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Abstract. It is usually the case that before a transaction can take place,
some mutual trust must be established between the participants. On-line,
doing so requires the exchange of some certified information about the
participants. The easy solution is to disclose one’s identity and reveal
all of one’s certificates to establish such a trust relationship. However, it
is clear that such an approach is unsatisfactory from a privacy point of
view. In fact, often revealing any information that uniquely corresponds
to a given individual is a bad idea from the privacy point of view.
In this survey paper we describe a framework where for each transac-
tion there is a precise specification of what pieces of certified data is
revealed to each participant. We show how to specify transactions in
this framework, give examples of transactions that use it, and describe
the cryptographic building blocks that this framework is built upon. We
conclude with bibliographic notes on the state-of-the-art in this area.

1 Introduction

The problem of privacy protection is to control the dissemination of personal
data. There exist various privacy principles that describe at a conceptual level
what measures have to be taken to protect privacy. Examples of these principles
are: an individuals’s right to access and to request correction of data about
oneself and the requirement for an individual to consent to the disclosure of her
personal data. Another principle is that of data minimization: It states that an
individual should only disclose the minimal necessary data for a given purpose.
Determining these data is often a difficult task and one usually needs to balance
an individual’s privacy interests and the legitimate interest of other parties in
the individual’s data. An example of this trade-off is an individual’s wish to
be anonymous conflicting with he requirements imposed by law enforcement to
be able to identify and get hold of criminals. Such trade-offs impose limits on
privacy that cannot be overcome by any technology.

When data is stored in digital form, the privacy problem is more severe than
with paper based processes. Once data is disclosed in digital form, it can be
easily stored, distributed, and linked with various other data. While the use of
digital media aggravates the privacy problem, it also offers new opportunities and



technologies to implement principles of privacy protection. Today’s electronic
transaction systems essentially reproduce the non-privacy protecting paper based
business processes and thereby most often fail to take advantage of the digital
media as a privacy enabler.

Incorporating privacy principles in digital media calls for a privacy archi-
tecture. While certain aspects of privacy protection are well understood and
corresponding technologies are known, no comprehensive and stable privacy ar-
chitecture exists yet. Various efforts to enhance privacy in digital media are
underway. Examples are the NSF-funded PORTIA project [1] or the European
project PRIME [2]. The latter aims, among other things, to develop a compre-
hensive framework and architecture to enable privacy in digital media. One can
expect that a standard privacy architecture will materialize in the near future.
Such a privacy architecture will consist of a combination of various technologies
ranging from software technologies such as access control, auditing, and policy
management to more theoretical cryptographic techniques.

In this paper we take a step towards enabling privacy in digital media
and present a cryptographic framework that enables data minimization. In this
framework, for each transaction, there is a precise specification of what data gets
revealed to each participant. This is called “controlled release of data”. In our
framework the key feature is that the data in question is certified. That is to
say, its validity can be verified by the recipient.

Besides the framework we also describe cryptographic building blocks that
allow one to efficiently implement electronic transactions with our framework.
That is we describe particular encryption schemes, [21, 31], commitment schemes
[47, 33], and signature schemes [17, 18] These schemes are all discrete logarithm
which allows for their combination with various efficient zero-knowledge proof
techniques. For an overview of such techniques we refer to [24].

The framework turns out to be usable for the realization of a large number of
privacy enabling applications. For instance, it can be used to construct anony-
mous credential systems [27, 15, 50, 45], group signature schemes [30, 22, 4], and
electronic cash [29, 9].

2 A Cryptographic Framework for the Controlled Release
of Certified Data

A (digital) certificate consists of data items, provided by a user, and a digital
signature by a (certificate) issuer on the data items. By signing the user’s data
items the issuer certifies for instance the user’s authorization to perform some
given task and that it has verified the validity of (some of) the user’s data items.
To demonstrate its authorization and the validity of the data items the user can
for instance show the certificate to a verifier who checks the certificate’s validity
by verifying the correctness of its signature. The verifier will accept the claims
associated to a certificate as far as he trusts the issuer w.r.t. these claims.



In the following we describe desirable properties of (non-traditional) certifi-
cates allowing the user to control what data items are disclosed to the issuer and
verifier of certificates respectively.

Required Properties when Showing a Certificate. By showing a certificate we
mean the process whereby a user using a certificate she possesses to convince a
verifier of the contents of the certificate. We stress that during this process the
user does not necessarily send the actual certificate to the verifier.

We require a process that allows the user to show certificate such that the
following properties are met.

Multi-show unlinkability: Conventional (public-key) certificates are represented
(encoded) by unique strings. Thus when the user would just send the certifi-
cate obtained from the issuer to the verifier, the issuer and the verifier can
link the transactions. Furthermore, multiple showings of the same certificate
to the same or different verifiers are linkable. We would like to emphasize
that linkability is an inherent property of traditional certificates, which is
independent of the data items contained in a certificate. In particular, even
so-called pseudonymous certificates, i.e., certificates that do not contain per-
sonally identifying data items, are linkable. Linkability is known to be a serious
threat to the privacy of individuals. We require that the showing of a certificate
cannot be linked to the issuing of the certificate as well as to other showings
of the same certificate, unless of course the data items being disclosed allow
for such linking.

Selective show of data items: Given a certificate, we require that the user in each
showing of the certificate can select which data items she wants to disclose
(and which data items she does not want to disclose) to the verifier. For
numerical data items, we require that it be possible to show that a data item
lies in some interval without revealing the exact value of the data item. As an
example, consider a driver’s license certificate consisting of the user’s name,
address, and date of birth. When stopped on the road at a police checkpoint,
the user shows that the certificate is valid, i.e., that she is authorized to
drive, without disclosing her name, address, and date of birth. Using the
same certificate, in a supermarket when purchasing alcohol, the user shows
the certificate such that she only discloses that she is not underage.

Conditional showing of data items: We require that the user be able to condi-
tionally disclose certified data, when showing a certificate. More precisely, let
us assume that there is a third party, and that prior to certificate showing
the user picks the data items she wishes to show conditionally to the issuer;
also the user and the verifier agree on the conditions under which the verifier
may learn the selected data items. In a conditional showing, the user discloses
to the verifier information (on the conditionally shown data elements) such
that the verifier cannot recover the conditionally shown data items from the
information. Yet, the verifier can be assured that, when asked to do so, the
third party is able to recover the data items.



Hence, if the third party recovers the data items only if the mentioned condi-
tion is fulfilled (where we assume that it knows the condition), then the above
mechanism implements showing of (certified) data under the agreed condition.
As an example, consider a user accessing a university library’s reading room
with valuable books and the third party being the university administration.
The user’s identity, e.g., contained in her student identity certificate, will be
disclosed to the librarian only under the condition that books are stolen from
the reading room. To find out the user’s identity, the librarian will need to
involve the university administration.

Proving relations between data items: When showing multiple certificates by dif-
ferent issuers, the user should be able to demonstrate that data items in the
certificates are related without disclosing the data items. For instance, when
showing her drivers certificate and her credit card certificate to a car rental
company, the user should not need to disclose her name contained in the cer-
tificates, but only to demonstrate that both certificates are issued to the same
name.

Desirable Properties of Certificate Issuing. We now describe the properties we
require of the process where the user gets issued a certificate by an issuer. Let
{m1, . . . ,ml} denote a set of data items and H a subset of these data items. It
should be possible for the user to obtain certificate on {m1, . . . ,ml} such that
the issuer does not learn any information on the data items H, while it learns
the other data items, i.e., {m1, . . . ,ml} \H. We refer to such an issuing as blind
certification.

Obviously, the data items in H are chosen by the user, however the other
data items could be chosen by the issuer or by the user. For the data item that
remain hidden from the issuers, we require that the user is able to assert that
some of them were previously certified by another issuer. An example where
this property is useful is e-cash with online double spending tests. Here the user
chooses a random and unique number that is certified by the bank (issuer) such
that the bank does not learn the number (c.f. §3.2 )

2.1 A Framework of Cryptographic Primitives

In this section we illustrate how a framework of encryptions, commitments, sig-
natures, and zero-knowledge proofs can be used to implement certificates having
properties as described above. The presentation is (quite) informal and intended
to be accessible for non-specialists in cryptography. We first recall the abstract
properties of encryptions, commitments, signatures, and zero-knowledge proofs
of knowledge.

By ω = A(α) we denote that ω is output by the (probabilistic polynomial-
time) algorithm A on input α.

An (asymmetric) encryption scheme consists of the algorithms SetupEnc,
Enc, and Dec with properties as follows. The key-generation algorithm SetupEnc
outputs an encryption and decryption key pair (EK ,DK ). The encryption algo-
rithm Enc takes as input a message m, a label L, and the encryption key EK



and outputs an encryption E of m, i.e., E = Enc(m,L;EK ). The decryption
algorithm Dec takes as input an encryption E, a label L and the decryption key
DK and outputs the message m, i.e., m = Dec(E;DK ). An encryption scheme
is secure, if an encryption E = Enc(mEK ) does not contain any computational
information about m to an adversary who is given E and EK , even if the ad-
versary is allowed to interact with the decryptor. (For more on definitions of
security for cryptosystems, see, for example, Goldreich [39].) The notion of en-
cryptions with labels was introduced in [31]. Labels allow to bind some public
data to the ciphertext at both encryption and decryption time. In our applica-
tions, user would attach a label to an encryption E that indicates the conditions
under which should be decrypted.

A commitment scheme consists of the algorithms Commit and VerifyCommit
with properties as follows. The commitment algorithm Commit takes as in-
put a message m, a random string r and outputs a commitment C, i.e., C =
Commit(m, r). The (commitment) verification algorithm VerifyCommit takes as
input a C, m and r and outputs 1 (accept) if C is equal to commit(m, r) and
0 (reject) otherwise. The security properties of a commitment scheme are as
follows. The hiding property is that a commitment C = Commit(m, r) contains
no (computational) information on m. The binding property is that given C, m,
and r, where 1 = VerifyCommit(C,m, r), it is (computationally) impossible to
find a message m′ and a string r′ such that 1 = VerifyCommit(C,m′, r′).

A signature scheme consists of algorithms: SetupSign, Sign, VerifySign as fol-
lows. The key-generation algorithm SetupSign outputs a verification and signing
and pair (VK ,SK ). The signing algorithm Sign takes as input a message m and
a signing key SK and outputs an signature S on m, i.e., S = Sign(m;SK ). The
(signature) verification algorithm VerifySign takes as input an alleged signature
S, the message m, and the verification key VK ; it decides whether to accept
or reject the signature. A signature scheme is secure [41] if, on input VK , no
adversary can produce a valid signature on any message m even after a series of
adaptive queries to the signing algorithm (provided that the adversary did not
explicitly ask for a signature on m). In a variant we use, Sign takes as input a
list of messages m1, . . . ,ml and a signing key SK and outputs an signature S on
m1, . . . ,ml, i.e., S = Sign(m1, . . . ,ml;SK ). The verification algorithm also looks
at a list of messages and a purported signature. For our purposes we also require
an extended signature scheme which additionally features a two party protocol
HiddenSign between a signer and a (signature) requestor. Let be given messages
m1, . . . ,ml and commitments C1 = Commit(m1), . . . , Cl = Commit(ml′) with
l′ ≤ l. The common input to the protocol are C1, . . . , Cl′ and ml′+1, . . . ,ml and
the signer’s input is a signing key SK . At the end of the protocol the requestor’s
output is a signature S on m1, . . . ,ml. We denote such a protocol execution by
S = HiddenSign(C1, . . . , Cl′ ,ml′+1, . . . ,ml;SK ). We see that by the hiding prop-
erty of commitments the signer does not learn any information on the messages
m1, . . . ,ml′ in the protocol HiddenSign.

Finally we consider zero-knowledge proofs of knowledge. Let W denote an
arbitrary boolean predicate, i.e., a function that on input some string α either



outputs 1 (true) or 0 (false). A proof of knowledge is a two party protocol be-
tween a prover and a verifier, where the common input is a predicate W , and the
prover’s input is a string w for which W is true, i.e., 1 = W (w). At the end of the
protocol the verifier either outputs 1 (accept) or 0 (reject). The protocol has the
property that if the verifier accepts, then it can be assured that the prover knows
a string w′ such that W (w′) = 1. The protocol is zero-knowledge if the verifier
does not learn any (computational) information about the provers input w. We
denote such a zero-knowledge proof of knowledge by PK{(w) : W (w) = 1}. Often
we use proofs of knowledge where W is a composite predicate in multiple vari-
ables. Our notational convention is that the elements listed in the round brackets
denote quantities the knowledge of which is being proved. These are (in general)
not known to the verifier, and the protocol is zero-knowledge with respect to
these parameters. Other parameters mentioned in a proof of knowledge expres-
sion are known to the verifier. (In particular, the description of the predicate W
is known to the verifier.) For instance, PK{(x, y) : W1(x, y) = 1∧W2(x, z) = 1}
denotes a protocol where the parameters mentioned are (x, y, z); the value z is
known to both parties (since it is not listed in the round brackets); the proto-
col is zero-knowledge with respect to (x, y). Upon completion of this protocol,
the verifier will be convinced that the prover knows some x′ and y′ such that
W1(x′, y′) and W2(x′, z) are satisfied.

2.2 Cryptography for the Controlled Release of Certified Data

In this section we discuss how the cryptographic building blocks discussed in the
previous paragraph can be used to implement the controlled release of certified
data.

By I1 and I2 we denote certificate issuers with verification and signing key
pairs (VK 1,SK 1) and (VK 2,SK 2), respectively. The verification keys VK 1 and
VK 2 shall be publicly known and authenticated. Also, we assume that the user
holds a certificate Cert1 = Sign(m1, . . . ,ml1 ;SK 1) from I1 and a certificate
Cert2 = Sign(m̃1, . . . , m̃l2 ;SK 2) = 1 from I2.

Multi-Show Unlinkability and Selective Show of Data Items. The key idea that
underlies the controlled release of certified data is to prove knowledge (in zero-
knowledge) of a certificate instead of disclosing a certificate to the verifier. To
show the certificate Cert1 to the verifier without disclosing, e.g., the data items
m1, . . . ,ml′1

(where l′1 ≤ l1), the user (as the prover) and the (certificate) ver-
ifier (as the verifier in the proof of knowledge) compute a protocol such at the
following

PK{(Cert1,m1, . . . ,ml′1
) :

VerifySign(Cert1,m1, . . . ,ml′1
,ml′1+1, . . . ,ml1 ;VK 1) = 1} . (1)

Protocol (1) proves that the user has (knows) a valid certificate with respect to
the verification key VK 1. By the zero-knowledge property of the protocol, the
verifier does not learn any information on Cert1 and the data items m1, . . . ,ml′1

.



From this observation it follows that multiple showings of the certificate Cert1

using Protocol (1) are unlinkable, unless the data items ml′1+1, . . . ,ml1 disclosed
to the verifier are linkable. The ability to selectively show data items follows
trivially, as the user can choose, in each execution of Protocol (1), which data
items to disclose to the verifier and of which data items to proof knowledge.

Proving Relations Between Data Items. This property is straightforward to
achieve by using protocols such as the following one

PK{(Cert1,m1, . . . ,ml′1
,Cert2, m̃2, . . . , m̃l′2

) :

VerifySign(Cert1,m1, . . . ,ml′1
,ml′1+1, . . . ,ml1 ;VK 1) = 1

∧VerifySign(Cert2,m1, m̃2, . . . , m̃l′2
,ml′2+1, . . . , m̃l2 ;VK 2) = 1} . (2)

Using protocol (2) the user can prove that she possesses a certificate Cert1

from I1 and a certificate Cert2 from I2. Additionally, she proves that the first
data items m1 and m̃1 of the certificates are equal. Yet, by the zero-knowledge
property the verifier does not learn the respective data items. Thus we see that
demonstrating relations between certified attributes is achieved using techniques
to prove knowledge of relations, such as equality.

Conditional Showing of Data Items. Let us assume that there is a third party
which, using the algorithm SetupEnc, has created the encryption and decryp-
tion key pair (EK ,DK ). The encryption key EK shall be publicly known and
authenticated. To show, e.g., the data item m1 contained in Cert1 condition-
ally, the user encrypts m1 under the encryption key EK of the third party, i.e.,
E = Enc(m1,Cond ;EK ). Here, Cond denotes a label that describes the condi-
tion under which the user agrees m1 to be released to the verifier. Then the user
and the verifier execute the following protocol

PK{(Cert1,m1, . . . ,ml′1
) :

VerifySign(Cert1,m1, . . . ,ml′1
,ml′1+1, . . . ,ml1 ;VK 1) = 1

∧E = Enc(m1,Cond ;EK )} . (3)

Besides of showing the certificate Cert1, the user demonstrates in the protocol (3)
that E is an encryption of the first data item contained in the certificate under
the encryption key EK (such proofs are referred to as verifiable encryption).
From the zero-knowledge property of the protocol and security property of the
encryption scheme, it follows that the verifier does not get any (computational)
information on the value encrypted in E.

To obtain the data item m1, the verifier sends E and Cond to the third party.
The third party verifies if the condition Cond is fulfilled, and if so, he returns
the decryption m1 = Dec(E;DK ) of E. We note that by the security property
of the encryption scheme, the third party can not be fooled to decrypt under a
condition other than the one described by Cond .



Blind Certification. Let us see how the user can get a certificate Cert3 on data
items m1 and m′ from issuer I2 without disclosing m1 to I2, whereas the issuer
I2 can be asserted that m1 is a data item certified by I1; the data item m′ is
disclosed to the issuer. We recall that Cert1 = Sign(m1, . . . ,ml1 ;SK 1). To this
end, the user commits to m1, i.e., C = Commit(m1, r). Then the user (as prover)
and issuer (as verifier) execute the following protocol

PK{(Cert1, r,m1, . . . ,ml′1
) : C = Commit(m1, r) ∧

VerifySign(Cert1,m1, . . . ,ml′1
,ml′1+1, . . . ,ml1 ;VK 1) = 1} . (4)

With this protocol the user demonstrates the issuer that C is a commitment to
the first data item contained in the certificate Cert1 issued by I1. From the zero-
knowledge property of the protocol and the hiding property of the commitment
scheme, it follows that the issuer does not get any information on the data item
m1. If protocol (4) is accepted by the issuer, then he issues the certificate Cert3

on m′ and hidden m1 using the protocol

Cert3 = HiddenSign(C,m′;SK 2) , (5)

where it is important to note that C is the same commitment as used in (4).
From the properties of HiddenSign, it follows that in protocol (5) the issuer
learns m′ but does not learn any information on m1.

Finally, the user checks the correctness of Cert3 by evaluation if

VerifySign(m1,m
′;SK 2) = 1 .

3 Example Applications of the Framework

The controlled disclosure techniques described above have a large number of
applications to privacy protection, such as anonymous credential systems [27,
15, 50, 45], group signature schemes [30, 22, 4], and electronic cash [29, 9].

In this section we sketch how one can use these techniques to implement an
anonymous credential system with identity revocation and e-cash with offline
double-spending tests.

3.1 An Anonymous Credential System with Anonymity Revocation

The key idea underlying the implementation of anonymous credentials is that
every user is represented by a unique identifier ID , which remains the user’s
secret throughout the lifetime of a credential system.

Now, a credential from an organization simply is a certificate on the identi-
fier ID (issued by the organization). Credentials are shown by using protocols
of the form (1), such that the user’s identifier ID is not disclosed to the verifier.
Then the unlinkability of credentials follows from the (multi-show) unlinkability
property of certificates discussed above. Credentials are issued using blind certi-
fication such that the user’s ID is not disclosed to the issuing organization. The



unforgeability of credentials trivially follows from the unforgeability property of
the signature scheme being used for blind certification.

A credential system is called consistent, if it is impossible for different users
to team up and to show some of their credentials to an organization and obtain
a credential for one of them that a user alone would not have gotten [45, 43, 16].
We achieve consistency as follows. When the user shows multiple credentials
from different organizations she proves that the same identifer ID underlies all
credentials being shown, i.e., that the credentials belong to the same user. To
this end we use combined showing techniques as in protocol (2). When issuing
credentials, the issuer asserts that the identifier ID it is blindly signing is the
same as in existing credentials of the user. This can be achieved using the blind
certification protocols described (4) and (5).

Optionally, credentials can have attributes. Examples of credential attributes
are an expiration date, the users age, a credential subtype. When showing a
credential, the user can choose which attribute(s) to prove something about, and
what to prove about them. E.g., when showing a credential that has attributes
(expdate = 2002/05/19, age = 55), the user can decide to prove only that age >
18. Credential attributes are implemented by adding data items (additional to
the user’s identifier ID) to certificates. When showing credentials, the user can
decide what information on attributes she discloses using the selective showing
techniques described above.

Finally, in many applications of credentials it is desirable that under certain
conditions the user’s anonymity is revoked. Anonymity revocation can be imple-
mented using our conditional showing techniques by conditionally disclosing the
user’s identity.

3.2 Anonymous e-cash

Let us sketch an implementation of an anonymous e-cash system with offline
double-spending tests. Such a system consists of banks issuing e-coins, users
spending e-coins at shops, which in turn deposit spent coins at the bank.

An e-coin is a certificate issued by the bank. To retrieve an e-coin, the user
identifies herself at the bank. The bank assigns a unique number ID to the user.
The user secretly chooses a random serial number s and a random blinding
number b. The bank issues a certificate Certecoin on the data items ID, s, and
b using blind certification such that it does not learn s and b.

At a shop the user spends the e-coin Certecoin as follows. The shop chooses
a random integer challenge c. The user computes u = ID · c + b and uses the
following variant of a selective showing protocol

PK{(Certecoin , ID , b, ID ′, b′) :
VerifySign(Certecoin , ID , s, b;VK ) = 1

∧u = (ID ′ · c + b′)∧ ID = ID ′ ∧ b = b′}, (6)

where VK is the bank’s signature verification key. We note that the shop learns
the value of s in the proof (6). Here we additionally assume that the proof (6)



can be carried out non-interactively, i.e., it can be represented in terms of string
Π which is sent from the user to the shop. Such a non-interactive proof can
be validated by the shop by applying an appropriate verification algorithm on
Π. Also, in analogy to the zero-knowledge property of interactive proofs, a non-
interactive proof shall not reveal any (computational) information on Certecoin ,
ID , and b.

To deposit the e-coin the shop sends the tuple (c, s, u,Π) to the bank. The
bank first verifies the non-interactive proof Π to see if the tuple (c, s, u,Π)
corresponds to a valid spending of an e-coin. In case of double spending the bank
can recover the cheating user’s ID as follows. The bank verifies if there already
exists an e-coin with serial number s in its database of deposited e-coins. If so,
it retrieves the corresponding tuple (c′, s, u′,Π ′). We may safely assume that
c 6= c′, and also we recall that by (6) the validity of Π asserts that u = ID · c+ b
and u′ = ID · c′ + b. Therefore from u, u′, c, and c′ the bank can compute the
user’s identity ID = (u−u′)/(c−c′). Thus we see why non-interactive proofs are
needed: it is because the bank itself needs to be able to verify the correctness of
the proof (6) to ensure it correctly reveals a cheating user’s identity ID .

Other desirable properties of e-cash, such as unforgeability and anonymity
immediately follow from the properties of our certificates and the associated
controlled disclosure techniques discussed above.

4 Concrete Framework

In theory one could use any secure signature and encryption scheme for our
framework, their combination by zero-knowledge proofs as described in the pre-
vious sections would in general not be efficient at all. Therefore we describe in
this section concrete implementations of these scheme can to be efficiently com-
bined. That is, they are all amendable to efficient proofs of knowledge of discrete
logarithms.

4.1 Preliminaries

Notation. In the sequel, we will sometimes use the notation introduced by
Camenisch and Stadler [22] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u < α < v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and ỹ = g̃αh̃γ holds, where u < α < v,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. Using this notation, a proof-
protocol can be described by just pointing out its aim while hiding all details.
From this protocol notation, it is easy to derive the actual protocol as the reader
can see from the example we give below.



In the random oracle model, such protocols can be turned into signature
schemes using the Fiat-Shamir heuristic [36, 48]. We use the notation SPK{(α) :
y = gα}(m) to denote a signature obtained in this way and call it proof signature.

Throughout, we use `s as a parameter controlling the statistical indistin-
guishability between to distributions, `n as the length for RSA moduli that are
hard to factor, and `q as a parameter such that discrete logarithms in a subgroup
of order q > 2`q−1 are hard to compute. Finally, we use `c as a parameter to
denote the length of the challenges in the PK protocols.

Let a be a real number. We denote by bac the largest integer b ≤ a, by dae
the smallest integer b ≥ a, and by dac the largest integer b ≤ a+1/2. For positive
real numbers a and b, let [a] denote the set {0, . . . , bac− 1} and [a, b] denote the
set {bac, . . . , bbc} and [−a, b] denote the set {−bac, . . . , bbc}.

Bi-Linear Maps. Suppose that we have a setup algorithm BiLinMapSetup
that, on input the security parameter `q, outputs the setup for G = 〈g〉 and
G = 〈g〉, two groups of prime order q = Θ(2`q ) that have a non-degenerate
efficiently computable bilinear map e. More precisely: We assume that associated
with each group element, there is a unique binary string that represents it. (For
example, if G = Z∗

p, then an element of G can be represented as an integer
between 1 and p−1.) Following prior work (for example, Boneh and Franklin [7]),
e is a function, e : G ×G → G, such that

– (Bilinear) For all P,Q ∈ G , for all a, b ∈ Z, e(P a, Qb) = e(P,Q)ab.
– (Non-degenerate) There exists some P,Q ∈ G such that e(P,Q) 6= 1, where

1 is the identity of G.
– (Efficient) There exists an efficient algorithm for computing e.

We write: (q,G ,G, g , g, e) ∈R BiLinMapSetup(`q). It is easy to see, from the first
two properties, and from the fact that G and G are both of the same prime order
q, that whenever g is a generator of G , g = e(g , g) is a generator of G.

Such groups, based on the Weil and Tate pairings over elliptic curves (see
Silverman [49]), have been extensively relied upon in cryptographic literature
over the past few years (cf. [42, 7, 8, 38] to name a few results).

4.2 Commitment Scheme

Pedersen’s Commitment Scheme. There are several commitment schemes
that are suitable for our purposes. The first one is due to Pedersen [47]. It uses
elements g and h of prime order q such that g ∈ 〈h〉, where q is an `q-bit number.

To commit to a message m ∈R Zq one chooses a random r ∈R Zq and
computes the commitment C := gmhr. The commitment can be opened by
revealing m and r. To prove knowledge of the value contained in a commitment
C, one can use the protocol denoted PK{(µ, ρ) : C = gµhρ}.

The Pedersen commitment scheme is information theoretically hiding and
computationally binding. That is, a commitment does no leak any information
about the committed message but someone who is able to compute the discrete



logarithm logh g can open the commitment to different messages. However, the
commitment scheme can be turned into one that is computationally hiding and
unconditionally binding: Let C = (C1, C2) = (gmhr, gr). Such a commitment
can be opened by revealing m and r and PK{(µ, ρ) : C1 = gµhρ ∧ C2 = gρ}
can be used to prove knowledge of the message committed by it.

An Integer Commitment Scheme. The Pedersen commitment scheme can
be used only to commit to elements of Zq. However, we sometimes need to
commit to elements from Z. Therefore, we describe the integer commitment
scheme due Damg̊ard and Fujisaki [33].

Let n be the product of two safe (`n/2)-bit primes p = 2p′+1 and q = 2q′+1,
and g and h be two generators of Gn′ ⊂ Z∗

n, where n′ = p′q′. Note that Gn′ is
the subgroup of Z∗

n of order n′.
Assume that one is given n, g, and h such that the factorization of n as well as

the value logh g are unknown to at least the party computing the commitment.
The parameters n, g, and h could be for instance provided by a trusted third
party. Then, one can commit to an integer m ∈ {0, 1}`m , where `m is some
public parameter, as follows: Choose a random r ∈R [n/4] and compute the
commitment C := gmhr. The commitment can be opened by revealing m and r.
To prove knowledge of the value contained in a commitment C, one can use the
protocol PK{(µ, ρ) : C ≡ gµhρ (mod n)}.

Proving the Length of a Discrete Logarithm. Assume the availability of
n, g, h as above. Let G = 〈g〉 be a group of prime order q and let y = gm such
that −2`m < m < 2`m , where 2`m < q2−`s−`c−1. To convince a verifier that
−2`s+`c+`m < m < 2`s+`c+`m , the prover commits to x using the above integer
commitment scheme, i.e., chooses a random r ∈R [n/4],d computes C := gmhr,
and then runs the protocol

PK{(µ, ρ) : y = gµ ∧ C ≡ gµhρ (mod n) ∧ −2`m+`s+`c < µ < 2`m+`s+`c}

with the verifier. As an example of how such a protocol can be derived from its
notations, we spell this one out below.

The input to the both parities is g, y, n g, h, C, `m, `s, and `c, where `s and
`c are two security parameters. The prover, in addition get m and r in its input.

1. The prover chooses a random rµ ∈ {0, 1}`s+`c+`m and rρ ∈ {0, 1}`s+`c+`n ,
where `n is the length of n/4, and computes ỹ := grµ and C̃ := grµhrρ mod n
and sends ỹ and C̃ to the verifier.

2. The verifier replies with a randomly chosen c ∈ {0, 1}`c .
3. The prover computes sµ := rµ + cm and sρ := rρ + cr and sends these values

to the verifier.
4. The verifier accepts if the equations

ỹ = y−cgsµ , C̃ ≡ C−cgsµhsρ (mod n), and sµ ∈ {0, 1}`s+`c+`m

hold. Otherwise the verifier rejects.



For the analysis of why the protocol indeed proves that−2`m+`s+`c < logg y <

2`m+`s+`c , we refer the reader to [21].
The above protocol can be extended to one that proves equality of discrete

logarithms in two groups 〈g1〉 and 〈g2〉 of different order, say q1 and q2. That is,
for y1 = gm

1 and y2 = gm
2 with m0 ∈ {0, 1}`m and `m such that 2`m+`s+`c+1 <

min{q1, q2}, it is not hard to see that the protocol

PK{(µ, ρ) : y1 = gµ
1 ∧ y2 = gµ

2 ∧
C ≡ gµhρ (mod n) ∧ −2`m+`s+`c < µ < 2`m+`s+`c}

achieves this goal, where C is a commitment to m as above.

4.3 The SRSA-CL Signature Scheme and its Protocols

We now present the first signature scheme that is suited for our framework. The
signature scheme has been proposed by Camenisch and Lysyanskaya and proven
secure under the strong RSA assumption [17]. The strong RSA assumption was
put forth by Baric and Pfitzmann [5] as well as be Fujisaki and Okamoto [37]
and has be proven to be hard in the generic algorithms model [34]. Together
with the signature scheme, Camenisch and Lysyanskaya have also put forth
protocols to obtain a signature on committed messages and to prove knowledge
of a signature on committed messages. In the following, however, we present
more efficient protocols that use some research results that have appeared since.

The SRSA-CL Signature Scheme. Let `n, `m, and `e = `m + 3 be parame-
ters. The message space of the signature scheme is the set {(m1, . . . ,mL) : mi ∈
±{0, 1}`m}.

Key generation. On input 1`n , choose a `n-bit RSA modulus n = pq , where
p = 2p′+1, q = 2q′+1, q′, and p′ are primes of similar size. Choose, uniformly
at random S ∈R QRn and R1, . . . , RL, Z ∈R 〈S〉. Provide non-interactive
proofs that R1, . . . , RL, Z ∈R 〈S〉, e.g., run

SPK{(ρ1, . . . , ρL, ζ) : R1 ≡ Sρ1 (mod n) ∧ . . .

. . . ∧ RL ≡ SρL (mod n) ∧ Z ≡ Sζ (mod n)}

using `c = 1. Output the public key (n, R1, . . . , RL, S, Z, `m) and the secret
key p.

Signing algorithm. On input m1, . . . ,mL, choose a random prime number e of
length `e + `s + `c + 1 > `m + `s + `c + 3, and a random number v of length
`v = `n + `m + `r, where `r is a security parameter [17]. Compute the value
A such that Z ≡ Rm1

1 . . . RmL

L SvAe (mod n). The signature on the message
(m1, . . . ,mL) consists of (e,A, v).



Verification algorithm. To verify that the tuple (e,A, v) is a signature on mes-
sages (m1, . . . ,mL), check that Z ≡ AeRm1

1 . . . RmL

L Sv (mod n), and check
that 2`e+`s+`c+2 > e > 2`e+`s+`c+1.

Theorem 1 ([17]). The signature scheme is secure against adaptive chosen
message attacks [41] under the strong RSA assumption.

The original scheme considered messages in the interval [0, 2`m − 1] . Here,
however, we allow messages from [−2`m +1, 2`m−1]. The only consequence of this
is that we need to require that `e > `m + 2 holds instead of `e > `m + 1. Also,
in the above scheme we require that e > 2`e+`s+`c+1, whereas in the original
scheme e > 2`e−1 was sufficient.

Furthermore, an analysis of the security proofs shows that it is in fact suffi-
cient if to chose the parameter v from Ze [14]. However, if one uses this scheme
to sign committed messages, then v should be chosen from a larger interval such
that these messages are statistically hidden (cf. next paragraph).

Finally, to allow for a protocol to prove knowledge of a signature that is
zero-knowledge, Camenisch and Lysyanskaya [17] required the signer to prove
that n is the product of two safe primes, whereas due to the improved protocols
presented below we require the signer only to prove that Ri, Z ∈ 〈S〉, which is
considerably more efficient.

Obtaining of a Signature on Committed Messages. Let c1 = gm1hr1 ,
. . ., cL′ = gmL′ hrL′ be commitments to messages and let mL′+1, . . . ,mL be
messages known to (and possibly chosen by) the signer. To get a signature on
these messages, the signer and the recipient of the signature can execute the
following protocol (cf. [17]):

The parties’ common inputs are c1, . . ., cL′ , mL′+1, . . ., mL, (n, R1, . . ., RL,
S, Z, `m). The signer’s secret input is p and q and the recipient secret input is
m1, . . ., mL′ , r1, . . ., rL′ . The parties execute the following steps.

1. The recipient chooses a random integer v′ ∈R {0, 1}`n+`s , computes C :=
Rm1

1 . . . R
mL′
L′ Sv′

mod n, and sends C to the signer.
2. The recipient runs the following proof protocol with the signer:

PK{(ε, µ1, . . . , µL′ , ρ1, . . . , ρL′ , ν) : c1 = gµ1hρ1 ∧ . . . ∧
cL′ = gµL′ hρL′ , ∧ C ≡ Rµ1

1 . . . R
µL′
L′ Sν (mod n) ∧
µ1, . . . , µL′ ∈ {0, 1}`m+`c+`s}

3. The signer chooses a random `e-bit integer e′ such that e := 2`e+`c+`s+1 + e′

is a prime. The signer also chooses a random v′′ ∈ Ze, computes

A := (
Z

CR
mL′+1
L′+1 . . . RmL

L Sv′′ )
1/e mod n

and sends (A, e, v′) to the recipient.



4. To convince the signer that A ∈ 〈S〉, she runs following proof protocol with
the recipient.

PK{(δ) : A ≡ ±
( Z

CR
mL′+1
L′+1 . . . RmL

L Sv′′

)δ (mod n)}

5. The recipient verifies that e > 2`e+`c+`s+1 is prime and stores (A, e, v :=
v′ + v′′) as signature on the message tuple (m1, . . . ,mL).

Compared to the protocol presented in [17], the signer proves to the recipient
that A ∈ 〈S〉. This is necessary to assure that the recipient can prove knowledge
of a signature on committed messages such that the proof does not reveal any
information about the signature or messages. The method we apply to prove
A ∈ 〈S〉 was put forth in [12] to which we refer for details on why this proof
actually works.

Prove Knowledge of a Signature on Committed Messages. Let c1 =
gm1hr1 , . . . cL′ = gmL′ hrL′ , be commitments to the messages m1, . . . ,mL′ that
are not revealed to the verifier; and let mL′+1, . . . ,mL be the messages that are
revealed to the verifier. Let (e,A, v) is a signature on the messages (m1, . . . ,mL),
L ≥ L′. To prove knowledge of this signature, keeping the messages m1, . . . ,mL′

secret, the prover and the verifier can use the protocol below which uses ideas
put forth in [14].

The parties’ common inputs are c1, . . ., cL′ , mL′+1, . . ., mL, (n, R1, . . ., RL,
S, Z, `m). The prover’s secret input is m1, . . ., mL′ , r1, . . ., rL′ , and (e,A, v).
The parties execute the following steps.

1. The prover chooses a random rA ∈R {0, 1}`n+`s , computes Ã := ASrA , and
sends Ã to the verifier.

2. The prover executes the proof protocol

PK{(ε, µ1, . . . , µL′ , ρ1, . . . , ρL′ , ν) : c1 = gµ1hρ1 ∧ . . . ∧ cL′ = gµL′ hρL′ ∧
Z

Ã2`e+`c+`s+1R
mL′+1
L′+1 . . . RmL

L

≡ ÃεRµ1
1 . . . R

µL′
L′ Sν (mod n) ∧

ε ∈ {0, 1}`e+`c+`s ∧ µ1, . . . , µL′ ∈ {0, 1}`m+`c+`s}

with the verifier.

4.4 The BM-CL Signature Schemes and its Protocols

We now describe the second signature scheme that is suited for our purpose. The
scheme was put forth by Camenisch and Lysyanskaya [18] and is based on the
LSRW assumption introduced by Lysyanskaya et al. [45]: Let G = 〈g〉 be a group
of prime order q, and let X, Y ∈ G , X = gx, and Y = gy. Now the assumption
states that given triples (ai, a

y
i , ax+mixy

i ) with randomly chosen ai but for adap-
tively chosen messages mi ∈ Zq it is hard to computes a (a, ay, ax+mxy) with



m 6= mi for all i. The assumption was proved to hold in the generic algorithms
model [45]. The BM-CL signature scheme uses this assumption in the setting of
bi-linear maps.

The Signature Scheme. The message space of the signature scheme is the set
{(m1, . . . ,mL) : mi ∈ Zq}. Its algorithms are as follows.

Key generation. Run the BiLinMapSetup algorithm to generate (q,G ,G, g , g, e).
Choose x ∈R Zq, y ∈R Zq, and for 1 ≤ i ≤ L, zi ∈R Zq. Let X = gx, Y = gy

and, for 1 ≤ i ≤ L, Zi = gzi and Wi = Y zi . Set SK = (x, y, z1, . . . , zL),
VK = (q,G ,G, g , g, e,X, Y, {Zi}, {Wi}).

Signature. On input (m1, . . . ,mL) ∈ ZL
q , secret key SK = (x, y, z1, . . . , zL), and

public key VK = (q,G ,G, g , g, e,X, Y, {Zi}, {Wi}) do:
1. Choose a random v ∈R Zq.

2. Choose a random a ∈R G .

3. Let Ai = azi for 1 ≤ i ≤ L.

4. Let b = ay, Bi = (Ai)y.

5. Let c = ax+xyv
∏L

i=1 Axymi

i .
Output σ = (a, {Ai}, b, {Bi}, c, v).

Verification. On input VK = (q,G ,G, g , g, e,X, Y, {Zi}, {Wi}), a message tuple
(m1, . . . ,mL) ∈ ZL

q , and purported signature σ = (a, {Ai}, b, {Bi}, c, v), check
the following:

1. {Ai} were formed correctly: e(a, Zi) = e(g , Ai).

2. b and {Bi} were formed correctly: e(a, Y ) = e(g , b) and e(Ai, Y ) = e(g , Bi).

3. c was formed correctly: e(X, a) · e(X, b)v ·
∏L

i=1 e(X, Bi)mi = e(g , c).

Theorem 2 ([18]). The above signature scheme is correct and secure under the
LRSW assumption.

Obtaining of a Signature on Committed Messages. Let c1 = gm1hr1 ,
. . ., cL′ = gmL′ hrL′ be commitments to messages m1, . . . ,mL′ that are chosen
b the recipient and are not known the signer; and let mL′+1, . . . ,mL be mes-
sages known to (or chosen by) the signer. To get a signature on these messages,
the signer and the recipient of the signature can execute the following protocol
(cf. [17]):

The parties’ common inputs are c1, . . ., cL′ , mL′+1, . . ., mL, `m and (q, G ,
G, g , g, e, X, Y , {Zi}, {Wi}). The signer’s secret input is (x, y, z1, . . . , zL) and
the recipient secret input is m1, . . ., mL′ , r1, . . ., rL′ . The parties execute the
following steps.

1. The recipient chooses a random v ∈R Zq and computes M := gv
∏L

i=1 Zmi
i .

Next, the user gives a zero-knowledge proof of knowledge that M contains



the same messages as the commitments c1, . . . , cL′ :

PK{(ν, ρ1, . . . , ρL′µ1, . . . , µL′) : c1 = gµ1hρ1 ∧ . . . ∧

cL′ = gµL′ hρL′ ∧ M = gν
L′∏

i=1

Zµi

i } .

2. The signer

(a) chooses α ∈R Zq, a = gα,
(b) for 1 ≤ i ≤ L, lets Ai = azi , sets b = ay, and for 1 ≤ i ≤ L, lets Bi = Ay

i ,
(c) sets c = axMαxy, and
(d) sends the recipient the values (a, {Ai}, b, {Bi}, c).

3. The recipient stores the signature σ = (a, {Ai}, b, {Bi}, c, v).

Prove Knowledge of a Signature on Committed Messages. Let c1 =
gm1hr1 , . . . cL′ = gmL′ hrL′ , be commitments to the messages m1, . . . ,mL′ that
are not revealed to the verifier; and let mL′+1, . . . ,mL be the messages that
are revealed to the verifier. Let (a, {Ai}, b, {Bi}, c, v) be a signature on mes-
sages (m1, . . . ,mL), L ≥ L′. To prove knowledge of this signature, keeping the
messages m1, . . . ,mL′ secret, the prover and the verifier can use the protocol
below.

The parties’ common inputs are c1, . . ., cL′ , mL′+1, . . ., mL, (q, G , G, g , g,
e, X, Y , {Zi}, {Wi}). The prover’s secret input is m1, . . ., mL′ , r1, . . ., rL′ , and
(a, {Ai}, b, {Bi}, c, v). The parties execute the following steps.

1. The prover computes a blinded version of his signature σ: She chooses ran-
dom r, r′ ∈R Zq and forms σ̃ = (ã, {Ãi}, b̃, {B̃i}, c̃) as follows:

ã = ar, b̃ = br and c̃ = cr

Ãi = Ar
i and B̃i = Br

i for 1 ≤ i ≤ L

Further, she blinds c̃ to obtain a value ĉ that it is distributed independently
of everything else: ĉ = c̃r′

.
She then send (ã, {Ãi}, b̃, {B̃i}, ĉ) to the verifier.

2. Let vx, vxy, V(xy,i), i = 1, . . . , L, and vs be as follows:

vx = e(X, ã) , vxy = e(X, b̃) , V(xy,i) = e(X, B̃i) , vs = e(g , ĉ) .

The prover and verifier compute these values (locally) and then carry out
the following zero-knowledge proof protocol:

PK{(ε, µ1, . . . , µL′ , ρ1, . . . , ρL′ , ν, ρ) :
c1 = gµ1hρ1 ∧ . . . ∧ cL′ = gµL′ hρL′ ∧

v−1
x

L∏
i=L′+1

(V(xy,i))−mi = (vs)−ρ(vxy)ν
L′∏

i=1

(V(xy,i))µi} .



The Verifier accepts if it accepts the proof above and (a) {Ãi} were formed
correctly: e(ã, Zi) = e(g , Ãi); and (b) b̃ and {B̃i} were formed correctly:
e(ã, Y ) = e(g , b̃) and e(Ãi, Y ) = e(g , B̃i).

4.5 The CS Encryption and Verifiable Encryption

We finally describe an encryption scheme that fits our framework. The scheme
was proposed by Camenisch and Shoup [21], who also provided a protocol that
allows an encrypter to efficiently prove that a ciphertext contains a discrete
logarithm (or an element of a representation). Camenisch and Shoup further
provided the analogue, i.e., a protocol that allows a decryptor to prove that the
decryption of a given ciphertext revealed a discrete logarithm. Such a protocol
could for instance be used to ensure that a trusted third party behaves correctly.
However, we do not present the latter protocol here.

The Camenisch-Shoup encryption scheme is based on Paillier’s Decision Com-
posite Residuosity (DCR) assumption [46] is that given only n, it is hard to
distinguish random elements of Z∗

n2 from random elements of the subgroup con-
sisting of all n-th powers of elements in Z∗

n2 .

The Encryption Scheme. Let ` be a further security parameter. The scheme
makes use a hash function H(·) that maps a triple (u, {ei}, L) to a number in the
set [2`]. It is assumed that H is collision resistant, i.e., that it is computationally
infeasible to find two triples (u, {ei}, L) 6= (u′, {e′i}, L′) such that H(u, {ei}, L) =
H(u′, {e′i}, L′). Let abs : Z∗

n2 → Z∗
n2 map (a mod n2), where 0 < a < n2, to

(n2 − a mod n2) if a > n2/2, and to (a mod n2), otherwise. Note that v2 =
(abs(v))2 holds for all v ∈ Z∗

n2 .
We now describe the key generation, encryption, and decryption algorithms of

the encryption scheme, as they behave for a given value of the security parameter
`.

Key Generation. Select two random `-bit Sophie Germain primes p′ and q′, with
p′ 6= q′, and compute p := (2p′ + 1), q := (2q′ + 1), n := pq, and n′ :=
p′q′. Choose random x(1,1), . . . , x(1,L′), x2, x3 ∈R [n2/4], choose a random
g′ ∈R Z∗

n2 , and compute g := (g′)2n, y(1,i) := gx(1,i) for i = 1, . . . , L′, y2 :=
gx2 , and y3 := gx3 . The public key is (n, g, {y(1,i)}, y2, y3). The secret key is
(n, {x(1,i)}, x2, x3).
Below, let h = (1 + n mod n2) ∈ Z∗

n2 which is an element of order n.

Encryption. To encrypt a message tuple (m1, . . . ,mL′), mi ∈ [n], with label
L ∈ {0, 1}∗ under a public key as above, choose a random r ∈R [n/4] and
compute

u := gr , ei := yr
(1,i)h

mi (i = 1, . . . , L′), and v := abs
(
(y2y

H(u,{ei},L)
3 )r

)
.

The ciphertext is (u, {ei}, v).



Decryption. To decrypt a ciphertext (u, {ei}, v) ∈ Z∗
n2×(Z∗

n2)L′×Z∗
n2 with label L

under a secret key as above, first check that abs(v) = v and u2(x2+H(u,{ei},L)x3) =
v2. If this does not hold, then output reject and halt. Next, let t = 2−1 mod n,
and compute m̂i := (ei/ux(1,i))2t. If all the m̂i are of the form hmi for some
mi ∈ [n], then output m1, . . . ,mL′ ; otherwise, output reject.

Theorem 3. [[21]] The above scheme is secure against adaptive chosen cipher-
text attack provided the DCR assumption holds, and provided H is collision re-
sistant.

Verifiable Encryption of Discrete Logarithms. Let c1 = gm1hr1 , . . . cL′ =
gmL′ hrL′ , be commitments to the messages m1, . . ., mL′ ∈ Zq. We now present a
protocol that allows a prover to encrypt m1, . . ., mL′ ∈ Zq and then to convince
a verifier that the resulting ciphertext indeed encrypts the values contained in
these commitment.

The protocol requires an integer commitment scheme, i.e., the auxiliary pa-
rameters n, and g and h such that the prover is not be privy to the factorization
of n.

Recall that `c is a security parameter controlling the size of the challenge
space in the PK protocols. Finally, we require that q < n2−`s−`c−3 holds, i.e.,
that mi ∈ Zq “fits into an encryption”. (If this condition is not meet, the mi’s
could be split into smaller pieces, each of which would then be verifiable en-
crypted. However, we do not address this here.)

The common input of the prover and verifier is: the public key (n, g, {y(1,i)}, y2, y3)
of the encryption scheme, the additional parameters (n, g, h), a group element
(δ), a ciphertext (u, {ei}, v) ∈ Z∗

n2 × (Z∗
n2)L′ ×Z∗

n2 , and label L. The prover has
additional inputs m1, . . ., mL′ ∈ Zq and r ∈R [n/4] such that

u = gr, e = yr
(1,i)h

mi , and v = abs ((y2y
H(u,e,L)
3 )r) .

The protocol consists of the following steps.

1. The prover chooses a random s ∈R [n/4] and computes k := gmhs. The
prover sends k to the verifier.

2. Then the prover and verifier engage in the following protocol.

PK{(r, m, s) : (ν, ρ1, . . . , ρL′µ1, . . . , µL′) :
c1 = gµ1hρ1 ∧ . . . ∧ cL′ = gµL′ hρL′ ∧

u2 = g2r ∧ v2 = (y2y
H(u,e,L)
3 )2r ∧

e2 = y2r
(1,1)h

2µ1 ∧ . . . ∧ e2 = y2r
(1,L′)h

2µL′ ∧
k1 = gµ1hs ∧ . . . ∧ kL′ = gµL′ hs ∧ −n/2 < µi < n/2} .
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help of a trusted third party. Camenisch and Stadler [22] came up with the first
group signature scheme where the size of the public key was independent of the
size of the group. Subsequent work in this area [24, 20] put forth a more general
framework for group signatures. Finally, Ateniese et al. [4] invented the first
provably secure group signature scheme (see also Camenisch and Michels [19]
and Cramer and Shoup [32] that paved the way for the Ateniese et al. scheme).

Anonymous credential systems as described above were introduced by Lysyan-
skaya et al. [45]. The first efficient and provably secure scheme was put forth by
Camenisch and Lysyanskaya [16], whose construction was largely inspired by the
Ateniese et al. group signature scheme construction.

The foundation of our framework and the first key building block — a signa-
ture scheme with efficient protocols — was identified as such in a further study
on anonymous credentials. Generalizing prior work [16], Lysyanskaya [44] showed
how to obtain an anonymous credential system using this building block. The
SRSA-CL signature scheme [17, 44] described in this paper emerged as a gen-
eralization of the techniques needed for anonymous credentials. Camenisch and
Groth [14] made further improvements to the parameters of this signature and to
the associated protocols; the parameters and protocols described in the present



paper reflect these improvements. This signature scheme and associated proto-
cols have since been implemented as part of the Idemix project at IBM [23], and
incorporated into the TCG standard as part of the direct anonymous attestation
protocol [12]. The BM-CL signature scheme described above was invented very
recently [18]. It has not been implemented yet, but it is also quite practical.

The other key building block — verifiable encryption — was introduced by
Camenisch and Damg̊ard [13] and independently by Asokan, Shoup, and Waid-
ner [3], as part of efforts in group signature scheme design and fair exchange of
digital signatures, respectively. The verifiable encryption scheme described here
is due to Camenisch and Shoup [21] and is the state-of-the-art.
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