
A Key Recovery Attack on Discrete Log-based SchemesUsing a Prime Order SubgroupChae Hoon Lim and Pil Joong Lee�POSTECH Information Research LaboratoriesPohang University of Science and Technology (POSTECH)Pohang, 790-784, KOREAE-mail: chlim@oberon.postech.ac.kr; pjl@postech.ac.krFebruary 6, 1997AbstractConsider the well-known oracle attack: Somehow one gets a certain computation result asa function of a secret key from the secret key owner and tries to extract some information onthe secret key. This attacking scenario is well understood in the cryptographic community.However, there are many protocols based on the discrete logarithm problem that turn out toleak many of the secret key bits from this oracle attack, unless suitable checkings are carriedout. In this paper we present a key recovery attack on various discrete log-based schemesworking in a prime order subgroup. Our attack can disclose part of, or the whole secret key inmost Di�e-Hellman-type key exchange protocols and some applications of ElGamal encryptionand signature schemes.Key Words : Key recovery attack, Discrete logarithms, Key exchange, Digital signatures.1 IntroductionMany cryptographic protocols have been developed based on the discrete logarithm problem. Themain objective of developers is to design a protocol that is as di�cult to break as the underlyingdiscrete logarithm problem under some reasonable assumptions. On the other hand, the goal ofattackers is to �nd a way to extract the secret key involved or to pretend to be a legitimate userwithout knowing the secret key. Though provable security guarantees that there is no e�cientattack on the protocol, it should be carefully interpreted in practical implementations (e.g., oneshould consider the assumptions on which the security proof is based). The most fundamental isto use secure parameters and check the properties or requirements assumed to be satis�ed. Tosee this, for example, we refer the reader to Pointcheval and Stern [33] for security proof andBleichenbacher [4] for signature forgery in ElGamal-type signature schemes, together with Stern[38] for further discussions on their apparent contradiction.The purpose of this paper is to reveal the insecurity of various protocols based on the discretelogarithm problem published in the literature. We present a key recovery attack on these protocols�This work was done while the second author was in the NEC Research Institute, NJ, Princeton, during hissabbatical leave. 1

which can �nd substantial part of the secret key involved. Our attack only works for discrete log-based schemes using a prime order subgroup and is closely related to the choice of parametersand the checking of protocol variables. Thus, as is usual, our attack, once identi�ed, can be easilyprevented by adding suitable checking steps or by using `secure' parameters. Here `secure' meansthat the parameters are secure against our attack. And this also implies that the usual parameterscommonly used in the literature are not secure against our attack. Our attack demonstrates theimportance of checking protocol variables in designing discrete log-based schemes: we will showthat our attack can be applied even to a protocol known to be zero-knowledge, unless a newchecking step is added.Symbols and Notation : The following symbols and notation will be used throughout this paper,unless otherwise stated: A prime p is assumed to be chosen at random so that p� 1 has a largeprime factor q (usually, jpj > 512 and jqj = 160) and thus (p� 1)=q may have small prime factors.Let g be a base element of order q mod p (i.e., g 6= 1 and gq = 1 mod p) and � be an elementof small order mod p, where `small' means that it is small compared to q (usually between 0 and280 for the feasibility of our attack, depending on speci�c instances). Let = Q �i, a product ofsmall order elements with �i taken from each small order subgroup. The order of an element �mod p is denoted by ord(�) and a secure hash function by h. The notation k 2R Zq denotes thatk is chosen at random in Zq. We assume that an honest user i has a secret key xi 2R Zq and thecorresponding public key yi = gxi mod p (sometimes we omit the subscript).Pohlig-Hellman Decomposition and Pollard's Methods : The discrete logarithm problem over Z�pcan be broken down into a number of small such sub-problems de�ned over small order subgroupsof Z�p (Pohlig-Hellman decomposition [32]). Then these sub-problems can be solved using Pollard'srho and lambda methods [34] and the resulting partial logarithms can be combined using theChinese Remainder Theorem to give the pursued discrete logarithm.For simplicity, suppose that p � 1 = Qni=1 qi (qi prime). Let � be a generator of Z�p. Giveny = �x mod p, we can reduce the problem of �nding x mod p� 1 to the following sub-problems:�nd xi = x mod qi from yi = y(p�1)=qi = �xii mod p for each i, where �i = �(p�1)=qi (an elementof order qi). Each such sub-problem can be solved using Pollard's rho method in time O(pqi)(see [39] for linear speedup with multiple processors). Once xi's are found for all i, they can becombined using the CRT, yielding the logarithm x. Pollard's rho method is the most e�cient incomputing a logarithm in a prime order subgroup, while Pollard's lambda method can computea logarithm that is known to lie within some restricted interval of width w in time O(pw). Thus,both methods have similar square-root running time for a given size of an unknown exponent. Inparticular, the lambda method is very useful for computing a logarithm in a prime order subgroupwhen part of the logarithm is known. See van Oorschot and Wiener [40] for detailed explanationson the combined use of these methods, together with a Pohlig-Hellman decomposition, to speedup computing a complete logarithm.The Attacking Scenario : In this paper we pay our attention to DL-based schemes using a primeorder subgroup. Thus, as is usual, we assume that a prime p is chosen such that p � 1 has alarge prime factor q and that a base g is an element of order q. Then, for a given y such thaty = gx mod p, it is completely infeasible under current technology to �nd x using Pollard's rhomethod, if we take for example jqj = 160, since it requires about 280 operations. Our observationis that if we could obtain z = x mod p somehow by attacking a protocol, where = Q �i (aproduct of distinct smooth order elements mod p), then we could �nd x modulo ord() using thePohlig-Hellman decomposition. Here we assume that (p � 1)=q has many small prime factors,2

which is the case for a randomly generated prime p. And �nally the remaining part of x couldbe found from y using Pollard's lambda method. A special case of the attack is to �nd x modord(�), given z = f(�x mod p) for any function f . In this case, one can �nd j = x mod ord(�)by checking that z = f(�j mod p) for j = 0; 1; � � � ; ord(�) � 1.1The main problem in the above attacking scenario is how to obtain a Pohlig-Hellman de-composition for the secret key. This should be impossible in well-designed protocols. However,we could �nd many DL-based schemes susceptible to the above attack in the literature. MostDi�e-Hellman type key exchange protocols are vulnerable to the above attack. Other examplesinclude shared decryption of ElGamal encryption, shared veri�cation of ElGamal signatures andundeniable signatures. Our attack was possible in all these schemes, since the involved parties donot check relevant protocol variables. Though there are several papers pointing out the impor-tance of checking public parameters and protocol variables (e.g., see [4, 41, 1, 40, 2]) in DH keyexchange and digital signature schemes, no literature addresses such an explicit attack revealingthe involved secret. Our attack may �nd the whole secret key in many cases.Related Work : Previous work most relevant to our attack is the middleperson attack on theoriginal Di�e-Hellman key exchange protocol [16] (see [40, 2]). Two parties A and B agree on aprime p and a generator � of Z�p, exchange random exponentials, rA = �kA mod p and rB = �kBmod p, and then compute a shared secretK = rkAB = rkBA = �kAkB mod p. Suppose that p�1 = qwwith w smooth. An attacker may replace rA and rB with rqA mod p and rqB mod p respectively.Then the shared key becomes K = (�q)kAkB mod p, which can also be computed by the attackersince he can �nd ki mod w from ri. This attack can be easily prevented by authenticating therandom exchange, as in the STS [17] and SKEME [21] protocols.2The above attack motivates the use of a prime order subgroup, which also substantially in-creases the e�ciency in computation and parameter generation (see [40, 2] for further discussions).Thus most DL-based schemes have been designed using a prime order subgroup since its �rst in-vention by Schnorr [37]. However, this paper will show potential weaknesses in such a setting.Our attack on key exchange protocols is quite similar to the above attack, except that our targetprotocols use a prime order subgroup and that our objective is to �nd the long-term secret keyof the involved party (usually by the other legitimate party). Our attack can be applied to anyprotocol involving a DH shared secret.The rest of this paper is organized as follows: We present in Sec.2 a key recovery attack onDH-type key exchange protocols and in Sec.3 a similar attack on other DL-based schemes such asElGamal encryption and signatures. Sec.4 deals with the generation of secure primes and publickey certi�cates as possible countermeasures to minimize security loss by our attack. And weconclude in Sec.5.2 Extracting Secret Keys in Key Exchange ProtocolsOne of the well-known design principles for public key protocols states that a message receivedshould not be assumed to have a particular form unless it can be checked [1]. In particular, it isvery dangerous to apply one's secret to a number received from the other. However, this principle1Here we assumed that the range of f is large enough compared to �, so that the probability of collisionsoccurring under f is negligible. This is usually the case in most instances of our attack.2It is very important to authenticate the exchanged random messages themselves, rather than the shared secretcomputed from them. For example, the modi�ed STS protocol by Boyd and Mao [5] may be vulnerable to themiddleperson attack, since it only authenticates the hashed version of the shared secret.3

is hard to apply to Di�e-Hellman-type key exchange protocols. This has given rise to a lot ofattacks or weaknesses under a variety of attacking scenarios. Most attacks aim at �nding a sessionkey (e.g., see [10, 42]) or causing authentication failure (e.g., see [27]). In this section we presenta key recovery attack that can be applied to many DH-type key exchange protocols published inthe literature3 unless proper precautions are taken additionally.2.1 Basic Di�e-Hellman Key ExchangeWe �rst consider the case where a user A successfully obtained a certi�cate on the public keyyA = �gxA mod p with � of small order mod p. This is possible unless a certi�cation authoritychecks that yqA = 1 mod p before issuing a certi�cate for yA. The CA usually requires thateach user prove knowledge of a secret key corresponding to the public key to be certi�ed, sinceotherwise there exist some protocols that can be attacked with a faked public key (e.g., see [27]).However, even in this case it may still be possible to register a public key of the form yA = �gxAmod p if it is not checked that yqA = 1 mod p.For example, suppose that for registration the CA requires a user's digital signature on thecerti�cate message which contains all necessary information for certi�cation, including the publickey, as de�ned by X.509. In this case it is easy for A to generate a valid signature correspondingto the public key yA = �gxA mod p when ord(�) is small. For example, suppose that Schnorr'ssignature scheme [37] is used for this purpose. Given message m, A can �nd r0 2 (0; ord(�)] suchthat r0 = h(�r0gk mod p; m) mod ord(�) in about ord(�) steps, where k 2R Zq and h denotes asecure hash function. Thus A can generate a signature fr; sg onm by computing r = h(�r0gk modp; m) and s = k�xr mod q. It is easy to see that the resulting fr; sg is a valid signature onm withthe public key yA = �gxA mod p. On the other hand, suppose that Schnorr's identi�cation schemeis used instead. Then A can pass the protocol with probability 1=ord(�) on average, irrespectiveof the size of a challenge by B (A similar observation has been made before by Burmester [9]).Therefore, it is essential that the CA should �rst check that yqA = 1 mod p.We now present a key recovery attack under the assumption that an attacking user i hasa public key yi = �gxi mod p. This attack will demonstrate the importance of the checkingstep in the certi�cation process. We �rst consider the zero-message DH key exchange withpublic keys (e.g., used in [22])4 : Two users A and B share a session key K by computingK = h(yxAB mod p; d) = h(yxBA mod p; d), where d is time/date information. In this protocol,suppose that user B with public key yB = gxB mod p uses a session key computed by K = h(yxBAmod p; d) to send a message m to user A with public key yA = �gxA mod p. Then, when receivingfc = EK(m); dg from B, A can extract jord(�)j bits of B's secret key by an exhaustive search.For this, A computes Kj = h(yxAB � �j mod p; d) for 0 � j < ord(�), decrypts c with each Kj andchecks that the result is a meaningful message. If a meaningful message is found for some j, thenA has found j = xB mod ord(�).User A may repeat this attack by updating his public key with � of a di�erent order andcombine the resulting partial secrets using the Chinese Remainder Theorem. This will give about3Di�e-Hellman-type key exchange protocols can be divided into two broad classes. The �rst is to exchangerandom exponentials and then authenticate the exchange using a separate authentication mechanism. The STSand SKEME protocols belong to this class. Such protocols seem to be the most robust against various attacks,including our one. Most other protocols involve the �xed secret/public key pair for key exchange and (possibly)authentication. Our attack can be applied to most of such protocols.4The SKIP protocol [3] being widely implemented in the industry also employs this scheme to get a long-termshared secret, which is used as a key-encrypting key. However, the SKIP documentation recommands to use a safeprime p, i.e., a prime p such that (p� 1)=2 is also prime. Thus our attack on this protocol only discloses one bit ofthe secret, the parity bit. 4

t bits of xB if t is the bit-length of small prime factors of p� 1 that can be used for this attack.Now the remaining (jqj� t) bits of xB can be found in about 2(jqj�t)=2 steps using Shanks' methodor Pollard's lambda method (see [40] for further discussions). Note that if ord(�) is small, say 20bits, A has little di�culty in reading the ciphertext directed to him. Also note that this attackcan be applied to any protocol if the protocol reveals an equation involving the �xed DH keygxAxB mod p.As another example, let us consider the following protocol (modi�ed from Protocol 3 in [23]),where we assume that B has a public key yB = �gxB mod p.1. A computes rA = gkA mod p with kA 2R Zq and sends it to B.2. B computes rB = gkB mod p with kB 2R Zq and sB = kB � xBeB mod q with eB =h(rA; rB ; A;B). Then B sends feB ; sBg to A.3. A checks that eB = h(rA; gsByeBB mod p;A;B). If the check succeeds, A sends sA =kA�xAeA mod q with eA = h(rB ; rA; B;A) to B and computes the session key KA = h(rkABmod p). Otherwise, A stops the protocol with failure.4. B computes eA = h(rB ; rA; B;A) and checks that gsAyeAA = rA mod p. If the check succeeds,B computes the session key KB = h(rkBA) mod p. Otherwise, B stops the protocol withfailure.Since B can generate a valid signature with rB = �eBgkB mod p in about 2jord(�)j steps asexplained before, it can pass A's veri�cation in step 3 in real time if ord(�) is small enough(say, 10 to 20 bits). Therefore, once B obtains any checking equation involving the session keycomputed by A, for example a ciphertext generated by A, then it can �nd kA mod ord(�) bytrying all possible values of KA = h(rkBA �j mod p) with j 2 [0; ord(�)). This gives jord(�)j bitsof information on the secret key xA, since xA = (sA+ kA)e�1A mod q, and thus the e�ective secretbits of xA is reduced to (jqj � jord(�)j) bits.In the above protocol B has to respond in real time and thus ord(�) must be very small.However, in the following non-interactive, symmetric protocol [27] (we only describe it w.r.t. userA only), the exhaustive search can be done in o�-line, which allows to use a � of larger order (say,of 30 to 40 bits) (Of course, for this p � 1 should have a prime factor of this size). If A has apublic key yA = �gxA mod p, then it can �nd j = kB mod ord(�) by checking that gsByeBB = rBmod p with eB = h(rxAB �j mod p; rB ; B;A) for all possible values of j.1. A computes rA = gkA mod p with kA 2R Zq, KA1 = ykAB mod p, eA = h(KA1; rA; A;B) andsA = kA � xAeA mod q. A then sends frA; sAg to B.2. A computesKA2 = rxAB mod p and eB = h(KA2; rB ; B;A), and checks that gsByeBB = rB modp. If the check succeeds, A computes the session key KA = h(KA1KA2 mod p). Otherwise,A stops the protocol with failure.The reason why our attack can be applied to the above two protocols is that the same randomsecret ki is used for authentication and session key computation. This shows that a robust protocolshould avoid using the same secret (even it is a one-time random number) for two di�erent purposes[1]. In this respect the approach taken in the STS [17] and SKEME [21] seems to be a better wayto design key exchange protocols. 5

2.2 Authenticated key ExchangeThe attack presented above can be easily prevented by a proper precaution in the certi�cate issuingprocess. We now extend our attack to the case where each user has a correct public key. As anexample, we consider the following key exchange protocol, which is an authenticated version ofthe MTI (Matsumoto-Takashima-Imai) protocol [26]. This protocol, with slight changes, is widelystudied in the literature (e.g., see [27, 20]) and is also being standardized in ISO/IEC JTC1/SC27[43].1. A randomly picks kA 2 Zq, computes rA = gkA mod p and sends rA to B.2. B randomly picks kB 2 Zq, computes rB = gkB mod p, KB = ykBA rxBA mod p and eB =h(KB ; rB ; rA; B;A), and sends frB ; eBg to A.3. A computes KA = ykAB rxAB mod p and e0B = h(KA; rB ; rA; B;A), and checks that eB = e0B .If eB 6= e0B , then A stops the protocol with failure. (Optional) Otherwise, A computeseA = h(KA; rA; rB ; A;B) and sends eA to B.4. (Optional) B computes e0A = h(KB ; rA; rB ; A;B) and checks that eA = e0A. If eA 6= e0A, thenB stops the protocol with failure.The session key K can be derived from the shared secret as K = h(KA) = h(KB). The criticalpoint relevant to our attack is the key authentication based on the shared secret KA = KB. Thatis, B applies his secret key to the number received from A and returns eB as a function of the(assumed) session key KB . Suppose that A sends rA = �gkA mod p in step 1. Then an honestuser B will compute KB = ykBA rxBA = rxAB ykAB �xB mod p and return eB computed with this KB .Once receiving frB ; eBg, A may abort the protocol if a response is required. Since A can computethe �rst exponential in KB , ykBA = rxAB mod p, it can �nd j = xB mod ord(�) in O(2jord(�)j) stepsby checking the equality eB = h(KB ; rB ; rA; B;A) with KB = rxAB ykAB �j for all possible values ofj (i.e., j = 0; 1; � � � ; ord(�)� 1).The above attack may be repeated as many times as the number of small prime factors ofp�1 which make it feasible to do the exhaustive search. Thus if p�1 has several prime factors ofsmall size (say, less than 40 bits), then it is possible to �nd the whole secret in reasonable time.Note that our attack can be mounted against any authenticated key exchange protocol as longas authentication is performed using the shared secret (note that such authentication is possibleonly if each user's secret key is involved in the computation of the shared secret). This impliesthat almost all key exchange protocols providing explicit authentication without using a separateauthentication channel (e.g., as in STS [17] or SKEME [21]) may be vulnerable to our attack.Our attack can also be applied to key exchange protocols with implicit authentication, sincethe agreed upon session key will be used anyway in later communications. For example, supposethat user A mounted the attack in the original MTI protocol, where each user exchanges randomexponential ri and computes the session key as above. Now, if user B �rst uses the resulting sessionkey for message authentication (or key authentication), A obtains a known equation involving thesession key computed by B. Then the situation, in view of our attack, is the same as in the aboveauthenticated protocol. On the other hand, if B sends a ciphertext for an unknown message, thenA can �nd the intended partial secret by decrypting the ciphertext with all possible values of thesession key that B is supposed to compute and then �nding a meaningful message. Note thatusual known-key attacks assume knowledge of the whole shared secret from which the session keyis derived (e.g., see [42, 10]), but in our attack it is su�cient to obtain any function of the sharedsecret (even a ciphertext su�ces). 6

We next show that some key exchange protocols using a signature scheme for authenticationmay also be vulnerable to our attack. For example, consider the following protocol (developedfrom Protocol 4 in [23]):1. A picks a random integer kA 2 Zq, computes rA = gkA mod p and sends rA to B.2. B picks a random integer kB 2 Zq, computes rB = gkB mod p. B also computes KB = rkBAmod p, eB = h(KB ; rB ; rA; B;A) and sB = kB � xBeB mod q, and sends frB ; sBg to A.3. A computes KA = rkAB mod p, eB = h(KA; rB ; rA; B;A) and checks that gsByeBB = rBmod p. If the check fails, then A stops the protocol with failure. (Optional) Otherwise, Acomputes eA = h(KA; rA; rB ; A;B) and sA = kA � xAeA mod q, and sends sA to B.4. (Optional) B computes eA = h(KB ; rA; rB ; A;B) and checks that gsAyeAA = rA mod p. If itdoes not hold, then B stops the protocol with failure.This protocol uses a digital signature on the shared secret KA = KB = gkAkB mod p (fora honest run) to authenticate each other. However, the same random number is used for au-thentication and session key computation (as in the last two examples in Sec.2.1). This factcan be exploited by A to extract partial information on the secret key xB. As before, A sendsrA = �gkA mod p and does the exhaustive search for kB mod ord(�) using the veri�cation equa-tion gsByh(KA;rB;rA;B;A)B = rB mod p with KA = rkAB �kB mod p. This reduces the e�ective secretbits of xB to (jqj�jord(�)j) bits. Note, however, that repetition of the attack with � of a di�erentorder does not help to �nd further bits of the secret in this case, since a di�erent kB is used eachtime and ord(�) does not divide q.The attack described in this section can be easily prevented by checking that rqi = 1 mod pfor each random exponential exchanged before raising it to the secret key. This however seemstoo expensive. A better solution would be to choose a prime p such that (p � 1)=2q has primefactors that are at least larger than q (see Sec.4). Such a p only leaks the parity bit of the secretkey by our attack. Note that no key exchange protocol can protect the parity bit of the involvedsecret if the order of the received number is not checked as explained above, since there alwaysexist an element of order 2 (i.e., p-1). This is also true for the following one-way key exchangeprotocol useful for email applications: A computes rA = gkA mod p with random kA 2 Zq and thesession key K = h(ykAB mod p; rA; d), encrypts a message m as c = EK(m) and sends frA; d; cg toB, where d is a timestamp. B can then compute K = h(rxBA mod p; rA; d) and decrypt c. In thisprotocol A may send rA = �gkA mod p. If B does not respond or claims a garbage mail, thenA knows that xB is odd. This attack may be repeated t times, revealing the last t bits of xB, if2tjp� 1.3 Extracting Secret Keys in Other DL-based SchemesThere are many other discrete logarithm-based protocols which may be susceptible to our attack.In this section we present several such examples that we have found in the literature. Theyinclude threshold cryptosystems based on ElGamal encryption [15], anonymous channels used inelectronic voting schemes [29, 35] and undeniable signatures [12, 8, 28].3.1 Shared Decryption of ElGamal EncryptionElGamal encryption of message m for user A consists of fc1; c2g, where c1 = gk mod p withk 2R Zq and c2 = mykA mod p [18]. The receiver A can decrypt the ciphertext fc1; c2g by7

computing m = c2c�xA1 mod p. In some group-oriented applications we may need to encrypt themessage in such a way that only an authorized subset of receivers can decrypt the ciphertext.This can be done using ElGamal encryption and Shamir's secret sharing scheme [36].As an example, we consider a prime �eld implementation of the threshold cryptosystem pro-posed by Desmedt and Frankel [15]. Let G be a group of n members and yG = gxG mod p be apublic key of the group. We want to encrypt a message m so that any subset of t or more membersinG can read the message. For this, in the system setup phase a trusted authority picks a randompolynomial f of degree t�1 in Zq such that f(0) = xG, i.e., f(z) = at�1zt�1+ � � �+a1z+xG withaj 2R Zq, computes secret shares xGi = f(i) mod q for i = 1; 2; � � � ; n and securely sends xGi toeach member i of G. (See [24] for a more exible scheme not requiring such pre-distribution ofsecret shares.) Now, suppose that a ciphertext fc1; c2g,where c1 = gk mod p and c2 = mykG modp, is received and that a subset H of t members in G agreed to decrypt the ciphertext. Then eachmember j 2 H computes wj = c�bjxGj1 mod p, where bj = Qi2H;i6=j �ij�i mod q, and sends wj toa combiner (e.g., one designated member). The combiner then computes w = Qj2Hwj mod p,which should be c�xG1 mod p if all members involved worked correctly. Therefore, the message mcan be recovered by m = c2w mod p.It is easy to see that our attack can be successful for the above scheme, if each shareholderdoes not check that cq1 = 1 mod p. In this case, our attack can extract much more secret bitsat a time. Let = Q �i (a product of smooth order elements). The attacker sends a ciphertextfc1; c2g such that c1 = gk mod p and c2 = mykG mod p. Since wqj = (q)�bjxGj mod q modp, once obtaining wj, he can easily compute the logarithm (�bjxGj mod q) mod ord() using aPohlig-Hellman decomposition. The remaining part of �bjxGj mod q can be found from the valueyj = gxGj = wbjkj mod p. This reveals the secret share of a shareholder j. If wj's are transmittedthrough a secure channel, the attacker need to collude with the combiner. (The combiner needsthe help of the attacker to compute yj's if they are not publicly available.)Note the e�ciency of the above attack. Unlike in key exchange protocols, where the attackercan only obtain a function of the shared secret (e.g., a hash value), in the above scheme theattacker has direct access to the shared secret itself (i.e., a value exponentiated with the secretkey). This allows the attacker to get a Pohlig-Hellman decomposition for the secret key. Sincenow Pollard's �-method can be used to solve the decomposed problems, it would be quite feasibleto use a � of order about 80 bits. Thus, for a random prime p such that qjp � 1 and jqj = 160,the attack could reveal the whole secret key in most cases.Anonymous channels proposed by Park et al.[29] uses a special case of the threshold cryp-tosystem described above, i.e., the case of t = n. The anonymous channel is primarily used toprotect the secrecy of votes in electronic voting schemes. Later P�tzmann [31] developed success-ful attacks on these channels. To defeat such attacks, Sako and Kilian [35] used a prime ordersubgroup in their election scheme, instead of the full multiplicative group Z�p originally used in[29]. However, in this case our attack can be applied again. To see this, we briey describe themodi�ed version in [35].Each MIX Mi (1 � i � n) has a secret key xi 2R Zq and publishes its public key yi =gxi mod p. Let wj = Qni=j+1 yi mod p for j < n and wn = 1. For each ciphertext C0 =fc0;1; c0;2g = fgk;mwk0g, each MIX Mi for i = 1; 2; � � � ; n� 1 transforms the Ci�1 posted by Mi�1into Ci = fci�1;1gri ; ci�1;2wrii c�xii�1;1g with random ri 2 Zq and posts the Ci on the public board inalphabetical order (all computations are done in mod p). In [35] this is done in two phases: in the�rst phase Mi posts zi = cxii�1;1 mod p and in the second phase it posts fci�1;1gri ; ci�1;2wrii =zig.In each phase Mi also proves the correctness of the computation. Now the �nal MIX Mn canrecover m by computing cn�1;2c�xnn�1;1 mod p. 8

As is clear, this protocol is vulnerable to our attack. A voter V can submit a faked voteC0 = fc0;1 mod p; c0;2g and then �nd xi mod ord() from zi as before. Therefore, it is essentialthat each MIX Mi should verify that cqi�1;1 = 1 mod p before beginning its processing.3.2 Undeniable SignaturesOur attack can also be applied to some digital signature applications. The most obvious case is toproduce an undeniable signature on message m 2 Zq as mx mod p without checking that mq = 1mod p, where x is the signer's secret key. We could �nd several examples in the literature.As a �rst example, we consider the validator issuing protocol by Chaum and Pedersen (seeSec.4 in [13]). The purpose of this protocol is that a center Z issues a validator to a `walletwith observer' (consisting of a computer C and a tamper-proof module T embedded inside C).The validator is an unlinkable certi�cate for the public key yT = gxT of T . In some steps of theprotocol the computer C blinds yT as m = ykT mod p with random k and sends it to the center Z,who then returns z0 = mxZ mod p. Obviously, if C sends m = ykT mod p with = Q�i, it can�nd xZ mod ord() from zq0 = (q)xZ mod p using the Pohlig-Hellman method. Note that C canstill obtain the desired signature by computing z0�xZ mod p after �nding xZ mod ord(). Thesame attack can be applied to its privacy enhanced version [14] if the signer does not check thatmq = 1 mod p. The authors may omit this checking step in the thought that C can only obtainan undeniable signature for a random message, but this omission causes a fatal attack as above.In Brands's electronic cash scheme using a wallet with observers [6] (see [7] for more details),each user computes I = gu1 mod p with u 2R Zq and sends it to the bank, which generates asignature z = (Ig2)x mod p (g1; g2 generators of a subgroup of order q). In this case the usermust prove to the bank that he knows u since I corresponds to the account number of the user(see also [11]). Thus our attack is not applicable here. However, as noted in Sec.2.1, it is essentialto check Iq = 1 mod p at the begining of the proof if a Schnorr-type identi�cation scheme is usedfor this purpose (this is the case in [7]). Otherwise, the user can pass the proof with I = �gu1 modp in success probability 1=ord(�). The successful pass will be fatal in this system: Not only theuser can mount our attack to �nd partial information on the secret x, but also he can spend thesame coin multiple times without being identi�ed.Another possibility for the attack exists in the con�rmation protocol of undeniable signatures[12, 8] and designated con�rmer signatures [28]. For example, consider the convertible undeniablesignature scheme by Boyar et al.[8]. In this scheme the signer S possesses two secret/public keypairs, fx 2R Zq; y = gx mod pg and fz 2R Zq; u = gz mod pg. The signature on message mis a triple ft; r; sg, where t = gk1 mod p, r = gk2 mod p and s = k�12 (h(m)tzk1 � xr) mod q(k1; k2 2R Zq). Thus the signature ft; r; sg is valid i� (th(m)t)z = yrrs mod p. The con�rmationprotocol between S and V is as follows:1. S and V computes w = th(m)t mod p and v = yrrs mod p from the signature ft; r; sg.2. V computes a challenge ch = wagb mod p with a; b 2R Zq and sends ch to S.3. S computes h1 = ch � gc mod p with c 2R Zq and h2 = hz1 mod p, and sends fh1; h2g to V .4. V reveals a and b to S.5. S checks that ch = wagb mod p. if it holds true, then S reveals c to V . Otherwise, S stopsthe protocol.6. V checks that h1 = wagb+c mod p and h2 = vaub+c mod p.9

This protocol is complete, sound and is known to be zero-knowledge. However, suppose thatthe veri�er V sends, as a challenge in step 2, any value of order q multiplied by small orderelements, say ch = gb mod p. Then the received value h2 in step 3 satis�es hq2 = (q)z modp, from which he can �nd z mod ord(). This shows that the con�rmation protocol cannot bezero-knowledge against a dishonest veri�er. It is essential for S to check that chq = 1 mod pin step 3. In a variant by Pedersen [30], S computes h1; h2 as h1 = (ch)c mod p with c 2R Zqand h2 = hz1 mod p. This variant is also vulnerable to our attack, since one can still obtain theequation hq2 = (hq1)z mod p by sending ch = gb mod p (here note that ord(hq1) = ord()).The above attack suggests that a prime p should be chosen as p = 2q + 1 (q prime) if anundeniable signature is computed as mx mod p as in Chaum's undeniable signature [12], sincethere is no way to detect our attack otherwise.5 (Note that it is infeasible to generate m as anelement of order q for any meaningful message or its hash value if q is chosen small compared to p.)However, Jakobsson and Yung [19] failed to observe this fact when choosing system parametersin Chaum's scheme: p = ql + 1 (p; q prime, l integer), g a generator of Gq6 and fx 2R Zq; y = gxmod pg as the secret/public key pair of the signer. Careful examination shows that their obliviousprotocol for deciding an undeniable signature is also vulnerable to our attack. This protocol cannotbe repaired by simply adding checking steps as noted above. To avoid our attack, we have tochoose p as p = 2q + 1 (q prime). Or we may use the full range of exponents.We note that the signer or the con�rmer(s) must verify the validity of a signature beforeexecuting the con�rmation protocol. Otherwise, the veri�er may change the �rst component t ofthe signature as t0 = t mod p and requests S to con�rm its validity by sending ft0; r; sg. Then Vwill be able to obtain z mod p at the end of the protocol, since the check in step 5 will succeedif V sends ch = (w0)agb mod p with w0 = (t0)t0h(m) mod p in step 2. (see also Appendix A in[19] for another weakness when the validity of signatures is not checked before con�rmation ordenial.) If the secret z is distributed into a set of designated con�rmers [30, 28], an authorizedsubset of con�rmers should run a shared veri�cation protocol to validate the signature. Thenthere may exist another possibility for the combiner to mount a similar attack to �nd secretshares of con�rmers as in the shared decryption of ElGamal ciphertexts (see Sec.3.1), unless eachcon�rmer checks that wq = 1 mod p.4 Generating and Registering Public ParametersThe presented attack shows that it is essential in discrete log-based schemes using a prime ordersubgroup to verify that received numbers belong to the underlying group before applying thesecret key. However, this checking step requires one exponentiation, which seems too much inmost applications. The best alternative is to use a prime p such that (p� 1)=2q is also prime oreach prime factor of (p� 1)=2q is larger than q. (see also [25] for a method of generating primeswhich can substantially reduce the modular reduction time and storage usage). Such a prime canbe generated much faster than a safe prime (i.e., a prime of the form p = 2q + 1).To generate a prime p such that p = 2qp1 + 1, we �rst choose a random prime p1 of lengthjpj � jqj � 1 and then �nd a desired prime p by testing p = 2qp1 + 1 for primality with randomprimes q's. Thus we need to generate a number of q's to �nd a p (e.g., about 710 for a 1024-bit5Of course, our attack is useless if a base element is taken as a primitive element mod p. The public key y = �xmod p already allows a Pohlig-Hellman decomposition, revealing smooth part of x.6In [19] it is stated that g is a generator of Gp. We assume that Gp is a misprint for Gq . The choice of g as aprimitive element mod p and the restriction of exponents to Zq will be already insecure against the Pohlig-Hellmanattack. See [40] for details. 10

prime p, considering the density of primes, 1= lnx). However, this does not require much time,since the size of q is usually small (e.g., 160 bits).It is much cheaper to generate a prime p such that p = 2qp1p2 � � � pn+1, where pi's are primesalmost equal to q. We �rst determine the number n from the inequality l = jpij � (jpj�jqj�1)=n �jqj. Then we generate a pool of primes for pi's. Suppose that the pool contains m primes of size l.Then we have �mn� candidates for p. Considering the density of primes, we can make this numberlarge enough to guarantee that there are enough possibilities for a prime p to be found with thisprime pool. For example, for a 1024-bit prime p and a 160-bit prime q we may choose l � 173,n = 5 and m = 15. This choice of parameters gives about 3000 candidates for p. Thus testingthis many candidates will give a prime p with very high probability.The latter form of primes will be su�cient to defeat our attack and can be generated muchfaster than the former form of primes (though somewhat slower than a random prime p withqjp � 1). Even when we work in the full multiplicative group Z�p, such a prime seems as strongagainst any known attack as a safe prime. Note that if protocol variables are not properly checked,an attacker can always acquire at least one bit of the secret, the parity bit, by our attack. Wemay trade o� this one bit loss with e�ciency by using a secure prime.There are other advantages in our proposed prime generating methods. They give a completefactorization of p�1, which may be useful if we need to �nd a primitive element mod p. Note thatthere is no known algorithm to �nd a primitive element mod p without knowing the factorizationof p � 1. The simplest is to check the order of elements successively (say, 2; 3; 5; � � �) using theprime factors of p�1. In the latter form of primes, we can make p�1 contain many prime factorsof similar size, and thus we may use di�erent subgroups of prime order for di�erent applications(e.g., one for ordinary signatures, one for undeniable signatures and one for key exchange, etc.).This will prevent any potential weakness from the misuse of key parameters. Of course, using thesame prime p in di�erent primitives may not be desirable in view of security against most discretelogarithm algorithms such as the index calulus method and the number �eld sieve. However, thisgives us e�ciency in storage and communication.The attacks presented in this paper and in Menezes et al.[27] show that the CA must checkfor knowledge of a secret key corresponding to the public key before issuing a certi�cate. Inparticular, the CA and a user must �rst check the order of the received base g and public keyy. If such an interactive proof is hard to carry out in some environments, we propose to use thefollowing certi�cation procedure, which seems to preclude any known weakness even without sucha proof. The basic idea is to allow the CA to also contribute to the randomness of a user's secretkey. On receiving a user's part of a public key y0 = gx0 mod p, the CA computes the actual publickey y as y = (y0)agb mod p, where a = p�1q c and b; c 2R Zq. The CA now generates a certi�catefor y and sends fa mod q; bg, along with the certi�cate, to the user. The user can then computethe actual secret key x for the certi�ed public key y as x = x0a+ b mod q. The exponent a makesvanish any component of y0 which does not belong to the subgroup of order q. This prevents usersfrom registering an improper form of public keys. The multiplicative factor gb mod p makes itimpossible for a user to register a public key as a power of other user's public key. This preventsthe attack presented in [27]. Furthermore, users' secret keys can be made more pseudorandomby the CA's contribution if the CA uses a cryptographically strong pseudorandom generator (inthis case we assume that the CA sends fa mod q; bg through a secure channel). This may beadvantageous since most users may not be so careful in choosing their secrets.
11

5 ConclusionWe have presented a key recovery attack on discrete logarithm-based protocols working in a primeorder subgroup. This attack enables us to �nd part of, in many cases the whole, secret key of avictim in a reasonable time for many DL-based schemes published in the literature which disclosea shared secret or any function of it during the protocol execution. The attack uses small ordersubgroups in Z�p to compute part of the secret key in a protocol working in a subgroup of primeorder q. This is possible since in most schemes a prime p is chosen at random such that qjp� 1.Therefore, our attack can be easily prevented if relevant protocol variables are properly checked,that is, if each party checks that received numbers belong to the underlying subgroup of primeorder. However, such checkings substantially decrease e�ciency. Thus a better alternative wouldbe to minimize possible leakage of secret key bits by using a secure prime, a prime p such thatall prime factors of (p� 1)=2q are larger than q. Such a prime only leaks one bit of the secret byour attack.References[1] R.Anderson and R.Needham, Robustness principles for public key protocols, In Advances inCryptology - CRYPTO'95, LNCS 963, Springer-Verlag, 1995, pp.236-247.[2] R.Anderson and S.Vaudenay, Minding your p's and q's, In Advances in Cryptology - ASI-ACRYPT'96, LNCS 1163, Springer-Verlag, 1996, pp.15-25.[3] A.Aziz, T.Markson and H.Prafullchandra, Simple key-management for Internet proto-cols (SKIP), draft-ietf-ipsec-skip-07.txt, Aug. 1996. (see also the SKIP home page http :==skip:incog:com= for more information.)[4] D.Bleichenbacher, Generating ElGamal signatures without knowing the secret, In Advancesin Cryptology - EUROCRYPT'96, LNCS 1070, Springer-Verlag, 1996, pp.10-18.[5] C.Boyd and W.Mao, Design and analysis of key exchange protocols via secure channel iden-ti�cation, In Advances in Cryptology - ASIACRYPT'94, LNCS 917, Springer-Verlag, 1995,pp.171-181.[6] S.Brands, Untraceable o�-line cash in wallet with observers, In Advances in Cryptology -CRYPTO'93, LNCS 773, Springer-Verlag, 1994, pp.302-318.[7] S.Brands, An e�cient o�-line electronic cash system based on the representation problem,Technical Report CS-R9323, CWI, Amsterdam, 1993.[8] J.Boyar, D.Chaum, I.Damgard and T.Pedersen, Convertible undeniable signatures, In Ad-vances in Cryptology - CRYPTO'90, LNCS 537, Springer-Verlag, 1991, pp.189-205.[9] M.Burmester, A remark on the e�ciency of identi�cation schemes, In Advances in Cryptology- EUROCRYPT'90, LNCS 473, Springer-Verlag, 1991, pp.493-495.[10] M.Burmester, On the risk of opening distributed keys, In Advances in Cryptology -CRYPTO'94, LNCS 839, Springer-Verlag, 1994, pp.308-317.[11] A.Chan, Y.Frankel and Y.Tsiounis, Mis-representation of identities in E-cash schemes andhow to prevent it, In Advances in Cryptology - ASIACRYPT'96, LNCS 1163, Springer-Verlag,1996, pp.276-285. 12

[12] D.Chaum, Zero-knowledge undeniable signatures, In Advances in Cryptology - EURO-CRYPT'90, LNCS 473, Springer-Verlag, 1991, pp.458-464.[13] D.Chaum and T.Pedersen, Wallet databases with observers, In Advances in Cryptology -CRYPTO'92, LNCS 740, Springer-Verlag, 1993, pp.89-105.[14] R.Cramer and T.Pedersen, Improved privacy in wallets with observers, In Advances in Cryp-tology - EUROCRYPT'93, LNCS 765, Springer-Verlag, 1994, pp.329-343.[15] Y.Desmedt and Y.Frankel, Threshold cryptosystems, In Advances in Cryptology -CRYPTO'89, LNCS 435, Springer-Verlag, 1990, pp.307-315.[16] W.Di�e and M.E.Hellman, New directions in cryptography, IEEE Trans. Info. Theory, 22(6),1976, pp.644-654.[17] W.Di�e, P.van Oorschot and M.Wiener, Authentication and authenticated key exchange,Designs, Codes and Cryptography, 2, 1992, pp.107-125.[18] T.ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms,IEEE Trans. Inform. Theory, IT-31, 1985, pp.469-472.[19] M.Jakobsson and M.Yung, Proving without knowing: on oblivious, agnostic and blind-folded provers, In Advances in Cryptology - CRYPTO'96, LNCS 1109, Springer-Verlag, 1996,pp.186-200.[20] M.Just and S.Vaudenay, Authenticated multi-party key agreement, InAdvances in Cryptology- ASIACRYPT'96, LNCS 1163, Springer-Verlag, 1996, pp.36-49.[21] H.Krawczyk, SKEME: A versatile secure key exchange mechanisms for Internet, In Proc. of1996 Symp. on Network and Distributed Systems Security.[22] A.K.Lenstra, P.Winkler and Y.Yacobi, A key escrow system with warrant bounds, In Ad-vances in Cryptology - CRYPTO'95, LNCS 963, Springer-Verlag, 1995, pp.197-207.[23] C.H.Lim and P.J.Lee, Several practical protocols for authentication and key exchange, In-formation Processing Letters, 53, 1995, pp.91-96.[24] C.H.Lim and P.J.Lee, Directed signatures and application to threshold cryptosystems, InPre-Proc. of 1996 Cambridge Workshop on Security Protocols, The Isaac Newton Institute,Cambridge, April 1996.[25] C.H.Lim and P.J.Lee, Generating e�cient primes for discrete log cryptosystems, submittedfor publication (also presented at ASIACRYPT'96 Rump Session).[26] T.Matsumoto, Y.Takashima and H.Imai, On seeking smart public-key distribution systems,The Transactions of the IEICE of Japan, E69, 1986, pp.99-106.[27] A.J.Menezes, M.Qu and S.A.Vanstone, Some new key agreement protocols providing implicitauthentication, In Proc. SAC'95, Carleton Univ., Ottawa, Ontario, May 1995, pp.22-32.[28] T.Okamoto, Designated con�rmer signatures and public-key encryption are equivalent, InAdvances in Cryptology - CRYPTO'94, LNCS 839, Springer-Verlag, 1995, pp.61-74.13

[29] C.S.Park, K.Itoh and K.Kurosawa, E�cient anonymous channel and all/nothing electionscheme, In Advances in Cryptology - EUROCRYPT'93, LNCS 765, Springer-Verlag, 1994,pp.248-259.[30] T.Pedersen, Distributed provers with applications to undeniable signatures, In Advances inCryptology - EUROCRYPT'91, LNCS 547, Springer-Verlag, 1991, pp.221-242.[31] B.P�tzmann, Breaking an e�cient anonymous channel, In Advances in Cryptology - EURO-CRYPT'94, LNCS 950, Springer-Verlag, 1995, pp.332-340.[32] S.C.Pohlig and M.E.Hellman, An improved algorithm for computing logarithms over GF (p)and its cryptographic signi�cance, IEEE Trans. Inform. Theory, IT-24 (1), 1978, pp.106-110.[33] D.Pointcheval and J.Stern, Security proofs for signature schemes, In Advances in Cryptology- EUROCRYPT'96, LNCS 1070, Springer-Verlag, 1996, pp.387-398.[34] J.M.Pollard, Monte Carlo methods for index computation (mod p), Math. Comp., 32(143),1978, pp.918-924.[35] K.Sako and J.Kilian, Receipt-free mix-type voting scheme, In Advances in Cryptology - EU-ROCRYPT'95, LNCS 921, Springer-Verlag, 1995, pp.pp.393-403.[36] A.Shamir, How to share a secret, Commun. ACM, 22, 1979, pp.612-613.[37] C.P.Schnorr, E�cient identi�cation and signatures for smart cards, InAdvances in Cryptology- CRYPTO'89, LNCS 435, Springer-Verlag, 1990, pp.235-251.[38] J.Stern, The validation of cryptographic algorithms, In Advances in Cryptology - ASI-ACRYPT'96, LNCS 1163, Springer-Verlag, 1996, pp.301-310.[39] P.C.van Oorschot and M.J.Wiener, Parallel collision search with applications to hash func-tions and discrete logarithms, In Proc. 2nd ACM Conference on Computer and Communi-cations Security, Fairfax, Virginia, Nov. 1994, pp.210-218.[40] P.C.van Oorschot and M.J.Wiener, On Di�e-Hellman key agreement with short exponents,In Advances in Cryptology - EUROCRYPT'96, LNCS 1070, Springer-Verlag, 1996, pp.332-343.[41] S.Vaudenay, Hidden collisions on DSS, In Advances in Cryptology - CRYPTO'96, LNCS1109, Springer-Verlag, 1996, pp.83-88.[42] Y.Yacobi, A key distribution paradox, In Advances in Cryptology - CRYPTO'90, LNCS 537,Springer-Verlag, 1991, pp.268-273.[43] ISO/IEC JTC1/SC27, Information technology - Security techniques - Key management -Part 3: Mechanisms using asymmetric techniques.
14

