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Abstract

We present a solution to the Tiercé problem, in which two players want to know
whether they have backed the same combination (but neither player wants to dis-
close its combination to the other one). The problem is also known as the socialist
millionaires’ problem, in which two millionaires want to know whether they happen
to be equally rich. In our solution, both players will be convinced of the correctness
of the equality test between their combinations and will get no additional informa-
tion on the other player’s combination. Our solution is fair: one party cannot get
the result of the comparison while preventing the other one from getting it. The
protocol requires O(k) exponentiations only, where k is a security parameter.

1 Introduction

1.1 Description of the problem

Two players both have decided to back a combination for the coming Tiercé ! .
The players want to know whether they happen to back the same combination,
but neither player wants to simply disclose its combination to the other. This
problem is called the Tiercé problem [19] or the socialist millionaires’ problem
[10]. It is a variant of the millionaires’ problem, introduced by Yao [17,18],
in which two players wish to compare their riches: they wish to know who is
richer, but apart from that they do not want to disclose any other information
on their riches to each other.

1 Tiercé is a French betting game in which the winning combination consists of the
three first of a horse race (in order).
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Formally, the problem is to find an efficient two-party protocol for the secure
computation of function f:{0,1}* x {0,1}* — {0,1} with f(z,y) = [z = y],
where [B] = 1if condition B holds, and [B] = 0 otherwise. (For the millionaires
problem we may take f(x,y) = [x < y], interpreting = and y as nonnegative
integers.) The basic security requirements for two-party protocols, and more
generally, multi-party protocols have been laid out by Yao [17,18] and by
Goldreich, Micali, and Wigderson [9].

Secure computation of f(z,y) thus means (i) that both players will be con-
vinced of the correctness of the result, while (ii) neither player learns more
about the other player’s input than what is implied by the value of f(z,y). In
particular, for f(z,y) = [x = y| this means that the player’s do not get any
information on each others values if x # y, except for the fact that the values
are different. In addition, we may require the computation to be fair, which
means that a player can not stop the protocol after getting the result of the
comparison, and thereby preventing the other player from getting the result
too.

For secure computations it is assumed that the players are committed to their
inputs. A secure computation cannot guard against cheating players who do
not behave according to their input values, e.g., by using a value 2’ # x instead
of x throughout the computation of [z = y|. Similarly, a secure computation
for f(x,y) does not guard against cases in which the first player tries various
values x1,...,x, for z to find out more about the value of y: if the second
player happens to use the same y in these computations then the first player
is allowed to learn everything that is implied by the knowledge of x1,...,x,

and f<x17y>7 c >f(xn>y)

For two-party computations it is also known that even for basic functions such
as the binary AND and OR no secure computations exist which protect the
inputs of both players at the same time in an information-theoretic way. We
will therefore consider secure computations of [x = y| for which condition (ii)
above holds subject to an intractability assumption, which will be the Decision
Diffie-Hellman assumption in our case.

A solution to the millionaires’ problem is described by Salomaa in [14] (and
also by Schneier [16]). From this solution, we can easily deduce a solution to
the Tiercé problem. However, such a solution is only efficient when x and y are
very small (the complexity is exponential in the size of z and y). Jakobsson
and Yung [10] presented a solution with polynomial complexity requiring O(k)
exponentiations, where k is a security parameter, using many rounds of inter-
action. Moreover, all of these protocols fail to meet the fairness requirement.

In this paper we present a protocol with the same properties as the protocol by
Jakobsson and Yung but requiring only O(1) exponentiations, and requiring



a few rounds of interaction only. In addition, our protocol can be made fair,
increasing the cost to O(k), where k is a security parameter.

2 Assumptions and Proofs of Knowledge
2.1 Notations

Let Z,, denote the residue class ring modulo n and Z; the multiplicative group
of invertible elements in Z,. We let G, denote a group of large prime order
¢, such that computing discrete logarithms in this group is infeasible. For
9,y € Gy, g # 1, we let log,, y denote the discrete logarithm of y to the base g,
which is equal to the unique z € Z, satisfying y = ¢*. A common construction
of G, is to take the unique subgroup of order ¢ in Z;, where p is a large prime
such that ¢ | p — 1. Finally, we let h : {0,1}* — Z, denote a cryptographic
hash function, i.e., h is one-way and collision-resistant and we use h(a,b) to
denote the image under A of the concatenation of the strings a and b.

2.2 Assumptions

The security of our protocol involves three standard assumptions in cryptog-
raphy.

The Discrete Logarithm (DL) assumption for group G, states that it is in-
feasible to compute log, y given random g,y € G,, g # 1. Or, more formally,
for all constants ¢ and for all sufficiently large ¢, there exists no probabilistic
polynomial time Turing machine which, on input G, g,y, outputs log, y with
probability greater than 1/|q|°.

The Diffie-Hellman (DH) assumption for group G, states that it is infeasible
to compute g given random generators g, v, y2 € G,, where a = log, 1 and
b = log, yo. Or, more concisely, it is infeasible to compute g™ given g, g%, ¢°
for random a, b € Z,.

The Decision Diffie-Hellman (DDH) assumption for group G, states that it is
infeasible to decide whether y = ¢ given random generators g, y, y1,y2 € Gy,
where a = log, y; and b = log, y2. Or, more concisely, it is infeasible to decide
whether ¢ = ab (which is equivalent to g¢ = ¢g?) given g, g%, ¢°, g¢ for random
a,b,c € Zy.

Our result requires the DDH assumption, which implies the DH assumption,
which in turn implies the DL assumption. We will also use the equivalent



formulation for DH which states that it is infeasible to compute ¢° given
g, 9% g* for random a,b € Z,, and similarly for DDH.

The DDH assumption is equivalent to the semantic security [8] (indistinguisha-
bility of encryptions) of the ElGamal cryptosystem [6]. See [2] for a discussion
of the Decision Diffie-Hellman problem.

2.8  Non-interactive proofs of knowledge

The following protocols are non-interactive zero-knowledge proofs of knowl-
edge, and correspond to well-known interactive honest-verifier zero-knowledge
proofs of knowledge. The interactive protocols are converted to their non-
interactive counterparts using the generic transformation introduced by Fiat
and Shamir [7]. This transformation preserves the properties of the original
protocol: Bob is convinced by Alice’s proof if and only if she holds the secret
whose knowledge she proves, and at the end of the protocol Bob will not have
learned any information on Alice’s secret. In fact, the resulting non-interactive
proofs can be proven secure in the random oracle model of [3] (see [13]).

In order to simplify the description of the proofs of knowledge we assume that
the verifier (in this case Bob) already knows all the public parameters related
to the assertion the prover (in this case Alice) wants to prove. Furthermore,
to prevent that Alice and Bob may copy each other’s proofs in our protocol
for the socialist millionaires’ problem, we assume that the inputs to the hash
function are appropriately diversified, e.g. by including a string that identifies
Alice or Bob and other diversifying information.

2.3.1 Proof of knowledge of a discrete logarithm

Schnorr’s protocol [15] allows Alice to prove to Bob that she knows an element
x € Zg satistying y = ¢“, where y is Alice’s public key. Alice randomly selects
an integer r € Z,, computes W = ¢",¢ = h(W), and D = r — xc mod ¢. Then
Alice sends the proof (¢, D) to Bob. Bob is convinced (accepts the proof) if
¢ = h(g"y°).

2.3.2  Proof of knowledge of discrete coordinates

Okamoto’s protocol [11] extends Schnorr’s protocol to the case of two genera-
tors g1, g2, where log,, go is unknown to both Alice and Bob. Using the protocol
described below, Alice is able to prove to Bob that she knows 1, z2 € Z, sat-
isfying y = ¢7'g5?, where y is Alice’s public key. Alice randomly selects two
integers 11,79 € Z,, computes W = gi'g5*,¢ = h(W), D1 = r; — x1¢ mod g,



and Dy = ry — x9¢ mod ¢q. Then Alice sends the proof (¢, Dy, Dy) to Bob.
Bob is convinced if ¢ = h(ng gD 2y°). In contrast with Schnorr’s protocol, this

protocol is known to be provably witness-hiding [11].

2.3.8  Proof of equality of two discrete logarithms

Consider the same setting as for Okamoto’s protocol. The protocol described
below allows Alice to prove to Bob that she knows an element = € Z, satisfying
y1 = g7 and y, = g5, where y, y, is Alice’s public key. Alice randomly selects
r € Zg, computes Wy = gi, Wy = g5, c = h(W;,Ws), and D = r — zc mod q.
Then Alice sends the proof (¢, D) to Bob. Bob is convinced (accepts the proof)
if ¢ = h(gPys, g2y5). This protocol is due to Chaum and Pedersen [5].

2.3.4  Proof of equality of two discrete coordinates

Similar to the extension of Schnorr’s protocol to Okamoto’s protocol, we ex-
tend the Chaum-Pedersen protocol to the case involving several generators.
The protocol described below allows Alice to prove to Bob that she knows
X1, X1, Tog satisfying y; = g7 g5 and yo = g7'g5%%, where 1, y» is Alice’s pub-
lic key. Alice randomly selects 71,721,722 € Z,, computes Wy = ¢7'gy>", Wo =
91952, ¢ = h(Wy,Ws), Dy = r1 — xycmod q, Dy; = 191 — x91¢ mod ¢, and
Doy = 199 — x99¢ mod ¢. Alice sends the proof (¢, Dy, Doy, Das) to Bob. Bob
is convinced if ¢ = h(gP g5 y$, g g5*5). The protocol is easily adapted to
the case in which ys involves a different pair of generators ¢/, g5 instead of

g1, g2-

2.3.5 Proof that a coordinate is equal to 0 or to 1

Consider the same setting as for Okamoto’s protocol. Suppose that z5 € {0, 1}.
The following protocol allows Alice to prove to Bob that she knows x, x5 with
r1 € Zy and 5 € {0,1} satisfying y = ¢7"¢3?, where y is Alice’s public key.
In particular no information on x5 other than the fact that it is in {0,1}
is revealed. This protocol is constructed using the technique due to Cramer,

Damgard, and Schoenmakers [4].

Suppose ro = v with v = 0 or v = 1. Alice randomly selects r,c;_,,, D1_, €
Zq7 computes W, = g71n7W1—v = ngliv(y/géiv)q_vvc = h<WO7W1)7Cv = C—
¢1—, mod ¢, and D, = r — z1¢, mod q. Alice sends the proof (cy, ¢1, Dy, D1) to
Bob. Bob is convinced if ¢y + ¢; = h(gPy®, gP* (y/g2)°*) mod q.



3 The protocol

It is instructive to first consider the following naive protocol for computing
[z = y] securely. The players are called Alice and Bob. Let = be Alice’s input
and y be Bob’s one. The protocol starts with Alice sending h(x) to Bob,
followed by Bob sending h(y) to Alice, where h is a cryptographic hash function
as above. If h(z) = h(y), then © = y with overwhelming probability, hence
both players may correctly compute the output by evaluating [h(z) = h(y)].
However, the protocol is clearly not hiding the player’s inputs, in the sense of
semantic security [8]. For instance, Bob learns the value of h(z) even if x # v,
which enables him to test candidate values Z for = by comparing h(Z) with
h(z). The protocol is also not fair, as Bob may refuse to return anything after
receiving h(x) from Alice.

The following protocol allows Alice and Bob to prove to each other that their
respective secrets x and y are equal (or not) in such a way that Bob learns
nothing about z and Alice learns nothing about y (except for the value of
[z = y]). The protocol is well suited to the case that = and y are small.

3.1 Parameter generation

Alice and Bob (jointly) generate a group G, of a large prime order ¢ (at least
of size 160 bits), e.g., by taking G, as a subgroup of Z; for a large prime p
(say of size at least 1024 bits) such that g | p— 1, or, alternatively, by taking a
group (of order ¢) of points on an elliptic curve. They also decide on generators
90, g1, g2 of G, for which they don’t know log,, g; for ¢ # j, 0 < 4,5 < 3. The
generation of such numbers does not pose problems. We assume, to simplify
the description of the protocol, that = and y are elements of Z, (if z or y is
larger than ¢, then we use this protocol to compare h(x) and h(y) instead).

3.2 Development of the protocol

Let k be a security parameter, such that it is computationally infeasible to do
2% computations in a human-scale time and with human-scale computation
resources (nowadays, k is taken equal to 80). We need that k£ < |g|. In the
protocol without fairness, k is set to 0.



3.2.1 Step 1

Alice generates g, = gi for random z, € Z;. Similarly, Bob generates g, = 7"
for random x, € Zj. They use Schnorr’s protocol to prove knowledge of z,
TaTp

and xp, respectively. They also check that g, # 1 and g, # 1. Let g3 = ¢7*"" =
g* = gy*, which can be computed by both Alice and Bob. 2

3.2.2 Step 2

Alice selects a random element a € Z, and a random number e, 0 < e < 2F,
and computes

(Fa, @a) = (9596, 9795) (1)
Using the protocols of Section 2 she shows that there indeed exists an a € Z,
for which she knows e,z € Z, satisfying (1). Depending on whether we want
to design a fair or a non-fair protocol, Alice and Bob perform to following:

e (Fair Version) Alice shows that she knows a,e € Z, with 0 < e < 2*
by choosing random a; € Z, and e; € {0,1}, ¢ = 0,...,k — 1 subject
to the condition that a = %1 ¢,2' mod ¢ and e = ¥} ¢;2°, and setting
Bi=g3'g5,i=0,...,k—1. This kind of splitting has been used before in [1].
Then she proves that each e; is in {0, 1} using the last protocol of Section 2.
Since Alice can only know one pair a, e satisfying P, = g3g§, it follows that
(P, Q) is correctly computed by Alice. If Alice finds @', ¢’ with o' # a
modgq (hence ¢ # e) satisfying P, = g¥ g5 then we have g3 = gée_el)/(a,_a)

hence log, g3 follows which contradicts the DL assumption. Alice sends

(Pa, Qa) and the proofs over to Bob. Bob verifies the proofs and also checks

that P, = [1*-} B?.

By symmetry, Bob does the same as Alice, computing P, Q) satisfying

(Py, Q) = (93957911)93) (2)

where b € Z, and f, 0 < f < 2% are randomly chosen.
e (Version without fairness) Alice and Bob set e = f = 0, P, = ¢% and
Pb = gg

3.2.8 Step 3

In this step, Alice and Bob both compute (P,/Fy, Q./Qp), which will be of
the form:

(Pu/ Py, Qu/Qb) = (957967, 01705 7") (3)

2 Another choice for g3 could be g3 = gogp. However, for this choice the resulting
protocol enables any eavesdropper to learn whether x = y or not, while in the
present protocol this will only be known to Alice and Bob.




Then Alice produces
Ra = (Qa/@b)za

and a proof that log, g, = logg, g, Ra to show that R, is correctly formed.
Similarly, Bob produces

Ry = (Qa/@s)"

and a corresponding proof. Now Alice and Bob both know on account of (3)
and the definition of g3 that

Rab = sz = Rg“ = (Qa/Qb)zamb — g‘gl_bgéw_y)xal'b' (4)

3.2.4 Step 4

Finally, Alice and Bob fairly disclose the values of e and f. Once these values
are released both Alice and Bob (but not anyone else) may determine whether
x =y by testing whether

P./Py = Rapgs . (5)

On account of (3) and (4) this equality will hold if and only if z = y.

To disclose e and f without revealing the values of a and b, Alice and Bob
execute the following step for i = k—1,..., 1. They send each other the values
of a;, e; and b;, f;, respectively. Bob checks that B; = g3'g;° and Alice does a
similar check for b;, f;. Subsequently, they respectively release only ey and fy
(because if they reveal ag and by, they also reveal to the other party the values
of a = f;ol a;2" and b = Zf;ol b;2!, and consequently the values of g and
g3). Finally, Alice proves that she knows log,, By/gp” and Bob gives a similar
proof for fy: this convinces the other party that the bits ey and f; are correct.

This step can be regarded as fair, because if Bob (for example) deliberately
aborts the protocol at ¢ = [ say, he will be only at most one bit ahead of Alice
to test, by exhaustive search, the combinations for the missing bits e, ..., ¢€;.

3.8 Security

We will consider the security with respect to correctness, privacy, and fairness,
where we will consider Bob as the adversary and Alice as the honest party.
However, we could reverse these roles as our results are symmetric in nature
and hide information both ways.

For the security proofs, we will consider two different kind of attacks: passive
attacks and active attacks. In the former case, the (passive) adversary correctly
follows the specifications of the protocol. Such adversaries model attacks that
take place after the protocol has been completed, and may involve either Alice



or Bob. In the latter case, the adversary may be active during the protocol and
deviate from it. In particular, he does not necessarily make random choices
when it is prescribed in the definition of the protocol. Security against such
an adversary means that there is no strategy that increases the amount of
information that this adversary learns about the secret of the other party.

Correctness means that at the end of the protocol Alice and Bob are convinced
of the validity of the result of the comparison of their respective secrets. This
is achieved by the (non-interactive) proofs of knowledge given by Alice and
Bob, which show that the values exchanged in the various protocol steps are
of the intended form. This implies that test (5) at the end of the protocol is
correct.

Privacy (or secrecy) means that the protocol hides the private inputs of Alice
and Bob, which are x and y respectively. We have the following results which
imply that the protocol is secure against passive attacks.

3.3.1 Security against passive attacks

Clearly, if x = y, Bob will learn Alice’s secret. If © # y we have to show
that Bob learns no information about Alice’s secret. As the (non-interactive)
proofs (of knowledge) used during this protocol are zero-knowledge, the only
information learnt by Bob are the following values produced by Alice: g, =
91" P = ¢5¢5,Q0 = 9195, Ra = (Qu/Qp)**,e. Since e is released by Al-

ice, and Bob knows x3,b, and y, Bob essentially learns ¢i*, T = ¢{** =

-1 T— T—Y)Tq 21
(P./gg)™ ,gtgs ¥, g8 9" = Ry x (By/gd)™ JT.

Y= g%, z,=1u, a = v, and reordering, we may summarize

v+w

Writing g1 = g, g5~
this by saying that for a generator g, Bob essentially learns g“, ¢“v, ¢“*, g

To prove that the protocol is secure against passive attacks that fully re-
cover the value of x, we must prove that Bob is not able to compute x from
g*, g", g"v, g"**. For this, it is sufficient to prove that he is not able to com-
pute g5 ¢ = g% from g%, ¢g*’, ¢"*, g"*™. By using the following lemma, we
conclude that under the Diffie-Hellman assumption, the protocol is secure

against passive attacks that fully recover the value of x.

Lemma 1 Under the DH assumption it is infeasible to compute g* from g,
g™, g*v, g**t, for random u,v,w € Z,.

Proof: Suppose we have an oracle computing g% given g%, ¢g“¥, ¢g**, g"*%, for
random u, v, w € Z,. Then we show how to compute ¢° given a = g%, 3 = g%
for random a, b € Z,, hence contradicting the DH assumption. The reduction
is as follows. Set v = ¢¢, for random ¢ € Z,, and give a, 3,7/03, g° to the



oracle. Since this tuple is equal to g%, ¢®, ¢g*(¢=?, ¢¢ the oracle returns ¢°°,
from which we obtain ¢¢/¢g°~° = ¢°.

To prove that the protocol is secure against passive attacks that only partially
recover the value of x, we must prove that Bob is not able to decide whether a
candidate value 7 is equal to 2 (unlike the naive protocol). Writing ¢* = g5 ?,
it is sufficient for this to prove that Bob is not able to decide whether ¢ is equal
to w given ¢t, g%, g**, g**, g""*. By using the following lemma, we conclude
that under the Decision Diffie-Hellman assumption, the protocol is also secure

against this type of passive attacks.

Lemma 2 Under the DDH assumption it is infeasible to decide whethert = w
correctly from g*, g*, g**, g**, ¢g**™", for random t,u,v,w € Z,.

Proof: Suppose we have an oracle deciding ¢t = w given ¢¢, g%, g**, g**, g**%,
for random ¢, u,v,w € Z,. Then we show how to decide whether b = ¢ given
a = g% 3 = g g¢° for random a,b,c € Z,, hence contradicting the DDH
assumption. The reduction is as follows. Set v = ¢%¢, for random d € Zg, and
give g «, 3,7/, g% to the oracle. Since this tuple is equal to g?7¢, g%, g%,
g4t ¢? the oracle will tell whether d — ¢ = d — b, from which we decide
whether b = c.

Note that Lemma 2 may also be interpreted as follows in relation to the
semantic security of ElGamal encryption. Informally, an encryption scheme
is semantically secure if ciphertexts leak no information about the plaintext,
i.e., the scheme is secure against a passive adversary.

Corollary 3 Let y = ¢g* denote the public key corresponding to private key
T € Zq. Suppose that the value of m!® is given in addition to an ElGamal
encryption (g",y"m) of message m, where r € Z, is random. Then ElGamal
encryption is still semantically secure.

Finally, the fairness of the fair version of our protocol is straightforward. Both
Alice and Bob are unable to compute the result of the comparison before the
beginning of the step 4. Moreover, during the fourth step, Bob’s advantage
over Alice is at most one bit. So, if Bob decides to abort the protocol and tries
to search the remaining bits by exhaustive research, Alice needs no more than
twice as much time compared to Bob to compute the same result.
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3.3.2  Security against active attacks

So far we have only considered the case of passive adversaries. Now we will
extend the arguments developed above to the case of active adversaries. We
will show that our protocol remains secure even in this case, provided that go
is jointly computed by Alice and Bob. The random oracle model, formalized
by Bellare and Rogaway [3], will be used to model the behaviour of the hash
function h underlying the various non-interactive zero-knowledge proofs of our
protocol. In this model, the hash function is replaced by an oracle which pro-
duces a truly random value (in the range of the function) when queried. For
identical queries, the same answers are given. Various cryptographic schemes
using hash functions have been proved secure in this model. In particular,
Pointcheval and Stern [13] provided security proofs for signature schemes de-
rived from honest-verifier zero-knowledge identification schemes.

In our proofs below, all parties (including the adversary) will be modeled by
probabilistic polynomial time interactive Turing machines with access to the
random oracle. As in the passive case, we will consider two types of attacks:
active attacks that fully recover the secret x and active attacks that only
partially recover this value. We will prove the following result.

Lemma 4 Under the Diffie-Hellman assumption and assuming the random
oracle model, the (modified) protocol for the socialist millionaires’ problem is
secure against active attacks that fully recover Alice’s secret.

The above result can be easily extended to the security against attacks that
only partially recover the value of x.

Lemma 5 Under the Diffie-Hellman assumption and assuming the random
oracle model, the (modified) protocol for the socialist millionaires’ problem is
secure against active attacks that only partially recover Alice’s secret.

We will only prove the third lemma. The other lemma can be proved in a
similar way, as in the passive case. Also, it suffices to consider the version
of the protocol that does not address fairness, as the additions to make the
protocol fair are not essential to our argument below.

For our proof, we need to slightly modify the original protocol. We require
that Alice and Bob, in addition to gs, jointly compute go. So, Alice generates
Ga, = ¢, for random z,, € Zy,. Similarly, Bob generates g,, = g, for
random zy, € Z;. They use Schnorr’s protocol to prove knowledge of z,, and
Xp,, respectively. They also check that g,, # 1 and g5, # 1. Let go = g =

$b2

as® = g2, which can be computed by both Alice and Bob.

We are now assuming that Bob is the active adversary (the analysis of the
case in which Alice is the adversary is essentially the same). This means that

11



Bob will choose his values (x, xy,, b, and y) in a ‘clever’ way rather than truly
random as specified in the protocol description. However, the messages he will
send will be in accordance with the protocol. Our security proof is based on
a reduction argument; we prove that if an active adversary Bob (viewed as a
probabilistic polynomial time Turing machine) can find, with non-negligible
probability, x, hence g5, given the information ‘seen’ during the execution of
the protocol, then this adversary can be used to build a probabilistic poly-
nomial time Turing machine which contradicts the DH assumption (we can
easily adapt the proof to the DDH setting). Here the probability is taken over
the random tapes of Alice and Bob, the random oracles, the public parameters
Gy, g1 and the integer . For simplicity, we will not write in the sequel the de-
pendencies on the security parameter |¢|, but when we say that an expression
f is non-negligible, this means that f depends on |g| and that there exists a
positive integer ¢ such that f (|g|) is larger than 1/ |q|® for all sufficiently large

lq.

azg

Proof: Let g1, = g7*, 0 = ¢i** (where x, and a are random and unknown)
be an instance of the DH problem (see also Section 2.2). We want to obtain
v = gf. We will see how we can use Bob to compute this value. We will
‘convert’ this instance to an input to our protocol, and exhibit a simulator S
(a probabilistic polynomial time Turing machine) capable of simulating the
three steps of our protocol in such a way that the adversary Bob cannot
distinguish a real interaction with Alice from a simulated one. Bob will be
used as a resettable black box. In other words, the simulator will have control
over its tapes, and will have the ability to bring Bob to a halt and restart it in
its starting state at any time it wishes. All the simulations will be performed
under the random oracle model. § will play Alice’s role and will speak first in
the protocol.

3.3.3 Step 1

S sends a to Bob. Since S doesn’t know z,, the proof required at this step is
simulated. In the random oracle model, where S has a full control of the values
returned by the oracle, this proof can easily be simulated. In order to produce
this proof, S randomly chooses ¢ € Z, and D € Z,. S then defines the output
of the random oracle on the input (query) W = gPa¢ to be ¢ (which means
that ¢ = h (W)). Then S sends the proof (¢, D) to Bob. Note that S produces
tuples (¢, D) with an distribution identical to the one produced by a real prover
knowing x,. This is due to the honest verifier zero-knowledge property (special
honest verifier zero-knowledge in fact [4]) of Schnorr’s interactive protocol (see
also [12] for the proof that such distributions are the same). Then Bob sends g
to Alice along with a proof of knowledge (¢, D) (in the random oracle model)
of x;, the discrete logarithm of g, to the base gy; the proof (¢, Dy) is correct

12



if ¢, = h(g*gs?), where ¢, corresponds to the answer of the random oracle to
the query gf bgib. If this proof is not correct S aborts the protocol. At this
point S needs to obtain the discrete logarithm x; in order to carry on with its
simulation. By using the technique developed by Pointcheval and Stern [13]
and known as the oracle replay attack (forking lemma) one can easily obtain
this value: if we replay Bob, with the same random tape and a different oracle,
Bob will produce, with non-negligible probability and in polynomial time, two
valid proofs (¢, Dy) and (é,, Dy) with ¢, # é(modg) such that
gt = gl g

holds. From this equation, & can compute x;, = (Db — Dy)/(cp — ¢) mod gq.
Hence S can also compute g3 = g%x” = o = g;*, even though it does not
know x,. S then generates g,, = ¢,** for random z,, € Z;, and uses Schnorr’s
protocol to prove knowledge of z,, (since S really knows z,, this is a real
proof not a simulated one). Bob then sends g, to Alice along with a proof of
knowledge (in the random oracle model) of x;, the discrete logarithm of gy,
to the base g;. Again, by using the oracle replay attack, S can find the value

CLet g = g1 = ga? = gb . So at the end of step 1, Alice knows
and Ty -

3.8.4 Step 2

S randomly selects an element d € Z, and computes

(Pm Qa) = (ggmgil)
aTa Ty

So, we have P, = g = g{ = (%, Again, S can compute this value since it
extracted x;, from Bob. Following the definition of g9, we have:

o xa2 zb L(d—a)

Qo= g{ = gig\ " = gl

We put @ = z}a5(d — a), where the simulator does not know a. Since d
is a random element of Zg, x is uniformly distributed in Z, and consequently
constitutes a choice that a real Alice could have made. S sends (P, Q,) to Bob
and must also prove that it knows a and x satisfying (P,, Q.) = (95, 9793).
Since S does not know a, the proof required at this step is simulated. In order
to produce this proof, S randomly chooses ¢, Dy, Dy € Z,, and then defines
the output of the random oracle on input Wy, Wy with W; = gé) 'P¢ and Wy =

P1g22Q¢ to be ¢ (hence ¢ = h (Wi, W,)). With overwhelming probability,
Bob has not yet already queried the random oracle at this point. Then S sends
the proof (¢, D1, Ds) to Bob. Again the special honest verifier zero-knowledge
property of the interactive protocol underlying this proof of knowledge ensures
that S produces tuples (¢, Dy, D9) with a distribution indistinguishable from
one produced by a real prover knowing a and x. Next, Bob sends P, Q, to &
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along with a proof of knowledge of b,y € Z, satisfying P, = ¢4 and Q, = ¢%g5.
Using the oracle replay attack, S can find b and y (note that S now knows
Ty, 23, b and ).

3.3.5 Step 3

In this step, S and Bob both first compute (P,/Fy, Q./Qp), which will be of

the form:
(Pa/PIM Qa/Qb) = (ggiba g?ibggiy)
Then & computes:

_ Toq __ drg —bre , —YTa __ _drg —bxq  ~TazTbo¥Ta _ d—b—zg,Tp, Y
Ro = (Qa/Qb)™ = g1 g1 92" = 91" 91 "o = e

S can compute this value since it knows d,b,y, z,, and z;,. S sends R, to
Bob along with a proof that log, a = logg, /o, Ra- Since § does not know
T4, the proof required at this step is simulated. To produce this proof,S ran-
domly chooses ¢, D € Z,. S then defines the output of the random oracle
on input Wy, Wy with Wy = gPa® and Wy = (Q./Qy)P RS to be ¢ (hence
¢ =h (W1, Ws3)). S then sends the proof (¢, D) to Bob. As before, the special
honest verifier zero-knowledge property of the interactive protocol underlying
this proof of knowledge ensures that S produces tuples (¢, D) with a distri-
bution indistinguishable from those that would be produced by a real prover
knowing x,. The simulator’s part of the protocol is now complete.

Since the distribution of the simulated views is indistinguishable from that
produced by a ‘real’ Alice (not a simulated one), Bob, after the interaction
with &, will be able, as assumed, to find with non-negligible probability g3,
which is equal to ¢g{® Since S knows d, S can find v = ¢¢ = ¢¢/¢%,
hence contradicting the DH assumption. Consequently, such an adversary Bob
cannot find g3 hence cannot fully recover x.

4 Conclusion

We have presented a protocol which allows one to fairly check the equality
(or the inequality) of two secrets = and y, and this gives an answer to the
Tiercé problem. Counting the number of exponentiations, the complexity of
our protocol is O(1) in its simple version (without fairness) and O(k) in its
fair version, where k is a security parameter. However, designing an efficient
solution to the millionaires’ problem, which asks one to test whether x < y,
remains an open problem.
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