Deze aanpak heeft het belangrijke

voordeel dat er op relatief eenvoudige wijze praktisch bruikbare algoritmes mee

ontworpen kunnen worden. De betrouwbaarheid van de aanpak is echter sterk

afhankelijk van de kwaliteit van de cryptanalyse die gedaan wordt.

1.2 Iteratieve Blokcijfers

In [122] beschrijft C.E. Shannon als eerste encryptie-algoritmes die opgebouwd

worden door verschillende transformaties te concateneren: de zogenaamde product-

algoritmes. Feistel is de eerste die een algoritme beschrijft dat gevormd wordt

door een herhaalde toepassing van dezelfde transformatie [37].

De�nitie A.1 Een iteratief blokcijfer is een algoritme dat als invoer een klaar-

tekstblok met een lengte van l bits heeft en als uitvoer een cijfertekstblok met

een lengte l

0

. De transformatie van klaartekst naar cijfertekst gebeurt onder

invloed van een sleutel en door middel van een herhaalde toepassing van een

inverteerbare transformatie �, de rondetransformatie.

De sterkte van een blokcijfer wordt vooral bepaald door de eigenschappen van

de rondetransformatie. De twee meest gebruikte types rondetransformaties zijn

het Feistel Netwerk [37] en de Uniforme transformatie [36].

Bij een Feistel netwerk wordt de invoer van � gesplitst in twee helften. E�en

helft wordt gekopieerd naar de uitvoer en gebruikt als invoer voor een niet-

lineaire functie, de zogenaamde F-functie, bij de andere helft wordt de uitvoer

van de F-functie opgeteld. Het voordeel van deze constructie is dat ze altijd
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inverteerbaar is, onafhankelijk van de keuze voor de F-functie. De rondetrans-

formatie van de DES heeft deze structuur.

De Uniforme transformatie wordt soms ook een Substitutie-permutatie-net-

werk genoemd. Bij de uniforme transformatie wordt de volledige invoer eerst

door een niet-lineaire substitutietabel geleid en dan vervolgens gewijzigd door

een transformatie met goede di�usie-eigenschappen. De rondetransformaties

van SAFER [75], Shark [111] en Square [27] hebben deze structuur.

Blokcijfers kunnen gebruikt worden in verschillende modes [40] en toepassin-

gen. In deze thesis worden blokcijfers geanalyseerd in de basismode (`Electronic

Code Book') en de `Ciphertext Feed Back' mode. Daarnaast wordt ook het ge-

bruik van een blokcijfer in een hutsmode bestudeerd. Er wordt ook een manier

voorgesteld om blokcijfers te gebruiken in een asymmetrisch encryptieschema.

1.3 Aanvallen

Bij de analyse van een cryptogra�sch algoritme wordt er altijd van uitgegaan

dat aanvallers beschikken over een volledige beschrijving van het algoritme en

alle details, behalve de gebruikte sleutel. Wanneer een cryptanalyst uit onder-

schepte cijferteksten en statistische informatie over de klaarteksten de sleutel

kan terugvinden of de klaarteksten, dan spreekt men van een enkel-cijfertekst

aanval. De meeste blokcijfers zijn bestand tegen een enkel-cijfertekst aanval.

Wanneer men veronderstelt dat de aanvaller bij enkele cijferteksten de bijho-

rende klaartekst kent, dan spreekt men van een gekende-klaartekst aanval. Bij

een gekozen-klaartekst aanval mag de aanvaller de cijferteksten opvragen van

klaarteksten naar zijn keuze. In een verwante-sleutel aanval beschikt de aan-

valler over de cijferteksten die bekomen werden door dezelfde set klaarteksten

te vercijferen onder verschillende sleutels. Hoewel deze aanvallen steeds min-

der en minder uitvoerbaar worden in de praktijk, worden ze toch bestudeerd

omdat men op die manier een soort veiligheidsmarge kan inbouwen: algoritmes

die bestand zijn tegen een gekozen-klaartekst aanval geven vermoedelijk een be-

tere bescherming dan andere algoritmes, zelfs als de enige praktisch uitvoerbare

aanval een enkel-cijfertekst aanval is.

2 Cryptogra�sche Basistechnieken

Wanneer de aanvallen op blokcijfers ingedeeld worden volgens de wiskundige

technieken die zij gebruiken, kunnen er twee grote klassen onderscheiden worden.

Beide klassen van aanvallen kunnen bestudeerd worden gebruik makend van

wiskundige technieken die ontwikkeld werden voor de studie van Booleaanse

functies: Walsh transformatie, Hamming afstand, correlaties, : : : .
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2.1 Di�erenti

�

ele Cryptanalyse

De eerste klasse valt onder de noemer di�erenti

�

ele cryptanalyse [10]. Bij deze

aanvallen wordt de encryptie bestudeerd van een set klaarteksten die onderling

een welbepaald verschil vertonen. Zelfs indien de sleutel niet gekend is, is het

mogelijk om vertrekkende van twee klaarteksten die een bepaald verschil ver-

tonen (een `paar'), de verschillen van de tussenresultaten te voorspellen met

een bepaalde kans. Een di�erenti

�

ele karakteristiek is gede�nieerd als het tu-

pel dat gevormd wordt door de voorspelde verschillen in de tussenresultaten.

De kans van een di�erenti

�

ele karakteristiek is de kans dat de verschillen in de

tussenresultaten van een willekeurig paar encrypties correct voorspeld worden.

De voorspelde verschillen in de tussenresultaten en de geobserveerde waarden

van de klaarteksten en cijferteksten suggereren een aantal mogelijke waarden

voor de sleutel. Als de kans van de karakteristiek kleiner is dan 1, is men niet

zeker dat de voorspelde tussenresultaten correct zijn en moet de aanval herhaald

worden voor een aantal paren. Als de kans van de karakteristiek voldoende

hoog is, en er per paar niet teveel foute waarden voor de sleutel gesuggereerd

worden, dan zal na verwerking van een voldoende groot aantal paren de vaakst

gesuggereerde waarde voor de sleutel de correcte waarde zijn.

De di�erenti

�

ele aanval kan op verschillende manieren geoptimiseerd worden

en aangepast aan de speci�eke structuur van het geanalyseerde algoritme. Een

eerste observatie is dat tussenresultaten eigenlijk alleen correct voorspeld moe-

ten worden als ze ook in de aanval gebruikt worden. Bepalend voor het succes

van een aanval is dan niet de kans van �e�en di�erenti

�

ele karakteristiek, maar wel

de som van de kansen van alle mogelijke karakteristieken die dezelfde waarden

voorspellen voor de tussenresultaten die gebruikt worden in de aanval. Een dif-

ferenti

�

ele bundel [69] wordt gede�nieerd als het tupel dat gevormd wordt door

het gedeelte van de (voorspelde) tussenresultaten dat gebruikt wordt, en kan

gezien worden als een verzameling di�erenti

�

ele karakteristieken die verschillen

in de waarden van de niet voorspelde tussenresultaten. De kans van een dif-

ferenti

�

ele bundel is gelijk aan de som van alle karakteristieken die er deel van

uitmaken.

Bij afgeknotte di�erenti

�

ele bundels [60] wordt voor voorspelde tussenresulta-

ten nog meer vrijheid gelaten; er wordt bijvoorbeeld enkel voorspeld of bepaalde

bytes verschillen van nul of niet. Deze techniek is vaak bruikbaar om algoritmes

te analyseren die werken op bytes in plaats van op individuele bits, bijvoorbeeld

SAFER [75]. Bij hogere orde di�erenties worden in plaats van verschillen van

twee waarden verschillen van verschillen gebruikt.
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2.2 Lineaire Cryptanalyse

Lineaire aanvallen [77] exploiteren correlaties tussen lineaire combinaties van

uitgangsbits van de rondetransformatie en lineaire functies van hun ingangsbits.

De verwachte waarde van de correlatie tussen bits over verschillende ronden

heen wordt benaderd door de verwachte waarden voor de correlaties over de

afzonderlijke ronden te vermenigvuldigen. Deze benadering komt overeen met

het gebruik van een di�erenti

�

ele karakteristiek in di�erenti

�

ele cryptanalyse; en er

bestaat ook hier een uitbreiding die vergeleken kan worden met een di�erenti

�

ele

bundel: de lineaire omhulling, die rechtstreeks de correlatie over de verschillende

ronden heen gebruikt.

In een di�erentieel-lineaire aanval [70] wordt een di�erenti

�

ele karakteristiek

gebruikt om een lineaire aanval te optimiseren.

2.3 Vereenvoudigingen

Om de toepasbaarheid en de complexiteit van di�erenti

�

ele aanvallen te schat-

ten worden vaak een aantal vereenvoudigende veronderstellingen gemaakt: de

kans van een di�erenti

�

ele bundel wordt benaderd door de kans van een ka-

rakteristiek, er wordt aangenomen dat de ronden onafhankelijk opereren en er

wordt een soort gemiddelde van de kansen over alle mogelijke waarden van de

sleutels gemaakt. Dezelfde benaderingen worden doorgevoerd voor lineaire aan-

vallen. Deze vereenvoudigingen laten vaak toe om op e�ci

�

ente wijze aanvallen

te bedenken. Dit werd ge

�

�llustreerd op twee algoritmes: MacGu�n [12] en een

gereduceerde versie van Blow�sh [121]. MacGu�n is niet beter bestand tegen

di�erenti

�

ele cryptanalyse dan de DES, en is ook gebroken met een lineaire aan-

val. Blow�sh gereduceerd tot vier ronden werd gebroken met een tweede orde

di�erenti

�

ele aanval.

3 Verbeterde Di�erenti

�

ele Cryptanalyse

Door gebruik te maken van een aantal technieken uit de theorie van de kans-

berekening is het mogelijk om de di�erenti

�

ele aanval uit te breiden en toe te

passen op blokcijfers in de m-bit CFB mode, ook voor kleine waarden van m.

Daarnaast wordt er in dit hoofdstuk een verbeterde aanval gepresenteerd voor

hutsfuncties die gebaseerd zijn op een blokcijfer.

3.1 Cryptanalyse van de DES in de CFB Mode

Wanneer een blokcijfer in de m-bit CFB mode gebruikt wordt, met m klein, dan

werkt de gewone di�erenti

�

ele aanval niet meer. m bepaalt hoeveel bits van de

output van het blokcijfer zichtbaar zijn in de output; in de gewone di�erenti

�

ele
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aanval vormt dit aantal een strikte bovengrens voor het aantal sleutelbits dat

kan bepaald worden. Als m klein is, kan er maar een klein aantal klassen van

`equivalente' sleutels onderscheiden worden (2

m

) en de meeste paren zullen dan

alle waarden voor de sleutel suggereren. De di�erenti

�

ele aanval wordt nu uit-

gebreid door het eenvoudige onderscheid `gesuggereerde sleutel | niet gesug-

gereerde sleutel' te vervangen door een waarschijnlijkheidsverdeling: aan elke

waarde voor de sleutel wordt een a posteriori waarschijnlijkheid toegekend die

met behulp van de regel van Bayes berekend wordt uit de a priori waarschijn-

lijkheid en de waarden van de klaarteksten en cijferteksten voor het verwerkte

paar. Deze techniek maakt beter gebruik van de beschikbare informatie dan de

gewone aanval. Met 2

39

gekozen klaarteksten kunnen drie sleutelbits bepaald

worden voor de DES in 8-bit CFB mode, gereduceerd tot 8 ronden. Voor gro-

tere waarden van m kunnen meer sleutelbits teruggevonden worden en kan het

aantal nodige klaarteksten gereduceerd worden.

3.2 Maximum Likelihood

Door het gebruik van maximum likelihood schatters kunnen zowel de lineaire

als de di�erenti

�

ele aanval verbeterd worden. De techniek gebruikt een probabi-

listische relatie tussen klaartekst en cijfertekst, waarvan de kans op eenvoudige

wijze afhangt van een deel van de sleutel. De cryptanalyst verzamelt klaartek-

sten en cijferteksten en kan zo de kans van de probabilistische relatie schatten.

De maximum likelihood schatter zal dan de meest waarschijnlijke waarde voor

de sleutel opleveren. Om de di�erenti

�

ele aanval op een blokcijfer in de CFB-

mode te verbeteren, wordt de di�erenti

�

ele karakteristiek als relatie gebruikt. Op

die manier kunnen voor de DES in 8-bit CFB-mode, gereduceerd tot 8 ronden,

10 sleutelbits teruggevonden worden in plaats van slechts drie.

De techniek werd ook toegepast op de lineaire aanval op de DES, maar

experimenten toonden aan dat hierdoor geen verbetering optreedt. De techniek

is wel nuttig bij blokcijfers waar de gewone lineaire aanval geen onderscheid

kan maken tussen een hele klasse van sleutels, zoals bijvoorbeeld het blokcijfer

Akelarre [5].

3.3 Di�erenti

�

ele Cryptanalyse van Hutsfuncties

Hutsfuncties die gebaseerd zijn op blokcijfers kunnen onderworpen worden aan

een di�erenti

�

ele aanval die veel gelijkenis vertoont met de di�erenti

�

ele aanval op

het onderliggende blokcijfer. Er zijn echter een paar belangrijke verschillen die

maken dat een gewone di�erenti

�

ele aanval sub-optimaal presteert. Er werd een

nieuwe aanval ontwikkeld en karakteristieken gezocht die optimaal afgestemd

zijn op de nieuwe aanval. Met deze aanval kan een botsing gevonden worden

voor een hutsfunctie die gebaseerd is op de DES, gereduceerd tot 12 ronden,



4. SLEUTELAFHANKELIJKE ANALYSE 203

met een werkfactor van 2

21:4

encrypties. De klassieke aanval, die gebaseerd is

op de verjaardagsparadox, heeft een werkfactor van 2

24:6

encrypties.

4 Sleutelafhankelijke Analyse

Zoals reeds aangehaald gebruikt men voor de schatting van de performantie en

complexiteit van een aanval op een cryptogra�sch algoritme vaak een soort ge-

middelde waarde over alle mogelijke sleutels. Hierbij wordt er vanuit gegaan dat

de verschillende ronden onafhankelijk van elkaar opereren. Deze benaderingen

geven niet altijd correcte resultaten. Er kan bijvoorbeeld een klasse van sleutels

bestaan waarvoor de kans van sommige di�erenti

�

ele karakteristieken en/of som-

mige bitcorrelaties een veel hogere waarde hebben dan de gemiddelde waarde.

Deze sleutels worden dan `zwakke sleutels' genoemd. Er wordt gedemonstreerd

dat het authenticatie-algoritme MAA [32] verschillende klassen van zwakke sleu-

tels heeft. Een boodschap die geauthenticeerd werd met behulp van een zwakke

sleutel is relatief gemakkelijk te vervalsen en het is ook gemakkelijker om zo'n

zwakke sleutel terug te vinden.

Een andere manier om blokcijfers aan te vallen waarbij de kans van di�e-

renti

�

ele karakteristieken sterk afhankelijk is van de sleutel, is om verschillende

karakteristieken in parallel te gebruiken. De performantie van de aanval wordt

dan bepaald door het maximum van de kansen van de gebruikte karakteristie-

ken. Dezelfde techniek kan gebruikt worden in een lineaire aanval en wordt

ge

�

�llustreerd met een aanval op een gereduceerde versie van IDEA [69]. Met

deze aanval is het mogelijk om 3 ronden van IDEA te breken.

Er wordt ook aan aanval gepresenteerd die werkt als de kans van een af-

geknotte di�erenti

�

ele bundel groter of kleiner is dan de gemiddelde waarde.

Deze aanval geeft een nieuw inzicht in de werking van di�erenti

�

ele cryptanalyse;

totnogtoe werd steeds aangenomen dat alleen di�erenti

�

ele karakteristieken of

bundels met een grote kans gebruikt konden worden. De nieuwe techniek wordt

hier gebruikt om 3.5 ronden van IDEA te breken.

5 Niet-Surjektieve Aanval

Een belangrijk ontwerpcriterium voor nieuwe blokcijfers is vaak de snelheid die

gehaald kan worden op een moderne processor. Daarom worden meestal basis-

bewerkingen gebruikt die snel uitgevoerd kunnen worden door een processor en

waarvan men hoopt dat ze bijdragen tot de veiligheid van het algoritme. Een

voorbeeld hiervan is het gebruik van sterk niet-lineaire substitutietabellen. Dit

laat toe om het aantal ronden van een algoritme laag te houden en toch sterke

weerstand tegen di�erenti

�

ele en lineaire cryptanalyse op te bouwen. Echter,
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het gevaar van deze aanpak is dat het algoritme kwetsbaar wordt voor andere

aanvallen.

Er wordt een aanval ontwikkeld die werkt op Feistel cijfers met een beperkt

aantal ronden en een niet-surjektieve F-functie, of meer algemeen, een niet-

gebalanceerde F-functie. De aanval bewijst dat Feistel cijfers met een niet-

surjektieve F-functie minstens 8 �a 10 ronden moeten hebben om veilig te zijn.

Deze aanval wordt toegepast op verschillende algoritmes die ontwikkeld wer-

den met de CAST ontwerpstrategie [2, 3, 48] en ook op LOKI91 [17]. LOKI91

gereduceerd tot 7 ronden kan gebroken worden met deze aanval. De aanval toont

aan dat de CAST algoritmes met 8 ronden slechts marginale veiligheid bieden.

Bovendien werd er een duidelijke zwakheid ge

�

�denti�ceerd in het sleutelschema

van een enkele vroege voorstellen voor CAST algoritmes.

6 Ontwerpstrategie & Bouwblokken

De eerste theoretische beschouwingen over het ontwerp van encryptie-algoritmes

kunnen gevonden worden in het werk van C.E. Shannon [122], waar voorgesteld

wordt om eenvoudige substituties af te wisselen met transformaties die een sterke

`vermenging' veroorzaken. Het resultaat van de combinatie is dat \iedere signi-

�cante statistische relatie tussen ingang en uitgang van het encryptie-algoritme

zeer ingewikkeld is en sterk afhankelijk van alle betrokken parameters|de re-

dundantie is verspreid (di�used) en verborgen (confused) door de vermengende

transformatie."

Vervolgens zijn er verschillende strategie

�

en voorgesteld door H. Feistel [36],

X. Lai, J.L. Massey en S. Murphy [68, 69], L.R. Knudsen en K. Nyberg [96, 97]

en anderen. In [26] ontwikkelde J. Daemen de strategie van het brede spoor.

In de strategie van het brede spoor wordt de rondetransformatie opgebouwd

uit een aantal transformaties:

1. een niet-lineaire substitutie die opereert op blokken van p bits,

2. een lineaire di�usielaag die de verschillende p-bit blokken vermengt, en

3. een a�ene sleuteltoevoeging.

Een vierde belangrijke bouwblok voor een goed blokcijfer is het sleutelschema.

Aan de laatste twee bouwblokken werd in de oorspronkelijke formulering van de

ontwerpstrategie minder aandacht besteed.

De verschillende componenten worden onafhankelijk ge

�

evalueerd ten op-

zichte van een ontwerpcriterium en geselecteerd. Hierdoor is het mogelijk om

algoritmes te construeren die met een zeer grote waarschijnlijkheid bestand zijn

tegen lineaire en di�erenti

�

ele cryptanalyse. Dit gebeurt door de niet-lineaire
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bouwblokken zo te kiezen dat de maximale kans van een di�erenti

�

ele karak-

teristiek over �e�en blok klein is en door de lineaire bouwblokken zo te kiezen

dat de uitvoer van de niet-lineaire bouwblokken van de vorige ronde optimaal

gespreid wordt over de invoer van de niet-lineaire bouwblokken in de volgende

ronde. Hetzelfde e�ect wordt beoogd voor de correlaties tussen ingangsbits en

uitgangsbits van de rondetransformatie. Hoewel deze strategie geen bewijsbaar

veilige constructies oplevert, lijken de goede di�usie-eigenschappen en de sterke

niet-lineariteit toch sterke algoritmes te waarborgen.

6.1 Nieuwe Elementen in de Ontwerpstrategie

De belangrijkste aanvulling op de strategie van het brede spoor wordt gevormd

door de introductie van lineaire codes. De toepassing van codetheorie laat toe

om op eenvoudige wijze transformaties met optimale di�usie-eigenschappen te

construeren. Hiervoor wordt gebruik gemaakt van `Maximum Distance Sepa-

rable codes' (MDS-codes). Bovendien kunnen een aantal eigenschappen van de

transformaties op elegante wijze bewezen worden.

Transformaties met optimale di�usie hebben een bepaalde minimale com-

plexiteit; voor sommige toepassingen is deze complexiteit te groot. Het is dan

mogelijk om transformaties te gebruiken die in plaats van al na 1 ronde pas een

goede di�usie garanderen na 3 of meer ronden. Dit leidt uiteindelijk tot con-

structies waarbij de di�usietransformatie niet meer gelijk gekozen worden voor

alle ronden zodat de verschillende rondetransformaties niet meer aan mekaar

gelijk zijn.

Er zijn in de cryptogra�sche literatuur al verschillende methodes beschreven

om goede niet-lineaire substitutietabellen expliciet te construeren [93]. Voor

toepassingen waar de inherente mathematische structuur van deze constructies

ongewenst is, werd bestudeerd wat het e�ect is van kleine willekeurige wij-

zigingen in de tabellen en wat de verwachte performantie is van willekeurig

geconstrueerde tabellen.

De theorie van de lineaire codes kan ook gebruikt worden om sleutelschema's

te construeren met bewijsbare eigenschappen.

6.2 Valluikcijfers

Valluikcijfers zijn cijfers met een verborgen structuur, een valluik. Voor gebrui-

kers die de verborgen structuur niet kennen lijken het veilige algoritmes, maar

mensen die het valluik kennen, kunnen het cijfer eenvoudig breken. Er wordt

een manier voorgesteld om valluiken te verbergen in blokcijfers. Dit kan zo ge-

beuren dat het met de beschikbare rekenkracht onmogelijk is om het valluik te

detecteren, zelfs als men weet wat de algemene structuur van het valluik is.
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`Willekeurige' substitutietabellen kunnen op eenvoudige wijze zo aangepast

worden dat het verband tussen bepaalde ingangsbits en uitgangsbits bijna lineair

wordt. Op die manier zal een lineaire aanval zeer eenvoudig worden voor iemand

die het verband kent. Door de tabellen aangepast te dimensioneren (bv. 10

ingangsbits en 40 uitgangsbits), is het voor iemand anders niet doenbaar om

het verband te vinden.

Gelijkaardige valluiken kunnen geconstrueerd worden door de verschillende

tabellen van een rondetransformatie in functie van mekaar te bepalen, zodat

de afzonderlijke tabellen veilig genoeg lijken, maar hun combinatie weer een

verborgen relatie bevat.

Deze valluikcijfers zouden kunnen gebruikt worden in een encryptieschema

met publieke sleutels. De techniek toont ook aan dat een men niet blind mag

vertrouwen op andermans ontwerpen, zeker niet als er gebruik gemaakt wordt

van `willekeurige' of geheime tabellen.

7 Nieuwe Blokcijfers

Twee blokcijfers werden ontworpen met behulp van de strategie van het brede

spoor.

7.1 Shark

Shark is geen Feistel cijfer, maar heeft een uniforme rondetransformatie. Het

vercijfert klaartekstblokken van 64 bits, de sleutel kan elke lengte tussen 64

en 128 bits hebben. Shark gebruikt een lineaire transformatie met optimale

di�usie en sterk niet-lineaire substitutietabellen. Het is al na zes ronden bestand

tegen di�erenti

�

ele en lineaire cryptanalyse.

Voor een e�ci

�

ente implementatie kan de di�usietransformatie opgenomen

worden in de substitutietabellen. Vooral als het onderliggend platform 64-bit

operaties ondersteunt leidt dit tot een hoge encryptiesnelheid (6.3 Mbyte/s op

een 266 MHz DEC-Alpha).

De beste bekende aanval op Shark breekt 3 ronden met 2

9

gekozen klaar-

teksten. De aanval is echter niet uitbreidbaar naar meer ronden.

7.2 Square

Ook Square heeft een uniforme rondetransformatie. Het vercijfert klaartekst-

blokken van 128 bits, onder invloed van een sleutel van 128 bits. De lineaire

transformatie van Square heeft geen optimale di�usie, maar is wel zo gekozen

dat de di�usie over 4 ronden zeer sterk is De keuze van de lineaire transfor-
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matie laat toe om Square e�ci

�

ent te implementeren op een heel scala van

processoren, van goedkope smart cards tot performante werkstations.

Square telt 8 ronden en is bestand tegen di�erenti

�

ele en lineaire cryptana-

lyse. Er bestaat wel een aanval die 6 ronden breekt met 2

32

gekozen klaarteksten

en een werkfactor van 2

73

encrypties, maar deze aanval kan niet uitgebreid wor-

den naar 7 of meer ronden [27].

Op een 100 MHz Pentium haalt een assembler implementatie van Square

een encryptiesnelheid van 4.94 Mbyte/s. De referentie-implementatie in C haalt

2.63 Mbyte/s.

8 Besluit en Open Problemen

Blokcijfers zijn per de�nitie algoritmen met een ingewikkelde structuur, die het

ontwerp en de analyse ervan moeilijk maken. Het eerste deel van dit proefschrift

bevat onze bijdragen aan de analyse van blokcijfers. Het tweede deel bevat onze

aanvullingen op een ontwerpstrategie voor cryptogra�sche algoritmen en twee

nieuwe ontwerpen.

De bijdragen aan de cryptanalyse van blokcijfers bestaan vooral uit de intro-

ductie van enkele gevorderde statistische technieken. De technieken zijn vooral

bruikbaar in situaties waar de gebruikelijke aannames niet gelden, bijvoorbeeld

wanneer het blokcijfer niet gebruikt wordt in de standaard ECB-mode of wan-

neer de karakteristieken van het cijfer sterk afhangen van de gebruikte sleutel.

Er wordt ook een nieuwe aanval ge

�

�ntroduceerd.

De complexiteit van blokcijfers en hun analyses kan gemakkelijk aanleiding

geven tot een soort fatalisme: er bestaan (nog) geen bewijsbaar veilige blokcij-

fers en het vinden van de zwakheden in een blokcijfer vraagt een hele inspan-

ning. De meeste blokcijfers bevinden zich ergens tussen de polen `waarschijnlijk

veilig' en `aantoonbaar onveilig'. Dit mag echter niet leiden tot een zorgeloze

houding tijdens het ontwerp. De snelle cryptanalyse van MacGu�n en het feit

dat verschillende belangrijke ontwerpfouten zijn aangetoond in de eerste CAST-

algoritmes tonen dit aan.

Het ontwerp van blokcijfers gebeurt meestal op een ad hoc manier; ook hier

zou veel gewonnen kunnen worden door een beter aanwenden van het beschik-

bare arsenaal aan wiskundige technieken. Een eerste stap werd gezet door een

verband te leggen tussen sommige bouwblokken van een rondetransformatie en

lineaire codes.

Enkele idee

�

en voor verder onderzoek zijn de volgende:

� De weerstand van een algoritme tegen een aanval met afgeknotte di�e-

renti

�

ele bundels wordt meestal niet bepaald door de niet-lineaire bouw-

blokken, maar wel door de algemene structuur van de rondetransformatie.
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Het zou interessant zijn om te kunnen beschikken over een heuristiek om

de weerstand van een blokcijfer te bepalen. Ook is nog niet bekend of de

techniek kan uitgebreid worden naar lineaire cryptanalyse.

� Een verdere studie van sleutelafhankelijke relaties in blokcijfers.

� Studie van de veiligheid van de nieuwe cijfers die ontwikkeld zijn met de

CAST ontwerpstrategie.

� Een verdere studie van codetheorie om betere compromissen te vinden

tussen goede di�usie en snelle implementaties.

� Onderzoeken of het mogelijk is om goede niet-lineaire substitutietabellen

te construeren zonder tegelijkertijd wiskundige structuren in te bouwen

die gevaarlijk kunnen zijn.

� Een praktisch ontwerp voor een asymmetrisch encryptieschema dat ge-

bruik maakt van blokcijfers met een valluik.

� Cryptanalyse van Shark en Square.


