
DRAFT

Coda: Decentralized cryptocurrency at scale

Izaak Meckler1 and Evan Shapiro1

1O(1) Labs

May 10, 2018

Abstract

We present Coda, the first cryptocurrency protocol that remains decentralized at scale.
“Scalability” refers to Coda’s ability to handle throughput of thousands of transactions per
second. “Decentralization” refers to the accessibility of verifying the chain state and synchro-
nizing as a new user. Synchronizing the chain state with Coda requires receiving less than a
megabyte of data, allowing devices like smartphones to securely perform transactions indepen-
dent of how long the protocol has been running or how many transactions have been performed.
Transactions on Coda can also be verified independent of their complexity, allowing complex
computations on its blockchain without burdening the network. Coda achieves these features
without sacrificing either scaling or decentralization through the use of recursive composition
of zk-SNARKs in a novel architecture that implements a decentralized ledger. The resulting
consensus protocol is consistent and responsive as long as at most 1/2 of the mining power is
malicious.

1 Introduction
While cryptocurrencies have achieved notable financial and public recognition, they have had
practicality problems due to poor scaling and high resource requirements. Resource efficiency
is particularly concerning, as existing scaling solutions will raise the resource requirements even
further, harming accessibility and decentralization.

These problems not only present practicality issues at cryptocurrency’s present level of usage
(e.g., prohibitively-high transaction fees, long sync times, high storage requirements for verifi-
cation), but make scaling cryptocurrency to millions of users to be entirely infeasible without
sacrificing decentralization.

We would like a cryptocurrency protocol that achieves the following properties

1. Scalable. In order to be used by millions of participants, the system must be capable of
processing thousands of transactions per second.

2. Decentralized. In order to minimize centralizing barriers to entry, the protocol must have
a constant cost of participation. The amount of computational resources (storage, computa-
tion, and network usage) required to join and interact with the network should be low and
grow as slowly as possible.

Historically cryptocurrencies have faced a tradeoff between scaling and decentralization [Jor18].
As cryptocurrencies scale, their blockchains increase in size, causing increasing burden for par-
ticipants to verify balances and data on the blockchain. These cryptocurrencies tend towards
inaccessibility and more centralized validation with usage.

We present a new protocol, Coda, which overcomes this previous limitation and achieves both
scaling and decentralization through the use of what we term a succinct blockchain.

A succinct blockchain is a blockchain for which verifying the current world state requires only
a constant amount of data and a constant amount of time. Concretely, a user of Coda requires
only around 20 kilobytes and about 10 milliseconds to verify their balance. These requirements are
independent of the number or complexity of the transactions processed by the blockchain. This
allows Coda to scale to large numbers of users while staying accessible to those with relatively
limited computing resources.

1

DRAFT

Coda’s succinct blockchain is enabled by recursive composition of zk-SNARKs [BCCT12]. Re-
cursive composition of SNARKs enable constant-sized proofs of arbitrary, incremental computa-
tions. This allows the Coda network to construct a proof of the validity of blockchain state that
can be updated incrementally as more blocks are added.

In this paper, we overview the cryptographic preliminaries needed for our succinct blockchain,
and present the succinct blockchain construction we use in Coda.

2 Preliminaries
We begin with some preliminary cryptographic definitions.

Definition 2.1. A function f is called negligible if for any polynomial p(λ), for all sufficiently
large λ we have f(λ) < 1

p(λ) . This will often be denoted f(λ) < negl(λ).

We review the definition of collision-resistant hash functions (CRH) which are used extensively
in the recursive composition construction.

Definition 2.2. A collision-resistant hash function (CRH) consists of a probabilistic-polynomial-
time algorithm Pgen that on input 1λ outputs a circuit h such that for every non-uniform polynomial-
size adversary A,

Pr
[
h←$Pgen(1λ); (x, y)←$A(1λ, h);x 6= y and H(x) = H(y)

]
< negl(λ) .

In our protocol, in order to ensure maximal efficiency of our SNARK construction, we use
a Pedersen hash function [CDv88] [CvP92] [BGG94]. The Pedersen CRH has particularly low
arithmetic complexity (and so is particularly efficient to verify with a SNARK).

Definition 2.3 (Pedersen CRH). Fix an elliptic curve family G = G(1λ) and an input length s(λ).
The G-Pedersen CRH is the CRH given by

PgenG(1λ)

G←$G(1λ);

(g1, . . . , gs)←$G;

return

[
(b1, . . . , bs) 7→

s∏
i=1

gbii

]

where the bis are boolean.
The collision-resistance of the Pedersen CRH reduces to the hardness of finding the discrete

logarithm of a random element of G (with respect to a random base). For state-of-the-art SNARK
performance optimizations, please see [HBHW17].

Finally, we review the definition of SNARKs for arithmetic constraint systems. For simplicity,
we define an F-arithmetic constraint system to simply be a list of polynomials over F in some
variables (x1, . . . , xr, y1, . . . , ys).

A satisfying assignment for a given constraint system will be an assignment of F elements to
each variable which causes each polynomial in the system to evaluate to 0. For a ∈ Fr, w ∈ Fs,
we use the notation C(a,w) to indicate that assigning the xi to a and the yi to w is a satisfying
assignment for C.

Definition 2.4. A succinct non-interactive argument of knowledge (SNARK) for F-arithmetic
constraint systems is is a tuple of algorithms (Setup,Prove,Verify) such that the following conditions
are satisfied:

1. Completeness.

For any constraint system C and a,w with C(a,w), we have

Pr
[
(pk, vk)← Setup(C, 1λ); π ← Prove(pk, a, w); Verify(vk, a, π) = >

]
= 1

For every (x,w) ∈ R.

2

DRAFT

2. Knowledge soundness. For every polynomial-size prover P, there exists a polynomial-size
extractor Ext such that for every z ∈ {0, 1}poly(λ) we have

Pr[(a, π)← P(pk, vk, z);w ← Ext(pk, vk, z);Verify(vk, a, π) = > and not C(a,w)] < negl(λ) .

3. Succinctness. For every F-arithmetic constraint system C, every (pk, vk) generated by
setup, and every a ∈ Fr, we have that every honestly generated proof has size poly(λ) and
Verify(vk, a, π) runs in time poly(λ) · r.

3 Recursive composition of SNARKs for state-transition sys-
tems

We now describe at a high level the recursive-composition technique described variously in [Val08],
[BCCT13] and [BCTV14] for “bootstrapping” a preprocessing SNARK which can only certify exe-
cution of fixed-size non-deterministic computations into a SNARK capable of certifying essentially
arbitrarily long non-deterministic computations.

Instead of phrasing the construction in the language of incrementally verifiable computation as
in [Val08] or in the language of PCD as is done in [BCCT13] and [BCTV14], we opt to describe
it in terms of state-transition systems as it maps more clearly onto the application of producing a
compact blockchain.

Definition 3.1 (State transition system). A state transition system consists of a type Σ of states, a
type T of transitions, and a (non-deterministic) poly-time computable function update : T×Σ→ Σ.
update may also “throw an exception” (i.e., fail to produce a new state for certain inputs).

Moreover we ask that Σ and T be poly-sized, in the sense that their members can be represented
by bitstrings of length poly(λ).

We now define SNARKs for state transition systems. At a high level, we would like poly(λ)-
size proofs (which are verifiable in poly(λ) time) which prove statements of the form “there exist
a sequence of transitions t1, . . . , tk : T such that update(tk, update(tk−1, . . . , update(t1, σ1), . . .)) =
σ2”. In other words, we would like succinct certificates of the existence of state-transition sequences
joining two states. The application to blockchains is the following: we will take our state to be the
database of accounts (along with some metadata needed for correctly validating new blocks) and
transitions to be blocks containing transactions.

Definition 3.2 (Incremental SNARKs for state transition systems (informal)). An incremental
SNARK for a state transition system (Σ,T, update) is a tuple of algorithms (Pgen,Prove,Verify)
such that (suppressing parameter generation and passing the parameters to Prove and Verify)

1. Completeness.

For σ1 : Σ and t1, . . . , tk : T, letting σ2 = update(tk, update(tk−1, . . . , update(t1, σ1), . . .)), we
have Verify(σ1, σ2, k,Prove(σ1, σ2, (t1, . . . , tk))) = >.

2. Incrementality

If Verify(σ1, σ2, k, π) = > and t : T , then letting σ3 = update(t, σ2), we have Verify(σ1, σ3, k+
1,Prove(σ1, σ3, (π, t))) = >.

3. Knowledge soundness

For T = (t1, . . . , tk) a sequence of transitions, define

update(T, σ) = update(tk, · · · , update(t1, σ), · · ·).

For every polynomial-size prover P, there exists a polynomial-size extractor Ext such that for
every z ∈ {0, 1}poly(λ),

Pr[(σ1, σ2, π)← P(z);T ← Ext(z);Verify(σ1, σ2, k, π) = > and update(T, σ) 6= σ2] < negl(λ) .

4. Succinctness Every honestly generated proof has size poly(λ) and for any proof π, σ1, σ2 : Σ,
and k, we have that Verify(σ1, σ2, k, π) runs in time poly(λ) · log k.

3

DRAFT

The incrementality is very useful, as it implies the proving process can be executed in parallel
to compress k state transitions with span (or “wall-clock time”) O(log k).

Naive recursive composition is extremely expensive. To address this, we use the “cycle of elliptic
curves” technique (as described in [BCTV14]) in which two SNARK constructions (let’s call them
Tick and Tock) verify each other. As a first step, let’s define a set of typing rules such that the
existence of a term π : σ1 →Tock σ2 implies the existence of a sequence of transitions taking σ1 to
σ2. The typing rules are as follows:

σ1 : Σ σ2 : Σ t : T update(t, σ1) = σ2
base

base(σ1, σ2, t) : σ1 →Tick σ2

σ1 : Σ σ2 : Σ π : σ1 →Tick σ2 wrap
wrap(σ1, σ2, π) : σ1 →Tock σ2

σ1 : Σ σ2 : Σ σ3 : Σ π1 : σ1 →Tock σ2 π2 : σ2 →Tock σ3 merge
merge(σ1, σ2, σ3, π1.π2) : σ1 →Tick σ3

From a term π : σ1 →Tock σ2 we can obtain a sequence of transitions taking σ1 to σ2. Indeed,
a term of type σ1 →Tock σ2 here is essentially an explicitly parenthesized sequence of transitions
leading from σ1 to σ2.

Now, we will implement each of these deduction rules with a SNARK, such that the proof-
of-knowledge assumption for each SNARK will correspond to a kind of inversion-lemma for the
corresponding deduction rule. This will then allow us to apply essentially the same reasoning as
above to conclude that a SNARK which purportedly witnesses the existence of transitions taking
σ1 to σ2 in fact implies the knowledge of such transitions.

We will have 3 SNARKs, one corresponding to each deduction rule.

1. A Tick-based SNARK for certifying single state transitions, which we’ll call the “base”
SNARK.

Input: (The hash of) a tuple (σ1, σ2, y) where σi : Σ and y is an arbitrary string.

Statement: There exists t : T such that update(t, σ1) = σ2.

2. A Tick-based SNARK for merging two Tock proofs, which we’ll call the “merge” SNARK.

Input: (The hash of) a tuple (σ1, σ3, vk) where σi : Σ and vk is a Tock verification key.

Statement: There exists σ2 : Σ and Tock-proofs π1, π2 such that VerifyTock(vk, (σ1, σ2, vk), π1)
and VerifyTock(vk, (σ2, σ3, vk), π2)

In plain English, it will prove that there exists a SNARK certifying the existence of transitions
from σ1 to σ2 and a SNARK certifying the existence of transitions from σ2 to σ3.

3. A Tock-based SNARK for wrapping a Tick proof, which we’ll call the “wrap” SNARK. Let
vkbase, vkmerge be “base” and “merge” verification keys respectively.

Input: An arbitrary string x.

Statement: There exists a Tick proof π and vk ∈ { vkbase, vkmerge } such that VerifyTick(vk, x, π).

This SNARK merely wraps a Tick SNARK into a Tock SNARK so that another Tick SNARK
can verify it efficiently.

Various tricks are applied in the actual implementation for efficiency’s sake, but for simplicity of
exposition we omit them here.

One obtains the following proposition regarding the above proof system.

Proposition 3.1 (SNARKs for state transition systems, informal). Assume the existence of col-
lision resistant hash functions and a pair of preprocessing SNARK constructions with linear-time
knowledge extractors.

Let (Σ,T, update) be a state transition system. Then the above construction instantiated with
those primitives yields a state transition system SNARK for (Σ,T, update).

As mentioned, the proof-of-knowledge assumption for each SNARK corresponds to a kind of
inversion-lemma for the corresponding deduction rule. A full argument (in the language of PCD)
is provided in [BCTV14].

4

DRAFT

4 Succinct blockchains
A succinct blockchain is a blockchain with verification complexity essentially independent of
chain length. Instead of preserving the entire chain, one merely holds onto the current state along
with a SNARK proving that there exists a blockchain explaining the current state. In fact, it is
even better: the SNARK certifies the existence of a blockchain explaining a state with Merkle root
h. Then, users who are interested in only part of the state (e.g., their own balance) can be given
this SNARK along with a small Merkle-path corresponding to root h into the part of the state
that they are interested in.

Blockchain verification and extension can be expressed as a state transition system, and thus
SNARKs for state transition systems as described above enable the construction of succinct
blockchains.

We handle the permissioning mechanism (whether it be proof-of-work, proof-of-stake, or some-
thing else) abstractly.

Definition 4.1 (Permission mechanism). A permission mechanism consists of types PermissionState
and PermissionProof along with polytime-computable functions

1. checkPermission : PermissionState× PermissionProof→ {>,⊥ }

2. updatePermission : PermissionState× PermissionProof→ PermissionState.

Let us give some examples of how this definition can be instantiated. For proof-of-work, the
permission state would contain several previous difficulty targets and block-times (from which to
compute the current difficulty target) and a permission proof would contain the proof-of-work itself
along with a new time to update the state with.

For a Praos-style [DGKR17] proof-of-stake mechanism, the permission state would contain
the current random seed, the (Merkle root of) the current epoch’s stakes, and some information
about the previous blocks and block times. A permission-proof would contain a public-key and a
VRF evaluation proof meeting the difficulty target corresponding to that public-key and the stakes
indicated in the permission state.

This definition omits mention of generating the permission proofs, dealing only with their
verification. The following definition of a succinct blockchain will assume some permissioning
mechanism. We also assume the existence of a collision-resistant hash function H, and whenever
we speak of hashes, we are referring to outputs of H.

We can now describe in more detail the precise transition system giving rise to a succinct
blockchain. Our blockchain will maintain consensus on a “ledger”, which is a list of accounts with
balances. Users submit “transactions” which are instructions to transfer balance from one account
to another. We discuss the structure of the ledger and transactions in more detail in section A.

Instead of containing transactions directly, blocks will include a SNARK proving the existence
of transactions which when applied to the previous ledger leave it in some new state. That is, we
assume a function verifyLedgerProof which given two hashes r1 and r2 along with a proof π returns
> (computationally) iff there exists a sequence of transactions taking a ledger with Merkle root r1
to a ledger with Merkle root r2.

Definition 4.2 (Blockchain-state). The blockchain’s state type Σ will be a record consisting of

1. previousStateHash: The hash of the previous blockchain state.

2. ledgerHash: The Merkle root of the database of accounts with balances.

3. permissionState: A value of type PermissionState.

Definition 4.3 (Blockchain transition). The transition type T will be a record consisting of

1. permissionProof: A value of type PermissionProof.

2. ledgerProof: A SNARK proof.

3. nextLedgerHash: The purported hash of the ledger after applying the transactions indicated
by ledgerProof.

5

DRAFT

Finally, we define the update function for a succinct blockchain’s transition system.

update(s, t)

assert (checkPermission(permissionState(s), permissionProof(t)) = >);
assert (verifyLedgerProof(ledgerHash(s), nextLedgerHash(t), ledgerProof(t)) = >);
return (H(s), nextLedgerHash(t), updatePermission(permissionState(s), permissionProof(t)))

Simply put, to update a blockchain with a given transition, we check that the transition is per-
missioned to act on the blockchain, then we check the correctness of the transactions the transition
wants to apply to the ledger, and finally we return a new blockchain whose previousStateHash,
ledgerHash, and permissionState have been set appropriately.

Instantiating the construction of SNARKs for state-transition systems with this update func-
tion yields a SNARK construction for certifying statements of the form “there exist a sequence
of appropriately-permissioned transactions which when applied to blockchain-state σ1 result in
blockchain-state σ2.” We fix an arbitrary “genesis state” σ0 : Σ and define a “succinct blockchain”
(which we may refer to simply as a “blockchain”) as follows.

Definition 4.4 (Succinct blockchain). In Coda, a blockchain is a blockchain-state σ : Σ along with
a state-transition SNARK which verifies against the input (σ0, σ). I.e., a SNARK proving the
existence of a sequence of valid transitions linking the genesis state to σ.

Nodes can participate in a succinct blockchain protocol without storing anything except for the
strongest blockchain and a full or partial state. If a node has these items, they can be certain that
the information in whatever state they hold is backed by a blockchain with the strength indicated
and that balances have been updated only via a sequence of valid transactions contained in that
blockchain.

5 Permissioning mechanism and network model
At a high level, Coda works by simply instantiating the succinct blockchain construction with
a permissioning mechanism such as Ouoroboros Praos proof-of-stake protocol[DGKR17] and the
same distributed system assumptions. The result would be a succinct proof-of-stake blockchain.

In practice, nodes have additional local state (beyond that explicitly described in the blockchain)
which they use in the consensus process. This process is described in detail in [DGKR17] and is
essentially unchanged in Coda.

5.1 Ledger properties
The succinct blockchain construction instantiated with a particular permissioning-mechanism in-
herits all of the consensus properties provided by a typical verbose blockchain instantiated with
the same permissioning-mechanism.

In particular, assuming Coda is instantiated with a permissioning-mechanism such as Ouoroboros
Praos, it provides persistence and liveness.

To properly define permission and liveness, we first define the notion the history of a blockchain.

Definition 5.1. Say σ1, σ2 are blockchain-states. We say that σ1 is the predecessor of σ2 (or that
σ2 is the successor of σ1) if H(σ1) = previousStateHash(σ2).

By collision-resistance of H, each valid blockchain-state σ has a computationally-unique prede-
cessor which we denote pred(σ). This is with exception of the genesis state σ0, which is chosen so
that it (computationally) has no predecessor.

Definition 5.2. Let (σ, π) be a blockchain, and let k be the (computationally) unique integer such
that predk(σ) = σ0. We define the history of (σ, π) to be the set

{
pred(σ), pred(pred(σ)), . . . , predk(σ)

}
.

We are now in a position to define the persistence and liveness properties provided by Coda.
Persistence. Suppose an honest node claims at some point that current blockchain is
B1 and then claims at a later point that the current blockchain is B2. Then with high
probability B1 is in the history of B2.

6

DRAFT

Liveness. Suppose all honest nodes in the system attempt to include a given transaction
t when updating the ledger. Then with high probability, after a constant amount of time t
will be used in creating a “ledger proof”, and thus its effect on the ledger will be confirmed
by the network.
The ledger functionality implemented by Coda has several additional highly desirable properties

which have not been achieved by any other cryptocurrency. Let A be the number of accounts in
the ledger.
Decentralization and universal availability. Any node can verify their balance in the
ledger by downloading an amount of data which has size O(logA) and which requires time
O(logA) to verify. Note that this is asymptotically optimal as O(logA) is the amount of
data required to even write down an index into a ledger of size A.
Sustainability. The amount of data stored by any node in the system is constant in the
number of transactions that have been processed. In particular it is O(A).

References
[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-

tion and bootstrapping for snarks . . ., 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composi-
tion and bootstrapping for SNARKS and proof-carrying data. pages 111–120, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. pages 276–294, 2014.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The
case of hashing and signing. pages 216–233, 1994.

[CDv88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. pages 87–119,
1988.

[CvP92] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. pages 470–484, 1992.

[DGKR17] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology
ePrint Archive, Report 2017/573, 2017. http://eprint.iacr.org/2017/573.

[HBHW17] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol spec-
ification: Version 2018.0-beta-19 [overwinter+sapling]. https://github.com/zcash/
zips/blob/master/protocol/sapling.pdf, 2017.

[Jor18] Raul Jordan. How to scale ethereum: Sharding explained. https://medium.com/
prysmatic-labs/how-to-scale-ethereum-sharding-explained-ba2e283b7fce,
2018.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. pages 1–18, 2008.

Appendix A Ledger and ledger updates
The succinct blockchain construction described in section 4 assumes the ability to certify the
existence of transactions taking a ledger in one state to a ledger in another state. Here we describe
the exact construction in more detail. We assume the existence of a digital signature scheme.

A “ledger” will be a list of “accounts”. An “account” will be a record containing a signature
public-key, an integer representing the account balance, and an integer nonce which functions to
prevent transaction replay.

As described in section 4, the ledger is represented within the blockchain’s transition system
state as its Merkle root. This is important for the efficiency of the system as representing the

7

http://eprint.iacr.org/2017/573
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://medium.com/prysmatic-labs/how-to-scale-ethereum-sharding-explained-ba2e283b7fce
https://medium.com/prysmatic-labs/how-to-scale-ethereum-sharding-explained-ba2e283b7fce

DRAFT

entire ledger explicitly is both prohibitively costly. Representing the ledger as its Merkle root also
enables the possibility of checking the validity of portions of the state (e.g. only one’s own balance)
without having to see the whole state itself.

Let us describe how we can “compress” away transactions again using the transition-system
SNARK construction. A “transaction” will be a record consisting of a “sender” public-key, a
“receiver” public-key, an integer indicating the amount of the transaction, an integer nonce, and a
signature. We omit discussion of fees.

We instantiate the state-transition SNARK construction to produce SNARKs proving state-
ments of the form “there exists a sequence of transactions which when applied to the ledger with
Merkle root r1 yield the ledger with Merkle root r2.”

The state type will simply consist of a hash (interpreted as the Merkle root of the ledger). A
transition will simply be a transaction. The (non-deterministic) update function is given by the
following, where request represents non-determinstic choice and assert aborts the computation
if the given condition is not true.

let update t s =
let { signature; body = { sender; receiver; amount; nonce } } = t;
Signature.assert_verifies signature sender t.body;
let s’ =

find_and_modify s sender (fun account ->
assert (account.balance >= amount);
assert (account.nonce = nonce);
return { account with balance = account.balance - amount; nonce = nonce + 1 });

let s’’ =
find_and_modify s’ receiver (fun account ->

return { account with balance = account.balance + amount });
return s’’

where
find_and_modify s public_key f =

request account : Account;
assert (account.public_key = public_key);
request auth_path : List (Bool * Hash);
Merkle_tree.assert_membership s account auth_path;
request s’ : Merkle_root;
Merkle_tree.assert_membership s’ (f account) auth_path;
return s’

It is important to reiterate that the incremental nature of the transition-system SNARK con-
struction enables one to compose individual transactions along a binary tree. This means that a
sequence of k transactions can be compressed into a single SNARK in span C · log k (for some
constant C).

What this means is that even though the requirement that transactions be verified with a
SNARK incurs a computational overhead, it does not incur a “wall-clock time” overhead. To be
specific, if k transactions per second are sent to the system, over s seconds, we will need to SNARK
sk transactions. This will take time C log(sk) = C log k + C log s, which for large enough s is less
than s. Thus the time required to SNARK the transactions will asymptotically be exceeded by
the time taken to produce the transactions, allowing the system to function at any throughput
assuming sufficient parallelism.

8

	Introduction
	Preliminaries
	Recursive composition of SNARKs for state-transition systems
	Succinct blockchains
	Permissioning mechanism and network model
	Ledger properties

	Ledger and ledger updates

