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ABSTRACT 

This paper presents an efficient group key management protocol, CKCS (Code for Key Calculation in 

Simultaneous join/leave) for simultaneous join/leave in secure multicast. This protocol is based on logical 

key hierarchy. In this protocol, when new members join the group simultaneously, server sends only the 

group key for those new members. Then, current members and new members calculate the necessary keys 

by node codes and one-way hash function. A node code is a random number which is assigned to each 

key to help users calculate the necessary keys. Again, at leave, the server just sends the new group key to 

remaining members. The results show that CKCS reduces computational and communication overhead, 

and also message size in simultaneous join/leave. 
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1. INTRODUCTION 

IP multicast (hereinafter multicast) is an efficient group communication protocol to deliver 

multicast content from a single source to multiple users. This communication technology uses 

IGMP (Internet Group Management Protocol) [1] for group membership that allows members to 

join the group and receive content freely. As a result, open group membership by IGMP leads to 

eavesdropping. In order to avoid this threat, group key management has been proposed. Group 

key is a key that is shared by all group members and the sender for encrypting data by the 

sender and decrypting transmitted data by the group members. 

The security requirements of secure multicast are forward secrecy and backward secrecy [2]. 

Forward secrecy ensures when a member leaves the group, he/she cannot access successfully 

the current content. Backward secrecy ensures that a new member cannot access any data which 

is sent before its join process. Because of these requirements, group key needs to be updated on 

each membership change and to be distributed to the valid group members securely. This 

process is called group re-keying or re-keying in short. 

Two types of group membership, single and simultaneous exist in multicast. Figure 1 illustrates 

the process of join/leave in which only one member, un+1 joins/leaves the multicast group. In 

single join/leave, the server is considered to reply only one user’s join/leave request. However 

in real world, simultaneous join/leave occurs more frequently. Simultaneous join/leave refers to 
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multiple requests from different users to the server at the same time. Figure 2 shows the 

simultaneous join/leave operations which occur concurrently in a multicast group. In 

simultaneous join/leave, the server needs to response multiple requests synchronously. As 

providing forward/backward secrecy is important in single join/leave, these requirements are 

crucial in simultaneous case as well. 

Re-keying implies large overhead on each membership change for dynamic groups. Usually, the 

overhead at leave is larger than the overhead at join. Because when a new member joins the 

group, the new group key can be encrypted by the previous one and distributed by multicast to 

the existing members except the new member who receives the group key by unicast being 

encrypted by his/her individual key. But when a member leaves the group, the group key is 

encrypted by each member’s individual key and is transmitted by unicast to the remaining 

members individually. In this case, the previous group key is supposed compromised. So, for a 

group with n members, the re-keying overhead is O(n). 

Many protocols have been proposed for group key management [3]-[10]. The main purpose of 

them is how to distribute group key to valid members efficiently at leave. The proposed 

protocols are based on logical hierarchy model. The common issue with all of these protocols is 

that they focus only on single join/leave. Although these protocols reduce the re-keying 

overhead largely at leave from O(n) to O(log n), they increase re-keying overhead from O(1) to 

O(log n) at join [3]-[8]. While proposals in [9],[10] reduce re-keying overhead at join for 

multicast communication compared with [3]-[8], none of them [3]-[10] focus on reducing re-

keying overhead for a new member at join. 

In fact, reducing re-keying overhead for new members at join is an important factor for 

simultaneous mode. Because, when m members join the group simultaneously, the server should 

deliver the necessary keys to both the new and the current members. For the current members, 

the overhead has already been decreased, but for new member the overhead still remains. So, in 

simultaneous mode, reducing overhead of key delivery to new members at join is a critical 

factor. Therefore, it is necessary to have the minimum overhead for the new members at join. 

u
n+1
joins un+1 leaves

...u
1

u
2

u
3

u
n

un+1...u1 u2 u3 un

group members

group members  

Figure 1.  Single join/leave 

 
Figure 2.  Simultaneous join/leave 
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For this purpose, the overhead of re-keying for new member in single join/leave should be 

minimized at first. Then, by improving that method, the proposed protocol can be used in 

simultaneous mode. 

As stated before, most of the previous approaches do not consider simultaneous join/leave. [11] 

is the only research that addresses simultaneous join/leave by periodic re-keying. However, this 

proposal does not support forward and backward secrecies. This is the main problem with this 

protocol because some members may repeat join/leave within a period. Moreover, this approach 

does not propose any specific method for re-keying.  

This paper develops the mechanism of key tree management in [12] and adopts the protocol to 

simultaneous join/leave. CKCS is a hierarchical protocol which has the minimum re-keying 

overhead at join/leave compared to [3]-[10]. In CKCS, all necessary keys are calculated by 

members using code for key calculation rather than distributed by the key server. As a result, 

key generation, key encryption and message size overhead are reduced to O(m) where m 

denotes the number of members who join the group simultaneously. 

This paper is organized as follows. Section 2 shows the overview of the secure multicast 

network, and discusses the researches which are based on the hierarchical approach. The design 

principles and detailed design of our proposal are shown in sections 3 and 4, respectively.  At 

the end of section 5, we discuss the security of our protocol. In section 6, we compare our 

protocol with the hierarchical based researches.  Section 7 is the conclusion. 

2. RELATED WORK 

2.1. Network Structure 

Figure 3 illustrates the network structure of secure multicast. This network has three major 

parts; key server, multicast sender and multicast members. Key server is responsible for 

generating the keys and delivering them to both multicast sender and the existing members. 

Multicast sender encrypts the contents by the key which is received from the key server and 

distributes the encrypted content to all the group members. Multicast members are the 

authorized users who receive group content from multicast sender and also the necessary keys 

from the key server.  

When a new member joins a multicast group, he/she should send IGMP request to his/her 

nearest router to receive multicast data from the network. Also, the new member needs to send a 

join request to the key server. When the new member’s request is accepted by the key server, re-

keying process should be started. All the updated keys must be delivered by the key server to 

multicast sender, the new member and all the existing members. When a member leaves a 

multicast group, he/she needs to send IGMP leave message to stop content delivery at first. 

Then, this member should inform the key server by sending a leave message. In next subsection, 

re-keying process of some previously proposed protocols is reviewed. 

2.2. Existing LKH Approaches 

Wallner et al. in [3] proposed LKH (Logical Key Hierarchy) approach for group key 

management in secure multicast. Later, several versions of LKH based protocols were proposed 

[4]-[10]. In these protocols, a centralized server is responsible for managing the group and 

distributing the group key to all group members. In LKH based protocols, the members of 

multicast group are mapped to the leaves of a logical key tree. This tree is a d-ary tree, typically 

a binary one. Each member stores all the keys from the leaf node along the path to the root. The 

root key is the group key. When a member joins or leaves the group, all the keys in his/her 

possession need to be changed to new ones. The lowest level in the tree can be the starting 

point in a way that a new parent key is encrypted by using its two child keys and distributed to 
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users. Since the height of the key tree is log n, as a resultthe complexity of re-keying is also 

O(log n).  

 

Figure 4 shows the outline of re-keying procedure for LKH at join. This figure depicts the 

logical key tree with seven existing members, u
1
 through u

7
, when u

8
 joins the group. At this 

time, the affected middle node keys, K7,8and K5,8, and the group key, KG, are changed to K’7,8, 

K’5,8, and K’G respectively, because these nodes are on the path from u8 to the root. Then, the 

key server sends the new keys to the related members. First, all the keys which u
8
 needs to have, 

K’7,8 , K’5,8and K’G are sent by unicast to u
8
 being encrypted with K8, K’7,8and K’5,8, respectively. 

Next, K’7,8is sent to u7 being encrypted by K7. For the existing members, the updated keys are 

sent by multicast. In this example, K’5,8is sent to {u
5
,u

6
}, and u

7
 being encrypted with K5,6 and 

K’7,8respectively. K’G is sent for {u
1
,u

2
, u

3
, u

4
} and for {u

5
, u

6
, u

7
} being encrypted with K1,4 and 

K’5,8, respectively.  

 
For leave operation, the same procedure is performed. When a member leaves the group, for 

example u
8
, the node key of the leaving member should be deleted from the key tree at first. 

Next, all the affected middle nodes in the path to the root are updated to new ones and are sent 

to remaining members. By this method, LKH reduces re-keying overhead at leave from O(n) to 

O(log n). 

OFT [4] is another LKH based approach. The main idea of this approach is to reduce the key 

distribution overhead of the server by shifting a part of key calculation to users’ side. The key of 

 

Figure 4.  An example of logical key tree for LKH and OFT at join/leave 

 

 

Figure 3.  Network structure of secure multicast [9] 
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node (i), Ki,is calculated by using the formula Ki= f(g (Kleft (i)),g (Kright (i))). In this formula, f(x) is 

a mixing function and g(x) is a one-way hash function. The value of g(x) is called blinded key.  

Kleft (i)denotes the key of left child while Kright (i)denotes the key of right childe of the node. 

In OFT, when a member joins a multicast group, he/she receives some information includes the 

group key, his/her sibling’s blinded key, and ancestors’ sibling blinded keys. For example, in 

Figure 4 when u
8
 joins the group, he/she should receive the sibling blinded key, g(K7), and his 

ancestors’ siblings blinded keys which are g(K5,6) and g(K1,4). These keys are encrypted by K8. 

On the other hand, u8 calculates K’7,8, K’5,8and K’G by using the following formulas. 

( ) ( )( )

( ) ( )( )

( ) ( )( )

7,8 7 8

5,8 5,6 7,8

1,4 5,8

, ,

, ,

, .
G

K f g K g K

K f g K g K

K f g K g K

′ =

′ =

′ ′=

 
(1) 

After u8joins the group, the blinded keys of K’7,8, K’5,8and K’G are encrypted with their sibling 

keys and advertised by multicast to the existing group members as follows: 
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u g K
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 (2) 

Now, by receiving these blinded keys, all the group members can update the necessary keys 

through the above formula. In this method, when a member leaves the group, the key updating 

process will be done as well as join operation. Therefore, OFT reduces the overhead of re-

keying from O(log n) to O(1/2 log n).   

In [9], authors divide the group members into some subgroups and assign a subgroup key to 

each subgroup. In this protocol, the key server assigns a secret to each joining member, and the 

group key is generated using those secrets. Moreover, each member is given the inverse value of 

secrets of all the other members except its own. Those inverse values help the remaining 

members to update the group key at leave. When a member leaves the group, the key server 

only informs the remaining members that the member has left the group. The new key is 

generated by individual members using the inverse value of the leaving member. In order to 

reduce the burden of maintaining the inverse values, this protocol divides the current members 

into subgroups. By this mechanism, the protocol can reduce the computational and 

communicational overhead at member leave and the maintenance overhead of inverse values at 

individual members. Although this protocol focuses on reducing the re-keying overhead at leave 

but it also reduces re-keying overhead at join. Consequently, this protocol reduces re-keying 

overhead at leave from O(log n) in LKH to O(log [n/m]) at leave when m is the number of 

subgroups. 

OKD [10] is defined based on one-way key derivation. In this method, users compute some of 

the updated keys in each group membership change instead of receiving all new keys from the 

server. A derivation function, f (x) is used to generate new keys from the old ones. OKD 

considers 3-ary tree for key tree. In OKD, when a new member joins the group, he/she is 

assigned to a suitable branch of the key tree and all the necessary keys are sent by unicast to the 

new member but the current group members calculate their necessary keys by themselves. 

While OKD reduces re-keying overhead at join for multicast communication compared with 

other LKH based protocols [2]-[7], it does not focus on reducing re-keying overhead for a new 
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member at join. So, OKD is not suitable when several members join a group simultaneously. 

The details of OKD exist in [10]. 

As shown above, LKH based methods are acceptable because they reduce re-keying overhead 

largely. If the group size is small, for example less than hundred members, one might not use a 

hierarchical approach. However, when the group size grows to several thousands or millions, 

hierarchical approaches such as LKH based protocols are needed. More important, when 

simultaneous join is considered for a system, the overhead of re-keying for the new members is 

crucial because the server has to generate the new keys and encrypt them for each new member 

individually to send them. While protocols in [9],[10] reduce re-keying overhead at join for 

multicast communication compared to the other LKH based ones [3]-[8], they do not focus on 

reducing re-keying overhead for the new members which is necessary for simultaneous join. 

Therefore, the overhead of re-keying for new members in simultaneous mode is a crucial factor. 

To handle this issue, we develop the mechanism of the key tree for simultaneous join/leave in 

our previously proposed protocol [12] and now we evaluate its performance in simultaneous 

mode. 

3. DESIGN PRINCIPLE 

We now present our new efficient protocol for group key management in simultaneous mode. In 

fact, this work (CKCS: Code for Key Calculation in Simultaneous), is an extension of our 

original idea [12]. We add some features and adopt them to simultaneous mode. The following 

design principles have been performed in our protocol. 

(1) Figure 3 illustrates the network structure of secure multicast. Using the same network 

structure for CKCS, the key server is responsible for generating and distributing only the 

group key to new members at join. First of all, new users send an IGMP message to the 

nearest router for receiving the multicast content from a multicast sender. Next, new users 

need to send a join request to the key server for receiving the session group key for 

decrypting the encrypted content. Finally, when members leave the group, they send the 

leave requests to the key server. The key server updates the group key and redistributes it to 

the remaining members and multicast sender by multicast. 

(2) Figure 5 illustrates the logical key tree in CKCS. The tree applies the concept of key tree in 

LKH approaches. When m members join a group simultaneously, the server creates a key 

tree for those users, and combines it with the current key tree by adding a new node to top 

of these two trees. Here, this top node is considered as the group key. By this technique, the 

height of the key tree remains unchanged and as a result we have a balanced tree. 

(3) Similar to LKH based approaches, in CKCS, some keys need to be updated after each 

membership change. The updated keys are calculated by the group members rather than 

distributed by the key server. For this purpose, each node of the key tree is assigned to a 

specific code called node code. A node code is a random number which is assigned to each 

middle node key to help the users calculate the necessary keys. This code is delivered to the 

new member at join as a position of that member in the key tree. It is calculated by 

concatenating a random number to right digit of its parent node code. Generally, each parent 

node code can be obtained by deleting the rightmost digit from his/her child code. By this 

mechanism, each member knows the codes of all nodes in his/her path to the root. So, 

members can update the affected node keys using these codes and the hash function after 

each membership change (Figure 6). 

(4) In this step, we explain simultaneous join in CKCS. When several users join a group 

concurrently, the server creates a new key tree for new users by assigning a position code to 

the top node of the new key tree. The previous key tree and the new one are concatenated to 

each other by adding a top node which is considered as a new group key. The key server 

encrypts the new group key with each new user's individual key and sends them by one 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 2012 

267 

 

 

 

multicast message. Each new member generates the middle node keys in his/her path to the 

root by applying hash function on bitwise XOR of the group key with each node code. 

Current members only need to compute the top node of new key tree which is calculated by 

applying hash function on the previous group key. 

(5) This step describes simultaneous leave in CKCS. Depending on the position of leaving 

members, two cases are considered; the worst case and the best case (Figure 7). The worst 

case occurs when members leave the group from different leaves of the key tree while the 

best case happens when members who are located in one half of the key tree. At leave, the 

sibling node of each leaving member is moved to his/her parent position in the key tree. To 

provide forward secrecy, the server is responsible for updating the group key and sending it 

to the remaining members. The server encrypts the new group key with top node of each 

part and sends it by multicast to all remaining group members. The re-keying overhead at 

leave has the lowest value by considering the best case. 

leaving members

remaining members

(a) (b)  

Figure 7.  Leave operation in simultaneous mode (a) worst case (b) best case 

 

 
Figure 5.  The logical key tree in CKCS 

 

(a) (b) 
Figure 6.  Node code management (a) node code generation (b) simple example 
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4. DETAILED DESIGN 

In this section, we present CKCS in details. CKCS focuses on user side key calculation rather 

than server side key distribution. In this protocol, a code is assigned to each middle node of the 

key tree to help users calculate the necessary middle node keys. 

4.1. Key Tree Structure and Node Code Management in CKCS 

The key server manages the group members and sends them only the group key. When new 

members join the group, they need to know their individual keys and their positions in the key 

tree according to the basic information. After receiving join requests, the key server sends the 

new members their individual keys, and also their position codes in the key tree. The individual 

keys of the new members and their position codes are sent via a secure channel. Each node of 

the key tree has a unique code. New members can calculate the necessary middle node keys in 

their path to the root by using node codes. Each middle node key is updated by applying hash 

function on bitwise XOR of the group key and the corresponding node code as below. 

_ ( _ )
Gmiddle nodeK f K node code= ⊕  (3) 

Moreover, the group key is updated after each membership change. New members receive the 

group key from the key server encrypted by their individual keys. The current members can 

calculate it by applying one-way hash function on the previous group key as below. 

( )G GK f K′ =  (4) 

In simultaneous join, when multiple users join the multicast group, the server creates the key 

tree of new users at first and allocates each new user to one leaf of the key tree. The key tree of 

old group members and new simultaneous users are combined with each other by adding a new 

node to the top. At this time, the top node is assumed as the new group key. The code of the 

new top node (root node) is calculated by deleting a digit from the rightmost digit of the 

previous root code. Then, the codes of middle nodes for simultaneous join are created by 

concatenating a random number to the rightmost digit of the parent code as below. 

Childnode_code = (Parentnode_code || Random digit(s)). (5) 

Figure 8 shows the node code management procedure in simultaneous mode. Here, by joining 

the new users,{u
5
, u

6
, u

7
, u

8
}, simultaneously, new node key, K1,8, is created on top of the 

previous root node key, K1,4. The key tree of new members, {u
5
, u

6
, u

7
, u

8
}, is located to the right 

child position of the new root node. Here, the code of new root is 27 calculated by deleting 8 

from the right side of 278. The middle node codes of doted branches (key tree of new members) 

are created by attaching a random number to the right side of their parents’ code. 

 

 

Figure 8.  Node code management key tree in simultaneous case 
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4.2. Join Operation 

We use Figure 9 to explain how re-keying is done in simultaneous join by a simple example of a 

multicast group with 4current members {u
1
, u

2
, u

3
, u

4
} while {u

5
, u

6
, u

7
} join the group 

simultaneously. The procedure is done as follows: 

(1) {u
5
, u

6
, u

7
} send join requests to the key server concurrently. The server creates their key 

tree and generates their individual keys. Individual keys of the new members, {K5, K6, K7}, 

are sent through a secure channel to them. The key tree of new members is attached to the 

current key tree by adding a top node, K1,7, to the top ofK1,4. This new top node, K1,7, is the 

new group key. 

(2) There server calculates code of K1,7and all the new middle nodes in the new key tree. 27 is 

assigned to K1,7by deleting 8 from the rightmost digit of 278 assigned to K1,4. In the new 

members’ key tree, code of each middle node is generated by attaching a random number to 

the rightmost digit of his/her parent node code. These codes are 273, 2734 assigned to K5,7 

and K5,6, respectively. After generating these nodes codes, the server sends the position 

codes to them through a secure channel. 

(3) The key server updates the group key from KG to K’G, using one-way hash function. 

1,4( )GK f K′ =  (6) 

 

(4) Then, K’G is encrypted by each new member’s individual key and sent by one multicast 

message.  

5 6 7

5 6 7{ , , }: ( ) , ( ) ,( ) .multicast

G K G K G Ks u u u K K K′ ′ ′→  (7) 

(5) The current group members, {u
1
, u

2
, u

3
, u

4
}, who are located in current key tree, calculate 

the new group key, K’G, by applying one-way hash function to the previous group key KG. 

1 2 3 4

1,4
, , , : ( )

G
u u u u K f K′ =  (8) 

(6) The new members, {u
5
, u

6
, u

7
}, compute all their necessary middle node keys in their path to 

the root by the following formula: 

5 6

5,6

5 6 7

5,7

, : ( ),

, , : ( ).

G

G

u u K f K 2734

u u u K f K 273

′= ⊕

′= ⊕
 (9) 

 

K 3,4K1 , 2

K1,4

278

2784 2789

u
1

u
2

u
3

K5 ,6

K5 ,7

273

u
5

u
6

K1, 7

27

2734

u
4

 

current key tree new key tree
 

K1 K6K5K4K3K2

K7

u7

 
 

Figure 9.  Updating key tree in simultaneous join in CKCS 
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4.3. Leave Operation 

In CKCS, when several members leave the group, the key tree is divided into two equal parts. 

As Figure 10 shows, the deleted nodes belong to one half of the key tree. So, these parts will be 

divided again and again until just the leaving members’ branches are remained. The number of 

tree divisions is equal to (log n -1) where n is the number of group members.  The key server 

encrypts the new group key by the keys of the top node of each half. We now use Figure 10 to 

explain how re-keying is done in simultaneous leave by a simple example of a multicast group 

with 8 members {u
1
, ... , u

8
} when {u

1
, u

4
, u

8
}leave the group. The procedure is done as follows: 

(1) When {u
1
, u

4
, u

8
} leave the group, the nodes of K1,2, K3,4, and K7,8 are deleted from the key 

tree and u2
, u

3and u7 are promoted to their top node positions. 

(2) The key server generates a random group key, K’G.  

(3) K’G is sent to the remaining group members by multicast, being encrypted by the top node 

key of each part, K2, K3, K5, 6, K7. The group key is sent to the members who are located in 

each part, part-1, part-2, part-3, and part-4 respectively. 

 

(4) Now, {u
2
, u

3
, u

5
, u

6
, u

7
} whose their middle nodes are affected from this simultaneous  

leave, update K1,4and K5,7to K’1,4and K’5,7respectively by applying one-way hash function on 

bitwise XOR of the group key and the related node codes. 

2 3

1,4

5 6 7

5,7

, : ( ),

, , : ( ).

G

G

u u K f K 278

u u u K f K 273

′ ′= ⊕

′ ′= ⊕
 (11) 

 
 

Figure 10. Simultaneous leave for CKCS 
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5. SECURITY ANALYSIS 

In this section, we analyze the security requirements of CKCS. Backward secrecy ensures that 

new members at join cannot achieve the archived contents in the group. In CKCS, the new 

group key is organized by applying one-way hash function to the previous group key. One-way 

hash function has the property of one-wayness which means that it is easy to calculate y = E(x), 

but by given y it is computationally hard to find x. Therefore, it is impossible for a new member 

to find the previous group key. 

Forward secrecy ensures that when several members leave the group, they cannot access 

successfully the current contents. In CKCS, the new members cannot generate the current 

session keys with their previous information because the group key is generated by the key 

server at leave, and is transmitted by the node keys that the leaving members do not have them. 

6. COMPARISON 

In this section, we compare CKCS protocol with some previously proposed ones, LKH, OFT, 

and OKD. We compare these protocols at join and leave operations for simultaneous mode. The 

comparison measures are based on key generation, key encryption, communication overhead, 

and message size. Tables 1, 2, 3 and 4 summarize our comparisons, focusing on the following 

measures: 

� Computational overhead 

o Key generation overhead: the number of keys that must be generated at join/leave. 

o Encryption overhead: the number of encryptions. 

� Communication overhead: the number of transmissions from the key server. 

� Message size: the total number of keys in one message. 

The computational overhead is the sum of key generation and key encryption. In our 

comparisons shown in the following tables, n denotes the group size which is the number of 

members in the multicast group after join and before leave operations. In addition, in 

simultaneous mode, m denotes the number of members that join or leave multicast group 

concurrently. Finally, in simultaneous mode we consider that m ≤ n. In other words, the number 

of simultaneous users is less than or equal to the number of group members.  

Binary key tree is assumed for key degree in comparison. As stated before, in binary key tree 

the height of tree is log2n which shows the number of nodes in each branch. Obviously, the 

efficiency of a protocol is related to the height of the key tree. In other words, a key tree with 

smaller height is more efficient than a tree with larger height. Consequently, since the tree 

height for all of these protocols is equal, the factors that make differences in decreasing 

overhead are the re-keying procedure and the key distribution technique.  

The re-keying method itself is an effective way to reduce the overhead. Regarding re-keying 

method in LKH, OFT, and OKD, the server has more loads for generating, encrypting, and 

delivering keys to the members. In LKH and OFT, the members do not participate in key 

calculation on each membership changes. While in OKD the members involve key update 

process with the key server but the re-keying overhead problem for new members still remains. 

Conversely in CKCS, the contribution of current members in re-keying process and minimum 

number of key delivery to new members are two decisive factors which make it more effective 

than the other ones. Finally, the previously proposed protocols do not consider the simultaneous 

mode at all. So, the overhead of these approaches is not acceptable for this mode. Assuming 

simultaneous mode for these protocols, the results are shown in Tables 1, 2, 3 and 4. 

In addition, we have implemented programs to compare the overhead of these mentioned 

protocols. These programs compare the processing time that each protocol spends for generating 

and encrypting necessary keys after each membership changes based on the number of users. 
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The source code of the programs is based on the script language program, ruby, using OpenSSL 

cryptography library. These programs have been run on a 1.66 GHz Windows 7 processor with 

2 GB of RAM. We have used AES-256-OFB to generate keys for LKH. The key generation 

algorithm for OFT, OKD, and CKCSS is based on AES-256-OFB and SHA-1. Finally, we 

sketch some plots (Figures 11, 12, 13, 14, 15, and 16) for showing numerical comparison. For 

this purpose, we consider that there are 100,000 group members and 1024, 2048, 4096, and 

8192 simultaneous users for join/leave. 

6.1. Computational Overhead 

The computational overhead for these Protocols depend on the number of keys that need to be 

generated and encrypted by the server. Table 1 shows the key generation overhead at 

simultaneous join/leave operation. In LKH, group members do not participate in middle node 

keys calculation in each join/leave operation. In OFT, only a new member at join and the 

remaining members at leave need to update the keys in their paths. In OKD, when a member 

joins the group all the necessary keys should be delivered to him/her by unicast and all the 

remaining members can update their middle node keys by themselves, but at leave some nodes 

are responsible for updating the affected keys. So,in these protocols, the key generation 

overhead islog2nfor a single member andmlognwhen m members join/leave the group 

simultaneously. CKCS has the smallest overhead for key generation comparing with the others. 

Table 1.The comparisons of key generation overhead in simultaneous join/leave operations. 

Protocols Join Leave 

LKH 2logm n  
2logm n  

OFT 2logm n  
2logm n  

OKD 2logm n  
2logm n  

CKCS m+1 1
 

 

As mentioned above, the previously proposed protocols do not consider the simultaneous mode. 

According to the results, in LKH, OFT, and OKD when m members join/leave the multicast 

group, the server generates keys to update the key tree (all the keys in the paths of m members 

to the root). If m=1, these amounts are equal to the single mode. 

In CKCS, this overhead is decreased to m at join and to 1 at simultaneous leave operation. 

When m members join the group synchronously, the server generates an individual key for each 

of them (m individual keys for m members) and one group key. Also, when m members leave 

the group, the server generates only a new group key for the remaining members. All the 

necessary keys in CKCS are calculated by the group members.  

Table 2 illustrates the key encryption overhead for m simultaneous join/leave. The results show 

that LKH, OFT and OKD have high overhead at join/leave. But in CKCS, this overhead is the 

lowest one because in each join operation the server encrypts only the new group key with each 

new member’s individual key. In CKCS, the key encryption overhead at leave is equal to the 

height of the key tree because the server encrypts the group key by the top node of each part for 

users who are located at that part. 

Table 2.The comparison of key encryption overhead at simultaneous join/leave operations. 

Protocols Join Leave 

LKH 23 logm n  
22 logm n  

OFT 22 logm n  
2logm n  

OKD 2logm n  
2logm n  

CKCS m 2log n  
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Figures11 and 12 illustrate the computational overhead (processing time versus the number of 

simultaneous users) for simultaneous join/leave. As shown, LKH has the highest gradient when 

m members join/leave the group concurrently. OFT and OKD have the lower computational 

overhead than LKH in simultaneous join/leave. In simultaneous join operation, the 

computational overhead of OFT is higher than OKD but at leave these protocols have almost the 

same overhead. CKCSS has the lowest overhead at both simultaneous membership changes. 

 

 

6.2. Communication Overhead and Message Size 

Table 3 depicts the communication overhead at simultaneous join/leave operation. 

Communication overhead at simultaneous join is divided into two categories, unicast and 

multicast overhead. As shown in this table, LKH and OFT have the same communication 

overhead at join/leave which is the highest one. These two protocols have both unicast and 

multicast communication in each simultaneous join. This happens because necessary keys for 

new members are sent by unicast and for remaining members by multicast. In OKD and CKCS, 

 

Figure 12.  Computational overhead versus number of group members at simultaneous leave 
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Figure 11. Computational overhead versus number of group members at simultaneous join 
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all the keys are collected in one message, and sent to new members by one multicast message. 

So, there is no overhead for unicast but 1 multicast transmission exists when m members join 

the group.Figures13 and 14 illustrate the numerical results for communication overhead at 

simultaneous join/leave respectively. 

Table 3.The communication overhead at simultaneous join/leave operations. 

Protocols 
 Join  

 
Leave  

Unicast Multicast Multicast 

LKH 2logn n  
22 logn n  

2logn n  

OFT 2logn n  
2logn n  

2logn n  

OKD 2logn n  - 2logn n  

CKCS - 1 2log n  

 

 

 

(a) 

 

(b) 

Figure 13. Communication overhead versus number of group memberssimultaneous join 

(a) unicast communication (b) multicast communication 
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Table 4 shows message size in simultaneous join/leave. For simultaneous join/leave, CKCS has 

the lowest message size in each message transmission. All the other protocols have large 

message size for simultaneous because of their necessary transmissions. In CKCS, the server 

sends one multicast message which includes m keys. Each of these keys contains the group key 

encrypted by the individual key of each simultaneous user.Figures15 and 16 illustrate the 

numerical results for message size at simultaneous join/leave respectively. 

 

Table 4.Message size at simultaneous join/leave operations. 

Protocols Join Leave 

LKH 22 logm n  
22 logm n  

OFT 2log 1m n +  
2log 1m n +  

OKD 2logm n  
2logm n  

CKCS m m 

 

 
Figure 15.  Message size at simultaneous join 
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Figure 14. Communication overhead versus number of group members atsimultaneous leave 
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Figure16. Message size at simultaneous leave 

Although LKH based protocols minimized the overhead of leave operation to log2n, they added 

unnecessary overhead to join operation. This amount gets larger when number of users 

increases. With a glance at Tables 1, 2, 3, and 4 it is not difficult to see that CKCSS has two 

major features. First, the overhead of CKCSS at join does not depend on the number of users. It 

means that the overhead for new member is a constant amount while there is no overhead for 

current users. Second, reducing the overhead for new user at single join is the other important 

factor for simultaneous mode. This factor is crucial for simultaneous join.  

7. CONCLUSIONS 

This paper proposed a new group key management protocol, CKCS, for simultaneous 

join/leave. The protocol is based on logical key hierarchy. In simultaneous mode, when 

members join the multicast group simultaneously, the server creates a new key tree for the 

members and their individual keys. The new key tree is attached to the old one by adding a new 

node to the top of the previous one. When several members leave the group, only the new group 

key is sent to the remaining members.  At the end, we conclude our proposal with some of its 

contributions:  

� CKCS reduces key generation and key encryption overhead largely in simultaneous 

join/leave. 

� CKCS reduces unicast and multicast communication overhead largely at join in 

simultaneous mode.  

� CKCS reduces message size for unicast communication. 
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