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Abstract

We describe a scalable and unified architecture for a Montgomery multiplication module
which operates in both types of finite fields GF (p) and GF (2m). The unified architecture re-
quires only slightly more area than that of the multiplier architecture for the field GF (p). The
multiplier is scalable, which means that a fixed-area multiplication module can handle operands
of any size, and also, the wordsize can be selected based on the area and performance require-
ments. We utilize the concurrency in the Montgomery multiplication operation by employing a
pipelining design methodology. We also describe a scalable and unified adder module to carry
out concomitant operations in our implementation of the Montgomery multiplication. The up-
per limit on the precision of the scalable and unified Montgomery multiplier is dictated only by
the available memory to store the operands and internal results, and the module is capable of
performing infinite-precision Montgomery multiplication in both types of finite fields.

Key Words: Prime fields, binary extension fields, multiplication, Montgomery multiplication,
scalability, hardware implementation.

1 Introduction

The basic arithmetic operations (i.e., addition, multiplication, and inversion) in prime and binary
extension fields, GF (p) and GF (2m), have several applications in cryptography, such as decipher-
ment operation of RSA algorithm [18], Diffie-Hellman key exchange algorithm [3], elliptic curve
cryptography [7, 12], and the Digital Signature Standard including the Elliptic Curve Digital
Signature Algorithm [15]. The most important of these three arithmetic operations is the field
multiplication operation since it is the core operation in many cryptographic functions.

The Montgomery multiplication algorithm [13] is an efficient method for doing modular mul-
tiplication with an odd modulus. The Montgomery multiplication algorithm is a very useful for
obtaining fast software implementations of the multiplication operation in prime fields GF (p). The
algorithm replaces division operation with simple shifts, which are particularly suitable for im-
plementation on general-purpose computers. The Montgomery multiplication operation has been
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extended to the finite field GF (2k) in [9]. Efficient software implementations of the multiplica-
tion operation in GF (2k) can be obtained using this algorithm, particularly when the irreducible
polynomial generating the field is chosen arbitrarily. The main idea of the architecture proposed
in this paper is based on the observation that the Montgomery multiplication algorithm for both
fields GF (p) and GF (2k) are essentially the same algorithm. The proposed unified architecture
performs the Montgomery multiplication in the field GF (p) generated by an arbitrary prime p and
in the field GF (2m) generated by an arbitrary irreducible polynomial p(x). We show that a unified
multiplier performing the Montgomery multiplication operation in the fields GF (p) and GF (2k)
can be designed at a cost only slightly higher than the multiplier for the field GF (p), providing
significant savings when both types of multipliers are needed.

Several variants of the Montgomery multiplication algorithm [17, 10, 2] have been proposed
to obtain more efficient software implementations on specific processors. Various hardware im-
plementations of the Montgomery multiplication algorithm for limited precision operands are also
reported [2, 17, 4]. On the other hand, implementations utilizing high-radix modular multipliers
have also been proposed [17, 11, 19]. Advantages and disadvantages of using high-radix repre-
sentation have been discussed in [22, 21]. Because high-radix Montgomery multiplication designs
introduce longer critical paths and more complex circuitry, these designs are less attractive for
hardware implementations.

A scalable Montgomery multiplier design methodology for GF (p) was introduced in [21] in order
to obtain hardware implementations. This design methodology allows to use a fixed-area modular
multiplication circuit for performing multiplication of unlimited precision operands. The design
tradeoffs for best performance in a limited chip area were also analyzed in [21]. We use the design
approach as in [21] to obtain a scalable hardware module. Furthermore, the scalable multiplier
described in this paper is capable of performing multiplication in both types finite fields GF (p)
and GF (2k), i.e., it is a scalable and unified multiplier.

The main contributions of this paper are summarized below.

• We show that a unified architecture for multiplication module which operates both in GF (p)
and GF (2m) can be designed easily without compromising scalability, time and area efficiency.

• We analyze the design considerations such as the effect of word length, the number of the
pipeline stages, and the chip area, etc., by supplying implementation results obtained by
Mentor graphics synthesis tools.

• We describe the design of a dual-field, scalable adder circuit which is suitable for the pipeline
organization of the multiplier. This adder is necessary for the final reduction step in the
Montgomery algorithm and in the final addition for converting the result of the multiplication
operation (which is in the Carry-Save form) to the nonredundant form. Naturally, the adder
operates both in GF (p) and GF (2m). We give an analysis of the time and area cost of the
adder circuit.

We start with a short discussion of scalability in §2 and explain the main idea behind the
unified multiplier architecture in §3. We then present the methodology to perform the Montgomery
multiplication operation in both types of finite fields using the unified architecture. We give the
original and modified definitions of Montgomery algorithm for GF (p) and GF (2m) in §4. We discuss
concurrency in the Montgomery multiplication and show the methodology to design a pipeline
module utilizing the concurrency in §5. We present the processing unit and the modifications needed
to make the unit operate in prime and binary extension fields in §6. We then provide a multi-purpose
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word adder/subtractor module in §7, which can be integrated into the main Montgomery multiplier
module in order to perform the field addition and subtraction operations. In §8, we discuss the
area/time tradeoffs and suitable choices for word lengths, the number of pipeline stages, and typical
chip area requirements. Finally, we summarize our conclusions in §9.

2 Scalable Multiplier Architecture

An arithmetic unit is called scalable if it can be reused or replicated in order to generate long-
precision results independently of the data path precision for which the unit was originally designed.
To speed up the multiplication operation, various dedicated multiplier modules were developed in
[19, 1, 14]. These designs operate over a fixed finite field. For example, the multiplier designed for
155 bits [1] cannot be used for any other field of higher degree. When a need for a multiplication
of larger precision arises, a new multiplier must be designed. Another way to avoid redesigning
the module is to use software implementations and fixed precision multipliers. However, software
implementations are inefficient in utilizing inherent concurrency of the multiplication because of
the inconvenient pipeline structure of the microprocessors being used. Furthermore, software im-
plementations on fixed digit multipliers are more complex and require excessive amount of effort
in coding. Therefore, a scalable hardware module specifically tailored to take advantage of the
concurrency of the Montgomery multiplication algorithm becomes extremely attractive.

3 Unified Multiplier Architecture

Even though prime and binary extension fields, GF (p) and GF (2m), have dissimilar properties, the
elements of either field are represented using almost the same data structures inside the computer.
In addition, the algorithms for basic arithmetic operations in both fields have structural similar-
ities allowing a unified module design methodology. For example, the steps of the Montgomery
multiplication algorithm for binary extension field GF (2m) given in [9] only slightly differs from
those of the integer Montgomery multiplication algorithm [13, 10]. Therefore, a scalable arithmetic
module, which can be adjusted to operate in both types of fields, is feasible, provided that this
extra functionality does not lead to an excessive increase in area or a dramatic decrease in speed.
In addition, designing such a module must require only a small amount of extra effort and no major
modification in control logic of the circuit.

Considering the amount of time, money and effort that must be invested in designing a multiplier
module or more generally speaking a cryptographic coprocessor, a scalable and unified architecture
which can perform arithmetic in two commonly used algebraic fields is definitely beneficial. In this
paper, we show the method to design a Montgomery multiplier that can be used for both types
of fields following the design methodology presented in [21]. The proposed unified architecture is
obtained from the scalable architecture given in [21] after minor modifications. The propagation
time is unaffected and the increase in chip area is insignificant.

4 Montgomery Multiplication

Given two integers A and B, and the prime modulus p, the Montgomery multiplication algorithm
computes

C = MonMul(A, B) = A · B · R−1 (mod p) , (1)
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where R = 2m and A, B < p < R, and p is an m-bit number. The original algorithm works for
any modulus n provided that gcd(n, R) = 1. In this paper, we assume that the modulus is a prime
number, thus, we perform multiplication in the field defined by this prime number. This issue is
also relevant when the algorithm is defined for the binary extension fields.

The Montgomery multiplication algorithm relies on a different representation of the finite field
elements. The field element A ∈ GF (p) is transformed into another element Ā ∈ GF (p) using the
formula Ā = A · R (mod p). The number Ā is called Montgomery image of the element, or Ā is
said to be in the Montgomery domain. Given two elements in the Montgomery domain Ā and B̄,
the Montgomery multiplication computes

C̄ = Ā · B̄ · R−1 (mod p) = (A · R) · (B · R) · R−1 (mod p) = C · R (mod p) , (2)

where C̄ is again in the Montgomery domain. The transformation operations between the two
domains can also be performed using the MonMul function as

Ā = MonMul(A, R2) = A · R2 · R−1 = A · R (mod p) ,

B̄ = MonMul(B, R2) = B · R2 · R−1 = B · R (mod p) ,

C = MonMul(C̄, 1) = C · R · R−1 = C (mod p) .

Provided that R2 (mod p) is precomputed and saved, we need only a single MonMul operation to
carry out each of these transformations. However, because of these transformation operations, per-
forming a single modular multiplication using MonMul might not be advantageous, however, there
is a method to make it efficient for a few modular multiplications by eliminating the need for these
transformations [16]. The advantage of the Montgomery multiplication becomes much more ap-
parent in applications requiring multiplication-intensive calculations, e.g., modular exponentiation
or elliptic curve point operations. In order to exploit this advantage, all arithmetic operations are
performed in the Montgomery domain, including the inversion operation [6, 20]. Furthermore, it is
also possible to design cryptosystems in which all calculations are performed in the Montgomery
domain eliminating the transformation operations permanently.

Below, we give bitwise Montgomery multiplication algorithm for obtaining C := ABR−1

(mod p), where A = (am−1, . . . , a1, a0), B = (bm−1, . . . , b1, b0), and C = (cm−1, . . . , c1, c0).

Input: A, B ∈ GF (p) and m = �log2 p	
Output: C ∈ GF (p)
Step 1: C := 0
Step 2: for i = 0 to m − 1
Step 3: C := C + aiB
Step 4: C := C + c0p
Step 5: C := C/2
Step 6: if C ≥ p then C := C − p
Step 7: return C

In the case of GF (2m), the definitions and the algorithms are slightly different since we use poly-
nomials of degree at most m− 1 with coefficients from the binary field GF (2) to represent the field
elements. Given two polynomials

A(x) = am−1x
m−1 + am−2x

m−2 + · · · + a1x + a0

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · · + b1x + b0 ,
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and the irreducible monic degree-m polynomial

p(x) = xm + pm−1x
m−1 + pm−2x

m−2 + · · · + p1x + p0

generating the field GF (2m), the Montgomery multiplication of A(x) and B(x) is defined as the
field element C(x) which is given as

C(x) = A(x) · B(x) · R(x)−m (mod p(x)) . (3)

We note that, as compared to Equation (1), R(x) = xm replaces R = 2m. The representation of xm

in the computer is exactly the same as the representation of 2m, i.e., a single 1 followed by 2m zeros.
Furthermore, the elements of GF (p) and GF (2m) are represented using the same data structures.
For example, the elements of GF (7) for p = 7 and the elements of GF (23) for p(x) = x3 + x + 1
are represented in the computer as follows:

GF (7) = {000, 001, 010, 011, 100, 101, 110} ,

GF (23) = {000, 001, 010, 011, 100, 101, 110, 111} .

Only the arithmetic operations acting on the field elements differ. The Montgomery image of a
polynomial A(x) is given as Ā(x) = A(x) · xm (mod p(x)). Similarly, before performing Mont-
gomery multiplication, the operands must be transformed into the Montgomery domain and the
result must be transformed back. These transformations are accomplished using the precomputed
variable R2(x) = x2m (mod p(x)) as follows:

Ā(x) = MonMul(A, R2) = A(x) · R2(x) · R−1(x) = A(x) · R(x) (mod p(x)) ,

B̄(x) = MonMul(B, R2) = B(x) · R2(x) · R−1(x) = B(x) · R(x) (mod p(x)) ,

C(x) = MonMul(C̄, 1) = C(x) · R(x) · R−1(x) = C(x) (mod p(x)) .

The bit-level Montgomery multiplication algorithm for the field GF (2m) is given below:

Input: A(x), B(x) ∈ GF (2m), p(x), and m
Output: C(x)
Step 1: C(x) := 0
Step 2: for i = 0 to m − 1
Step 3: C(x) := C(x) + aiB(x)
Step 4: C(x) := C(x) + c0p(x)
Step 5: C(x) := C(x)/x
Step 6: return C(x)

We note that the extra subtraction operation in Step 6 of the previous algorithm is not required in
the case of GF (2m), as proven in [9]. Also, the addition operations are different. While addition
in binary field is just bitwise mod 2 addition, the addition in GF (p) requires carry propagation.

Our basic observation is that it is possible to design a unified Montgomery multiplier which can
perform multiplication in both types of fields if an adder module, equipped with the property of
performing addition with or without carry, is available. The design of an adder with this property
is provided in the following sections.

The algorithms presented in this section require that the operations be performed using full
precision arithmetic modules, thus, limiting the designs to a fixed degree. In order to design a
scalable architecture, we need modules with the scalability property. The scalable algorithms are
word-level algorithms, which we give in the following sections.
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4.1 The Multiple-Word Montgomery Multiplication Algorithm for GF (p)

The use of fixed precision words alleviates the broadcast problem in the circuit implementation.
Furthermore, a word-oriented algorithm allows design of a scalable unit. For a modulus of m-bit
precision, e = �m/w	 words (each of which is w bits) are required. The algorithm proposed in [21]
scans the operand B (multiplicand) word-by-word, and the operand A (multiplier) bit-by-bit. The
vectors involved in multiplication operations are expressed as

B = (B(e−1), . . . , B(1), B(0)) ,

A = (am−1, . . . , a1, a0) ,

p = (p(e−1), . . . , p(1), p(0)) ,

where the words are marked with superscripts and the bits are marked with subscripts. For example,
the ith bit of the kth word of B is represented as B

(k)
i . A particular range of bits in a vector B

from position i to j where j > i is represented as Bj..i. Finally, 0m represents an all-zero vector of
m bits. The algorithm is given below:

Input: A, B ∈ GF (p) and p
Output: C ∈ GF (p)
Step 1: (TC, TS) := (0m, 0m)
Step 2: (Carry0, Carry1) := (0, 0)
Step 3: for i = 0 to m − 1
Step 4: (TC(0), TS(0)) := ai · B(0) + TC(0) + TS(0)

Step 5: Carry0 := TC
(0)
w−1

Step 6: TC(0) := (TC
(0)
w−2..0|0)

Step 7: parity := TS0
0

Step 8: (TC(0), TS(0)) := parity · p(0) + TC(0) + TS(0)

Step 9: TS
(0)
w−2..0 := TS

(0)
w−1..1

Step 10: for j = 1 to e − 1
Step 11: (TC(j), TS(j)) := ai · B(j) + TC(j) + TS(j)

Step 12: Carry1 := TC
(j)
w−1

Step 13: TC
(j)
w−1..1 := TC

(j)
w−2..0

Step 14: TC
(j)
0 := Carry0

Step 15: Carry0 := Carry1
Step 16: (TC(j), TS(j)) := parity · p(j) + TC(j) + TS(j)

Step 17: TS
(j−1)
w−1 := TS

(j)
0

Step 18: TS
(j)
w−2..0 := TS

(j)
w−1..1

Step 19: end for
Step 20: TS

(e−1)
w−1 := 0

Step 21: end for
Step 22: C := TC + TS
Step 23: if C > p then
Step 24: C := C − p
Step 25: return C

As suggested in [21], we use the Carry-Save form in order to represent the intermediate results
in the algorithm. The result of an addition is stored in two variables (TC(j), TS(j)), thus, they can
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grow as large as 2m+1 +2m−3 which is exactly equal to the result of the addition of three numbers
at the right hand side of equations in Steps 4, 8, 11, and 16. Recall that TC(j) and TS(j) are m-bit
numbers, but TC(j) must be seen as a number multiplied by 2 since it represents the carry vector
in the Carry-Save notation. At the end of Step 21, we obtain the result in the Carry-Save form
which needs an extra addition to get the final result in the nonredundant form. If the final result
is greater than the modulus p, one subtraction operation must be performed as shown in Step 24.

4.2 Multiple-Word Montgomery Multiplication Algorithm for GF (2m)

The Montgomery multiplication algorithm for GF (2m) is given below. Since there is no carry
computation in GF (2m) arithmetic, the intermediate addition operations are replaced by bitwise
XOR operations, which are represented below using the symbol ⊕.

Input: A, B ∈ GF (2m) and p(x)
Output: C ∈ GF (2m)
Step 1: TS := 0m

Step 2: for i = 0 to m

Step 3: TS(0) := aiB
(0) ⊕ TS(0)

Step 4: parity := TS
(0)
0

Step 5: TS(0) := parity · p(0) ⊕ TS(0)

Step 6: TS
(0)
w−2..0 := TS

(0)
w−1..1

Step 7: for j = 1 to e − 1
Step 8: TS(j) := aiB

(j) ⊕ TS(j)

Step 9: TS(j) := parity · p(j) ⊕ TS(j)

Step 10: TS
(j−1)
w−1 := TS

(j)
0

Step 11: TS
(j)
w−2..0 := TS

(j)
w−1..1

Step 12: end for
Step 13: TS

(e−1)
w−1 := 0

Step 14: end for
Step 15: C := TS
Step 15: return C

Notice that in the outer loop the index i runs from 0 to m. Since (m + 1) bits are required
to represent irreducible polynomial of GF (2m), we prefer to allocate (m + 1) bits to express the
field elements. We can also modify the algorithm for GF (p) accordingly for sake of uniformity.
Therefore, the formula for the number of words to represent a field element for both cases is given
as e = �(m + 1)/w	 where w is the selected wordsize.

5 Concurrency in Montgomery Multiplication

In this section, we analyze the concurrency in Montgomery multiplication algorithms as given in
the subsections §4.1 and §4.2. In order to accomplish this task, we need to determine the inherent
data dependencies in the algorithm and describe a scheme to allow the Montgomery multiplication
to be computed on an array of processing units organized in a pipeline.

We prefer to accomplish concurrent computation of the Montgomery multiplication by exploit-
ing the parallelism among the instructions across the different iterations of i-loop of the algorithms,
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as proposed in [21]. We scan the multiplier one bit at a time, and after the first words of the in-
termediate variables (TC, TS) are fully determined, which takes two clock cycles, the computation
for the second bit of A can start. In other words, after the inner loop finishes the execution for
j = 0 and j = 1 in ith iteration of the outer loop, the (i + 1)th iteration of outer loop starts its
execution immediately. The dependency graph shown in Figure 1 illustrates these computations.

Figure 1: The dependency graph of the MonMul algorithm.
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Each circle in the graph represents an elementary computation performed in each iteration of
the j-loop. We observe from this graph that these computations are very suitable for pipelining.
Each column in the graph represents operations that can be performed by separate processing units
(PU) organized as a pipeline. Each PU takes only one bit from multiplier A and operates on each
word of multiplicand, B, each cycle. Starting from the second clock cycle, a PU generates one word
of partial sum T = (TC, TS) in the Carry-Save form at each cycle, and communicates it to the
next PU which adds its contribution to the partial sum, when its turn comes. After e + 1 clock
cycles, the PU finishes its portion of work, and becomes available for further computation. In case
there is no available PU and there is work to do, the pipeline must stall and wait for the working
PUs to finish their jobs. Since the PU at the end of the pipeline has no way of communicating its
result to another PU, we need to provide extra buffers for them. In the worst case, which happens
when there is only one PU, there must be 2e extra buffers of w length to hold these partial sum
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words. In the last clock cycle of each column, the The PU responsible for this column must receive
p(e) = B(e) = 0. Elementary computations represented by circles in Figure 1 are performed on the
same hardware module. Local control module in the PU must be able to extract TS

(0)
0 and keep

this value for the entire operand scanning. Each PU, in other words, has to obtain this value and
use it to decide whether to add the modulus p to the partial sum. This value is determined in the
first clock cycle of the each stage.

An example of the computation for 7-bit operands is shown in Figure 2 for the word size w = 1
provided that there are sufficient number of PUs preventing the pipeline to stall. Note that there
is a delay of 2 clock cycles between the stage for xi and the stage for xi+1. The total execution
time for the computation takes 20 clock cycles in this example.

Figure 2: An example of pipeline computation for 7-bit operands, where w = 1.
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If there are at least �(e + 1)/2	 PUs in the pipeline organization the pipeline stalls do not take
place. For the example in Figure 2, less than �8/2	 = 4 PUs cause the pipeline to stall. Figure 3
shows what happens if there are only three PUs available for the same example.

Figure 3: An example of pipeline computation for 7-bit operands,
illustrating the situation of pipeline stalls, where w = 1.
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At the clock cycles 7 and 15, the pipeline cannot engage a PU, and thus, it must stall for 2
extra cycles. At the 9th and 17th cycles, the first PU becomes available and computation proceeds.
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We need a buffer of 4-bit length to store the partial sum bits during the stall. Because the 8 is
not a multiple of 3, the last two pipeline stages perform extra computations. Since it is a pipeline
organization, it is not possible to stop the computations at any time. In [21], these extra cycles are
treated as waste cycles. However, it is possible to perform useful computation without complicating
the circuit. Recall that C = A·B ·2−m (mod p) where m is the number of bits in the modulus p. If
we continue the computations in these extra pipeline cycles, we calculate C = A ·B · 2−n (mod p)
where n > m is the smallest integer multiple of the number of PUs in the pipeline organization. It
is always easy to rearrange the Montgomery settings according to this new Montgomery exponent,
namely R = 2n, or R = xn for the field GF (2m) case.

The total computation time, CC (clock cycles), is slightly different from the one in [21] and is
given as

CC =

{
(�m+1

k 	 − 1)2k + e + 1 + 2(k − 1) if (e + 1) < 2k ,
(�m+1

k 	)(e + 1) + 2(k − 1) otherwise ,

where k is the number of PUs in the pipeline. Notice that the first line of the formula gives
the execution time in clock cycles when there are sufficiently many PUs while the second line
corresponds to the case when there are stalls in the pipeline. At certain clock cycles some of the
PUs become idle, and this affects the utilization of the unit, which can be formulated as

U =
Total number of clock cycles per bit of A × m

Total number of clock cycles × k
=

(e + 1) · m
CC · k .

Figure 4 shows (from left to right) the total execution time CC, the speedup introduced by use of
more units over a single unit, and the hardware utilization U for a range of precision. We prefer
to select the wordsize as w = 32 in order to provide a realistic example, considering that most
multi-purpose microprocessors have 32-bit datapaths.

Figure 4: The performance of multiple units with w = 32.
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6 Scalable Architecture

An example of pipeline organization with 2 PUs is shown in Figure 5. An important aspect of this
organization is the register file design. The bits of multiplier ai are given serially to the PUs, and are
not used again in later stages and can be discarded immediately. Therefore, a simple shift register
would be sufficient for the multiplier. The registers for the modulus p and multiplicand B can also
be shift registers. When there is no pipeline stall, the latches between PUs forward the modulus
and multiplicand to next PU in the pipeline. However, if pipeline stalls occur, the modulus and
multiplicand words generated at the end of the pipeline enter the SR−p and SR−B registers. The
length of these shift registers are of crucial importance and determined by the number of pipeline
stages (k) and the number of words (e) in the modulus. By considering that SR − p and SR − B
values require one extra register to store the all-zero word needed for the last clock cycle in every
stage (recall that p(e) = B(e) = 0) the length of these registers can be given as

L1 =

{
e + 1 − 2 · (k − 1) if (e + 1) < 2k ,
0 otherwise.

(4)

The width of the shift registers is equal to w, the wordsize. Once the partial sum (TC, TS) is
generated, it is transmitted to the next stage without any delay. However, we need two shift
registers, SR − TC and SR − TS, to hold the partial sums from the last stage until the job in the
first stage is completed. The length (L2) of the registers TC and TS is equal to L1.

Figure 5: Pipeline organization with 2 PUs.
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We observe that only at most one word of each operand is used in every clock cycle. This makes
different design options possible. Since we intend to design a fully scalable architecture, we need
to avoid restrictions on the operand size or deterioration of the performance. Also we assume that
no prior knowledge is available about the prospective range of the operand precision. Since the
length of the shift registers can vary with the precision, designing full-precision registers within the
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multiplier might not be a good idea. Instead, one can limit the length of these registers within the
chip and use memory for the excessive words. If this method is adopted, the length of the registers
no longer would depend on the precision and/or the number of stages. The words needed earlier
are brought from memory to the registers first, and the successive groups of words are transferred
during the computation. If the memory transfer rate is not sufficient, however, pipeline might stall.

The registers for TC, TS, B, and p must have loading capability which can complicate the local
control circuit by introducing several multiplexers (MUX). The delay imposed by these MUXes will
not create a critical path in the final circuit. The global control block was not mentioned since its
function can be inferred from the dependency graph and the algorithms.

6.1 Processing Unit

The processing unit (PU) consists of two layers of adder blocks, which we call dual-field adders. A
dual-field adder is basically a full adder which is capable of performing addition both with carry
and without carry. Addition with carry corresponds to the addition operation in the field GF (p)
while addition without carry corresponds to the addition operation in the field GF (2m). We give
the details about the dual-field adder in the next subsection. The block diagram of a processing
unit (PU) for w = 3 is shown in Figure 6.

Figure 6: Processing Unit (PU) with w = 3.
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The unit receives the inputs from the previous stage and/or from the registers SR−A, SR−B
and SR − p, and computes the partial sum words. It delays p and B for the first cycle, then,
it transmits them to the next stage along with the first partial sum word (which is ready at the
second clock cycle) if there is an available PU. The data path for partial sum T = (TC, TS) (which
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is expressed in the redundant Carry-Save form) is 2w bits long while it is w bits long for p and
B and 1 bit long for ai. At the first cycle, the decision to add the modulus to the partial sum is
determined, and this information is kept during the following e clock cycles. The computations in
a PU for e = 5 are illustrated in Table 1 for both types of fields GF (p) and GF (2m).

Table 1: Inputs and outputs of the ith pipeline stage with w = 3 and e = 5 for
both types of fields GF (p) (top) and GF (2m) (bottom).

Cycle No Inputs Outputs

1 TC(0), TS(0), ai, B(0), P (0) (0, TS
(0)
0 ); (0, 0); (0, 0)

2 TC(1), TS(1), ai, B(1), P (1) (TC
(0)
2 , TS

(1)
0 ); (TS

(0)
2 , TC

(0)
1 ); (TS

(0)
1 , TC

(0)
0 )

3 TC(2), TS(2), ai, B(2), P (2) (TC
(1)
2 , TS

(2)
0 ); (TS

(1)
2 , TC

(1)
1 ); (TS

(1)
1 , TC

(1)
0 )

4 TC(3), TS(3), ai, B(3), P (3) (TC
(2)
2 , TS

(3)
0 ); (TS

(2)
2 , TC

(2)
1 ); (TS

(2)
1 , TC

(2)
0 )

5 TC(4), TS(4), ai, B(4), P (4) (TC
(3)
2 , TS

(4)
0 ); (TS

(3)
2 , TC

(3)
1 ); (TS

(3)
1 , TC

(3)
0 )

6 0, 0, 0, 0, 0 (TC
(4)
2 , 0); (TS

(4)
2 , TC

(4)
1 ); (TS

(4)
1 , TC

(4)
0 )

1 TC(0), TS(0), ai, B(0), P (0) (0, TS
(0)
0 ); (0, 0); (0, 0)

2 TC(1), TS(1), ai, B(1), P (1) (0, TS
(1)
0 ); (TS

(0)
2 , 0); (TS

(0)
1 , 0)

3 TC(2), TS(2), ai, B(2), P (2) (0, TS
(2)
0 ); (TS

(1)
2 , 0); (TS

(1)
1 , 0)

4 TC(3), TS(3), ai, B(3), P (3) (0, TS
(3)
0 ); (TS

(2)
2 , 0); (TS

(2)
1 , 0)

5 TC(4), TS(4), ai, B(4), P (4) (0, TS
(4)
0 ); (TS

(3)
2 , 0); (TS

(3)
1 , 0)

6 0, 0, 0, 0, 0 (0, 0); (TS
(4)
2 , 0); (TS

(4)
1 , 0)

Notice that partial sum words in GF (2m) case are also in the redundant Carry-Save form.
However, one of the components of the Carry-Save representation is always zero and the actual
value of the result is the modulo-2 sum of the two. Since consecutive operations are all additions
and the Carry-Save form is already aligned by the shift and alignment layer, this does not lead to
any problem. We need to recall, however, that one extra addition is necessary at the end of the
multiplication process. In the next section, we introduce a multi-purpose word adder/subtractor
module which performs this final addition at the cost of an extra clock cycle.

6.2 Dual-Field Adder

Dual-field adder (DFA) shown in Figure 7a, as mentioned before, is basically a full-adder equipped
with the capability of doing bit addition both with and without carry. It has an input called
FSEL (field select) that enables this functionality. When FSEL = 1, the DFA performs the bit-
wise addition with carry which enables the multiplier to do arithmetic in the field GF (p). When
FSEL = 0, on the other hand, the output Cout is forced to 0 regardless of the values of the inputs.
The output S produces the result of bitwise modulo-2 addition of three input values. At most 2 of
3 input values of dual-field adder can have nonzero values while in the GF (2m) mode.

An important aspect of designing the dual-field adder is not to increase the critical path of
the circuit which can have an effect on the clock speed which would be against our design goal.
However, a small amount of extra area can be sacrificed. We show in the following section that this
extra area is very insignificant. Figure 7b shows the actual circuit synthesized by Mentor Graphics
tools using the 1.2µm CMOS technology.
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Figure 7: The dual-field adder circuit.
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In the circuit, the two XOR gates are dominant in terms of both area and propagation time.
As in the standard full-adder circuit, the dual-field adder has two XOR gates connected serially.
Thus, propagation time of the dual-field adder is not larger than that of full adder. Their areas
differ slightly, but this does not cause a major change in the whole circuit.

7 Multi-purpose Word Adder/Subtractor

The proposed Montgomery multiplier generates results in the redundant Carry-Save form, hence we
need to perform an extra addition operation at the end of the calculation to obtain the nonredundant
form of the result. Therefore, a field adder circuit that operates in both GF (p) and GF (2m) is
necessary. A full-precision adder would increase the critical path delay and the area, and would
also be hard to scale. A word adder of the type given in Figure 8 would be suitable for our
implementation since the multiplier generates only one word at each clock cycle in the last stage
of pipeline, thus we need to perform one word addition at a time.

Figure 8: The word adder for field addition.

   Carry
Cin Cout
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B

C
   Adder

FSEL A/S

Look-Ahead

clear

The word adder has two control inputs FSEL and A/S, which enable to select the field (GF (p)
or GF (2k)) and to choose between the addition and subtraction when in GF (p) mode, respectively.
The adder propagates the carry bit to the next word additions while working in GF (p) mode (i.e.,
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FSEL = 1). Thus, the carry from a word addition operation is delayed using a latch and fed back
into the Cin input of the adder for the next word addition at the next clock cycle. In the GF (2m)
mode, the module performs only bitwise modulo-2 addition of two input words and the A/S input
is ineffective. An addition operation of two e-word long numbers takes e + 1 clock cycles. The last
cycle generates the carry and prepares the circuit for another operation by zeroing the output of
latch. Figure 9 shows an example of addition operation with operands of 3 words.

Figure 9: An example of multiprecision addition operation with e = 3.
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We added subtraction functionality in the field GF (p) to the word adder because the result
might be larger than the modulus, and hence one final subtraction operation is necessary as shown
in Step 23 of the algorithm in Section 4.1. We do not need this reduction in the GF (2m) case. The
final subtraction operation takes place only if the result is larger than the modulus. Thus, a com-
parison operation, which can also be performed utilizing the multi-purpose word adder/subtractor,
is required. However, the control circuitry to perform this conditional subtraction might be com-
plicated, therefore, it might be placed outside of the Montgomery multiplier unit.

Another reason to include a multi-purpose word adder unit in the multiplier circuit is the fact
that the field addition operation is also needed in many cryptographic applications. For example,
in elliptic curve cryptosystems, the field addition and multiplication operations are performed
successively, hence having the multiplier and adder in the same hardware unit will decrease the
communication overhead. A word adder that has these properties is synthesized using the Mentor
Graphics tools and the time and space requirements are obtained, which are given in Table 2.

Table 2: Time and area costs of a multi-purpose word adder for w = 16, 32, 64.

bitsize Propagation Time (ns) Area (in NAND gates)
16 6.87 254
32 9.22 534
64 12.55 1128

Finally, Figure 10 illustrates what happens in last stage of the pipeline. A pair of redundant
words (TC

(i)
j , TS

(i)
j ) are generated each cycle for e clock cycles. The word adder can be used to

15



add these pairs in order to obtain the result words C(i). Note that only one extra cycle is needed
to convert the result from the Carry-Save form to the nonredundant form.

Figure 10: Converting the result from the Carry-Save form to
the nonredundant form in the last stage of the pipeline.
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8 Design Considerations

In [21], an analysis of the are and time tradeoffs is given for the scalable multiplier. The architecture
allows designs with different word lengths and different pipeline organizations for varying values
of operand precision. In addition, the area can be treated as a design constraint. Thus, one can
adjust the design according to the given area, and choose appropriate values for the word length
and the number of pipeline stages, in accordance. We give a similar analysis for the scalable and
unified architecture. We are targeting two different classes of ranges for operand precision:

• High precision range which includes 512, 768 and 1024, is intended for applications requiring
the exponentiation operation.

• Moderate precision range which includes 160, 192, 224, and 256, is typical for elliptic curve
cryptography.

The propagation delay of the PU is independent of the wordsize w when w is relatively small, and
thus all comparisons among different designs can be made under the assumption that the clock cycle
is the same for all cases. The area consumed by the registers for the partial sum, the operands, and
modulus is also the same for all designs, and we are not treating them as parts of the multiplier
module.

The proposed scheme yields the worst performance for the case w = m in the high precision
range, since some extra cycles are introduced by the PU in order to allow word-serial computation,

16



when compared to other full-precision conventional designs. On the other hand, using many pipeline
stages with small wordsize values brings about no advantage after a certain point. Therefore, the
performance evaluation reduces into finding an optimum organization for the circuit.

In order to determine the optimum selection for our organization, we obtain implementation
results by synthesizing the circuit with Mentor Graphics tools using 1.2µm CMOS technology. The
cell area for a given word size w is obtained as

Acell(w) = 48.5w (5)

units, and is slightly different from the one found in [21], where the multiplication factor in the
formula is the area cost provided by the synthesis tool for a single bit slice. Note that a 2-input
NAND gate takes up 0.94 units of area. In the pipelined organization, the area of the inter-stage
latches is important, which was measured as

Alatch(w) = 8.32w (6)

units. Thus, the area of a pipeline with k processing elements is given as

Apipe(k, w) = (k − 1)Alatch(w) + kAcell(w) = 56, 82kw − 8.32w (7)

units. For a given area, we are able to evaluate different organizations and select the most suitable
one for our application. The graphs given in Figure 11 allow to make such evaluations for a fixed
area of 15,000 gates.

Figure 11: Time efficiency for different configurations
with a fixed area of 15,000 gates.
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For both moderate and high precision ranges, the number of stages between 5 and 10 are
likely to give the best performance. For the high precision cases, fewer than 5 stages yields very
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poor performance since the fixed area becomes insufficient for large wordsizes and the performance
degradation due to pipeline stalls becomes a major problem. The small number of stages with very
long word sizes seem to provide a reasonable performance in the moderate range, however, because
of the incompatibility issues about using very long word sizes and inefficiency when the precision
increases, using fewer than 5 stages is not advised. We avoid using many stages for two reasons:

• high utilization of the PUs will be possible only for very high precision, and

• the execution time may have undesirable oscillations.

The behavior mentioned in the latter category is the result of the facts that

• extra stages at the end of the computations, and

• there is not a good match between the number of words e and the number of stages k, causing
a underutilization of stages in the pipeline.

From the synthesis tool we obtained a minimum clock cycle time of 11 nanoseconds, which allows
to use a clock frequency of up to 90MHz with 1.2µm CMOS. Using the CMOS technology with
smaller feature size, we can attain much faster clock speeds. It is very important to know how fast
this hardware organization really is when comparing it to a software implementation. The answer
to this would determine whether it is worth to design a hardware module. In general, it is difficult
to compare hardware and software implementations. In order to obtain realistic comparisons, a
processor which uses similar clock cycles and technology must be chosen. We selected an ARM
microprocessor [5] with 80 MHz clock which has a very simple pipeline. We compare the GF (p)
multiplication timing on this processor against that of our hardware module. We use the same
clock frequency 80 MHz for the module of the pipeline organization with w = 32 and k = 7 for
the hardware module. On the other hand, the Montgomery multiplication algorithm is written in
the ARM assembly language by using all known optimization techniques [8, 10]. Table 3 shows the
multiplication timings and the speedup.

Table 3: The execution times of hardware and software
implementations of the GF (p) multiplication.

precision Hardware (µs) Software (µs) speedup
(80 MHz, w = 32, k = 7) (on ARM with Assembly)

160 4.1 18.3 4.46
192 5.0 25.1 5.02
224 5.9 33.2 5.63
256 6.6 42.3 6.41
1024 61 570 9.34

9 Conclusion

Using the design methodology proposed in [21], we obtained a scalable field multiplier for GF (p)
and GF (2m) in unified hardware module. The methodology can also be used to design separate
modules for GF (p) and GF (2m) which are fast, scalable and area-efficient. The fundamental
contribution of this research is to show that it is possible to design a dual-field arithmetic unit
without compromising scalability, the time performance and area efficiency. We also presented a
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dual-field addition module which is suitable for the pipeline organization of the multiplier. The
adder is scalable and capable of performing addition in both types of fields. Our analysis shows that
a pipeline consisting of several stages is adequate and more efficient than a single unit processing
very long words. Working with relatively short words diminishes data paths in the final circuit,
reducing the required bandwidth.

The proposed multiplier was synthesized using the Mentor tools, and a circuit capable of working
with clock frequencies up to 90 MHz is obtained. Except for the upper limit on the precision which
is dictated only by the availability of memory to store the operands and internal results, the module
is capable of performing infinite-precision Montgomery multiplication in GF (2m) and GF (p).
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[20] E. Savaş and Ç. K. Koç. The Montgomery modular inverse - revisited. IEEE Transactions on
Computers, to appear, 2000.
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