

Real-World Android by Tutorials
Ricardo Costeira, Subhrajyoti Sen, Kolin Stürt & Antonio Roa-Valverde

Copyright ©2022 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Real-World Android by Tutorials Real-World Android by Tutorials

raywenderlich.com 2

Table of Contents: Overview
Book License 12...

Before You Begin 13..

What You Need 14..

Book Source Code & Forums 15...

Acknowledgments 19..

Section I: Developing Real World Apps 20......................

Chapter 1: Introduction 21...

Chapter 2: Starting From the Beginning 26...........................

Chapter 3: Domain Layer 42...

Chapter 4: Data Layer — Network 62.......................................

Chapter 5: Data Layer — Caching 89..

Chapter 6: Building Features — Animals Near You 121....

Chapter 7: Building Features — Search 155...........................

Section II: Modularizing Your App 197.............................

Chapter 8: Multi-Module Apps 198..

Chapter 9: Dynamic Features Theory 220.............................

Chapter 10: Building a Dynamic Feature 228.......................

Section III: Enhancing Your UI 257.....................................

Chapter 11: Animations 258..

Chapter 12: MotionLayout & Motion Editor 281................

Chapter 13: Custom Views 304..

Real-World Android by Tutorials

raywenderlich.com 3

Chapter 14: Style & Theme 330..

Section IV: Securing Your App 356.....................................

Chapter 15: User Privacy 357..

Chapter 16: Securing Data at Rest 372...................................

Chapter 17: Securing Data in Transit 396...............................

Chapter 18: App Hardening 419...

Section V: Maintaining Your App 437................................

Chapter 19: Firebase Integration 438......................................

Chapter 20: Release Optimizations 461.................................

Chapter 21: Advanced Debugging 471....................................

Chapter 22: App Analysis 498...

Conclusion 519..

Real-World Android by Tutorials

raywenderlich.com 4

Table of Contents: Extended
Book License 12.

Before You Begin 13.

What You Need 14.

Book Source Code & Forums 15.
About the Authors 17.

About the Editors 18.

Acknowledgments 19.
Content Development 19.

Section I: Developing Real World Apps 20.

Chapter 1: Introduction 21.
What Is This Book About? 22.

Who Is This Book for? 23.

The Sample Project 24.

Signing Up for an API Key 25.

Where to Go From Here? 25.

Chapter 2: Starting From the Beginning 26.
Package by Feature Approach 27.

Full Stack Features Through Layers 32.

Bridging Requirements and Implementation 35.

Devising a Plan of Attack 37.

Key Points 41.

Chapter 3: Domain Layer 42.
What Is a Domain Layer? 43.

Creating Your Domain Model 45.

Inverting Dependencies With Repositories 57.

Testing Your Domain Logic 58.

Real-World Android by Tutorials

raywenderlich.com 5

Key Points 61.

Chapter 4: Data Layer — Network 62.
What Is a Data Layer? 63.

Network Data Models 65.

Connecting to the API With Retrofit 67.

Interceptors 69.

Testing the Network Code 78.

Key Points 88.

Chapter 5: Data Layer — Caching 89.
Cache Data Models 90.

Caching Data With Room 98.

Managing Cache Dependencies With Hilt 103.

Putting It All Together 105.

Testing Your Repository 110.

Key Points 120.

Chapter 6: Building Features — Animals Near You 121.
What Is a Presentation Layer? 122.

Making Your Life Easier With Architecture 123.

Building Animals Near You 126.

Creating the UI Components 128.

Creating the View State 132.

Creating the Data Flow 134.

Your First Use Case 139.

Connecting the Layers 141.

Hilt on Android Components 142.

Displaying Cute Animals 144.

Allowing an Infinite Scroll 151.

Key Points 154.

Chapter 7: Building Features — Search 155.
Building a Search Feature 156.

Real-World Android by Tutorials

raywenderlich.com 6

Getting Started 156.

Searching Locally 157.

Triggering the Search 168.

Adding Search to the Repository 174.

Adding Search to the ViewModel 176.

Searching Remotely 180.

Canceling Old Search Requests 184.

Finishing Touches 186.

Testing 188.

ViewModel Tests 188.

UI Tests 192.

Key Points 196.

Section II: Modularizing Your App 197.

Chapter 8: Multi-Module Apps 198.
What is Modularization? 199.

Types of Modules 199.

Why Modularization Is Good 201.

Using Gradle With Modules 202.

Looking Back Over Your Decisions so Far 204.

Creating the Onboarding Feature Module 208.

Navigating Between Feature Modules 215.

Using Deep Links 217.

Additional Improvements 219.

Key Points 219.

Chapter 9: Dynamic Features Theory 220.
Android App Bundle 221.

Dynamic Delivery 222.

What Are Dynamic Features? 223.

Key Points 227.

Chapter 10: Building a Dynamic Feature 228.

Real-World Android by Tutorials

raywenderlich.com 7

PetSave’s New Features 229.

Deciding How to Create Your Dynamic Feature 231.

Preparing the App MNodule 231.

Preparing the Feature Module 235.

Handling Navigation 240.

Handling Dependency Injection 244.

Testing Module Install 252.

Key Points 256.

Where to Go From Here? 256.

Section III: Enhancing Your UI 257.

Chapter 11: Animations 258.
Lottie 259.

Animated Vector Drawables 266.

Physics-based Animations 271.

Key Points 280.

Chapter 12: MotionLayout & Motion Editor 281.
Getting to Know MotionLayout 282.

Getting Started 283.

Adding Your First Constraint 287.

Motion Editor 288.

Adding a Trigger 291.

Overriding Visibility 293.

Animating More Features 294.

Adding Non-linear Motion 296.

ImageFilterView 299.

Key Points 303.

Chapter 13: Custom Views 304.
Creating Custom Views 305.

Implementing a Progress Button 306.

Initializing the Paint Objects 311.

Real-World Android by Tutorials

raywenderlich.com 8

Designing the Animation Logic 312.

Painting Your Shape 313.

Previewing Your Shape 314.

Adding Animation 316.

Drawing the Check Icon 321.

Putting Everything Together 323.

Manually Stopping the Animation 325.

Enhancing Performance 325.

Key Points 329.

Chapter 14: Style & Theme 330.
Defining Styles and Themes 331.

Structure of a Style 331.

Structure of a Theme 332.

Style Hierarchy 333.

Theme Overlay 333.

TextAppearance 336.

Setting Up Dark Themes 338.

Styling Custom Views 349.

Key Points 355.

Section IV: Securing Your App 356.

Chapter 15: User Privacy 357.
Securing the Foundations 358.

Using Permissions 359.

Opting Out 365.

Clearing Caches 366.

Disabling Logging 368.

Disabling Screenshots 368.

Wiping Memory Securely 370.

Key Points 371.

Where to Go From Here? 371.

Real-World Android by Tutorials

raywenderlich.com 9

Chapter 16: Securing Data at Rest 372.
Implementing the Login 373.

Securing Data with Biometrics 380.

Customizing Encryption 385.

Key Points 395.

Chapter 17: Securing Data in Transit 396.
Understanding HTTPS 397.

Updating Security Providers 400.

Understanding Certificate and Public Key Pinning 400.

Using Certificate Transparency 405.

Preventing Information Leaks with OCSP Stapling 407.

Understanding Authentication 408.

End-to-end Encryption 417.

Key Points 418.

Where to Go From Here? 418.

Chapter 18: App Hardening 419.
Introducing Overflows 420.

Paying Attention to Warnings 421.

Sanitizing Data 423.

Validating Input 425.

Nullability and Safety Checks 429.

Concurrency 433.

Checking App Integrity 435.

Key Points 436.

Section V: Maintaining Your App 437.

Chapter 19: Firebase Integration 438.
Setting up Firebase 439.

Crashlytics 442.

Remote Config 446.

Firebase Test Lab 453.

Real-World Android by Tutorials

raywenderlich.com 10

Key Points 460.

Chapter 20: Release Optimizations 461.
Using APK Analyzer 462.

Enabling an Optimizer 462.

ProGuard Versus R8 463.

Fixing Compilation Errors 464.

Enabling More Optimizations 467.

A Few Things To Keep in Mind… 469.

Key Points 470.

Chapter 21: Advanced Debugging 471.
Memory Leaks 472.

Android Studio Profiler 479.

Layout Inspector 491.

Key Points 497.

Chapter 22: App Analysis 498.
Debugging Versus Investigating 499.

Extracting Data 500.

Recovering Deleted Data 507.

Black Box Testing And Reverse-engineering 508.

Using Reverse-engineering Tools 513.

Debugging With ProGuard Output Files 514.

Some Final Notes 517.

Key Points 518.

Conclusion 519.

Real-World Android by Tutorials

raywenderlich.com 11

LBook License

By purchasing Real-World Android by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Real-World Android by
Tutorials in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Real-World Android by Tutorials in as many apps as you want, but must include
this attribution line somewhere inside your app: “Artwork/images/designs: from
Real-World Android by Tutorials, available at www.raywenderlich.com”.

• The source code included in Real-World Android by Tutorials is for your personal
use only. You are NOT allowed to distribute or sell the source code in Real-World
Android by Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to reproduce or
transmit any part of this book by any means, electronic or mechanical, including
photocopying, recording, etc. without previous authorization. You may not sell
digital versions of this book or distribute them to friends, coworkers or students
without prior authorization. They need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 12

Before You Begin

This section tells you a few things you need to know before you get started, such as
what hardware and software you’ll need, where to find the project files for this book
and more.

raywenderlich.com 13

iWhat You Need

To follow along with this book, you’ll need the following:

• Android Studio 4.1.x: Available at https://developer.android.com/studio/. This is
the environment in which you’ll develop most of the sample code in this book.

raywenderlich.com 14

iiBook Source Code &
Forums

Where to Download the Materials for This
Book
The materials for this book can be cloned or downloaded from the GitHub book
materials repository:

• https://github.com/raywenderlich/adva-materials/tree/editions/2.0

Forums
We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/real-world-android-by-tutorials. This is a great
place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 15

Dedications
To my parents, Céu and Manuel, and sister, Joana, who always
gave everything they could and more to ensure my education,

happiness and well-being. To my partner, Joana, for all the
love, support and unbelievable patience while I was writing

the book. To my friend, Carlos, for all the support and
understanding every time I told him I didn’t have the time to
help him with GDG and Kotlin Knights events. And finally, to
the amazing Android devs from my team at Mindera - Maja,

Rita, Garcês, Belchi and Gui - for all the incredible discussions,
for teaching me so much and for making me love what I do

even more.

— Ricardo Costeira

I’d like to thank my parents, @StephanieBraganza, Pom-Pom
the Pomeranian (IG @PomThePomeranian) and 0xAKBArt, as
well as The Wildlife Trade Monitoring Network and The Save

Movement for inspiration of the app concepts.

— Kolin Stürt

I’d like to thank my parents, friends, and colleagues, who have
always been very supportive and pushed me to achieve more.

This book would not have been possible without them.

— Subhrajyoti Sen

To Elisabeth, for your patience and support while the laptop
stole part of our time.

—Antonio Roa-Valverde

raywenderlich.com 16

About the Authors
Ricardo Costeira is an author of this book. He is an Android dev
with a crush on clean code and software architecture. Based in
Portugal, Ricardo works as a senior Android engineer at Mindera,
where he builds and maintains a retailer app with tens of
thousands of daily active users. Ricardo loves Android and the
community, so it’s only natural that he tries to have an active part
in it! He’s a co-organizer of GDG Coimbra and a co-founder of
Kotlin Knights. He occasionally writes (mostly about Android) at
his site, ricardocosteira.com, or for raywenderlich.com. He loves
cats, food and the gym and he’s a specialty coffee hobbyist. You can
find him on Twitter at @rcosteira79.

Subhrajyoti Sen is an author of this book. He is an Android
Engineer at KeepTruckin, where he develops apps to improve the
trucking industry. Before that, he also worked on apps to improve
the experience of Indian investors. He believes in the power of
open source and communities, and actively tries to give back.
When not writing code, you can find him binge-watching anime,
reading up on public policy or playing Rocket League.

Antonio Roa-Valverde is an author of this book. Antonio is a
software engineer specialized in Android development. He’s
interested in innovation and shaping new products with potential
impact on people. Google Developer Group co-organizer in
Innsbruck and Munich. You can find him close to the mountains,
either hiking, riding the mountain-bike or catching some curvy
roads by motorcycle.

Real-World Android by Tutorials About the Team

raywenderlich.com 17

About the Editors
Sandra Grauschopf is the editor of this book. She is a freelance
writer, editor and content strategist as well as the Editing Team
Lead at raywenderlich.com. She loves to untangle tortured
sentences and to travel the world with a trusty book in her hand.

Massimo Carli is the final pass editor of this book. Massimo has
been working with Java since 1995, when he co-founded the first
Italian magazine about this technology http://www.mokabyte.it.
After many years creating Java desktop and enterprise
applications, Massimo started to work in the mobile world. In 2001,
he wrote his first book about J2ME. After many J2ME and
Blackberry apps, he then started to work with Android in 2008. The
same year, Massimo wrote the first Italian book about Android, and
it became a best seller on Amazon.it; that was the first of a series
of 12 books. Massimo is a musical theater lover and a supporter of
the soccer team, S.P.A.L.

Real-World Android by Tutorials About the Team

raywenderlich.com 18

vAcknowledgments

Content Development
We would like to thank Kolin Stürt for his work as an author on the previous edition
of this book.

Kolin Stürt is a software team lead with a focus on encryption, reverse-engineering,
forensics and application hardening. He’s worked on many platforms, most notably
Android, iOS and Linux. He has an interest in networking and has been hacking and
developing apps since 2009. Outside of cybersecurity, he composes and performs
music, as well as practicing and holding a black belt in Aikido. You can find him at
https://kolinsturt.github.io.

raywenderlich.com 19

Section I: Developing Real
World Apps

In this section, you’ll learn how to design and implement PetSave as an example of a
professional, real world app. You’ll learn how to choose the right architectural
pattern and how to structure the code to make the app testable and maintainable.

To make your app easier to change, it’s a good practice to define different layers with
specific responsibilities. In particular, you’ll learn how to design and implement the
domain layer for the PerSave app. You’ll also see how to access the network
efficiently, by implementing the repository pattern in the data layer.

At the end of this section, you’ll have a clear idea about how to structure the code of
your app.

raywenderlich.com 20

1Chapter 1: Introduction

By Ricardo Costeira

Ever since its inception, Android development has been known for being as
frustrating as it is fun. Ironically, both the frustration and the fun come from the
same place. Developing an Android app involves not only juggling an ever-changing
framework, but also handling interesting and challenging design decisions.

The Android framework keeps growing, and it’s not likely to stop anytime soon.
Think of the sheer amount of documentation online at the Android Developers site,
or even on Kotlin’s own documentation pages. On top of this, time and experience
have taught us that new architectures and best practices will keep appearing, giving
us new and better ways to do the same things.

This isn’t necessarily bad, though. Android developers have come a long way since
the times when having a god Activity was the standard. Over the years, through the
effort of an amazing and supporting community, multiple architectures and
techniques have surfaced, aiming to improve both app stability and developer
quality of life. Even Google has pitched in on this project with their own
recommended app architecture.

With such a large, continuously mutating ecosystem, developing even the simplest
of features can feel overwhelming for beginners — and, sometimes, even for
advanced developers.

raywenderlich.com 21

For instance, say that you want to get data from a data source and display it. Even if
you’ve implemented this in the past, you know Android. Can you be 100% sure that
the way you did it back then is still the best way to do it now?

You can’t. And that’s OK! With an ecosystem that changes so frequently, it’s
impossible for even the most experienced engineer to be aware of all its quirks and
nuances.

Android developers need to know about a wide array of subjects to build apps
effectively. That’s where this book comes in.

What Is This Book About?
This book covers a lot of topics. It shows you how to:

• Build features in a scalable way, covering each architectural layer.

• Modularize your app, if you ever need to, while touching on dynamic features.

• Handle animations, styles, themes and other elements of the UI.

• Make your app more secure.

• Maintain and care for your app.

It does all of this by showing you practical solutions that lead to the desired results.
Yet, the idea here is much more than that. Of course, you can study the
implementation details if you want, but that’s not the main point. Instead of
reasoning about how to write code, you should instead focus on why you write it that
way.

The goal is for you to go beyond the code and understand why you’re writing it in
the first place. This book doesn’t simply cover the basics at the problem’s surface or
give high-level descriptions of the simplest use cases. Rather, it aims to share with
you some of the knowledge that developers acquire over time, while developing real-
world apps.

You’ll see how to solve real-world problems following real-world best practices and
techniques. Sometimes, these best practices and techniques are general rules of
thumb regarding software development and design principles. In other cases, they’re
tightly coupled to the tools used to fix the problem. You can only acquire them by
either getting your hands dirty with those tools or by having someone point them
out for you.

Real-World Android by Tutorials Chapter 1: Introduction

raywenderlich.com 22

The book focuses not only on why should you do things a specific way, but also on
the corresponding advantages, trade-offs and drawbacks of that solution. It makes it
clear when a certain decision is not ideal, explaining the reasoning behind discarding
a choice or going through with it anyway.

As you go through the content, you might notice that some of it is opinionated; you
might even disagree with some of the statements. That’s good! As a developer, it’s
only natural for you to question other developers’ decisions. You might even see
some problems that others completely missed.

On the other hand, if you agree with everything and don’t see any problems, that’s
fine too! What’s important here is for you to go through the roller coaster ride that is
Android, with all its ups and downs, just like developers do in the real world.

Who Is This Book for?
This book is useful for developers of all levels. Some of the content assumes prior
knowledge of complex topics, like RxJava and Dagger/Hilt, and is more tailored to
intermediate or advanced developers. But there’s plenty of content suitable for less-
experienced developers as well.

Note: If you need to fill some gaps in your knowledge,
www.raywenderlich.com, provides a variety of books to help. If you need to
learn Kotlin, Kotlin Apprentice (https://www.raywenderlich.com/books/kotlin-
apprentice), is the right book for you. With Reactive Programming with Kotlin
(https://www.raywenderlich.com/books/reactive-programming-with-kotlin),
you can learn all about RxJava and RxKotlin.

Dependency injection is a fundamental tool for simplifying the architecture of
your app and making it more testable and maintainable. If you need to learn
more, Dagger by Tutorials (https://www.raywenderlich.com/books/dagger-by-
tutorials), is a must. Finally, good, professional apps must implement different
types of tests, from unit tests to end-to-end tests. To learn more about how to
do this, Android Test-Driven Development by Tutorials (https://
www.raywenderlich.com/books/android-test-driven-development-by-
tutorials), is the book for you.

Real-World Android by Tutorials Chapter 1: Introduction

raywenderlich.com 23

As mentioned already, a large part of the book’s focus is around the reasons why
developers prefer specific solutions. This usually boils down to software design
principles, architectural considerations or tidbits of wisdom acquired through
experience. In these cases, everyone can benefit from sharing information.

The Sample Project
Throughout this book, you’ll work on building and improving a sample project called
PetSave. PetSave is a pet adoption and fostering app that aggregates and matches
animals available to you. It uses the medical history of the pet along with some of
your personal information for matching and searching.

Figure 1.1 — PetSave Screen With a List of Animals

When you start, the app will only show a blank screen. Even the screen in the image
above doesn’t exist yet. It’ll be up to you to develop the app from the ground up.

The app connects to an external service, which it uses to fetch the animals. This
service, Petfinder, is an online, searchable database of animals who need homes.
They also have information on shelters and adoption organizations across the United
States. Check out their site at https://www.petfinder.com/. Who knows, you might
find your new pet. :]

Real-World Android by Tutorials Chapter 1: Introduction

raywenderlich.com 24

Signing Up for an API Key
Petfinder allows you to access their database, provided that you sign up for one of
their API keys. To do so, you first need to go to their site and sign up for an account.
After that, head to https://www.petfinder.com/developers/, click the GET AN API
KEY button and follow the process from there.

After acquiring an API key and its corresponding secret, you’ll need to set them for
each chapter’s starter project. You’ll set them in ApiConstants.kt, which is in the
common.data.api package.

Figure 1.2 — Replace Those Two Strings With Your API Key and Secret

If you’re curious about Petfinder’s API, check out its documentation at https://
www.petfinder.com/developers/v2/docs/.

Where to Go From Here?
Now that you have an idea of what this book is about and how it’ll unfold, you’re
ready to start building PetSave. As you already know, the app is at a very early stage,
with very little code written. However, you won’t write any code in the next chapter.

Thinking about a problem, getting familiar with it and planning ahead just enough
that you have a solid starting point is always a better option than starting to write
code right away and hoping for the best. So in the next chapter, you’ll lay the
groundwork to develop a robust and scalable app.

Real-World Android by Tutorials Chapter 1: Introduction

raywenderlich.com 25

2Chapter 2: Starting From
the Beginning
By Ricardo Costeira

Android development can be both straightforward and extremely complex. Not only
does the framework keep growing at a ridiculously fast pace, but it also repeatedly
reinvents itself — think asynchronous programming, lifecycle and state management
and even animations. It’s common to feel overwhelmed by or even lost amidst all the
continuous library releases, shiny new features and multiple ways of achieving the
same goals.

One section of this book (or, truth be told, the whole book!) wouldn’t be enough to
cover everything the Android framework has to offer. However, as you develop real-
world apps, you start to notice that apps gravitate around a few common ways to use
the framework. Additionally, many design decisions and best practices can be
universally applied to produce better software.

In this chapter, you’ll read about some of these design decisions and practices that
you can follow in the early development stages. They’ll allow you to build a solid
foundation for your app while avoiding over-engineering.

More specifically, you’ll learn:

• How to structure and organize your app so you can tell what it does just by looking
at the package names.

• Why it’s essential to keep high cohesion and low coupling.

• How to produce better apps by investing in upfront planning.

• Why you should use a layered architecture.

Buckle up!

raywenderlich.com 26

Package by Feature Approach
First, check out the code you’ll work with by opening the starter project in the
material for this chapter, and examining its contents. Expand the
com.realworld.android.petsave package. Did you hear that? That was the project
screaming its purpose at you!

Figure 2.1 — Screaming Architecture

This project is organized in a package by feature structure. Everything that’s
related to a feature, and only to that feature, is stored inside the same package. Code
shared by two or more features is stored in separate common packages. This type of
package organization has a few advantages:

1. Just by looking at the package structure, you easily get a feeling for what the app
does. Some people also like to call this a screaming architecture — hence the
awful “screaming” joke attempt earlier.

2. You end up with packages that not only have high cohesion, they’re also either
loosely coupled or completely decoupled from one another. Cohesion and
coupling are two very important metrics in software development that you
should always consider.

Figure 2.2 — Not Screaming vs. Screaming Architecture

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 27

High Cohesion
Cohesion refers to the relationship between different programming elements. The
stronger the connection between code inside a component, the more cohesive that
component is.

For instance, imagine you have a class that’s responsible for applying a cute filter to
a cat’s picture, called CatFilter.

class CatFilter(private val picture: Picture) {

 // Properties related to filter and picture state.
 // ...

 private fun parsePixels() {
 // Store individual pixels and the relationships between
them.
 }

 private fun filterPixels() {
 // Apply the filter to each pixel.
 }

 private fun smoothenResult() {
 // Apply picture smoothing techniques.
 }

 fun apply(): Picture {
 // Use methods above.
 }

 // Other methods.
}

The methods and properties of this class are all closely related to each other, which
means that the class is highly cohesive.

Now, imagine the case where you start adding more responsibilities to the class. Not
only does CatFilter apply a filter, but now it also saves and loads the result with
the help of the file system. You’ll start having elements in the class that have
nothing to do with each other — parsePixels() and save(picture: Picture)
have completely different purposes.

In other words, your class will now have a lower degree of cohesion.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 28

Low Coupling
Coupling has to do with dependencies between programming elements. Continuing
from the previous example, say you move the I/O logic to another class called
CatPictureFileSaver.

class CatPictureFileSaver {

 fun save(picture: Picture) {
 // File writing code.
 // Calls compression and encoding methods.
 }

 fun load(picturePath: String): Picture {
 // File reading code.
 // Calls decompression and decoding methods.
 }

 private fun compress(picture: Picture): CompressedPicture {
 // Fancy compression algorithm.
 }

 private fun encode(
 compressedPicture: CompressedPicture
): ByteArray {
 // Byte encoding.
 }

 // Other methods.
}

This new class also has methods to compress/decompress and encode/decode the
image, which are strongly related to its purpose. Nice, now CatFilter and
CatPictureFileSaver are two highly cohesive classes!

After some time, requirements change. You now have to cache the intermediate
results of the filtering. To implement this, you call the persistence methods of
CatPictureFileSaver directly in a few different places in CatFilter.

This may seem like the logical way to accomplish your goals but, by doing so, you’re
forcing CatFilter to be tightly coupled with CatPictureFileSaver. Consider a
scenario where a requirement change dictates that you drastically change or even
remove CatPictureFileSaver. Due to the coupled nature of the classes, you’d have
to make significant changes to CatFilter as well.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 29

On the other hand, if you have something like a CatPictureSaver interface that
CatPictureFileSaver extends, and have CatFilter depend on it, then the classes
would be loosely coupled. Changes to CatPictureFileSaver that don’t affect this
interface would likely not affect CatFilter at all.

interface CatPictureSaver {
 fun save(picture: Picture)
 fun load(picturePath: String): Picture
}

class CatPictureFileSaver : CatPictureSaver {
 // Interface overrides and private methods/properties.
}

class CatFilter(
 private val picture: Picture,
 private val pictureSaver: CatPictureSaver
) {

 // Code...

 private fun filterPixels() {
 // ...
 // CatFilter knows nothing about save method's inner
 // workings!
 pictureSaver.save(filteredPicture)
 // ...
 }

 // More code...
}

The interface would ideally use generic naming to keep your implementation options
open. For example, a CatPictureSaver interface with a method named
savePictureToFile() would be a bad choice. You’d have to change the method
name if you stop using the file system to save pictures!

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 30

Aiming for Orthogonality
Cohesion and coupling can be observed — and achieved — at different conceptual
levels of a project. You just saw a few examples with classes, but the same principles
apply to the project’s package structure. Generally speaking, these patterns improve
software by:

• Making it easier to maintain, less risky to change and more future proof.

• Allowing it to be orthogonal. When software is orthogonal, you can change its
components freely without affecting the other components’ behavior. This is
possible because, inside each component, the code is closely related (cohesion)
and doesn’t depend directly on other components (coupling).

A good way to achieve cohesion is to ensure your code components each have a
single responsibility. To keep components decoupled, you can use things like
interfaces or polymorphism. In other words, by following the SOLID principles,
you’ll automatically follow these two principles as well.

Note: SOLID stands for Single responsibility principle, Open closed principle,
Liskov substitution principle, Interface segregation principle and Dependency
inversion principle. These are the priciples that establish practices that lend to
development software with consideration for maintainability and extensibility
of a project.

You should definitely strive for high cohesion and low coupling, but be warned:
Software principles are addictive. As with design patterns, you can easily get carried
away and start applying the principles to every corner of your codebase.

If you go down this rabbit hole, you’ll end up with an over-engineered app that lost
track of its initial purpose. Remember: all things in moderation.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 31

Full Stack Features Through Layers
Back to the project. Locate the common package and expand it.

Figure 2.3 — Package by Layer Architecture

You’ll see a few other packages inside, but the three main ones are:

• domain: Home to all the use cases, entities and value objects that describe the
domain of the app.

• data: Layer responsible for enabling all the interactions with data sources, both
internal, like shared preferences or the database, and external, like a remote
API.

• presentation: Where the Android framework does most of its heavy lifting,
setting up the UI and reacting to user input.

You might have seen Android projects where the outer folder structure is divided
into packages named like this. This kind of package organization is called package
by layer since it separates the code by conceptual layer and responsibility. You’ll
read why this approach doesn’t scale below.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 32

Boundaries Between Layers
Typically, the conceptual layers of an app have well-defined boundaries between
them so they stay decoupled from one another. You create these boundaries using
interfaces.

It’s especially common for projects that follow clean architecture to display such
boundaries. Clean architecture goes the extra mile, inverting the dependencies to
ensure that they only flow inwards toward the domain layer at the center. In other
words, the domain layer never depends on other layers. This idea borrows from
hexagonal architecture. As you’ll see in the next chapters, PetSave borrows it as
well.

Why Use Layered Features?
While organizing top-level packages by layer works for simple, small apps, it will
become extremely difficult to deal with once the app gets more complicated.
Imagine an app with dozens of different screens and features. The cognitive load
required to be aware of which parts of the enormous presentation package called
which specific part of the domain and data package would be astronomical.

This type of organization leads to many problems:

• Features become extremely difficult to implement since it’s nearly impossible to
understand the entire code structure at scale.

• Developers may duplicate behavior that already exists elsewhere in the codebase
without realizing it.

• Routine maintenance turns into something out of a nightmare.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 33

Now, it’s not all bad news. If you use it right, packaging by layer can be beneficial.
Packaging by feature on the outside and by layer on the inside enables you to:

• Have highly cohesive, loosely coupled code throughout your app.

• Reduce your cognitive load when dealing with each layer. For instance, you can
change the domain layer of a feature while mostly ignoring the presentation and
data layers, due to the interface boundaries.

• Test entire layers by replacing other layer dependencies with mocks or fakes.

• Easily refactor a layer’s implementation without messing with the other ones. This
is somewhat rare, but it does happen.

Figure 2.4 — Layer Versus Feature Packages

Each feature will have this structure. Anything that’s shared between different
features will live in the common package. You’ll set up the layers in the upcoming
chapters. There, you’ll also see how defining such a package architecture enables the
app to scale more easily.

Having learned how to structure an app in a maintainable and future-proof way, the
next step is to go through the process of preparing yourself for the actual
development.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 34

Bridging Requirements and
Implementation
Before starting any software project, Android or not, you need to understand what
the system is supposed to do, and how it’s supposed to do it. You do this by analyzing
the requirements that you gathered in the initial stages of the system’s development.

These requirements typically come from a joint effort that might involve project
owners, senior engineers, architects and stakeholders. In order to achieve the
requirements (the what), you build features (the how).

No, no, don’t panic, you’re not about to go through the whole software development
cycle! The requirements analysis for PetSave is complete. Now, you’ll dive directly
into the software design and development phase.

Mastering Your Domain
There’s no fixed way to start this phase. One reasonable approach is to get
acquainted with the domain of the problem you’re solving. This is valid for both new
projects and when you are new to an existing project. The domain is the subject area
the software applies to or provides a solution to. In other words, it’s the environment
you extract the requirements from, and it’s where the app’s features act.

Do you have any idea what the domain for PetSave might be? Looking at a few of the
feature requirements should give you a hint:

PetSave’s Features:

1. A user can see a list of animals near them, possibly from different organizations.

2. A user has the ability to search for animals and get matches according to several
different types of filters.

3. A user can report a lost pet.

4. There should be an onboarding process to better match a user with a potential
pet.

For this app, you’ll work in the domain of pet adoption and fostering. You’ll juggle
concepts like animals, breeds, species, adoption organizations, animal health and
training.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 35

In the next chapter, you’ll start reasoning about the domain to define its entities.
Also, if you’re wondering why the name of the app doesn’t completely match the
domain, it’s just that “PetSave” sounds cooler than “PetAdopt” or “PetFoster”. At
least, that’s what the app’s stakeholders think, and you know that they’re always
right — even when they aren’t!

Knowing the Problem Space

OK, so why should you know about the app’s domain? Here are a few good reasons:

• To properly implement features that cover all the requirements, you need to
understand the domain. If you don’t establish a clear boundary around the
requirements, how can you be sure you’re covering all possible use cases? If you
don’t understand what you’re working with and why, you’re bound to make
mistakes, which usually cost money!

• Your app’s users usually have a deep understanding of the domain. This means
that you can predict how people will use your app by being aware of the domain’s
caveats and intricacies. You can anticipate problems and even do a better job
testing your app.

• It’s an excellent way to communicate with non-technical people about technical
stuff. The domain is a language everyone involved in the project shares.

• Requirements might be incomplete or not even make sense. When you understand
the domain, you can look at the requirements objectively, contributing to their
completeness and checking their sanity.

The list goes on, but you get the point. Domain knowledge is critical! However, it
takes time to learn. Some domains are quite complex or can be extremely important
to get right. For instance, it might be OK to miss out on some details of PetSave’s
domain, but the domain of a water treatment and supply station is different.

On an important note, don’t expect to master every little detail instantly. Doing so
can be challenging, especially before you get your hands dirty with the code. Until
you see the app’s rules and logic flow through the code, the domain is just a set of
abstract ideas about a subject that you might have never even heard about before.

So do take some time to get familiar with the domain initially, but don’t worry about
going much deeper than that. You’ll inevitably learn significantly more while you’re
implementing the code.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 36

Software Is Liquid
Now that you’re aware of the app’s domain, you’re probably eager to start the actual
implementation. However, there are still a few things to consider before that. They’ll
be quick, promise!

One of the most important tenets to consider is that requirements change. Your
stakeholders’ needs are not set in stone, and your software shouldn’t be, either.

You should build your app in a way that makes it relatively easy or, in some
unfortunate cases, just possible, to both add and remove behavior. This need for
extensibility is one of the reasons why you use development patterns and
architectures.

Nevertheless, you do have to be careful to avoid over-engineering things: Consider
the future possibilities, but always focus more on what’s happening in the present.

Another important thing is to be aware of is that building software is an iterative
process, sometimes due to changing requirements. You analyze what you need to
implement, implement it and possibly return to the analysis stage in the future.

Don’t be bummed if this happens. It’s natural, and good! It usually means your
software is gaining traction.

Devising a Plan of Attack
It’s time for you to look at the features you’ll develop in this section. You’ll reason
about what you need to do for each one and try and predict any difficulties that
might arise. Here’s a quick recap of the features:

• Animals near you: Displays a list of animals near you, according to your postal
code and a specific distance threshold.

• Search: Searches for an animal by name, type and age.

Animals Near You
For simplicity, you’ll use hard-coded postal code and distance values for now
because you won’t implement the mechanism to get the real values until later.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 37

Designing the UI

The list part seems fairly easy: It screams RecyclerView all over the place. And
where there’s a RecyclerView, there’s also an Adapter. Your requirement is to show
a fairly simple item with the animal picture and name, so one ViewHolder should be
sufficient. The UI code seems fairly straightforward.

Adding Data Sources

For the data source, you’ll use a remote API called Petfinder. Petfinder matches
almost all the data needs of the entire app, and everything you need for these
specific features.

This one’s also easy: Retrofit is the standard for Android networking nowadays. You
might need to adjust the data so it matches the domain, and a few interceptors might
also come in handy. The API returns chunks of paginated data, so you’ll have to
handle that pagination. Otherwise, it should be a fairly standard implementation.

The app needs to work offline, so you’ll need to store the data in some format. This
complicates things a little, as having both a cache data source and a network data
source can become tricky to manage.

The safest approach is to follow a single source of truth implementation. Keep the
cache in sync with the network, but ensure that the UI accesses only the cache. This
way, the app displays the latest data both on and offline. Still, keeping everything in
sync can be tricky, so you should expect some complexity.

Relational databases perform well for reading large amounts of data. You’ll use
Room to implement the cache.

Modeling the Domain

You’ll define the core domain entities in the next chapter. However, you’ll leave the
use cases until you’re ready to connect all the layers. Use cases are feature specific so
by implementing them later, development will flow much more naturally.
Implementing them now would require a lot of abstract thinking, which would just
waste your time.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 38

Making a Dry Run

Your goals for this feature are: Fetch data from the API, store it in the database, feed
the UI with data from the database, display the data with the RecyclerView and
handle possible errors. When considering what you’ll implement ahead of time, it
always helps to try and put yourself in the user’s shoes… while also not forgetting
that you’re the developer. Try to understand how the user will feel while using your
app. At the same time, keep an eye out for potential technical issues.

Picture for a moment that you’re a user opening your app for the first time:

• You open the app and see a blank screen. This happens because the cache is still
empty. Whoops! That’s not good UX (user experience). You should at least show a
progress bar while the adapter has no data.

• As soon as the data arrives, your app stores it. Since the UI feeds itself from the
cache, the progress bar should disappear while the RecyclerView displays the
data.

• You scroll down the list of animals. Whoops! Another issue: Nothing’s triggering a
request for more data, so you’re stuck with just the first chunk of cached data. To
fix this, you need to add a callback for the RecyclerView’s scrolling that triggers
a new network request when the scroll reaches a specific position.

This is a simple feature with a simple use case. Still, as you can see, there were some
details missing. That’s OK. There are probably even more missing, but you’ll only
find them at development time. Still, dry runs like this help you find the most
noticeable issues before touching the code.

This sums up the “animals near you” feature. On to the next one!

Search
The goal here is to type a search query, possibly filter it and show either results or a
warning saying that there are no results. This feature will be harder to implement,
given the added complexity of the mutating state.

Designing the UI

OK, so you’ll need a search bar, a few drop-down menus with options for filtering,
and a RecyclerView to display the results. You’ll display animals as well, so you’ll be
able to reuse the RecyclerView from the other feature.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 39

Adding Data Sources

The search should go through the cache and, if it doesn’t find anything, try to find
results via a network call. If there aren’t any results there, either, then you show the
“no results” warning.

It seems like you can reuse the data handling code from “animals near you”. Nice!
You might need to add new queries and change requests, but that shouldn’t be a
problem.

Modeling the Domain

It shouldn’t come as a surprise that you’ll reuse the domain entities. You’ll probably
need to create new ones specific to this feature to better handle the search state, but
that’s something you can only be sure about when you dig into the code.

As for use cases, you’ll follow the same approach as with the previous feature.

Making a Dry Run

Here are your goals: Write a query, maybe filter it, search for results, show them in
the RecyclerView, show a warning if no results exist and handle possible errors.

Now, thinking like a user:

• You get to the screen, and there’s nothing there other than the search interface.
Maybe adding a placeholder for the items is a good idea.

• You start searching, and items from the cache might appear. If not, the app makes
a network request, but no items will appear until the response arrives. Again, a
progress bar can save the day.

• If the app finds no results, a warning shows up. Otherwise, a list of cute little
animals, ready to be loved, appears.

Again, the trick here will be to manage the constantly mutating state. You’ll have to
juggle the constant changes due to:

• Result list values that can be empty.

• The search query.

• The search filters.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 40

There will be a lot of intermediate states, so you’ll have to be careful to avoid
inconsistencies. But there’s no use in rambling about it now. You know it’ll be tricky,
so wait until you’re working on the code to figure out the best way to do it. The
important thing is that you’re already aware of the increased difficulty.

So, What’s the Plan?
At this point, you know the features and their main pain points. You’re ready to
begin development, but where should you start?

You can’t build a house starting from the roof, and the same is valid in software.
There’s no use in starting to develop features without a solid foundation to build
them on. If you try, be ready for future refactoring.

A great way to build a solid base is by starting with feature-independent code. This
is why, in the next chapter, you’ll start with the most central part: the domain layer.

Key Points
• Packaging by feature enables you to work out what an app does just by looking at

the packages.

• You should strive for high cohesion and low coupling on every level of your apps.

• Separating the code of each feature by internal layers is an excellent way to have
maintainable and flexible code, while also achieving high cohesion and low
coupling.

• Being familiar with your app’s domain enables you to better understand what it
does and what its users expect.

• When you’re planning your work, thinking about the implementation ahead of
time is a helpful way of mitigating surprises in the future.

• Putting yourself in your users’ shoes helps you identify potential problems with
your app.

Real-World Android by Tutorials Chapter 2: Starting From the Beginning

raywenderlich.com 41

3Chapter 3: Domain Layer

By Ricardo Costeira

Having your business logic smeared throughout your app is a recipe for disaster. In
time, things will get messy:

• Code will become hard to find.

• You’ll start reimplementing logic by accident.

• Logic will get more and more coupled to the code that calls for it.

• Your code will have mixed responsibilities. As the project grows, it’ll become
harder to change.

That’s why it’s a good practice to decouple your business logic. A nice way to do that
is to implement a domain layer.

In this chapter, you’ll learn:

• What a domain layer is, why you need it — and when you don’t.

• The difference between domain entities and value objects.

• How to determine which entities and/or value objects to model.

• Common issues in domain modeling.

• The role of a repository in the domain layer.

• What you should test.

Although use cases are also part of this layer, you won’t implement any for now
because they’re tailored for features.

raywenderlich.com 42

What Is a Domain Layer?
The domain layer is the central layer of your app. It includes the code that describes
your domain space along with the logic that manipulates it. You’ll probably find at
least the following objects in every domain layer you work with:

• entities: Objects that model your domain space.

• value objects: Another kind of object that models your domain space.

• interactors/use cases: Logic to handle entities and/or value objects and produce a
result.

• repository interfaces: Define contracts for data source access.

This layer encompasses the business logic of the app. Your business logic is one of
the most important parts of your app, as it defines how the app works. The less you
mess with it, the better! That’s why the domain layer shouldn’t depend on other
layers.

For example, imagine you change your data layer by migrating from REST to
GraphQL. Or you change your presentation layer by migrating the UI to Jetpack
Compose. None of those changes have anything to do with the business logic. As
such, they shouldn’t affect the domain layer at all.

Do You Really Need a Domain Layer?
Whether a domain layer is necessary is a source of debate in the Android community.
Some people argue that it doesn’t make sense to have one in Android apps. Google,
in their architecture guide, also mark the domain layer as optional.

At a high level, a lot of Android apps follow the same simple pattern. They:

1. Get data from a data source.

2. Show the data in the UI.

3. Update the data source with new data.

From a layered architecture point of view, it seems like a data and a presentation
layer would be enough!

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 43

And they are — for the app to work, at least. You just need to pass data between the
layers, maybe add some logic in your ViewModels to handle the data, and off to the
Play Store it goes.

You have a working app, but you forgot about something — or someone — really
important. You forgot about you.

Having a domain layer is a way of protecting yourself as a developer. Sure, it can
seem like unnecessary, redundant work, but it pays off in the long run by:

• Keeping your code clean and easy to maintain by focusing the business logic in
one layer only, and decoupled from data source code. Single responsibility code
is easier to manage.

• Defining boundaries between code that implements app logic and code that has
nothing to do with that logic, like UI or framework code. Given how fast the
Android framework changes, this separation is critical.

• Easing the onboarding of future developers, who can study the layer to understand
how the app works.

If you’re working with a small codebase, it’s true that having a domain layer might be
over-engineering. If all your app does is transform API data to show it to the user,
then you can just use the repository for those transformations and your code will
work, nice and simple. Yet, small apps are becoming increasingly rare. Even for apps
that are small feature-wise, code gets really complex, really fast. It might seem like
over-engineering at first, but sooner rather than later, it’ll turn out to be a life- and
sanity-saving design decision.

In the end, it’s something you should consider, or discuss with your team. It might
even make sense to start without a domain layer, and then add one in the future if
needed.

At this point, PetSave has a relatively small codebase. As you go through the book
and add more code, however, you’ll start to see how the domain layer really shines.
You’ll see how nice it is to have a clear separation of concerns, which in turn allows
for easily tested logic.

But that’s in the future. For now, it’s time to add your first domain entities.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 44

Creating Your Domain Model
Use Android Studio and open the PetSave project you find in the starter folder in
the material for this chapter, and expand the common.domain package. You’ll see
two other packages inside:

• model: Where all entities and value objects live.

• repositories: Where you’ll find any repository interfaces.

You’ll come back to the repositories later. For now, focus on the model package. As
you start exploring it, you’ll notice that it already has quite a few files inside.

Figure 3.1 — Domain Package Structure

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 45

Entities and Value Objects
Now’s a good time to establish the difference between entities and value objects.
Expand the common.domain.model.organization package and open
Organization.kt. Focus on the first data class:

data class Organization(
 val id: String,
 val contact: Contact,
 val distance: Float
)

This class represents the organization entity. It has an id that identifies it and a
few properties that describe it. Look at that Contact, and you’ll notice that it doesn’t
have an ID.

data class Contact(
 val email: String,
 val phone: String,
 val address: Address
)

This is what distinguishes entities from value objects:

• Entities have an ID that allows you to tell them apart. Their properties can
change, but the ID always remains the same.

• Value objects describe some aspect of an entity. They don’t have IDs, and if you
change one of their properties, you create a new value object. For this reason, they
should always be immutable.

Note: The concept of entities and value objects comes from Domain Driven
Design. Although the distinction between them goes deeper, the key thing to
remember is this: Identity is important for entities.

As long as the ID remains the same, entities’ properties can change. However, the
Organization entity only has immutable properties.

That’s because it’s good practice to favor immutable objects until you need to make
them mutable. This does wonders for avoiding bugs that stem from mutable objects.
A very common example is mutable object handling with asynchronous code.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 46

What Should You Model?
In a real-world situation, you wouldn’t have to think about what to model at this
point. You would have info from stakeholders and project owners and decisions from
meetings that would guide you on what to implement.

Frequently, apps are built to support a pre-existing business. In these cases, the
domain model already exists somewhere — typically in the back end. Therefore,
reproducing the back end’s domain model is usually enough.

This last option is actually the case for PetSave. Most of the domain is based on the
petfinder API. And why not? They already have a working back end with a matching
front end. Plus, it’s the only API PetSave will use in the foreseeable future.

More often than not, the domain model entities end up being manifestations of the
domain’s names. For PetSave, you know the domain has to do with animal adoption
and care. You adopt animals from organizations that care for them. Animals and
organizations seem like a starting point!

Adding the Animal Entities
As you’ve seen, Organization already exists. Next, you’ll add the Animal entities.

Expand the animal package, then expand the details package inside it. Every file
you see inside the animal package is a value object. Each data class represents a
collection of related attributes, while each enum represents a closed attribute set.
They are simple objects, but a few are worth checking out. You’ll get to them in a few
minutes.

For now, you need to add the Animal entity.

Create a new Animal.kt file in the animal package. In it, add the Animal class:

data class Animal(
 val id: Long,
 val name: String,
 val type: String,
 val media: Media,
 val tags: List<String>,
 val adoptionStatus: AdoptionStatus,
 val publishedAt: LocalDateTime
)

Don’t forget to import LocalDateTime from the java.time library. Gradle will handle
the desugaring for you.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 47

This entity is fairly simple. It has a few primitive properties, a LocalDateTime for the
publishing date and two value objects:

• media: A Media value object instance that handles photos and videos of the
animal.

• adoptionStatus: An enum value from AdoptionStatus.

adoptionStatus can be one of four values:

enum class AdoptionStatus {
 UNKNOWN,
 ADOPTABLE,
 ADOPTED,
 FOUND
}

There’s not much to see here, just a simple enum. Open Media and take a look at how
it’s implemented. You can see that it has two properties:

• photos: A list of Photo objects.

• videos: A list of Video objects.

Both Photo and Video classes are nested in Media for ease of access.

Now, take a closer look at Photo:

data class Photo(
 val medium: String,
 val full: String
) {

 companion object {
 const val NO_SIZE_AVAILABLE = ""
 }

 fun getSmallestAvailablePhoto(): String { // 1
 return when {
 isValidPhoto(medium) -> medium
 isValidPhoto(full) -> full
 else -> NO_SIZE_AVAILABLE
 }
 }

 private fun isValidPhoto(photo: String): Boolean { // 2
 return photo.isNotEmpty()
 }
}

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 48

It’s a value object with two properties:

• medium: A link for the medium-sized photo.

• full: A link for the full-sized photo.

There’s also some logic in it:

1. Returns the smallest-sized photo available, which will be useful to display the
animal images in the animal list. You don’t need high-resolution images for a list
and the smaller the image, the fewer bytes to request from the API.

2. Checks if the photo link is valid. For simplicity, it just checks if the link is not an
empty string.

This is good! When you have a piece of logic related to a domain model object, it’s a
good practice to keep that logic contained within the object.

Remember the concept of high cohesion? This is a good example of it. The logic has
a close relationship with the object, to a point where it ends up using all the object’s
properties. This means that you’re not tightly coupling Photo to something else.

Another important thing to mention in Photo is its companion object — more
specifically, NO_SIZE_AVAILABLE. This property represents the empty state of a
Photo. It’s a simplified version of the Null Object Pattern, and it’s a nice way to
avoid null values.

Yes, you could simply just return an empty string in
getSmallestAvailablePhoto(), like so:

fun getSmallestAvailablePhoto(): String {
 return when {
 isValidPhoto(medium) -> medium
 isValidPhoto(full) -> full
 else -> ""
 }
 }

But that’s not the point. Since it’s such a simple example, NO_SIZE_AVAILABLE just
happens to be an empty string. Don’t look at the values the code is handling;
instead, look at its intent. You shouldn’t care about NO_SIZE_AVAILABLE being an
empty string — the important thing here is that NO_SIZE_AVAILABLE tells you that a
Photo has no sizes available.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 49

Zoom out to Media and you’ll see that it follows the same approach. It has:

• Highly cohesive logic.

• A simplified Null Object Pattern with NO_MEDIA.

Note: For simplicity, this code ignores Video. In a more complex example, it
would follow the same approach as Photo, but with logic for video handling.

AnimalWithDetails Entity
The Animal entity is enough for this section’s features. However, there will be a
details screen later that will need more details than Animal provides. So you might
as well add that functionality now.

In the details package, create a new file, AnimalWithDetails.kt. In it, add
AnimalWithDetails:

data class AnimalWithDetails(
 val id: Long,
 val name: String,
 val type: String,
 val details: Details,
 val media: Media,
 val tags: List<String>,
 val adoptionStatus: AdoptionStatus,
 val publishedAt: LocalDateTime
)

This entity is exactly the same as Animal, but it has an extra details property. You
might wonder why you don’t just add a nullable details property to the Animal
entity. Well, you could. This is just a design choice for the sake of avoiding nullable
values. It would be totally OK to go with the nullable property option.

The Details value object uses the remaining value objects in the packages, along
with the Organization entity.

data class Details(
 val description: String,
 val age: Age,
 val species: String,
 val breed: Breed,
 val colors: Colors,
 val gender: Gender,
 val size: Size,

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 50

 val coat: Coat,
 val healthDetails: HealthDetails,
 val habitatAdaptation: HabitatAdaptation,
 val organization: Organization
)

Nothing’s new here except the Breed data class. Open it, there’s an interesting detail
here that you should be aware of. This is the data class:

data class Breed(val primary: String, val secondary: String) {
 val mixed: Boolean
 get() = primary.isNotEmpty() && secondary.isNotEmpty()

 val unknown: Boolean
 get() = primary.isEmpty() && secondary.isEmpty()
}

And this is an example of what the API returns regarding breeds:

"breeds": {
 "primary": "Golden Retriever",
 "secondary": null,
 "mixed": false,
 "unknown": false
}

The first obvious change is that secondary goes from a nullable String to a non-
nullable one. You’ll explore this kind of mapping in the next chapter, so don’t bother
with it for now. Apart from this, notice any differences in how information is being
passed?

Take a closer look at the properties to understand what they are:

• primary: The primary breed.

• secondary: The secondary breed.

• mixed: Tells you if the animal has mixed breeds — it has both a primary and a
secondary breed.

• unknown: Tells you if the animal’s breed is unknown — it has neither a primary
nor a secondary breed.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 51

Only the first two properties — primary and secondary — are a part of Breed’s
constructor. The other properties, mixed and unknown, are deduced from the first
two.

Note: Since Breed is a data class, it has a few auto-generated methods. Be
aware that, in this case, both mixed and unknown are not accounted for by
those methods, as they’re outside the constructor.

In all fairness, it’s quite possible that the API also deduces mixed and unknown from
the other two. It returns them all as independent properties because it has no other
option. While it’s true that mixed and unknown only add noise, it’s a totally valid way
of building a back end: When in doubt, return everything you have. :]

By having some properties depend on others, you increase the cohesion of the class.
This increases the amount of information conveyed when you read the class. Also, if
you create a copy of the class but change one of the constructor values, both mixed
and unknown will update. Talk about a good deal!

Adding the PaginatedAnimals Value Object
The previous chapter talks about the API returning chunks of paginated data. The
pagination information is also relevant to the UI, letting RecyclerView request the
correct data chunk. It’s a data layer implementation detail, but it ends up leaking
to the presentation layer.

So, why not model this information as well? Yes, it doesn’t exactly fit the domain.
Still, it’s better to have it modeled and maintain the boundaries between layers than
to break the dependency rule even once.

Try not to cut corners on this kind of decision. Otherwise, you’ll start to notice
broken windows in your app.

Note: The broken window theory is a theory that describes software decay. It
states that visible signs of crime create an environment that fosters more
crime. In other words, as soon as you start cutting corners in your app, you’ll
do it more and more often.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 52

Expand the pagination package next to the animal and organization packages.
Inside, you’ll find there’s already a Pagination value object. This is the generic
representation of the API’s pagination. You’ll now add the specific animal
pagination.

Inside the pagination package, create a new file called PaginatedAnimals.kt. Add
the following class to the file:

data class PaginatedAnimals(
 val animals: List<AnimalWithDetails>,
 val pagination: Pagination
)

This value object associates a list of animals with a specific page. It’s exactly what
the UI needs to know which page to request next.

You added two entities, a value object, and learned some of the intricacies of domain
modeling. Well done! Before diving into repositories, there are still a few domain
modeling topics worth addressing.

To Type or Not to Type
Look at Animal again:

data class Animal(
 val id: Long,
 val name: String,
 val type: String,
 val media: Media,
 val tags: List<String>,
 val adoptionStatus: AdoptionStatus,
 val publishedAt: LocalDateTime
)

If you exclude the value objects and the publishedAt property, you’re left with:

data class Animal(
 val id: Long,
 val name: String,
 val type: String,
 val tags: List<String>
)

These properties all have one thing in common: None of them have specific domain
types. In fact, they’re just a mix of standard types from the language.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 53

When modeling your domain, you need to make some choices, and those choices
have trade-offs. One of the hardest choices to make is how many new domain-
specific types you should create.

Types provide safety and robustness in exchange for complexity and development
time. For instance, what’s keeping you from creating Animal with the id of -1L? It’s
just a Long type. It doesn’t care about the value you set it to, as long as it’s of type
Long.

However, adding a new type called Id changes things:

@JvmInline
value class Id(val value: Long) { // 1
 init { // 2
 validate(value)
 }

 private fun validate(id: Long) {
 if (id.hasInvalidValue()) { // 3
 throw InvalidIdException(id)
 }
 }
}

Here are some things to note in this code:

1. Kotlin’s value classes are a neat way to wrap your primitives into custom types,
since they (mostly) spare you from the overhead of handling a normal class.

2. init blocks run immediately after the primary constructor, so this calls
validate as soon as you create an instance of Id.

3. hasInvalidValue is an extension function on Long that verifies whether the ID
value is -1L or 0. If so, validate will throw an InvalidIdException.

Now, imagine that Id has a specific format. Then, you need to add a new validation:

private fun validate(id: Long) {
 if (id.hasInvalidValue()) {
 throw InvalidIdException(id)
 }

 if (id.hasInvalidFormat()) {
 throw InvalidIdFormatException(id)
 }
}

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 54

Suppose that the formatting spec determines the size limit of the ID. It’s a specific
case of format validation that deserves its own validation for clarity. By updating the
code:

private fun validate(id: Long) {
 when {
 id.hasInvalidValue() -> throw InvalidIdException(id)
 id.hasInvalidFormat() -> throw InvalidIdFormatException(id)
 id.exceedsLength() -> throw InvalidIdLengthException(id)
 }
}

You also change from a chain of if conditions to a when.

It looks clean, but it now throws a bunch of exceptions. You start worrying that it
might be hard to maintain the code in the future, especially if you add new
validation rule. So, you refactor the whole thing:

@JvmInline
value class Id private constructor(val value: Long) { // 1
 companion object {
 fun of(id: Long): Either<IdException, Id> { // 2
 return when {
 id.hasInvalidValue() ->
Either.Left(IdException.InvalidIdException(id))
 id.hasInvalidFormat() ->
Either.Left(IdException.InvalidIdFormatException(id))
 id.exceedsLength() ->
Either.Left(IdException.InvalidIdLengthException(id))
 else -> Either.Right(Id(value = id))
 }
 }
 }

 sealed class IdException(message: String): Exception(message)
{ // 3
 data class InvalidIdException(val id: Long):
IdException("$id")
 data class InvalidIdFormatException(val id: Long):
IdException("$id")
 data class InvalidIdLengthException(val id: Long):
IdException("$id")
 }
}

sealed class Either<out A, out B> { // 4
 class Left<A>(val value: A): Either<A, Nothing>()
 class Right(val value: B): Either<Nothing, B>()
}

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 55

Here’s what’s happening, step by step:

1. You make the constructor private so that you can fully control new Id instance
creation.

2. The old validate function is now called of, and works as a factory function of
Id’s companion object. With the constructor being private, you’re now forced to
do Id.of(123L) if you want to create an instance of Id. You also change the
functions’s signature to be explicit about what’s happening inside.

3. You encapsulate all the exceptions in the IdException sealed class.

4. You create the Either sealed class, a disjoint union to represent success and
failure values.

As you can see, it’s pretty easy to get carried away.

Dealing with Booleans is also fun. For instance, consider this class:

class User(name: String, email: String, isAdmin: Boolean)

You can see where this is going, can’t you? That isAdmin is a disaster waiting for the
worst moment possible to explode in your face. A simple mistake or a bug that makes
the property true when it should be false can completely wreck your app.

A common way to avoid stuff like this is to use inheritance:

open class User(name: String, email: String)

class Admin(name: String, email: String) : User(name, email)

Congratulations! You now have one extra class to maintain, and possible inheritance
issues that might come from it. You have to agree though, that the code is a lot safer
this way.

There’s usually some uncertainty over whether all the extra work will pay off in the
future or not. For instance, in the Id example: Is all of that needed? Maybe some of
those cases that you took measures against would never happen anyway. You’d be
maintaining all that complexity for nothing!

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 56

It’s up to you and your team to decide. Do you want to follow a straightforward,
“we’ll refactor when we get there”, YAGNI (You Aren’t Gonna Need It) approach? Or
a more time-consuming, type-safe, “model all the things!” way of working?

In general, a solution somewhere in the middle, with just enough design upfront, will
fit your needs the best.

Anemic Model
Managing types is not the only common problem in domain models. Sometimes,
domain models can become anemic, which means that they mainly consist of data
without behavior.

On Android, it’s common for the domain layer to work mainly as a bridge between
the other layers. In fact, this is one of the most common arguments against having a
domain layer on Android.

PetSave is an example: Other than Breed, Media and Photo, no other domain class
has any kind of logic in it. PetSave has what seems like a few anemic models.

However, note that your domain is only starting to take shape. The app is at an early
stage, so it’s normal that you don’t have enough domain knowledge to add logic to
the models.

It’s possible for the app to grow and its domain to remain anemic. But even so, it’s
good to weigh the advantages of having a domain layer on an ever-changing
ecosystem like Android before deciding to completely remove it.

This wraps up the domain modeling topics. When you implement use cases later,
you’ll need them to access data sources. You’ll have to do it without forcing a
dependency on the data layer, to preserve the dependency rule. This is where
repositories come in handy.

Inverting Dependencies With
Repositories
A repository is a very common pattern for data source abstraction. You use it to
abstract away all the data sources you want. Anything that calls the repository can
access data from those sources, but will never know which sources even exist.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 57

In the domain layer, you won’t actually implement a repository. Instead, you’ll only
have a repository interface. This allows you to invert the dependency on the
layers, making the data layer depend on the domain layer, instead of the other way
around!

How? it’s simple, and you can start putting it into place right away. In the
repositories package, create AnimalRepository.kt. In it, add your interface:

interface AnimalRepository

Later, you’ll implement an actual repository class in the data layer. That class will
implement this interface and any of its methods. Then, any time a use case needs
data access, you’ll pass it that repository class as a dependency, but the
dependency’s type will match the interface’s.

This way, use cases can access all the methods in the interface’s contract, without
ever knowing the class that fulfills it. The use case does its job and preserves the
dependency rule. Win-win!

For now, you’ll leave the interface just like this. It might be anticlimactic, but it’s
much easier to add methods later, when you’re developing the features and know
exactly what data you need.

That’s it for the app code for this chapter. For your work as a developer to be
complete, though, you’re still one thing missing: tests!

Testing Your Domain Logic
When you build the project, there won’t be any UI changes to let you know that your
code works. Still, at least you can rely on tests to tell you that your code does what
you expect.

You’ll definitely do some heavy testing later, when you implement use cases. For
now, though, there’s not that much to test. Regardless, you want to make sure you
start testing as soon as possible.

Your next step is to add tests to verify the domain logic you saw earlier. Adding tests
to every class would be redundant for your purposes, so you’ll focus on unit tests for
Photo.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 58

Collapse the petsave package, the root of the project. You’ll see three main
packages.

Figure 3.2 — Android Project Build Types

Expand the package that has the (test) label in front of it. This is where you’ll add
your tests, since it’s the place where tests that don’t rely on the Android framework
should live.

A good way to organize your tests is to mimic the package structure of the app code.
This makes it possible for tests to access any internal properties of the code, since
anything with the internal visibility modifier is only accessible to code in the same
package.

At the root of the package, create the following structure: common/domain/model/
animal. Inside animal, create PhotoTests.kt. You’ll end up with something like
this:

Figure 3.3 — Testing Source Structure

Test dependencies are already taken care of. Open the file you just created and add
the class along with a test:

class PhotoTests {

 private val mediumPhoto = "mediumPhoto"
 private val fullPhoto = "fullPhoto"
 private val invalidPhoto = "" // what’s tested in
Photo.isValidPhoto()

 @Test
 fun photo_getSmallestAvailablePhoto_hasMediumPhoto() {
 // Given

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 59

 val photo = Media.Photo(mediumPhoto, fullPhoto)
 val expectedValue = mediumPhoto

 // When
 val smallestPhoto = photo.getSmallestAvailablePhoto()

 // Then
 assertEquals(smallestPhoto, expectedValue)
 }
}

This test verifies the happy path, with the photo at its smallest available resolution.
This Given – When – Then structure is a nice way of organizing your test code. If
you maintain these comments, it gets easier to maintain the actual code in the
future.

It’s true: The words “maintenance” and “comments” don’t mix. Still, you should keep
your tests small and focus on one thing at a time. If you do, it won’t be too hard to
keep the comments in place.

Go ahead and add more tests below this one:

@Test
fun photo_getSmallestAvailablePhoto_noMediumPhoto_hasFullPhoto()
{
 // Given
 val photo = Media.Photo(invalidPhoto, fullPhoto)
 val expectedValue = fullPhoto

 // When
 val smallestPhoto = photo.getSmallestAvailablePhoto()

 // Then
 assertEquals(smallestPhoto, expectedValue)
}

@Test
fun photo_getSmallestAvailablePhoto_noPhotos() {
 // Given
 val photo = Media.Photo(invalidPhoto, invalidPhoto)
 val expectedValue = Media.Photo.NO_SIZE_AVAILABLE

 // When
 val smallestPhoto = photo.getSmallestAvailablePhoto()

 // Then
 assertEquals(smallestPhoto, expectedValue)
}

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 60

The first test checks if you’re returning the larger photo, in case the medium one is
invalid. The second test checks if you’re returning NO_SIZE_AVAILABLE when both
photo sizes are invalid. The only missing test now is for the case when you have a
medium photo, but not a full photo. No point in adding it though, as it would be
similar to the first test you just added.

These tests are simple. And they should be! They’re unit tests, after all. The
important thing here is that they’re actually testing behavior.

Take the last test, for example. You’re initializing Photo with invalidPhoto, and the
expectedValue is NO_SIZE_AVAILABLE. You know that both are empty strings, so
why not use the same property everywhere?

As discussed earlier, that’s not the behavior the code wants to achieve. They just
happened to both be empty strings — their meanings are vastly different. This is
what you have to test: You should test behavior, not code or data.

Key Points
• Domain layers protect you, the developer, and the app’s logic from external

changes.

• Entities have an identity that allows you to distinguish between them.

• Value objects enrich your domain and can either contain entities or be contained
by them.

• Defining how many custom types to have in your domain is something you should
consider carefully. Try to find a balance between under typing and over typing, as
both are troublesome.

• Be careful when adding logic to your app that relates to your domain model: That
logic might belong inside the actual model classes.

• Repository interfaces allow for dependency inversion, which is essential to keep
the domain layer isolated.

• Test behavior, not code or data.

You’ve reached the end of the chapter. Awesome! Next, you’ll learn about the data
layer.

Real-World Android by Tutorials Chapter 3: Domain Layer

raywenderlich.com 61

4Chapter 4: Data Layer —
Network
By Ricardo Costeira

Every software application needs data, and Android is no different. In fact, Android
apps are almost always heavily dependent on data. That’s why it’s important to
organize your data-centric code in its own layer, where you implement both data
access and caching.

Creating this layer is a lot of work, so you’ll build yours across two chapters, starting
with network access. In this chapter, you’ll learn why you need a data layer and how
to:

• Map data to the domain layer.

• Connect to a network API.

• Handle dependencies with Hilt.

• Create and test network interceptors.

Now, it’s time to jump in.

raywenderlich.com 62

What Is a Data Layer?
The data layer is where you put the code responsible for interacting with your data
sources.

An app can have multiple data sources, and they can change over time. For instance,
you can migrate from a REST server to a GraphQL server, or from a Room database
to a Realm database, https://www.mongodb.com/realm/mobile/database. These
changes only matter to the data handling logic, and should not affect the code that
needs the data.

A data layer has two responsibilities. It:

• Keeps your data I/O code organized in one place.

• Creates a boundary between the data sources and their consumers.

The Repository Pattern
One way to create this boundary is by following the repository pattern. This is a
popular pattern to use in Android because Google recommends it.

The repository is just an abstraction over the way you access data. It creates a thin
layer over data sources — a class that wraps up calls to the objects that do the heavy
lifting. While this sounds a bit redundant, it has its purposes. It lets you:

• Swap data sources without affecting the rest of the app. Swapping sources is rare,
but trust me, it happens. :]

• Create the boundary between the data layer and the other layers that need to
operate on data.

• Orchestrate the different data sources to produce a result the domain expects,
while keeping that orchestration logic hidden away.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 63

You already took the first step in creating this boundary by creating the repository
contract in the domain layer. You’ll now implement a repository that fulfills that
contract. This makes the data layer depend on the domain layer, as the dependency
rule demands.

Figure 4.1 — Closed Arrows Represent Data Flow. The Open Arrow Means “Implements”.

You can have as many repositories as you want. A popular choice is to have one
repository per domain entity type. This is a nice rule of thumb, but in the end, it’s
up to you to decide what works best.

For instance, in this app, you’ll use only one repository to deal with both animal and
organization entities. The latter just completes the former’s information, for now,
so giving it its own repository isn’t worth it.

Before implementing your repository, you need data sources. You’ll start by working
with the API. If you haven’t done so already, now’s a good time to look at PetFinder’s
documentation at https://www.petfinder.com/developers/v2/docs/, which will help
you understand some of the decisions you’ll make in this chapter.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 64

Network Data Models
No, no, calm down, you’re not implementing any more data models! The models are
already in the project, but they’re worth taking a look at.

Open the ApiAnimal.kt file in the common.data.api.model package.

You’ll see a bunch of different data classes. The first one is ApiAnimal. It
corresponds to Animal in your domain, but is modeled exactly after the information
the back end sends. The rest of the classes compose ApiAnimal, so they’re in the
same file for convenience.

All classes follow the same building logic, so look at any of them to understand that
logic. For instance, take ApiBreeds:

@JsonClass(generateAdapter = true) // 1
data class ApiBreeds(
 @field:Json(name = "primary") val primary: String?, // 2
 @field:Json(name = "secondary") val secondary: String?,
 @field:Json(name = "mixed") val mixed: Boolean?,
 @field:Json(name = "unknown") val unknown: Boolean?
)

Here you can see that:

1. This annotation decorates every class. The app uses Moshi to parse the JSON
from API responses. This annotation lets Moshi know it can create an object of
this type from JSON data. Moshi will also automagically create an adapter if you
set generateAdapter to true. It’ll then use it to create an instance of the class.
Without this parameter, you’ll get a runtime error from Moshi, unless you create
the adapter yourself.

2. There are two different things to notice here. First, the Moshi annotation maps
the JSON variable called primary to the code variable called primary. In this
case, you didn’t need the annotation because the names are the same. Still, it’s
there for consistency’s sake. Second, you used a nullable type. Long story short,
never trust your backend. :] Using nullable types ensures that even if something
goes wrong and you get unexpected nullable values in the response, the app
won’t crash.

Next, you’ll see how to map these DTOs (data transfer objects) into your domain.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 65

Mapping Data to the Domain
There are two typical ways of mapping data to the domain layer. One uses interfaces
and independent classes, while the other uses static and/or member functions of the
model. Here, you’ll use the former. You’ll try the other option later. :]

In the model package, expand mappers. You’ll see a lot of mappers there already,
along with an ApiMapper interface:

interface ApiMapper<E, D> {

 fun mapToDomain(apiEntity: E): D
}

Having all the mappers follow this interface gives you the advantage of decoupling
the mapping. This is useful if you have a lot of mappers and want to make sure they
all follow the same contract.

Now, open ApiAnimalMapper.kt and remove the block comment. The class already
has a few delegate methods for value objects and entities, using the appropriate
mappers. The only thing missing is to fulfill the interface’s contract, which you’ll do
by adding the following code below the add code here comment:

override fun mapToDomain(apiEntity: ApiAnimal):
AnimalWithDetails {
 return AnimalWithDetails(
 id = apiEntity.id
 ?: throw MappingException("Animal ID cannot be
null"), // 1
 name = apiEntity.name.orEmpty(), // 2
 type = apiEntity.type.orEmpty(),
 details = parseAnimalDetails(apiEntity), // 3
 media = mapMedia(apiEntity),
 tags = apiEntity.tags.orEmpty().map { it.orEmpty() },
 adoptionStatus = parseAdoptionStatus(apiEntity.status),
 publishedAt =
 DateTimeUtils.parse(apiEntity.publishedAt.orEmpty()) //
4
)
}

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 66

A few things worth noting here:

1. If the API entity doesn’t have an ID, the code throws a MappingException. You
need IDs to distinguish between entities, so you want the code to fail if they
don’t exist.

2. If name in the API entity is null, the code sets the name in the domain entity to
empty. Should it, though? CanAnimalWithDetails entities have empty names?
That depends on the domain. In fact, mappers are a good place to search for
domain constraints. Anyway, for simplicity, assume an empty name is possible.

3. details is a value object, so the code delegates its creation to an appropriate
method. Clean code keeps responsibilities well separated.

4. DateTimeUtils is a custom object that wraps java.time library calls. parse will
throw an exception if it gets an empty string. This is also a domain constraint.
There are future plans to order the animal list so the oldest ones in the system
appear first, so the date can’t be empty.

Now that the mapping is done, you’ll start implementing the API requests.

Connecting to the API With Retrofit
Retrofit is the go-to HTTP client for Android. It allows you to build an HTTP API in
record time, even with almost no knowledge about HTTP. It’s especially powerful
when coupled with OkHttp, which gives you more control over your requests.

In the api package, open PetFinderApi.kt. Retrofit lets you define your API as an
interface. PetFinderApi is empty right now. Which methods should you add?

For now, you’ll focus only on the data needs for the Animals near you feature,
leaving Search for later. That way, you’ll see how to develop a feature one layer at a
time versus jumping around through the layers.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 67

Animals near you needs to retrieve animal data from the API according to your
postal code and the distance you specify. Knowing that, you’ll add the following
method to the interface:

@GET(ApiConstants.ANIMALS_ENDPOINT) // 1
suspend fun getNearbyAnimals(// 2
 @Query(ApiParameters.PAGE) pageToLoad: Int, // 3
 @Query(ApiParameters.LIMIT) pageSize: Int,
 @Query(ApiParameters.LOCATION) postcode: String,
 @Query(ApiParameters.DISTANCE) maxDistance: Int
): ApiPaginatedAnimals // 4

Be sure to import Retrofit dependencies. Gradle already knows about them.

In this code:

1. You tell Retrofit you want to perform a GET request through the @GET
annotation, passing in the endpoint for the request.

2. You add the suspend modifier to the method. A network request is a one-shot
operation, so running it in a coroutine fits perfectly.

3. You specify the request’s parameters through the @Query annotation. For
instance, if you’re loading the first page of 20 items, the request will have
parameters like page=1&limit=20.

4. You return ApiPaginatedAnimals, which will map to the domain’s
PaginatedAnimals.

The PetFinder server uses OAuth for authentication. OAuth works with access
tokens. To get an access token, you have to send an authentication request with
your API key and API secret. You then use the token you receive to authenticate
your request, sending it as an authorization header.

You need a token for every request, except the authentication request itself. If the
token expires, you have to request a new one.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 68

In other words, for each request, you have to:

1. Store the original request.

2. Request a token if you don’t have one, or a new token if the current one has
expired.

3. Send a valid token in the header of the original request.

That’s a lot of work! Fortunately, OkHttp has a neat feature that can help:
interceptors.

Interceptors
OKHttp lets you manipulate your requests and/or responses through interceptors,
which let you monitor, change or even retry API calls.

Figure 4.2 — OKHttp interceptors

OkHttp allows two types of interceptors:

• Application interceptors: Act between your code and OkHttp. You’ll probably use
these most of the time. They have access to the full request along with the
already-processed response, and let you act on that data.

• Network interceptors: Act between OkHttp and the server. Useful in cases where
you have to worry about intermediate responses, like redirects. They give you
access to the data in the raw format it’s sent to the server, and to the actual
Connection object.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 69

Expand the interceptors package inside api. You’ll see three different interceptors
already:

• LoggingInterceptor: Logs request details to Android Studio’s Logcat.

• NetworkStatusInterceptor: Uses ConnectionManager to check the internet
connection, then either throws a custom NetworkUnavailableException or lets
the request proceed.

• AuthenticationInterceptor: Checks for token expiry, then requests a new one, if
needed, and stores it. If a valid token already exists, it adds it to the request’s
headers.

Before you continue, here are two things to consider about
NetworkUnavailableException:

1. The presentation layer needs to know about it in order to inform the user.
However, the dependency rule states that dependencies flow inwards, not
sideways. Since the data and presentation layers are at the same level, you want
to keep them decoupled. So, the exception is modeled as a domain exception.
This might seem awkward, but it’s conceivable for network unavailability to be
part of an Android app’s domain. Plus, this keeps your dependencies clean with
minimum effort.

2. It extends IOException. This is where the boundary between the layers starts to
blur. It extends IOException because Retrofit only handles IOExceptions. So, if
NetworkUnavailableException extends from any other type, the app is likely to
crash. This implicitly couples the domain layer to the data layer. If, someday, the
app stops using Retrofit in favor of a library that handles exceptions differently,
the domain layer will change as well.

You could invert the dependency by creating a domain interface for the exception
and implementing it in the data layer, but is the extra code and work really worth it
for such a simple case? This kind of situation is common when you’re trying to
follow an architectural pattern — you’ll eventually break it for simplicity. :]

You’ll have to weigh in the pros and cons of every outcome, then decide on one. The
important thing is to not get stuck in analysis paralysis. You can always change
things in the future. Refactoring is part of your job as a developer.

In this case, the decision is simple: It’s unlikely that the project will ever use an
HTTP client other than Retrofit, so it should be safe to keep the exception in the
domain layer. Even if you do change it, the only domain layer change will be the type
your custom exception extends.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 70

AuthenticationInterceptor
Open AuthenticationInterceptor.kt and take a closer look at intercept’s
signature:

 override fun intercept(chain: Interceptor.Chain): Response

The method takes in a Chain and returns a Response. Chain is the active chain of
interceptors running when the request is ongoing, while Response is the output of
the request.

There’s some code missing here that you’ll add to help understand how interceptors
work. It’s a fairly complex piece of code, so you’ll add it in parts.

Checking the Token

Delete all the code in the method, then add the following in its place:

val token = preferences.getToken() // 1
val tokenExpirationTime =
 Instant.ofEpochSecond(preferences.getTokenExpirationTime()) //
2
val request = chain.request() // 3

// if (chain.request().headers[NO_AUTH_HEADER] != null) return
chain.proceed(request) // 4

Here’s what’s happening in this code:

1. You get your current token from shared preferences.

2. You get the token’s expiration time.

3. You get your current request from the interceptor chain.

4. This is a special case for requests that don’t need authentication. Say you have a
login request, for instance. You can add a custom header to it in the API interface
— like NO_AUTH_HEADER — then check if the header exists here. If so, you let the
request proceed. You won’t need this logic in this case, but it’s good to be aware
of it.

You might find the access to preferences weird. Typically, a repository mediates
between the different data sources, while they remain unaware of each other. One of
its purposes in this layered architecture is not only to pass the other layers the data
they need, but also to keep data sources unaware of each other.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 71

In this case, though, all the action happens inside the data layer itself. You’d be
introducing accidental complexity by creating a circular dependency between the
API and the repository code. Also, Preferences is an interface, so the
implementation details are still decoupled. You must resist “convention triggered”
over-engineering. :]

Handling Valid Tokens

With that out of the way, add the next block of code below the one you just added:

val interceptedRequest: Request // 1

if (tokenExpirationTime.isAfter(Instant.now())) {
 interceptedRequest =
 chain.createAuthenticatedRequest(token) // 2
} else {

}

return chain
 .proceedDeletingTokenIfUnauthorized(interceptedRequest) // 3

In this code:

1. You declare a new request value. You’ll assign the authenticated version of the
original request to it.

2. If the token is valid, you create an authenticated request through
createAuthenticatedRequest. This function creates a request from the original
one and adds an authorization header with the token.

3. You tell the chain to proceed with your new request.
proceedDeletingTokenIfUnauthorized calls proceed on the chain, which does
all the HTTP magic and returns a response. If the response has a 401 code,
proceedDeletingTokenIfUnauthorized deletes the token.

Good, you have the happy path implemented! As long as you have a valid token, your
requests will go through. Now it’s time to cover the cases where the token is invalid
or doesn’t exist yet.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 72

Handling Invalid Tokens

Add the following block of code inside the empty else:

val tokenRefreshResponse = chain.refreshToken() // 1

interceptedRequest = if (tokenRefreshResponse.isSuccessful) { //
2
 val newToken = mapToken(tokenRefreshResponse) // 3

 if (newToken.isValid()) { // 4
 storeNewToken(newToken)
 chain.createAuthenticatedRequest(newToken.accessToken!!)
 } else {
 request
 }
} else {
 request
}

This is the most complex part. Here:

1. You call refreshToken. This function does all the magic of fetching you a new
token. It creates a whole new request pointing to the authentication endpoint
and adds the necessary API key and secret to its body. It executes the request by
calling proceedDeletingTokenIfUnauthorized, returning its response, then
stores the response in tokenRefreshResponse.

2. You set interceptedRequest with the result of the if-else condition.
Remember that in Kotlin, if-else is an expression. You check if refreshToken
was successful. If not, you return the original request.

3. If refreshToken is successful, you have a new token to work with. But since the
Moshi converter hasn’t run yet, you’re stuck with the JSON version of the
response instead of an actual DTO. As such, you call mapToken to get the token
DTO, ApiToken. Take a quick peek inside mapToken. This is what you’d have to do
for each DTO if Moshi didn’t provide that handy generateAdapter parameter
with the @JsonClass annotation. Plus, notice how it returns an invalid token
when it can’t parse what comes from the network. This is the null object
pattern.

4. Finally, you check if the new token is valid — in other words, if the DTO values
aren’t either NULL or empty. If so, you store the token in shared preferences and
call createAuthenticatedRequest with it. If the token is invalid, you set
interceptedRequest to the original request, since you still need one.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 73

Build and run to make sure everything works. Whew! You now have a way of
checking your token validity for every request and refreshing it if necessary. The only
thing missing now is to pass the interceptor to the OkHttp instance for Retrofit to
use.

You now need to add your interceptor to the dependency graph for the app.

Wiring Up the Interceptor
Expand the data.di package and locate and open the ApiModule.kt file. Focus on
the provideOkHttpClient method, for now. This creates the OkHttp instance that
Retrofit uses:

fun provideOkHttpClient(httpLoggingInterceptor:
HttpLoggingInterceptor): OkHttpClient {
 return OkHttpClient.Builder()
 .addInterceptor(httpLoggingInterceptor)
 .build()
}

As you see, the code already adds an interceptor. The parameter,
HttpLoggingInterceptor, is an OkHttp class. This instance is provided by the
method below, provideHttpLoggingInterceptor. It uses the LoggingInterceptor
in the interceptors package. It logs the headers and body of both requests and
responses.

Look at the code inside provideOkHttpClient. You use addInterceptor to add
application interceptors. For network interceptors, you’d have to use
addNetworkInterceptor.

Ordering the Interceptors

There’s an important detail you must consider before adding the other interceptors.
Like Retrofit’s type converters, interceptors are called in order. So, if you do
something like:

OkHttpClient.Builder()
 .addInterceptor(A)
 .addInterceptor(C)
 .addInterceptor(B)

The interceptors will run in that order: A → C → B.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 74

With this in mind, replace the method with:

fun provideOkHttpClient(
 httpLoggingInterceptor: HttpLoggingInterceptor, // 1
 networkStatusInterceptor: NetworkStatusInterceptor,
 authenticationInterceptor: AuthenticationInterceptor
): OkHttpClient {
 return OkHttpClient.Builder()
 .addInterceptor(networkStatusInterceptor) // 2
 .addInterceptor(authenticationInterceptor) // 3
 .addInterceptor(httpLoggingInterceptor) // 4
 .build()
}

In this code, you add:

1. The needed dependencies as parameters.

2. networkStatusInterceptor first. If the device doesn’t have an internet
connection, there’s no need to allow the request to go further.

3. authenticationInterceptor after the network interceptor so the token refresh
logic only executes if there’s a connection.

4. httpLoggingInterceptor, which wraps LoggingInterceptor.

Is it weird to put httpLoggingInterceptor last? Should it be the first one to run, so
it can log even authenticationInterceptor’s requests?

Nope! If you add it first, it’ll run while there’s still nothing to log. Interceptors work
on the chain they receive, so you want the logging interceptor to get the final chain.

This concludes your work with the interceptors. Well done! The last thing missing
before you proceed to tests is dependency management.

Managing API Dependencies With Hilt
Dependency injection is a great way to maintain a decoupled and testable
architecture as your project grows in complexity — but it’s hard to do by hand. Using
a DI framework like Dagger helps, but then you have to deal with Dagger’s own
quirks.

Note: If you want to learn everything about Dagger, Hilt and dependency
injection, Dagger By Tutorials, https://www.raywenderlich.com/books/dagger-
by-tutorials, is the right place for you.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 75

PetFinder uses Hilt, Google’s Android DI solution. Although it’s built on top of
Dagger, it’s a lot easier to use.

Open ApiModule.kt again. Although ApiModule has the word Module in its name
and is located in a di package, it’s not a Hilt module… Yet.

You’ll change that next.

Turning ApiModule Into a Hilt Module

Annotate ApiModule with @Module:

@Module
object ApiModule

Build the app and you’ll get a Hilt error. Unlike common Dagger errors, you can
actually read and understand it!

The error states that ApiModule is missing an @InstallIn annotation. This relates
to one of the best Hilt features. When you use Hilt, you don’t need to create Dagger
components.

Hilt generates a hierarchy of predefined components with corresponding scope
annotations. These components are tied to Android lifecycles. This makes it a lot
easier for you to define the lifetime of your dependencies.

Define the component where you’ll install ApiModule by adding:

@Module
@InstallIn(SingletonComponent::class)
object ApiModule

You’re installing the module in SingletonComponent. This component is the
highest in the component hierarchy — all other components descend from it. By
installing ApiModule here, you’re saying that any dependency it provides should live
as long as the app itself. Also, since each child component can access the
dependencies of its parent, you’re ensuring that all other components can access
ApiModule.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 76

Defining Dependencies

With the module installed, you now need to define the dependencies it provides. Just
like with Dagger, Hilt allows you to inject dependencies with a few annotations:

• @Inject: Use in class constructors to inject code you own, such as the data
mappers.

• @Provides: Use in modules to inject code you don’t own, like any library instance.

• @Binds: Use in modules to inject interface implementations when you don’t need
initialization code. You’ll see an example later.

In this case, annotate every method with @Provides. For provideApi, add the
@Singleton annotation as well:

@Provides
@Singleton
fun provideApi(okHttpClient: OkHttpClient): PetFinderApi

@Provides works as it does in traditional Dagger. @Singleton, on the other hand, is
the scope annotation for SingletonComponent. You can only add annotations to a
module that match the scope of the component. If you try to use other scope
annotations, you’ll get a compile-time error. You won’t get any errors if you try that
now though, because your code doesn’t request PetFinderApi yet.

@Singleton ensures that only one instance of PetFinderApi exists during the
app’s lifetime. For a stateless class whose job is to make requests and return
responses, that makes sense, especially if it’s supposed to work as long as the app
lives. Having the @Singleton annotation reveals the intent of the class. Plus, there
are also two important details about OKHttp that you have to consider:

• Each OkHttp instance has its own thread pool, which is expensive to create.

• OkHttp has a request cache on disk. Different OkHttp instances will have
different caches.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 77

Of course, in some cases, it makes sense to have more than one instance of OkHttp.
For example, if you need to connect with two APIs, you might have two Retrofit
interfaces. If the APIs are different to the point where it doesn’t even make sense for
them to have a common cache, you might choose to have more than one OKHttp
instance. In that case, however, you’d also have to distinguish the bindings with
qualifiers. In the end, as always, it depends.

As a final note, you might wonder why ApiModule is an object. Well, it could be a
class, or even an abstract class. The thing is, if a module only has @Provides and is
stateless — as every module should be! — making it an object allows Hilt or, more
specifically, Dagger, to provide the dependencies without incurring the costs of
creating object instances. All this becomes irrelevant if you’re using R8, because that
can turn providers that come from stateless module instances into static ones.
Regardless, it’s a good practice.

Build and run to make sure everything works. You’re done with dependency
management… For now. :] In fact, you’re almost done with the chapter. There’s only
one thing missing: tests!

Testing the Network Code
There are a few things you can test at this point:

• The data mappers

• The interceptors

There’s no point in testing the API requests, since you’d be testing Retrofit itself, not
your app.

You also won’t test the data mappers here, as testing an interceptor covers the same
testing details and more. That doesn’t mean you don’t need to test them in a real
app, however! Though most of them start as simple builders, some can evolve to
have some logic. In fact, the Enum mappers already have logic to test if the input can
be translated into an Enum type.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 78

Anyway, you’ll only test AuthenticationInterceptor. The package structure in
test doesn’t exist yet. You’ll use a nifty Android Studio trick to create the whole
thing automatically.

Expand api.interceptors, then open AuthenticationInterceptor.kt. Place the
cursor on the class name and press Option-Enter on MacOS or Alt-Enter on
Windows. On the small context menu that appears, click Create test. On the window
that opens, choose JUnit4 as the testing library. Finally, in the second window,
choose the src/test directory under the unitTest package.

Figure 4.3 — Creating Tests With Android Studio’s Help.

Preparing Your Test
You need to create an instance of AuthenticationInterceptor for testing.
Remember, the constructor requires an instance of Preferences. You have three
options. You can provide either:

1. A real Preferences instance using PetSavePreferences.

2. A fake Preferences instance.

3. A mock Preferences instance.

Providing a real one is out of the question, since you’d mess with the real shared
preferences data. So you need to either fake it or mock it.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 79

Fakes are useful whenever you need the dependency to have some sort of complex
state. If that state varies a lot in your tests, it’s much easier to have a fake with a
mutating state that you verify as the tests run.

With a mock, you have to define the behavior for each individual test, along with
verifying all the calls you expect to happen. For this case, although Preferences is
stateful — that is, it reads and writes API token info — you’ll go with a mock just to
see how much work it takes, even for simple states.

To test the interceptor, you’ll need to add it to an OKHttp instance. You need a real
instance to enqueue a request and use the interceptor on it. Connecting to a real API
would make the test slow and flaky, so you’ll use MockWebServer to mock out the
API.

Using MockWebServer
MockWebServer lets you test your network code without connecting to a real server.
It creates a local web server that goes through the whole HTTP stack. You can use it
like any other mocking framework and actually mock server responses.

There’s a mock response in src/debug/assets/networkresponses that mocks a
server response for when you request a new token. It’s in the debug folder so
instrumented tests can also access it in the future.

To access the file, you have to do some configuration work. Open the app module’s
build.gradle. Add the following inside the Android block, just below
buildFeatures:

testOptions {
 unitTests {
 includeAndroidResources = true
 }
}

Sync Gradle. Now, your unit tests can access all the resources, assets and manifests.
Next, go to the utils package inside the api test package and open JsonReader.kt.
You’ll use getJson in the object to read the mocked response in your test.

As you can see, it needs a Context:

val context =
InstrumentationRegistry.getInstrumentation().context

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 80

In other words, your tests will need access to the Android framework. To avoid
having to run them on the emulator, you’ll use Robolectric.

The way to do it is simple. Back in your test class, add the following annotations to
the class:

@RunWith(RobolectricTestRunner::class)
class AuthenticationInterceptorTest

Testing
With that out of the way, you can start testing. In
AuthenticationInterceptorTest, add the properties you’ll need in yout tests.

private lateinit var preferences: Preferences
private lateinit var mockWebServer: MockWebServer
private lateinit var authenticationInterceptor:
AuthenticationInterceptor
private lateinit var okHttpClient: OkHttpClient

private val endpointSeparator = "/"
private val animalsEndpointPath =
 endpointSeparator + ApiConstants.ANIMALS_ENDPOINT
private val authEndpointPath =
 endpointSeparator + ApiConstants.AUTH_ENDPOINT
private val validToken = "validToken"
private val expiredToken = "expiredToken"

You’ll test the valid token and expired token use cases. For both tests, you need to:
Start MockWebServer, mock Preferences and create the interceptor and the OkHttp
instances. To do so before every test, add the following below the properties:

@Before
fun setup() {
 preferences = mock(Preferences::class.java)

 mockWebServer = MockWebServer()
 mockWebServer.start(8080)

 authenticationInterceptor =
 AuthenticationInterceptor(preferences)
 okHttpClient = OkHttpClient().newBuilder()
 .addInterceptor(authenticationInterceptor)
 .build()
}

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 81

Pretty straightforward. @Before ensures that this runs before every test. The method
creates the Preferences mock, starts MockWebServer on port 8080 and creates the
interceptor and OkHttp instances. You also need to close the server at the end of
each test, so add the following method as well:

@After
fun teardown() {
 mockWebServer.shutdown()
}

@After is the reverse of @Before, making this method run after every test.

Writing Your First Test
For the first test, you’ll check the valid token use case. Below teardown, add:

@Test
fun authenticationInterceptor_validToken() {
 // Given

 // When

 // Then
}

Having those comments is a neat way of keeping the code inside tests organized.

Replacing // Given

Next, below // Given, add:

`when`(preferences.getToken()).thenReturn(validToken)
`when`(preferences.getTokenExpirationTime()).thenReturn(
 Instant.now().plusSeconds(3600).epochSecond
)

mockWebServer.dispatcher = getDispatcherForValidToken()

The two when calls set what the mock should return for this test: A valid token and a
time in the future when the token will expire. The last line is more interesting.
MockWebServer can take a Dispatcher that specifies what to return for each
request.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 82

Below your test method, define getDispatcherForValidToken():

private fun getDispatcherForValidToken() = object : Dispatcher()
{ // 1
 override fun dispatch(request: RecordedRequest): MockResponse
{
 return when (request.path) { // 2
 animalsEndpointPath ->
{ MockResponse().setResponseCode(200) } // 3
 else -> { MockResponse().setResponseCode(404) } // 4
 }
 }
}

This method:

1. Returns an anonymous MockWebServer Dispatcher.

2. Checks for the path the request points to in the dispatch method override.

3. If the path is the /animals endpoint, the method returns a 200 response code.
That’s all you need for this test.

4. For any other endpoint, it returns a 404 code which means that the resource is
not available.

Replacing // When

Back to the test method, below // When, add the OKHttp call:

okHttpClient.newCall(
 Request.Builder()
 .url(mockWebServer.url(ApiConstants.ANIMALS_ENDPOINT))
 .build()
).execute()

Here, you’re telling OkHttp to make a new request. You use MockWebServer to create
the URL for it, passing in the /animals endpoint.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 83

Replacing // Then

Finally, add the verifications below // Then:

val request = mockWebServer.takeRequest() // 1

with(request) { // 2
 assertThat(method).isEqualTo("GET")
 assertThat(path).isEqualTo(animalsEndpointPath)
 assertThat(getHeader(ApiParameters.AUTH_HEADER))
 .isEqualTo(ApiParameters.TOKEN_TYPE + validToken)
}

If the assertThat calls do not automatically resolve, add import
com.google.common.truth.Truth.* at the top of the file.

This code:

1. Awaits the next HTTP request. For this case, there should only be one request to
begin with. This is a blocking method, so if anything goes wrong and the
request never executes, the code will hang here until it times out.

2. Scopes the request and checks a few of the request’s parameters. If it’s a GET
request, the path points to the /animals endpoint and it has the authorization
header, the test passes.

Build and run your test. Everything should work!

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 84

Writing Your Second Test
Now, you’re ready to write the second test, following the previous format:

@Test
fun authenticatorInterceptor_expiredToken() {
 // Given

 // When

 // Then
}

Replacing // Given

The // Given part is similar:

`when`(preferences.getToken()).thenReturn(expiredToken)
`when`(preferences.getTokenExpirationTime()).thenReturn(
 Instant.now().minusSeconds(3600).epochSecond
)

mockWebServer.dispatcher = getDispatcherForExpiredToken()

The difference is that preferences now returns expiredToken and an expired token
time. This forces the interceptor to make an authentication request. Also, you’re
setting MockWebServer to a different dispatcher.

Below the other dispatcher method, define getDispatcherForExpiredToken() as:

private fun getDispatcherForExpiredToken() = object :
Dispatcher() {
 override fun dispatch(request: RecordedRequest): MockResponse
{
 return when (request.path) {
 authEndpointPath -> {

MockResponse().setResponseCode(200).setBody(JsonReader.getJson("
networkresponses/validToken.json"))
 }
 animalsEndpointPath ->
{ MockResponse().setResponseCode(200) }
 else -> { MockResponse().setResponseCode(404) }
 }
 }
}

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 85

The difference from the other method is this one returns a specific response for the
authentication endpoint. Not only does it set the response code to 200, it also sets
the body to the mocked token response. This allows the interceptor to proceed with
making a call to the /animals endpoint.

Replacing // When

The // When part is exactly the same:

okHttpClient.newCall(
 Request.Builder()
 .url(mockWebServer.url(ApiConstants.ANIMALS_ENDPOINT))
 .build()
).execute()

This is where you’re actually sending the request to the mockWebServer.

Replacing // Then

The largest change is to the // Then part:

val tokenRequest = mockWebServer.takeRequest() // 1
val animalsRequest = mockWebServer.takeRequest() // 2

with(tokenRequest) { // 3
 assertThat(method).isEqualTo("POST")
 assertThat(path).isEqualTo(authEndpointPath)
}

val inOrder = inOrder(preferences) // 4

inOrder.verify(preferences).getToken()
inOrder.verify(preferences).putToken(validToken)

verify(preferences, times(1)).getToken() // 5
verify(preferences, times(1)).putToken(validToken)
verify(preferences, times(1)).getTokenExpirationTime()
verify(preferences, times(1)).putTokenExpirationTime(anyLong())
verify(preferences,
times(1)).putTokenType(ApiParameters.TOKEN_TYPE.trim())
verifyNoMoreInteractions(preferences)

with(animalsRequest) { // 6
 assertThat(method).isEqualTo("GET")
 assertThat(path).isEqualTo(animalsEndpointPath)
 assertThat(getHeader(ApiParameters.AUTH_HEADER))
 .isEqualTo(ApiParameters.TOKEN_TYPE + validToken)
}

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 86

In this code, you:

1. Await the next request. Since preferences returns an expired token, the first
request coming in should be for a new token.

2. Wait for the next request. If the code works, after the new token request, there
should be a request on the /animals endpoint.

3. Verify the token request by checking whether it’s a POST request and if it points
to the authentication endpoint.

4. Use Mockito to verify the actions on preferences. You check that getToken is
called before putToken(validToken). That should be the normal workflow to
invalidate the old token and get a new one.

5. You use times(1) to check that each of the Preferences you expect to be called
is only called once. Also, verifyNoMoreInteractions(preferences) ensures
that no methods other than these are called. Note that
putTokenExpirationTime can be called with any long value. The code creates a
timestamp at the moment it’s called, so trying to get that exact time here could
cause the test to fail randomly.

6. Verify the animal request, just as you did in the other test.

If you were to use a fake Preferences instance instead of a mock, you’d only need to
verify its final state. In the end, all you care about is that your code has the correct
behavior to produce the correct state.

With Mockito, however, it’s easy to get carried away, as in the test above. In no time,
you’ll be encoding implementation details in your tests through Mockito. Imagine
that, in the future, the way the interceptor interacts with preferences changes but
the end result remains the same. Your tests will fail!

Strive to test behavior and state instead of the implementation itself.

Again, mocks can be useful to mock boundary dependencies or objects you don’t
own. They just require some discipline to use. In a case like this, a fake would be
better. It’s more work at the beginning, but it pays off in the long run.

Build and run your tests to make sure everything works. And that’s it! You’re done
with the network code at this point. Now that you can connect to an external data
source, you need a way of saving the data you retrieve from it. In the next chapter,
you’ll dive into caching.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 87

Key Points
• A data layer keeps your data I/O organized and in one place.

• The repository pattern is great for abstracting data sources and providing a clear
boundary around the data layer.

• OkHttp’s interceptors are useful to fine tune requests.

• When properly configured, dependency injection frameworks do a lot of the heavy
lifting of managing dependencies for you.

• MockWebServer allows you to create a test environment that’s close to the real
thing.

Real-World Android by Tutorials Chapter 4: Data Layer — Network

raywenderlich.com 88

5Chapter 5: Data Layer —
Caching
By Ricardo Costeira

In this chapter, you’ll complete the data layer you started in the previous chapter by
adding caching capabilities to it. At the end of the chapter, you’ll pull everything
together by assembling the repository.

In the process, you’ll learn:

• How to cache data.

• Another way of mapping data to the domain layer.

• More about dependency management.

• How to bundle everything in the repository.

• How to test the repository.

You’ll do this by working on the PetSave app.

raywenderlich.com 89

Cache Data Models
The models are in the materials for this chapter, but they still need some work. You’ll
use Room to create the caching system. Since Room is an abstraction over SQLite,
you have to establish the relationships between database entities. SQLite is a
relational database engine, after all.

Start by expanding common.data.cache.model. Inside, you’ll find two other
packages, one for each domain entity. This kind of structure didn’t exist in the
network code because you had to adapt to whatever the server sends. With caching,
you have full control over the data.

Look at this entity relationship diagram:

Figure 5.1 — PetSave entity relationship diagram. Made with dbdiagram.io.

Using database jargon:

• One organization has many animals.

• One animal has many photos.

• One animal has many videos.

• Many animals have many tags.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 90

The organization to animals relationship is there for completeness only; you won’t
implement it.

If you’re wondering about the last relationship, it’s easy to understand. Tags are
attributes of the animal. They include descriptions like “cute”, “playful” and
“intelligent”. So, an animal can have many tags, and a tag can be associated with
many animals. Hopefully, more than one animal has the “cute” tag. :]

Expand the cachedanimal package. In it, you’ll find a few different files that
correspond to most of the tables in the diagram above.

Now, open CachedPhoto.kt. The @Entity annotation specifies the table name,
while @PrimaryKey defines the primary key — which is photoId, in this case.
Having autoGenerate = true as a @PrimaryKey parameter tells Room that it might
need to generate a new ID for new entries. It checks photoId’s value to determine if
it needs to do so. If the value is zero, Room treats it as not set, creates a new ID and
inserts it with the new entry. That’s why photoId has the default value of zero.

Adding Foreign Keys
Before creating relationships, you need to add the foreign keys that allow you to
establish them. Complete the @Entity above the class with:

@Entity(
 tableName = "photos",
 foreignKeys = [
 ForeignKey(
 entity = CachedAnimalWithDetails::class, // 1
 parentColumns = ["animalId"], // 2
 childColumns = ["animalId"], // 3
 onDelete = ForeignKey.CASCADE // 4
)
],
 indices = [Index("animalId")] // 5
)

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 91

This annotation defines a lot of stuff for you. It:

1. Specifies the entity that the foreign key belongs to: CachedAnimalWithDetails,
in this case. Although you have Animal and AnimalWithDetails as domain
entities, there’s no CachedAnimal in the database. Having two sources of truth
for the same thing goes against database normalization, so you should avoid it.

2. Defines the column that matches the foreign key in the parent table,
CachedAnimalWithDetails.

3. Defines the column in this table where you find the foreign key.

4. Instructs Room to delete the entity if the parent entity gets deleted.

5. Sets the foreign key as an indexed column.

Setting columns as indices is a way for Room to locate data more quickly. Here, you
set animalId as an index because it’s a foreign key. If you don’t set a foreign key as
an index, changing the parent table might trigger an unneeded full table scan on
the child table, which slows your app down. Fortunately, Room throws a compile-
time warning if you don’t index the key.

Having indices speeds up SELECT queries. On the other hand, it slows down INSERTs
and UPDATEs. This is nothing to worry about with PetSave, as the app will mostly
read from the database.

Setting Up Relationships With Room
Starting on version 2.4, Room gives you two possible approaches for establishing
relationships between entities:

• Using intermediate data classes (already available before 2.4).

• Using multimap return types.

Intermediate data classes allow you to be explicit about the relationships between
entities through annotations at the expense of, well, having more classes to
maintain. What you gain in return is that you avoid having to write complex SQL
queries by making your query methods return these intermediate classes.Multimap
return types allows your query methods to simply return a mapping of your entities
instead of having to create an intermediate data class type for it. The catch here is
that the SQL associated with said method will do most of the work.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 92

You can go with whichever option you prefer. Google recommends multimap… so
we’re going with data classes, not only due to (way) simpler SQL, but also to follow
the screaming architecture workflow. It’s a lot easier to spot what kind of entities
your database can return when you’ve named your classes properly. Besides, are you
even an Android developer if you don’t ignore half of Google’s recommendations? :]

Setting Up Your One-to-Many Relationships
The @Entity annotations in CachedVideo and CachedAnimalWithDetails already
adhere to the diagram in Figure 5.1, which means that everything’s ready to set up
your one-to-many relationships. To model these with Room, you have to:

1. Create one class for the parent and another for the child entity. You already have
these.

2. Create a data class representing the relationship.

3. Have an instance of the parent entity in this data class, annotated with
@Embedded.

4. Use the @Relation annotation to define the list of child entity instances.

The data class that models the relationship already exists. It’s called
CachedAnimalAggregate. You’ll use this class later to map cached data into domain
data since it holds all the relevant information.

Open CachedAnimalAggregate.kt and annotate photos and videos in the
constructor like this:

data class CachedAnimalAggregate(
 @Embedded // 1
 val animal: CachedAnimalWithDetails,
 @Relation(// 2
 parentColumn = "animalId",
 entityColumn = "animalId"
)
 val photos: List<CachedPhoto>,
 @Relation(
 parentColumn = "animalId",
 entityColumn = "animalId"
)
 val videos: List<CachedVideo>,
 // ...
) {
 // ...
}

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 93

In this code you used:

1. @Embedded for the animal property of type CachedAnimalWithDetails.

2. @Relation for the photos and videos properties of types List<CachedPhoto>
and List<CachedVideo>, respectively. By specifying the keys of both the parent
(CachedAnimalAggregate through the embedded animal property) and the
children (photos and videos), Room can use this annotation to handle the
relationships for you.

You’ve now prepared all your one-to-many relationships. But before proceeding, let’s
talk about multimaps for a second.

So, multimaps allow Room to return a mapping of entities, rather than a custom
class that defines the relationship between said entities, at the expense of a more
complex SQL query. For instance, imagine that you want all animals that have
photos, along with the corresponding photos. You’d have something like:

@Query(
 "SELECT * FROM animals " +
 "JOIN photos ON animals.animalId = photos.animalId"
)
abstract fun loadUserAndBookNames():
Map<CachedAnimalWithDetails, List<CachedPhoto>>

That’s all fine and dandy, but now try to get the same result that
CachedAnimalAggregate gives you — an animal with (or without) photos, videos
and tags — through a multimap. Go ahead, I’ll wait. Not that easy, huh?

Multimaps work fine for the simpler cases, but if you find yourself in despair over a
multimap with an extremely complex SQL statement, just go with an extra class. Be
kind to yourself!

With that out of the way, on to the next relationship you need to handle.

Setting Up the Many-to-Many Relationship
Now, you’ll handle the many-to-many relationship, which you need to model a little
differently from the one-to-many case. Here, you need to create a:

1. Class for each entity (already done).

2. Third class to cross-reference the two entities by their primary keys.

3. Class that models the way you want to query the entities. So, either an animal
class with a list of tags, or a tag class with a list of animals.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 94

In this case, you want an animal class with a list of tags. You already have that with
CachedAnimalAggregate, so add the following above tags in the constructor, like
this:

data class CachedAnimalAggregate(
 // ...
 @Relation(// 1
 parentColumn = "animalId", // 2
 entityColumn = "tag", // 2
 associateBy =
Junction(CachedAnimalTagCrossRef::class) // 3
)
 val tags: List<CachedTag>
) {
 // ...
}

In this code, you:

1. Define a many-to-many relation with @Relation.

2. Define the parent and child entities, although they’re not exactly parent and
child. Again, this just defines the way you want to query the entities.

3. Use associateBy to create the many-to-many relationship with Room. You set it
to a Junction that takes the cross-reference class as a parameter. As you can see
from the entity relationship diagram, the cross-reference class is
CachedAnimalTagCrossRef.

You now need to define the cross reference through the CachedAnimalTagCrossRef
class.

Implementing the Cross-Reference Table
All that’s missing now is to deal with the cross-reference table. Open
CachedAnimalTagCrossRef.kt. You need to annotate the class as a Room entity:

@Entity(
 primaryKeys = ["animalId", "tag"], // 1
 indices = [Index("tag")] // 2
)
data class CachedAnimalTagCrossRef(
 val animalId: Long,
 val tag: String
)

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 95

Two things to note here:

1. You’re defining a composite primary key with animalId and tag. So, the
primary key of this table is always a combination of the two columns.

2. While primary keys are indexed by default, you’re explicitly indexing tag, and
tag only. You need to index both, because you use both to resolve the
relationship. Otherwise, Room will complain.

What’s happening here?

It has to do with how SQLite works. A query can use a composite index or a subset of
that index, as long as the subset matches the original index from the beginning. So in
this case, since the index is (animalId, tag), both (animalId) and (animalId,
tag) are valid. If you change the primary key above to ["tag", "animalId"], then
you’d have to index animalId instead of tag:

@Entity(
 primaryKeys = ["tag", "animalId"], // HERE
 indices = [Index("animalId")]
)
data class CachedAnimalTagCrossRef(
 val animalId: Long,
 val tag: String
)

Anyway, you’re adding a new Room entity, so you need to inform Room about it.
Open PetSaveDatabase.kt in the cache package. Add CachedAnimalTagCrossRef
to the list of entities already there:

@Database(
 entities = [
 CachedVideo::class,
 CachedTag::class,
 CachedAnimalWithDetails::class,
 CachedOrganization::class,
 CachedAnimalTagCrossRef::class // HERE
],
 version = 1
)
abstract class PetSaveDatabase : RoomDatabase()

Rebuild your project and run the app. Everything works as expected!

This concludes the work on the models. However, you still need to map them to the
domain.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 96

Another Way of Data Mapping
When you worked with the API, you created specialized classes for data mapping.
Remember reading about using static or member functions to achieve the same goal?
Well, open CachedPhoto.kt and look at the companion object:

@Entity(tableName = "photos")
data class CachedPhoto(
 // ...
) {
 companion object {
 fun fromDomain(// HERE
 animalId: Long,
 photo: Media.Photo
): CachedPhoto {
 val (medium, full) = photo
 return CachedPhoto(
 animalId = animalId,
 medium = medium,
 full = full
)
 }
 }
 // ...
}

In this code, fromDomain returns a CachedPhoto instance, which it builds from a
domain Photo and the corresponding animalId. It has to be a companion object
function due to dependencies. To make it a class member function, you’d have to
add it to Photo, which would make the domain aware of the data layer.

You could also achieve the same result with an extension function, as long as it
extends CachedPhoto. In the end, both options boil down to static functions. The
extension function does have the advantage of extending CachedPhoto’s behavior
without changing the class. However, people like to keep the extension in the same
file for convenience.

Picking one or the other in this simple case is mostly a matter of preference.
Choosing the companion object means keeping the mapping behavior close to the
class. It’s a simple class, and its job is to be a DTO, so there’s no particular reason to
hide the mapping.

Anyway, look below the companion and you’ll find CachedPhoto’s only function:

@Entity(tableName = "photos")
data class CachedPhoto(
 // ...

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 97

) {
 // ...
 fun toDomain(): Media.Photo = Media.Photo(medium, full) //
HERE
}

This does the reverse of the other function, creating a domain model out of the cache
DTO. Simple. :]

Cache models have toDomain and fromDomain functions, while API models only
have toDomain. That’s because you won’t send anything to the API, so there’s no
need to translate domain models into API DTOs.

OK, this wraps up model mapping. Time to get yourself some of those sweet SQL
statements that everyone loves! The DAOs (data access objects) are waiting.

Caching Data With Room
Think back to when you implemented the API interface. You added the API method
to meet the data needs for the Animals near you feature. Now, it’s just a matter of
accessing the data. :]

Room uses DAOs to manage data access. Typically, you’ll want one DAO per domain
entity since they’re the objects whose identity matters. You already have
OrganizationsDao but you need to add one for animals.

Create a new file with name AnimalsDao.kt in common.data.cache.daos and add
the following code:

@Dao // 1
abstract class AnimalsDao { // 2
 @Transaction // 3
 @Query("SELECT * FROM animals") // 4
 abstract fun getAllAnimals():
Flowable<List<CachedAnimalAggregate>> // 5
}

In this code, you:

1. Use @Dao to tell Room that this abstraction will define the operations you want to
use to access the data in its database.

2. Create AnimalsDao as an abstract class because you’ll need to add some concrete
methods. Room also supports interfaces in case you just need operations that you
can specify solely through annotations.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 98

3. Use @Transaction to tell Room to run the specific operation in a single
transaction. Room uses a buffer for table row data, CursorWindow. If a query
result is too large, this buffer can overflow, resulting in corrupted data. Using
@Transaction avoids this. It also ensures you get consistent results when you
query different tables for a single result.

4. Define the SQL query to retrieve all the animals with @Query.

5. Declare getAllAnimals() as the function to invoke to fetch all the animals and
their corresponding photos, videos and tags. This operation returns RxJava’s
Flowable. This creates a stream that will infinitely emit new updates. That way,
the UI always has live access to the latest cached data. It returns a list of
CachedAnimalAggregate, which is the class with all the information you need to
produce a domain AnimalWithDetails.

When you build the app, Room will create all the code you need to fetch all the
animals from the database. Of course, you also need a way to insert the data.

Inserting New Animals
You’ve now gotten all the animals. To insert new ones, add the following code in
AnimalsDao.kt:

@Dao
abstract class AnimalsDao {
 // ...
 @Insert(onConflict = OnConflictStrategy.REPLACE) // 1
 abstract suspend fun insertAnimalAggregate(// 2
 // 3
 animal: CachedAnimalWithDetails,
 photos: List<CachedPhoto>,
 videos: List<CachedVideo>,
 tags: List<CachedTag>
)
}

In this code:

1. You annotate the method declaration with @Insert. This tells Room that it’s a
database insertion. Setting onConflict to OnConflictStrategy.REPLACE makes
Room replace any rows that match the new ones. There’s no @Transaction
annotation because Room already runs inserts within a transaction.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 99

2. By default, Room won’t let you perform I/O operations on the UI thread. If you
did, you’d most likely block the thread, which means freezing your app! A great
way to avoid this is by using suspend functions. Since an insert is a one-shot
operation, you don’t need anything fancy like reactive streams. Plus, using the
suspend modifier here makes Room run the insert on a background thread.

3. You can’t insert CachedAnimalAggregate because it’s not a Room entity.
However, you can decompose it into its @Entity-annotated components and pass
them into this method. Since they’re all Room entities, Room will know how to
insert them.

The previous operation allows you to insert a single entity. In practice you usually
need to insert many of them. In the next paragraph you’ll see how.

Mapping the API Results to the Cache
After parsing the results from the API, you need to map them to the cache. Since
you’ll get a list of animals from the API, you’ll end up with a list of
CachedAnimalAggregate after the mapping. The last method will handle the
decomposing mentioned above.

In the same AnimalsDao.kt file, add the following code:

@Dao
abstract class AnimalsDao {
 // ...
 suspend fun insertAnimalsWithDetails(animalAggregates:
List<CachedAnimalAggregate>) {
 for (animalAggregate in animalAggregates) {
 insertAnimalAggregate(
 animalAggregate.animal,
 animalAggregate.photos,
 animalAggregate.videos,
 animalAggregate.tags
)
 }
 }
}

Here, the method goes through the list and calls insertAnimalAggregate for each
one. This is why you’re using an abstract class. Although interfaces can also have
method implementations, they can be extended. This way, since the method doesn’t
have the open modifier, it’s clear that it should not be extended in any way. It’s just a
matter of better conveying the code’s intent.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 100

Each iteration of this method’s for loop will trigger the Flowable from
getAllAnimals. Worst case, this can cause some backpressure in the stream. This
isn’t a problem — Room’s backpressure strategy keeps only the latest event, which is
what you want in the end. Still, it’s something important to be aware of.

You don’t need to declare any more methods for now. Open the PetSaveDatabase.kt
file in the common.data.cache package and add the following code:

@Database(
 // ...
)
abstract class PetSaveDatabase : RoomDatabase() {
 // ...
 abstract fun animalsDao(): AnimalsDao // HERE
}

By adding animalsDao(), you tell Room that AnimalsDao is also available so it’ll
provide a way to access it.

Build the app. Go back to AnimalsDao now and you’ll see that the IDE displays a
little green icon on the left, meaning that something implemented the abstract
methods.

Figure 5.2 — Room Dao implementation

Room automagically did all the hard work for you!

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 101

Updating the Cache to Handle the Data
You now need to update the cache implementation to handle animal data. Open
Cache.kt under common.data.cache. This is the interface that exposes the caching
methods for the repository to use. In terms of abstraction level, it’s on par with
PetFinderApi. The difference is that you have to implement it manually because
Room only creates the lower-level stuff for you.

Cache already has code for organizations. The code for animals is the DAO
equivalent of the methods you just created.

Add the following code:

interface Cache {
 // ...
 fun getNearbyAnimals(): Flowable<List<CachedAnimalAggregate>>
 suspend fun storeNearbyAnimals(animals:
List<CachedAnimalAggregate>)
}

Now, open RoomCache.kt in the common.data.cache package that contains the
class that implements Cache. Notice how the name is the interface’s name prefixed
with the mechanism you’ll use to handle caching. Always try to name interface
implementations based on their purpose and/or functionality. Suffixing interface
implementations with Impl doesn’t give you any information about them.

Next, update its code, like this:

class RoomCache @Inject constructor(
 private val animalsDao: AnimalsDao, // 1
 private val organizationsDao: OrganizationsDao
) : Cache {
 // ...
 override fun getNearbyAnimals():
Flowable<List<CachedAnimalAggregate>> { // 2
 return animalsDao.getAllAnimals()
 }

 override suspend fun storeNearbyAnimals(animals:
List<CachedAnimalAggregate>) { // 3
 animalsDao.insertAnimalsWithDetails(animals)
 }
}

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 102

In this code, you:

1. Add the primary constructor parameter of type AnimalsDao.

2. Implement getNearbyAnimals(), which delegates the operation to animalsDao
by invoking getAllAnimals() on it.

3. Do the same for storeNearbyAnimals(), delegating again to animalsDao, but
this time invoking insertAnimalsWithDetails.

These simply wrap the DAO calls with more domain-friendly names.

And… you’re done! Build and run to ensure everything still works.

You just injected an AnimalsDao instance. However, you can’t annotate abstract
classes with @Inject. Even if you could, you’d still want Room’s implementation of
it, and not Hilt’s. That said, you don’t have a way to provide an instance yet. But not
for long!

Managing Cache Dependencies With Hilt
Open CacheModule.kt in common.data.di. It’s already a Dagger module, but it’s
missing some provider methods:

1. PetSaveDatabase

2. AnimalsDao

3. Cache

You’ll work on the methods in that order. Update the code like this:

@Module
@InstallIn(SingletonComponent::class)
abstract class CacheModule {

 companion object {

 @Provides
 @Singleton // 1
 fun provideDatabase(
 @ApplicationContext context: Context // 2
): PetSaveDatabase {
 return Room.databaseBuilder(// 3
 context,
 PetSaveDatabase::class.java,
 "petsave.db"
)

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 103

 .build()
 }

 @Provides
 fun provideAnimalsDao(
 petSaveDatabase: PetSaveDatabase
): AnimalsDao = petSaveDatabase.animalsDao() // 4
 // ...
 }
}

A few different things are happening here:

1. Due to all the SQLite setup, creating a Room database is expensive. Ideally, you
create a reference and reuse it, instead. For that reason, you annotate the method
with @Singleton.

2. This @ApplicationContext is another one of Hilt’s useful features. You don’t
need to use Dagger’s @BindsInstance to provide a Context anymore. Instead,
you annotate a Context with @ApplicationContext and Hilt automatically
injects it for you. You could also use @ActivityContext, but here you want the
context for the application because you want the database to have the lifetime of
the app itself.

3. You return a Room database instance specifying PetSaveDatabase, which is the
class type that extends RoomDatabase. You then give the database a name which,
for consistency, is the same name the app uses.

4. You inject the PetSaveDatabase parameter you provide in the previous method,
then you use it to call animalsDao(). This returns Room’s own implementation
of the class.

The bindings for the DAOs and the database are in the dependency graph. You need
now to add the Cache.

Adding the Cache
You’ll handle Cache a little differently. You want to provide the Cache interface type,
but you also have to provide the class that implements it, RoomCache. This is where
Dagger’s @Binds comes in. In the same CacheModule.kt in common.data.di, add
the following code outside the companion object:

@Module
@InstallIn(SingletonComponent::class)
abstract class CacheModule {

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 104

 @Binds
 abstract fun bindCache(cache: RoomCache): Cache // HERE

 companion object {
 // ...
 }
}

This allows you to provide the return type, but under the hood, along with whatever
you pass in as a parameter. The parameter has to be assignable to the return type.

This is why CacheModule is an abstract class instead of an object like ApiModule.
You can only apply the @Binds annotation to abstract methods, which an object
can’t have. Regardless, by having the @Provides-annotated bindings inside the
companion, you get the same benefits as if you were using an object module.

That’s it for cache dependency injection. Following the same pattern you’ve used so
far, the next step would usually be to test the code. In this case, however, you’ll skip
that and leave it as a challenge you can do to get some extra practice. Now, you’ll
move on to assembling the repository.

Putting It All Together
At this point, you already have a sense of the data your app needs. You now have to
update the repository interface in the domain layer accordingly.

It’s funny that the data layer actually helps you to figure out the domain layer — but,
hey, that’s Android for you. It might seem that the domain layer has an implicit
dependency on the data layer. This also makes it clearer why some people just prefer
to skip the domain layer altogether. In all fairness, you need the data for the features
that the domain defines. It can become tricky to understand what depends on
what. :]

Anyway, climbing back out of the “Android doesn’t need a domain layer” rabbit hole,
go to domain.repositories and open AnimalRepository.kt. Unless I’ve done a
horrible job up to now, you should already expect the repository to provide ways to:

• Get cached data.

• Store cached data.

• Get remote data.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 105

Turning that into code, change AnimalRepository, like this:

interface AnimalRepository {
 fun getAnimals(): Flowable<List<Animal>> // 1
 suspend fun requestMoreAnimals(pageToLoad: Int, numberOfItems:
Int): PaginatedAnimals // 2
 suspend fun storeAnimals(animals: List<AnimalWithDetails>) //
3
}

These should be self-explanatory. The declaration:

1. Returns the Flowable that emits when the database updates.

2. Calls the API to get more animals, passing in the page number and how many
animals you want. Like the API call, it’s a suspend function.

3. Stores a list of animals in the database.

Now, the implementation. In common.data, create a new file called
PetFinderAnimalRepository.kt. In it, create PetFinderAnimalRepository, like
this:

class PetFinderAnimalRepository @Inject constructor(// 1
 private val api: PetFinderApi, // 2
 private val cache: Cache,
 private val apiAnimalMapper: ApiAnimalMapper,
 private val apiPaginationMapper: ApiPaginationMapper
) : AnimalRepository

Here, you:

1. Annotate the constructor with @Inject, both to inject
PetFinderAnimalRepository when needed and to inject other dependencies
into it.

2. Add the dependencies you need to fulfill the interface contract. Since it
implements a domain interface, this class defines a boundary between layers.
That’s why you need those two mappers.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 106

Since you haven’t implemented the interface yet, there’s a red squiggly line under
the class’s name. To fix that, place the cursor on the class name and press Option-
Enter on MacOS or Alt-Enter on Windows.

Figure 5.3 — Implement missing members

Choose the Implement members option, then select all three in the dialog that
opens.

Figure 5.4 — Select all operations

This creates the stubs for the missing classes. They contain some TODOs, but you’ll
come back to work on them soon.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 107

Returning the Flowable
Going one by one, delete the TODO comments in getAnimals and add the following
in their place:

class PetFinderAnimalRepository @Inject constructor(
 private val api: PetFinderApi,
 private val cache: Cache,
 private val apiAnimalMapper: ApiAnimalMapper,
 private val apiPaginationMapper: ApiPaginationMapper
) : AnimalRepository {
 override fun getAnimals(): Flowable<List<Animal>> {
 return cache.getNearbyAnimals() // 1
 .distinctUntilChanged() // 2
 .map { animalList -> // 3
 animalList.map {
 it.animal.toAnimalDomain(
 it.photos,
 it.videos,
 it.tags
)
 }
 }
 }
 // ...
}

This code:

1. Calls the corresponding cache method, which returns a Flowable.

2. Calls distinctUntilChanged on the stream. This is important because it ensures
only events with new information get to the subscriber. For instance, since the
insertion abstract method has the REPLACE conflict strategy, the same items can
get inserted. In general, it’s a good practice to use this operator with Room
because Room knows when a table is modified, but doesn’t know what was
modified. That means, if you’re observing only one item, you’ll get false updates
when any table involved in the corresponding SQLite query changes.

3. Maps the CachedAnimalAggregate list to the Animal list by calling the
toAnimalDomain mapper for each CachedAnimalAggregate instance.

The previous operation returns all the Animals in the repository. You need now to
implement the other operations.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 108

Calling the API for More Animals
Next, you’ll modify requestMoreAnimals. Replace the TODO with the following code:

class PetFinderAnimalRepository @Inject constructor(
 private val api: PetFinderApi,
 private val cache: Cache,
 private val apiAnimalMapper: ApiAnimalMapper,
 private val apiPaginationMapper: ApiPaginationMapper
) : AnimalRepository {
 // ...
 override suspend fun requestMoreAnimals(pageToLoad: Int,
numberOfItems: Int): PaginatedAnimals {
 val (apiAnimals, apiPagination) = api.getNearbyAnimals(// 1
 pageToLoad,
 numberOfItems,
 postcode,
 maxDistanceMiles
)

 return PaginatedAnimals(// 2
 apiAnimals?.map {
 apiAnimalMapper.mapToDomain(it)
 }.orEmpty(),
 apiPaginationMapper.mapToDomain(apiPagination)
)
 }

 private val postcode = "07097" // 3
 private val maxDistanceMiles = 100 // 3
 // ...
}

Here, you:

1. Call the corresponding API method and destructure the resulting
ApiPaginatedAnimals instance.

2. Build a PaginatedAnimals instance with the destructured components, using
the mappers in the process.

3. postcode and maxDistanceMiles don’t exist yet. You’ll get these later, by using
another feature. Right now, you just use temporary values so you can add them as
properties.

You’re still missing one final operation.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 109

Storing the Animal List in the Database
Finally, you’ll handle storeAnimals. Add the following code:

class PetFinderAnimalRepository @Inject constructor(
 private val api: PetFinderApi,
 private val cache: Cache,
 private val apiAnimalMapper: ApiAnimalMapper,
 private val apiPaginationMapper: ApiPaginationMapper
) : AnimalRepository {
 // ...
 override suspend fun storeAnimals(animals:
List<AnimalWithDetails>) {
 val organizations = animals.map
{ CachedOrganization.fromDomain(it.details.organization) } // 1

 cache.storeOrganizations(organizations)
 cache.storeNearbyAnimals(animals.map
{ CachedAnimalAggregate.fromDomain(it) }) // 2
 }
}

Here’s what’s going on in this code:

1. You map each Organization to a CachedOrganization, creating a list. Don’t
forget that organizations have a one-to-many relationship with animals, so you
have to insert them before inserting animals. Otherwise, Room will complain
about not being able to satisfy the foreign key’s constraint in
CachedAnimalWithDetails.

2. After inserting all the organizations, you insert the animals, mapping them to the
appropriate type.

That’s it! Build and run, and everything should go smoothly. Well, really, it has to.
You implemented this data layer code, but so far, no other code is using it — and
won’t until the next chapter. If only you could assert the correctness of your code
somehow… You know where this is going. :]

Testing Your Repository
The repository is a great opportunity to venture into integration tests. In fact, unit
testing wouldn’t add anything new to what you’ve seen so far, so you’ll only do
integration tests. This means that instead of using fake or mock dependencies, you’ll
use the real thing! Most of it, at least. :]

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 110

Start by creating the test file for PetFinderAnimalRepository with Android
Studio’s aid, just as you did for the interceptor. Only this time, instead of choosing
the test directory, choose androidTest. You’ll see why later.

You’ll start by testing the integration with the network code. This involves:

• The API itself

• The interceptors

• Preferences

You need to build an instance of the API, using an instance of OkHttpClient that has
the interceptors. It, in turn, needs a fake/mock Preferences. Plus, you also need a
Cache instance to create the repository, along with mapper instances.

Ugh. No wonder so many people just skip testing completely! The thing is, those
people probably aren’t aware of the power a DI framework leverages to make testing
a breeze.

Integration Tests With Hilt
Hilt has some built-in features specifically for testing. It requires some configuration
in the beginning, but that work pays off later. Your steps are to:

1. Implement a custom AndroidJUnitRunner implementation for testing with Hilt.

2. Configure the custom runner for Instrumentation tests.

3. Set up an instrumented test for PetFinderAnimalRepository.

4. Prepare the dependency graph for the instrumentation test.

5. Implement @Before with code that all the tests have in common.

6. Write your tests.

It’s time to have some more fun. :]

Implementing HiltTestRunner

You’ll run instrumented tests here, so the first thing to do is tell your test runner to
run them with an Application object that supports Hilt. For this, Hilt provides its
own instance, HiltTestApplication.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 111

In the petsave package of androidTest, create a file called HiltTestRunner.kt. In it,
add:

class HiltTestRunner : AndroidJUnitRunner() {

 override fun newApplication(cl: ClassLoader?, name: String?,
context: Context?): Application {
 return super.newApplication(cl,
HiltTestApplication::class.java.name, context)
 }
}

Here, you create a test runner that forces the tests to run in HiltTestApplication.
Now, you need to set your test configuration to use this test runner.

Configuring the HiltTestRunner

You need to tell Gradle to use HiltTestRunner when running an instrumentation
test. Open build.gradle in the app module and apply the following changes:

// ...
android {
 compileSdkVersion rootProject.ext.compileSdkVersion

 defaultConfig {
 // ...
 testInstrumentationRunner
"com.realworld.android.petsave.HiltTestRunner" // 1
 // ...
 }
 // ...
 sourceSets { // 2
 androidTest {
 assets.srcDirs = ["src/debug/assets"]
 }
 }
}
// ...

In this definition, you:

1. Tell Gradle to use HiltTestRunner as the AndroidJUnitRunner for
instrumentation tests.

2. Configure Gradle to reach the assets in the debug package, like you did for the
unit tests earlier. You’ll use MockWebServer for these tests, so you need this code
to access the mocked API responses.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 112

Sync Gradle to make sure it accepts the settings. Now, it has all it needs to run the
instrumentation test with Hilt. It’s time to write the test for
PetFinderAnimalRepository.

Preparing Your Instrumentation Test

Now, for the fun stuff! Back in PetFinderAnimalRepositoryTest.kt, add:

@HiltAndroidTest // 1
@UninstallModules(PreferencesModule::class) // 2
class PetFinderAnimalRepositoryTest

This code:

1. Marks the test class for injection. This way, Hilt will know it has to inject some
dependencies here.

2. Tells Hilt to not load the original PreferencesModule, so you can replace it with
a test module.

You need to add a few properties to the class now. Inside the same
PetFinderAnimalRepositoryTest.kt, add:

@HiltAndroidTest
@UninstallModules(PreferencesModule::class)
class PetFinderAnimalRepositoryTest {
 private val fakeServer = FakeServer() // 1
 private lateinit var repository: AnimalRepository
 private lateinit var api: PetFinderApi

 @get:Rule // 2
 val hiltRule = HiltAndroidRule(this)

 @Inject // 3
 lateinit var cache: Cache

 @Inject
 lateinit var retrofitBuilder: Retrofit.Builder

 @Inject
 lateinit var apiAnimalMapper: ApiAnimalMapper

 @Inject
 lateinit var apiPaginationMapper: ApiPaginationMapper
}

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 113

Here, you:

1. Add AnimalRepository and PetFinderApi properties, which you’ll initialize
later. You also create something called FakeServer. This is a helper class that
will handle MockWebServer for you, including reading from the assets.

2. Add a Hilt rule that you’ll use later to tell Hilt when to inject the dependencies.
This is important because it gives you leeway to handle any configuration you
might need before the injection.

3. Mark every dependency you want to inject with @Inject so Hilt knows what you
need.

At this point, you’re injecting all the dependencies you need to build a
PetFinderAnimalRepository instance, except for the API. That’s because you need
to configure the API manually, using the Retrofit.Builder you’re injecting here.

You’ll get to that in a second; there’s still one dependency missing. Remember that
you told Hilt to ignore PreferencesModule through @UninstallModules? You need
to provide a replacement, or the test won’t even build.

Providing the Dependency Graph for Testing

When you implement an instrumentation test with Hilt and want to inject test
dependencies, you need to provide a different dependency graph than the one you
use in the production app. In your case, you need to replace PreferencesModule.

Hilt gives you two options here:

1. Build an entirely new module to replace the original binding.

2. Use a special set of annotations that both replace the original binding and bind
anything else in its place.

For now, you’ll go with the second option. In the same
PetFinderAnimalRepositoryTest.kt file add the following code:

Below the other dependencies you just added, add:

@HiltAndroidTest
@UninstallModules(PreferencesModule::class)
class PetFinderAnimalRepositoryTest {
 // ...
 @BindValue // 1
 val preferences: Preferences = FakePreferences() // 2
}

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 114

Going line-by-line:

1. This annotation handles the replacement and injection for you. If you need to
need to work with multibindings, there are other variants to use, like
@BindValueIntoSet and @BindValueIntoMap.

2. This is what you replace the original binding with. You’re providing a fake
implementation of Preferences that simply has a private map to read and write
the properties.

Now, it’s time to implement your tests. They’ll have some initalization in common.
You can handle this in @Before.

Implementing the @Before Function

With this done, you can now implement the typical “before and after” test
configuration methods. Add setup and teardown below what you just added:

@HiltAndroidTest
@UninstallModules(PreferencesModule::class)
class PetFinderAnimalRepositoryTest {
 // ...
 @Before
 fun setup() {
 fakeServer.start() // 1

 // 2
 preferences.deleteTokenInfo()
 preferences.putToken("validToken")
 preferences.putTokenExpirationTime(
 Instant.now().plusSeconds(3600).epochSecond
)
 preferences.putTokenType("Bearer")

 hiltRule.inject() // 3

 // 4
 api = retrofitBuilder
 .baseUrl(fakeServer.baseEndpoint)
 .build()
 .create(PetFinderApi::class.java)

 // 5
 repository = PetFinderAnimalRepository(
 api,
 cache,
 apiAnimalMapper,
 apiPaginationMapper
)
 }

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 115

 @After // 6
 fun teardown() {
 fakeServer.shutdown()
 }
}

In this code:

1. You tell the fake server to start itself. This will start the MockWebServer instance.

2. This is a cool thing that Hilt lets you do. Since you already created the instance
that will replace the original Preferences binding, you can change it. So here,
you delete any previous information and add the information you need for the
“happy path”. You’ll only test happy paths. Note that you could also mark the
property as a lateinit var and initialize it here.

3. You’ve configured all the dependencies, so you’re ready for Hilt to inject them. To
do so, you call inject on the rule instance.

4. Before creating the repository instance, you still need to configure the API. You
need to redirect the calls to MockWebServer instead of the real endpoint, so you
take the Retrofit.Builder you injected earlier, change its base URL and, finally,
create a PetFinderApi instance.

5. Lastly, you create the repository instance.

6. This just shuts off the server, like you did in the unit tests.

Finally, you can start writing your tests.

Writing Your Tests

Whew! That took some work, but you’re finally able to write your tests. In the same
PetFinderAnimalRepositoryTest.kt file add the following code:

@HiltAndroidTest
@UninstallModules(PreferencesModule::class, CacheModule::class)
class PetFinderAnimalRepositoryTest {
 // ...
 @Test
 fun requestMoreAnimals_success() = runBlocking { // 1
 // Given
 val expectedAnimalId = 124L
 fakeServer.setHappyPathDispatcher() // 2

 // When
 val paginatedAnimals = repository.requestMoreAnimals(1, 100)
// 3

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 116

 // Then
 val animal = paginatedAnimals.animals.first() // 4
 assertThat(animal.id).isEqualTo(expectedAnimalId)
 }
 // ...
}

In this code, you use:

1. runBlocking, which makes the test run inside a coroutine. You need it because
the network request is a suspend function.

2. Set MockWebServer to choose the happy path: Return a successful response on
the animals endpoint.

3. Make the request. MockWebServer doesn’t check the request parameters in this
case, but in theory, it could.

4. Get the first — and only, since the mocked response only has one in the list —
animal, and check if its ID matches the expected value.

Note: Never use runBlocking in production code! It completely blocks the
thread the coroutine runs on, defeating the purpose of having coroutines in
the first place.

This test starts at the repository, goes to the API, works through the interceptors and
goes back up again. With Hilt’s help, not only can you test the way all the bits and
pieces fit together, but you can also make little tweaks here and there to test a wide
variety of scenarios.

Now that you’ve covered the API integration, you’ll test how the cache fits into all
this. There’s one small problem though: You don’t want to mess with the real
database in your tests!

Using Room’s In-Memory Database
Fortunately, Room provides a neat way to work around this: an in-memory
database. You’ll inject that instead of the production database, then use it to test
the repository. That’s why you’re running the tests in androidTest: Room needs to
run on a device.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 117

First, tell Hilt to remove CacheModule by updating @UninstallModules:

@UninstallModules(PreferencesModule::class, CacheModule::class)

Then, remove the @Inject annotation from cache:

private lateinit var cache: Cache

Below it, inject PetSaveDatabase:

@Inject
lateinit var database: PetSaveDatabase

Now, to replace CacheModule, you’ll try the other option. Add a new module below
Preferences:

@Module
@InstallIn(SingletonComponent::class) // 1
object TestCacheModule {

 @Provides
 fun provideRoomDatabase(): PetSaveDatabase { // 2
 return Room.inMemoryDatabaseBuilder(
 InstrumentationRegistry.getInstrumentation().context,
 PetSaveDatabase::class.java
)
 .allowMainThreadQueries() // 3
 .build()
 }
}

In this code, you:

1. Install TestCacheModule in the same component as CacheModule.

2. Provide a single PetSaveDatabase instance, as you don’t need any of the other
dependencies.

3. Call allowMainThreadQueries when building the in-memory database, which
lets you ignore the thread where you run the queries in your tests. Please, never
do this in production code!

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 118

Building the Cache
With the module ready, you can now build your own Cache with the test database. In
setup, between api and repository, add the line:

cache = RoomCache(database.animalsDao(),
database.organizationsDao())

And that’s it! It’s time for an actual test now. You’ll test the insertion into the
database. To assert the result, you’ll use getAllAnimals and check if the Flowable
stream returns anything. Technically, it’s almost like doing two tests in one!

Speaking of streams, you want it to emit the new event right away, so you need to
ensure that Room executes all its operations instantly. To do this, you have to use a
JUnit rule that swaps the background executor used by Architecture Components
with one that’s synchronous. This rule is called InstantTaskExecutorRule. Add it
below the Hilt rule:

@get:Rule
val instantTaskExecutorRule = InstantTaskExecutorRule()

With that out of the way, you’ll create your test. At the bottom of the class, add:

@Test
fun insertAnimals_success() {
 // Given
 val expectedAnimalId = 124L

 runBlocking {
 fakeServer.setHappyPathDispatcher()

 val paginatedAnimals = repository.requestMoreAnimals(1, 100)
// 1
 val animal = paginatedAnimals.animals.first()

 // When
 repository.storeAnimals(listOf(animal)) // 2
 }

 // Then
 val testObserver = repository.getAnimals().test() // 3

 testObserver.assertNoErrors() // 4
 testObserver.assertNotComplete()
 testObserver.assertValue { it.first().id == expectedAnimalId }
}

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 119

Here’s a breakdown of this code:

1. To save you from creating an Animal instance, the code uses the mocked data
that MockWebServer returns.

2. You store the animal…

3. … And then subscribe to the getAnimals stream. Calling test() on it returns a
special TestObserver that allows you to assess both its state and the stream’s.

4. Using the test observer, you assert that there were no errors on the stream and it
didn’t complete. It’s an infinite stream after all. Finally, you call assertValue on
the observer, which asserts that the stream emitted one event only. It also gives
you access to event data for you to make sure that it’s what you expect.

This test is not completely contained in runBlocking, like the previous one. JUnit
tests are expected to return Unit and that last testObserver line returns a type.
Having it inside runBlocking’s scope would return that type.

Build and run your tests. Congratulations on making sure your different components
are well integrated!

This concludes this chapter. In the next chapters, you’ll include the presentation
layer in your work and, finally, wrap up a basic version of the Animals near you and
Search features.

Key Points
• Room relationships allow you easily manipulate data… after you go through the

effort of creating them.

• Dependency injection is helpful, not only with dependency management, but with
testing as well.

• Just like MockWebServer, Room’s in-memory database allows you to build more
robust and realistic tests.

Real-World Android by Tutorials Chapter 5: Data Layer — Caching

raywenderlich.com 120

6Chapter 6: Building
Features — Animals Near
You
By Ricardo Costeira

Until now, you focused your efforts on building a solid foundation for PetSave. You
created the main entities and value objects in your domain layer, and you have a data
layer ready to handle and shape data.Now that you’ve laid that foundation, you’ll
start building features that people can use. You’ll look at the presentation layer and
set up the app’s user interface. You’ll also visit the domain layer again to create use
cases.

In this chapter, you’ll learn:

• What a presentation layer is.

• How to create a deterministic data flow.

• How to leverage UI Android framework components like ViewModel, Fragment and
ViewBinding.

• What defines the state of your app and how to manage state.

• How to build use cases.

By the end of the chapter, you’ll have your first feature!

raywenderlich.com 121

What Is a Presentation Layer?
To create this feature, you’ll start by adding a presentation layer. But what, exactly, is
that and why do you need it?

The presentation layer encapsulates all the code related to the UI, holding all the
UI-related components. In other words, this layer deals with framework code.

App UI and UX are typically more prone to change than business logic. That means
you’ll find yourself changing UI code more often than any other code.

At the same time, UI toolkits are well known for being hard to test. In fact, the
whole Android framework makes it hard to write tests. That’s why you should avoid
using it in your business logic code as much as possible.

You can test Android UI with instrumented tests and Espresso. These tests need to
run on a device, which makes them slow compared to unit tests. Plus, they’re also
flakier, because the code changes more often. In some cases, the framework actually
prevents you from being able to test at all!

For those reasons, it’s a good idea to make the UI as dumb as possible. You should
strive to keep any logic unrelated to the UI decoupled from it. It’s a good thing you
have a domain layer. :]

By keeping all the UI code in the same place, you protect both your business logic
and yourself. It lets you test your logic, regardless of the UI. You’ll have less of a
headache when you try to introduce that new shiny Android UI library in your
codebase, because you can do so without messing with the logic — and knowing
Android, that’s bound to happen!

Working with the presentation layer offers some challenges, however. You’ll learn
about some of them next.

Lifecycles of UI Components
The presentation layer is both the easiest layer to understand and the hardest to
work with.

Android UI components have their own individual lifecycles. Picture an Activity
hosting a Fragment. The system can destroy and recreate that Fragment multiple
times throughout the Activity’s lifetime. At the same time, that Fragment’s View
can be destroyed and recreated multiple times while the Fragment lives on.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 122

Juggling different lifecycles can be daunting. For instance, imagine that you have a
Fragment that calls postDelayed on a local Handler, and you forget to remove the
callbacks from the Handler in the Fragment’s onDestroy(). This might cause a
memory leak, as the garbage collector can’t clean up the Fragment because
something still references it.

In this case, the problem is simple to solve. Other cases, however, can become so
complex that it’s difficult to even understand what’s going on.

State Management
There’s also the problem of state management, which is the information your app is
holding at any given time. Your UI has a given state, which mutates according to user
input and other events.

Different parts of that state may or may not affect one other. Depending on your
implementation and needs, changes can even happen concurrently, meaning that
even simple states can be hard to implement correctly. With time, bad state
management leads to maintenance nightmares. Bugs start creeping in from one part
of the code when you change something in another part.

Your app’s state not only includes the data regarding the business logic but also the
framework component state. This includes things like the color of a Button or the
visibility of a TextView. These types of intrinsic properties also represent the state.

Making Your Life Easier With Architecture
App development can be challenging. You have the typical software problems to deal
with, like state management and increasing complexity. On top of that, you have to
worry about the framework. As a developer, you must do everything you can to make
development easier and, more importantly, fun! Choosing the right architecture is a
great start.

Android has seen a few different architectural patterns throughout the years. The
most common patterns are MVP (Model-View-Presenter) and MVVM (Model-View-
ViewModel). The reason for their popularity is simple: They do an excellent job of
decoupling the UI from the business logic. Keep the UI dumb, remember?

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 123

These patterns help keep your concerns separated and well defined. Still, things can
get messy when you start considering state. For instance, presenters in MVP are
usually stateless. Even if you make them stateful, the way the architecture works
can make it hard to sync it with the View’s state.

MVVM Architecture
MVVM makes this a lot easier, as state management is built into the architecture.
The View communicates with the ViewModel by subscribing to changes on its state.
This lets you use the ViewModel to represent the View’s state.

Even so, it can get tricky if the View subscribes to a lot of different state properties —
especially if those properties depend on each other. It’s not hard to imagine an
Android ViewModel with a few different StateFlow instances emitting tightly
coupled properties. For instance:

class MyViewModel() {

 val isLoading: StateFlow<Boolean>
 val items: StateFlow<List<Item>>
}

Handling the properties incorrectly can lead to impossible states, like showing a
loading ProgressBar when you have already have the item list. Plus, as the number
of properties increases, so does the complexity.

Note: Keep in mind that using the ViewModel Android component doesn’t
necessarily mean that you’re following the MVVM pattern. You can use a
ViewModel in many other ways. It’s not the best component name. :]

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 124

MVI Architecture
So, what should you use? You might have heard about the new kid on the block: MVI
(Model-View-Intent). This pattern enforces a few interesting rules:

• Immutable state: You create updated copies of the state, rather than mutating it.
This avoids bugs stemming from mutability.

• One single view state per screen: A view state can be a data class with all the
state’s properties, or even a set of sealed classes representing the different
possible states. Using sealed classes solves the problem of impossible states.

• Unidirectional data flow: Makes your state deterministic — which makes
testing actually enjoyable!

You won’t exactly follow an MVI pattern in this chapter, as you don’t need to create
reducers and/or intents. Instead, you’ll do something simpler, somewhere between
MVVM and MVI. The Android community likes to call it a unidirectional data flow
architecture. In fact, even Google’s architecture guide reccomends it now. Here’s a
high-level view, where the black arrows represent data flow and the open arrow
represents inheritance:

Figure 6.1 — High-Level View of the Architecture

Now, it’s time to start coding your new feature!

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 125

Building Animals Near You
Make sure you’re running the starter project, then build and run the app. The
bottom navigation bar is there to let you navigate between the screens of the two
features.

Figure 6.2 — Petsave Starter App

The bottom navigation bar uses the Navigation component, from Android Jetpack
Components. Clicking on the bar’s icons lets you navigate between screens, although
they don’t show anything but an infinite spinner at this point.

Note: If you’re interested in using the Navigation component with the bottom
navigation bar, you can check out Navigation Component for Android Part
3: Transition and Navigation here: https://www.raywenderlich.com/
8279305-navigation-component-for-android-part-3-transition-and-
navigation.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 126

Open AnimalsNearYouFragment.kt in the animalsnearyou.presentation
package. The app uses view binding to access view elements. If you don’t need two-
way data binding or layout variables, view binding is the best choice. It provides the
null and type safety that findViewById doesn’t. It’s also easier to use than data
binding and compiles faster.

As with data binding, there’s one thing to remember when using view binding in a
Fragment: Fragments can outlive their Views. So you need to clear up the binding
in the Fragment’s onDestroyView:

override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
}

This is why there are two different binding variables. The nullable one sets and
destroys the binding, and the non-nullable binding accesses the view elements
without the safe call operator, ?.. Accessing the latter from outside the View’s
lifecycle will crash the app. If that happens, you’re doing something wrong. :]

To set up the UI, you need:

1. A RecyclerView for the list.

2. An Adapter for the RecyclerView.

3. View state and events for state management.

4. Use cases.

5. A ViewModel to handle events and update the view state.

6. To observe the view state.

You’ll start with the UI components. The XML layouts are ready, so you’ll just work
on the code.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 127

Creating the UI Components
For your first step, you’ll create the UI for your feature in the existing
AnimalsNearYouFragment.

In AnimalsNearYouFragment.kt, add the following code:

// 1
override fun onViewCreated(
 view: View,
 savedInstanceState: Bundle?
) {
 super.onViewCreated(view, savedInstanceState)

 setupUI()
}

// 2
private fun setupUI() {
 val adapter = createAdapter() // 3
 setupRecyclerView(adapter)
}

private fun createAdapter(): AnimalsAdapter {
 return AnimalsAdapter()
}

// 4
private fun setupRecyclerView(animalsNearYouAdapter:
AnimalsAdapter) {
 binding.animalsRecyclerView.apply {
 adapter = animalsNearYouAdapter
 layoutManager = GridLayoutManager(requireContext(),
ITEMS_PER_ROW)
 setHasFixedSize(true)
 }
}

Here’s what’s happening above:

1. onViewCreated() executes immediately after onCreateView(). The framework
makes sure that you’ve correctly initialized all Views at this point, so you should
do all your View setup here. For instance, if you use LiveDatas, observing them
here ensures they’re unsubscribed in onDestroyView(). By creating the view in
onCreateView(), then initializing it in onViewCreated(), you maintain a good
separation of concerns (SoC). Plus, you don’t need to worry about null pointer
exceptions (NPEs) on View access.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 128

2. Create a method to glue together all the UI setup code. Inside it, you delegate
each component’s setup to other methods.

3. Create an adapter value and initialize it.

4. Run some standard RecyclerView code. You set the Adapter, a
GridLayoutManager with two items per row, and tell the RecyclerView that all
elements have the same size. This way, the RecyclerView can skip some
measuring steps and perform some optimizations.

There’s a good reason why the adapter value only exists in setupUI()’s scope.
Having an Adapter as a property of a Fragment is a known way of leaking the
RecyclerView.

That’s because, when the View is destroyed, the RecyclerView is destroyed along
with it. But if the Fragment references the Adapter, the garbage collector won’t be
able to collect the RecyclerView instance because Adapter s and RecyclerViews
have a circular dependency. In other words, they reference each other.

Making an Adapter a Property of a Fragment
If you need the Adapter as a property of a Fragment, don’t forget to either:

1. Null out the Adapter property in onDestroyView.

2. Null out the Adapter reference in the RecyclerView itself, before doing the
same for the binding.

So, if you needed the Adapter as a property of the Fragment in this code, you’d have
something like:

override fun onDestroyView() {
 super.onDestroyView()

 // either
 adapter = null

 // or
 binding.recyclerView.adapter = null

 _binding = null
}

By the way, AnimalsAdapter already exists. It’s in the common.presentation
package because the search screen also uses it.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 129

Open AnimalsAdapter.kt and have a look at the code inside. You’ll notice that this
file contains the definition of a simple adapter, with a single view type. Since the
code is so simple, ViewHolder is also here as an inner class. If you had more view
types and more complex ViewHolders, it would be best to decouple them from the
adapter for proper SoC.

Defining the UI Model
As you know, Adapter is the abstraction Android uses for the object responsible for
providing the View for each item in a RecyclerView. Each View is then encapsulated
in a ViewHolder that’s responsible for:

1. Creation of the View to recycle for other items of the same type.

2. Binding the data of each item you want to display to the View created for that
specific time.

To see how this works, examine AnimalsViewHolder’s bind:

fun bind(item: UIAnimal) {
 binding.name.text = item.name
 binding.photo.setImage(item.photo)
}

setImage is an ImageView extension function that internally calls Glide to load the
picture.

This binding requires a name and a photo, which come from a UIAnimal. Like the
domain and data layers, the presentation layer also has its own model. UIAnimal is a
simple data class:

data class UIAnimal(
 val id: Long,
 val name: String,
 val photo: String
)

Remember that you want to keep the UI dumb. Ideally, a UI model will consist of
simple primitive types like this one. The model should have only the minimum
necessary information to do its job — in other words, only enough to satisfy the UI’s
needs.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 130

Using DiffUtil for AnimalsAdapter
Items in the model can change over time, and so can the RecyclerView that displays
them. To minimize the work and make the transition smooth, Android provides a
special Adapter: the ListAdapter.

AnimalsAdapter extends ListAdapter, which requires a DiffUtil.ItemCallback.
There’s an ITEM_COMPARATOR property at the bottom of the file with an anonymous
class extending DiffUtil.ItemCallback. It already overrides the areItemsTheSame
and areContentsTheSame abstract methods.

For your next step, complete them by replacing their contents with:

private val ITEM_COMPARATOR = object :
DiffUtil.ItemCallback<UIAnimal>() {
 override fun areItemsTheSame(oldItem: UIAnimal, newItem:
UIAnimal): Boolean {
 return oldItem.id == newItem.id // 1
 }

 override fun areContentsTheSame(oldItem: UIAnimal, newItem:
UIAnimal): Boolean {
 return oldItem == newItem // 2
 }
}

1. This method has the job of checking if oldItem and newItem are the same. That
means you have to compare their identities and nothing else. If the contents of
an item change and you compare them here, the method will return false
instead of true — which will cause the item to flicker in the RecyclerView!

2. This method is called only if areItemsTheSame returns true. Here’s where you
should compare the contents. Since UIAnimal is a data class, using == will
compare all of its properties.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 131

Build and run. You’ll see the same screen as before because there’s no view state yet.

Figure 6.3 — Petsave Starter App

Creating the View State
Now, you need to create a class that stores the current state of your View.

To do this, open AnimalsNearYouViewState.kt in the
animalsnearyou.presentation package and add the following code:

data class AnimalsNearYouViewState(
 val loading: Boolean = true, // 1
 val animals: List<UIAnimal> = emptyList(), // 2
 val noMoreAnimalsNearby: Boolean = false, // 3
 val failure: Event<Throwable>? = null // 4
)

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 132

This state is as simple as it gets. It contains:

1. A Boolean representing the loading state.

2. A list of items to display.

3. A Boolean representing the no more animals nearby state.

4. A value for possible errors. It defaults to null, representing the absence of errors.

The default values represent the initial state. When you launch the app for the first
time, you won’t have any items and will need to show a loading screen while you get
them.

You want your UI to always have the latest view state. To do so, you use either
something like LiveData or a reactive stream like StateFlow to emit the state for an
observer in the UI.

You want this object to survive configuration changes, so you put it in the
ViewModel. This way, if the configuration changes, you can display the state
immediately. Even if you need to update it, at least you’re showing something
already.

However, there’s something to note here: If you’re modeling errors as part of the
state, you’ll display those errors as well! Imagine showing a Snackbar at the bottom
saying Something went wrong every time you flip the phone. I’ve uninstalled apps
for less!

Using Event prevents your app from handling the error more than once. You
might’ve seen examples using SingleLiveEvent to work around this issue, but it
doesn’t solve the problem.

Errors are results, or effects, that are consequences of specific actions. Therefore,
some developers — like me! — prefer to treat them differently from the rest of the
state. They can happen for a variety of reasons; they might not even relate to the
state at all.

Just as you have a stream for your state, you can have a separate stream for your
effects. That stream should hold things like errors, navigation, dialogs… anything
you want to consume once.

A nice way to model this is with a hot reactive stream, like a PublishSubject or a
SharedFlow. You emit on it, properly react to it and don’t look back.

Now that you understand the theory, you’re ready to work on your view state. You
need to wire everything up so that the view can observe it.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 133

Creating the Data Flow
You need to make some changes so that your view state works properly. Here’s how it
should work when you’re done:

1. The UI sends events to the ViewModel.

2. ViewModel reacts to those events by triggering the use cases.

3. The use cases return state information.

4. ViewModel updates the view state, which the UI observes.

You’ll work through these, step-by-step.

Handling Events
Events are actions that the UI triggers. What does the UI need when you open the
app? A list of animals! That’s what you’ll work on next.

In animalsnearyou.presentation, create a new AnimalsNearYouEvent.kt and
write a sealed class to represent both the UI events and the event that requests the
animals list:

sealed class AnimalsNearYouEvent {
 object RequestInitialAnimalsList: AnimalsNearYouEvent()
}

Now, create AnimalsNearYouFragmentViewModel.kt in the same package. Start
by defining the class:

class AnimalsNearYouFragmentViewModel constructor(
 private val uiAnimalMapper: UiAnimalMapper, // 1
 private val compositeDisposable: CompositeDisposable // 2
): ViewModel() {

 override fun onCleared() {
 super.onCleared()
 compositeDisposable.clear() // 3
 }
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 134

In this code, you have:

1. A mapper that translates the domain model to the UI model.

2. A CompositeDisposable for RxJava. You don’t need to inject schedulers because
RxJava provides a way to override them all while testing.

3. Something to clear the disposable, which you never want to forget. You don’t
need to worry about coroutines here; instead, you’ll use viewModelScope.
ViewModel will clear them internally.

Exposing the State

Every time you get a new state, you need to update the UI. StateFlow is a good
choice to do this.

In the same AnimalsNearYouFragmentViewModel.kt, add the following code:

private val _state = MutableStateFlow(AnimalsNearYouViewState())
// 1
private var currentPage = 0 // 2

val state: StateFlow<AnimalsNearYouViewState> =
_state.asStateFlow() // 3

// 4
fun onEvent(event: AnimalsNearYouEvent) {
 when(event) {
 is AnimalsNearYouEvent.RequestInitialAnimalsList ->
loadAnimals()
 }
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 135

Here’s what’s going on:

1. You create a private MutableStateFlow with the initial state of
AnimalsNearYouViewState. You’ll use this property to update the state, which
will be exposed to AnimalsNearYouFragment through an immutable StateFlow.
Unlike LiveData, StateFlow doesn’t benefit from lifecycle-aware behavior, so
you’ll have to take some extra steps when subscribing to the stream.

2. You need to track the page you’re on to request the right data. Knowing the exact
page isn’t relevant for the UI state — unless it’s the last one, but that’s why you
have noMoreAnimalsNearby. This lets you keep this property out of the exposed
state.

3. You set _state to the immutable StateFlow that actually exposes the state.

4. You create the only public method in the ViewModel. AnimalsNearYouFragment
calls this method whenever it has an event to trigger.

Triggering the Initial API Request

Next, you’ll use loadAnimals to trigger the initial API request for animals. To do
this, add this code below onEvent():

private fun loadAnimals() {
 if (state.value.animals.isEmpty()) { // 1
 loadNextAnimalPage()
 }
}

private fun loadNextAnimalPage() {
 val errorMessage = "Failed to fetch nearby animals"
 val exceptionHandler =
viewModelScope.createExceptionHandler(errorMessage)
{ onFailure(it) } // 2

 viewModelScope.launch(exceptionHandler) { // 3
 // request more animals!
 }
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 136

Here’s what you’re doing:

1. The if condition checks if the state already has animals. Fragment will send the
RequestInitialAnimalsList event every time it’s created. Without this
condition, you’d make a request every time the configuration changes. This way,
you avoid making unnecessary API requests. If there are no animals, though, you
call loadNextAnimalPage().

2. You create a CoroutineExceptionHandler through a custom
createExceptionHandler extension function on viewModelScope. It takes in a
lambda, which in turn takes a Throwable. You call onFailure() in the lambda,
then pass it that same Throwable.

3. You launch a coroutine on viewModelScope, passing in the
CoroutineExceptionHandler to the launch extension function.

CoroutineExceptionHandler is a global solution for exception handling that will
catch exceptions even from child coroutines. It only works if you set it on the parent
coroutine. It’ll ignore exceptions if you set it on a child coroutine.

You only call CoroutineExceptionHandler when the parent coroutine has already
finished. As such, there’s no coroutine to recover from the exception it catches. If
you need the coroutine to recover or you need more control over exceptions, go with
try-catch, which also works with child coroutines.

You can call CoroutineExceptionHandler from any thread. If you need to access
the UI thread in the lambda that you pass to a CoroutineExceptionHandler, you
have to force it. That’s why createExceptionHandler is an extension function on
viewModelScope. This scope runs on the UI thread, so calling launch inside the
function will run on the UI thread as well.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 137

Handling Errors

Getting back to the code, create onFailure below the method above:

private fun onFailure(failure: Throwable) {
 when (failure) {
 is NetworkException, // 1
 is NetworkUnavailableException -> {
 _state.update { oldState -> // 2
 oldState.copy(
 loading = false,
 failure = Event(failure) // 3
)
 }
 }
 }
}

Here’s what’s happening:

1. For now, you’re only handling NetworkException and
NetworkUnavailableException. The former is a new exception that avoids
having Retrofit code in the presentation layer. Check requestMoreAnimals in
PetFinderAnimalRepository and you’ll see that it throws a NetworkException
— a domain exception — when Retrofit’s HttpException occurs.

2. You update the state by calling update on the MutableStateFlow. This method
is thread-safe, meaning that it’s OK if multiple events come in at the same time
and try to change the state. The update method has a lambda as a parameter,
which in turn reveives an object of type AnimalsNearYouViewState as a
parameter, only to return another instance of the same type. You can see where
this is going, right? The lambda receives the old state as a parameter, and
whatever it returns will become the new state. Notice that you’re not mutating
the old state, but rather replacing it with an updated copy of itself. Data classes
implement this copy method, which really comes in handy here.

3. Again, you use Event to wrap Throwable so the UI reacts to it only once.

You’ll add more code here later. But first, you need to implement the logic to fetch
the animals.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 138

Your First Use Case
Use cases keep your app’s logic well-separated and testable. Each use case will be a
class. The use case you’re about to create belongs in the app’s domain, but only
animals near you uses it. For that reason, create RequestNextPageOfAnimals.kt
in animalsnearyou.domain.usecases and add the following code:

// 1
class RequestNextPageOfAnimals @Inject constructor(
 private val animalRepository: AnimalRepository, // 2
 private val dispatchersProvider: DispatchersProvider // 3
) {

}

Here’s what’s happening:

1. Use case names should be specific, but at the domain level. You can’t tell where
the data comes from by the name, for instance.

2. You inject an AnimalRepository, allowing the use case to access the data
sources.

3. You inject a coroutine dispatchers provider. Rule of thumb: Always inject
coroutine dispatchers. They help with testing! Injecting it in the use case also
helps keep the ViewModel simple since it doesn’t have to worry about which
dispatcher it should run the use case on.

A use case has a purpose, so it makes sense for the class to have only one method.
However, using it as requestNextPageOfAnimals.run() when your use case already
has a good name is just adding noise. It would be a lot cooler to do
requestNextPageOfAnimals().

You can do that by overloading the invoke operator of the class. Add the following
operator to the class:

suspend operator fun invoke(// 1
 pageToLoad: Int,
 pageSize: Int = Pagination.DEFAULT_PAGE_SIZE
): Pagination {
 // 2
 return withContext(dispatchersProvider.io()) {
 // 3
 val (animals, pagination) =
 animalRepository.requestMoreAnimals(pageToLoad,
pageSize)

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 139

 // 4
 if (animals.isEmpty()) {
 throw NoMoreAnimalsException("No animals nearby :(")
 }

 animalRepository.storeAnimals(animals) // 5

 return@withContext pagination // 6
 }
}

This code implements pagination. Note that:

1. It’s a suspend function. Neat!

2. It uses calls withContext, which shifts code execution to a background thread —
in this case, a thread on the IO dispatcher pool. Note that you don’t need this for
Room or Retrofit. Room calls an IO dispatcher internally, and Retrofit’s suspend
functions already delegate to a background executor. Still, the code performs
some operations before reaching Room and Retrofit, and coroutine context
switching is cheap, so you might as well use an IO dispatcher, anyway. Apart from
this, withContext returns the scope’s result, so by calling return here you have
to make the scope return something of type Pagination.

3. You’re calling requestMoreAnimals on the repository and destructuring its
result.

4. If there are no animals, you throw the NoMoreAnimalsException exception,
which you’ll handle in onFailure.

5. You call storeAnimals to store the animals you got from the API in the database.

6. You return the pagination information that handles paging on the view.

That’s it. Plain and simple!

Now that you’ve created the use case, it’s time to use it.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 140

Connecting the Layers
Go back to AnimalsNearYouFragmentViewModel. You have to inject the use case
before you can use it.

Start by updating the constructor by adding this line above uiAnimalMapper:

private val requestNextPageOfAnimals: RequestNextPageOfAnimals,

Now, you can update loadNextAnimalPage(). In launch’s scope, add:

Logger.d("Requesting more animals.")
val pagination = requestNextPageOfAnimals(++currentPage) // 1

onPaginationInfoObtained(pagination) // 2

In this code, you:

1. Call the use case, passing in the current page after incrementing the value.

2. Pass the pagination result to onPaginationInfoObtained.

That last method doesn’t exist yet, so create it below loadNextAnimalPage:

private fun onPaginationInfoObtained(pagination: Pagination) {
 currentPage = pagination.currentPage
}

Although the page should be the same one you asked for, you still update it for good
hygiene. Also, don’t forget to update onFailure by adding this to the when:

is NoMoreAnimalsException -> {
 _state.update { oldState ->
 oldState.copy(
 noMoreAnimalsNearby = true,
 failure = Event(failure)
)
 }
}

This updates the state to the no more animals nearby state.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 141

Triggering the Event
You now need to trigger the event in AnimalsNearYouFragment. In onViewCreated,
below setupUI, add:

requestInitialAnimalsList()

Create the method below setupRecyclerView, to keep the code organized:

private fun requestInitialAnimalsList() {

viewModel.onEvent(AnimalsNearYouEvent.RequestInitialAnimalsList)
}

You don’t have a viewModel property yet, so add it at the top of Fragment, above
binding:

private val viewModel: AnimalsNearYouFragmentViewModel by
viewModels()

The viewModels() delegate will create the ViewModel for you.

Build and run. It crashes! Check Logcat and you’ll find an error stating that
AnimalsNearYouFragmentViewModel doesn’t have a zero-argument constructor.

If you were to do things manually, you’d have to create a ViewModelFactory which,
in turn, would create your ViewModel. You’d then pass it as a lambda to the
viewModels property delegate.

But you don’t have to do this manually — instead, you’ll use Hilt, which you’ll
implement next.

Hilt on Android Components
Although you’ve already done some work with Hilt, you can’t inject dependencies
yet.

With vanilla Dagger, you’d include the main modules in a main Component, then use
that Component to create the dependency graph.

With Hilt, it’s simpler. A lot simpler. At the root of the project, locate and open
PetSaveApplication.kt. Annotate the class:

@HiltAndroidApp

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 142

class PetSaveApplication: Application()

Done. :]

No main Dagger Component, no AndroidInjector, AndroidInjectionModule,
@ContributesAndroidInjector, nothing. Just a single annotation!

Build and run — and you’ll still get the same runtime exception regarding
AnimalsNearYouFragmentViewModel. To fix it, go to the class and annotate the
constructor:

@HiltViewModel
class AnimalsNearYouFragmentViewModel @Inject constructor

This @HiltViewModel is a Hilt annotation specific to ViewModel injection. Using it
together with the already known @Inject ensures your ViewModel instances get
injected — you don’t need anything else. Yes, no more multibinding for ViewModel
instances!

Binding the Repository
Build the app again. You’ll get a compile-time Hilt error stating that it doesn’t know
how to inject AnimalRepository — which makes sense, since you didn’t @Bind the
interface yet.

Open ActivityRetainedModule.kt in common.di and replace the comment with:

@Binds
@ActivityRetainedScoped
abstract fun bindAnimalRepository(repository:
PetFinderAnimalRepository): AnimalRepository

The app follows a single Activity, multiple Fragments architecture. You want to
retain the repository when you swap Fragments. You also want it to survive
configuration changes. To enable this, you add the @ActivityRetainedScoped
annotation to the binding method. It makes PetFinderAnimalRepository live as
long as the Activity and also survive configuration changes. You could also add this
annotation to the class itself — the effect would be the same.

I bet you’re starting to get the same feeling I had when I first used Hilt: “This seems
too easy. When will it blow up in my face?”

Well… It kinda will as soon as you build and run the app. You’ll get the ViewModel
runtime exception again!

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 143

While you marked the ViewModel for injection, Hilt can’t reach it yet. As far as Hilt
knows, you’re not injecting it into any other component. That’s because it doesn’t
know that AnimalsNearYouFragment is a target for injection.

As you might already expect, you can solve the problem with a simple annotation:

@AndroidEntryPoint
class AnimalsNearYouFragment : Fragment()

This annotation marks Android components for injection. Comparing this to what
you had to do with vanilla Dagger, it’s pretty cool that you only need a simple
annotation now.

Build and run. Yes, it crashes again. But this time, the error is different: Hilt
Fragments must be attached to an @AndroidEntryPoint Activity.

Easy. Open MainActivity.kt in the common package and annotate it:

@AndroidEntryPoint
class MainActivity : AppCompatActivity()

Build and run. No crashes! Check Logcat and you’ll see that network requests are
happening.

Your next step is to connect to your single source of truth — the database — and
display its contents.

Displaying Cute Animals
Before you can make the view observe the data updates, you have to get the stream
of data itself. For that purpose, create GetAnimals.kt in
animalsnearyou.domain.usecases. In it, create the following use case:

class GetAnimals @Inject constructor(
 private val animalRepository: AnimalRepository
) {

 operator fun invoke() = animalRepository.getAnimals()
 .filter { it.isNotEmpty() }
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 144

You might wonder whether it’s worthwhile to have a use case this small. Why not
just call the repository in ViewModel? Well, while it seems like unneeded complexity,
you can look at it as a case of “avoiding broken windows” — that is, inviting more bad
behavior.

Say you add the repository to ViewModel. It’s just a matter of time until other
developers use it for other things, instead of creating use cases for whatever they
need. With this little bit of overhead, you gain a lot in terms of consistency and code
management. In the end, as always, it’s a matter of coming to an agreement with
your team about how to handle these cases.

Injecting the Use Case
Head back to AnimalsNearYouFragmentViewModel and inject the use case in the
constructor, just above the other one:

private val getAnimals: GetAnimals,

You’ll use it in a new method, subscribeToAnimalUpdates. Create it just below
onEvent():

private fun subscribeToAnimalUpdates() {
 getAnimals()
 .map { animals -> animals.map
{ uiAnimalMapper.mapToView(it) } } // 1
 .subscribeOn(Schedulers.io()) // 2
 .observeOn(AndroidSchedulers.mainThread()) // 3
 .subscribe(
 { onNewAnimalList(it) }, // 4
 { onFailure(it) }
)
 .addTo(compositeDisposable) // 5
}

Here’s what you’ve done above:

1. You go through the animal list and map each element to its UI counterpart.

2. Room handles the Flowable in a background thread for you, but you still have
some code (like mapping above and in the repository) between this code and
Room. As such, you call subscribeOn(Schedulers.computation()) to move
that work off the main thread.

3. Calling observeOn(AndroidSchedulers.mainThread()) ensures you access the
items on the UI thread. You need to do that to update the UI.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 145

4. You pass each new list to onNewAnimalList, which you’ll create in a minute. If an
error occurs, you pass Throwable to the already familiar onFailure.

5. Never, ever forget to add the subscription to CompositeDisposable. Otherwise,
you might leak it.

onNewAnimalList will finally update the view state with the list of animals. Create it
below subscribeToAnimalUpdates:

private fun onNewAnimalList(animals: List<UIAnimal>) {
 Logger.d("Got more animals!")

 // 1
 val updatedAnimalSet = (state.value.animals + animals).toSet()

 // 2
 _state.update { oldState ->
 oldState.copy(
 loading = false,
 animals = updatedAnimalSet.toList()
)
 }
}

Step by step:

1. The API returns unordered pages. The item with ID 79 can appear on page 12,
while the item with ID 1000 can show up on the first page. Room returns the
elements ordered by their IDs. This means that on each update, you can have new
elements appearing amid old ones. This will cause some weird UI animations,
with items appearing out of nowhere. To work around it, you concatenate the
new list to the end of the current one, and convert the whole thing to a Set. By
definition, sets can’t have repeated elements. This way, you’ll get a nice
animation where new items appear below the old ones. Another possible fix is to
locally add something like an updatedAt field for each item, and use it to order
the list.

2. Update the state with the new item list.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 146

To invoke subscribeToAnimalUpdates(), create an init block in
AnimalsNearYouFragmentViewModel.kt, like this:

@HiltViewModel
class AnimalsNearYouFragmentViewModel @Inject constructor(
 private val getAnimals: GetAnimals,
 private val requestNextPageOfAnimals:
RequestNextPageOfAnimals,
 private val uiAnimalMapper: UiAnimalMapper,
 private val dispatchersProvider: DispatchersProvider,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {

 init { // HERE
 subscribeToAnimalUpdates()
 }
 // ...
}

Build and run to make sure everything’s OK.

Observing the State
The last step is to observe the state in the Fragment. In AnimalsNearYouFragment,
add this method below setupRecyclerView():

private fun subscribeToViewStateUpdates(adapter: AnimalsAdapter)
{
 viewLifecycleOwner.lifecycleScope.launch { // 1

viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED)
{ // 2
 viewModel.state.collect { // 3
 updateScreenState(it, adapter)
 }
 }
 }
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 147

Going step by step:

1. You only care about observing the state while the Fragment’s View is alive. As
such, you call launch on viewLifecycleOwner so the coroutine gets scoped to
the View.

2. Since Kotlin Flows don’t come with native support to Android component
lifecycles, you have to be explicit about how you want to handle it. By using
repeatOnLifecycle, you can force the coroutine to run when the View’s
lifecycle is at least at the state you pass in as parameter (in this case, STARTED),
and to get cancelled when the opposite lifecycle event happens (in this case,
ON_STOP). Not only that, but it’ll restart again whenever the ON_START event
occurs. On a different note, you’re telling the coroutine to run when the lifecycle
reaches the STARTED state because at that point, while the View is already laid
out and ready, it’s still not visible to the user — which makes this a great moment
for an update.

3. You call collect on the StateFlow to receive any state events that it might emit.

Rendering the State
updateScreenState() is responsible for rendering the view state. Add it below,
along with the related methods:

private fun updateScreenState(
 state: AnimalsNearYouViewState,
 adapter: AnimalsAdapter
) {
 // 1
 binding.progressBar.isVisible = state.loading
 adapter.submitList(state.animals)
 handleNoMoreAnimalsNearby(state.noMoreAnimalsNearby)
 handleFailures(state.failure)
}

// 2
private fun handleNoMoreAnimalsNearby(noMoreAnimalsNearby:
Boolean) {

}

// 3
private fun handleFailures(failure: Event<Throwable>?) {
 val unhandledFailure = failure?.getContentIfNotHandled() ?:
return

 val fallbackMessage = getString(R.string.an_error_occurred)

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 148

 val snackbarMessage = if
(unhandledFailure.message.isNullOrEmpty()) {
 fallbackMessage
 }
 else {
 unhandledFailure.message!! // 4
 }

 if (snackbarMessage.isNotEmpty()) {
 Snackbar.make(requireView(), snackbarMessage,
Snackbar.LENGTH_SHORT).show()
 }
}

In the code above:

1. You update every property of the state. If you don’t need to update something, it
has no place in the view state.

2. This is a placeholder method. It’ll prompt the user to try a different distance or
postal code if there aren’t any more animals nearby. For the purposes of this
chapter, this method isn’t worth implementing. Plus, you haven’t created the
code for distance and postal code selection yet.

3. Handling failures can be complex, involving things like retrying requests or
screen navigation. In this case, you’re handling every failure the same way: by
using a Snackbar to display a simple message on the screen. You can also see
how Event lets you handle each error just once, through its
getContentIfNotHandled().

4. Yes, those double bangs are on purpose. Don’t be afraid of using them when you
want to make sure that nullable values exist. The sooner your app crashes, the
sooner you can fix the problem. Of course, don’t use them without weighing the
consequences. If, for some reason, you can’t use tests or don’t have a QA team
testing the app, be more careful. My late uncle always said: “With great power,
comes great responsibility.” Just kidding, I never really liked web development. :]

Calling the Subscriber
Last, but not least, you need to call subscribeToViewStateUpdates(). Add it at the
end of setupUI(), below the setupRecyclerView() call, and pass in the adapter:

observeViewStateUpdates(adapter)

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 149

Build and run. You did it! Look at all those cute animals! Hopefully, you got lucky
with the request and got real images instead of the placeholder Glide’s using. :]

Figure 6.4 — These Pictures Make Everything Worthwhile!

Great job! You can finally visualize the work you did over the last few chapters. You
built the basis for a scalable and maintainable app — you should be proud of
yourself.

There’s a lot still missing here — and it will continue to be missing, because there
isn’t enough time to fix everything. For instance, if an animal disappears from the
API, you don’t have a way of syncing the cache. There also is no refresh mechanism.

You will add one last thing for this feature, though, because it exposes some
interesting topics. In the app, scroll to the bottom of the list and you’ll notice it
doesn’t add any more items. You’ll fix that next.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 150

Allowing an Infinite Scroll
Paging is a hard problem to solve, but you won’t use the Paging library here. It adds a
lot of complexity, and it’s not that compatible with this architecture because you’d
need it in every layer. What matters here is the state management aspect of paging,
not what you use to implement it.

Instead, you’ll use a simple infinite scrolling class, which you’ll attach to the
RecyclerView. You’ve probably seen InfiniteScrollListener.kt in
animalsnearyou.presentation already. Take a peek if you want; it just checks if
RecyclerView scrolled close to the last item. Until now, you requested only the first
page of animals. With infinite scrolling, you’ll start requesting more pages.

Start by adding a new event in AnimalsNearYouEvent, right below
RequestInitialAnimalsList:

object RequestMoreAnimals: AnimalsNearYouEvent()

Now, switch to AnimalsNearYouFragment. Add this method just below
setupRecyclerView():

private fun createInfiniteScrollListener(
 layoutManager: GridLayoutManager
): RecyclerView.OnScrollListener {
 return object : InfiniteScrollListener(
 layoutManager,
 AnimalsNearYouFragmentViewModel.UI_PAGE_SIZE
) {
 override fun loadMoreItems() { requestMoreAnimals() }
 override fun isLoading(): Boolean =
viewModel.isLoadingMoreAnimals
 override fun isLastPage(): Boolean = viewModel.isLastPage
 }
}

isLoading() and isLastPage() both use properties that come from ViewModel.
These properties don’t exist yet. The loadMoreItems override calls
requestMoreAnimals(). This method also doesn’t exist yet, but it should be obvious
what it does. Add it below:

private fun requestMoreAnimals() {
 viewModel.onEvent(AnimalsNearYouEvent.RequestMoreAnimals)
}

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 151

Then, call createInfiniteScrollListener() in setupRecyclerView(), below
setHasFixedSize(true), like so:

addOnScrollListener(createInfiniteScrollListener(layoutManager
as GridLayoutManager))

Modifying ViewModel
Now, continue to ViewModel. First, you’ll create all the properties to get rid of the
errors. At the beginning of the class, add:

companion object {
 const val UI_PAGE_SIZE = Pagination.DEFAULT_PAGE_SIZE
}

This gets the page size limit defined in the domain. Then, just below state, add:

val isLastPage: Boolean
 get() = state.value.noMoreAnimalsNearby

var isLoadingMoreAnimals: Boolean = false
 private set

Finally, react to the event in onEvent() by adding this line to when:

is AnimalsNearYouEvent.RequestMoreAnimals ->
loadNextAnimalPage()

You can build, and even run, the app now. In fact, the scrolling already works,
although a few details are still missing.

Before dealing with those missing details, however, it’s important to talk about why
although isLastPage derives its value from the domain, the same is not true for
isLoadingMoreAnimals. In fact, this one has nothing to do with the view state.

That’s because isLoadingMoreAnimals is an implementation detail, since the view
doesn’t need to know that the loading is ongoing — at least for now. Things would be
different if the UI had something like a Loading more view type.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 152

Another relevant point here is the use of isLastPage, instead of using
viewModel.state.value.noMoreAnimalsNearby directly. There are two reasons for
this:

• You want the Fragment to access viewState only when collecting it. Try to avoid
accessing it in other places or the code might get harder to maintain.

• Notice the different meaning that each name conveys. While
noMoreAnimalsNearby alludes to the domain of the app, isLastPage is actually
an implementation detail of the infinite scroll. It just happens to have the view
state as its source.

In the end, it’s a trade-off: What you lose by exposing properties other than the view
state, you win in code simplicity, intent expression and SoC.

Using the Properties
You don’t need to do anything else for isLastPage — its custom getter will make
sure you always get the most up-to-date value from the view state. However, for
isLoadingMoreAnimals, you want it to be true when you’re waiting for the API
request to finish and false when you have its result. You’ll make this happen in
loadNextAnimalPage().

Right on top of the method, above errorMessage, add:

isLoadingMoreAnimals = true

And at the end, right after the onPaginationInfoObtained() call and still inside
the coroutine’s scope, add:

isLoadingMoreAnimals = false

This avoids triggering more requests while another request is running. The infinite
scrolling methods run on the UI thread, so there’s no risk of concurrency here.

Build and run. Look at the logs and you’ll see that the infinite scroll works one
request at a time. If you’re patient enough, you’ll see that it stops loading more
items when it reaches the end.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 153

And that’s it — you’re done with the Animals near you feature. Great work! By
implementing this feature, you learned the basics of state management.

You won’t add any tests in this chapter. In fact, if you try to run the tests in the
androidTest package now, Hilt will complain about dependencies. That’s expected
due to the current configuration, as you’re not providing every dependency needed.
This will be fixed in the next chapter, where you’ll also take the development up a
notch by implementing a constantly changing state.

Key Points
• Keep the UI as dumb as possible.

• View states represent the state that the user sees.

• UI models should contain the minimum information necessary for display, in the
simplest format possible.

• You can handle exception handling in coroutines with a
CoroutineExceptionHandler or, for more control, with try-catch blocks.

• Encapsulate your logic in use cases.

• Inject your dependencies with Hilt, using the Android-specific features it provides.

Real-World Android by Tutorials Chapter 6: Building Features — Animals Near You

raywenderlich.com 154

7Chapter 7: Building
Features — Search
By Ricardo Costeira

In the previous chapters, you developed the Animals near you feature. You built it
one layer at a time, with the small exception of the use cases. For the Search feature,
you’ll follow a more dynamic approach, adding code to the layers as you need it.

In this chapter, you’ll learn about:

• Handling user-triggered events.

• Reacting to different events and reducing them to the same view state.

• Handling pending requests.

• Testing, and the advantages that this architecture brings to it.

There’s a lot of fun ahead!

raywenderlich.com 155

Building a Search Feature
Your goal now is to create a search function to help potential owners find their
perfect pet. Here’s a breakdown of how the feature works:

1. The user types the animal’s name in the search query.

2. The user can filter the queries by the age and type of animal.

3. The app searches the cache for matching animals.

4. If no animals exist locally, the app sends a request to the PetFinder API.

5. The app stores the API result, if it finds one, and shows the search results to the
user.

Now, it’s time to jump in and start finding pets!

Getting Started
To start, go to the fragment_search layout and look around. The whole UI is ready
to go: You have a search widget and Views to display the remote search and no
results cases.

Figure 7.1 — SearchFragment Layout

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 156

In the code, notice how every View has an ID. As a best practice, you should have IDs
for all your Views. Views can be stateful and the Android system needs those IDs to
restore their state when necessary. For instance, if a ScrollView doesn’t have an ID,
the system won’t restore its scroll position after a configuration change.

Another thing to keep in mind is that you should strive for unique IDs whenever
possible. This applies not only to the layout you’re working on, but throughout the
whole app. This helps the system search for the correct View in the hierarchy tree.
Having the same IDs can lead to subtle bugs in cases where you include different
layouts under the same View hierarchy.

Searching Locally
According to your plan, the app should search for pet names locally before calling on
the remote API.

The classes you need to do this already exist. Open SearchFragment.kt in the
search.presentation package. You’ll notice that it has a similar basic UI code as
AnimalsNearYouFragment.kt, in the animalsnearyou.presentation package,
does.

The app only has these two Fragments, so it’s not a big deal. With more Fragments,
it might make sense to extract the common code into a common class or set of
functions. Just don’t create a BaseFragment class. Over time, base classes get
polluted with code that only specific child classes use. This creates an implicit
coupling between that code and classes that don’t use it. It also turns the base class
into a spaghetti mess, making maintenance and refactoring harder.

Ideally, you’d delegate the intended behavior through well-defined, single-
responsibility classes that Fragments can then use through composition.

You need to set up a few things before the user can start interacting with the UI:

• Search field: The search field is a SearchView. You need to set it up with an
OnQueryTextListener to react to text changes.

• Filters: Both filters are AutoCompleteTextView instances. You need to add an
OnItemClickListener to both, so you can retrieve the selected option.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 157

Every interaction will trigger an event, and each event is sent to the ViewModel. You
can find the pre-created events in SearchEvent.kt:

sealed class SearchEvent {
 object PrepareForSearch : SearchEvent()
 data class QueryInput(val input: String): SearchEvent()
 data class AgeValueSelected(val age: String): SearchEvent()
 data class TypeValueSelected(val type: String): SearchEvent()
}

Recognizing Text in the Search Field
Your first step is to change the search field so it recognizes when the user types a
query. Start by adding the following method in the SearchFragment.kt:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 private fun setupSearchViewListener() {
 val searchView = binding.searchWidget.search

 searchView.setOnQueryTextListener(
 object : SearchView.OnQueryTextListener {
 override fun onQueryTextSubmit(
 query: String?
): Boolean {
 viewModel.onEvent(
 SearchEvent.QueryInput(query.orEmpty()) // 1
)
 searchView.clearFocus()
 return true
 }

 override fun onQueryTextChange(
 newText: String?
): Boolean {
 viewModel.onEvent(
 SearchEvent.QueryInput(newText.orEmpty()) // 2
)
 return true
 }
 }
)
 }
 // ...
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 158

Be sure to import the AndroidX dependency. This method creates and sets
OnQueryTextListener on SearchView. It sends a SearchEvent.QueryInput event:

1. With the text you receive as a parameter of the onQueryTextSubmit() callback
that’s invoked when you submit the text in input.

2. With the String you get every time the text in input changes and
onQueryTextChange() is invoked.

Both of the overrides trigger events on the ViewModel, updating the search query.
The difference between them is that onQueryTextSubmit also calls clearFocus on
the SearchView. This hides the soft keyboard when the user taps its Search button.

Handling the Search Filters
Next, you need to add the functionality that lets the user filter their results by age
and type of animal. To handle the filters, add these methods to the same
SearchFragment.kt:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 // 1
 private fun setupFilterListeners() {
 with (binding.searchWidget) {
 setupFilterListenerFor(age) { item ->
 viewModel
 .onEvent(SearchEvent.AgeValueSelected(item)) // 2
 }

 setupFilterListenerFor(type) { item ->
 viewModel
 .onEvent(SearchEvent.TypeValueSelected(item)) // 3
 }
 }
 }

 // 4
 private fun setupFilterListenerFor(
 filter: AutoCompleteTextView,
 block: (item: String) -> Unit
) {

 filter.onItemClickListener =
 AdapterView.OnItemClickListener { parent, _, position, _
->
 parent?.let {
 block(it.adapter.getItem(position) as String)
 }

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 159

 }
 }
 // ...
}

This code defines:

1. setupFilterListeners() as a utility method that allows you to set up the filter
logic for the age and type of animal, passing in a lambda that triggers the
ViewModel event that updates each filter.

2. The event to trigger when the user selects a new age.

3. The event to trigger when the user selects a new type.

4. setupFilterListenerFor as a method that sets the listener on the filters. The
listener gets the filter at a given position and passes it into the lambda. The
behavior is the same for both filters, so you reuse it.

To call all these methods, update SearchFragment like this:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 private fun prepareForSearch() { // 1
 setupFilterListeners()
 setupSearchViewListener()
 viewModel.onEvent(SearchEvent.PrepareForSearch) // 2
 }

 override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {
 super.onViewCreated(view, savedInstanceState)
 setupUI()
 prepareForSearch() // 3
 }
 // ...
}

In this code you:

1. Add prepareForSearch() as a convenience method that invokes both
setupFilterListeners() and setupSearchViewListener().

2. Send the SearchEvent.PrepareForSearch event to the ViewModel, so it knows
when the UI is ready to start searching.

3. Call prepareForSearch() when you initialize the UI for SearchFragment.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 160

Build and run to make sure you didn’t break anything. You haven’t handled the
events on the ViewModel side yet, so you’ll see the same incomplete UI as Figure 7.2:

Figure 7.2 — SearchFragment in Action

Dealing With a More Complex State
Before going to the ViewModel, open SearchViewState.kt. It might not look like it,
but this view state is a lot more complex than the other one:

data class SearchViewState(
 val noSearchQuery: Boolean = true,
 val searchResults: List<UIAnimal> = emptyList(),
 val ageFilterValues: Event<List<String>> =
Event(emptyList()),
 val typeFilterValues: Event<List<String>> =
Event(emptyList()),
 val searchingRemotely: Boolean = false,
 val noRemoteResults: Boolean = false,
 val failure: Event<Throwable>? = null
)

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 161

The filters are modeled as Event’s for performance reasons.

AutoCompleteTextView uses an Adapter — not the same Adapter you used with
RecyclerView — to display items. The simplest way to update that Adapter is to
create a new one with the updated data. Once you set the filters, the data they
display doesn’t change. However, creating a new Adapter on each state update is a
waste of resources. Using the Event wrapper class, you ensure you only create one
Adapter for each filter.

This feature has a lot of different states. It would get too complex to manage them
without losing track of what they mean. That’s why SearchViewState has a few
methods to manage that for you. Each method copies the original state into a new
one associated with the method’s name.

You could also use sealed classes here, keeping a class for each state. Sealed classes
have no copy method, though. So in that case, you’d either have to handle the state
update itself or apply a State pattern.

The methods help give you an idea of the current state, but you can still have
impossible state updates like going to a no remote results state immediately after a
no search query state. At this point, the code is still simple enough to catch bugs
like this quickly, but you might have to update to sealed classes if the state gets more
complicated.

Populating the Filters
Open SearchFragmentViewModel.kt. You can see that onEvent() already reacts to
events, but the methods it calls don’t do anything yet. You’ll change that now adding
loadFilterValues() like this:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val compositeDisposable: CompositeDisposable
) : ViewModel() {
 // ...
 private fun loadFilterValues() {
 // 1
 val exceptionHandler =
 createExceptionHandler(
 message = "Failed to get filter values!"
)
 viewModelScope.launch(exceptionHandler) {
 val (ages, types) = getSearchFilters() // 2
 updateStateWithFilterValues(ages, types) // 3
 }

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 162

 }
}

This code:

1. Creates CoroutineExceptionHandler through createExceptionHandler(),
which you defined in the ViewModel.

2. Launches a coroutine in viewModelScope. The coroutine calls
getSearchFilters() in the background. The return value is destructured into
ages and types. getSearchFilters() is a use case.

3. Calls updateStateWithFilterValues() and passes in the filter values.

Before creating the use case, create updateStateWithFilterValues() like this:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val compositeDisposable: CompositeDisposable
) : ViewModel() {
 // ...
 private fun updateStateWithFilterValues(
 ages: List<String>,
 types: List<String>
) {
 _state.update { oldState ->
 oldState.updateToReadyToSearch(ages, types)
 }
 }
}

Now that it has the filter data, the UI is ready for the user, so you update the state to
ready to search.

Updating the Domain With Search
You need to create getSearchFilters(), the use case that gets the data to populate
the filters.

First, think about what the use case should return. Strings? Animals? According to
the use case’s name, it should return search filters. But the domain layer doesn’t
know what a search filter is, nor does it have any knowledge about the search.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 163

To change this, go to the search.domain.model package and create the
SearchFilters.kt file with the following code:

data class SearchFilters(
 val ages: List<String>,
 val types: List<String>
)

Now, create GetSearchFilters.kt in the search.domain.usecases package and write
the use case class, like this:

class GetSearchFilters @Inject constructor(
 private val animalRepository: AnimalRepository,
 private val dispatchersProvider: DispatchersProvider
) {

 companion object {
 const val NO_FILTER_SELECTED = "Any"
 }

 suspend operator fun invoke(): SearchFilters {

 }
}

The companion object property is the default value for both filters. The use case
will get both ages and types from the repository. The methods for this already exist.
Don’t worry, you’ll create the whole method chain for the next use case. :]

Getting Data From the Repository
Now, you’re going to add the functionality to get the search results from the
repository.

Complete invoke() with the following code:

suspend operator fun invoke(): SearchFilters {
 return withContext(dispatchersProvider.io()) {
 val unknown = Age.UNKNOWN.name

 //1
 val types =
 listOf(NO_FILTER_SELECTED) +
animalRepository.getAnimalTypes()

 // 2
 val ages = animalRepository.getAnimalAges()
 .map { age ->

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 164

 if (age.name == unknown) {
 NO_FILTER_SELECTED
 } else {
 age.name
 .uppercase()
 .replaceFirstChar { firstChar ->
 if (firstChar.isLowerCase()) {
 firstChar.titlecase(Locale.ROOT)
 } else {
 firstChar.toString()
 }
 }
 }
 }

 return@withContext SearchFilters(ages, types)
 }
}

Here, you:

1. Request the animal types from the repository and add a default value, Any, to the
head of the type list.

2. Get the ages from the repository, then map the Enums to their names, replacing
UNKNOWN with Any and capitalizing the words. After that, you return
SearchFilters with the ages and types.

The default value will be at the head of the ages list as well. This is due to the order
you set the Enum values.

Note: It’s not advisable to rely on Enum’s value order, which can change over
time. By doing so, you create a tight coupling between this code and the Enum’s
implementation.

Head to SearchFragmentViewModel. Inject the use case in the constructor:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val getSearchFilters: GetSearchFilters, // HERE
 private val compositeDisposable: CompositeDisposable
): ViewModel()

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 165

Finally, in the empty prepareForSearch() method of the VIewModel, call
loadFilterValues():

private fun prepareForSearch() {
 loadFilterValues()
}

Build and run to make sure everything works. You won’t see any differences yet
because the Fragment isn’t observing these changes.

Updating the UI
To update the UI with the filter information, you need to implement two methods.
Go to SearchFragment and add:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 // 1
 private fun setupFilterValues(
 filter: AutoCompleteTextView,
 filterValues: List<String>?
) {
 if (filterValues == null || filterValues.isEmpty()) return

 filter.setAdapter(createFilterAdapter(filterValues))
 filter.setText(GetSearchFilters.NO_FILTER_SELECTED, false)
 }

 // 2
 private fun createFilterAdapter(
 adapterValues: List<String>
): ArrayAdapter<String> {
 return ArrayAdapter(
 requireContext(),
 R.layout.dropdown_menu_popup_item,
 adapterValues
)
 }
 // ...
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 166

Here’s what’s going on in this code:

1. You’ll use this method for both filters. It returns early if the list is either null or
empty — for instance, on the initial state or when the filter content was already
handled. It creates the adapter for a given filter and sets the filter to show the
default value from the use case. Both filters will have the default value as the first
one on the list. However, to avoid relying on the age Enum’s value order, it’s best
to use the default value from the use case instead. Having the Fragment access
the use case isn’t great either, but it’s better. A workaround here would be to have
the ViewModel declare a property for the default value, which it would get from
the use case, and have the Fragment access that instead.

2. Creates an ArrayAdapter that displays a TextView for each element, as per the
dropdown_menu_popup_item layout.

Finally, locate updateScreenState(), the method responsible for rendering the
state. Update it to call setupFilterValues() for both filters, like this:

private fun updateScreenState(
 newState: SearchViewState,
 searchAdapter: AnimalsAdapter
) {
 val (
 inInitialState,
 searchResults,
 ageFilterValues,
 typeFilterValues,
 searchingRemotely,
 noResultsState,
 failure
) = newState

 updateInitialStateViews(inInitialState)

 with (binding.searchWidget) {
 setupFilterValues(
 age,
 ageFilterValues.getContentIfNotHandled()
)
 setupFilterValues(
 type,
 typeFilterValues.getContentIfNotHandled()
)
 }

 handleFailures(failure)
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 167

The view state subscriber already calls updateScreenState(), so view state updates
will already trigger it.

Build and run. The app now displays the filters with data!

Figure 7.3 — Working Search Filters

Cool. Now you can use this data, along with a search query, to search for animals.

Triggering the Search
Earlier, you set up the search parameters’ change events, but the code doesn’t react
to them yet. You’ll change that next.

Open SearchFragmentViewModel.kt. At the top of the class is one
BehaviorSubject for the search query and two others for the age and type filters.
You’ll use all three of them, merge them into one single Flowable and operate on it
so it searches the cache. This same Flowable will then update the view state.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 168

Locate onSearchParametersUpdate() in SearchFragmentViewModel and update it
to:

private fun onSearchParametersUpdate(event: SearchEvent) {
 when (event) {
 is SearchEvent.QueryInput -> updateQuery(event.input)
 is SearchEvent.AgeValueSelected -> updateAgeValue(event.age)
 is SearchEvent.TypeValueSelected ->
updateTypeValue(event.type)
 }
}

This method is already called in onEvent() and, in turn, calls a different method for
each event.

You’re probably getting an orange squiggly line under the when. You could solve this
by having these cases join PrepareForSearch in onEvent, instead of having them in
a separate method. However, bear with it for now — this separation will make sense
later.

None of the methods exist, so add them in ´SearchFragmentViewModel`:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private fun updateQuery(input: String) {
 resetPagination() // 1

 querySubject.onNext(input) // 2

 // 3
 if (input.isEmpty()) {
 setNoSearchQueryState()
 } else {
 setSearchingState()
 }
 }

 // 4
 private fun updateAgeValue(age: String) {
 ageSubject.onNext(age)
 }

 private fun updateTypeValue(type: String) {
 typeSubject.onNext(type)
 }

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 169

 // ...
}

In this code, you:

1. Reset the pagination with each query. The search screen needs infinite scrolling
for the cases where the remote results return more than one page. For simplicity,
though, some parts of that code were omitted.

2. Send the input to the input’s BehaviorSubject.

3. Want to show different things on the screen, depending on whether the input is
empty or not. The no search query state is visually identical to the ready to
search state. For instance, if you write something on the SearchView and then
delete it, you want to revert to no search query.

4. Send the selected filter values to the corresponding BehaviorSubjects.

Build and run. Now, when you type something into the search, the background cat
will disappear as you update to the searching state.

Tying Everything Together
You now have all the ingredients for the local search. You just need to tie everything
together to make the search work.

You’ll now create a SearchAnimals use case. Just like before, this use case returns a
specific domain model: SearchResults.

Start by creating the model. In the search.domain.model package, create
SearchResults.kt with the code:

data class SearchResults(
 val animals: List<Animal>,
 val searchParameters: SearchParameters
)

It’s composed of a list of animals and SearchParameters, a value object that models
the search parameters. You’ll use it to search the cache and to propagate the search
parameters to a remote search, in case nothing in the cache matches.

Create SearchParameters.kt in the same package, with the value object code:

data class SearchParameters(
 val name: String,
 val age: String,

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 170

 val type: String
)

Finally, in the search.domain.usecases package, create SearchAnimals.kt. In it,
add the code:

class SearchAnimals @Inject constructor(
 private val animalRepository: AnimalRepository
) {
 operator fun invoke(
 querySubject: BehaviorSubject<String>,
 ageSubject: BehaviorSubject<String>,
 typeSubject: BehaviorSubject<String>
): Flowable<SearchResults> {

 }
}

This use case takes in all the BehaviorSubjects and outputs a Flowable of
SearchResults. This Flowable emits new values every time one of the
BehaviorSubjects emits something new.

You need to do some work on the streams before you’re able to use them. You’ll start
with the query stream first.

Handling Search Queries
There are a few steps to follow to handle the search queries properly. Update the
invoke operator method of the use case:

operator fun invoke(
 querySubject: BehaviorSubject<String>,
 ageSubject: BehaviorSubject<String>,
 typeSubject: BehaviorSubject<String>
): Flowable<SearchResults> {
 val query = querySubject
 .debounce(500L, TimeUnit.MILLISECONDS) // 1
 .map { it.trim() } // 2
 .filter { it.length >= 2 } // 3
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 171

Here’s what’s going on above:

1. debounce is important because it helps you avoid reacting to every little change
in the query. There’s no need to react instantly to what a user types when waiting
half a second longer might allow you to provide more information. The user
won’t notice, you’ll provide a better service and you’ll lighten the load on the
device, performance-wise.

2. The user might add unnecessary spaces before or after the query, and the app
considers these to be characters. It’s best to remove them.

3. This avoids events with a single character or less. Hopefully, there are no animals
called Z or something. :]

Removing the Any Value

For the filters, you need to replace the Any value with an empty string because you
don’t want ages or types that match Any. The reason for this will become clearer
when you implement the cache search method. For now, add these two lines to
invoke:

operator fun invoke(
 querySubject: BehaviorSubject<String>,
 ageSubject: BehaviorSubject<String>,
 typeSubject: BehaviorSubject<String>
): Flowable<SearchResults> {
 val query = querySubject
 .debounce(500L, TimeUnit.MILLISECONDS)
 .map { it.trim() }
 .filter { it.length >= 2 }

 val age = ageSubject.replaceUIEmptyValue() // This
 val type = typeSubject.replaceUIEmptyValue() // And this
}

And create the replaceUIEmptyValue() private extension function in the use case’s
scope:

class SearchAnimals @Inject constructor(
 private val animalRepository: AnimalRepository
) {
 // ...
 private fun BehaviorSubject<String>.replaceUIEmptyValue() =
map {
 if (it == GetSearchFilters.NO_FILTER_SELECTED) "" else it
 }
 // ...
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 172

This extension function handles the required string replacement. You can now merge
the BehaviorSubjects and use their joint result to output a Flowable.

To do so, you need to add the following property, called combiningFunction, to the
class. You’ll see why in a second:

class SearchAnimals @Inject constructor(
 private val animalRepository: AnimalRepository
) {
 // ...
 private val combiningFunction: Function3<String, String,
String, SearchParameters>
 get() = Function3 { query, age, type ->
 SearchParameters(query, age, type)
 }
 //...
}

To avoid trouble with Function3, add this import at the top:

import io.reactivex.functions.Function3

Make the final update to invoke by adding the return statement:

operator fun invoke(
 querySubject: BehaviorSubject<String>,
 ageSubject: BehaviorSubject<String>,
 typeSubject: BehaviorSubject<String>
): Flowable<SearchResults> {
 val query = querySubject
 .debounce(500L, TimeUnit.MILLISECONDS)
 .map { it.trim() }
 .filter { it.length >= 2 }

 val age = ageSubject.replaceUIEmptyValue()
 val type = typeSubject.replaceUIEmptyValue()

 return Observable.combineLatest(query, age, type,
combiningFunction) // 1
 .toFlowable(BackpressureStrategy.LATEST) // 2
 .switchMap { parameters: SearchParameters -> // 3
 animalRepository.searchCachedAnimalsBy(parameters)
 }
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 173

Here’s what this does:

1. combineLatest joins the latest results of each stream, using the combining
function. In this case, your combining function is the property you just created. It
outputs a SearchParameters instance with the values from all the streams.
Every time a stream emits something new, combineLatest creates an updated
SearchParameters instance.

2. The toFlowable operator transforms the stream into a Flowable. You need to do
this to wire the stream up to the Flowable you’ll get from the repository. When
you create a Flowable with this operator, you need to specify a backpressure
strategy. Only the most recently emitted event matters. As such, you create the
Flowable with BackpressureStrategy.LATEST, which discards any previous
event it’s holding in favor of the new one.

3. switchMap discards any old events in favor of new ones. This is exactly what you
want for a search. Also, using switchMap makes the backpressure definition
above unnecessary. Regardless, since you have to specify one anyway, you might
as well use the one that fits better. Inside switchMap, you call the repository’s
searchCachedAnimalsBy(), passing in the search parameters.

The repository method doesn’t exist yet. In fact, none of the needed methods exist,
so buckle up: You need to go through the layers and create all the necessary
methods.

Adding Search to the Repository
Since you’re already calling the repository’s method in the use case, it makes sense
to start from there. Go to AnimalRepository and add the method declaration:

interface AnimalRepository {
 // ...
 fun searchCachedAnimalsBy(searchParameters: SearchParameters):
Flowable<SearchResults>
 // ...
}

Then, implement it in PetFinderAnimalRepository:

class PetFinderAnimalRepository @Inject constructor(
 private val api: PetFinderApi,
 private val cache: Cache,
 private val apiAnimalMapper: ApiAnimalMapper,

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 174

 private val apiPaginationMapper: ApiPaginationMapper
) : AnimalRepository {
 // ...
 override fun searchCachedAnimalsBy(
 searchParameters: SearchParameters
): Flowable<SearchResults> {
 val (name, age, type) = searchParameters

 return cache.searchAnimalsBy(name, age, type)
 .distinctUntilChanged()
 .map { animalList ->
 animalList.map {
 it.animal.toAnimalDomain(
 it.photos,
 it.videos,
 it.tags
)
 }
 }
 .map { SearchResults(it, searchParameters) }
 }
 // ...
}

This is similar to getAnimals, which also returns a Flowable. The difference is that
there’s an extra map at the end.

Of course, searchAnimalsBy() also doesn’t exist yet. Add it to the Cache interface:

interface Cache {
 // ...
 fun searchAnimalsBy(
 name: String,
 age: String,
 type: String
): Flowable<List<CachedAnimalAggregate>>
 // ...
}

And implement it in RoomCache:

class RoomCache @Inject constructor(
 private val animalsDao: AnimalsDao,
 private val organizationsDao: OrganizationsDao
) : Cache {
 // ...
 override fun searchAnimalsBy(
 name: String,
 age: String,
 type: String
): Flowable<List<CachedAnimalAggregate>> {

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 175

 return animalsDao.searchAnimalsBy(name, age, type)
 }
 // ...
}

Finally, add the most interesting method of them all, in AnimalsDao:

@Dao
abstract class AnimalsDao {
 // ...
 @Transaction
 @Query("""
 SELECT * FROM animals
 WHERE name LIKE '%' || :name || '%' AND
 AGE LIKE '%' || :age || '%'
 AND type LIKE '%' || :type || '%'
 """)
 abstract fun searchAnimalsBy(
 name: String,
 age: String,
 type: String
): Flowable<List<CachedAnimalAggregate>>
 // ...
}

This query uses the search parameters to filter the table elements. Using """ lets you
write multiline statements. SQLite’s LIKE operator is case-insensitive, so you don’t
need to worry about capitalization. '%' || and || '%' search for the parameters,
even if they’re prefixed or suffixed with other characters. So for instance, searching
by rce will return an animal named “Marcel”.

Here, you can see why you replaced Any with empty strings. Using LIKE with an
empty string matches every item, so it works as if you’re not using any filter at all.

Whew! That’s the price you pay for organized layers. The only thing missing now to
call the search use case and observe its Flowable to see the search results.

Adding Search to the ViewModel
Head back to SearchFragmentViewModel.kt and inject the SearchAnimals use
case in the constructor:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimals: SearchAnimals, // HERE

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 176

 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel()

Then, update prepareForSearch():

private fun prepareForSearch() {
 loadFilterValues()
 setupSearchSubscription() // WITH THIS
}

This method is where you’ll call the use case. Add it to SearchFragmentViewModel:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private fun setupSearchSubscription() {
 searchAnimals(querySubject, ageSubject, typeSubject)
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(
 { onSearchResults(it) },
 { onFailure(it) }
)
 .addTo(compositeDisposable)
 }
 // ...
}

Nothing new here, but you still need to create onSearchResults(). Add it to
SearchFragmentViewModel as well:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private fun onSearchResults(searchResults: SearchResults) {
 val (animals, searchParameters) = searchResults

 if (animals.isEmpty()) {
 // search remotely
 } else {

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 177

 onAnimalList(animals)
 }
 }
 // ...
}

This is where you’ll decide whether you need to search remotely. You’ll do that later.
onAnimalList() already updates the state with the search results. You now have to
update updateScreenState() in SearchFragment to react to those changes.

To do this, go to SearchFragment.kt. Add this line in updateScreenState():

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 private fun updateScreenState(
 newState: SearchViewState,
 searchAdapter: AnimalsAdapter
) {
 val (
 inInitialState,
 searchResults,
 ageFilterValues,
 typeFilterValues,
 searchingRemotely,
 noResultsState,
 failure
) = newState

 updateInitialStateViews(inInitialState)
 searchAdapter.submitList(searchResults) // HERE

 // ...
 }
 // ...
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 178

Build, run, and try out the search! You’ll see some results now, provided you have
some animals cached. Check out Figure 7.4 — no filter on the left, while the results
on the right are filtered.

Figure 7.4 — Search Results!

If there aren’t any results, the screen will just stay empty. Also, the state doesn’t
update properly when you display results, change the search parameters and don’t
get any results for that change.

To fix that, you’ll implement remote searching next.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 179

Searching Remotely
Go back to onSearchResults() in SearchFragmentViewModel. There’s an empty if
inside, reserved to act upon an empty animal list. That’s where the remote search
will start.

Delete the comment inside the if (if any) and add this line in its place:

private fun onSearchResults(searchResults: SearchResults) {
 val (animals, searchParameters) = searchResults

 if (animals.isEmpty()) {
 onEmptyCacheResults(searchParameters) // THIS ONE
 } else {
 onAnimalList(animals)
 }
}

Then create the method:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private fun onEmptyCacheResults(searchParameters:
SearchParameters) {
 _state.update { oldState ->
 oldState.updateToSearchingRemotely()
 }
 searchRemotely(searchParameters)
 }
 // ...
}

This method updates the state to searching remotely, which shows a ProgressBar
and a warning message. You still have to update the Fragment to see these changes,
but you’ll leave that for later.

Most of what you need to do now just copies what you’ve done so far. To reduce
repetition, most of the code already exists, you just have to uncomment it.

Locate SearchAnimalsRemotely.kt in the search.domain.usecases package and
uncomment invoke.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 180

Then, go to AnimalRepository and uncomment the searchAnimalsRemotely()
declaration.

Finally, go to PetFinderAnimalRepository and uncomment the implementation.

The API method already exists, so you don’t need to worry about it. It’s similar to the
animals near you method, but with added fields for the search.

Before building and running the app to make sure everything works, you need to
wrap up the work on the ViewModel.

Triggering the Search API Call
Go back to SearchFragmentViewModel. Just like before, inject a
SearchAnimalsRemotely instance in the constructor:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimalsRemotely: SearchAnimalsRemotely, //
HERE
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel()

Next, create searchRemotely():

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimalsRemotely: SearchAnimalsRemotely,
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private fun searchRemotely(searchParameters: SearchParameters)
{
 val exceptionHandler = createExceptionHandler(message =
"Failed to search remotely.")

 viewModelScope.launch(exceptionHandler) {
 Logger.d("Searching remotely...")
 val pagination = searchAnimalsRemotely(
 ++currentPage,
 searchParameters
)

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 181

 onPaginationInfoObtained(pagination)
 }
 }
 // ...
}

This is a one-shot operation, as any network operation should be. You have the
search results Flowable up and running. This operation will store any results in the
database, triggering the Flowable to display them.

Finally, go to SearchFragment and update updateScreenState():

 private fun updateScreenState(
 newState: SearchViewState,
 searchAdapter: AnimalsAdapter
) {
 val (
 inInitialState,
 searchResults,
 ageFilterValues,
 typeFilterValues,
 searchingRemotely,
 noResultsState,
 failure
) = newState

 // ...

 updateRemoteSearchViews(searchingRemotely) // WITH THIS LINE

 handleFailures(failure)
 }

You also have to create the method in SearchFragment:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 private fun updateRemoteSearchViews(searchingRemotely:
Boolean) {
 binding.searchRemotelyProgressBar.isVisible =
searchingRemotely
 binding.searchRemotelyText.isVisible = searchingRemotely
 }
 // ...
}

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 182

Build and run, then try searching for random names. Your remote search now
works. :]

Figure 7.5 — Searching Remotely

There’s something important to consider regarding remote search: What happens
when the user starts a new remote search before the old one is complete? The
previous one keeps going!

You won’t see this in the UI. Even if you store items that come from an old request,
they probably won’t pass the search parameters’ filtering. However, behind the
curtain, you can have the bad luck of a previous request taking longer to finish than
a new one. This can mess up the pagination data, for instance. For safety and good
hygiene, you should cancel old requests.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 183

Canceling Old Search Requests
When you call launch on a CoroutineScope, you create a coroutine. launch returns
a Job that represents that coroutine. You’ll use this Job to control the remote
requests.

In SearchFragmentViewModel, add:

@HiltViewModel
class SearchFragmentViewModel @Inject constructor(
 private val uiAnimalMapper: UiAnimalMapper,
 private val searchAnimalsRemotely: SearchAnimalsRemotely,
 private val searchAnimals: SearchAnimals,
 private val getSearchFilters: GetSearchFilters,
 private val compositeDisposable: CompositeDisposable
): ViewModel() {
 // ...
 private var remoteSearchJob: Job = Job()
 // ...
}

You’ll set this property to any new job you create for remote search. That said, go to
searchRemotely() and update the launch call to:

private fun searchRemotely(searchParameters: SearchParameters) {
 // ...

 remoteSearchJob = viewModelScope.launch(exceptionHandler) { //
THIS
 // ...
 }
}

Here, you’re getting the job for each coroutine and storing it. But when should you
cancel it?

When you change any of the search parameters, you search for a different parameter
set. Therefore, onSearchParametersUpdate() seems like the best place to cancel
the old coroutine.

To implement this, update the method, like so`:

private fun onSearchParametersUpdate(event: SearchEvent) {
 remoteSearchJob.cancel(// cancels the job
 CancellationException("New search parameters incoming!")
)

 when (event) {

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 184

 is SearchEvent.QueryInput -> updateQuery(event.input)
 is SearchEvent.AgeValueSelected -> updateAgeValue(event.age)
 is SearchEvent.TypeValueSelected ->
updateTypeValue(event.type)
 }
}

That’s why these SearchEvents are handled separately by this method, instead of
being together with SearchEvent.PrepareForSearch in onEvent.

Be that as it may, the orange squiggly still persists, as Kotlin will interpret non-
exhaustive whens as errors in future versions. To fix it without having
PrepareForSearch here, add an else at the end of the when:

when (event) {
 is SearchEvent.QueryInput -> updateQuery(event.input)
 is SearchEvent.AgeValueSelected -> updateAgeValue(event.age)
 is SearchEvent.TypeValueSelected ->
updateTypeValue(event.type)
 else -> Logger.d("Wrong SearchEvent in
onSearchParametersUpdate!") // HERER
}

Build and run. Everything works as before, but how do you know you’re canceling the
coroutine? An easy way to verify that is to check when the job completes, and why.

Checking That the Coroutine Canceled
Back in searchRemotely(), at the bottom of the method and outside launch’s
scope, add:

private fun searchRemotely(searchParameters: SearchParameters) {
 // ...

 remoteSearchJob = viewModelScope.launch(exceptionHandler) {
 // ...
 }

 remoteSearchJob.invokeOnCompletion
{ it?.printStackTrace() } // THIS LINE
}

Now, build and run. Try changing search parameters while a remote search is
running. You’ll now see the CancellationException above printed in Logcat with
that same message!

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 185

Another way of knowing if the coroutine was canceled is by checking Logcat for
interceptor logs. Retrofit supports coroutine cancellation, so the request gets
canceled and logged.

If SearchAnimalsRemotely wasn’t using Retrofit, nothing in it would check for
coroutine cancellation. In this case, since coroutine cancellation is cooperative,
you’d have to do the check yourself.

For instance, imagine that Retrofit didn’t care about coroutine cancellation. In that
case, right after a Retrofit call, you’d need something like:

if (!coroutineContext.isActive) {
 throw CancellationException(
 "Cancelled — New data was requested"
)
}

Fortunately, Retrofit is a great library and it handles all of this for you!

Finishing Touches
You’re almost done. Your search is just missing a state update in the Fragment.

SearchAnimalsRemotely throws a NoMoreAnimalsException when the search has
no results. onFailure() in SearchFragmentViewModel already handles this,
updating the state to no results.

So go to SearchFragment and update it by adding this line to
updateScreenState():

private fun updateScreenState(
 newState: SearchViewState,
 searchAdapter: AnimalsAdapter
) {
 val (
 inInitialState,
 searchResults,
 ageFilterValues,
 typeFilterValues,
 searchingRemotely,
 noResultsState,
 failure
) = newState

 // ...
 updateNoResultsViews(noResultsState)

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 186

}

Then, create this method:

@AndroidEntryPoint
class SearchFragment : Fragment() {
 // ...
 private fun updateNoResultsViews(noResultsState: Boolean) {
 binding.noSearchResultsImageView.isVisible = noResultsState
 binding.noSearchResultsText.isVisible = noResultsState
 }
 // ...
}

Build, run, and search for qwe. Hopefully, no one has terrible taste in pet naming.
The remote search won’t have any results, and you’ll see a sad little pug in the
background.

Figure 7.6 — No Results Pug

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 187

You’re done! To sum up the chapter so far:

• You implemented two new features with cache and network data sources.

• You separated your logic into well-defined and easily testable layers.

• You did all that while following a unidirectional data flow approach.

Of course, even though you did a lot, there are still things missing: Cache
invalidation, better error handling, request retries, possibly one or two bugs to
solve… Regardless, these changes only require their essential complexity, as the
overall architecture of the app makes it easier to apply changes and extend behavior.

Now, I don’t want to be that guy, but you know that there’s still one thing to do
before proceeding to the next chapter. Trust me, as you do it more and more in this
kind of architecture, you actually start to enjoy it. :]

Testing
To test the presentation layer, you’ll use two different kinds of tests. You’ll test:

1. The ViewModel

2. The UI

You won’t test the use cases directly because there’s nothing new to learn from that
— that would be a simple unit test of a class. You will test how the use cases integrate
with the ViewModel, however.

ViewModel Tests
Thanks to this architecture, testing the ViewModel is only a matter of sending events
in and getting view states out. It’s so clean and straightforward that it’s actually
enjoyable. Also, since ViewModel doesn’t require a device to run, you can run the
tests on the JVM.

Note: If you want to do full integration tests, like testing the ViewModel and
use cases along with the real repository using Retrofit and Room, you need to
put the tests in the androidTest package because Room needs the framework
to run.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 188

You’ll find SearchFragmentViewModelTest.kt in the test package, in a directory
matching the original ViewModel. It has an empty class for now. Before writing any
tests, there’s something you need to do.

Setting up Your Tests
In the debug package, locate common.data.FakeRepository.kt. Open it and
uncomment everything. As the name suggests, it’s a fake AnimalRepository
implementation to use with tests.

Go back to SearchFragmentViewModelTest. Start by adding these rules to the class:

class SearchFragmentViewModelTest {
 @get:Rule
 val testCoroutineRule = TestCoroutineRule() // 1

 @get:Rule
 val rxImmediateSchedulerRule = RxImmediateSchedulerRule() // 2
}

This code overrides:

1. Coroutine dispatchers, replacing the main dispatcher with a test dispatcher. You
need them because the Android UI thread isn’t available in JVM tests. This is
also one of the reasons why the class needs the @ExperimentalCoroutinesApi
annotation.

2. RxJava schedulers, setting them all to execute immediately.

TestCoroutineRule and RxImmediateSchedulerRule are custom rules. Both are
defined in the debug package, which means tests in both test and androidTest can
use them.

Below the rules, inside SearchFragmentViewModelTest, add these properties:

private lateinit var viewModel: SearchFragmentViewModel
private lateinit var repository: FakeRepository
private lateinit var getSearchFilters: GetSearchFilters

private val uiAnimalsMapper = UiAnimalMapper()

And below them, setup():

@Before
fun setup() {
 // 1
 val dispatchersProvider = object : DispatchersProvider {

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 189

 override fun io() = testCoroutineRule.testDispatcher
 }

 // 2
 repository = FakeRepository()
 getSearchFilters = GetSearchFilters(repository)

 viewModel = SearchFragmentViewModel(
 SearchAnimalsRemotely(repository),
 SearchAnimals(repository),
 getSearchFilters,
 uiAnimalsMapper,
 dispatchersProvider,
 CompositeDisposable()
)
}

Here’s what’s happening above:

1. This anonymous class implements DispatchersProvider by replacing the IO
dispatcher with the test dispatcher from the coroutine rule.

2. You instantiate the lateinit properties.

Now, to the actual test.

Building Your Test
You’ll start by testing the case where you do a remote search and get results. Add the
method signature:

@Test
fun `SearchFragmentViewModel remote search with success`() =
runTest {
 // Given

 // When

 // Then
}

You could use runBlocking here like you did in other tests, but runTest is a
coroutine builder designed for tests. It gives you more control over coroutines, like
advancing the test clock or defining when to run the coroutines. It’s also the other
reason why you need the @ExperimentalCoroutinesApi annotation.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 190

Adding the Initial Conditions

Below // Given, add the initial conditions:

// 1
val (name, age, type) = repository.remotelySearchableAnimal
val (ages, types) = getSearchFilters()

val expectedRemoteAnimals = repository.remoteAnimals.map {
 uiAnimalsMapper.mapToView(it)
}

// 2
val expectedViewState = SearchViewState(
 noSearchQuery = false,
 searchResults = expectedRemoteAnimals,
 ageFilterValues = Event(ages),
 typeFilterValues = Event(types),
 searchingRemotely = false,
 noRemoteResults = false
)

1. The fake repository has a few helper properties for testing. Here, you get the
name, age and type to use for searching, along with the list of remote animals
you expect.

2. At the end of the test, you expect a certain state. Since you’re testing for the
remote search case, you expect that the view state corresponds to that case.

Triggering the Events to Test

Now, for the // When:

viewModel.onEvent(SearchEvent.PrepareForSearch)
viewModel.onEvent(SearchEvent.TypeValueSelected(type))
viewModel.onEvent(SearchEvent.AgeValueSelected(age))
viewModel.onEvent(SearchEvent.QueryInput(name))

The view state can only reach the remote search state after a specific sequence of
view state updates. As such, you need to trigger the events on the ViewModel that
lead to that state.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 191

Checking the Results

Finally, the // Then:

val viewState = viewModel.state.value

assertThat(viewState).isEqualTo(expectedViewState)

So simple, yet so effective. You get the state and compare it to what you expect it to
be. You’re effectively testing the whole state of your screen by doing so.

On a side note, you had to convert Event to a data class so it implements equals().

Tests like this make you think about what each state should represent. They’ll fail if
you mess those states up. Build and run the test to make sure it works.

That’s it for the ViewModel tests, as every test will follow this same recipe. It’s time
to test the UI.

UI Tests
Animations affect UI tests, so you need to disable them before testing. Go to your
device’s developer options. If you don’t have developer options, go to the About
section of the settings and click Build number until you unlock them.

Change the animation settings so:

• Window animation scale is off.

• Transition animation scale is off.

• Animation duration scale is off.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 192

See the image below:

Figure 7.7 — Changing the animation settings.

To create a UI test, the androidTest code needs to implement the full DI graph. You
might recall that when you finished the previous chapter, you couldn’t run tests in
this package. This was because Hilt needed the dependencies to inject in
AnimalsNearYouFragmentViewModel, and you weren’t providing them all in tests.

Most of that is now fixed. To wrap it up, go to
common.di.TestActivityRetainedModule.kt in androidTest. This module uses
TestInstallIn to replace the production bindings in
ActivityRetainedModule.Inside the abstract class, uncomment
bindAnimalRepository() and its annotations. This injects the FakeRepository
instead of the real one.

With that out of the way, go to search.presentation.SearchFragmentTest.kt. You’ll
test a case that’s similar to the one before, but from the UI perspective. It’ll test the
integration of the Fragment, ViewModel and use cases. It stops testing real code at
the FakeRepository, but you could easily make it an end to end test by uninstalling
TestActivityRetainedModule.kt instead of ActivityRetainedModule, and setting
up a fake server with mockWebServer.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 193

Building Your Test

Locate searchFragment_testSearch_success(). Below // Given, add:

val nameToSearch =
 FakeRepository().remotelySearchableAnimal.name
launchFragmentInHiltContainer<SearchFragment>()

As in the ViewModel test, you get the name of the animal to search. The second line
is a lot more interesting though.

When you run tests on Fragments, you’d typically use a FragmentScenario, which
lets you launch your Fragment and control its lifecycle state. However, Hilt doesn’t
support that, at least for now.

Instead, you’ll do what the Hilt team recommends and use
launchFragmentInHiltContainer().

You declare this function in the debug package. Along with it, you declare a
HiltTestActivity annotated with @AndroidEntryPoint. The function creates an
Intent to launch the HiltTestActivity, then creates an ActivityScenario with it
and uses it to host your Fragment. Just like any Activity, you’ll find the
HiltTestActivity definition in the (debug) manifest.

Triggering What to Test

At this point, your Fragment is running. You want to test the search, so you need to
write nameToSearch in the Fragment’s SearchView. Below // When, add:

with(onView(withId(R.id.search))) {
 perform(click())
 perform(typeSearchViewText(nameToSearch))
}

Using Espresso, you access the SearchView through its ID. You click it for focus, then
run typeSearchViewText(). Typing in SearchView programmatically is a little
more complex than typing in a simple TextView. Therefore, using Espresso’s
typeText() won’t work.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 194

You can see typeSearchViewText() below the test method. It creates an anonymous
ViewAction class, where the two main methods are:

// 1
override fun getConstraints(): Matcher<View> {
 return allOf(
 isDisplayed(),
 isAssignableFrom(SearchView::class.java)
)
}

// 2
override fun perform(uiController: UiController?, view: View?) {
 (view as SearchView).setQuery(text, false)
}

The previous code defines:

1. Every View the ViewAction can operate on.

2. The action you want to perform.

Checking the Results

Go back to the test and add the final code below // Then:

with(onView(withId(R.id.searchRecyclerView))) {
 check(matches(childCountIs(1)))
 check(matches(hasDescendant(withText(nameToSearch))))
}

This code checks if RecyclerView has only one item and if the text in that item
matches what you expect. childCountIs() is also custom. It’s defined below
typeSearchViewText(), and it compares the value you pass to Adapter’s item
count.

Build and run the test. Look at your device while the test runs and you’ll see the
changes in the UI.

There you have it. By adding these two tests, you are now testing every layer of your
app. Well done!

This concludes your work on the Search feature. In the next chapter, you’ll work on
a new feature while learning how to create a multi-module app.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 195

Key Points
• Avoid using base classes for Android components.

• View state management can get complex when you use data classes. Consider
using functions to transition states, a state pattern or sealed classes.

• Avoid relying on Enum’s value order.

• A great way to handle user input is to treat it as a reactive stream, especially when
input from one source can influence another.

• I can’t stress this enough: Network requests are one-shot operations. So don’t
handle them like they’re event streams!

• Always consider the network requests you make. If you have requests that don’t
matter anymore, find a way to cancel them. Coroutines allow you to do this
organically, thanks to structured concurrency and cooperative cancellation.

• Following a unidirectional data flow makes unit testing the ViewModel a breeze.

• Hilt makes it easy to include test dependencies, but it has some limitations.

Real-World Android by Tutorials Chapter 7: Building Features — Search

raywenderlich.com 196

Section II: Modularizing Your
App

As you add new features to your app, the code becomes more complex and difficult
to maintain. For this reason, it’s important to separate your app into different
libraries to make your code both maintainable and reusable. This also improves the
app’s build time, which is a very important metric for your CI.

In this section, you’ll learn how to split your app into different modules. In
particular, you’ll learn how to use the dynamic feature option, which optimizes the
size of the code your users have to download to use your app.

raywenderlich.com 197

8Chapter 8: Multi-Module
Apps
By Ricardo Costeira

Imagine you have a working app. You release it and it’s a success! Business is
blooming, your app keeps growing and new people join the team. However, as time
goes by, all the extra code and extra developers start to take a toll on the
development process itself. Pull requests become more complex, build times
increase, technical debt starts to accumulate… It’s time you sit down with your team
and figure out a way to mitigate these problems and make your life easier.

One of the possibilities, in this case, is modularization. In this chapter, you’ll focus
on multi-module architecture. You’ll learn:

• The benefits and drawbacks of modularization.

• The different kinds of modules and how they relate to one another.

• How to create a feature module.

• Some of the many things to consider when modularizing your app.

• Ways to navigate between features.

You’ll start with the basics.

raywenderlich.com 198

What is Modularization?
Modularization is the process of refactoring your app into separate modules. For
PetSave, this implies transforming some — or all — of the packages into their own
modules.

Open the starter project and look at the project’s structure. It now represents a full-
blown multi-module architecture.

Figure 8.1 — Multi-Modular PetSave!

Modules represent either shared behavior or features. Here, common and logging
represent shared behavior. The app won’t work without the shared behavior
modules, so they’re known as core modules.

logging works as an abstraction module because it abstracts away a specific kind of
behavior. This is a clean way of encapsulating third-party libraries. At this point, it
only encapsulates the Timber library but you could extend it to handle more
complex tools, like Crashlytics or Bugfender.

The animalsnearyou and search modules are inside the features folder. They
represent the features you already know. Feature modules should depend only on
core modules, and never on other feature modules.

Before you go any further, take a moment to see which types of modules are
available.

Types of Modules
You define the kind of module you create through its build.gradle. There are a few
different types, but you’ll only look at three in this chapter. You’ll explore others in
the next chapter.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 199

Application Modules
When you create a new Android project, you get a default app module automatically.
This module is called an application module. You define it through this line at the
top of its build.gradle:

 apply plugin: 'com.android.application'

This is the main module of your app. It’s responsible for:

1. Defining the app’s base configuration.

2. Orchestrating the feature modules.

This module will behave differently depending on the kind of feature modules you’re
working with. You’ll learn more about this in the next chapters.

Library Modules
Unless you want to create different APKs, you only need one application module in
your app. Any other modules you create will be library modules. You define these
with the following plugin at the top of their build.gradle files:

 apply plugin: 'com.android.library'

These modules implement the logic that adds a behavior to your app, whether user-
facing logic or not. This is the case for all modules in PetSave other than app. The
naming is a bit confusing, but even the current feature modules are, in fact, library
modules.

Kotlin/Java Modules
You define both application and library modules with plugins in the com.android
namespace. This makes them Android modules, meaning you should use Android
code with them.

What if you want a module composed only of pure logic, free from the shackles of
the Android framework? In that case, you can create a Java or, even better, a Kotlin
module. You can do this using the following plugin in the module’s build.gradle:

 apply plugin: 'kotlin'

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 200

These are the same as library modules, but without all the Android gunk. Don’t get
too excited, these are rare. :]

Why Modularization Is Good
Refactoring features into independent modules allows you to focus on each feature
individually. This offers a few advantages:

1. Changing one feature won’t affect the others, simplifying development.

2. It opens the path to things like instant apps and dynamic feature modules,
which you’ll learn about in the next chapter.

3. When your codebase is large enough for it to make sense, modules allow you to
have dedicated teams for each feature.

4. You can reuse features in other apps. For instance, you might need to launch an
app similar to the one you have, but with slightly different requirements. Just
import the matching feature modules to that new app and half your work is done.
You don’t want to develop the same feature three times. Take it from someone
who’s done that in the past. :]

5. You can try out new tech on one module without affecting the others. If you like
it, you can then refactor the other modules. If you don’t, you can just refactor the
module you changed to use the old tech again, and all is well.

6. Refactoring becomes easier because each feature has clear boundaries. Even if
you decide that refactoring is not worthwhile and build the whole thing over
from scratch, modules make it easier.

7. You can use conditions and/or feature toggles to try out new code and make sure
it works before deleting old code.

8. It offers a great way of doing A/B testing without making a mess of the code.

These are just a few of the positive things about multi-module architecture. The last
ones are true not only for feature modules, but for other modules in general.

One specific improvement that’s usually mentioned, but wasn’t here, is build speed
— for a good reason.

In large projects, build times can become long, to the point of disrupting your
workflow. Many developers modularize their apps in an attempt to reduce those
build times.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 201

However, just because you refactor everything into a module, it doesn’t mean that
the project’s build time will decrease. Sometimes, it even increases! Like (too) many
things on software development, it depends™.

Using Gradle With Modules
A modularized project’s build time depends on many things: how your modules
depend on each other, how you set up your Gradle dependencies, if you use
incremental annotation processing or not…

You can tackle almost everything related to build performance by using Gradle. The
deeper you go, though, the more you need to know about Gradle. Gradle is complex
to the point where focusing on it would require a chapter on its own. That said, there
are a few simple things to consider when working with Gradle in a multi-module
app:

Gradle Properties

Properties like parallel project execution and configure on demand are very
helpful. You’ll learn more about these later.

Incremental Annotation Processing

Libraries like Hilt and Room use annotation processing. Without incremental
processing, any small change that triggers the kapt compiler forces it to process the
whole module.

Incremental processing has been active by default since Kotlin 1.3.50 — but it only
works if all the annotation processors you’re using are incremental. Lucklily for
PetSave, all libraries that use annotation processing already make use of incremental
annotation processing by default.

Kotlin Symbol Processing

Kotlin Symbol Processing API, or KSP for short, aims to eventually replace kapt as
the standard tool for annotation processors. It’s still under development at the time
of this writting, but some libraries — like Room — already offer some experimental
support. Since it’s not fully supported yet (Hilt doesn’t support it, for instance), you
won’t use it here. However, it still deserves an honorable mention as it has shown to
be much faster than kapt in testing. Something to keep an eye out for!

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 202

Leaking Dependencies

If you change a module internally, Gradle recompiles only that module. If you change
that module’s external interface, you’ll trigger an update to the application binary
interface, or ABI. This makes Gradle recompile that module as well as all modules
that depend on it, and all modules that depend on those and so on.

You add a Gradle dependency to a module by using either implementation or api. If
you include it through api, you’ll leak its interface through the interface of the
module itself. In other words, whenever you change a dependency included through
api, you’ll cause every module that depends on your module to be recompiled.

Long story short, try to use implementation in modularized projects whenever
possible.

Setting Gradle Properties
Going back to the Gradle properties, you’ll set a few of them for PetSave.

In the project’s root, or under Gradle Scripts, if you’re using the Android project
structure, open gradle.properties. In it, uncomment org.gradle.parallel=true
at the end of the file. This allows Gradle to compile independent modules in parallel.

While you’re at it, add these lines below:

org.gradle.caching=true
org.gradle.configureondemand=true

caching tells Gradle to store and reuse any files it can from previous builds.

configureondemand is worthwhile for projects with many modules. Gradle builds
have three phases: Initialization, configuration and execution. Setting
configureondemand to true tells Gradle to not reconfigure modules that aren’t
involved in the tasks it’s running.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 203

Sync your Gradle configuration and run the app. Don’t expect any major difference
in build time. This is a small project after all, so the build time was already small. In
fact, is it worth it to modularize a project like PetSave?

The short answer is: No. Probably.

Looking Back Over Your Decisions so Far
Now, for the long answer. Modularization brings a whole new set of complexity to
module configuration and dependency management. You should be aware of this
before you start modularizing your app. The complexity involved can become
difficult to handle.

From a high-level perspective, the process you followed for PetSave so far was to:

1. Create new modules for each feature and for common. This involved creating the
new folder structure, adding a build.gradle for each module and moving code to
the correct module.

2. Extract the common dependencies between the modules into a common Gradle
file named android-library.gradle.

3. Make sure dependency injection still works.

4. Extract the resources — strings, layouts and everything else — to their
corresponding modules. This also includes creating two new navigation graphs,
one for each feature. These are included in the main graph.

5. Fix the tests.

Now, look at each one in more detail.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 204

Creating the Modules
The module creation was straightforward; even the package names are the same.
common could be further divided into more modules, but it doesn’t seem worthwhile
here.

In Figure 8.2 below, you can see a before (a) and after (b) view of the folder structure.
You can also see that the search domain models are now in the common module,
since the repository contract (c), which is in the common module as well, depends on
them.

Figure 8.2 — Folder Structure Before and After

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 205

Sometimes, for instance, it makes sense to have a module for the domain layer only
— or a module for the data layer, so you can use it in another app.

All the domain models now live in the common module. This includes the few models
that search had in its package because, otherwise, common would depend on search,
and core modules should not depend on feature modules.

Extracting Common Dependencies
Things got a little more complicated with dependencies. You had to decide how to
deal with them. Should you add the required dependencies to each module, or gather
the common ones into a single Gradle file and share it?

The three newly created modules share most of the dependencies. In this case, you
aggregated the common ones in android-library.gradle. Open the file — it’s next to
all the other build.gradle files.

The com.android.library is at the top, followed by an android block and a
dependencies block. There are no api dependencies. You do this to avoid unneeded
recompilation of modules that don’t use this configuration but depend on modules
that do.

Although there are some slight differences, the android block is similar to the one in
app’s Gradle file. You could extract it, but would you really gain something here?
Probably just more complexity. If you don’t see a clear advantage, let future you
worry about it. :]

Besides, if you need to override some configuration or add something new, you can
still do it for the modules that need it. For instance, open common’s build.gradle. It
includes the android-library.gradle configuration through the apply from at the
top. It also adds some extra Room-related configuration to the android block and its
own dependencies.

Handling Resources and Themes
After completing the Gradle configuration, it was time to compile the app and make
sure everything still worked. The main concern was Hilt, due to past Dagger
experiences.

Fortunately, Hilt has seen some development in multi-module support over the last
few versions. In other words, Hilt raised no problems at all.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 206

However, the app wouldn’t run yet. The code was still trying to import resources
from the app module. It was just a matter of moving the resources to the correct
modules and updating the imports.

An important thing to note regarding the app’s theme: Remember that core modules
shouldn’t depend on any other modules except other core modules. By default, the
app theme is declared in the app module’s styles.xml. So, since all modules that
have anything UI-related in them can depend on common, you moved the app theme
to common.

It’s a simple app, with a single simple theme, so this will do. Just know that
sometimes, if an app follows a more complex design system, with different themes
and/or styles for different cases or a lot of custom UI components, you should
consider encapsulating those things into a module of its own.

Extracting the Navigation Graphs

At this point, the app was running but all the navigation logic was still in the app
module. It’s a good practice to have nested graphs for bottom navigation
destinations, as they tend to include a few different screens. With nested graphs, you
can isolate the navigation behavior in the module of the feature it belongs to.

This was a little more complex to deal with. With each feature module having its own
graph, you had to make the appropriate changes done. You needed to:

1. Include the graphs in the main graph.

2. Update the bottom navigation menu to match the IDs of the graphs instead of
the Fragments.

Fixing the Tests
After all this, it was time to check the impact on the tests — which was significant.
All tests were still in the app module, so the first step was to move them to their
corresponding modules. The second step was to fix all the damage that doing so
caused.

The main problem was that tests in a module can’t access test files from other
modules. So, the UI test in the search module stopped working, mainly due to Hilt
test files being declared in common. This is where you start to consider having
independent test files for each module, even if you repeat behavior, or a module just
for test files.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 207

The solution was twofold. You decided to:

1. Rework the test bindings and provide them all through test modules, via
@testInstallIn.

2. Grant the module access to the missing files through Gradle.

Open search’s build.gradle and you’ll see some test configuration details in the
android block. These give the module access to the specified package. The
shortcoming here is that the search module can now see the files in the package,
which means that it needs to know how to handle any dependencies. The
androidTestImplementation declarations below, in the dependencies block, work
around this.

It’s now time for you to create your own library module. It will be an easier ride than
what you’ve done so far. :]

Creating the Onboarding Feature Module
You might have noticed that the app has a new feature now. If not, do a clean install
and run the app. You’ll see a new screen: onboarding.

Figure 8.3 — The Onboarding Feature

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 208

It’s a simple screen that asks the user for a postal code and a distance. It stores that
information, then uses it to search for animals. The idea for this screen is for it to
evolve into a questionnaire about the user’s choices and preferences for pets. For
now, though, making the search work is enough. :]

Currently, the feature is a part of the app module, but you’ll refactor it to be its own
module.

Locate the code in the petsave.onboarding package in the app module. The
implementation is similar to the other features. However, there’s one difference: The
view state doesn’t handle errors. Instead, ViewModel has a viewEffects property
that handles one-time effects like errors or navigation.

After the user enters the postal code and distance, the app stores them in the shared
preferences. This translates into a dependency on the common module. The tricky
part comes from a business rule that states that this screen should appear at startup
if the user hasn’t filled in the details yet. The app has to decide which screen to show
at the beginning, or to which screen it should navigate.

Activity is responsible for triggering this decision. MainActivity now also has a
ViewModel, along with a use case. The use case tells the ViewModel whether the
onboarding process is complete. If so, ViewModel tells Activity to show animals
near you. Otherwise, it shows onboarding.

Figure 8.4 — Current App Module Structure

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 209

Tapping Submit causes the app to store the data and navigate to animals near you.
This gives the onboarding feature a direct dependency on animals near you. You’ll
need to change this when onboarding becomes a module because feature modules
shouldn’t depend on each other.

Now that you know what you need to do, it’s time to get to work.

Adding a New Module
In the project structure, right-click features. Select New ▸ Module from the context
menu.

In the window that appears, select Android Library. Also, change Module name
to :features:onboarding, which places the new module inside the features folder.
Change the Package name to com.realworld.android.petsave.onboarding to
preserve the package structure. Click Finish at the bottom of the window.

Wait while Android Studio does its magic. When it’s done, you’ll have your new
module!

Figure 8.5 — The Onboarding Module

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 210

Adding Code to Your Module
Now, you have to move the onboarding code from the app module to your new
module. Moving packages between modules is tricky in Android Studio. To make
things easier, disable Compact Middle Packages in the project structure:

Figure 8.6 — Disabling The Compact Middle Packages Option

As you can see in the image, this separates the packages instead of showing them in
the compact format.

Now, drag the onboarding package in the app module to the petsave package in the
onboarding module. This will replace the empty onboarding package inside and
make the Select Refactoring dialog appear. Pick the second option: Move
everything from <app module onboarding directory> to another directory. Click
OK and let Android Studio work on it.

Eventually, a Problems Detected window will appear. It’s complaining about
inaccessible dependencies.

Figure 8.7 — Problems Detected Window

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 211

You’ll fix that later. For now, just click Continue. When Android Studio finishes, the
code will be in the onboarding module.

Figure 8.8 — Final Onboarding Module Structure

You can enable Compact Middle Packages again, if you want. Clean the project,
then build and run it. The app will run… but it’ll crash into flames. If you look at the
error in Logcat, it says that it can’t instantiate OnboardingFragment. This
instantiation occurs in the app module. As it turns out, you created a new module
but didn’t tell the app module to depend on it.

Fixing the App Module’s Dependency
Open the app module’s build.gradle. Add the project import line in the
dependencies block, along with the ones already there:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])

 // Modules
 implementation project(":features:animalsnearyou")
 implementation project(":features:search")
 implementation project(":features:onboarding") // HERE
 implementation project(":common")
 implementation project(":logging")

// ...
}

Clean the project and build it again. The build will immediately fail due to missing
dependencies — as you’d expect.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 212

Organizing Your Dependencies
When Android Studio creates a module, it also creates a corresponding build.gradle.
Go to the Gradle scripts and locate the one that refers to onboarding. Open it and
delete everything inside.

This is a library module, so you’ll apply the android-library.gradle configuration.
Add this as the first line:

 apply from: "$rootProject.projectDir/android-library.gradle"

This already does a lot of the work for you, adding the main plugins and
dependencies you’ll need in the project, but you still need to add something more.
Create a dependencies block:

dependencies {
 implementation project(":common")

 // Navigation
 implementation "androidx.navigation:navigation-fragment-ktx:
$nav_version"
 implementation "androidx.navigation:navigation-ui-ktx:
$nav_version"
}

Like the other features, this one depends on the common module. You’ll need the
screen to navigate to animals near you, so you add in the navigation dependencies
as well. You don’t put this in the android-library.gradle configuration because
common doesn’t handle navigation.

Sync Gradle, clean the project and build again. You’d think that it would work, but
there’s one final change you need to make.

You got an error in OnboardingFragment. It’s complaining that it can’t find R. That’s
because it’s still using the old import from when it was in the app module.

Update the import by adding the onboarding package. While you’re at it, do the
same to the view binding dependency. So, remove this:

import com.realworld.android.petsave.R
import
com.realworld.android.petsave.databinding.FragmentOnboardingBind
ing

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 213

And add this instead:

import com.realworld.android.petsave.onboarding.R
import
com.realworld.android.petsave.onboarding.databinding.FragmentOnb
oardingBinding

The view binding dependency still has a squiggly red line under it. That’s because the
resources are still in the app module!

Handling Module Resources
For some reason, Android Studio doesn’t create a res directory when you create a
module, so you have to do it yourself. Right-click the onboarding module and select
New ▸ Android Resource Directory. In the next window, choose layout from the
drop-down menu in Resource type, then click OK at the bottom. This will create the
res.layout package structure.

Next, go to the app module’s res directory. Expand layout and find
fragment_onboarding.xml. All you have to do now is drag it down to the layout
package in onboarding.

In the Move window that appears, click Refactor, then open
fragment_onboarding.xml, if it doesn’t open automatically. It’s in the onboarding
module now, but it can’t find the string resources.

Fortunately, there’s a simple fix. First, right-click res in onboarding, and select New
▸ Android Resource File. In the window, enter strings as the File name. Make sure
Resource type is Values, then click OK. This creates the res.values.strings.xml file.

Next, inside the app module, open res/values/strings.xml. With a simple cut and
paste, move every string resource — except for app_name — over to onboarding’s
strings.xml. Be sure to paste them inside the resources tag in the onboarding
module’s strings.xml.

Build and run. You’ll get a new error, but this one’s related to the navigation action
to animals near you. You’ll fix that in a second.

For now, comment out the line that causes the error and build again. You’ll get the
familiar R error, but in OnboardingFragmentViewModel this time. Fix it like you did
before, and build again. And now, you get the same error in OnboardingViewState.
Fix it and build again! Everything will work now.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 214

One thing to keep in mind: Although you’re using resources in different modules,
resource merging rules still apply. So, for instance, say you have two string resources
in different modules. If they have the same name, one will override the other.

With that, you’re done with the resources. Now, to fix the navigation issue.

Navigating Between Feature Modules
Navigation between modules is a complex problem in modularized architectures. If
you need to navigate between different screens of the same feature, it’s business as
usual. But what about navigation between different features? Features can’t depend
on each other, so how do you navigate between them?

First, you’ll refactor the navigation logic, moving it to onboarding and including it
in app. The onboarding feature is just a screen for now, and probably will be in the
future. You’ll refactor it for consistency and decoupling, but it’s a judgment call, in
this case.

Right-click onboarding’s res directory and select New ▸ Android Resource File.
Enter nav_onboarding in File name and choose Navigation in Resource type.
Click OK.

Now, go to the app module’s nav_graph.xml, under res.navigation. Cut the whole
<fragment> tag and paste it in nav_onboarding.xml, inside the <navigation> tag.

Still in nav_onboarding.xml, add the import for tools. Set the startDestination
of the graph by adding this property to the <navigation> tag:

 app:startDestination="@id/onboardingFragment"

Go back to the app module’s nav_graph.xml. Add the include for nav_onboarding.
Change the start destination accordingly, because you have to depend on the whole
nested graph now.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 215

When you’re done, it should look like this:

<?xml version="1.0" encoding="utf-8"?>
<navigation android:id="@+id/nav_graph"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 app:startDestination="@id/nav_onboarding">

 <include app:graph="@navigation/nav_onboarding" />
 <include app:graph="@navigation/nav_animalsnearyou" />
 <include app:graph="@navigation/nav_search" />
</navigation>

Finally, you have to update MainActivityViewModel, located in main.presentation
of the app module. Go to defineStartDestination() and replace
R.id.onboardingFragment with R.id.nav_onboarding. If you don’t depend on the
whole graph, the app will crash with an error stating that the destination is not a
part of the navigation graph.

Adding the Navigation Ability
Next, you’ll deal with navigating between features. Up until now, the app module
used a normal Navigation component action to navigate from onboarding to
animals near you. But now, you’ve defined that action in onboarding’s
nav_onboarding.xml:

<action
 android:id="@+id/action_onboardingFragment_to_animalsNearYou"
 app:destination="@id/nav_animalsnearyou"
 app:popUpTo="@id/onboardingFragment"
 app:popUpToInclusive="true"
 app:enterAnim="@anim/nav_default_enter_anim"
 app:exitAnim="@anim/nav_default_exit_anim" />

app:destination="@id/nav_animalsnearyou" has a red squiggly below it because
onboarding doesn’t depend on animalsnearyou.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 216

You have a few options to solve this, and it’s not rare to find solutions with a mix of
different options. The most common options are:

1. Having a navigation module that’s aware of every module and can navigate
everywhere.

2. Using deep links.

You’ll go with the second option here. Navigation component has native support for
deep links. This makes your life because you don’t need to manually create any
intent filters.

Using Deep Links
First, go to animalsnearyou. Open res.navigation.nav_animalsnearyou.xml.
Delete the comment inside the <fragment> tag and add this line in its place:

 <deepLink app:uri="petsave://animalsnearyou" />

This allows the app to deep-link into this Fragment through that Uri.

Next, go to the app module and open its AndroidManifest.xml. With deep links, you
need to add an intent filter to the Activity you want to deep link into. Since you’re
using a “single Activity, multiple Fragments” architecture, you’ll add it to
MainActivity.

The Navigation component makes your life easier here. It builds the intent filter for
you through a tag called nav-graph.

In the <activity> tag, replace the comment with the line:

 <nav-graph android:value="@navigation/nav_graph" />

<nav-graph> requires you to pass in the navigation graph where you defined the
deep link. You pass in nav_graph because it includes all the other graphs

When you build the project, Navigation component will replace this tag with intent
filters for every deep link inside the graph. Pretty neat!

Note: If you’re still stuck in Android Studio 3.1, you’ll have to add the intent
filters yourself because it doesn’t support nav-graph.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 217

Setting Up the Navigation Action
You can now set up the actual navigation action. Go to OnboardingFragment in the
onboarding module. Locate navigateToAnimalsNearYou() and delete any code
inside, replacing it with:

// 1
val deepLink = NavDeepLinkRequest.Builder
 .fromUri("petsave://animalsnearyou".toUri())
 .build()

// 2
val navOptions = NavOptions.Builder()
 .setPopUpTo(R.id.nav_onboarding, true)
 .setEnterAnim(R.anim.nav_default_enter_anim)
 .setExitAnim(R.anim.nav_default_exit_anim)
 .build()

// 3
findNavController().navigate(deepLink, navOptions)

Here’s what’s going on in this code:

1. It creates the deep link through NavDeepLinkRequest. You pass in the same Uri
as the one that the deep link in nav_animalsnearyou defines.

2. The navigation action in nav_onboarding has some logic to it. It pops up the
back stack until it reaches OnboardingFragment, popping it along as well. This
prevents the app from showing onboarding again if the user presses the back
button while in animals near you. It also adds enter and exit animations. Notice
that the code pops up the whole nav_onboarding graph. That way, even if you
add new screens to onboarding, they all get popped out of the back stack.

3. As before, the code calls navigate() on the navController. But now, instead of
passing the ID of the navigation action, it passes the deep link request and the
navigation options.

Build the app and do a clean install. You’ll see onboarding. Type some data and tap
Submit and the app will navigate to animals near you. Just be sure to enter a valid
postal code; otherwise, you won’t see any animals. The app isn’t ready to handle the
invalid postal code case yet. :]

Well done! You can delete the old navigation action from nav_onboarding, as you
won’t need it anymore.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 218

Additional Improvements
While the current code works, you could improve it further. The first thing to do
would be to extract the deep link Uri to ensure you use the same one everywhere.

Another possibility, as you add more navigation to the app, is to create a specific
module just for navigation actions. Otherwise, you’d start to have deep link
resources repeated throughout the modules. This navigation module would also
encapsulate all other navigation details, such as different navOptions
configurations.

You’ve finished your module, congratulations! You won’t create any tests in this
chapter because the module is simple enough that testing it wouldn’t give you any
additional information.

In the next chapters, you’ll venture further down the modularization rabbit hole.

Key Points
• There are three types of modules: application modules, library modules and Kotlin

modules. Library modules can be core modules or feature modules. Kotlin modules
are like library modules, but without Android framework code.

• Every app needs an application module, which bosses the feature modules around.
The application module can also depend on core modules. Each one generates an
APK.

• Feature modules can depend on core modules, but never on each other. Core
modules can depend on each other.

• Modularization brings a lot to the table. Its applicability depends on the app you’re
working on, so you should carefully evaluate the pros and cons. Instead of diving
in blindly and modularizing everything, try to understand if it makes sense for
your app.

• Navigation is hard. It gets harder in multi-module apps, but Android provides a
possible solution.

Real-World Android by Tutorials Chapter 8: Multi-Module Apps

raywenderlich.com 219

9Chapter 9: Dynamic
Features Theory
By Ricardo Costeira

In real life, you’ll probably have many more modules in your app than PetSave has
at this point. You might also have some kind of analytics logic in the app, which
gives you insight into how users interact with it.

Suppose you have a share animal feature module. This feature allows the user to
share an animal’s information on their social networks. Through analytics, you know
that this feature is seldom used. However, even users that don’t want to use the
feature still have to install it, taking up precious disk space.

Android app size has a direct relationship to the number of app installs and user
retention, with larger apps tending to have fewer installs and lower user retention.

raywenderlich.com 220

Say that the share animal feature module takes up half the space of the whole app.
Wouldn’t it be frustrating to see your app being frequently uninstalled due to a large
feature module that almost no one uses?

The Android team is aware of this, so they came up with some mechanisms to
mitigate the problem. One of these mechanisms is the app bundle publishing
format. Using this publishing format can already help you reduce your app size.

For the most part, however, this chapter focuses on another mechanism: Play
Feature Delivery. This mechanism takes advantage of advanced app bundle features
to allow you to develop dynamic features.

This chapter is optional if you already know what app bundles and dynamic features
are. On the other hand, if you don’t understand those concepts thoroughly yet, what
you read here will help.

The chapter focuses on the theoretical side of dynamic features. You’ll learn about:

• The app bundle publishing format.

• What dynamic features are.

• The delivery options for dynamic features.

• Two of the most common challenges with dynamic features: dependency injection
and navigation.

Android App Bundle
Before diving into dynamic features, you need to know about app bundles. An app
bundle is Google’s clever app delivery format, which splits the APK into different
pieces. It then delivers only the pieces the user’s device requires.

When you upload an APK to Google Play, all users receive that universal APK when
they download your app. When you upload an app bundle, however, Google Play uses
it to create a few different APKs, called split APKs. These split APKs are available
from Android API 21 onwards. There are three different types:

• Base APK: Google Play generates this APK from the app module of the app. It
contains everything you need to configure and launch the app as well as shared
code, in most cases. It’s the first APK that the user downloads and installs.

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 221

• Configuration APKs: APKs related to different screen densities, languages, CPU
architectures or native libraries. When the user downloads the app, Google Play
installs only the configuration APKs related to the user’s device.

• Dynamic feature APKs: APKs with code and resources for each dynamic feature.

Even if you don’t care about dynamic features, it’s a good idea to use app bundles. If
your app is properly modularized, it’ll reduce the final app size. Besides, since
August 2021, Google requires that new apps submitted to Google Play use app
bundles. Moreover, apps larger than 150 MB will have to use either Play Feature
Delivery or Play Asset Delivery.

Play Feature Delivery delivers dynamic features to the user via app bundle features
and APIs. You’ll learn more about these later. As for Play Asset Delivery, the logic is
the same as Play Feature Delivery, but it applies to game assets.

Dynamic Delivery
Google Play installs the split APKs on the user’s device and makes them appear as a
single app. This is called an optimized APK. This optimized APK is built through a
process called dynamic delivery. This optimizes the APK because dynamic delivery
generates it using only the components that matter for the user’s specific device.

For instance, suppose you have a Portuguese-speaking user, like yours truly. My
device has a resolution of 560 dpi and runs on an ARM 64 processor. When I
download an APK that uses dynamic delivery, I’ll get:

1. The base split APK.

2. The split APKs for ARM 64, Portuguese string resources and xxxhdpi resources.

3. Any split APKs for install-time dynamic features. You’ll learn more about
dynamic delivery types later.

With dynamic delivery, you don’t need to manage and optimize multiple APKs for
different devices anymore. The process manages them for you!

Another advantage is that creating an optimized APK from split APKs makes it
possible for you to decide which APKs to deliver. More specifically, it lets you pick
which dynamic feature APKs to deliver.

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 222

What Are Dynamic Features?
When you have a multi-module app, each feature usually has its own module. If you
do it right, each feature module will — for the most part — be independent. You still
need an application module to use the feature and it might depend on a few core
modules, but everything that defines the feature will be in its module. This module
isolation is essential to creating dynamic features.

A dynamic feature module is similar to a normal feature module. Apart from the
details that allow the Android framework to handle it as a dynamic feature, there are
two main differences from normal modules: Play Core and module dependencies.
Next, you’ll learn more about each one.

Play Core
The first main difference is that you can specify how and when the user can access a
dynamic feature. You can even define when the feature is installed, or uninstalled.
This behavior is possible due to the Play Core Library.

The Play Core Library is what your app uses to interface with the Google Play Store.
Although only its dynamic feature capabilities are important here, it allows you to do
a few interesting things:

1. Download resources

2. Manage feature module delivery

3. Manage asset pack delivery

4. In-app updates

5. In-app review

Using the Play Core API, you can implement your own logic to decide how to handle
dynamic features. Google Play Store handles the rest.

Play Core provides four different feature delivery options:

• On demand delivery: The app asks to download features under specific
conditions, which is useful for features that most users don’t need. You can have
the app download those features only when the user tries to use them.

• Install-time delivery: This option installs dynamic modules with the app, along
with all regular modules. You can then request to uninstall them later, which is
useful to get rid of one-use features, like onboarding.

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 223

• Conditional delivery: This installs dynamic features according to certain device
conditions. For instance, the app could install specific features for specific API
levels. Or, the app could download camera-related features only when the device
has a camera. If the conditions hold true, the feature downloads at install time.

• Instant delivery: You’ve probably heard of instant apps by now. Instant delivery
lets users try specific features without having to install the whole app. This one’s
more complex than the others because there are specific — and very strict — size
requirements for the base module.

To implement any of these options, you need to properly set up the dependencies
between the base and dynamic feature modules.

Module Dependencies
The second main difference between regular feature modules and dynamic feature
modules is the way the dependencies between base and feature modules work. In a
regular multi-module app, the app module depends on feature modules:

Figure 9.1 — Typical dependency graph between base module and regular feature
(library) modules.

Things are a little different when using dynamic feature modules. Because dynamic
feature modules can be installed at any point, they might not come with the app
when you install it. As a consequence, the base module can’t depend on dynamic
features. After all, it can’t depend on something that might not exist!

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 224

On the other hand, the base module contains the app configuration, along with
access to all shared code from core modules. For these reasons, dynamic feature
modules depend on the app module. This translates into an inversion of
dependencies:

Figure 9.2 — Dependency graph between base module and dynamic feature modules.

Note that this doesn’t mean the app module is completely unaware of dynamic
feature modules. It can’t access code from dynamic feature modules — at compile
time, at least. Still, it’s somewhat aware of their existence through Play Core.

This inversion of dependencies introduces new challenges in modularization. The
most notable ones are with dependency injection and navigation between features.

Injecting Dynamic Dependencies

PetSave uses Hilt for dependency injection. Hilt requires the entire dependency
graph to be built at compile time. Hilt builds the dependency graph starting at the
Application annotated with @HiltAndroidApp. This class is in the base module,
which works out of the box for a monolithic app. For a multi-module app, it’ll work
as long as the base module is aware of all the dependencies, like you’ve seen in
Chapter 8, “Multi-Module Apps”.

With dynamic features, the base module can’t access all the feature modules. This
means that the dependency graph is forcefully split into different pieces. In other
words, Hilt can’t figure out the dynamic modules’ dependencies.

The Hilt team expects to fix this at some point, but only time will tell. For now, you
can use Dagger to work around this. You’ll see how in Chapter 10, “Building a
Dynamic Feature”.

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 225

Navigation With Dynamic Features

You’ve already learned that navigating between features in multi-module apps is a
challenge. In the previous chapter, you solved the problem using the Navigation
component with deep links.

The Navigation component has some support for dynamic features, but it has some
limitations as well. It lets you dynamically include navigation graphs, for instance.
However, it does not support deep links for dynamically included graphs. Gotta love
these Android framework caveats. :]

You have a few options here:

1. Using reflection. Ew.

2. Creating a new com.android.library module that has interfaces for dynamic
features. This module would depend on both feature and base modules. At
runtime, you’d load the dynamic features with ServiceLoader. However, this
option is no longer viable because R8 doesn’t support using ServiceLoader for
dynamic features anymore. Using ServiceLoader without R8 optimization is a
bad idea for performance reasons.

3. Using a Navigation component feature called DynamicNavHostFragment. It
replaces NavHostFragment and lets the navigation controller navigate to
dynamic features.

Reflection works, but it’s neither the safest option nor the most performant. The
second option would also affect performance since you can’t use R8. So, in the next
chapter, you’ll go with option number three.

In fact, this is all the theory you need to start implementing dynamic features. It’s
time to get your hands dirty!

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 226

Key Points
• App bundle is a publishing format that optimizes and tailors APKs for users’

devices.

• Play Feature Delivery uses advanced app bundle features that allow you to
optimize app installations to the next level.

• The Play Core Library provides the mechanisms for you to decide how and when
you want to deliver dynamic features.

• Navigation and dependency injection become more challenging with dynamic
features.

Real-World Android by Tutorials Chapter 9: Dynamic Features Theory

raywenderlich.com 227

10Chapter 10: Building a
Dynamic Feature
By Ricardo Costeira

The App Bundle publishing format is here to stay. Google Play now requires you to
publish new apps with the App Bundle format. Moreover, if your app’s size exceeds
150 MB, it must use either Play Feature Delivery or Play Asset Delivery.

This chapter assumes you’re aware of the theory behind dynamic features explained
in Chapter 9, “Dynamic Features Theory”. Now, you’ll work on refactoring a normal
feature module and turning it into a dynamic feature.

Along the way, you’ll learn:

• How to create an app bundle.

• How to refactor a library module to a dynamic feature module.

• How to navigate with dynamic features using the Navigation component.

• How to inject dependencies into dynamic features.

• How to test dynamic feature module installs.

You’ll focus on a new feature module that you’ll turn into a dynamic feature module,
letting users install the feature only if they want to use it.

raywenderlich.com 228

PetSave’s New Features
The PetSave team has been hard at work, and the app has two updates. Open the
starter project to check them out.

Start by expanding features. You’ll notice there’s a new feature module called
sharing. This feature lets the user share a specific animal on their social networks.

Figure 10.1 — The Sharing Feature

The code is similar to onboarding’s, so if you’re familiar with that code already,
there’s not much to gain in exploring the module.

You navigate to this screen through a deep link, thanks to the app’s other new
feature. Go to the animalsnearyou module and expand presentation. You’ll find
two packages inside:

• main: Home to the code of the animals near you main screen, which you’re
already familiar with.

• animaldetails: Contains the code for a new screen that shows an animal’s details.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 229

This screen appears when you click an animal in the list. It shows the animal’s name,
picture and a few other details.

Figure 10.2 — Animal Details Screen

At the top-right corner of the screen is a share icon. Clicking it triggers the deep link
into the sharing feature. The code behind it is similar to what you’ve seen so far, but
there’s one difference worth noting: This screen uses sealed classes to handle the
view state, making the view state that handles code in the Fragment similar to the
event handling code in the ViewModel.

In the long term, both animals near you and search will use this screen. For now,
however, you’ll handle it as if it’s part of animals near you for simplicity.

With the introductions out of the way, it’s time to get to work. You’ll refactor the
sharing module into an on-demand dynamic feature module. With this change,
only users who want that feature need to download it.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 230

Deciding How to Create Your Dynamic
Feature
To create a dynamic feature module, you have two options:

1. Follow Android Studio’s dynamic feature module creation wizard.

2. Refactor a normal com.android.library module into a dynamic feature
module.

In this case, you’ll use the second option. Not only is it a lot more interesting, but
it’ll help you learn more, too.

To use this option, you’ll need to make changes in both the app and sharing
modules.

Preparing the App MNodule
When using app bundles, you install the Gradle module defined as a
com.android.application first, so it makes sense to start from there. Typically,
this is the app module.

Note: Although PetSave doesn’t need it, some apps require that you add some
specific configuration to your app module’s AndroidManifest.xml to support
dynamic features. Find out how to do this at https://developer.android.com/
guide/app-bundle/configure-base.

Start by opening the app module’s build.gradle. Locate the sharing module
dependency and remove it:

implementation project(":features:animalsnearyou")
implementation project(":features:search")
implementation project(":features:onboarding")
implementation project(":features:sharing") // <- Remove
implementation project(":common")
implementation project(":logging")

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 231

Remember that dynamic feature modules depend on the base module, not the other
way around. That said, add the following line at the bottom of the android tag, just
below packagingOptions:

dynamicFeatures = [":features:sharing"]

No matter how many dynamic features you have, you only have to set up the app
module once. As you add more dynamic features, however, you’ll need to let the app
module know about them here.

Managing Dependencies
Go back to the dependencies tag. Since dynamic features depend on the app
module, it’s a common practice to serve some of the common dynamic features
dependencies through app. To do so, start by changing:

implementation project(":common")
implementation project(":logging")

to:

api project(":common")
api project(":logging")

Do the same for these:

// Kotlin
implementation "org.jetbrains.kotlin:kotlin-stdlib-
jdk8:$kotlin_version"

// Support Libraries and material
implementation "androidx.appcompat:appcompat:$appcompat_version"
implementation "com.google.android.material:material:
$material_version"

// Navigation
implementation "androidx.navigation:navigation-fragment-ktx:
$nav_version"
implementation "androidx.navigation:navigation-ui-ktx:
$nav_version"

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 232

Changing them to:

// Kotlin
api "org.jetbrains.kotlin:kotlin-stdlib-jdk8:$kotlin_version"

// Support Libraries and material
api "androidx.appcompat:appcompat:$appcompat_version"
api "com.google.android.material:material:$material_version"

// Navigation
api "androidx.navigation:navigation-fragment-ktx:$nav_version"
api "androidx.navigation:navigation-ui-ktx:$nav_version"

Finally, below the last Navigation component dependency, add:

api "androidx.navigation:navigation-dynamic-features-fragment:
$nav_version"

This last dependency gives you two things:

1. The Dynamic Navigator dependency. You’ll use this later to navigate to the
dynamic feature.

2. The Play Core dependencies the app needs to support dynamic features.

Dynamic Navigator handles dynamic feature installation for you. If you wanted to do
it manually without using Dynamic Navigator, you’d include the
com.google.android.play:core$version dependency, instead.

Sync Gradle to make sure everything is OK.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 233

Defining Module Names
When your app requests a dynamic feature, you usually ask the user to confirm that
they want to install it. For that, you need the module’s name. Since you might need
the module’s name before the user downloads it, you should define it in the base
module as a string resource of up to 50 characters.

When you have enough dynamic features and/or string resources, it makes sense to
have a separate string resource file just for dynamic feature names.

Go to res in the app module and open strings.xml under values. Add the sharing
module title:

<string name="dynamic_feature_sharing_title">Share an animal</
string>

Giving the App Access to the Dynamic Features
Your last step is to enable access to dynamic feature code and resources on the app.
To do this, enable SplitCompat.

You can enable SplitCompat in one of three ways:

1. Declaring SplitCompatApplication as the Application subclass in the
manifest, through the android:name property of the application tag. This
won’t work, in this case, because PetSave uses a custom Application.

2. Having your custom Application extend SplitCompatApplication.

3. Having your custom Application override attachBaseContext(base:
Context). That lets you avoid extending SplitCompatApplication, which
performs the override for you internally.

In the app module, locate and open PetSaveApplication.kt. To enable SplitCompat,
change the class to extend SplitCompatApplication instead of Application:

class PetSaveApplication: SplitCompatApplication()

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 234

If you don’t want to extend SplitCompatApplication, override
attachBaseContext(), as mentioned above:

override fun attachBaseContext(base: Context) {
 super.attachBaseContext(base)

 SplitCompat.install(this)
}

Whichever one you prefer to use, the result is the same. On a side note, you have to
override this method in all dynamic feature Activity instances. You do this by
replacing SplitCompat.install(this) with
SplitCompat.installActivity(this). Since PetSave only has one Activity,
however, you don’t need to worry about it here.

Now you can try to build the app. You’ll get a compile-time error stating: Could not
resolve project :features:sharing. because sharing isn’t a dynamic feature module
yet.

Figure 10.3 — Gradle Sync Error

This is a problem you need to fix.

Preparing the Feature Module
Now, it’s time to refactor the sharing module. Start by opening its
AndroidManifest.xml.

First, define the distribution namespace as a property in the manifest tag:

xmlns:dist="http://schemas.android.com/apk/distribution"

Then, inside the manifest tag, add the following:

<dist:module // 1
 dist:instant="false" // 2
 dist:title="@string/dynamic_feature_sharing_title"> // 3
 <dist:delivery> // 4

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 235

 <dist:on-demand /> // 5
 </dist:delivery>
 <dist:fusing dist:include="true" /> // 6
</dist:module>

Note: If you copy the code above, you’ll have to remove the inline comments.
XML doesn’t allow comments inside tags.

There’s quite a lot going on here:

1. Open the dist:module tag. This is the main tag for dynamic feature
configuration.

2. Set the dist:instant property of dist:module to false. This means that the
feature module won’t be available through Google Play Instant. If you set it to
true, you’d have to set it in the base module’s manifest as well.

3. Set the dist:title property of the dist:module tag. Here, you use the string
resource you declared earlier in the app module.

4. This is where the fun starts. This tag encapsulates all the information about how
you deliver the feature module. You can only use one of these tags per feature.

5. You want the app to request the feature when the user tries to access it. This tag
makes it so that the feature isn’t available at install time, but is available for
download later.

6. Setting this to true will include the module in multi-APKs targeting devices with
Android API 20 or lower. It seems redundant when PetSave’s minimal SDK level
is 23, but you still need to set this tag.

Build the project now… and you’ll get the same error. While the manifest is ready,
Gradle isn’t aware that this module represents a dynamic feature yet.

Notifying Gradle About the Dynamic Feature
Locate the features.sharing module’s build.gradle. Open it and delete everything
inside. Then, add these lines at the top of the file:

apply plugin: 'com.android.dynamic-feature'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-kapt'
apply plugin: 'dagger.hilt.android.plugin'

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 236

The first plugin tells Gradle to handle the module as a dynamic feature. You should
already be familiar with the others.

Below these, add the android block:

android {
 compileSdkVersion rootProject.ext.compileSdkVersion

 defaultConfig {
 minSdkVersion rootProject.ext.minSdkVersion
 targetSdkVersion rootProject.ext.targetSdkVersion
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }

 buildFeatures {
 viewBinding true
 }
}

It has just enough information for the code to compile and run. Things like app
signing, code shrinking and app versioning should be handled by the app module.

Finally, add the dependencies block below:

dependencies {
 implementation project(':app')

 // Constraint Layout
 implementation "androidx.constraintlayout:constraintlayout:
$constraint_layout_version"

 // UI
 implementation "com.github.bumptech.glide:glide:
$glide_version"
 kapt "com.github.bumptech.glide:compiler:$glide_version"

 // DI
 implementation "com.google.dagger:hilt-android:$hilt_version"
 kapt "com.google.dagger:hilt-android-compiler:$hilt_version"
}

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 237

That first implementation is the most important one. As you already know, all
dynamic features depend on the app module. The remaining dependencies are pretty
standard.

Sync Gradle and build the app. It fails, and Logcat tells you there was a manifest
merger error. The app module is complaining because it can’t find a navigation XML
file called nav_sharing.

Go to the app module’s res, expand navigation and open nav_graph.xml. You’ll see
there’s an include for nav_sharing.

Figure 10.4 — Missing Navigation Definition

nav_sharing is the sharing module’s navigation graph. The include is in red, which
tells you there’s an error. The app module doesn’t depend on the sharing module
now, so it can’t reach its navigation graph.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 238

Delete the line in red. Now, you can build and run without any problems… as long as
you don’t click the Share button in the animal details screen.

Figure 10.5 — Don’t Click the Share Button Yet!

If you do, the app will crash because it has no idea how to navigate to the module!
You’ll fix that next.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 239

Handling Navigation
The Dynamic Navigator from the Navigation component library is just like the
regular navigator. In fact, it’s an extension of the regular navigator, letting you
navigate to dynamic feature modules just as you would to regular modules.

Before you can use it, the first change you have to make is in the app module. You
need to replace any NavHostFragments in the app with DynamicNavHostFragments.
You only have one NavHostFragment, so go to res and open activity_main.xml from
the layout directory. Locate FragmentContainerView and change it to this:

<androidx.fragment.app.FragmentContainerView
 android:id="@+id/nav_host_fragment"

android:name="androidx.navigation.dynamicfeatures.fragment.Dynam
icNavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 app:defaultNavHost="true" />

Then, go to the module’s root and open the file MainActivity.kt in the
main.presentation package. Locate the lazy delegate for navController and
update the cast to match the change you just made:

private val navController by lazy {

(supportFragmentManager.findFragmentById(R.id.nav_host_fragment)
as DynamicNavHostFragment)
 .navController
}

The app will build and run now, and navigation should work as expected… apart from
the Share button crash, which you still need to fix.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 240

Fixing the Share Button
So far, you nested the nav_sharing graph into the nav_graph by including it there.
Dynamic Navigator lets you do the same thing, but you need to use a different tag.
You’ll include the sharing module to keep the code similar to how it was before.
Note that Dynamic Navigator lets you navigate to a fragment tag, just as the normal
navigator does.

In the app module, open res.navigation.nav_graph.xml and add this block of code
below the include tags, but still inside the navigation tag:

<include-dynamic
 android:id="@+id/dynamicFeatureSharing"
 app:graphPackage="com.realworld.android.petsave.sharing"
 app:graphResName="nav_sharing"
 app:moduleName="sharing" />

The include-dynamic tag works like the include tag, but for dynamic features. For
it to work, you need to set a few important properties:

• id: The dynamic navigator uses this ID instead of the ID in the root element of the
included graph.

• graphPackage: The root package of the dynamic feature.

• graphResName: The name of the navigation graph to include.

• moduleName: The feature module’s name.

If you were navigating to a fragment tag, you’d only need to add the
app:moduleName, like this:

<fragment
 android:id="@+id/sharingFragment"

android:name="com.realworld.android.petsave.sharing.presentation
.SharingFragment"
 app:moduleName="sharing" />

However, these dynamically included graphs don’t support deep links yet. Therefore,
you’ll need to change things so you can navigate to sharing from the animal details
screen.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 241

Navigating Between the Animal Details and
Sharing Screens
First, you need to create the navigation action shown in the graph. Go to the
animalsnearyou module and open nav_animalsnearyou.xml in res.navigation. In
the fragment tag for AnimalDetailsFragment, below the argument tag already
there, add this code:

<action
 android:id="@+id/action_details_to_sharing"
 app:destination="@id/dynamicFeatureSharing">

 <argument
 android:name="id"
 app:argType="long" />
</action>

This action lets you navigate to the dynamically included destination. The start
destination of that graph, SharingFragment, needs the ID of the animal. Hence, the
argument tag inside the action.

You’ll see a red squiggly line below the ID. Nevertheless, you can build the app and it
will even run. To get rid of that squiggly line, you need to:

1. Create the ID here by changing @id to @+id.

2. Remove the plus (+) sign from the ID in the include-dynamic tag you added
earlier.

Since app depends on animalsnearyou, this avoids any dependency error. It will
work if you have the plus sign in both places, but you don’t have to recreate the same
ID.

Note: In case the red squiggly line persists, “invalidate caches and restart”
should be enough to fix it. One day, I’ll have a T-shirt with “Hello IT, have you
tried invalidating caches and restarting?” stamped on it. :]

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 242

Running the Navigation Action
Now, your last step is to run the navigation action in the code. Open
AnimalDetailsFragment.kt in the animalsnearyou.presentation.animaldetails
package of animalsnearyou. Build the app to generate the navigation directions.
Then, locate navigateToSharing() and delete the code inside.

In its place, add:

val animalId = requireArguments().getLong(ANIMAL_ID)
val directions =
AnimalDetailsFragmentDirections.actionDetailsToSharing(animalId)

findNavController().navigate(directions)

If you’re used to the Navigation component, you won’t find anything unfamiliar
here. It’s the same code you’d use to navigate to any other module.

Build and run. Try to access the sharing feature by clicking the Share button. The
app crashes!

The error states that the included navigation ID, nav_sharing, is different from the
destination ID, dynamicFeatureSharing. It also tells you to either remove the
navigation ID or make the two IDs match.

Even if you make them match, it’ll still complain because they live in different
namespaces. So go to the sharing module, open res.navigation.nav_sharing.xml
and remove the ID from the navigation tag. While you’re at it, remove the deep link
from the fragment tag as well.

Build and run again. Click the Share button in the animal details screen. Oops —
another crash!

Remember how you can’t properly use Hilt with dynamic features? Well, here’s the
proof. Look at the error and you’ll see that it failed when it tried to inject things into
SharingFragment. You’ll have to make some changes to the way you’re injecting
dependencies to fix this.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 243

Handling Dependency Injection
Hilt doesn’t work well with dynamic features because of its monolithic component
architecture.

Hilt creates a component for each type. For example, all Activity instances come
from the same component, all Fragment instances from another component and so
on. To handle this, Hilt needs to know about every binding at compile time. Since
dynamic features are loaded dynamically, Hilt can’t directly access their bindings.

Hilt creates the dependency graph from the app module. That’s where the
@HiltAndroidApp annotation is — it annotates PetSaveApplication. For that
reason, the solution — at least for now — is to create the dependencies that dynamic
features need in the app module.

At the root of the app module, next to the main package, create a new package called
di. In it, create SharingModuleDependencies.kt, then inside, create an interface
with the same name.

Annotate the interface:

@EntryPoint
@InstallIn(SingletonComponent::class)
interface SharingModuleDependencies

Notice that the first annotation is @EntryPoint and not @AndroidEntryPoint. The
latter is for Android components. As for the @InstallIn, you have to do it in
SingletonComponent.

You’ll access the dependencies through Application, so Hilt needs to install the
dependencies in SingletonComponent for everything to work. Try using a different
component and you’ll get an error.

Here’s a list of the dependencies that the sharing module needs:

1. Any ViewModel instances and use cases.

2. DispatchersProvider.

3. AnimalRepository — which, in turn, needs Cache, Preferences, PetFinderApi
and Context.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 244

The sharing feature uses the GetAnimalDetails use case. This is why you defined
the use case in the common module, instead of in animalsnearyou.

Use cases are regular classes, so their @Inject annotation will do the work for you.
ViewModel instances are a beast of their own, so you’ll handle them with regular
Dagger inside the sharing module.

Declaring Dependencies
So, which dependencies should you handle here? Declare these operations in the
interface:

fun petFinderApi(): PetFinderApi
fun cache(): Cache
fun preferences(): Preferences

There’s another caveat: You can only inject dependencies that you would normally
install in the SingletonComponent through this interface. This means that you can’t
inject AnimalRepository and DispatchersProvider here, since they’re installed in
ActivityRetainedComponent.

Hilt will use these methods to find the right bindings in the dependency graph. For
everything else, well… you have to use Dagger. You’ll also use it to inject Context
the old-fashioned way.

Before using it, you need the dependencies. Go to sharing’s build.gradle, and add
them next to the Hilt ones:

implementation "com.google.dagger:dagger:$dagger_version"
kapt "com.google.dagger:dagger-compiler:$dagger_version"

Also, remove apply plugin: 'dagger.hilt.android.plugin' at the top. Sync
Gradle.

Bringing In Dagger
At the root of the sharing module, next to presentation, create a di package. Inside,
create a file called SharingComponent.kt, with a SharingComponent interface
inside.

Annotate the interface:

@Component(dependencies = [SharingModuleDependencies::class])
interface SharingComponent

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 245

This interface is a regular Dagger Component. Passing SharingModuleDependencies
as its dependency lets you connect it to Hilt’s dependency graph.

Inside the interface, add the following code:

fun inject(fragment: SharingFragment) // 1

// 2
@Component.Builder
interface Builder {
 fun context(@BindsInstance context: Context): Builder
 fun moduleDependencies(sharingModuleDependencies:
SharingModuleDependencies): Builder
 fun build(): SharingComponent
}

Having cold sweats yet? No need! Here’s what you’re seeing in the code:

1. The method you’ll use to inject dependencies into SharingFragment.

2. Your trusty old Dagger component builder. You’ll inject the application Context
through the builder, along with the dependencies that Hilt can provide.

After this, expand presentation and open SharingFragmentViewModel.kt. Change
the class definition from:

@HiltViewModel
class SharingFragmentViewModel @Inject constructor

to:

class SharingFragmentViewModel @Inject constructor

You removed the Gradle plugin that allowed you to use the annotation, so you’ll get
a compile-time error if you don’t change this.

Build the app. You’ll get another error, but this one’s in SharingFragment. To fix it,
open SharingFragment.kt and remove the @AndroidEntryPoint annotation at the
top.

Build the app so Dagger generates Component, and it will work this time. Don’t run
yet, because you still need to set up SharingFragment to inject the dependencies.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 246

Preparing SharingFragment
In SharingFragment, above onCreateView(), override onCreate():

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
}

Below the super call, call the Component that Dagger generated and use it to inject
the dependencies:

DaggerSharingComponent.builder()
 .context(requireActivity())
 .moduleDependencies(
 EntryPointAccessors.fromApplication(
 requireActivity().applicationContext,
 SharingModuleDependencies::class.java
)
)
 .build()
 .inject(this)

Everything is standard Dagger code except
EntryPointAccessors.fromApplication. This Hilt method gives you access to the
entry point of the app, which gives you access to the dependency graph.

Build and run. It’ll still crash if you try to open the sharing feature.

Up to this point, you relied on Hilt to build and inject SharingFragmentViewModel
into SharingFragment. Now, however, the app has no idea how to handle the
injection.

Using Dagger Multibindings
To fix this, you’ll use Dagger multibindings to build a generic solution for ViewModel
injection. In the di package you created just now, create ViewModelKey.kt. In it, add
the following:

@MapKey
@Retention(AnnotationRetention.RUNTIME)
@Target(
 AnnotationTarget.FUNCTION,
 AnnotationTarget.PROPERTY_GETTER,
 AnnotationTarget.PROPERTY_SETTER
)
annotation class ViewModelKey(val value: KClass<out ViewModel>)

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 247

This annotation allows you to create a Key out of each ViewModel. You’ll use it to
map the ViewModels themselves.

You also need a generic way to create ViewModel instances, so create
ViewModelFactory.kt in the same package. In it, define the factory:

class ViewModelFactory @Inject constructor(
 private val viewModels: MutableMap<Class<out ViewModel>,
Provider<ViewModel>>
) : ViewModelProvider.Factory {

 override fun <T : ViewModel> create(modelClass: Class<T>): T {
 var creator: Provider<out ViewModel>? =
viewModels[modelClass]

 if (creator == null) {
 for ((key, value) in viewModels) {
 if (modelClass.isAssignableFrom(key)) {
 creator = value
 break
 }
 }
 }

 if (creator == null) {
 throw IllegalArgumentException("Unknown viewModel class
$modelClass")
 }

 try {
 @Suppress("UNCHECKED_CAST")
 return creator.get() as T
 } catch (e: Exception) {
 throw RuntimeException(e)
 }
 }
}

This class takes a MutableMap of ViewModel instances and returns the correct
instance type you’re trying to create. Dagger will inject the Map in this class.

Now, you defined a way to create a Key to the Map, but you haven’t specified how to
create a Value yet. In other words, you’re not binding any ViewModel instances yet.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 248

Binding the ViewModels
To bind the ViewModel instances, start by creating SharingModule.kt. In it, add
SharingModule and annotate it with @Module:

@Module
abstract class SharingModule

In the abstract class, add these bindings:

// 1
@Binds
@IntoMap
@ViewModelKey(SharingFragmentViewModel::class) // 2
abstract fun bindSharingFragmentViewModel(
 sharingFragmentViewModel: SharingFragmentViewModel
): ViewModel

// 3
@Binds
@Reusable // 4
abstract fun bindViewModelFactory(factory: ViewModelFactory):
ViewModelProvider.Factory

Here’s what’s happening above:

1. The first binding method binds SharingFragmentViewModel using @Binds and
@IntoMap. Now, Dagger knows that it should add this binding to the Map.

2. You use the @ViewModelKey annotation and pass in the ViewModel. Dagger will
set it as the Key for the Value of the Map, a SharingFragmentViewModel
instance.

3. You can’t create and inject the ViewModel instances on your own. For that, you
need ViewModelFactory. The second binding method allows you to inject it.

4. @Reusable is similar to @Singleton. It’ll make Dagger try to reuse the same
ViewModelFactory instance, if available. It doesn’t ensure that the same
instance lives throughout the whole app’s lifetime, though.

You now have to let SharingComponent know about SharingModule.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 249

Notifying SharingComponent of
SharingModule
Open SharingComponent.kt and refactor the @Component annotation to:

@Component(
 dependencies = [SharingModuleDependencies::class],
 modules = [SharingModule::class]
)
interface SharingComponent

Finally, you need to actually inject the ViewModel. Go to SharingFragment.kt.
Below the companion object, inject the factory:

@Inject
lateinit var viewModelFactory: ViewModelFactory

Then, refactor the by viewModels delegate by passing in the factory:

private val viewModel by viewModels<SharingFragmentViewModel>
{ viewModelFactory }

That’s it! Android and Dagger will handle the rest.

Build the app. You’ll get an error in the SharingModule stating that the module’s
missing an @InstallIn annotation. This happens because you’re still depending on
Hilt, which checks every @Module for the @InstallIn annotation.

You could disable this, but it could come in handy if you really forget to add the
annotation. Instead, you’ll let Hilt know it doesn’t have to check this module.

Fixing Errors
To do this, go to SharingModule.kt and add this annotation below @Module:

@DisableInstallInCheck

This will tell Hilt to not check this specific Module.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 250

Build the app again and it will fail and complain about not being able to find
DispatchersProvider and AnimalRepository bindings. While it’s true that you
can’t inject them through SharingModuleDependencies due to the reasons
explained above, nothing’s stopping you from doing so through SharingModule.

Open SharingModule.kt and add the missing bindings:

@Binds
abstract fun bindDispatchersProvider(
 dispatchersProvider: CoroutineDispatchersProvider
): DispatchersProvider

@Binds
abstract fun bindRepository(
 repository: PetFinderAnimalRepository
): AnimalRepository

You now have bindings for these dependencies in two different places in the app. Not
ideal, but it’s the best you can do with what you have available.

Build and run now. Once again, access the sharing feature — it’ll work!

Figure 10.6 — A Working Share Button!

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 251

However, you set the feature to be downloaded on demand. Why is it available right
away? You’ll test the module install next.

Testing Module Install
Android Studio installs all your modules by default, including dynamic features. You
can edit the run/debug configuration and choose not to install dynamic features
right away. Unfortunately, if you use this method, they won’t install later, either. For
instance, choosing not to install the sharing module triggers this screen:

Figure 10.7 — Dynamic Navigator Handles Everything for You, Even the Failure Screen

To test the installation of dynamic feature modules, you have two options:

1. Publish the app on Google Play, then use the internal test track.

2. Use bundletool, a command-line tool.

Google Play’s internal test track is a great way to test your apps. Not only is it useful
for larger-scale tests, but you can also see exactly how the dynamic feature code will
behave in a real-life scenario.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 252

However, as you might know, Google Play’s app review process takes quite a while —
often, days. And you can’t test your app until Google Play reviews and accepts it!

So in this case, you’ll use bundletool. Download the latest version here: https://
github.com/google/bundletool/releases.

Preparing to Use Bundletool
Before using it, you need to create an App Bundle. A debug one will do.

In Android Studio, go to Build ▸ Build Bundle(s) / APK(s) ▸ Build Bundle(s).

Figure 10.8 — Building a Debug App Bundle

This process outputs app-debug.aab. Locate the file and move it to the directory
that contains bundletool.jar, for convenience. Then, open a command-line window
in that same directory and run the command:

java -jar bundletool.jar build-apks --local-testing --bundle
app-debug.aab --output app-debug.apks --connected-device

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 253

Here, bundletool uses the app-debug.aab to create app-debug.apks, which
contains all the split APKs you need to install the app.

--connected-device tells bundletool to produce app-debug.apks with only the
split APKs needed for the connected device, whether that’s a real device or an
emulator. It’s a cool way of testing App Bundles, by seeing which split APKs get
installed.

--local-testing is what saves you from having to publish the app. It makes it
possible for the Play Core library to use the split APKs to install dynamic features
without connecting to the Play Store.

Now, to install app-debug.apks on a device, run this command:

java -jar bundletool.jar install-apks --apks app-debug.apks

Check the output to see which APKs bundletool installs. Using a Pixel 4 emulator
with API 29, this was my output:

Pushed "/sdcard/Android/data/com.realworld.android.petsave/
files/local_testing/base-xxhdpi.apk"
Pushed "/sdcard/Android/data/com.realworld.android.petsave/
files/local_testing/base-master.apk"
Pushed "/sdcard/Android/data/com.realworld.android.petsave/
files/local_testing/base-en.apk"
Pushed "/sdcard/Android/data/com.realworld.android.petsave/
files/local_testing/sharing-xxhdpi.apk"
Pushed "/sdcard/Android/data/com.realworld.android.petsave/
files/local_testing/sharing-master.apk"

Note: There’s currently a bug in Android 11 (API 30) that won’t let you install
the APKs through bundletool. If that’s your case, you can work around it by
using a device with a different API version.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 254

Open the app on the device and try the feature again. You’ll see a screen with a
progress bar like this one:

Figure 10.9 — Installing the Dynamic Feature

After a few seconds, you’ll see the sharing feature’s screen! As you can see, Dynamic
Navigator handles everything for you. It shows the screen with a progress bar,
triggers the feature download and handles any installation errors that occur.

Dynamic Navigator is also open for extension. It lets you have fine-grained control
over things like reacting to different installation events yourself or even using your
own progress bar screen. Pretty neat!

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 255

Key Points
• The app module doesn’t depend on dynamic feature modules. However, you still

have to make it aware of them through the dynamicFeatures array in its Gradle
configuration.

• Navigation component’s Dynamic Navigator does all the heavy lifting of
requesting and installing dynamic features for you. It also handles network errors
and even provides a basic installation progress Fragment. It’s also open for
customization.

• You can continue to use Hilt in your app when you have dynamic feature modules.
Hilt currently provides some basic functionality to inject bindings into dynamic
features, but Dagger does most of the work.

• bundletool is a great way of testing dynamic feature installation without having to
publish your app on Google Play’s internal test track.

This chapter concludes Section 2. In the next section, you’ll learn how to create and
animate custom UI components. Have fun! :]

Where to Go From Here?
Great job on refactoring the module to a dynamic feature module. It took a lot of
work, especially regarding Hilt/Dagger and navigation. Well done!

To learn more about App Bundles and Play Feature Delivery, check the official
documentation at https://developer.android.com/guide/app-bundle.

If you’re interested in knowing more about the Play Core library, you can find its
official documentation at https://developer.android.com/guide/playcore/play-
feature-delivery.

For Dynamic Navigation, read the official documentation at https://
developer.android.com/guide/navigation/navigation-dynamic and
raywenderlich.com’s article about it at https://www.raywenderlich.com/7023243-
navigation-and-dynamic-features.

Finally, the Android team released a series of videos as part of the MAD Skills series
about App Bundles. You should check it out at https://youtu.be/hTC0rKllhIw.

Real-World Android by Tutorials Chapter 10: Building a Dynamic Feature

raywenderlich.com 256

Section III: Enhancing Your UI

The user interface (UI) is one of the most important aspects of any real world app.
How your user interacts with the features of your app is what decides if the app is
successful or not.

When you build your app, you have three options for creating your UI. Most of the
time you’ll use what the Android SDK provides. In other cases, you customize the
existing components. Your third option is to create your own custom components.

In this section, you’ll learn how to enhance the user interface of your app. You’ll
create and customize animation using the new Animation Editor, which comes with
recent versions of Android Studio. You’ll also learn how to master themes and styles
and to create a custom view.

After reading this section, you’ll have a more appealing app and happier users.

raywenderlich.com 257

11Chapter 11: Animations

By Subhrajyoti Sen

Can you recall an app that was a pleasure to use? If so, it’s most likely because the
app had great animations.

Animations are an excellent way to improve your app’s user experience. Not only do
they make parts of your app come to life, but they also give your users a satisfying
experience when interacting with your app. Animations make your app stand out.

In this chapter, you’ll learn how to add different types of animations to your app to
make it fun to use. You will do so by:

• Using Lottie to add complex loading animations without writing a single line of
animation code yourself.

• Using LottieFiles to find and play suitable frames in the animation.

• Making an animated icon using Animated Vector Drawables.

• Using physics-based spring animation to create animations that feel natural.

• Using fling animation to let the user move a UI element with gestures.

You’ll start with an introduction to Lottie.

raywenderlich.com 258

Lottie
Lottie is an animation library developed by the folks at Airbnb. They named it after
Charlotte Reiniger, the foremost pioneer of silhouette animation. Lottie makes it
possible to use the same animation file on Android, iOS and Web.

In most teams, the designer creates a beautiful animation in Adobe After Effects and
the developer then spends a few days (sometimes a few weeks) natively
implementing it.

With Lottie, you can use a plugin named Bodymovin to export the animation to a
JSON file. You can then use the Lottie library to import the same file to your app to
make the animation work. No extra animation code is needed.

Why use Lottie
While Lottie is great for displaying complex animations, it has many other use cases,
including:

• Walkthroughs: Apps generally use GIFs or videos to show feature walkthroughs.
Lottie can do the same with a fraction of the file size.

• Animated Icons: Lottie’s great for displaying animated icons based on user
interactions. Although you can make animated icons with Animated Vector
Drawables, Lottie supports a wider range of After Effect features. It can also
control the animation progress based on user interactions, such as gestures.

Lottie has several advantages over other forms of animations as well:

• Lottie animations scale well.

• You can easily download the animation file over the network.

• The same animation file works across all platforms.

• It’s easy to loop between different frames of the animation.

Ready to dive in? Find out how to use Lottie next.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 259

Setting up Lottie
Open the build.gradle for the app module and add the following dependency for
Lottie:

implementation "com.airbnb.android:lottie:5.0.1"

Sync Gradle by clicking the Sync Now button.

Open the raw directory under the app resources. You’ll see two files named
happy_dog.json and lazy_cat.json. These are your Lottie animations.

Figure 11.1 — Lottie Animation Files

Now, from the layout directory, open fragment_details.xml and replace the
ProgressBar view with the following code:

<com.airbnb.lottie.LottieAnimationView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/loader"
 app:lottie_loop="true"
 />

LottieAnimationView is responsible for loading the animation and applying various
properties. When lottie_loop is enabled, it continuously loops the animation.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 260

Now, you need to start playing the animation while the pet’s details load. Open
AnimalDetailsFragment.kt in details.presentation and replace startAnimation
with the following code:

private fun startAnimation(@RawRes animationRes: Int) {
 binding.loader.apply {
 isVisible = true
 setAnimation(animationRes) // 1
 playAnimation() // 2
 }
}

In this code you use:

1. setAnimation to set the JSON file resource that you want Lottie to display

2. playAnimation() to start playing the animation.

Next, update displayLoading by replacing displayLoading with the new
startAnimation, like this:

private fun displayLoading() {
 startAnimation(R.raw.happy_dog) // HERE
 binding.group.isVisible = false
}

Also replace startAnimation() inside displayError, as in the following code:

private fun displayError() {
 startAnimation(R.raw.lazy_cat) // HERE
 binding.group.isVisible = false
 Snackbar.make(requireView(),
 R.string.an_error_occurred,
 Snackbar.LENGTH_SHORT).show()
}

Don’t forget that you need to add functionality to cancel the and hide the
animations as well. Replace the current implementation of stopAnimation with the
following:

private fun stopAnimation() {
 binding.loader.apply {
 cancelAnimation() // HERE
 isVisible = false
 }
}

cancelAnimation stops the Lottie animation.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 261

Build and run. Click on any pet’s image to go to its details page. While the data loads,
you’ll now see a happy dog animation.

Figure 11.2 - Lottie Loading Screen

Customizing the Animation
Lottie allows you to customize various properties of the animation like:

1. Animation speed

2. Fill color

3. Start and end frames

4. Repeat count and repeat mode

Consider a case where you want to use only a certain portion of the animation
instead of the entire thing. With Lottie, you don’t need to go back to your designer
and request changes. Instead, you simply specify the start and end frames of the
animation.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 262

For this app, you want to display only the part of the loading animation where the
dog’s eyes are open.

Open this URL in a browser: https://lottiefiles.com/preview then upload the Lottie
file named happy_dog.json to it.

Pause the animation and use the SeekBar to find the frame number where the dog’s
eyes open.

Figure 11.3 — Lottie Animation Preview

In this case, the starting frame is around 50.

By dragging the SeekBar a bit more, you’ll find that the dog closes its eyes at frame
number 113.

Figure 11.4 — Lottie Animation Preview At a Different Frame

With that information, you know that you want to set the minimum frame to 50 and
the maximum frame to 112. Also, you’ll set the animation speed to 1.2x because the
default speed feels a bit slow

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 263

To do this, modify startAnimation, like this:

private fun startAnimation(@RawRes animationRes: Int) {
 binding.loader.apply {
 isVisible = true
 setMinFrame(50) // 1
 setMaxFrame(112) // 2
 speed = 1.5f // 3
 setAnimation(animationRes)
 playAnimation()
 }
}

In this code, you:

1. Set the initial frame with setMinFrame.

2. Set the final frame with setMaxFrame.

3. Change the speed with the speed property.

Build and run. You’ll notice that only the selected part of the animation plays and
that it plays at 1.5x the previous speed.

Customizing Other Animation Properties
This is already a great set of customizations, but Lottie doesn’t stop there. It lets you
customize a wide range of properties of the animation. For example, you can modify
the color of a single path in the animation. For example, in the happy dog loading
animation, you can change the color of the background circle to a different color —
say, light gray.

Try this out by opening happy_dog.json and searching for the icon_circle layer. This
represents the background circle in the animation. For other animation files, you can
ask the designer on your team to help you find the layer you need.

Change startAnimation adding the following code:

Add the following code to the end of startAnimation:

 private fun startAnimation(@RawRes animationRes: Int) {
 binding.loader.apply {
 // ...
 }
 binding.loader.addValueCallback(// 1
 KeyPath("icon_circle", "**"), // 2
 LottieProperty.COLOR_FILTER, // 3
 {

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 264

 PorterDuffColorFilter(Color.LTGRAY,
PorterDuff.Mode.SRC_ATOP) // 4
 }
)
 }

Here’s what’s going on in the code:

1. You use addValueCallback to add a callback to the Lottie animation that returns
a custom color filter for the layer you want to modify.

2. To do this, you need to pass the layer as the first parameter using a KeyPath. You
create a KeyPath, passing its name as the first parameter and a regular
expression that filters layers with the same name. In this case, you use a
wildcard, **

3. The second parameter for addValueCallback is the property of the layer you
want to change. In this case, you want to change its color using
LottieProperty.COLOR_FILTER.

4. Finally, you set the new value that, in this case, is a ColorFilter using a lambda.

Build and run. Go to the details screen and notice that the color of the animation
background has changed from light yellow to light gray, as in Figure 11.5.

Figure 11.5 — Change the color of a layer

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 265

You’ve now successfully added a Lottie animation to your app and even customized
it without having to go to your designer for help.

Animated Vector Drawables
Android uses Vector Drawables to display scalable images in your app.
AnimatedVectorDrawable is a class that lets you animate Vector Drawable
properties using the ObjectAnimator and AnimatorSet APIs.

Traditionally, AnimatedVectorDrawable runs on the UI thread. Starting from API
level 25 (Android 7.1), however, it runs on the RenderThread. This has the advantage
that, even if there’s jank in the UI because of long-running work taking place in the
UI thread, AnimatedVectorDrawable will continue to run smoothly.

It’s also interesting to note that Lottie animations run on the UI thread. That means
that in some cases, it’s beneficial to use AnimatedVectorDrawable over Lottie
animations.

There are two ways to define the animations:

1. Define VectorDrawable, AnimatedVectorDrawable and ObjectAnimator in
three separate XML files.

2. Define everything in a single XML file.

The first approach is preferable because it makes it easy to reuse animations and
Vector Drawables across multiple views. In this book, you’ll use the first approach.

Consider an example of a gesture that lets the user “like” a pet. When the user
double-taps the pet’s image, an outline of a heart fades in and starts filling up. Once
the heart is full, it fades away.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 266

Creating the Vector
You’ll start by drawing the heart shape. Create a file named ic_heart_unfilled.xml in
the drawable directory and add:

<vector xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:name="heart"
 android:width="24dp"
 android:height="24dp"
 android:alpha="0"
 tools:alpha="1"
 android:viewportWidth="24"
 android:viewportHeight="24">
 <group
 android:pivotY="12"
 android:pivotX="12">
 <path
 android:fillColor="#ff1744"
 android:pathData="M 16.5 3 C 14.76 3 13.09 3.81 12 5.09
C 10.91 3.81 9.24 3 7.5 3 C 4.42 3 2 5.42 2 8.5 C 2 12.28 5.4
15.36 10.55 20.04 L 12 21.35 L 13.45 20.03 C 18.6 15.36 22 12.28
22 8.5 C 22 5.42 19.58 3 16.5 3 Z M 12.1 18.55 L 12 18.65 L 11.9
18.55 C 7.14 14.24 4 11.39 4 8.5 C 4 6.5 5.5 5 7.5 5 C 9.04 5
10.54 5.99 11.07 7.36 L 12.94 7.36 C 13.46 5.99 14.96 5 16.5 5 C
18.5 5 20 6.5 20 8.5 C 20 11.39 16.86 14.24 12.1 18.55 Z"
 android:strokeWidth="1" />
 <clip-path
 android:name="heart_mask"
 android:pathData="M 12 21.35 L 10.55 20.03 C 5.4 15.36 2
12.28 2 8.5 C 2 5.42 4.42 3 7.5 3 C 9.24 3 10.91 3.81 12 5.09 C
13.09 3.81 14.76 3 16.5 3 C 19.58 3 22 5.42 22 8.5 C 22 12.28
18.6 15.36 13.45 20.04 L 12 21.35 Z" />
 <group
 android:name="circle"
 android:translateY="17">
 <path
 android:fillColor="#ff1744"
 android:pathData="M 12 2 C 9.349 2 6.804 3.054 4.929
4.929 C 3.054 6.804 2 9.349 2 12 C 2 14.651 3.054 17.196 4.929
19.071 C 6.804 20.946 9.349 22 12 22 C 14.651 22 17.196 20.946
19.071 19.071 C 20.946 17.196 22 14.651 22 12 C 22 9.349 20.946
6.804 19.071 4.929 C 17.196 3.054 14.651 2 12 2 Z"
 android:strokeWidth="1" />
 </group>
 </group>
</vector>

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 267

The above vector draws an unfilled heart, which will be the starting state of the
animation. It has an opacity of 0 because the icon will initially be invisible, then fade
in. tools:alpha="1" lets you see the icon in Android Studio’s preview. You can use
the Design view in Android Studio for a preview of the image, as Figure 11.6 shows:

Figure 11.6 — The Heart Vector Drawable

The vector also has a circle that’s initially placed below the heart so it’s not visible.
The aim of the animation is to gradually move this circle up so it gives the illusion of
the heart filling up. The part of the circle outside the heart isn’t visible to the user
because of the clip-path defined in the vector.

Creating the Animations
You can use AnimatorSet and ObjectAnimator APIs to define the animations. For
this animation, you’ll use both. You’ll create the fading animation first.

Create an animator resource directory under the res folder. Then create a file called
animator_alpha in the animator directory and add:

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:ordering="sequentially">

 <objectAnimator
 android:duration="400"
 android:interpolator="@android:interpolator/linear"
 android:propertyName="alpha"
 android:valueFrom="0"
 android:valueTo="1"
 android:valueType="floatType" />

 <objectAnimator
 android:duration="200"

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 268

 android:interpolator="@android:interpolator/linear"
 android:propertyName="alpha"
 android:startOffset="100"
 android:valueFrom="1"
 android:valueTo="0"
 android:valueType="floatType" />
</set>

The above XML defines two animations that run sequentially. The ordering
attribute specifies whether the animations execute in parallel or in sequence. The
first animation animates the value of the alpha property from 0 to 1 over a duration
of 400 milliseconds. It uses linear interpolation, which means the rate at which the
property value changes is constant for the entire duration.

The second animation also changes the alpha property, but from 1 to 0 and it takes
200 milliseconds. startOffset defines the time after which the animation starts. So
this animation set will take 400 + 100 + 200 = 700 milliseconds in total to complete.

Now, you have to create the animation for the part where the circle moves up the
heart. Create a file called animator_heart_fillup.xml in the animator directory and
add the following XML:

<objectAnimator xmlns:android="http://schemas.android.com/apk/
res/android"
 android:duration="250"
 android:interpolator="@android:interpolator/
accelerate_cubic"
 android:propertyName="translateY"
 android:startOffset="100"
 android:valueFrom="17"
 android:valueTo="0"
 android:valueType="floatType" />

This animates translateY from a value of 17 to 0 over a duration of 250
milliseconds. It uses an accelerate_cubic interpolator, which means that it will use
a cubic function to accelerate the rate of change of the values.

Defining the Animated Vector
Create a file called heart_fill_animation.xml inside the drawable directory and
add:

<animated-vector xmlns:android="http://schemas.android.com/apk/
res/android"
 android:drawable="@drawable/ic_heart_unfilled">
 <target

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 269

 android:name="circle"
 android:animation="@animator/animator_heart_fillup" />

 <target
 android:animation="@animator/animator_alpha"
 android:name="heart"/>
</animated-vector>

This file does two important things: First, it specifies the Animated Vector Drawable
using the drawable attribute. It then specifies that the animator_alpha animation
has to be applied to the vector constituent named heart and the
animator_heart_fillup animation to the constituent named circle. It will throw
an exception if it can’t find the strings mentioned in the name attribute in the
specified vector.

Playing the Animation
Open fragment_details.xml and add the following attribute to the ImageView with
the ID heart_image:

app:srcCompat="@drawable/heart_fill_animation"

This is a reference to the AnimatedVectorDrawable you just created.

Open AnimalDetailsFragment.kt and add the following to the onDoubleTap
callback inside doubleTapGestureListener:

(binding.heartImage.drawable as Animatable?)?.start()

Here, you’re getting a reference to the Drawable you just assigned to the ImageView.
You know it’s an AnimatedVectorDrawable that implements the Animatable
interface that abstracts everything that’s possible to animate. You then cast the
AnimatedVectorDrawable to Animatable and invoke start on it to start the
animation.

And that’s it. Your AnimatedVectorDrawable is good to go. Build and run, then go to
any pet’s details page and double-tap the image. You’ll now see a nice heart
animation, showing your love for the cute pet.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 270

Figure 11.7 shows an intermediate state of the animation:

Figure 11.7 — One Frame of the Heart Animation

Physics-based Animations
When you look at the animations that you’ve added to the project so far, you’ll
notice one common thing: Even though the animations are delightful, they don’t feel
real. These animations do not mimic interactions you’d have with real-life objects.

One way to significantly improve the user experience is to add physics-based
animations. These animations follow the laws of physics, which makes them seem
more natural and relatable to the user. Physics-based animations help you do this
without having to worry about a lot of math.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 271

In this chapter, you’ll implement two kinds of animations:

1. Fling animation

2. Spring animation

You’ll use the Jetpack DynamicAnimation library to create these animations. Open
the build.gradle for the app module and add the following library declaration:

implementation
"androidx.dynamicanimation:dynamicanimation:1.0.0"

This gives you access to the library to use in the following animations.

Spring Animation
Spring animations give a bouncy feel to objects. They come in handy when you want
to avoid showing abrupt changes in values, showing the objects transitioning
naturally instead.

Consider a bouncing basketball. With each bounce, the height that the ball reaches
reduces until the ball eventually comes to a halt. Springs work in a similar way. You
initially stretch them to a certain length, then release them. They repeatedly expand
and contract but the expansion keeps reducing until it stops in the contracted state.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 272

When you open any pet’s details screen, one of the main actions you want the user to
do is to call the organization about the pet. To draw attention to that action, you’ll
add a bouncy animation to increase the size of the Call button, which the arrow in
Figure 11.8 points to:

Figure 11.8 — The Call Button

Before you start writing the spring animation, you need to learn about SpringForce.
Every spring animation uses the concept of a virtual spring. Such a spring has two
properties:

1. Damping Ratio: Determines how quickly the values change over time.

2. Stiffness: Sets the force with which the objects — or views — move.

Now, you’re ready to start. Open AnimalDetailsFragment.kt in the
details.presentation package and add the following code before onCreate.

private val springForce: SpringForce by lazy {
 SpringForce().apply { // 1
 dampingRatio = DAMPING_RATIO_HIGH_BOUNCY // 2
 stiffness = STIFFNESS_VERY_LOW // 3

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 273

 }
}

In this code, you:

1. Create an instance of SpringForce that encapsulates the property of the spring
animation you want to apply.

2. Set dampingRatio, which describes how oscillations in a system decay after a
disturbance. In this case, you use DAMPING_RATIO_HIGH_BOUNCY, an existing
constant for a damping ratio that makes a very bouncy spring.

3. Set the stiffness, assigning the existing value STIFFNESS_VERY_LOW. The stiffer
a spring is, the more force it applies to the attached object when the spring is not
at the final position.

To increase the button size, you increase the button’s scaleX and scaleY properties.

In the same AnimalDetailsFragment.kt file, add the following code before
onCreate:

private val callScaleXSpringAnimation: SpringAnimation by lazy {
 SpringAnimation(binding.call, DynamicAnimation.SCALE_X).apply
{
 spring = springForce
 }
}

private val callScaleYSpringAnimation: SpringAnimation by lazy {
 SpringAnimation(binding.call, DynamicAnimation.SCALE_Y).apply
{
 spring = springForce
 }
}

This creates two SpringAnimation instances for the scaleX and scaleY properties,
respectively, and sets springForce as their spring.

In fragment_details.xml, look at the attributes of the FloatingActionButton
named call. Notice that its scaleX and scaleY attributes are set to 0.6. The
animation will work by increasing the values of these attributes from 0.6 to 1.0.

Go back to AnimalDetailsFragment.kt and add the following code at the end of
displayPetDetails:

callScaleXSpringAnimation.animateToFinalPosition(FLING_SCALE)
callScaleYSpringAnimation.animateToFinalPosition(FLING_SCALE)

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 274

The code calls animateToFinalPosition with the FLING_SCALE to start both the
spring animations. You set the value of FLING_SCALE to 1.0 at the beginning of the
class.

Build and run. Click on any pet’s image to go to the details screen. You’ll notice that,
right after the details of the pet become visible, the Call button bounces and
increases in size.

Well done. You’ve successfully added a realistic animation to your app.

Fling Animation
Consider an example of a user flicking a coin. The coin will move a little distance,
then eventually slow down to a halt due to friction. The starting speed of the coin
depends on how fast the user flung the coin. Fling animations help mimic this effect.

Wouldn’t it be fun if there was an Easter egg somewhere in the app? How about
showing a cute doggy picture if the user flings the Call button and the button stops
on the pet’s image?

Similar to the spring animation, you’ll need two separate fling animations to
accomplish this: one to change the x position of your view and another to change the
y position.

Open AnimalDetailsFragment.kt in the details.presentation package, and add the
following code before onCreate.

private val FLING_FRICTION = 2f

private val callFlingXAnimation: FlingAnimation by lazy {
 FlingAnimation(binding.call, DynamicAnimation.X).apply { // 1
 friction = FLING_FRICTION // 2
 setMinValue(0f) // 3
 setMaxValue(binding.root.width.toFloat() -
binding.call.width.toFloat()) // 4
 }
}

private val callFlingYAnimation: FlingAnimation by lazy {
 FlingAnimation(binding.call, DynamicAnimation.Y).apply { // 1
 friction = FLING_FRICTION // 2
 setMinValue(0f) // 3
 setMaxValue(binding.root.height.toFloat() -
binding.call.width.toFloat()) // 4
 }
}

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 275

In this code, you:

1. Use the FlingAnimation constructor, passing references to which View you want
to animate and which of its properties to animate.

2. Set the FlingAnimation’s friction. The greater the friction is, the sooner the
animation will slow down. In both cases, you use the existing FLING_FRICTION,
which has the value 2.0. That means that it takes a bit of effort to fling the
button onto the image.

3. Use setMinValue to set the initial value to 0.

4. Set the end value using setMaxValue.

You’ve defined two FlingAnimation — now, you can use them.

Detecting a Fling

Now that you have your animations ready, you need a way to detect the fling gesture
so you can start the animations. You’ll use a GestureListener to detect fling
gestures.

In AnimalDetailsFragment.kt, in the details.presentation package, add the
following code inside displayPetDetails:

val flingGestureListener = object:
GestureDetector.SimpleOnGestureListener() { // 1
 override fun onFling(e1: MotionEvent?, e2: MotionEvent?,
velocityX: Float, // 2
 velocityY: Float): Boolean {
 return true
 }

 override fun onDown(e: MotionEvent) = true // 2
}
val flingGestureDetector = GestureDetector(requireContext(),
flingGestureListener) // 3

binding.call.setOnTouchListener { v, event ->
 flingGestureDetector.onTouchEvent(event)
}

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 276

In this code, you:

1. Create GestureDetector.SimpleOnGestureListener. This is an interface
GestureDetector provides to listen for specific events like double-taps or, in
this case, flings.

2. The GestureDetector.SimpleOnGestureListener requires you to implement
onFling and onDown. The former is called when a fling gesture happens, the
latter when a tap occurs. The return values tell if the events have been consumed
or if they can propagate to other components.

3. To recognize the specific gesture, you need a GestureDetector. Here, you create
one using Context and flingGestureListener, which you just created.

4. Finally, you bind the event on the Call button to the GestureDetector

You call onFling whenever the user performs a fling gesture. velocityX and
velocityY represent the x and y velocities of the fling. You’ll need this information
to start the animations.

Starting the Fling Animation

When a fling gesture happens, you have to start the animations. Add the following
code inside onFling, which becomes:

// ...
val flingGestureListener = object:
GestureDetector.SimpleOnGestureListener() {
 override fun onFling(e1: MotionEvent?, e2: MotionEvent?,
velocityX: Float,
 velocityY: Float): Boolean {
 callFlingXAnimation.setStartVelocity(velocityX).start() // 1
 callFlingYAnimation.setStartVelocity(velocityY).start() // 2
 return true
 }

 override fun onDown(e: MotionEvent) = true
}
// ...

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 277

In this code, you:

1. Use setStartVelocity to set the velocity that starts the fling animation. You get
this value from the onFling gesture callback.

2. Start the animation using start.

Build and run. Open the details screen for any pet and try flinging the Call button.
You’ll notice that the button moves in the direction of the fling and then starts
slowing down.

Listening for the Animation’s End

To show the secret image, you need to check if the Call button overlaps the image
when it stops moving. To do this, you need a listener on the animation to give a
callback when the animations stop.

In AnimalDetailsFragment.kt, add the following at the end of
displayPetDetails:

callFlingYAnimation.addEndListener { _, _, _, _ ->
 if (areViewsOverlapping(binding.call, binding.image)) {
 val action =
AnimalDetailsFragmentDirections.actionDetailsToSecret()
 findNavController().navigate(action)
 }
}

This adds an end listener to the y-fling animation. areViewsOverlapping is a helper
method that checks if two views overlap. You use it to check if the Call button
overlaps the image. If it does, start a new fragment to show the secret image.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 278

Build and run the app. On the details page, if you fling the Call button hard enough
that it stops on the image, you’ll see a cute doggy picture.

Figure 11.9 — Call Button Fling Animation

Congratulations! You’ve now seen how easy it is to add next-level animations to your
app, giving the user a better overall experience.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 279

Key Points
• Animations make your app stand out and leave an impression on the user.

• Lottie is great for complex animations and can be highly customized.

• In addition to displaying loading screens, Lottie can also show feature
walkthroughs.

• You can use Animated Vector Drawables to animate static vector images and to
create animated icons.

• Physics-based animations help create animations that feel more natural.

• Spring animations can create bouncing animations.

• Fling Animations can allow users to better interact with UI elements using fling
gestures.

Great! In this chapter, you learned a lot about Lottie and physics-based animations.
In the next chapter, you’ll learn how to use MotionLayout and the new Motion
Layout Editor.

Real-World Android by Tutorials Chapter 11: Animations

raywenderlich.com 280

12Chapter 12: MotionLayout
& Motion Editor
By Subhrajyoti Sen

Animations and transitions are a great way of improving your app’s user experience.
Android has a wide set of classes you can use to implement different kinds of
animations, but historically, using them to create anything complex has been
difficult. Fortunately, Android introduced MotionLayout in ConstraintLayout 2.0
to address these problems.

MotionLayout makes it possible to implement detailed animations entirely in XML,
similar to the way you create layouts. In this chapter, you’ll learn how to use
MotionLayout to

• Animate view dimensions.

• Translate views.

• Preview the animation in the IDE.

• Change the shape of images and apply filters.

raywenderlich.com 281

Getting to Know MotionLayout
Before you start creating beautiful animations with MotionLayout, you need to learn
about its three main concepts:

1. MotionScene: This is the root element for every animation scene. It contains the
different states of the animation and the transitions between them.

2. ConstraintSet: A collection of Constraint tags. A Constraint is a set of
ConstraintLayout attributes that you apply to a specific view. Typically, you’ll
have two ConstraintSets that define the start and end states of the animation.
Although you can have more ConstraintSets in theory, XML only lets you use
two. If you need to use more than two states in the animation, you have to do
that programmatically.

3. Transition: Defines the transition between two ConstraintSets. You can also
set properties, like the animation duration and the interpolator, to change the
values of the constraints.

This is in the context of ConstraintLayout, where you represent the state of a
specific View, or a group of Views, as the set of the constraints you apply to them.
Different constraints produce a different state for the Views. You then use a
Transition to represent how you go from one state to another.

Finally, as Figure 12.1 shows, a MotionScene is a way to aggregate different states
for a View and the way you transition from one to another. This produces an
animation.

Figure 12.1 — The Concept Behind MotionScene

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 282

Getting Started
Open the starter project from the downloaded materials and run it, then go to the
details page of any pet. You’ll notice that the layout of the page is a bit different from
what you implemented in the previous chapter. This change adds scrollable content,
which lets you create gesture-based animations.

Figure 12.2 — The Starter Project

Open the project build.gradle and verify that your constraint_layout_version is
at least 2.1.4.

To create your first MotionScene, you need to:

1. Create an XML resource with the MotionScene.

2. Apply the MotionScene to a specific View.

Note: A ViewGroup is a specific View that aggregates other Views using the
Composite design pattern. How you aggregate the other Views is what defines
a specific layout. From now on, anything you read about Views also applies to
ViewGroups or in general layouts.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 283

Defining a MotionLayout
You can define a MotionLayout declaratively by using an XML document. Create a
file named fragment_details_scene.xml in res/xml and insert the following code:

<MotionScene
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <ConstraintSet android:id="@+id/start">
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 </ConstraintSet>

 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:motionInterpolator="linear"
 motion:duration="1000">
 </Transition>

</MotionScene>

In this document, you create a MotionScene. In particular:

1. You use <MotionScene/> as the root element for the XML document. As
described in Figure 12.1, you use the <MotionScene/> as the container for the
definitions of ConstraintSet and Transition.

2. Using <ConstraintSet/>, you define a specific state. In this case, you’re just
creating the placeholder for what you consider the starting state by setting its ID
to start

3. In the same way, you use <ConstraintSet/> to define the placeholder for the
final state of the transition that you identify with the end ID.

4. Using <Transition/>, you define how the animation should run.

5. With the constraintSetStart and constraintSetEnd attributes, you bind the
Transition to the specific initial and final states. In this case, you’re
representing how you go from start to end.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 284

6. With the previous attributes, you said you want to go from start to end but you
didn’t specify how this would happen. Using motionInterpolator, you now set
the linear interpolator. This means the rate at which the constraints’ values
change stays constant over time. For example, by animating the alpha of a View
from 0 to 1 over 200 milliseconds, the alpha will be 0.25 after the initial 50
milliseconds, 0.5 after 100 milliseconds and so on.

7. Finally, you use duration to define the duration of the transition in
milliseconds.

To get a good feeling of how this works, play around with the previous configuration.
Try, for instance, other values for the motionInterpolator attribute. You can
choose among these values:

• easeInOut

• easeIn

• easeOut

• linear

• bounce

How do you choose the right interpolator for your animation? Well, there’s no
definite answer to this. Unless you have specific timing in mind, try out a few
interpolators and check which one looks best.

Alternatively, you can also specify your own interpolator with something like:

<MotionScene
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- // ... -->
 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:motionInterpolator="cubic(.17,.67,.83,.67)"
 motion:duration="1000">
 </Transition>

</MotionScene>

Here, you use cubic(x1,y1,x2,y2) to pass coefficients representing the control
points of a cubic Bezier from 0,0 to 1,1. Bezier.com has a great interactive tool to get
the values for such interpolators. Find it at https://cubic-bezier.com.

Now that you have a MotionScene, you can apply it to a specific View.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 285

Applying MotionScene to a View
Now, you need to apply the MotionScene you just created to a specific View. To do
this, first open fragment_details.xml and add the following:

<androidx.constraintlayout.motion.widget.MotionLayout
 android:id="@+id/motion_layout"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layoutDescription="@xml/fragment_details_scene"> <!-- HERE
-->
 <!-- // ... -->
</androidx.constraintlayout.motion.widget.MotionLayout>

In this XML document, you:

1. Replaced the root androidx.constraintlayout.widget.ConstraintLayout
with androidx.constraintlayout.motion.widget.MotionLayout.

2. Added app:layoutDescription="@xml/fragment_details_scene", which
refers to the MotionScene that MotionLayout needs to transition between states.

As you see in Figure 12.3, you’ll notice that it doesn’t affect the layout preview.
That’s because MotionLayout extends from ConstraintLayout and inherits all its
features.

Figure 12.3 — Layout Editor With MotionLayout

Now that you’ve set up MotionLayout, it’s time to explore its various features and
see them in action.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 286

Adding Your First Constraint
As mentioned above, MotionLayout works by transitioning between two states,
where each state is represented by a ConstraintSet. Inside each ConstraintSet,
you have multiple Constraints corresponding to different views. You only need to
define a Constraint for the views you want to animate, not every view.

You define a Constraint using the id of the view you want to animate and a set of
corresponding attributes that change the position and orientation of the views. For
example, you can set the height and width of a TextView but not its background.

One important thing to note is that the start and end constraints defined in
MotionScene both inherit from the layout defined inside MotionLayout. That means
that if you don’t want to change the starting state of a view in the transition, you
don’t have to add a Constraint for it in the start ConstraintSet.

For your first animation, you’ll create a transition that shrinks the size of the pet’s
image and places it at the top-left corner. To do this, you only need to add a
Constraint to the end ConstraintSet.

Open fragment_details_scene.xml and add the following:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- / ...-->
 <ConstraintSet android:id="@+id/end">
 <Constraint
 android:id="@id/image"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_marginBottom="@dimen/default_margin"
 android:layout_marginStart="@dimen/default_margin"
 android:layout_marginTop="@dimen/default_margin"
 motion:layout_constraintStart_toStartOf="parent"
 motion:layout_constraintTop_toTopOf="parent">
 </Constraint>
 </ConstraintSet>
 <!-- / ...-->
</MotionScene>

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 287

In this code, you:

1. Add a <Constraint/> as a child of <ConstraintSet/> with the end ID to
indicate it’s the final state.

2. Add a <Constraint/> for the View with the ID image.

3. Set the image size to 100dp.

4. Set some margins.

5. Constraintthe image to the top and start of the parent.

It’s time to preview the animation and see how it looks, which you’d usually do by
building and running the app. Up to now, this has been the only way of previewing
animations on Android. However, now there’s a shiny tool that will make the lives of
Android developers much easier: Motion Editor.

Motion Editor
Motion Editor is a handy tool that comes built-in with Android Studio 4.0 and later.
It lets you preview animations created with MotionLayout without having to leave
the IDE. Additionally, it provides a Graphical User Interface to add and edit different
ConstraintSets, Constraints, Transitions and much more.

It’s similar to how you can create layouts using both XML and Android Studio’s
Design View. For this chapter, you’ll mainly use Motion Editor to preview your
animations.

To display Motion Editor, open fragment_details and choose the Split or Design
tab near the top-right of the screen.

Figure 12.4 — Layout Editor Tabs

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 288

Once Motion Editor is open, you’ll see a screen like this:

Figure 12.5 — The Motion Editor

The screen shown above has four main components:

1. The base MotionLayout

2. The start ConstraintSet

3. The end ConstraintSet

4. The Transition

To preview the animation, select Transition. You’ll then see a Timeline window, like
the one shown below.

Figure 12.6 — Transition Timeline

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 289

With this window, you can play or pause the animation, speed it up or slow it down
and even preview the animation running both forward and backward.

Click the Play button and you’ll see your animation in action. While the animation is
playing, you’ll notice a dashed line on the preview. This is the motion path — it
denotes the path the view takes from the start of the transition to the end. Later in
the chapter, you’ll use this line to improve the transition.

Figure 12.7 — The Motion Path

If you can’t view that path, pause the animation midway and it’ll appear. You can
also view these paths on a device or emulator by adding the app:showPaths="true"
attribute to the MotionLayout tag.

Congratulations, you’ve successfully created your first animation using
MotionLayout. Next, you’ll learn how to trigger your animation to start.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 290

Adding a Trigger
Animations seldom start on their own; they’re usually associated with an event or
user interaction. For example, you click on a button to load something and the
button animates to a progress bar. It would be weird for this animation to start on its
own.

When you previewed your animation in the Motion Editor, you used a Play button.
When the app runs on a device, however, you need to give the user a way to trigger
the animation. MotionLayout provides two such triggers:

1. OnClick: Activates when the user clicks a specific View.

2. OnSwipe: Activates when the user performs a swipe gesture in a certain
direction on a specific View.

In this section, you’ll use the OnSwipe trigger to make the transition start when the
user swipes up on the content below the image.

Adding OnSwipe
Open fragment_details_scene.xml and add the <OnSwipe/> element to
Transition:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- / ...-->
 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000"
 motion:motionInterpolator="linear">
 <OnSwipe
 motion:dragDirection="dragUp"
 motion:touchAnchorId="@id/scrollView" />
 </Transition>

</MotionScene>

In this code, dragDirection specifies the direction of the swipe. The supported drag
directions are: up, down, left and right. touchAnchorId specifies the View the user
needs to drag.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 291

Build and run. Slowly drag upwards on the content below the pet’s image and you’ll
see your animation in action. As a bonus, after the animation, swipe downwards on
the same part of the content. You’ll see your animation run in reverse.

Figure 12.8 — The Scene at the End of the Transition

One of the nice features of MotionLayout is that you can make forward and
backward animations work without having to create an explicit transition.

Notice that the Lottie loading animation is visible even after the page has finished
loading and some of the pet details display while the page is still loading. This is due
to a special property of MotionLayout, which you’ll explore in the next section.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 292

Overriding Visibility
MotionLayout controls the visibility of all its child views. Even if you tried to control
the visibility of child views programmatically, it wouldn’t have any effect. Luckily,
MotionLayout provides functionality to ignore this behavior.

Enter the following code in the start ConstraintSet:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <ConstraintSet android:id="@+id/start">
 <Constraint android:id="@+id/loader">
 <PropertySet motion:visibilityMode="ignore" />
 </Constraint>

 <Constraint android:id="@+id/call">
 <PropertySet motion:visibilityMode="ignore" />
 </Constraint>

 <Constraint android:id="@+id/scrollView">
 <PropertySet motion:visibilityMode="ignore" />
 </Constraint>
 </ConstraintSet>
 <!-- // ... -->
</MotionScene>

visibilityMode="ignore" instructs MotionLayout to not override the visibility of
the view with the ID loader.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 293

Build and run the app now and you’ll notice that the dog’s image is no longer visible
during the transition and the pet’s details don’t display when the loader is shown.

Figure 12.9 — Transaction Without Loader

Animating More Features
The current transition animates only the pet’s image. How about animating the pet’s
name and the Call button as well? In this section, you’ll add constraints to:

• Change the name’s alignment from center- to left-justified while increasing its
size.

• Make the Call button roll off the screen.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 294

To do this, add the following code to the end ConstraintSet:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- // ... -->
 <ConstraintSet android:id="@+id/end">
 <!-- // ... -->
 <Constraint
 android:id="@+id/call"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/default_margin"
 android:rotation="180"
 motion:layout_constraintBottom_toBottomOf="parent"
 motion:layout_constraintStart_toEndOf="parent" />

 <Constraint
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/default_margin"
 android:layout_marginStart="@dimen/default_margin"
 android:layout_marginTop="@dimen/default_margin"
 android:scaleX="1.4"
 android:scaleY="1.4"
 motion:layout_constraintStart_toStartOf="parent"
 motion:layout_constraintTop_toBottomOf="@+id/image" />
 </ConstraintSet>
 <!-- // ... -->
</MotionScene>

In the previous code, the first Constraint adds a rotation of 180 degrees to the call
view and also constrains the start of the view to the end of the parent. That places it
at the right of the window and hides it from the user. This will make it seem like the
view is rotating out of the screen.

The second Constraint aligns the name view to the start of the parent and scales it
to 1.4 times its original size. It also adds a start margin to align the view properly
with the rest of the text.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 295

Build and run. You’ll observe that, as you slowly drag up, the Call button rolls out of
the screen and the pet’s name moves diagonally to the left while increasing in size.

Figure 12.10 — Animation With Multiple Constraints

Adding Non-linear Motion
In the current version of the animation, the pet’s name takes a linear path during the
transition, as the dashed line you saw in the Motion Editor preview shows. The path
line is straight, denoting linear animation. However, the transition would look much
better with a curved path.

MotionScene uses the concept of frames. Each frame denotes an instant in the
transition. The first frame has a position of 0, while 100 denotes the final position.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 296

MotionScene provides multiple ways to specify frame properties. The two most
important are:

1. KeyAttribute: Specifies attributes of a view in the frame.

2. KeyPosition: Specifies the position of the view in the frame. You can define the
position relative to the parent or the path or define it as a delta of the distance
covered by the view over the entire transition.

The supported KeyAttributes are:

• android:visibility

• android:alpha

• android:elevation

• android:rotation

• android:rotationX

• android:rotationY

• transitionPathRotate

• android:scaleX

• android:scaleY

• android:translationX

• android:translationY

• android:translationZ

You define KeyAttribure and KeyPosition inside a KeyFrameSet. To do this, add
the following code to the Transition:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- // ... -->
 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000"
 motion:motionInterpolator="linear">
 <KeyFrameSet>
 <KeyPosition
 motion:framePosition="50"
 motion:keyPositionType="parentRelative"
 motion:motionTarget="@id/name"
 motion:percentX="0.4" />

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 297

 </KeyFrameSet>
 <!-- // ... -->
 </Transition>
</MotionScene>

In this code, you use <KeyPosition/> to define a frame that applies to the name view
and is midway in the transition by giving it a framePosition of 50.

You use percentX of 0.4 and keyPositionType of parentRelative to specify that, at
frame position 50, the view should cover 40% of the distance along the X-axis
instead of the 50% it would cover otherwise. This gives a curved path to the motion,
which you can verify using the path line in the preview.

Figure 12.11 — Curved Motion Path

To make it easier to see the changes while the animation is running, use Motion
Editor’s speed toggle to select an animation speed of 0.25x.

Figure 12.12 — Transition Speed

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 298

ImageFilterView
In addition to MotionLayout, ConstraintLayout 2.0 also introduced a utility class
named ImageFilterView, which extends AppCompatImageView and makes it easy to
apply filters to images. Now, you no longer need to include a new third-party library
to get a circular ImageView. With ImageFilterView, you get out-of-the-box support
to change the radius of the image, crossfade between two images, change the image
saturation and, much more.

In the current transition, the pet’s image only shrinks in size and moves to the top-
left corner. In this section, you’ll modify the transition so the image transforms from
a square to a circular image as it moves toward the top.

That might sound complex to implement, but you’ll soon see that the combination
of ImageFilterView and MotionLayout makes it quite simple.

CustomAttribute
Look closely at all the view attributes you’ve animated so far and you’ll notice that
these are attributes that apply to any View or affect the positions of the different
views. It’s not possible to assign a custom property in any Constraint.

That’s because MotionLayout provides a custom tag named CustomAttribute to use
with attributes that are either unrelated to the position or are specific to certain
views.

For example, you can set the android:src attribute of an ImageView or the
android:backgroundColor of a Button. You define CustomAttribute with the
name of the attribute and its value.

To try this out, open fragment_details.xml and replace the id image ImageView
with the following ImageFilterView:

<androidx.constraintlayout.motion.widget.MotionLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/motion_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layoutDescription="@xml/fragment_details_scene">
 <!-- // ... -->
 <androidx.constraintlayout.utils.widget.ImageFilterView
 android:id="@+id/image"
 android:layout_width="match_parent"

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 299

 android:layout_height="0dp"
 android:contentDescription="@string/image_of_pet"
 android:scaleType="centerCrop"
 tools:src="@drawable/cute_doggo"
 app:layout_constraintDimensionRatio="H,1:1"
 app:layout_constraintTop_toTopOf="parent"
 app:roundPercent="0" />
 <!-- // ... -->
</androidx.constraintlayout.motion.widget.MotionLayout>

Remember to use the fully-qualified name for ImageFilterView:
androidx.constraintlayout.utils.widget.ImageFilterView.

Next, open fragment_details_scene.xml and insert the following code inside the
start ConstraintSet:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <ConstraintSet android:id="@+id/start">
 <!-- / ... -->
 <Constraint
 android:id="@+id/image"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:contentDescription="@string/image_of_pet"
 motion:layout_constraintTop_toTopOf="parent"
 motion:layout_constraintDimensionRatio="H,1:1">
 <CustomAttribute
 motion:attributeName="roundPercent"
 motion:customFloatValue="0"/>
 <CustomAttribute
 motion:attributeName="saturation"
 motion:customFloatValue="1"/>
 </Constraint>
 </ConstraintSet>
 <!-- / ... -->
</MotionScene>

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 300

In this code, attributeName specifies the name of the attribute and
customFloatValue specifies its value. There are separate attributes for different
value types, like customStringValue when the custom attribute takes a string input
or customBoolean when the input value must be a Boolean.

roundPercent specifies the corner radius of the image. A value of 0 represents a
rectangular image while 1 represents a circular image.

Similarly, saturation specifies the, well, saturation, of the image with 1
representing the image with its original saturation and 0 representing a
monochrome image.

Now, insert the following code inside the image constraint in the end
ConstraintSet in the same file:

<MotionScene xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
 <!-- / ... -->
 <ConstraintSet android:id="@+id/end">
 <Constraint android:id="@id/image" ...>
 <CustomAttribute
 motion:attributeName="roundPercent"
 motion:customFloatValue="1"/>
 <CustomAttribute
 motion:attributeName="saturation"
 motion:customFloatValue="0"/>
 </Constraint>
 </ConstraintSet>
 <!-- / ... -->
</MotionScene>

Switch over to Motion Editor and play the animation. You’ll see it morphs from being
rectangular and colorful to circular and monochrome.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 301

That was simple to implement, wasn’t it? Without using MotionLayout, this would
require a lot of complicated Kotlin code and multiple other libraries.

Figure 12.13 — Image Filter and Transformation

Congratulations, you’ve successfully implemented a set of complex animations, all
through XML and without having to deploy your to a device multiple times. This is
the true beauty of MotionLayout.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 302

Key Points
• MotionLayout is an extension of ConstraintLayout that lets you write complex

animations in a declarative way through XML.

• You can use Motion Editor to preview animations without leaving your IDE.

• A Transition defines the start and end state of the motion as well as properties
like the motion’s duration.

• A ConstraintSet defines a state in the transition. It consists of a collection of
Constraints for each view that you’ll animate.

• A KeyFrameSet specifies attributes and locations of views at distinct points in the
transition.

• CustomAttribute sets attribute values that are either View properties or are
unrelated to the position.

• Use ImageFilterView to apply common filters to images and also change
properties like the radius.

Real-World Android by Tutorials Chapter 12: MotionLayout & Motion Editor

raywenderlich.com 303

13Chapter 13: Custom Views

By Subhrajyoti Sen

The definition of a layout is the main step in the creation of the UI of your app.
Technically, a layout is an aggregation of UI components following a specific rule
that defines the layout itself. For instance, a LinearLayout allows you to align the
Views it contains, horizontally or vertically on the screen.

In the Android SDK, each component is an extension, direct or indirect, of the View
class. Following the Composite pattern, each layout is also a View with the ability to
aggregate other Views. Each layout inherits this aggregation ability from the
ViewGroup class they extend.

Figure 13.1 — Android SDK View Hierarchy

raywenderlich.com 304

As you can see in Figure 13.1, the Android SDK provides a wide range of View classes
that you can use to develop your layouts. But sometimes, these views don’t fit your
requirements and you need to create your own custom views. There are several
good reasons to create a custom view:

• Implementing advanced UI designs.

• Creating reusable UI components.

• Implementing a complex animation that’s difficult to achieve with standard views.

• Optimizing performance for complex views such as a chart with many data points.

Creating a Custom View can be a challenging task. In this chapter, you’ll:

• Learn about Android’s View hierarchy.

• Extend View and create a custom button.

• Add custom attributes to the custom view.

• Integrate animations inside the custom view.

• Handle state restoration for custom views.

• Learn how to make custom views more performant.

It’s time to get started!

Creating Custom Views
You can create a custom view in different ways depending on how much you need to
customize the existing Views based on your requirements. You can:

1. Compose existing Views in a custom way using a custom layout. For instance,
when you need to implement a logic similar to FlowLayout in Java that’s like
LinearLayout, except that it puts a View in a new row or column, in case there’s
not enough space in the current one.

2. Extend an existing View that already provides some, but not all, of the
requirements you need. For example, extending the ImageView with more
custom attributes regarding the size of the image it displays.

3. Extend View and implement the drawing logic using the Canvas API.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 305

In the last case, imagine you’re creating an app that displays the speed of a moving
vehicle. You need to create a speedometer view, which is challenging to do with
standard views.

Instead, you choose to draw the entire view using your own logic. To do so, you need
to understand how the Canvas coordinate system works.

Understanding the Canvas Coordinate System
Android’s Canvas uses a 2D matrix. The origin is at the top-left of the screen. The x-
axis values increase as they move to the right, while the y-axis values increase as
they move downwards:

Figure 13.2 — Android Canvas Coordinates System

In Figure 13.2, you can see that an (x,y) pair represents each point, where y is the
distance in pixels from the top of the screen and x is the distance from the left edge
of the screen.

Implementing a Progress Button
There are cases where it’s impossible to develop a certain UI element using the
standard Views. In cases like that, you need to manually draw the UI on Canvas.

In this chapter, you’ll create a button that makes an API call when the user clicks it.
After the API call starts, the button transforms into a progress bar. Finally, when the
API call completes, the progress bar changes into a Done icon.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 306

To see this in action, open the final project in Android Studio, then build and run.
Go to the details page for any pet and click the Adopt button. You’ll see the
animation play.

Figure 13.3 — Progress Button Stages

Constructing a view like this is complicated using standard views. Instead, you’ll
learn how to create that animated view using Canvas.

In this chapter, you’ll:

1. Create the ProgressButton class, extending directly View.

2. Define the custom attributes.

3. Access the custom attribute values from ProgressButton.

4. Initialize the Paint objects.

5. Design the animation you want to apply.

6. Paint your shape on Canvas.

7. Check your job with a simple preview document.

8. Add the animation.

9. Draw the check icon on the ProgressButton’s final state.

10. Enjoy your custom view.

Now, it’s time to get to work!

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 307

Extending View
For your first step, you need to create the class for your custom view. Create a new
file with name ProgressButton.kt in common/presentation and add the following
code to it:

class ProgressButton @JvmOverloads constructor(// 1
 context: Context, // 2
 attrs: AttributeSet? = null, // 3
 defStyleAttr: Int = 0 // 4
) : View(context, attrs, defStyleAttr) {

}

In the previous code, you:

1. Create ProgressButton, which extends View and uses @JvmOverloads to
overload the multiple constructors that all Views require. You’ll learn about
constructors in detail in the next chapter. For now, keep in mind that the
constructor has three parameters.

2. Define context, which is the only parameter every View needs. It allows you to
access resources.

3. Every component has some attributes encapsulated into an object of type
AttributeSet, which you receive as a second primary constructor parameter.

4. As you’ll see in Chapter 14, “Style & Theme”, you can apply some styles to Views
that are basically resources. You use this parameter to refer to them.

Right now, the class is nothing more than the View it extends. It’s time to add some
custom attributes.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 308

Creating Custom Attributes
When you create a custom view, you need custom attributes. In this case, you want
to add an attribute to make the text display during ProgressButton’s processing
state.

To see how this works, create an XML file named attrs.xml in res/values and add the
following code:

<resources>
 <declare-styleable name="ProgressButton">
 <attr name="progressButton_text" format="string"/>
 </declare-styleable>
</resources>

This code does multiple things:

1. Declares a styleable resource specific to ProgressButton. The custom view
uses this to read the attributes.

2. Adds an attribute named progressButton_text with the format string.

The format of the attributes has two main purposes, letting you:

1. Read values from attributes in a type-safe way.

2. Provide value suggestions when assigning the attributes in XML.

It’s a good practice to prefix attribute names with the name of the view. This
prevents name clashes if any of the built-in views have an attribute with the same
name. It also helps with readability.

It’s important to say that here you just defined some resources you can access from
any other View that knows they exist. There’s no strong binding between the name
ProgressButton and the styleable resources. Of course, you need to access the
values you set in the XML layout from the code.

Reading Custom Attribute Values

You can see a custom parameter as a way to configure your component. Of course,
you need a way to access the values from the custom view source code.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 309

Open ProgressButton.kt and change it, like this:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {

 private var buttonText = ""

 init {
 val typedArray = context.obtainStyledAttributes(attrs,
R.styleable.ProgressButton) // 1
 buttonText =
typedArray.getString(R.styleable.ProgressButton_progressButton_t
ext) ?: "" // 2
 typedArray.recycle() // 3
 }

}

Here’s what’s going on in this code:

1. By invoking obtainStyledAttributes() on the Context, you access the
TypedArray that contains the array of attribute values. To do this, you pass the
attrs you receive in the constructor as the first parameter and
R.styleable.ProgressButton as the second parameter. Note how the name of
the constants is the same as the styleable resource you created earlier.

2. TypedArray, which you got above, contains all the custom attributes you’ve
defined. To access each of those, you need to know their type. In this case, you
use getString() and pass
R.styleable.ProgressButton_progressButton_text as a parameter. Note
how the name for this resource conforms to the template
<ComponentName>_<CustomProperty>. TypedArray provides different methods
like getBoolean(), getFont() and many others to access properties of different
types. Note that all attribute references are prefixed with styleable.

3. Finally, you invoke recycle() on TypedArray. This operation lets the Android
environment optimize the way resources are used.

Now, you have the values for all the custom attributes for ProgressButton. You now
have to use them to customize your component.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 310

Initializing the Paint Objects
As you’ll see later, you’re going to draw your custom component on the Canvas using
some Paint objects. Paint is like a paintbrush. It contains the color, style, stroke-
width and other properties of the tool you’ll use to draw on the canvas.

Open ProgressButton.kt and add the following code before the init block:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...

 private val textPaint = Paint().apply { // 1
 isAntiAlias = true // 2
 style = Paint.Style.FILL // 3
 color = Color.WHITE
 textSize = context.dpToPx(16f)
 }

 private val backgroundPaint = Paint().apply { // 1
 isAntiAlias = true // 2
 style = Paint.Style.FILL // 3
 color = ContextCompat.getColor(context,
R.color.colorPrimary)
 }

 private val progressPaint = Paint().apply { // 1
 isAntiAlias = true // 2
 style = Paint.Style.STROKE // 3
 color = Color.WHITE
 strokeWidth = context.dpToPx(2f) // 4
 }

 private val buttonRect = RectF() // 5
 private val progressRect = RectF() // 5

 private var buttonRadius = context.dpToPx(16f)
 // ...
}

In this code, you:

1. Initialize Paint objects to use for the text, background and progress state.

2. Set isAntiAlias to true. Antialiasing is a technique that smooths the edges of
the shapes you draw on the screen. You’ll almost always want to enable it.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 311

3. Use style to specify whether Paint will draw only the shape outline (STROKE) or
fill the shape with the current color (FILL).

4. Set the width of the paint stroke, which you can think of as the brush size. You
set the size using dpToPx, which converts values from dp to px. This is handy
because developers are accustomed to providing values in dp, but Canvas only
understands px.

5. Initialize the RectF that will contain the button and the progress, respectively.
RectF is a class that allows you to use Float to set the position of the left, top,
right and bottom vertexes.

Now, you have all the tools you need to start drawing on the Canvas. Now, it’s time
to think about animation.

Designing the Animation Logic
Before you start writing any code to draw your images, break down the animation
logic:

Figure 13.4 — The Progress Button Animation

In the image above, consider the dashed box to be the bounds of your view. Your first
animation will gradually increase the offset value from 0, squishing the button until
it becomes circular. The button will be circular when its width equals its height.
Therefore, you’ll define the final offset as:

offset = (initial_width - height) / 2

You need to divide the value by 2 because the offset is at both ends of the button.
You want half on one side of the button and half on the other.

Now that you have a plan, it’s time to start creating your button.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 312

Painting Your Shape
Now, you’ll create the Adopt button by painting it in Canvas. Add the following code
in ProgressButton.kt:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...
 private var offset: Float = 0f

 override fun onDraw(canvas: Canvas) { // 1
 super.onDraw(canvas)

 buttonRadius = measuredHeight / 2f // 2
 buttonRect.apply { // 3
 top = 0f
 left = 0f + offset
 right = measuredWidth.toFloat() - offset
 bottom = measuredHeight.toFloat()
 }
 canvas.drawRoundRect(buttonRect, buttonRadius, buttonRadius,
backgroundPaint) // 4

 if (offset < (measuredWidth - measuredHeight) / 2f) { // 5
 val textX = measuredWidth / 2.0f -
textPaint.getTextWidth(buttonText) / 2.0f
 val textY = measuredHeight / 2f - (textPaint.descent() +
textPaint.ascent()) / 2f
 canvas.drawText(buttonText, textX, // 6
 textY,
 textPaint)
 }
 }

}

In the previous code, you:

1. Define an override for onDraw, which is the method where the drawing happens.
It has a parameter of type Canvas, where all your drawing operations will take
place.

2. Initialize buttonRadius as half the value of measuredHeight so when the button
shrinks, it becomes a circle and not an oval. measuredHeight represents the
height of the component as defined by the LayoutInflator while inflating the
view from XML.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 313

3. Set the actual edges for the buttonRect using measuredHeight and
measuredWidth. Of course, measuredWidth represents the width of the
component after the inflation.

4. Draw a rectangle with rounded edges using drawRoundedRect. The first
parameter is the RectF instance that defines the edges of the rectangle. The
second and third parameters are the radius of the top and bottom buttons. The
last parameter is a Paint instance.

5. Draw the button text, as long as the offset is lower than the required value, which
leaves enough room on the button for the words. drawText draws a string at the
given x and y coordinates using the provided paint. textX and textY use
standard calculations that align the text in the center of the view. Note that
textX and textY represent the coordinates of the top-left corner of the drawn
text.

6. Use drawText on Canvas for the actual drawing of the buttonText using the
textPaint object.

You’ve used Canvas to draw your component. But how can you check if everything is
OK? Most of the time, you can use a simple XML layout document for a preview.

Previewing Your Shape
You’ve drawn your first shape on the canvas. To preview it, open
fragment_details.xml and add the following code inside the ConstraintLayout
tag:

<com.realworld.android.petsave.common.presentation.ProgressButto
n
 android:layout_width="match_parent"
 android:layout_height="40dp"
 android:layout_marginTop="16dp"
 android:layout_marginStart="24dp"
 android:layout_marginEnd="24dp"
 android:background="#FFFFFF"
 app:layout_constraintTop_toBottomOf="@id/good_boi_label"
 app:progressButton_text="@string/adopt"
 android:id="@+id/adopt_button" />

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 314

Build and run, then go to the details screen of any pet and scroll to see the Adopt
button.

Figure 13.5 — Initial State of the Adopt Button

If you don’t want to build and run the app, you can use the Layout Editor Preview
using what you have learned in Chapter 12, “MotionLayout & Motion Editor”. Follow
these steps to see the result in Figure 13.6:

1. Open fragment_details.xml in Preview Editor.

2. Only display the Design view of the layout.

3. Select Transition in the Motion Editor.

4. Move the animation indicator to the end of the transition.

5. Find the ProgressButton at the bottom of the layout.

Figure 13.6 — ProgressButton Preview in Layout Editor

However, the ProgressButton doesn’t animate yet. You’ll fix that next.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 315

Adding Animation
Your next step is to add the animation that changes the button from an oval to a
circle when the user clicks it. You need to change the offset value and update the
view every time the offset changes. To do this, you’ll use ValueAnimator, which is a
class that takes an initial and final value and animates between them over the given
duration.

Open ProgressButton.kt and add the following member variable declarations:

private var widthAnimator: ValueAnimator? = null
private var loading = false
private var startAngle = 0f

The code above declares a ValueAnimator instance, which you’ll use to animate the
width of the button. It also declares a flag named loading and sets its initial value to
false. You’ll use this flag to indicate whether the view should display the progress
bar or not.

Animating the Button
Next, you’re ready to begin the animation, so add the following method to
ProgressButton:

fun startLoading() { // 1
 widthAnimator = ValueAnimator.ofFloat(0f, 1f).apply {
 addUpdateListener { // 2
 offset = (measuredWidth - measuredHeight) / 2f *
it.animatedValue as Float
 invalidate() // 3
 }
 addListener(object : AnimatorListenerAdapter() {
 override fun onAnimationEnd(animation: Animator?) {
 super.onAnimationEnd(animation)
 // TODO: call startProgressAnimation()
 }
 })
 duration = 200
 }
 loading = true // 4
 isClickable = false // 5
 widthAnimator?.start()
}

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 316

In the previous code, you:

1. Define startLoading, which animates the button to shrink in width. It uses
ValueAnimator to animate between 0 and 1 over 200 milliseconds.

2. Use addUpdateListener to add a listener that gets a callback every time
ValueAnimator changes the value. When the value changes, you update the
offset to a fraction of the final required value.

3. Call invalidate, which tells Canvas that it needs to redraw the view. Canvas will
respond by invoking onDraw.

4. Set loading to true to inform onDraw that it needs to redraw the progress bar.

5. You also set isClickable to false so the user can’t click the view while a task is
in progress.

Note that you don’t perform any action inside onAnimationEnd. You’ll use this
callback a bit later.

Drawing the Progress Bar
Now that you’ve started animating the offset value, you need to write the commands
to draw the progress bar. Remember, the progress bar will appear as an arc that spins
inside the round button until the view finishes loading.

To do this, add the following code to the end of ProgressButton’s onDraw:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...
 override fun onDraw(canvas: Canvas) {
 super.onDraw(canvas)
 // ...
 if (loading && offset == (measuredWidth - measuredHeight) /
2f) { // 1
 progressRect.left = measuredWidth / 2.0f -
buttonRect.width() / 4 // 2
 progressRect.top = measuredHeight / 2.0f -
buttonRect.width() / 4 // 2
 progressRect.right = measuredWidth / 2.0f +
buttonRect.width() / 4 // 2
 progressRect.bottom = measuredHeight / 2.0f +
buttonRect.width() / 4 // 2
 canvas.drawArc(progressRect, startAngle, 140f, false,

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 317

progressPaint) // 3
 }
 }
 // ...
}

In the code above, you :

1. First, check if loading is true and if the offset has reached its required final
value — in other words, if the button is now a circle.

2. If both the conditions are true, you set the coordinates of the edges of the rect
for your progress bar. Take a closer look at the calculations and you’ll notice that
the rect is a bit smaller than the circular shape the button transforms into.
That’s because the progress bar needs to display inside the shape, not along its
edges.

3. Use drawArc to draw an arc of a given sweep angle starting from an initial angle.
The curve is tangential to the edges of the rect. Given a start angle of 30 degrees
and a sweep angle of 100 degrees, the canvas will draw an arc from 30 degrees to
130 (30 + 100) degrees. In this case, you start at an angle of 0 degrees and provide
a sweep angle of 140 degrees.

The idea here is to gradually increase the start angle so that each time the arc is
drawn, it rotates by a few degrees. If this happens fast enough, it will render the
illusion of a spinning progress bar. Now you need to start the animation when you
click on the ProgressButton.

Starting the Animation
Open AnimalDetailsFragment.kt and add the following code at the end of
displayPetDetails(), like this:

@AndroidEntryPoint
class AnimalDetailsFragment : Fragment() {
 // ...
 @SuppressLint("ClickableViewAccessibility")
 private fun displayPetDetails(animalDetails: UIAnimalDetailed,
adopted: Boolean) {
 // ...
 binding.adoptButton.setOnClickListener {
 binding.adoptButton.startLoading()
 }
 }
 // ...
}

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 318

Build and run, then go to the details screen for any pet and click the Adopt button.
The button will slowly shrink in width until it becomes a circle, then an arc forms a
circular shape.

Figure 13.7 — The ProgressButton Animation’s Final State

Animating the Progress Bar
The code to animate the value of the starting angle of the arc is similar to the one to
animate the button width. Open ProgressButton.kt and add the following code:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...
 private var rotationAnimator: ValueAnimator? = null

 private fun startProgressAnimation() {
 rotationAnimator = ValueAnimator.ofFloat(0f, 360f).apply
{ // 1
 addUpdateListener {
 startAngle = it.animatedValue as Float // 2
 invalidate() // 2
 }
 duration = 600
 repeatCount = Animation.INFINITE // 3
 interpolator = LinearInterpolator() // 4
 addListener(object : AnimatorListenerAdapter() {
 override fun onAnimationEnd(animation: Animator?) { // 5
 super.onAnimationEnd(animation)
 loading = false
 invalidate()
 }
 })
 }
 rotationAnimator?.start()
 }
}

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 319

In this code, you:

1. Create an instance of ValueAnimator and use it to animate between 0 and 360.

2. Every time the value animates, you assign the new value to startAngle and call
invalidate. This causes the canvas to draw the new starting angle and renders
the illusion of rotation.

3. Assign INFINITE to repeatCount, which specifies the number of times the
animation repeats. You do this because you don’t know ahead of time how long it
will take the view to load, so you don’t know how long the animation needs to
run.

4. Set LinearInterpolator as the interpolator since you want to animate the
values linearly. This gives the animation a smooth, rather than staggered, look.

5. When the animation ends, you set loading to false and invoke invalidate() to
update the UI.

Starting the Progress Bar Animation

The progress bar animation needs to start when the shrinking animation stops. To do
this, invoke startProgressAnimation from the onAnimationEnd callback inside
startLoading(), as follows:

fun startLoading() {
 //...
 widthAnimator = ValueAnimator.ofFloat(0f, 1f).apply {
 //...
 addListener(object : AnimatorListenerAdapter() {
 override fun onAnimationEnd(animation: Animator?) {
 super.onAnimationEnd(animation)
 startProgressAnimation()
 }
 })
 // ...
 }
}

In the above code, as soon as widthAnimator stops, the progress bar animation will
start.

Build and run, then click the Adopt button. You can see the progress bar spinning as
soon the button shrinks to a circle.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 320

Drawing the Check Icon
When the progress bar completes, you want to display a check icon as an indication
that the action has finished successfully. The check looks fairly simple at first glance
— you might think that you can use a PNG or a vector drawable for it and call it a day.
But why not make it a bit more interesting? Instead, you’ll use Canvas to draw the
icon.

The check consists of two straight lines that are perpendicular to one other. To build
this, you need to pick three points and connect them using lines. To draw a line in
Canvas, use the following method:

drawLine(x1, y1, x2, y2)

x1 and y1 represent the coordinates of the starting point and x2 and y2 represent
the ending point for the line. The ending point of the shorter line is the starting
point of the longer line, so you only need to calculate the coordinates for three
points.

Looking at the icon, you see that it’s tricky to calculate the points because both lines
are at an angle. You’d need to do a lot of math to get them right, but, fortunately,
there’s an easier way. Look what happens when you rotate the check by 45 degrees:

Figure 13.8 — The Rotated Check

That’s right, you can eliminate the need for complicated calculations by simply
drawing two perpendicular lines and rotating them. So the steps you need to follow
are:

1. Rotate Canvas by 45 degrees.

2. Draw the simpler version of the tick.

3. Rotate Canvas back to its original state.

But there’s one step you need to take before you do that.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 321

Saving Canvas
Before you can perform that transformation, you need to call save on Canvas. save
creates a restore point for Canvas. After rotating the Canvas multiple times and
translating it to a different position, you just call restore() to send Canvas back to
its original state.

That means you don’t need to remember the details of every transformation you
made and reverse them. Furthermore, calling restore retains everything you drew
between save() and restore().

To do this, add the following code to ProgressButton.kt:

 private var drawCheck = false // 1

 fun done() {
 loading = false
 drawCheck = true
 rotationAnimator?.cancel()
 invalidate()
 }

In this code, you:

1. Declare a flag named drawCheck and initialize it to false. You’ll use this flag to
indicate whether Canvas should draw the check icon.

2. Implement the method named done, which the developer will call to indicate
that the task is complete and that the view can hide the progress bar and display
the check icon. The method does this by setting loading to false and
drawCheck to true. It also cancels the rotation animation on the progress bar.
Finally, done() calls invalidate() to redraw the view.

Now, you need to actually draw the check in Canvas.

Creating the Perpendicular Lines
Now, comes the part where you draw the check — which means it’s time for a little
math.

The center of the circle is at the coordinates of measuredWidth / 2f and
measuredHeight / 2f. The vertical portion of the tick has to point toward the right
of the circle’s center.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 322

Therefore, you need the following coordinates:

• x coordinate of the starting point of the vertical line: measuredWidth / 2f +
buttonRect.width() / 8

• y coordinate: measuredHeight / 2f + buttonRect.width() / 4

• coordinates of the final point of the vertical line: measuredWidth / 2f +
buttonRect.width() / 8 and measuredHeight / 2f -
buttonRect.width() / 4

• x coordinates of the starting point of the horizontal line: measuredWidth /
2f - buttonRect.width() / 8

• y coordinates of the starting point of the horizontal line: measuredHeight /
2f + buttonRect.width() / 4

Note that the final point of the horizontal line will be the starting point of the
vertical line.

Putting Everything Together
Now, you have all the theory you need to build your icon. To implement it, add the
following code at the end of onDraw in ProgressButton.kt:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...
 override fun onDraw(canvas: Canvas) {
 // ...
 if (drawCheck) {
 canvas.save() // 1
 canvas.rotate(45f, measuredWidth / 2f, measuredHeight /
2f) // 2
 // 3
 val x1 = measuredWidth / 2f - buttonRect.width() / 8
 val y1 = measuredHeight / 2f + buttonRect.width() / 4
 val x2 = measuredWidth / 2f + buttonRect.width() / 8
 val y2 = measuredHeight / 2f + buttonRect.width() / 4
 val x3 = measuredWidth / 2f + buttonRect.width() / 8
 val y3 = measuredHeight / 2f - buttonRect.width() / 4
 canvas.drawLine(x1, y1, x2, y2, progressPaint) // 4
 canvas.drawLine(x2, y2, x3, y3, progressPaint) // 4
 canvas.restore() // 5
 }

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 323

 }
 // ...
}

There are a few things going on in the code above. You:

1. Save the state of the canvas.

2. Rotate the canvas by 45 degrees, keeping the center of the view as the pivot.

3. Assign the coordinates’ values according to the calculations above.

4. Draw the horizontal line first because the final point of the horizontal line is the
starting point of the vertical line.

5. Call restore() to rotate the canvas back to its original orientation.

Now, you need to bind the animation to the adopt button in the app.

Binding the Animation to the Adopt Button
Start by opening AnimalDetailsFragment.kt and adding the following code to the
click listener on adoptButton:

@AndroidEntryPoint
class AnimalDetailsFragment : Fragment() {
 // ...
 @SuppressLint("ClickableViewAccessibility")
 private fun displayPetDetails(animalDetails: UIAnimalDetailed,
adopted: Boolean) {
 // ...
 binding.adoptButton.setOnClickListener {
 binding.adoptButton.startLoading()
 viewModel.handleEvent(AnimalDetailsEvent.AdoptAnimal) // 1
 }
 }
 // ...
 @SuppressLint("ClickableViewAccessibility")
 private fun displayPetDetails(animalDetails: UIAnimalDetailed,
adopted: Boolean) {
 // ...
 if (adopted) { // 2
 binding.adoptButton.done()
 binding.adoptButton.setOnClickListener(null)
 }
 }
}

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 324

In this code, you:

1. Set the state to AnimalDetailsViewState.AnimalDetails with the adopted
field set to true. AnimalDetailsEvent.AdoptAnimal is an event that triggers a
mock method in viewmodel to adopt the pet.

2. Call done() on ProgressButton when adopted is set to true and clear the click
listener.

Build and run, then click the Adopt button — you’ll see the full animation in action.

Manually Stopping the Animation
There’s one last thing to do: If the user exits the fragment before the animation
completes, you should stop the animations. Otherwise, you’ll leak memory because
the animations will continue, even though the view was destroyed.

To handle this, add the following method to ProgressButton.kt.

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr) {
 // ...
 override fun onDetachedFromWindow() {
 super.onDetachedFromWindow()
 widthAnimator?.cancel()
 rotationAnimator?.cancel()
 }
}

The code above cancels the animations when the view detaches from the window.

Congratulations! You’ve successfully built a custom view that draws different shapes
and animates them.

Enhancing Performance
The Android SDK provides a wide range of views that have improved over the years.
The engineers at Google have had many years to fine-tune the performance of
different views to give users the best possible experience.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 325

When you write a custom view, it’s up to you to ensure that the view performs well.
With increasingly complex user interfaces, it’s very easy to focus on getting the
visual part right while letting performance take a back seat.

In this section, you’ll learn a few common mistakes to avoid when it comes to view
performance. In particular, you’ll see how to:

1. Avoid creating objects in onDraw()

2. Reduce overdraw

Creating Objects Inside onDraw
As a standard practice, you should avoid object creation inside methods that the app
calls at a high frequency. Consider onDraw — it can be called multiple times in one
second! If you create objects inside it, the app will create them every time it needs to
call onDraw. That’s a lot of extra CPU work that you could easily avoid.

Consider the following code:

override fun onDraw(canvas: Canvas) {
 super.onDraw(canvas)

 val paint = Paint()
 val rect = Rect(100, 100, 200, 200)
 canvas.drawRect(rect, paint)
}

In the code above, you create instances of Paint and Rect every time you invoke
onDraw. Memory allocation for objects takes time — and because it happens on the
main thread, it will slow down your custom view.

Since onDraw is called frequently, the overall time taken by object creation slows
down your UI, making the app appear janky to the user.

To avoid performance issues, preallocate objects and reuse them as often as possible.
For example, rewrite the code above as follows:

val paint = Paint()
val rect = Rect(100, 100, 200, 200)

override fun onDraw(canvas: Canvas) {
 super.onDraw(canvas)

 canvas.drawRect(rect, paint)
}

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 326

In this version of the code, you allocate the objects only once, then reuse them on
every onDraw call. Similarly, you should also avoid performing long-running
calculations in methods like these.

Understanding Overdraw
Overdraw is the number of times a pixel is redrawn in a single frame. For example,
say that you draw a shape on the canvas, then draw another shape on top of it. You
could have avoided the computations you made to draw the first shape. In this case,
the overdraw is 1 since it was redrawn once.

Your device has a handy tool that helps you debug overdraw on your app. To find it,
open Settings ▸ Developer Tools ▸ Debug GPU Overdraw ▸ Show overdraw
areas. You’ll see boxes of multiple colors appear all over your screen. Each color
represents the amount of overdraw:

• True color: No overdraw.

• Blue: Overdrawn one time.

• Green: Overdrawn two times.

• Pink: Overdrawn three times.

• Red: Overdrawn four or more times.

A few commons ways to reduce overdraw are:

• Remove unneeded background: Avoid setting a background for a view if its
parent view has a similar background. For example, a TextView with white
background inside a LinearLayout with a white background makes no visual
difference but will cause overdraw.

• Flatten view hierarchy: Avoid nested views. For example, you can convert a
LienarLayout with a TextView and an ImageView to a single TextView, in most
cases.

• Reduce transparency: If you draw a transparent view on top of another view,
Canvas has to render the lower view first, then apply a transparent mask on top of
it. This causes overdraw.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 327

Open the app and go to the details page for any pet. Click the Adopt button and wait
for the animation to complete. You’ll see overdraw around the circular view:

Figure 13.9 — Custom View Overdraw

Now, you’ll use the techniques you just learned to address this overdraw.

Reducing Overdraw
Open ProgressButton.kt and check for any code that sets a background you don’t
need. OK, there’s no such code here.

Next, check the location where you use the view: in this case, the XML layout. Open
fragment_details.xml and check if you set a background for ProgressButton. You’ll
notice that you set a white background for the view, which doesn’t make any visual
difference.

To fix this, remove the following attribute from ProgressButton:

android:background="#FFFFFF"

Build and run. Now, when you click the Adopt button, you won’t see any overdraw in
your custom view.

Figure 13.10 — Overdraw Removed

Well done! You’ve successfully improved the performance of your custom view.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 328

Key Points
• Create custom views when you need to add features to an existing view or draw

views that are too complex to implement using standard views.

• You need to extend View to create your custom view.

• Draw shapes with Canvas using drawLine(), drawLineRoundedRect(), etc.

• You can save Canvas’ state, move it around and restore it to its original state using
save() and restore().

• Avoid performing long calculations and creating objects inside onDraw().

• Avoid nested view hierarchy and unnecessary backgrounds to reduce overdraw.

In the next chapter, you’ll learn everything you need to know about themes and
styles, allowing you to customize the appearance of your custom views.

Real-World Android by Tutorials Chapter 13: Custom Views

raywenderlich.com 329

14Chapter 14: Style & Theme

By Subhrajyoti Sen

A polished user interface makes a good first impression. It can even be one of the
reasons users like using your app. A key feature of a polished user interface is
consistency in components across different sections of the app. These components
include color schemes, shapes, typography and more. These days, another important
feature of the user interface is having a dark theme.

Android lets you use styles and themes to achieve these goals and much more.

In this chapter, you’ll learn about:

• Styles, themes and their differences.

• The order of different modes of styling.

• Using theme overlays to tweak specific attributes.

• Adding styling support to custom views.

• Adding dark theme support to your app.

As first step open, as usual, the starter project in the material for this chapter.

raywenderlich.com 330

Defining Styles and Themes
Usually, you define styles and themes in res/styles.xml, which contains a collection
of attributes and their values. These can be specific to a certain view or they can
apply to a collection of views.

Structure of a Style
A typical style looks like this:

<style name="LargeText">
 <item name="android:textSize">@dimen/large_text</item>
</style>

This style has the following properties:

• name: The name that points to this style.

• item: Each item in a style is a pair consisting of a view attribute and its value. In
this case, the style sets textSize to @dimen/large_text which in turn resolves to
18sp. You can have one or more <item>s inside a <style>.

Now, what if you want a style to define a large red text? You could write something
like this:

<style name="LargeRedText">
 <item name="android:textSize">@dimen/large_text</item>
 <item name="android:textColor">@android:color/red</item>
</style>

Even though the style above is technically correct, you’ll notice that you’re repeating
textSize to create a variant of the style. While this might be feasible for a few
styles, it can quickly get out of hand. A better approach is to inherit from the style
and create a variant.

You can inherit from a style in two ways:

1. Using the parent attribute:

<style name="LargeRedText" parent="LargeText">
 <item name="android:textColor">@android:color/red</item>
</style>

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 331

2. Using a prefixed name with a dot separator:

<style name="LargeText.Red">
 <item name="android:textColor">@android:color/red</item>
</style>

Note that you can’t use this method to extend from styles defined by the Android
platform.

Structure of a Theme
The structure of a theme is identical to that of a style:

<style name="AppTheme"
parent="Theme.MaterialComponents.DayNight.NoActionBar">
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
</style>

In this code, you define a theme named AppTheme, which inherits from
Theme.MaterialComponents.DayNight.NoActionBar.

Although styles and themes have identical structures, they function differently.
Their key differences are:

1. The item name in a style has to be a view attribute. With themes, the name is a
reference to a pre-defined identifier. If you think of an item as a pair where the
item name is the key, you’d define a style as Map<View Attribute, Value>
whereas a theme would be Map<Theme Attribute, Value>.

2. You can only apply a style to a specific view or a view group, whereas a theme can
be applied to any view hierarchy: a ViewGroup, Activity or even the entire app.
When you apply a theme to any view hierarchy, you automatically apply it to all
its child views.

3. You apply a style using the style attribute, whereas you apply a theme using the
android:theme attribute.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 332

Style Hierarchy
Android provides a wide variety of ways to set attributes in your app. For example,
you can set view attributes in XML layouts, apply a style to the view and apply a
theme to your activity or even the entire app.

Given the wide variety of approaches available, it’s helpful to know the order of
precedence Android follows when applying styles and themes, especially if you
repeated the same attributes in multiple places.

The order of precedence, in descending order, is:

1. Styles applied using spans to a TextView or any view that extends from
TextView.

2. Attributes applied programmatically.

3. Attributes applied in XML.

4. Styles applied to a view.

5. The default style of the view.

6. A theme applied to a view hierarchy, activity or the entire app.

7. A textAppearance applied to a TextView.

For example, if you set the textColor of a TextView to blue in the XML layout and
also apply a style that sets the textColor to green, the text will render in blue when
you inflate it. That’s because attributes applied directly to a view have a higher
precedence than styles.

Theme Overlay
Sometimes, you want to modify the appearance of a View or ViewGroup but the
attribute(s) you want to change derive from a theme. Take the example of
MaterialButton.

Open fragment_details.xml and add the following code in the inner
<ConstraintLayout>, right below ProgressButton:

<com.google.android.material.button.MaterialButton
 android:id="@+id/red_button"
 android:layout_width="wrap_content"

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 333

 android:layout_height="wrap_content"
 android:background="#DA2222"
 android:layout_marginTop="@dimen/default_margin"
 android:text="Red Button"
 app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginBottom="@dimen/default_margin"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/adopt_button" />

This code adds MaterialButton with a red background. Build and run, then open the
details page for any pet. You’ll notice that the button has a blue background instead
of a red one, as shown below:

Figure 14.1 — A Blue Button

That’s because MaterialButton’s background derives from the theme attribute,
colorPrimary. To change the button’s background, you need to modify the theme
attribute only when it applies to that specific MaterialButton. That’s where theme
overlays are useful.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 334

As the name suggests, theme overlays overlay the existing theme rather than
replacing it. By applying a theme to the activity and a theme overlay to a specific
view in the activity, the attributes defined in the overlay override only the
corresponding attributes in the activity’s theme and apply them to the view.

To see how this works, open styles.xml and add the following style:

<style name="ThemeOverlay.PetSave.RedButton" parent="">
 <item name="colorPrimary">#DA2222</item>
</style>

This code creates a style named ThemeOverlay.PetSave.RedButton. It’s a good
convention to name theme overlays with the ThemeOverlay prefix, followed by the
name of your app. This differentiates them from the theme overlays provided by
libraries.

The theme overlay above doesn’t extend from any other style. This prevents it from
accidentally overriding values from the theme of the parent view group, activity or
app. The overlay also sets colorPrimary to the required red color’s HEX code.

Finally, you need to apply this overlay to the view. Open fragment_details.xml and
replace background with theme, as shown below:

<com.google.android.material.button.MaterialButton
 android:id="@+id/red_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:theme="@style/ThemeOverlay.PetSave.RedButton"
 android:layout_marginTop="@dimen/default_margin"
 android:text="Red Button"
 app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginBottom="@dimen/default_margin"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/adopt_button" />

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 335

Build and run. You’ll now see that the button has a red background.

Figure 14.2 — A Red Button

TextAppearance
textAppearance lets you define text-specific styling for a TextView and decouple it
from the rest of the styling. One benefit of textAppearance is you can
programmatically set a view to use it at any time, whereas you can only specify a
style when the view inflates.

Open fragment_details.xml. You’ll notice that you’ve repeated the same set of
attributes for special_needs_label, sprayed_neutered_label, declawed_label
and so on. Since these are text-specific attributes, you can extract them to
textAppearance.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 336

Open styles.xml and add the following style:

<style name="PetLabelTextAppearance"
parent="TextAppearance.MaterialComponents.Headline3" >
 <item name="android:textSize">@dimen/large_text</item>
 <item name="android:textStyle">bold</item>
</style>

In the previous code, you set textSize and textStyle attributes to the values you
specified in the layout XML. The style extends from
TextAppearance.MaterialComponents.Headline3 since it’s the default text
appearance you apply to a TextView.

Next, open fragment_details and remove the android:textSize and
android:textStyle attributes. Then, add the textAppearance attribute to the
TextView with the ID special_needs_label as shown below:

<TextView
 android:id="@+id/special_needs_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="@dimen/default_margin"
 android:layout_marginTop="@dimen/default_margin"
 android:text="@string/special_needs"
 android:textAppearance="@style/PetLabelTextAppearance"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/divider" />

Check the layout preview inside Android Studio. You’ll see that the text looks exactly
as it did before, which confirms you set textAppearance correctly.

Figure 14.3 — Using TextAppearance

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 337

Finally, replace the attributes of the other label headers with textAppearance. Now,
whenever you want to change the appearance of the header labels, you only need to
modify textAppearance in styles.xml and the change will reflect across all the
required TextViews. This is the main benefit of using styling over hard coding
attributes in views.

Note: Since textAppearance is lower in the style hierarchy, if you specify an
attribute in textAppearance and also directly in the view, the direct attribute values
will display.

Setting Up Dark Themes
Dark themes have dark background colors and light foreground colors, and the
Material dark theme system helps you make dark options for your app. Some of the
benefits of providing one are:

1. Reduced eye-strain

2. Lower battery consumption on OLED screens

3. Better appearance in low-light environments

Depending on which Android version a device uses, the user can switch to a dark
theme in different ways:

• Android Q and above: Navigate to Settings ▸ Display ▸ Dark Theme or
implement the Dark Theme tile in the notification tray.

• Android P: Use Settings ▸ System ▸ Developer options ▸ Night mode.

• Any other older version: Use the option provided in the app to switch themes.
Note that not all apps provide this option.

When adding dark theme support, the first step is to use the DayNight variant of any
AppCompat or MaterialComponents theme.

Open styles.xml and verify that the app’s theme is a DayNight variant. Here is the
project’s theme:

<style name="AppTheme"
parent="Theme.MaterialComponents.DayNight.NoActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
</style>

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 338

In this code, you see that the parent theme is a DayNight variant of
MaterialComponents, so the app can support dark themes.

Understanding Material Color Attributes
Before creating a dark theme, you need to understand the color system in Material
Design components.

Color attributes consist mainly of primary, secondary, surface, error and background
colors. There are also corresponding on colors that apply to elements drawn on top
of other elements. Some of the most important ones are:

• colorPrimary: The primary color that represents your brand. This is one of the
dominant colors in your app. The toolbar often uses this colors.

• colorPrimaryVariant: A lighter or darker variant of the primary color.

• colorOnPrimary: The color of elements that display on top of your primary color.
You’ll see an example of this in the next section.

• colorOnSecondary: The color of elements displayed on top of your secondary
colors.

• colorError: The color displayed for errors. For example, when the user makes an
input error in an input field.

• colorOnError: The color of elements that display on top of your error color.

• colorSurface: The color used for surfaces like bottom sheets, cards, bottom
navigation and more.

• colorOnSurface: Use this color for elements that display on top of your surface
color, like the text on a card.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 339

Adding a Theme Toggle
To let the user switch between themes, you’ll add a toggle, which will have three
options:

1. Light

2. Dark

3. System default

It’s good practice to follow the system default theme to mail consistency with the
user’s other apps.

The corresponding constants defined in AppCompatDelegate are:

1. Light: MODE_NIGHT_NO

2. Dark: MODE_NIGHT_YES

3. System default: MODE_NIGHT_FOLLOW_SYSTEM

In this section, you’ll add an overflow menu to the toolbar that contains options to
switch between different modes.

Start by creating a file named theme_options.xml inside res/menu and adding the
following code:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/light_theme"
 android:title="Light theme"
 app:showAsAction="never" />
 <item
 android:id="@+id/dark_theme"
 android:title="Dark Theme"
 app:showAsAction="never" />
 <item
 android:id="@+id/follow_system"
 android:title="Follow System"
 app:showAsAction="never" />
</menu>

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 340

This code adds three menu items corresponding to the three modes.

Next, you need to display those options as an overflow menu in the toolbar. To do
this, add the following method to MainActivity.kt in the common package:

@AndroidEntryPoint
class MainActivity : AppCompatActivity() {
 // ...
 override fun onCreateOptionsMenu(menu: Menu): Boolean {
 val inflater = menuInflater
 inflater.inflate(R.menu.theme_options, menu) // HERE
 return true
 }
}

This code inflates the items from theme_options.xml and displays them as menu
options. When the user selects any one of the menu options, the app switches to the
corresponding theme.

Now, add the following method to the same file:

@AndroidEntryPoint
class MainActivity : AppCompatActivity() {
 // ...
 override fun onOptionsItemSelected(item: MenuItem): Boolean {
 val themeMode = when (item.itemId) {
 R.id.light_theme -> {
 AppCompatDelegate.MODE_NIGHT_NO
 }
 R.id.dark_theme -> {
 AppCompatDelegate.MODE_NIGHT_YES
 }
 else -> {
 AppCompatDelegate.MODE_NIGHT_FOLLOW_SYSTEM
 }
 }
 AppCompatDelegate.setDefaultNightMode(themeMode)
 return true
 }
}

The code above chooses the mode from AppCompatDelegate based on the menu
item the user selects. AppCompatDelegate.setDefaultNightMode(themeMode) sets
the night mode using user’s selected mode.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 341

Build and run, then click the overflow menu and select the theme of your choice.
You’ll notice that the app’s theme changes whenever you select a new theme.

Figure 14.4 — Theme Options

In the next section, you’ll use this toggle to find dark theme issues in the current
app.

Resolving Dark Theme Inconsistencies
Use the toggle to switch to the dark theme and explore the app. Observe the same
screens in both light and dark themes. Some of the inconsistencies you’ll notice are:

1. The toolbar color remains the same in both themes.

2. The background of the search container is white in the dark theme.

3. The floating action button’s call icon in the details screen is white in both
themes.

You’ll fix them one at a time.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 342

Using Theme Attributes

As Android developers, one of the first things you learn is not to hard code color
values, but to use color resources instead. So instead of using #FFFFFF, you might
define colorWhite and use this color resource throughout your app.

This approach has a limitation when it comes to theming. For example, when you
want to apply a dark theme, it doesn’t make sense to change the value of
colorWhite to a dark color. You’ll have to create a new alias for the color and switch
between the white and a dark color depending on the theme.

You’ll have many such instances across your codebase and this approach will get
increasingly complex, both in terms of naming colors and in remembering the
names.

That’s where theme attributes come in. Instead of thinking of colors based on the
widget they apply to, think of them in terms of theme attributes.

To make things clearer, take the example of the floating action button in
fragment_details.xml:

<com.google.android.material.floatingactionbutton.FloatingAction
Button
 android:id="@+id/call"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="@dimen/default_margin"
 android:contentDescription="@string/contact"
 android:src="@drawable/ic_call_24dp"
 android:visibility="gone"
 app:backgroundTint="@color/colorPrimary"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:tint="@android:color/white"
 tools:visibility="visible" />

In the code above, you set tint to @android:color/white. The icon will always
render white, regardless of which theme you apply.

Now, go to the details screen and change the theme from light to dark. You’ll notice
the dialer icon color always remains white.

Instead, think of the icon color in terms of the theme attributes. The background
color of the floating action button is the primary color of the theme. What would you
call a color that you need to display on top of the primary color? In the previous
section, you learned about colorOnPrimary, which is exactly what you’ll use here.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 343

Set the tint attribute to colorOnPrimary:

<com.google.android.material.floatingactionbutton.FloatingAction
Button
 //...
 app:tint="?attr/colorOnPrimary"
 tools:visibility="visible" />

In the code above, ?attr/colorOnPrimary is a reference to the theme attribute
colorOnPrimary. ?attr/ refers to theme attributes where @color refers to colors in
your res directory.

Figure 14.5 — Floating Action Button Color

Build and run, then go to the details screen and change themes. Now, the dialer icon
is white in light theme and black in dark theme. And with that, you’ve successfully
used theme attribute to support theming in a widget.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 344

Fixing Other Hard-coded Colors
Similarly, open fragment_search.xml and look at AppBarLayout. You’ll notice that
background is a static color:

<com.google.android.material.appbar.AppBarLayout
 android:id="@+id/collapsible_search_params_container"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@android:color/white"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

This is why the background is white in both light and dark themes. You need to
replace this with a theme attribute. Replace background’s value with
colorPrimarySurface:

<com.google.android.material.appbar.AppBarLayout
 android:id="@+id/collapsible_search_params_container"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="?attr/colorPrimarySurface"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

colorPrimarySurface switches between colorPrimary in light themes and
colorSurface in dark themes.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 345

Build and run. Switch to dark theme and go to the search page. You’ll see that the
search container is no longer white in the dark theme.

Figure 14.6 — Search Bar in Dark Mode

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 346

Using Night Colors
You might have noticed that you haven’t specified any separate color values for the
dark theme, yet switching to dark theme displays different colors in many places.
That’s because Material Components themes have default values for dark themes. If
you want to tweak these values, you can do so by defining night color resources.

Create a new resource directory named values-night inside the res directory like in
Figures 14.7 and 14.8:

Figure 14.7 — New Resource Directory

Figure 14.8 — New Resource Directory

This directory will contain the resources you want to override for dark theme. When
you apply a dark theme, Android will check values-night before it uses a resource. If
it finds a defined resource, it will use that value; otherwise, it will pick the resource
value from the values directory.

To define colors for your dark theme, create a file named colors.xml inside values-
night:

Figure 14.9 — Colors for Night Mode

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 347

You now have two colors.xml files that differ for the night qualifier:

Figure 14.10 — Qualified Color Resources

Now, add the following colors to colors.xml (night):

<color name="colorPrimary">#BA86FC</color>
<color name="colorPrimaryDark">#000000</color>
<color name="colorBackground">#000000</color>

The code above adds two dark colors to the app’s primary colors. It also defines a
background color, but you haven’t defined colorBackground for the light theme yet.
To resolve this, add the following to colors.xml:

<color name="colorBackground">#FFFFFF</color>

Now that you’ve defined colorBackground for both themes, you need to point the
default background color of the theme to this color resource. Open styles.xml and
add the following item to AppTheme:

<item name="android:colorBackground">@color/colorBackground</
item>

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 348

Build and run. Visit the different screens and switch between light and dark themes.
You’ll notice that the background is black in dark theme and white in light theme.
You’ll also notice that the primary color of the app changes to a dark purple in the
night theme.

Figure 14.11 — Dark Theme in Action

Great! You’ve successfully added dark theme support to your app and fixed the
inconsistencies using the styling and theming concepts you’ve learned in this
chapter.

Styling Custom Views
Most of the views Android provides have good styling support out of the box. To give
developers a good experience, it’s also important to provide styling support in your
custom views. In this section, you’ll make ProgressButton styleable.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 349

Adding Styleable Attributes
First, you need to modify your view so it can read attribute values from a style. To do
this, you need to remove any hard-coded colors from the view.

Open the ProgressButton.kt file in the common.presentation package and remove
the color assignment from textPaint, backgroundPaint and progressPaint so
they match the code below:

private val textPaint = Paint().apply {
 isAntiAlias = true
 style = Paint.Style.FILL
 textSize = context.dpToPx(16f)
}

private val backgroundPaint = Paint().apply {
 isAntiAlias = true
 style = Paint.Style.FILL
}

private val progressPaint = Paint().apply {
 isAntiAlias = true
 style = Paint.Style.STROKE
 strokeWidth = context.dpToPx(2f)
}

Next, define attributes for these colors so you can use them in a style. Open
attrs.xml and add the following code to ProgressButton:

<attr name="progressButton_backgroundColor" format="color" />
<attr name="progressButton_textColor" format="color" />
<attr name="progressButton_progressColor" format="color" />

In the code above, you define three attributes: background color, text color and
progress color. They all have the format color since you’ll assign color resources to
them.

To be consistent with MaterialTextView, the default background color of
ProgressButton will also be colorPrimary, as defined in the theme. You can
overwrite this by setting the backgroundColor attribute in the view XML. Since
colorPrimary is a theme attribute and not a color resource, you need to use the
theme to extract its value.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 350

Open ProgressButton and add the following code to init, right before the line
containing typedArray.recycle():

val typedValue = TypedValue()
context.theme.resolveAttribute(android.R.attr.colorPrimary,
typedValue, true)
val defaultBackgroundColor = typedValue.data

In the code above, you resolve the value of the colorPrimary attribute using the
theme from the context. Using the correct context is vital. If you try using an
Activity context here, it will lead to inconsistencies since the Activity and the
view can have different themes.

Now that you have the default background color, set the default text and progress
color to white by adding the following to init:

val defaultTextColor = Color.WHITE
val defaultProgressColor = Color.WHITE

With the default values set, you now need to read the attribute values from the XML,
as well as styles. Add the following code to init:

val backgroundColor =
typedArray.getColor(R.styleable.ProgressButton_progressButton_ba
ckgroundColor, defaultBackgroundColor)
backgroundPaint.color = backgroundColor

val textColor =
typedArray.getColor(R.styleable.ProgressButton_progressButton_te
xtColor, defaultTextColor)
textPaint.color = textColor

val progressColor =
typedArray.getColor(R.styleable.ProgressButton_progressButton_pr
ogressColor, defaultProgressColor)
progressPaint.color = progressColor

The code above is similar to the one you wrote to read the button text in the
previous chapter. Your custom view can now read values passed using the XML
attributes or a style.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 351

Default Styles
In the last chapter, you learned about the View constructor, which looked like this:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0
) : View(context, attrs, defStyleAttr)

In addition to the three arguments above, there’s another argument that’s important
to styling. Open ProgressButton.kt and replace the constructor with the following
with a new defStyleRes parameter.

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = 0,
 defStyleRes: Int = 0
) : View(context, attrs, defStyleAttr, defStyleRes)

In this section, you’ll work with:

1. defStyleAttr: The attribute in the theme that specifies which style this view
uses.

2. defStyleRes: The style the view uses. This usually ships with the library or SDK.

Remember the precedence order of the styling hierarchy?
context.obtainStyledAttributes is the method that resolves the precedence and
provides the final values to use. To do this, it needs access to defStyleAttr and
defStyleRes.

Change the first line in init to:

val typedArray = context.obtainStyledAttributes(attrs,
R.styleable.ProgressButton, defStyleAttr, defStyleRes)

In addition to passing attrs and R.styleable.ProgressButton, you also pass
defStyleAttr and defStyleRes as arguments. This helps check the values and
resolve the precedence.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 352

To create a theme attribute that can specify the default style, open attrs.xml and
add the following code outside ProgressButton:

<attr name="progressButtonStyle" format="reference"/>

The code above creates an attribute named progressButtonStyle that has a type
reference since it refers to a style and not a definite value.

Defining Your Custom View’s Style
The next step is to define the style for your custom view. Open styles.xml and add
the following code:

<style name="ProgressButtonStyle">
 <item name="progressButton_backgroundColor">?attr/
colorPrimary</item>
 <item name="progressButton_textColor">?attr/colorOnPrimary</
item>
 <item name="progressButton_progressColor">?attr/
colorOnPrimary</item>
</style>

This code creates a style and sets values for ProgressButton’s attributes by using
theme attributes. To set the style above as the default style for ProgressButton in
your theme, add the following to the style named AppTheme at the top of the file:

<item name="progressButtonStyle">@style/ProgressButtonStyle</
item>

AppTheme’s style now looks like this:

<style name="AppTheme"
parent="Theme.MaterialComponents.DayNight.NoActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="android:colorBackground">@color/colorBackground</
item>
 <item name="progressButtonStyle">@style/ProgressButtonStyle</
item>
</style>

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 353

Setting defStyleAttr and defStyleRes
Your final step is to set the values of defStyleAttr and defStyleRes. Open
ProgressButton.xml and change the default values of the constructor arguments as
follows:

class ProgressButton @JvmOverloads constructor(
 context: Context,
 attrs: AttributeSet? = null,
 defStyleAttr: Int = R.attr.progressButtonStyle,
 defStyleRes: Int = R.style.ProgressButtonStyle
) : View(context, attrs, defStyleAttr, defStyleRes)

Build and run. Go to the details page and you’ll see that the Adopt button has the
correct default style. Toggle the theme and you’ll see that the text color changes
according to the theme.

Figure 14.12 — Styled Custom View

Congratulations! You’ve successfully created a custom view with great support for
styles and themes.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 354

Key Points
• Use styles and themes for consistent UI elements throughout the app.

• Styles apply to a specific view but themes apply to a view hierarchy.

• Different styling modes have a different order of precedence.

• Make your custom views styleable and provide a default style.

• Use textAppearance to group character level styling attributes.

• Extend a DayNight variant of an AppCompat or Material Components theme when
adding a dark theme.

• Use theme attributes as often as possible.

This chapter is the last about UI. In the next chapter you’ll start learning everything
you need about a very important topic: security.

Real-World Android by Tutorials Chapter 14: Style & Theme

raywenderlich.com 355

Section IV: Securing Your App

Making your app more secure is an aspect of development that’s often ignored, but,
at the same time, is absolutely vital. Imagine what would happen if somebody would
hack your code, stealing important data or even the usernames and passwords of
your users. That would be a disaster.

In this chapter, you’ll learn how to handle security from different points of view.
You’ll learn how to protect user data and how to securely connect to a server. Finally,
you’ll learn how to make hackers’ lives more difficult, by using different methods to
protect your code and your data.

raywenderlich.com 356

15Chapter 15: User Privacy

By Kolin Stürt and Antonio Roa-Valverde

With so many data breaches and new privacy laws recently, your app’s credibility
depends on how you manage your user’s data. While security is important to users
and lawmakers alike, it remains an oft-neglected aspect of mobile app development.
When you build an app, you need to think about security from the ground up.

To assist developers in keeping their user data secure, starting from Android 11 the
OS offers new privacy features and device enhancements including scoped storage,
hardened permissions, biometric authentication and hardware-backed key storage.
Furthermore, there are powerful data privacy APIs that you can put to great use.

In this chapter, you’ll learn about:

• Privacy and security basics

• Permissions

• Locking down user data

raywenderlich.com 357

If you missed the previous chapters, the sample app includes a list of pets and their
medical data along with a section that lets you report issues anonymously:

Figure 15.1 — Report Section

In this chapter, you’ll focus on keeping that sensitive information secure.

Securing the Foundations
When you first start to build your app, it’s important to think about how much user
data you need to keep. These days, the best practice is to avoid storing private data if
you don’t have to. Pets, of course, are always concerned about their privacy rights.
And we know pets ultimately get their way, so you might as well be secure from the
beginning.

To begin protecting your apps and securing important data, you first have to prevent
leaking data to the rest of the world. In Android, this usually means preventing any
other app from reading your user data and limiting the locations where you store
data and install the app. This will be your first step toward securing private
information.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 358

Using Permissions
Ever since Android 6.0, you set the files and SharedPreferences you save with the
MODE_PRIVATE constant. That means only your app can access the data. Android 7
doesn’t allow any other option, so you’ll implement this next.

Open PetSavePreferences.kt in the core.data.preferences package. You’ll notice
there are deprecation warnings for MODE_WORLD_READABLE and
MODE_WORLD_WRITEABLE.

Figure 15.2 — Deprecated Constants

These allow public access to your files for earlier Android versions. If only there was
a way to tell those users to update their devices! Well, technically there is, but
instead, replace the code in Figure 15.1 with the following:

@Singleton
class PetSavePreferences @Inject constructor(
 @ApplicationContext context: Context
) : Preferences {
 // ...
 private val preferences =
context.getSharedPreferences(PREFERENCES_NAME,
 Context.MODE_PRIVATE)
 private val preferencesWrite =
context.getSharedPreferences(PREFERENCES_NAME,
 Context.MODE_PRIVATE)
 // ...
}

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 359

Great, you’ve just made your preferences more private. Additionally, when you build
and run the app now, those security violations won’t cause a crash on Android 7+
versions.

Figure 15.3 — MODE_WORLD_WRITEABLE No Longer Supported Error

Another important point regarding private access: You should enforce a secure
location for your app’s install directory.

Limiting Installation Directories
One of the larger problems Android has faced in the past few years was running out
of memory to install the plethora of available apps due to the low storage capacity of
many devices. Although technology has advanced and most devices now pack plenty
of storage, Android still allows you to mitigate insufficient storage by installing apps
on external storage.

This works well, but it opens security concerns. Installing apps on external SD cards
is convenient, but also a security flaw. Anyone with access to the SD card also has
access to the app’s data — and that data could hold sensitive information. This is why
it’s a best practice to restrict your app to internal storage.

To do this, open AndroidManifest.xml and find the line that reads
android:installLocation="auto", then replace it like this:

android:installLocation="internalOnly"

With this, you’ve limited the install location to the device, but you can still back up
your app and its data. Users can access the contents of the app’s private data folder
using ADB backup. To disallow backups, find the line that reads
android:allowBackup="true" and replace the value with "false".

Following these best practices, you’ve hardened your app data from the outside. On
the flip side, you’ll want to let the user decide if the app can access other parts of the
device’s data like the camera or the user’s location.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 360

Requesting User Permissions
As mentioned earlier, Android 11 debuted many new privacy features, which you can
read about here: https://developer.android.com/about/versions/11/privacy.

For example, users can grant one-time access to location data, the microphone and
the camera. The Settings section offers improved control over background access to
the user’s location. Additionally, there’s a consistent place for Google account
activity and autofill services and the OS resets permissions if you haven’t interacted
with an app for a few months.

Because of these privacy features, you must ask for permission before your app can
access the user’s external data. As such, the first question to consider is how much
data your app needs to acquire. A good approach is to avoid gathering any
information you don’t need.

APIs that access user data require you to declare that access in the manifest file
beforehand. In AndroidManifest.xml, find the line that reads:

<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />

In the past, this was enough. When the user installed the app, they’d see a list of
permissions. But Marshmallow changed that with Runtime Permissions. Now, your
app should request permissions at the moment when it needs them. This approach is
more transparent because it shows exactly which features the permission covers. It
helps weed out unnecessary permissions. To do this, go to
ReportDetailFragment.kt and add the following declaration at the top of the file:

private val requestPermissionLauncher =
registerForActivityResult(ActivityResultContracts.RequestPermiss
ion()) { granted ->
 if (granted) {
 selectImageFromGallery()
 }
}

This code relies on the Activity Result API and registers a RequestPermission
contract. The method accepts a callback that is executed when the activity gets the
result. In this case, the callback receives a boolean indicating if the permission was
granted. If that’s the case, then you have green light to select the image from the
gallery.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 361

Note: The Activity Result API offers other predefined contracts and it also
allows you to define your custom ones. For more information about the
different possibilities visit https://developer.android.com/training/basics/
intents/result.

This code alone doesn’t do much. In order to execute it, you need to launch it first.
You’ll do this next. Replace the contents of uploadPhotoPressed() like this:

@AndroidEntryPoint
class ReportDetailFragment : Fragment() {
 // ...
 private fun uploadPhotoPressed() {
 context?.let {
 if (ContextCompat.checkSelfPermission(it,
Manifest.permission.READ_EXTERNAL_STORAGE)
 != PackageManager.PERMISSION_GRANTED) { // 1

requestPermissionLauncher.launch(Manifest.permission.READ_EXTERN
AL_STORAGE) // 2
 } else {
 selectImageFromGallery() // 3
 }
 }
 }
 // ...
}

Here, you implement runtime permissions by:

1. Checking if the user has already granted permission for
READ_EXTERNAL_STORAGE.

2. In case the permission is not granted, you request it launching
requestPermissionLauncher that you declared previously.

3. If already granted you directly invoke the method to select an image.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 362

If the user grants permission, the image selection starts. Build and run the project
after you’ve made the changes. When prompted for permission, tap Allow. You can
now select an image. :]

Figure 15.4 — Photo Permission Request

Note: Android 11 enforces scoped access to app files and media. It requires
that you use the Storage Access Framework https://developer.android.com/
about/versions/11/privacy/storage to access folders on external storage the
app doesn’t own. It’s best practice to access external media using the Media
Store: https://developer.android.com/training/data-storage/shared/media. For
apps where these APIs cannot be used effectively, it is possible to request the
MANAGE_EXTERNAL_STORAGE permission. However, you should take into
account that Google Play imposes very hard restrictions in the kind of apps
that are allowed to use it: https://developer.android.com/training/data-
storage/manage-all-files#all-files-access-google-play.

These aren’t the only ways you can pass data between apps. In the past, IPC has been
a popular choice for developers.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 363

Using IPC
Permissions cover most of what you need to access and pass data outside of the app.
But sometimes you pass data via IPC to other apps that you build. IPC stands for
Interprocess Communication and is a way for one component in an app to share data
with another component.

There have been cases where developers have left shared files on the storage or have
implemented sockets to exchange sensitive information. This is not secure. Instead,
the best practice is to use Intents. You can send data using an Intent by providing
the package name, like this:

val intent = Intent()
val packageName = "com.example.app" //1
val activityClass = "com.example.app.TheActivity" // 2
intent.component = ComponentName(packageName, activityClass)
intent.putExtra("UserInfo", "Example string") //3
startActivityForResult(intent) //4

Here you’re specifying:

1. The package name of the app where you’ll send the intent.

2. The qualified class name in the target app that receives the intent.

3. Data sent with the intent.

4. The intent, by starting the activity with it and then waiting for the result.

To broadcast data to more than one app, enforce that only apps signed with your
signing key will get the data. Otherwise, any app that registers to receive the
broadcast can read the sent information. Likewise, a malicious app could send a
broadcast to your app if you’ve registered to receive its broadcast.

Securing Data Broadcasts With a Signing Key

In the manifest file, find protectionLevel — it’s part of the first permission. You’ll
notice it’s set to normal. Change it to signature by replacing that line with the
following:

android:protectionLevel="signature" />

Then replace the protectionLevel inside the <application tag with:

android:protectionLevel="signature"

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 364

Other apps access the permission by including the following code in the manifest
file:

<uses-permission
android:name="com.realworld.android.snitcher.permission.REPORT_D
ETAIL_FRAGMENT"/>

Apps typically send a broadcast like this:

val intent = Intent()
intent.putExtra("UserInfo", "Example string")
intent.action = "com.example.SOME_NOTIFICATION"
sendBroadcast(intent, "com.example.mypermission")

Alternatively, you can use setPackage(String) when sending a broadcast to restrict
it to a set of apps that match the specified package. Also, setting android:exported
to false in the manifest file will exclude broadcasts from outside your app. That
setting tells the system whether other apps can invoke or interact with a particular
activity or service.

Now, you’ve set permissions correctly and waited for the user to grant them. But
what if the user wants to disallow access later?

Opting Out
Using permissions properly offers another benefit: It grants users the ability to
revoke permissions in the system settings and opt out of data sharing if they change
their minds later. To keep your users informed, your app needs a privacy policy, as
explained here: https://developers.google.com/assistant/console/policies/privacy-
policy-guide.

Privacy policies disclose the types of personally identifiable information (PII) apps
collect, such as unique device identifiers. If you’re collecting such data intentionally,
you must provide a place in your UI where the user can opt out. It’s also prudent to
understand the laws in any jurisdiction where your app is available. EU member
countries, for example, require explicit consent for data collection.

To learn more about privacy policies, visit the Android Privacy Section: https://
play.google.com/about/privacy-security-deception and Android’s best practices for
unique identifiers: https://developer.android.com/training/articles/user-data-ids.

When users opt out, you should delete the stored data you have for them. But during
this process, be sure not to overlook temporary data files.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 365

Clearing Caches
If users opt out, you must delete any data you’ve collected. This includes temporary
files and caches! Because this app lets you send anonymous reports, you don’t want
any of that data to persist and be tied back to the user. Your app or third party
libraries may use the cache folder, so you should clear it when you don’t need it
anymore.

To do this, add the following function to ReportDetailFragment.kt:

@AndroidEntryPoint
class ReportDetailFragment : Fragment() {
 // ...
 override fun onPause() {
 context?.cacheDir?.deleteRecursively()
 context?.externalCacheDir?.deleteRecursively()
 super.onPause()
 }
}

Here, you tell the OS to delete the cache directories when you pause the fragment.

Note: You can also delete your shared preferences by removing /data/data/
com.your.package.name/shared_prefs/your_prefs_name.xml and
your_prefs_name.bak and clearing the in-memory preferences with the
following code: context.getSharedPreferences("prefs",
Context.MODE_PRIVATE).edit().clear().commit().

Disabling the Keyboard Cache
Your app also has a keyboard cache for text fields with autocorrect enabled. Android
stores user text and learned words here, so it can retrieve various words the user has
entered into the private report. To prevent leaking this information, you need to
disable this cache.

To disable the keyboard cache, you need to turn off the autocorrect option. Open
fragment_report_detail.xml and switch to the Code Editing Mode tab. Find the
first EditText and replace the android:inputType="textMultiLine" line with the
following:

android:inputType="textNoSuggestions|textVisiblePassword|
textFilter|textMultiLine"

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 366

For the second EditText that doesn’t need the the multiline setting, replace it with
this:

android:inputType="textNoSuggestions|textVisiblePassword|
textFilter"

Various devices and OS versions have some bugs where some of these flags do
nothing on their own. That means it’s a good idea to implement all these flags.

Note: You should also mark password fields as secureTextEntry. Secure text
fields don’t display the password or use the keyboard cache.

Disabling Other Caches
There are a few other caches to consider. For example, Android caches data sent over
the network to memory and on-device storage. You don’t want to leave that data
behind, either. In provideOkHttpClient() inside APIModule.kt, replace //TODO:
Disable cache here with:

.cache(null)

That disables the cache for OkHttp, but you might use a different implementation in
your app. For example, this disables the cache for the native HttpsURLConnection
session:

connection.setRequestProperty("Cache-Control", "no-cache")
connection.defaultUseCaches = false
connection.useCaches = false

For WebView, you can remove the cache at any time with this code:

webview.clearCache(true)

Check other third-party libraries you use for a way to disable or remove the cache. In
this app, you’ve used the popular Glide image loading library. It allows you to cache
photos in memory instead of in storage. Navigate to Extentions.kt and replace //
TODO: Disable disk cache here with the following:

.diskCacheStrategy(DiskCacheStrategy.NONE)

Libraries may also leak other kinds of data. For example, check if there’s an option to
disable logging. That’s what you’ll look at next.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 367

Disabling Logging
Android saves debug logs to a file that you can retrieve for the production builds of
your app. Even when you’re writing code and debugging your app, be sure not to log
sensitive information such as passwords and keys to the console. You wouldn’t want
to forget to remove the logs before releasing your app!

There’s a class called BuildConfig that contains a flag called DEBUG. It’s set to true
when you’re debugging and automatically set to false when you export a release
build. Here’s an example:

if (BuildConfig.DEBUG) {
 Log.v(TAG, "Some log stuff...")
}

In theory, that’s good for non-sensitive logging; in practice, it’s dangerous to rely on.
There have been bugs in the build system that set the flag to true for release builds.
You can define your own constant, but then you’re back to the problem of developers
remembering to change it before release.

The solution is to not log sensitive variables. Instead, use a breakpoint to view them.

For example, in AuthenticationInterceptor.kt, notice Log.d("Pet Save", "The
auth token is: $token") outputs the real PetFinder authentication token to the
console. Looks like someone was debugging and forgot to remove it! Select the line
and delete it.

The anonymous report section is getting much safer to use. However, there are a
couple more things you can do to be diligent about not leaking data.

Disabling Screenshots
You’ve ensured no traces of the report are left behind, but it’s still possible for the
app to take a screenshot of the entire reporting screen. The OS takes screenshots of
your app, too. It uses them for the animation it plays when it puts an app into the
background or for the list of open apps in the task switcher. Those screenshots are
stored on the device.

You should disable this feature for views revealing sensitive data. Back in
MainActivity.kt, find onCreate(). Replace //TODO: Disable screenshots with:

window.setFlags(WindowManager.LayoutParams.FLAG_SECURE,

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 368

WindowManager.LayoutParams.FLAG_SECURE)

Here, you’ve told the window to have FLAG_SECURE, which prevents explicit and
implicit capturing of the screen. This is especially important for private messaging or
video streaming apps, deterring someone from taking a snapshot.

Keep in mind that it’s not foolproof. A user can still take a picture from another
device, for example.

Build and run, then make a report:

Figure 15.5 — Filled Report

Try to take a screenshot. You’ll notice that you can’t!

Figure 15.6 — Screenshot Security Alert

Now, users can make anonymous reports without accidentally leaving a screen-
grabbed copy of their report behind.

You’ve taken care of most of the privacy-related points by either preventing or
removing data. When it comes to removing data there’s a way to make sure it’s done
securely.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 369

Wiping Memory Securely
When an OS deletes a file, it only removes the reference, not the data. To completely
remove that data, you must overwrite the file with random data:

fun wipeFile(file: File) {
 if (file.exists()) {
 val length = file.length()
 val random = SecureRandom()
 val randomAccessFile = RandomAccessFile(file, "rws")
 randomAccessFile.seek(0)
 randomAccessFile.filePointer
 val data = ByteArray(64)
 var position = 0
 while (position < length) {
 random.nextBytes(data)
 randomAccessFile.write(data)
 position += data.size
 }
 randomAccessFile.close()
 file.delete()
 }
}

The code above iterates over a File, replacing the bytes with random data generated
from SecureRandom.

You’ll also notice most security functions work with ByteArray or CharArray
instead of objects such as String. That’s because String is immutable and there’s
no control over how the system copies or garbage collects it.

If you’re working with sensitive strings or data, it’s better — though not foolproof —
to store the information in a mutable array, then overwrite the sensitive arrays when
you’re done with them. For ByteArray that would be:

Arrays.fill(byteArray, 0.toByte())

and for CharArray, it’s:

Arrays.fill(charArray, '\u0000')

Depending on the platform, some types of solid-state storage devices, such as solid-
state drives (SSD) in modern laptops, won’t write to the same area of memory each
time. This preserves the longevity of the SSD. Depending on the platforms you port
your code to, a secure erase method may not work.

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 370

A better solution for this type of scenario is to encrypt the stored data in the first
place. As long as you discard the encryption key, you don’t need to securely erase the
data. And that’s what the next chapter is about!

Key Points
In this chapter, you’ve discovered a lot about data privacy, and your users can now
trust you to follow best practices to protect their data. Feel free to download the
completed final project.

Here are a few points to remember:

• Only collect sensitive information when it’s necessary for your app.

• You can restrict access to internal app data with permissions.

• Request user consent to let the app access data outside the app.

• Clearing caches and wiping sensitive files helps protect the user’s data.

Where to Go From Here?
So you tightened access to the data at a high level. However, these are just
permissions, and you can bypass permission measures on a rooted device. The
solution? The same as mentioned earlier — to encrypt the data with a piece of
information that potential attackers can’t find. So to learn the finer details of
encryption, head on to the next chapter.

In the meantime, to learn more about some of the more recent privacy laws, check
out these resources:

• CCPA: https://oag.ca.gov/privacy/ccpa

• PIPEDA: https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-
personal-information-protection-and-electronic-documents-act-pipeda/

• GDPR: https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Real-World Android by Tutorials Chapter 15: User Privacy

raywenderlich.com 371

16Chapter 16: Securing Data
at Rest
By Kolin Stürt and Antonio Roa-Valverde

This chapter starts with a simple approach to protect your stored data and builds up
to more fine-tuned and advanced implementations. You can stop at any time if you
have what you need. If you only want to implement a simple login for your app,
great, you’ll find that near the beginning. If your project requires customized
protocols, carry on to the end of the chapter.

In this chapter, you’ll learn how to:

• Store a password securely.

• Protect saved data.

• Use encryption.

raywenderlich.com 372

If you missed the previous chapters, the sample app includes a list of pets, their
medical data and a section that lets you report safety issues while remaining
anonymous.

Launch the starter app for this chapter and you’ll see a simple sign-up screen. Once
you enter an email and select Sign Up, the list of pets will populate. Tap the Report
tab to report a concern:

Figure 16.1 — Report Section

This is quite easy but, is your app also secure? As first step you’ll now implement a
login for the user.

Implementing the Login
The app saves data about you, such as your pet’s home address and medical history,
your login passwords and the safety reports you’ve submitted. If someone were to
take your device, they’d have access to all that personal information.

To ensure only you can access that app data, it’s standard to require a password.
Many modern devices have biometric readers like face, retina and fingerprint
scanners.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 373

In this first section, you’ll implement a biometric prompt to log in so only you can
access the app on your device. You’ll also implement a password fallback, giving the
user an alternative log-in option.

First, you need to have the app check that the device is able to use biometrics. In
MainActivity.kt, replace the contents of loginPressed() like in the following code:

@AndroidEntryPoint
class MainActivity : AppCompatActivity() {
 // ...
 fun loginPressed(view: View) {
 val biometricManager = BiometricManager.from(this)
 when (biometricManager.canAuthenticate(BIOMETRIC_STRONG)) {
 BiometricManager.BIOMETRIC_SUCCESS ->
 displayLogin(view, false) // 1
 BiometricManager.BIOMETRIC_ERROR_NO_HARDWARE ->
 displayLogin(view, true) // 2
 BiometricManager.BIOMETRIC_ERROR_HW_UNAVAILABLE ->
 toast("Biometric features are currently unavailable.")
 BiometricManager.BIOMETRIC_ERROR_NONE_ENROLLED ->
 toast("Please associate a biometric credential with
your account.")
 else ->
 toast("An unknown error occurred. Please check your
Biometric settings")
 }
 }
 // ...
}

In this code you see that:

1. You call displayLogin() if the device can perform biometric authentication
with BIOMETRIC_SUCCESS.

2. Otherwise, the fallback flag is set to true, allowing for password or PIN
authentication.

Note: Android 11 divides the biometric features in strong and week.
Fingerprint is considered strong, while face recognition is considered weak.

Next, add the following variables to the same MainActivity class:

private lateinit var biometricPrompt: BiometricPrompt
private lateinit var promptInfo: BiometricPrompt.PromptInfo

BiometricPrompt is a class from AndroidX.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 374

Next, replace the contents of displayLogin() with the following:

@AndroidEntryPoint
class MainActivity : AppCompatActivity() {
 // ...
 private fun displayLogin(view: View, fallback: Boolean) {
 val executor = Executors.newSingleThreadExecutor()
 biometricPrompt = BiometricPrompt(this, executor, // 1
 object : BiometricPrompt.AuthenticationCallback() {
 override fun onAuthenticationError(errorCode: Int,
 errString:
CharSequence) {
 super.onAuthenticationError(errorCode, errString)
 runOnUiThread {
 toast("Authentication error: $errString")
 }
 }

 override fun onAuthenticationFailed() {
 super.onAuthenticationFailed()
 runOnUiThread {
 toast("Authentication failed")
 }
 }

 override fun onAuthenticationSucceeded(result:
BiometricPrompt.AuthenticationResult) {// 2
 super.onAuthenticationSucceeded(result)

 runOnUiThread {
 toast("Authentication succeeded!")
 if (!isSignedUp) {
 generateSecretKey() // 3
 }
 performLoginOperation(view)
 }
 }
 })

 if (fallback) {
 promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Biometric login for my app")
 .setSubtitle("Log in using your biometric credential")
 // Cannot call setNegativeButtonText() and
 // setDeviceCredentialAllowed() at the same time.
 // .setNegativeButtonText("Use account password")
 .setAllowedAuthenticators(DEVICE_CREDENTIAL) // 4
 .build()
 } else {
 promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Biometric login for my app")
 .setSubtitle("Log in using your biometric credential")
 .setNegativeButtonText("Use account password")

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 375

 .build()
 }
 biometricPrompt.authenticate(promptInfo)
 }

 // ...
}

Here’s what’s happening:

1. You create a BiometricPrompt object for authentication.

2. You override onAuthenticationSucceeded to determine a successful
authentication.

3. You create a secret key that’s tied to the authentication for first-time users.

4. You create a fallback to password authentication by
calling .setAllowedAuthenticators(DEVICE_CREDENTIAL).

Be sure you have a face, fingerprint or similar biometric scanner on your device to
test the biometric part. Build and run. You’ll now be able to log in with your
credentials:

Figure 16.2 — Biometric Prompt

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 376

Once the authentication is successful, you’ll see the pet list:

Figure 16.3 — Animals Near You

With that, you’ve secured access to the app with biometric security! That was easy.

Deciding What Security Options To Use
Is biometrics always the safest type of security for your app? To answer that
question, it helps to use a threat model, a risk-based approach to making decisions.
In other words, you need to consider what the biggest risks your user will face are.

People can use biometrics maliciously. For example, someone could steal your phone
and hold it up to your face while you’re unconscious, or law enforcement could hold
your device to your finger after they handcuff you.

In cases like these, a password is always better.

On the other hand, biometrics are better if your users are in the spotlight with
people streaming to social media. There’s no chance a live streamer will capture
their password.

Another thing to consider is: Even though access is limited, your data, such as
reports and passwords, are not encrypted. Encryption uses a key to scramble the
data. But if it’s all done in the app, you’re still vulnerable.

You’ll address all that next, but first, a little theory.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 377

Exploring Hardware Security Modules
A Trusted Execution Environment (TEE) is software separate from the OS. It safely
sandboxes security operations, and though it’s inside the main processor, it’s
cordoned off from the main operating system. Security keys that are isolated this
way are hardware-backed. You can find out if a key is hardware-backed by using
KeyInfo.isInsideSecureHardware().

An example of a TEE is the ARM processor that has the TrustZone secure enclave,
available in modern Samsung phones.

A Secure Element (SE) takes this a step further by putting the environment on a
segregated chip. It has its own CPU and storage, as well as encryption and random-
number generator methods. Security chips that exist outside of the main processor
are harder to attack. Google’s devices contain the Titan M security chip, which is an
SE.

In both cases, security operations happen at the hardware level in a separate
environment that’s less susceptible to software exploits.

Android 9 and above provides the StrongBox Keymaster API for these features:
https://developer.android.com/training/articles/keystore#HardwareSecurityModule.
To ensure the key exists inside a segregated secure element, you can call
KeyGenParameterSpec.Builder.setIsStrongBoxBacked(true).

Now, it’s time to put this information to use!

Hardening Data in the KeyStore
To protect your data, you’ll use MasterKey to generate a key in the KeyStore. This
will encrypt your reports that you wish to send.

As you learned above, the benefit of storing a key in the KeyStore is that it allows the
OS to operate on it without exposing the secret contents of that key. Key data does
not enter the app space.

For devices that don’t have a security chip, permissions for private keys only allow
your app to access the keys — and only after user authorization. This means you have
to set up a lock screen on the device before you can use the credential storage. This
makes it more difficult to extract keys from a device, called extraction prevention.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 378

The security library contains two new classes: EncryptedFile and
EncryptedSharedPreferences. In Encryption.kt, there are a few empty boilerplate
methods set up for you. Replace encryptFile() with this:

class Encryption {
 companion object {
 // ...
 fun encryptFile(context: Context, file: File): EncryptedFile
{
 val masterKey = MasterKey.Builder(context)
 .setKeyScheme(MasterKey.KeyScheme.AES256_GCM)
 .build() // 1
 return EncryptedFile.Builder(
 context,
 file,
 masterKey,
 EncryptedFile.FileEncryptionScheme.AES256_GCM_HKDF_4KB
// 2
).build()
 }
 }
 // ...
}

Here’s what you did:

1. Created a new master key.

2. Encrypted the file using the popular secure AES encryption algorithm. (Visit
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard if you’re interested
in the finer details).

In ReportDetailFragment.kt, find sendReportPressed(). Replace the two lines
right after //TODO: Replace below for encrypting the file with the code
block below:

val file = File(theContext.filesDir?.absolutePath,
"$reportID.txt") // 1
val encryptedFile = encryptFile(theContext, file) // 2
encryptedFile.openFileOutput().bufferedWriter().use {
 it.write(reportString) // 3
}

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 379

Here’s what you changed:

1. You created a file named "$reportID.txt".

2. You created an EncryptedFile instance using the file object created in the last
step.

3. You used the EncryptedFile instance to write to file all the report data.

You’ve hardened the data stored on the device by using a secure key in the KeyStore.
While this is an excellent first step, you can make the data even more secure by tying
it to your biometric or password credentials. That way, even if someone accessed that
cordoned-off key, it would be useless without your credentials.

Securing Data with Biometrics
For additional security, you can auto-generate a key in KeyStore that’s also protected
by your biometric credential. If the device becomes compromised, the key is still
encrypted.

This time, you’ll get a bit more advanced. Instead of using a high-level
EncryptedFile, you’ll use an encryption class that lets you customize what you
want to encrypt later. This is powerful because you can encrypt items in a database
or information to send over a network, for example.

In Encryption.kt, add the following to generateSecretKey():

class Encryption {
 companion object {
 // ...
 @TargetApi(Build.VERSION_CODES.R)
 fun generateSecretKey() {
 val keyGenParameterSpec = KeyGenParameterSpec.Builder(
 KEYSTORE_ALIAS,
 KeyProperties.PURPOSE_ENCRYPT or
KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_GCM) // 1
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDIN
G_NONE)
 .setUserAuthenticationRequired(true) // 2
 .setUserAuthenticationParameters(120,
KeyProperties.AUTH_BIOMETRIC_STRONG) // 3
 .build()
 val keyGenerator = KeyGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_AES, PROVIDER) // 4
 keyGenerator.init(keyGenParameterSpec)

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 380

 keyGenerator.generateKey()
 }
 // ...
 }
}

Here are the changes you made:

1. You chose GCM, a popular and safe block mode that the encryption uses. More on
this later.

2. By passing in .setUserAuthenticationRequired(true), you require a lock
screen to be set up and the key to be locked until the user authenticates.
Enabling the authentication requirement also revokes the key when the user
removes or changes the lock screen.

3. You made the key available for 120 seconds from authentication. After this time,
the user will need to authenticate again using the fingerprint.

4. You create a KeyGenerator with the above settings and set it to the
AndroidKeyStore PROVIDER.

There are a few more options worth mentioning here:

• setRandomizedEncryptionRequired(true) requires you to have sufficient
randomization. Using this ensures that if you encrypt the same data a second time,
that encrypted output will be different. This prevents an attacker from getting
clues about the ciphertext based on feeding in the same data.

• Another option is .setUserAuthenticationValidWhileOnBody(boolean
remainsValid). It locks the key once the device has detected it’s no longer on the
person.

Because you use the same key and cipher in different parts of the app, add the
following helper functions to Encryption.kt, inside the companion object code
block:

class Encryption {
 companion object {
 // ...
 private fun getSecretKey(): SecretKey {
 val keyStore = KeyStore.getInstance(PROVIDER)

 // Before the keystore can be accessed, it must be loaded.
 keyStore.load(null)
 return keyStore.getKey(KEYSTORE_ALIAS, null) as SecretKey
 }

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 381

 private fun getCipher(): Cipher {
 return Cipher.getInstance(KeyProperties.KEY_ALGORITHM_AES
+ "/"
 + KeyProperties.BLOCK_MODE_GCM + "/"
 + KeyProperties.ENCRYPTION_PADDING_NONE)
 }
 }
}

The first function returns the secret key from the KeyStore. The second returns a
pre-configured Cipher.

Next, you’ll use that Cipher to do the actual encryption.

Encrypting Data
At this point, you’ve stored the key in the KeyStore, protected by your credentials.
But so far, you’ve stored the user’s generated password in the clear. For your next
step, you’ll update the login method to encrypt it using the Cipher object, given the
SecretKey.

Start by going to Encryption.kt and replacing the contents of
createLoginPassword() with the following:

class Encryption {
 companion object {
 // ...
 fun createLoginPassword(context: Context): ByteArray {
 val cipher = getCipher()
 val secretKey = getSecretKey()
 val random = SecureRandom()
 val passwordBytes = ByteArray(256)
 random.nextBytes(passwordBytes) // 1
 cipher.init(Cipher.ENCRYPT_MODE, secretKey)
 val ivParameters =
cipher.parameters.getParameterSpec(GCMParameterSpec::class.java)
 val iv = ivParameters.iv
 PreferencesHelper.saveIV(context, iv) // 2
 return cipher.doFinal(passwordBytes) // 3
 }
 // ...
 }
}

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 382

Here’s what’s happening in that code:

1. You create a random password using SecureRandom.

2. You gather a randomized initialization vector (IV), which you need to decrypt the
data, and save it into the shared preferences. An IV is some initial random data,
discussed in more detail during the Customizing encryption section later.

3. You return a ByteArray containing the encrypted data.

Decrypting Data
You’ve encrypted the password, so now you need to decrypt it when the user
authenticates.

Open Encryption.kt and replace the contents of decryptPassword() with the code
below:

class Encryption {
 companion object {
 // ...
 fun decryptPassword(context: Context, password: ByteArray):
ByteArray {
 val cipher = getCipher()
 val secretKey = getSecretKey()
 val iv = PreferencesHelper.iv(context) // 1
 val ivParameters = GCMParameterSpec(128, iv)
 cipher.init(Cipher.DECRYPT_MODE, secretKey,
ivParameters) // 2
 return cipher.doFinal(password) // 3
 }
 // ...
 }
}

Here’s what’s happening:

1. You retrieve the IV required to decrypt the data.

2. You initialize Cipher using DECRYPT_MODE.

3. You return a decrypted ByteArray.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 383

Back in MainActivity.kt, find performLoginOperation(). Replace the line that
calls createDataSource, where it says //TODO: Replace with encrypted data
source below, with:

val encryptedInfo = createLoginPassword(this)
UserRepository.createDataSource(applicationContext, it,
encryptedInfo)

On sign-up, you create a password for the account. Right after the //TODO: Replace
below with the implementation that decrypts the password, in
performLoginOperation(), replace success = true with the following:

val password = decryptPassword(this,
 Base64.decode(firstUser.password, Base64.NO_WRAP))
if (password.isNotEmpty()) {
 //Send password to authenticate with server etc
 success = true
}

On log-in, you retrieve the password to decrypt the data. The app shouldn’t work
without the key.

Build and run, then try to log in. You’ll encounter the following exception:

kotlin.TypeCastException: null cannot be cast to non-null type
javax.crypto.SecretKey

That’s because you didn’t create a key during the previous sign-up.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 384

Delete the app to remove the old saved state, then rebuild and run. You’ll be able to
log in now. :]

Figure 16.4 — Animals Near You

You’ve now created an encrypted password that will only be available once you’ve
authenticated with your credentials. Your data is protected.

Using Cipher opens the door to powerful customization. You can stop here, but if
you want to learn about advanced encryption or if your company requires you to use
certain protocols, carry on.

Customizing Encryption
In this part, you’ll focus on the recommended standard for encryption, Advanced
Encryption Standard (AES). AES uses a substitution–permutation network to encrypt
your data with a key. Using this approach, it replaces bytes from one table with the
bytes from another, and so creates permutations of data. Just like before, AES
requires an encryption key. You’ll customize how that key is created.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 385

Creating a Key
As mentioned above, AES uses a key for encryption. You also use that same key to
decrypt the data. This property is called symmetric encryption.

You can use different specific lengths for the key, but 256 bits is standard.

Directly using the user’s password for encryption is dangerous because it likely won’t
be random or large enough. A function called Password-Based Key Derivation
Function (PBKDF2) comes to the rescue. It takes a password and, by hashing it with
random data many times over, creates a key. That random data is called a salt.
PBKDF2 creates a strong and unique key, even if someone else uses the same or a
very simple password.

Because each key is unique, if an attacker steals and publishes the key online, it
doesn’t expose all the users with the same password.

To use PBKDF2, start by generating the salt. Open Encryption.kt and add the
following code to encrypt(), where it reads //TODO: Add custom encrypt code
here:

class Encryption {
 companion object {
 // ...
 fun encrypt(dataToEncrypt: ByteArray,
 password: CharArray): HashMap<String, ByteArray>
{
 val map = HashMap<String, ByteArray>()
 val random = SecureRandom() // HERE
 val salt = ByteArray(256)
 random.nextBytes(salt)

 return map
 }
 // ...
 }
}

Here, you use SecureRandom, a cryptographically strong random number
generator, which makes sure the output is difficult to predict. You should always use
a secure class like this, instead of using java.util.Random, for example.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 386

Next, you’ll generate a key with the user’s password and the salt. Add the following
right under the code you just added in encrypt() in Encryption.kt:

class Encryption {
 companion object {
 // ...
 fun encrypt(dataToEncrypt: ByteArray,
 password: CharArray): HashMap<String, ByteArray>
{
 val map = HashMap<String, ByteArray>()
 val random = SecureRandom()
 val salt = ByteArray(256)
 random.nextBytes(salt)

 val pbKeySpec = PBEKeySpec(password, salt, 1324, 256) // 1
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1") // 2
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded // 3
 val keySpec = SecretKeySpec(keyBytes, "AES") // 4
 return map
 }
 // ...
 }
}

Here’s what is going on inside that code. You:

1. Put the salt and password into PBEKeySpec, a password-based encryption object.
The constructor takes an iteration count (1324). The higher the number, the
longer it would take to operate on a set of keys during a brute force attack.

2. Passed PBEKeySpec into the SecretKeyFactory.

3. Generated the key as a ByteArray.

4. Wrapped the raw ByteArray into a SecretKeySpec object.

Now you have a secure key. The next part of customization involves the mode of
operation.

Choosing an Encryption Mode
The mode defines how the data is processed. One example is Electronic Code Book
(ECB). It’s simplistic in that it splits up the data and repeats the encryption process
for every chunk with the same key. Because each block uses the same key, this mode
is highly insecure. Don’t use this mode.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 387

On the other hand, Counter Mode (CTR) uses a counter so each block encrypts
differently. CTR is efficient and safe to use.

There are a few other modes that are useful: GCM offers authentication in addition
to encryption, whereas XTS is optimized for full disk encryption. You’ll use Cipher
Block Chaining (CBC) when you XOR each block of plaintext with the previous
block.

Note: To learn more about the various modes of operation, go here: https://
en.wikipedia.org/wiki/Block_cipher_mode_of_operation. To understand more
about XOR, check this out: https://whatis.techtarget.com/definition/logic-
gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR.

You’re almost ready to encrypt, but there’s one more thing you need to consider
when it comes to modes.

Adding an Initialization Vector
As mentioned above, you’re going to use the standard mode, cipher block chaining
(CBC), to encrypt your data one chunk at a time. You’ll XOR each block of data in the
pipeline with the previous block that it encrypted. That dependency on previous
blocks makes the encryption strong.

But can you see a problem? What about the first block? It has no previous block to
help with its encryption.

If you encrypt a message that starts off the same as another message, the first
encrypted block would be the same! That provides a clue for an attacker, and you
don’t want that. In fact, you’re striving for a concept known as Perfect Secrecy,
where the ciphertext conveys zero information about the plaintext.

To remedy the first block problem, you’ll use an initialization vector (IV).

An IV is a fancy term for a block of random data that you XOR with the first block.
Remember that each block relies on all blocks processed up until that point. This
means that identical sets of data encrypted with the same key will not produce
identical outputs.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 388

Create an IV now by adding the following code to the Encryption.kt file in
encrypt() like this

class Encryption {
 companion object {
 // ...
 fun encrypt(dataToEncrypt: ByteArray,
 password: CharArray): HashMap<String, ByteArray>
{
 val map = HashMap<String, ByteArray>()
 val random = SecureRandom()
 val salt = ByteArray(256)
 random.nextBytes(salt)
 val pbKeySpec = PBEKeySpec(password, salt, 1324, 256)
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
 val keySpec = SecretKeySpec(keyBytes, "AES")

 val ivRandom = SecureRandom() //not caching previous
seeded instance of SecureRandom
 val iv = ByteArray(16)
 ivRandom.nextBytes(iv) // 1
 val ivSpec = IvParameterSpec(iv) // 2
 return map
 }
 // ...
 }
}

Here, you:

1. Create 16 bytes of random data.

2. Package it into IvParameterSpec.

This ensures the first block of data is random, strengthening your security.

Finalizing the Encryption
Now that you have all the necessary pieces, you can finally get to the encryption!
Add the following code to encrypt() in the Encryption.kt file to perform the
customized encryption:

class Encryption {
 companion object {
 // ...
 fun encrypt(dataToEncrypt: ByteArray,

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 389

 password: CharArray): HashMap<String, ByteArray>
{
 val map = HashMap<String, ByteArray>()
 val random = SecureRandom()
 val salt = ByteArray(256)
 random.nextBytes(salt)
 val pbKeySpec = PBEKeySpec(password, salt, 1324, 256)
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
 val keySpec = SecretKeySpec(keyBytes, "AES")
 val ivRandom = SecureRandom() //not caching previous
seeded instance of SecureRandom
 val iv = ByteArray(16)
 ivRandom.nextBytes(iv)
 val ivSpec = IvParameterSpec(iv)

 val cipher = Cipher.getInstance("AES/CBC/PKCS7Padding") //
1
 cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec)
 val encrypted = cipher.doFinal(dataToEncrypt) // 2
 return map
 }
 // ...
 }
}

Here:

1. You passed in the specification string, “AES/CBC/PKCS7Padding”. It chooses AES
with cipher block chaining mode. PKCS7Padding is a well-known standard for
padding. Since you’re working with blocks, not all data will fit perfectly into the
block size, so you need to pad the remaining space. By the way, blocks are 128
bits long and AES adds padding before encryption.

2. doFinal does the actual encryption.

Next, complete encrypt() in Encryption.kt adding the following code:

class Encryption {
 companion object {
 // ...
 fun encrypt(dataToEncrypt: ByteArray,
 password: CharArray): HashMap<String, ByteArray>
{
 val map = HashMap<String, ByteArray>()
 val random = SecureRandom()
 val salt = ByteArray(256)
 random.nextBytes(salt)

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 390

 val pbKeySpec = PBEKeySpec(password, salt, 1324, 256)
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
 val keySpec = SecretKeySpec(keyBytes, "AES")
 val ivRandom = SecureRandom() //not caching previous
seeded instance of SecureRandom
 val iv = ByteArray(16)
 ivRandom.nextBytes(iv)
 val ivSpec = IvParameterSpec(iv)
 val cipher = Cipher.getInstance("AES/CBC/PKCS7Padding")
 cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec)
 val encrypted = cipher.doFinal(dataToEncrypt)

 map["salt"] = salt // HERE
 map["iv"] = iv // HERE
 map["encrypted"] = encrypted // HERE
 return map
 }
 // ...
 }
}

Here, you packaged the encrypted data into a HashMap. You also added the salt and
the IV to the map because you need all those pieces to decrypt the data.

This isn’t the only way to go about this. It’s common to prefix the ciphertext with the
IV and then strip it off and use it for the decryption. For the purposes of learning,
you use a map here so you’ won’t be distracted with sub-arrays and off-by-one
counts. :]

If you followed the steps correctly, you shouldn’t have any errors and encrypt is
ready to secure some data!

It’s okay to store salts and IVs, but reusing or sequentially incrementing them
weakens the security.

You should never store the key!

Now, you’ve built the means of encrypting this data, but you still need to decrypt it.
You’ll see how to do that next.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 391

Decrypting with Salts and IVs
You have some encrypted data. To decrypt it, you’ll have to change the mode of
Cipher in the init method from ENCRYPT_MODE to DECRYPT_MODE.

Start by adding the following to decrypt in Encryption.kt, where the line reads //
TODO: Add custom decrypt code here:

class Encryption {
 companion object {
 // ...
 fun decrypt(map: HashMap<String, ByteArray>, password:
CharArray): ByteArray? {
 var decrypted: ByteArray? = null
 try {
 // 1
 val salt = map["salt"]
 val iv = map["iv"]
 val encrypted = map["encrypted"]

 // 2
 //regenerate key from password
 val pbKeySpec = PBEKeySpec(password, salt, 1324, 256)
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
 val keySpec = SecretKeySpec(keyBytes, "AES")

 // 3
 //Decrypt
 val cipher = Cipher.getInstance("AES/CBC/PKCS7Padding")
 val ivSpec = IvParameterSpec(iv)
 cipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec)
 decrypted = cipher.doFinal(encrypted)
 } catch (e: Exception) {
 Log.e("MYAPP", "decryption exception", e)
 }
 return decrypted
 }
 // ...
 }
}

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 392

In this code, you did the following:

1. Used the HashMap that contains the encrypted data, salt and IV necessary for
decryption.

2. Regenerated the key given that information plus the user’s password.

3. Decrypted the data and returned it as a ByteArray.

Notice how you used the same configuration for the decryption, but you’ve traced
your steps back. That’s because you’re using a symmetric encryption algorithm. You
can now encrypt data as well as decrypt it!

Oh, and did I mention? Never store the key! :]

Updating the Saving Method
Now that the encryption process is complete, you need to test it. The app is already
writing data to storage.

In ReportDetailFragment.kt, uncomment the line below //TODO: Test your
custom encryption here. Then add the following to testCustomEncryption():

@AndroidEntryPoint
class ReportDetailFragment : Fragment() {
 // ...
 private fun testCustomEncryption(reportString: String) {
 val password = REPORT_SESSION_KEY.toCharArray()
 val bytes = reportString.toByteArray(Charsets.UTF_8)
 val map = Encryption.encrypt(bytes, password) // 1
 val reportID = UUID.randomUUID().toString()
 val outFile = File(activity?.filesDir?.absolutePath,
"$reportID.txt")
 ObjectOutputStream(FileOutputStream(outFile)).use { // 2
 it.writeObject(map)
 }

 //TEST decrypt
 val decryptedBytes = Encryption.decrypt(map, password) // 3
 decryptedBytes?.let {
 val decryptedString = String(it, Charsets.UTF_8)
 Log.e("Encryption Test", "The decrypted string is:
$decryptedString") // 4
 }
 }
 // ...
}

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 393

In the updated code, you:

1. Fed the data into the encryption method.

2. Saved the encrypted data.

3. Called decrypt using the encrypted data, IV and salt.

4. Tested that it worked.

Build and run now. Then go to the report section and enter a message you want to
test, for example: “Very lovely cat is looking for help!” After you send the report,
you’ll see the decrypted string in the logs:

Figure 16.5 — Encryption Test

Congratulations!

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 394

Key Points
In this chapter, you learned the following:

• How to add a simple login with a password or biometrics.

• How to tie that to protect your data and keys in the KeyStore.

• That EncryptedFile is a high-level encryption helper that you can use with those
keys.

• You can customize the encryption using Cipher.

It’s great to know how to properly implement security. Armed with this knowledge,
you’ll be able to confirm if third-party security libraries are up to the best practices.

On the other hand, implementing it all yourself, especially if you’re in a rush, can
lead to mistakes. If you’re in that situation, consider using an industry-approved or
time-tested third party.

One drawback to using a third-party solution comes when hackers expose a
vulnerability in a popular library. This affects all the apps that rely on that library at
the same time. Apps with custom implementations are immune to wide-spread,
scripted attacks.

You’ve secured your data at rest. With that knowledge, you’ll secure data in transit in
the next chapter.

Real-World Android by Tutorials Chapter 16: Securing Data at Rest

raywenderlich.com 395

17Chapter 17: Securing Data
in Transit
By Kolin Stürt and Antonio Roa-Valverde

Network security is an integral part of development. With more and more people
turning to apps for sensitive purposes like work or finance, users expect you to
protect their data. Almost every app communicates over a network. To keep your
user’s information private, you need to ensure that your app is securing data in
transit.

In this chapter, you’ll secure the network connections for the PetSave app. During
the process, you’ll learn the following best practices:

• Using HTTPS for network calls.

• Trusting a connection with certificate pinning.

• Verifying the integrity of transmitted data.

raywenderlich.com 396

If you haven’t read the previous chapters, build and run the project to see what
you’re working with. Browse through the selection of pets and try tapping the report
tab, which lets you send anonymous concerns:

Figure 17.1 — Report Session

In the previous chapter, you secured that data at rest. Now, your job is to ensure the
data is secure when it leaves the app.

Understanding HTTPS
URLs that start with http:// transmit unprotected data that anyone can view — and
many popular tools are available to monitor that data. Some examples are:

• Wireshark: https://www.wireshark.org

• mitmproxy: https://mitmproxy.org

• Charles: https://www.charlesproxy.com

Because pets tend to be fussy about their privacy, the requests in this app use
HTTPS. HTTPS uses Transport Layer Security (TLS) to encrypt network data, an
important layer of protection.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 397

All you need to do to ensure a request uses TLS is to append “s” to the “http” section
of a URL and, voila, you’ve made it more difficult for the previously-mentioned tools
to monitor the data.

However, this doesn’t provide perfect protection.

Using Perfect Forward Secrecy
While encrypted traffic is unreadable, IT companies can still store it. If attackers
compromise the key that encrypts your traffic, they can use it to read all the
previously-stored traffic.

To prevent this vulnerability, Perfect Forward Secrecy (PFS) generates a unique
session key for each communication session. If an attacker compromises the key for
a specific session, it won’t affect data from other sessions.

Android 5.0+ implements PFS by default and prohibits TLS ciphers that don’t
support it. As of Android N, you enforce this by using Network Security
Configuration: https://developer.android.com/training/articles/security-config.
You’ll add this to your app now.

Enforcing TLS with Network Security
Configuration
To enforce TLS on Android N and higher, open app/res/xml, where you’ll find an
empty file named network_security_config.xml. In this file, add the following code:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config cleartextTrafficPermitted="false">
 <domain includeSubdomains="true">petfinder.com</domain>
 </domain-config>
</network-security-config>

Here, you set cleartextTrafficPermitted to false. It blocks network requests
that don’t use TLS for specified domains. You then add petfinder.com as a domain
and set its includeSubdomains attribute to true. This enforces TLS for subdomains
like api.petfinder.com.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 398

Next, you need to tell the Android system to use that file. In
AndroidManifest.xml,add the android:networkSecurityConfig attribute to
<application/> like in the following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.raywenderlich.android.petsave"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">
 <!-- // ... -->
 <application
 android:networkSecurityConfig="@xml/
network_security_config"
 >
 <!-- // ... -->
 </application>
</manifest>

To test that it works, replace the BASE_ENDPOINT value in ApiConstants.kt with
this:

const val BASE_ENDPOINT = "http://api.petfinder.com/v2/"

Here, you changed the URL to use HTTP to test what happens when you send data
without encryption.

Build and debug the project in an emulator or device running Android N or newer.
You’ll see an error message in Debug that says CLEARTEXT communication to
api.petfinder.com not permitted, as shown below:

Figure 17.2 — CLEARTEXT Error Messages

That’s because Android blocked the calls so it won’t retrieve unencrypted data.
Because you’ve previously launched the app, you might still get some pre-cached pet
data.

Undo that change so the code is back to this:

const val BASE_ENDPOINT = "https://api.petfinder.com/v2/"

Build and debug the app. The app displays the data again, but this time without the
error — so you know it enforced TLS.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 399

Don’t stop now! There are a few more simple changes that will make your app more
secure.

Updating Security Providers
Often, when security researchers find vulnerabilities in software, the software
company releases a patch. It’s a good idea to make sure you’ve patched the security
provider for TLS. If you see an error such as, SSL23_GET_SERVER_HELLO:sslv3
alert handshake failure during your debugging, this usually means you need to
update the provider.

For more information about this procedure, see Android’s Update Your Security
Provider page: https://developer.android.com/training/articles/security-gms-
provider#patching.

Understanding Certificate and Public Key
Pinning
Now that you’ve taken the first steps in securing your data, take a moment to
consider how HTTPS works.

When you start an HTTPS connection, the server presents a certificate that verifies
it’s the real entity. This is possible because a trusted certificate authority (CA)
signed the certificate.

An intermediate authority might also have signed an intermediate certificate —
there can be more than one signature. The connection is secure as long as a root
certificate authority that Android trusts signed the first certificate. The Android
system evaluates that certificate chain and, if a certificate isn’t valid, it closes the
connection.

That sounds good, but it’s far from foolproof. There are many weaknesses that can
make Android trust an attacker’s certificate instead of one that’s legitimately signed.
For example, a company might have a work device configured to accept its own
certificate. Or hackers can manually instruct Android to accept their installed
certificate.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 400

This is called a man-in-the-middle attack — it allows the entity in possession of
the certificate to decrypt, read and modify the traffic.

Certificate pinning comes to the rescue by preventing connections when these
scenarios occur. It works by checking the server’s certificate against a copy of the
expected certificate.

Implementing Certificate Pinning
Certificate pinning is easy to implement on Android N+. Instead of comparing the
entire certificate, it compares the hash (more on this later) of the public key, often
called a pin:

Figure 17.3 — Certificate Pinning

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 401

To get the pin for the host you’re talking to, head to SSL Lab’s website: https://
www.ssllabs.com/ssltest/analyze.html. Type api.petfinder.com for the Hostname
field and click Submit:

Figure 17.4 — Insert Your Domain into the SSL Lab Website

On the next page, select one of the servers from the list:

Figure 17.5 — Select the Server

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 402

You’ll see there are two certificates listed; the second one is a backup. Each entry has
a Pin SHA256 value:

Figure 17.6 — Select the Server From

These values may change over time, so be sure to look them up before using them.
They’re the hashes of the public keys that you’ll add to the app.

Return to network_security_config.xml and add them right after the domain tag
for petfinder.com like this:

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config cleartextTrafficPermitted="false">
 <domain includeSubdomains="true">petfinder.com</domain>
 <!-- FROM HERE -->
 <pin-set>
 <pin
digest="SHA-256">U8zLlKBQLcRpbcte+Y0kpfoe0pMz+ABQqhAdPlPtf7M=</
pin>

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 403

 <pin
digest="SHA-256">JSMzqOOrtyOT1kmau6zKhgT676hGgczD5VMdRMyJZFA=</
pin>
 </pin-set>
 <!-- TO HERE -->
 </domain-config>
</network-security-config>

Note: There are many ways to get the public key hash. One alternative is to
download the certificate directly from the website and run OpenSSL
commands on it. Or, if you’re developing an app for a company, you can bug IT
for one. :]

Build and run, and you won’t see any changes. To test that everything works, change
any character other than = for each of the pin digest entries. Here’s an example:

<pin
digest="SHA-256">U8zLlT56PmiT3SR0WdFOR3dghwJrQ8yXx6JLSqTIRpk=</
pin>
<pin
digest="SHA-256">JSMzq7xBsOVe1PQRwOsHsw3bsGT2VzIqz5K+59sNQws=</
pin>

Build and run now and you’ll see an error that says something like
javax.net.ssl.SSLHandshakeException: Pin verification failed:

Figure 17.7 — Pin Verified Failed

Don’t forget to undo those changes! With that, you’ve added certificate pinning
support for Android N and higher… but what if your app needs to support versions
under N? You’ll handle this case next.

Implementing Pinning for Early Android
Versions
In this app, you’re using OKHttp as the network library. Fortunately, this library lets
you add pinning manually.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 404

Head to APIModule.kt and add this to provideOkHttpClient, where it reads TODO:
Add pinning for versions lower than M:

val hostname = "**.petfinder.com" //Double-asterisk matches any
number of subdomains.
val certificatePinner = CertificatePinner.Builder()
 .add(hostname, "sha256/
U8zLlKBQLcRpbcte+Y0kpfoe0pMz+ABQqhAdPlPtf7M=")
 .add(hostname, "sha256/
JSMzqOOrtyOT1kmau6zKhgT676hGgczD5VMdRMyJZFA=")
 .build()

This tells OKHttp to enable certificate pinning with the pins for petfinder.com. For
the hostname, one asterisk before the domain enables it for a single subdomain only.
A double asterisk enables it for any number of subdomains.

Next, add this right after the line that reads return OkHttpClient.Builder():

.certificatePinner(certificatePinner)

This tells the OkHttpClient builder to involve the interceptor when making a
connection. That will make sure the certificates match before completing the
connection.

There are some other solutions for different network libraries:

• TrustKit is a third party library that uses the same format in
network_security_config.xml to add support for versions under Android N. You
can find it here: https://github.com/datatheorem/TrustKit-Android.

• For implementations for other libraries or more information about certificate
pinning in general, see the OWASP documentation: https://www.owasp.org/
index.php/Certificate_and_Public_Key_Pinning.

While pinning is popular, some companies don’t like having to update their apps
from time to time with new pins as the old certificates expire. That’s a problem that
Certificate Transparency solves.

Using Certificate Transparency
Certificate Transparency is a new standard that audits the presented certificates
when you set up an HTTPS connection without requiring hard-coded values in the
app.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 405

When a CA issues a certificate, it must submit it to a number of append-only
certificate logs. Certificate Transparency has nearly real-time monitoring to
determine if someone has compromised the CA or if the CA issued the certificate
maliciously. The owner of the domain can scrutinize the entries, and your app cross-
checks the logs. The certificate is only valid if it exists in at least two logs.

When an entity revokes a certificate, you want to know about it immediately. You
can use Certificate Transparency on top of pinning for greater security, so you’ll add
it to your app next.

Implementing Certificate Transparency
In the app module build.gradle, add the following to the list of dependencies and
sync Gradle:

implementation
"com.appmattus.certificatetransparency:certificatetransparency-
android:1.1.1"

Go back to provideOkHttpClient in APIModule.kt and add this to the top of the
imports:

import
com.appmattus.certificatetransparency.certificateTransparencyInt
erceptor

Find the line that reads TODO: Add certificate transparency here and add the
following right under that line:

val ctInterceptor = certificateTransparencyInterceptor {
 // Enable for the provided hosts
 +"*.petfinder.com" //1 For subdomains
 +"petfinder.com" //2 asterisk does not cover base domain
 //+"*.*" - this will add all hosts
 //-"legacy.petfinder.com" //3 Exclude specific hosts
}

Here, you:

1. Enabled Certificate Transparency for the subdomains of petfinder.com.

2. Since an asterisk doesn’t cover the base domain in this case, you added it
explicitly.

3. Added a comment to exclude specific domains using -. That example would allow
all petfinder.com domains except the one starting with legacy.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 406

Then, add this to the OkHttpClient builder, after the line you previously added that
reads .certificatePinner(certificatePinner):

.addNetworkInterceptor(ctInterceptor)

Now the OkHttpClient builder will invoke both certificate pinning and certificate
transparency. You’ll be able to build and run the app without any issue.

Next, you’ll learn about a few more options that affect certificate checking.

Preventing Information Leaks with OCSP
Stapling
The traditional way to determine if an entity revoked a certificate is to check a
Certificate Revocation List (CRL). To do this, your app must contact a third party
to confirm the validity of the certificate, which adds network overhead. It also leaks
private information about the sites you want to connect with to the third party.

Online Certificate Status Protocol (OCSP) stapling comes to the rescue. When
you start an HTTPS request to the server using this method, the validity of the
server’s certificate is already stapled to the response.

OCSP stapling is enabled by default, but you can disable it or customize the behavior
of certificate revocation using PKIXRevocationChecker.Option. You can look at the
commented code inside ReportManager.kt’s init block for sample code, or visit the
documentation for PKIXRevocationChecker here: https://developer.android.com/
reference/kotlin/java/security/cert/PKIXRevocationChecker.Option.

With OCSP stapling, the server you’re connecting to can’t forge this info. That’s
because the CA signs that info ahead of time, and it’s why it doesn’t know which site
you want to access.

So what is signing? It’s a way to verify the data’s integrity. Even though your data is
encrypted, how do you know was authentic in the first place? Signing and
authentication help ensure the integrity of the information you send and receive
over the network.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 407

Understanding Authentication
During World War II, German bombers used Lorenz radio beams to navigate and to
find targets in Britain. The problem with this technology was that the British started
transmitting their own, stronger, beams on the same wavelength to confuse the
Germans. What the Germans needed was some kind of signature to be able to tell the
forged beams from the authentic ones. Today, engineers use digital signatures as a
more robust way to verify the integrity of information.

Digital signatures ensure that you’re the one accessing your health data, starting a
chat or logging into a bank. They also ensure no one has altered the data.

At the heart of a digital signature is a hash function. A hash function takes a
variable amount of data and outputs a signature of a fixed length. It’s a one-way
function, also known in math as a trap-door function. Given the resulting output,
there’s no computationally-feasible way to reverse it to reveal what the original
input was.

The output of a hash function is always the same if the input is the same. The output
is drastically different if you change even one byte or character. That makes it the
perfect way to verify that a large amount of data isn’t corrupted — you simply hash
the data and compare that hash with the expected one.

To authenticate that data is untampered, you’ll use Secure Hash Algorithm (SHA),
which is a well-known standard that refers to a group of hash functions.

Note: SHA1 hash functions are unsafe and should never be used, but anything
from the SHA-2 family, such as SHA-512, is recommended. For more
information about SHA, go here: https://en.wikipedia.org/wiki/
Secure_Hash_Algorithms.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 408

Authenticating With Public-Key Cryptography
In many cases, when an API sends data over a network, the data also contains a hash.
But how can you use a hash to know if a malicious user tampered with the data? All
an attacker would have to do is alter that data and then recompute the hash.

What you need is to add some secret information to the mix when you hash the data.
Developers call this kind of hash a signature. The attacker cannot recompute the
signature without knowing the secret. But how do both parties let each other know
what the secret is without someone intercepting it? That’s where Public-Key
Cryptography comes into the picture.

Public-Key Cryptography works by creating a set of keys, one public and one private.
The private key creates the signature, while the public key verifies it.

Given a public key, it’s not computationally feasible to derive the private key. Even if
malicious users know the public key, all they can do is to verify the integrity of the
original message. Attackers can’t alter a message because they don’t have the private
key to reconstruct the signature. The most modern way to do this is through
Elliptic-Curve Cryptography (ECC):

Figure 17.8 — Elliptic Curve Digital Signature Algorithm

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 409

Verifying Integrity With Elliptic-Curve
Cryptography
ECC is a new set of algorithms based on elliptic curves over finite fields. While the
math is out of scope for this chapter, you can read more about it here: https://
en.wikipedia.org/wiki/Elliptic-curve_cryptography.

You can use ECC for encryption, but in this chapter, you’ll use it for authentication,
known as Elliptic Curve Digital Signature Algorithm (ECDSA).

To start using ECDSA, open Authenticator.kt. This is a template that imports the
necessary key and factory classes that you can use to create your public and private
key pair.

Adding Public and Private Keys

Add a public key and private key just after the Authenticator class definition:

class Authenticator {

 private val publicKey: PublicKey
 private val privateKey: PrivateKey
 // ...
}

You need to initialize these keys, so right after the variables, add the init block:

class Authenticator {
 // ...
 init {
 val keyPairGenerator = KeyPairGenerator.getInstance("EC") //
1
 keyPairGenerator.initialize(256) // 2
 val keyPair = keyPairGenerator.genKeyPair() // 3

 // 4
 publicKey = keyPair.public
 privateKey = keyPair.private
 }
 // ...
}

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 410

Here’s what you did in this code:

1. Created a KeyPairGenerator instance for the Elliptic Curve (EC) type.

2. Initialized the object with the recommended key size of 256 bits.

3. Generated a key pair, which contains both the public and private key.

4. Set the publicKey and privateKey variables of your class to those newly-
generated keys.

Adding the Sign and Verify Methods

To complete this class, update the sign and verify methods. Replace the contents of
sign() with this:

class Authenticator {
 // ...
 fun sign(data: ByteArray): ByteArray {
 val signature = Signature.getInstance("SHA512withECDSA") //
1
 signature.initSign(privateKey) // 2
 signature.update(data) // 3
 return signature.sign() // 4
 }
 // ...
}

This method takes in a ByteArray and:

1. Gets an ECDSA instance using the recommended hash type of SHA-512.

2. Initializes Signature with the private key for signing.

3. Adds the ByteArray data.

4. Returns a ByteArray signature.

Next, you’ll need a way to verify data given a public key you receive. Replace the last
verify() in the class with the following:

class Authenticator {
 // ...
 fun verify(signature: ByteArray, data: ByteArray,
publicKeyString: String): Boolean {
 val verifySignature =
Signature.getInstance("SHA512withECDSA")
// 1
 val bytes = android.util.Base64.decode(publicKeyString,

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 411

 android.util.Base64.NO_WRAP)
 val publicKey =

KeyFactory.getInstance("EC").generatePublic(X509EncodedKeySpec(b
ytes))
 verifySignature.initVerify(publicKey) // 2
 verifySignature.update(data) // 3
 return verifySignature.verify(signature) // 4
 }
 // ...
}

This code:

1. Converts a Base64 public key string into a PublicKey object.

2. Initializes the Signature with the public key for verification.

3. Updates the Signature with your data.

4. Performs the verification. The method returns true if the verification succeeds.

Base64 is a format that allows you to pass raw data bytes over the network as a
string. You can read more about it here: https://en.wikipedia.org/wiki/Base64.

Update the helper function to convert the key object into a String by replacing
publicKey() with the following:

class Authenticator {
 // ...
 fun publicKey(): String {
 return android.util.Base64.encodeToString(publicKey.encoded,
android.util.Base64.NO_WRAP)
 }
}

Now that you have an Authenticator, you’ll use it to sign requests to the report
server.

Why You Sign a Request

The PetSave app uses test code to simulate connecting to the pet report server via a
back-end API. Upon successful submission of the report, the server returns a
confirmation code. For your privacy, the test code doesn’t really send your data
anywhere. It’s just a simulation. :]

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 412

In the previous chapter, you created an app login session that authenticates your
credentials by using a fingerprint or a device passcode. This ensured that only you
could access the app’s data stored on the device. It created a unique token, protected
by the device’s keystore, that’s only accessible upon authenticating on your device.

Now, you’ll use that token to log in to the Pet Reporter server. The app will send your
token and public key to the server before you can access the report endpoints.

Once the server knows who you are, the app needs to sign its requests to the Send
Report endpoints to use them successfully. That way, the server authenticates that
only you are accessing the endpoints.

How to Build the Signature

Open MainActivity.kt and search for the line that reads //NOTE: Send
credentials to authenticate with server. Here, you’ve logged in to the server
with your token and public key. Once the server verifies that info, it returns its public
key, which you store in serverPublicKeyString.

When signing a request, it’s common to take selected parts of the request — such as
HTTP Headers, GET or POST parameters — and the URL and join them into a string.
You use that string to create the signature. On the back end, the server repeats the
process of joining the strings and creating a signature. If the signatures match, it
proves that the user must have possession of the private key. No one can
impersonate the user because they don’t have that private key.

Since specific parameters of the request are part of the string, it also guarantees the
integrity of the request by preventing attackers from altering the request
parameters. For example, a bank wouldn’t be happy if attackers could alter the
destination account number for a money transfer or alter the mailing address to
receive the victim’s credit card statements in the mail.

For your next step, you’ll create a signature for the request to send the report.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 413

Creating the Signature

Back in ReportDetailFragment.kt, add the following code to
sendReportPressed(), just under the line that reads //TODO: Add Signature
here:

val stringToSign = "$REPORT_APP_ID+$reportID+$reportString" // 1
val bytesToSign = stringToSign.toByteArray(Charsets.UTF_8) // 2
val signedData =
mainActivity.clientAuthenticator.sign(bytesToSign) // 3
requestSignature = Base64.encodeToString(signedData,
Base64.NO_WRAP) // 4

Here’s what this code does:

1. Concatenates the parameters for the request string.

2. Converts the string into a ByteArray.

3. Signs the bytes using your private key and returns the signature bytes.

4. Turns the signature bytes into a Base64 string that you can easily send over the
network.

Now that you’ve created a signature, you’ll verify that it worked.

Verifying the Signature

To verify that your signature is correct, head to ReportManager.kt and look at
sendReport(). You’ll find simulated server code that calls
serverAuthenticator.verify.

Debug and run to check that it worked. Set a breakpoint on the if (success) { line
to check that success is true:

Figure 17.9 — Server Authentication Success

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 414

To test what happens when there are problems, alter the data the server receives.
Add the following right after val bytesToVerify =
stringToVerify.toByteArray(Charsets.UTF_8):

bytesToVerify[bytesToVerify.size - 1] = 0

The above line of code replaces the last byte of the data with 0.

Debug and run again. This time success is false:

Figure 17.10 — Server Authentication Failed

You just secured your data with a signature. Don’t forget to remove that test line you
just added!

Authenticating the Response

Now that the server has authenticated the report, you also want to authenticate the
response so you know the confirmation code, or any other communication from the
server, is legitimate. Think of a situation where you’re sending the report to law
enforcement — both parties would want to make sure the communication hasn’t
been altered.

Just as you provided your public key when you registered with the reporting service,
the reporting service passed its public key back. A chat app might use the same
setup, for example, where each user might exchange public keys upon initiating a
chat session.

In this case, however, you’ll use the server’s public key to verify the report data that
the server returned. Back in ReportDetailFragment.kt, replace success = true
right after the line that reads TODO: Verify signature here in
sendReportPressed():

// 1
val serverSignature = it["signature"] as String
val signatureBytes = Base64.decode(serverSignature,
Base64.NO_WRAP)

// 2
val confirmationCode = it["confirmation_code"] as String

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 415

val confirmationBytes =
confirmationCode.toByteArray(Charsets.UTF_8)

// 3
success =
mainActivity.clientAuthenticator.verify(signatureBytes,
 confirmationBytes, mainActivity.serverPublicKeyString)

Here’s what you did:

1. Retrieved the signature string and converted it to bytes.

2. Obtained the result data — the confirmation code.

3. Verified the result data with the signature from the server.

Testing Your Authentication

To test that it worked, set a breakpoint on the if (success) { line inside
onReportReceived(). Build and debug to see the result in the Debug tab.

Figure 17.11 — Authentication Success

Alter the request data to see what happens. Add the following code right before
calling clientAuthenticator.verify() in sendReport() in the
ReportManager.kt file:

confirmationBytes[confirmationBytes.size - 1] = 0

Build and run. This time, success is false in the Debug tab:

Figure 17.12 — Authentication Failed

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 416

Congratulations! You’ve secured both sides of the communication. Don’t forget to
remove the test code that makes it fail. You should also be aware of a few other
standards when it comes to authentication:

• RSA is a popular and accepted standard. Its key sizes must be much larger, such as
4096 bits, and key generation is slower. You might use it if the rest of your team is
already familiar with or using this standard.

• HMAC is another popular solution that, instead of using public-key cryptography,
relies on a single shared key. You must exchange the secret key securely.
Developers use HMAC when speed considerations are very important.

• OAuth is a standard to delegate access so users can grant a service access to their
information without revealing their password. You used it in previous chapters to
perform basic authentication with the petfinder.com API. PetFinder uses this to
control its API use by weeding out botting and abuse by spammers. Read more
about it here: https://developer.android.com/training/id-auth/authenticate.html.

• The Account Manager is a centralized helper for user account credentials so your
app doesn’t have to deal with user passwords directly. Read more about it here:
https://developer.android.com/reference/android/accounts/AccountManager.html.

End-to-end Encryption
While you’ve secured your connection to a server, the server decrypts the data once
it arrives. Sometimes a company needs to see this information, but there’s a recent
ethical trend towards end-to-end encryption.

An example of end-to-end encryption is a chat app where each user begins by
exchanging their public key. Then when a user, Alice, wants to send a message to
Bob, she encrypts the message using Bob’s public key, which she received. Bob then
decrypts the message using his private key. Only the sender and receiver have the
private keys to decrypt each others’ messages.

The chat service never receives the private keys; it has no way of knowing what the
content is. This is a proactive way to avoid liability during a server-side data breach
or compromise.

To learn more about implementing this approach, a good place to start is the open-
source Signal App GitHub repo: https://github.com/signalapp.

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 417

Key Points
In this chapter, you discovered that you should:

• Always use HTTPS instead of HTTP.

• Enable certificate transparency, certificate pinning or both for maximum security.

• Authenticate your network requests.

Where to Go From Here?
Here are some other points about network safety:

• Google has a network security testing tool to help you spot cleartext traffic or
other connection vulnerabilities in your app. Visit nogotofail for more info:
https://github.com/google/nogotofail.

• For more security tools, check out the SafetyNet API, which includes safe
browsing, integrity and reCAPTCHA to protect your app from spammers, phishing
URLs and other malicious traffic. Find it here: https://developer.android.com/
training/safetynet/attestation.

You’ve been securing and verifying the integrity of the data, but that’s not a
replacement for regular data validation checks like type and bounds checking.

For example, if you expect a string of 256 characters or less in the network response,
you should still check for that. If the server expects a parameter with only numbers,
you’d want to sanitize that output.

This is called app hardening, and it’s what the next chapter is all about!

Real-World Android by Tutorials Chapter 17: Securing Data in Transit

raywenderlich.com 418

18Chapter 18: App
Hardening
By Kolin Stürt and Antonio Roa-Valverde

As network communications and OSs become more secure, hackers have shifted
their focus from basic eavesdropping to attacking devices and apps. In the previous
chapters, you’ve secured your data in transit and at rest. Now, to protect your app
from these additional kinds of attacks, you need to understand and use app
hardening effectively.

From minimizing pointer use to null safety and type checks, Kotlin is a great
language for secure development. So much so that it’s tempting to forget about
secure coding altogether. However, even Kotlin has vulnerabilities that you need to
protect your app against.

In this chapter, you’ll learn how to:

• Avoid code vulnerabilities.

• Validate input and sanitize output.

• Perform integrity checking.

Right now, the app has an overflow of code vulnerabilities which you’ll eventually
fix!

raywenderlich.com 419

Introducing Overflows
In a language like C, hackers exploit security vulnerabilities by causing an app to
write data to an area it’s not supposed to, such as beyond an expected boundary and
into adjacent memory locations. That’s called an overflow, and it can overwrite
important data.

In certain environments, this can be an area that contains code the device executes,
giving attackers a way to maliciously change a program. Bug bounty hunters refer to
it as “gaining arbitrary code execution”. It’s a very important preoccupation for
them.

Figure 18.1 — Overflow Explained

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 420

One example of an overflow in Kotlin is when a recursive function ends up in an
infinite loop. Because the size of the stack runs out, you’ll get a StackOverflow
exception.

Note: You can read more about stacks at https://
www.programmerinterview.com/data-structures/difference-between-stack-
and-heap/.

Kotlin provides safety modifiers, such as tailrec, which help avoid the chances of a
stack overflow by adding rules and throwing an error if you break them. The rules
are:

• The last operation of the function can only call itself.

• There cannot be more code after a recursive call.

• Use within try/catch/finally blocks is prohibited.

These rules are especially helpful when your implementation changes later and you
forget to check that it’s still safe.

To implement this, open Timing.kt and add tailrec, right after the private modifier
in the method definition of factorial. Your modified method definition should look
like this:

private tailrec fun factorial(number: Int, accumulator: Int = 1)
: Int {

You’ve just added a safety modifier, but Android Studio also provides important
security warnings for potential overflows.

Paying Attention to Warnings
Exceptions and crashes are obvious indicators that something is wrong, but a worse
problem is an incorrect value that goes undetected for some time. This is what
happens with an integer overflow. Kotlin doesn’t throw an exception for a signed
integer overflow. Instead, the app continues with the wrong values!

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 421

The good news is that Android Studio detects most integer overflows at compile
time. To see how this looks, open ReportDetailFragment.kt and look at the warning
by hovering over REPORT_APP_ID * REPORT_PROVIDER_ID on the line right under
the //Add Signature comment.

Figure 18.2 — Warnings Are Important

Regular numbers defined like this are integers, but multiplying them exceeded the
maximum size of the container. That’s why it’s a best security practice to treat
warnings as errors.

At the top of the file, replace REPORT_APP_ID and REPORT_PROVIDER_ID with the
following:

private const val REPORT_APP_ID = 46341L
private const val REPORT_PROVIDER_ID = 46341L

You’ve now added L to the end of the numbers, which defines them as Long and fixes
the warning. That’s because Long is a number that can hold a much larger value.

Note: You can read more about Long here: https://kotlinlang.org/api/latest/
jvm/stdlib/kotlin/-long/index.html.

Another vulnerable area is when your app interacts with languages that use pointers.
Pointers allow you to access raw memory locations, making it easier to read and
write to the wrong area.

Kotlin is much safer than many languages because it mostly does away with pointers,
but it still allows you to interface with C using CPointer and COpaquePointer.

Note: You can read more about interoperating with C in Kotlin on the official
website: https://kotlinlang.org/docs/reference/native/c_interop.html.

If you’ll be working with NDK, it’s extremely important to do bounds checking on the
input to make sure it’s within range. Avoid unsafe casts using .reinterpret()
or .toLong() and .toCPointer().

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 422

Because attackers can manipulate data in your app, another possible place for
vulnerabilities is when your app passes data to a server for further processing. To
make sure this is secure, you should sanitize all data that leaves your app.

Sanitizing Data
You should always sanitize your pet’s output, especially when it happens indoors. If
your app sends the data in text fields to a server, then sanitizing it reduces the
potential for an attack. The most basic technique is to limit the amount of input that
you can enter into your fields. This reduces the likelihood that a specific code
snippet or payload can get through.

To do this, open activity_main.xml and make sure you’re in the XML editing view.
Add the following to the first EditText element, which has the ID login_email:

android:maxLength="254"

This states that mail addresses can have a maximum of 254 characters. Now, open
fragment_report_detail.xml and add the following to the EditText field, which has
the ID details_edtxtview:

android:maxLength="512"

You now made the maximum character limit 512 for the report. Finally, add this to
the next EditText, with the ID category_edtxtview:

android:maxLength="32"

This sets the maximum category length to 32 characters.

Try out your changes by building and running the app and entering a large amount
of text into the category field.

Next, you’ll want to remove characters that are dangerous for the language that your
server uses. This prevents command injection attacks — when you pass data to an
environment that should store it, but instead executes the data as commands. The
app’s underlying datastore uses an SQLite database, while the report server is SQL.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 423

Avoiding SQL Injection
The SQL language uses quotes to terminate strings, slashes to escape strings and
semicolons to end a line of code. Attackers use this to terminate the string early and
then add commands.

For example, you could bypass a login by entering ') OR 1=1 OR (password LIKE
'* into the text field. That code translates to “where password is like anything”,
which bypasses the authentication altogether!

One solution is to escape, encode or add your double quotes in code. That way, the
server sees quotes from the user as part of the input string instead of a terminating
character. Another way is to strip out those characters — which is what you’re going
to do next.

Stripping Out Dangerous Characters

Find sendReportPressed() in ReportDetailFragment.kt, then add the following
below the line that reads //TODO: Sanitize string here:

reportString = reportString.replace("\\", "")
 .replace(";", "").replace("%", "")
 .replace("\"", "").replace("\'", "")

This strips the vulnerable characters from the string.

Test that it works by building and debugging the app, then entering some illegal
characters in the report field. Set a breakpoint after the line you just added and send
the report. Notice reportString removes those characters.

Note: If you’re also developing the server-side code, clauses such as LIKE and
CONTAINS allow wild cards that you should avoid. Doing this prevents
attackers from getting a list of accounts when they enter a* for the account
name, for example. If you change the LIKE clause to ==, the string has to
literally match a*.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 424

More Sanitization Tips

Only you will know what the expected input and output should be, given the design
requirements, but here are a few more points about sanitization:

• Dots and slashes may be harmful if they’re passed to file management code. A
directory traversal attack is when a user enters ../, for example. This lets them
view the parent directory of the path instead of the intended sub-directory.

• If you’re interfacing with C, one special character is the NULL terminating byte,
which pointers to C strings require. This lets attackers manipulate the string by
introducing a NULL byte. The attacker might want to terminate the string early if
there was a flag such as needs_auth=1 removing it and allowing access without
authorisation.

• HTML, XML and JSON strings have their own special characters. Make sure to
encode special characters from the user input so attackers can’t instruct the
interpreter:< must become <.> should be >.& should become &.Inside
attribute values, any ” or ’ need to become " and &apos, respectively.

• You can find more information about URL encoding at https://
developer.android.com/reference/kotlin/java/net/URLEncoder and more about
escaping at https://developer.android.com/guide/topics/resources/string-
resource#FormattingAndStyling.

Just as it’s important to sanitize data before sending it out, you shouldn’t blindly
trust the input your app receives, either. The best practice is to validate all input to
your app.

Validating Input
Subconsciously, pets are constantly validating their environment for danger,
sometimes in better ways than humans. While we may not be as equipped to validate
danger in the wild, at least we can add validation to our apps.

As well as removing special characters for the platform you’re connecting with, you
should only allow the correct format for the type of input required. Right now, users
can enter anything into the email field.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 425

Validating Emails
To fix this, navigate to DataValidator and add a regular expression definition just
after the companion object { line:

private const val EMAIL_REGEX = "^[A-Za-z0-9._%+\\-]+@[A-Za-
z0-9.\\-]+\\.[A-Za-z]{2,4}$"

That makes sure emails have a format of test@example.com. Now, add the
following right after that line:

fun isValidEmailString(emailString: String): Boolean {
 return emailString.isNotEmpty() &&
Pattern.compile(EMAIL_REGEX).matcher(emailString).matches()
}

This method verifies an email address via that regular expression. Finally, go back to
MainActivity and import your new method:

import
com.realworld.android.petsave.core.utils.DataValidator.Companion
.isValidEmailString

Then find // TODO: Replace this with email check inside loginPressed().
Replace the line below it with the following:

var success = false
val email = login_email.text.toString()
if (isSignedUp || isValidEmailString(email)) {
 success = true
} else {
 toast("Please enter a valid email.")
}

Here, you perform email validation before the user can sign up. Test it by deleting
the app to remove the previous login, then building and running it again. Enter an
invalid email such as my.invalid.email and press SIGN UP. You’ll see that the email
address fails:

Figure 18.3 — Invalid Email

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 426

Designing by Contract
If you’re expecting specific kinds of characters, such as numbers, you should check
for this. Some methods that are helpful include:

• Char.isLetterOrDigit(): Boolean

• Char.isLetter(): Boolean

• Char.isDigit(): Boolean

• String‘s length method

For example, if your server expects a string of 32 characters or less, make sure that
the interface will only return up to and including 32 characters.

This is a good programming practice called design by contract, where the inputs
and outputs of your methods satisfy a contract that defines specific interface
expectations.

You’ve hardened the text inputs of your app, but it’s a good idea to make an
inventory of all input to your app. The app allows the user to upload a photo. Right
now, you could attach a photo containing malware! You’ll fix that now.

Validating Photos
Add the following to the end of the companion object in DataValidator:

fun isValidJPEGAtPath(pathString: String?): Boolean {
 var randomAccessFile: RandomAccessFile? = null
 try {
 randomAccessFile = RandomAccessFile(pathString, "r")
 val length = randomAccessFile.length()
 if (length < 10L) {
 return false
 }
 val start = ByteArray(2)
 randomAccessFile.readFully(start)
 randomAccessFile.seek(length - 2)
 val end = ByteArray(2)
 randomAccessFile.readFully(end)
 return start[0].toInt() == -1 && start[1].toInt() == -40 &&
 end[0].toInt() == -1 && end[1].toInt() == -39
 } finally {
 randomAccessFile?.close()
 }
}

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 427

For the JPEG format, the first two bytes and the last two bytes of a valid image are
always FF D8 and FF D9. This method checks for that.

To implement it, navigate to ReportDetailFragment and import the method you
just added:

import
com.realworld.android.petsave.core.utils.DataValidator.Companion
.isValidJPEGAtPath

Then find showFilename() and replace its complete implementation with the
following:

val isValid = isValidJPEGAtPath(decodableImageString)
if (isValid) {
 //get filename
 val fileNameColumn =
arrayOf(MediaStore.Images.Media.DISPLAY_NAME)
 val nameCursor =
activity?.contentResolver?.query(selectedImage, fileNameColumn,
 null, null, null)
 nameCursor?.moveToFirst()
 val nameIndex = nameCursor?.getColumnIndex(fileNameColumn[0])
 var filename = ""
 nameIndex?.let {
 filename = nameCursor.getString(it)
 }
 nameCursor?.close()

 //update UI with filename
 upload_status_textview?.text = filename
} else {
 val toast = Toast.makeText(context, "Please choose a JPEG
image", Toast
 .LENGTH_LONG)
 toast.show()
}

The first line calls the photo check when the user imports a photo, validating if it’s a
valid JPEG image file.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 428

More About Validating Input
Here are a few more tips for validating input:

• Be careful when displaying an error alert that shows a message directly from the
server. Error messages could disclose private debugging or security-related
information. The solution is to have the server send an error code that the app
looks up to show a predefined message.

• An overlooked area for input is inside deep link or URL handlers. Make sure input
data fits expectations and that it’s not used directly. You shouldn’t allow a user to
enter info that manipulates your logic. For example, instead of letting the user
choose which screen in a stack to navigate to by index, allow only specific screens
using an opaque identifier, such as t=qs91jz5urq.

• Check out Android’s input validation tips: https://developer.android.com/training/
articles/security-tips#InputValidation.

Another vulnerability that developers often overlook is serialized and archived data
from storage. You’ll address that next with null and type checks.

Nullability and Safety Checks
Does nothing exist? Or does it exist only in reference to something tangible? How
can you divide several things among no things? These are the concepts that our pets
surely contemplate while we’re away working. Okay, well, maybe not since nothing is
a concept tied to language, and in the Kotlin language, the closest relative is null. To
write solid code, it’s important to understand the concept of null.

Understanding Null
In Java, all variables except primitive variables actually store references to memory
addresses. Because they’re references, you can set the variables to null.

When the system expects a valid reference but receives null instead, it throws a
NullPointerException, or NPE for short. If you haven’t implemented exception
handling, the app questions the nature of reality, and then crashes.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 429

Kotlin aims to be a safer language. As you know, variables are non-null references —
you can’t set them to null. However, you can make variables nullable by adding ? to
the end of the variable. So Kotlin attempts to eliminate NPEs but not do away with
them entirely.

The best practice is to start with non-null variables at the narrowest possible scope.
You should only change the variable to nullable or move it to a broader scope if
absolutely necessary.

NPEs can cause security vulnerabilities, especially when they happen in security-
related code or processes. If attackers can trigger an NPE, they might be able to use
the resulting exception to bypass security logic or cause the app to reveal debugging
information that’s valuable in planning attacks. NPEs are also security
vulnerabilities if sensitive files aren’t cleaned up before the process terminates.

Checking Stored Data
Open UserRepository.kt and look at createDataSource. Notice the code assumes
that the stored data exists and is uncorrupted. You’ll change that now.

Replace the declaration of users inside createDataSource with the following:

val users = try { serializer.read(Users::class.java,
inputStream) } catch (e: Exception) {null}

The code above catches exceptions when the data is read into User. To prevent
overuse, Kotlin discourages exceptions in favor of better flow control. For the most
part, a better approach is to use safety checks because they make methods resilient
to errors. The method contains the failure instead of propagating it outside the
method, which can become an app-wide failure.

Replace everything after the try/catch you just added with this:

users?.list?.let { // 1
 val userList = ArrayList(it) as? ArrayList // 2
 if (userList is ArrayList<User>) { // 3
 val firstUser = userList.first() as? User
 if (firstUser is User) { // 4
 firstUser.password = Base64.encodeToString(password,
Base64.NO_WRAP)
 val fileOutputStream = FileOutputStream(outFile)
 val objectOutputStream =
ObjectOutputStream(fileOutputStream)
 objectOutputStream.writeObject(userList)
 // 5
 objectOutputStream.close()

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 430

 fileOutputStream.close()
 }
 }
}
inputStream.close()

Here, you:

1. Added null checks for the user list.

2. Used a safe cast to make sure the instance type is what you expected.

3. Made sure the ArrayList contains User objects.

4. Added an extra check to ensure firstUser is really a User object.

5. Made sure to clean up resources after use.

Adding sanity checks around your code is called Defensive Programming — the
process of making sure your app still functions under unexpected conditions.

Note that in step two you removed !!. That’s Kotlin’s non-null assertion operator
that force-casts a nullable variable to a non-null one. But if the variable is null, you’ll
get an NPE! That’s why in most cases, !! is dangerous to use. As the complexity of a
program increases, the edge cases that you originally thought would never happen,
start to happen. In a way, the double exclamation mark is Kotlin yelling at you not to
use it often!! :]

If you use !!, declare and initialize the !! variable right before you use it to reduce
its scope. Use each variable for exactly one purpose. That way there’s less chance
that other parts of the code will set that variable to null.

More Tips for Using Nullability and Safety
Checks
Here are a few other best practices to keep in mind:

• Avoid unclear optionals. Write clear and consistent class interfaces as opposed to
ones that require a magic combination of parameters.

• Don’t make assumptions about how other developers will use a function. If you
have to pass null into the class constructor to initialize some internal state, it’s a
good indicator that the class is too specific and aware of its current use.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 431

• Don’t depend on knowledge of private implementation like not calling
a.initialize() because you know a.execute() will lazy-initialize if it needs to.
Maybe it won’t in the future, and then you’ll get an NPE.

• Isolate nullable operations into a single method or class. That way, you don’t have
to strew ? in many places throughout your code.

You’ve now gotten through all the best practices for nullability in Kotlin. Although
Kotlin is safer than Java, you won’t always work with a pure Kotlin app. An example
is legacy code that’s too expensive to change — plus, some teams simply prefer Java.

Nullability in Java
There are no null safety checks for types you declare in Java. Types coming from Java
subvert the checking system!

The best practice is to treat all variables coming from Java as nullable in your Kotlin
code. To avoid unnecessary refactoring, another solution is to update Java methods
to include nullability annotations.

Annotations don’t alter any existing logic but, instead, tell the Kotlin compiler about
nullability. The two important annotations are @Nullable and @NotNull.

While it’s sometimes acceptable to return null on an error, using null to represent a
state is problematic. Variables shouldn’t have hidden or double meanings. A worse
example is an Int? that stores the number of logged-in users unless it’s null, which
then means the app is in maintenance mode.

Say you have a method that returns ByteArray. Another solution is to have it return
an empty ByteArray on failure instead of null. This is Failsafe Programming —
where you return a default or safe value that causes minimal harm if something goes
wrong.

Depending on your design requirements you’ll want to consider whether your app
should be robust or correct. For example, if your app shows the temperature outside
and the value is null during one of the iterations, you’d use a safe value or skip that
iteration and show the previous reading.

On the other hand, if your app controls factory equipment, you’d want to
immediately abort whenever your app finds an incorrect value!

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 432

Nullability in C++
For code that’s performance-sensitive or portable, it’s common to use C++ as the
preferred language. C++ is powerful because it allows you to work with memory
pointers. Here are a few points about pointers:

• As with references, you can set a pointer to null.

• C++ doesn’t offer nullability annotations like Java does. Instead, document your
functions well by stating whether the parameters and return values can be null or
not.

• In normal cases, you set a pointer to null when you’re finished with it, and don’t
store or return pointers for later use. That allows you to work with the pointer only
while it’s valid.

• The true native meaning of null is actually a zero. Zero was late to the party in
computational systems, arriving only after 5,000BC. It was null before that. :]

You’ve done a lot to harden the app where the logic and flow is obvious. But there
are cases where intermittent and unexpected states can appear, and that’s usually
due to concurrent code.

Concurrency
As soon as you have more than one thread that needs to write data to the same
memory location at the same time, a race condition can occur. Race conditions
cause data corruption.

For instance, an attacker might be able to alter a shared resource to change the flow
of security code on another thread. In the case of authentication status, an attacker
could take advantage of a time gap between when a flag is checked and when it’s
used. Wikipedia has a good explanation of the issue: https://en.wikipedia.org/wiki/
Time_of_check_to_time_of_use.

Open ReportDetailFragment and find sendReportPressed(), then search for the
code that tracks ReportTracker.reportNumber. Notice it’s set before the network
call and read after the network fires a callback. Because network calls are
asynchronous, if users repeatedly press the SEND REPORT button, they’ll cause the
report number to fall out of sync.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 433

Add an if (!isSendingReport) { check right at the beginning of the method so
that the entire body is inside that check. This follows the best practice of designing
your classes so that you don’t need to implement special concurrency-related code.

Other best practices are to use high-level frameworks like Kotlin coroutines or use
thread confinement — where the logic exists only in one thread.

Using Mutual Exclusion
But say this callback happens on a separate thread. The way to avoid those race
conditions is to synchronize the data. Synchronizing data means locking it so only
one thread can access that part of the code at a time, called mutual exclusion.

Add the following right above the definition for the isSendingReport variable:

@Volatile

In Kotlin, @Volatile is an annotation for atomic. Keep in mind it only secures linear
read/writes, not actions with a larger scope. Making a variable atomic doesn’t make it
thread-safe. You’ll do that now for the reportNumber variable.

Making Variables Thread-safe
Find the reportNumber definition and replace it with the following:

var reportNumber = AtomicInteger()

An atomic variable is one where the load or store executes with a single instruction.
It prevents an attacker from slipping steps in between the save and load of a security
flag.

Navigate to sendReportPressed() and find the line that reads
ReportTracker.reportNumber++, then replace it with the following:

synchronized(this) {
 ReportTracker.reportNumber.incrementAndGet()
}

Now, inside onReportReceived, replace the line that sets the report variable:

synchronized(this) { //Locked.
 report = "Report: ${ReportTracker.reportNumber.get()}"
}

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 434

You’ve now synchronized reportNumber between two threads. Build and run the
app. Try pressing the SEND REPORT button multiple times and notice you can only
send one report at a time.

More About Synchronization
Here are a few more tips about synchronization:

• Keep synchronization code in one place. It’s hard to remember which places
you’ve synchronized if you’ve scattered those locations all around your code.

• A good way to do this is by using accessor methods. By using only getter and setter
methods and only using them to access synchronized data, you can do everything
in one place. This avoids having to update many parts of your code when you’re
changing or refactoring it.

• Good interface design and data encapsulation are important when designing
concurrent programs. They ensure you protect your shared data. It’s pointless to
have synchronization inside a class when its interface exposes a mutable object to
the shared data. Instead, mark synchronized variables as private and return
immutable variables or copies to the data.

• It’s good for code readability to write your methods with only one entry and one
exit point, especially if you add locks later. It’s easy to miss a return hidden in the
middle of a method that was supposed to lock your data later. Instead of return
true, for example, you can declare a Boolean, update it along the way and then
return it at the end of the method.

You’ve taken all these steps to harden your app against malicious attackers. But it’s
also good to know when your app is under attack.

Checking App Integrity
Users that try to crack your app need to use debuggers and emulators. You can often
detect these states and monitor or reject those users, which is known as integrity
checking. Since spammers use these tools, it helps keep them out of your app too!

Open up WatchDog.kt and check out the various methods; each looks for tell-tale
signs someone has altered the environment. They check if popular emulators are
running, or if the device is rooted by the existence of super-user features and
privileges.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 435

It’s not fool-proof and sometimes you can get false positives. If keeping up to date
with the latest changes is tiring, there are also third-party solutions that you can add
to the mix:

• Find an open-source solution called Rootbeer here: https://github.com/scottyab/
rootbeer.

• If you’re already using Fabric or Firebase Crashlytics, call
CommonUtils.isRooted(context).

• GuardSquare, the makers of ProGuard, have a commercial solution called
DexGuard that provides app and device integrity checking. It also encrypts classes,
strings, assets and resources to thwart reverse-engineering. Check it out here:
https://www.guardsquare.com/en/products/dexguard.

• You can also use Google’s SafetyNet Attestation API. It includes device integrity
checking, a Safe Browsing API to check for malicious URLs and a reCAPTCHA API
to protect your app from spammers and other malicious traffic. Find it here:
https://developer.android.com/training/safetynet/attestation.

Key Points
In this chapter, you covered all the major areas for hardening your app. Here’s a
summary of the most important points:

• Make sure to sanitize all input and output for the app.

• Adding native code increases the app’s attack surface in regards to pointer and
buffer vulnerabilities.

• If you’re not using high-level concurrency APIs, you need to synchronize or use
locks around the shared data.

• Use integrity checking if your app is susceptible to spammers or malicious users.

There’s no such thing as a perfectly secure app. There are always changes and you’ll
find new bugs along the way. That’s why a big part of designing a robust app comes
from the feedback after your release regarding user experience, bugs and crashes.

In the following chapters, you’ll switch gears to look at your release, including how
to analyze it and handle debugging and lifecycle considerations.

Real-World Android by Tutorials Chapter 18: App Hardening

raywenderlich.com 436

Section V: Maintaining Your
App

When you’re developing your real world app, you might think that publishing is your
end goal. But really, your work isn’t over just because you’ve released your app. You
still need to understand if your app is working properly and what problems your
users are experiencing.

In this section, you’ll learn everything you need to know about maintaining and
controlling your app after it’s published and available to users. In particular, you’ll
learn how to use Firebase for logging crashes, how to enable or disable certain
features and how to use A/B tests to understand what solution is the best for your
users.

Finally, you’ll see how to optimize your app’s size and how to use Android Studio as a
profiling tool.

After reading this section, you’ll be ready to use all the available tools for improving
your app’s quality.

raywenderlich.com 437

19Chapter 19: Firebase
Integration
By Subhrajyoti Sen

Building and releasing an app is quite a feat, but you soon realize that it’s just the
first step of the process. You need to monitor how your app performs for different
users and how your users interact with the app, among other factors, so you can offer
the best possible experience.

Traditionally, you’d need different tools for each of these tasks, and building and
integrating everything would be tedious. Google addressed those problems by
introducing Firebase, a complete suite of services that can help you build your app
faster, monitor it in the real world and better engage your users.

In this section, you’ll learn how to use:

1. The Firebase Console to set up Firebase for your project.

2. Crashlytics to detect and understand app crashes.

3. Remote Config to add dynamic content to your app.

4. Test Lab to perform different tests across a wide range of devices.

You’ll start at the beginning: getting Firebase ready to use.

raywenderlich.com 438

Setting up Firebase
To set up Firebase, you first need to create a new project at https://
console.firebase.google.com. Log in using a Google Account and you’ll see the
Firebase Console. Firebase will prompt you to create a new project, as shown below:

Figure 19.1 — Creating a Firebase Project

Creating a Firebase Project
Clicking Create a project will bring you to the Create a project page. You’ll see a
prompt to provide a project name, as shown below. Enter PetSave.

Figure 19.2 — Insert Firebase Project Name

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 439

Click Continue. Next, you’ll get an option to enable Google Analytics for your
project. Disable Google Analytics, since you won’t use it in this project.

Figure 19.3 — Google Analytics Configuration

Once done, click Create Project and Firebase will get to work. When it finishes
creating your project, click Continue.

Registering an App
Now that you’ve created your project, you’ll see an option to add Firebase to your
app, as shown below:

Figure 19.4 — Adding Firebase to Your App

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 440

Click the Android icon and the Add Firebase to your Android app page will appear.
First, you need to add the package name of your app. For this project, the package
name is com.realworld.android.petsave.

Note: You can find the package name in the app build.gradle, as the
applicationId value.

Skip the next two input fields; you won’t need them for this chapter.

Figure 19.5 — Register Your App

Click Register app. Next, click Download google-services.json and move the
downloaded file to the app module directory.

Finally, you need to add the Firebase plugin and dependency. Open the project
build.gradle and add the following line to the dependencies block:

classpath 'com.google.gms:google-services:4.3.13'

The code above adds the Google Services plugin.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 441

Now, add the following line to the app build.gradle, right above the android block:

apply plugin: 'com.google.gms.google-services'

This enables the plugin.

Finally, you need to add the following dependency inside the dependencies block in
the same file:

implementation platform('com.google.firebase:firebase-
bom:30.2.0')

Click Sync now to download the dependencies, then build the project to make sure
the dependencies haven’t caused any issues.

Back in the Firebase Console, click Next, then Continue to console. And that’s it.
You’ve successfully added Firebase to your project.

Crashlytics
App crashes are among the things developers dread the most. Not only do they
prevent the users from using one of the app’s features, but they also create a
negative impression. Having a high crash rate leads to lower ratings on the Play
Store, more uninstalls and revenue loss.

It’s crucial to be able to detect and fix crashes on user devices. Crashlytics is one of
the most popular services when it comes to crash reporting. Best of all, it’s simple to
configure.

Setting up Crashlytics
Setting up Crashlytics is straightforward. Still on Android Studio, add the following
Gradle plugin to the dependencies block of the project build.gradle:

classpath 'com.google.firebase:firebase-crashlytics-
gradle:2.9.1'

Next, apply the Crashlytics Gradle plugin by adding the following line to the app
build.gradle:

apply plugin: 'com.google.firebase.crashlytics'

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 442

Finally, add the following dependencies in the app build.gradle:

implementation 'com.google.firebase:firebase-crashlytics-ktx'
implementation 'com.google.firebase:firebase-analytics-ktx'

Click Sync now to download the dependencies and… that’s it! The setup for
Crashlytics is complete. Crashlytics’ SDK uses content providers to auto-initialize on
app startup. Therefore, you don’t need to add any initialization code.

Testing and Debugging
To test your Crashlytics setup, you need to cause an intentional crash. Do this by
opening AnimalsNearYouFragment.kt and adding the following code to
onViewCreated:

throw NullPointerException()

The code above adds an unhandled exception that makes the app crash.

Build and run the project, and you’ll see the app crash soon after launching. Try
opening the app again to verify the crash.

Next, head over to the Firebase Console and select Crashlytics from the Release &
Monitor section on the left navigation bar. You’ll now be able to view the crashes and
the stack trace for each crash, like this:

Figure 19.6 — Simulating a Crash

From now on, whenever your app crashes, Crashlytics will upload a report to
Firebase along with the stack traces. If you don’t see any logged crashes, revisit the
page after a few minutes; Crashlytics sometimes takes a while to upload the data.

Non-fatal Exceptions
You can also use Firebase to log non-fatal exceptions. In most cases, you log such
exceptions locally. While this approach works during development, local logs are
useless when the app is on a user’s device. Instead, you’ll log them in Crashlytics.

In onViewCreated of AnimalsNearYouFragment.kt, wrap the unhandled exception
in a try-catch block, as shown below:

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 443

try {
 throw NullPointerException()
} catch (exception: Exception) {
 FirebaseCrashlytics.getInstance().recordException(exception)
}

In the code above, you use
FirebaseCrashlytics.getInstance().recordException to log the exception to
Crashlytics.

Build and run. The app will no longer crash, but it will log the exception. To view the
exception on Firebase, go to the Crashlytics page on Firebase Console and click
Filter ▸ Event type ▸ Non-fatals, as shown below:

Figure 19.7 — Filtering a Non-Fatal Exception With Crashlytics

You can view the exception now. If the exception doesn’t appear on the page, check
back after some time; to optimize CPU and battery usage, Firebase uploads non-fatal
data in batches.

Using Crashlytics With Proguard
You probably enabled Proguard on your release builds before publishing it to the
Play Store. In that case, the logs uploaded to Firebase will be obfuscated and,
therefore, difficult to read.

You can enable Proguard on your debug builds to ensure that Proguard itself didn’t
introduce any crashes. Open the app build.gradle and add the following code to the
buildTypes block:

debug {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
}

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 444

The code above enables Proguard on the debug variant and also uses proguard-
rules.pro to get the Proguard rules defined by the developer.

Open AnimalsNearYouFragment.kt and remove the try-catch block around
NullPointerException so it becomes a fatal exception.

To make sure that Firebase can provide correct line numbers and source files in the
crash report, you need to add the following line to proguard-rules.pro:

-keepattributes SourceFile,LineNumberTable

The Proguard rule above prevents the line number and source file from getting
obfuscated.

Build and run. As expected, the app will crash. Head to the Crashlytics dashboard and
verify that the stack trace isn’t obfuscated.

Uploading the Mapping File
The Crashlytics Gradle plugin can automatically detect if code is obfuscated and
upload the mapping file to the Crashlytics servers accordingly. Though this process
is handy, it slows down build times.

When developing locally, you can use Logcat instead of Crashlytics to debug crashes.
Therefore, you’ll disable uploading the mapping file on debug builds.

Open the app build.gradle and add the following code to the debug build variant:

firebaseCrashlytics {
 mappingFileUploadEnabled false
}

The debug variant will be similar to the one shown below:

debug {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
 firebaseCrashlytics {
 mappingFileUploadEnabled false
 }
}

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 445

To verify that the mapping file isn’t getting uploaded, build and run the app. A few
minutes after the build crashes, go to the Crashlytics dashboard and look at the stack
trace for the crash. You’ll notice that it’s obfuscated.

Finally, remember to remove the unhandled exception from
AnimalsNearYouFragment.kt so the app doesn’t keep crashing.

Remote Config
As an app developer, you’ll run into situations where you need to change small
details in your app from time to time. Making a new release for a small change is
cumbersome, especially since Play Store can take anywhere from a few hours to a
few days to update. For these cases, Firebase provides Remote Config.

Remote Config is a set of key-value pairs stored on the cloud. Your app can fetch
them and cache them locally on the device after a fixed duration.

Consider the secret pet image you show the user when they drag the Call button
onto the pet’s image. At the moment, you don’t have a way of changing this image
without releasing a new update. Next, you’ll use Remote Config to dynamically
change the image URL for the secret pet.

Setting up Remote Config
You can treat Remote Config as a read-only entity that’s unaware of the
implementation details of the app. You can also treat it as a source of key-value
pairs.

Create a new Android module by clicking File ▸ New module ▸ Android library.
Give it the name remoteconfig and choose a Bytecode Level of 7.

Once you have the module, add the following dependencies to build.gradle in the
remoteconfig module:

implementation platform('com.google.firebase:firebase-
bom:30.2.0')
implementation 'com.google.firebase:firebase-config-ktx'

The dependencies above add the Firebase Remote Config SDK. Click Sync now and
wait for the dependencies to sync.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 446

Next, create a new file named RemoteConfigUtil.kt in the remoteconfig module
and add the following code:

object RemoteConfigUtil {

 private val DEFAULTS: HashMap<String, Any> = hashMapOf()

 private lateinit var remoteConfig: FirebaseRemoteConfig

 fun init(debug: Boolean = false) {
 remoteConfig = getFirebaseRemoteConfig(debug)
 }

 private fun getFirebaseRemoteConfig(debug: Boolean):
FirebaseRemoteConfig {

 val remoteConfig = Firebase.remoteConfig

 val configSettings = remoteConfigSettings {
 if (debug) {
 minimumFetchIntervalInSeconds = 0
 } else {
 minimumFetchIntervalInSeconds = 60 * 60
 }
 }

 remoteConfig.setConfigSettingsAsync(configSettings)
 remoteConfig.setDefaultsAsync(DEFAULTS)
 remoteConfig.fetchAndActivate()

 return remoteConfig
 }
}

The code above does the following:

1. Serves as a utility singleton class to set the Remote Config configuration.

2. minimumFetchIntervalInSeconds specifies the cache interval. If the elapsed
time since the last fetch is less than the cache interval, the SDK will use the
cached values. Else, it will fetch the latest values. During debugging, it’s useful to
set the duration to 0 seconds to always get the latest values.

3. DEFAULTS is a HashMap that specifies the default values for the different Remote
Config keys. You’ll use the default values until you set new values in the Firebase
Remote Config dashboard.

4. fetchAndActivate fetches the latest values and activates them. If you only call
fetch(), the values will only be available to your app in the next user session.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 447

Remote Config values are fetched asynchronously, so you should be careful about
how you handle updated values. You don’t want scenarios where the app’s behavior
changes while the user is in the app.

Consider a case where a user is on an order confirmation page and there are two
buttons named Cancel and Order. The user decides to cancel the order, but just as
they are about to tap Cancel, a Remote Config value swaps the positions of the
button. The user will understandably be very annoyed. In some cases, it’s acceptable
for the Remote Config changes to appear in the app in a later session.

To initialize Remote Config using this helper class, first add the remoteconfig
module as a dependency to the app module. Open the app build.gradle and add the
following line of code to the dependencies block:

implementation project(":remoteconfig")

Next, open PetSaveApplication.kt and add the following code inside onCreate:

RemoteConfigUtil.init(BuildConfig.DEBUG)

The code above calls the init of the helper class and passes a parameter indicating
whether the current build is a debug build.

Adding a Config
Open fragment_secret.xml. You’ll notice an android:src attribute specifying the
image to display. Remove the attribute and add an id to the ImageView, as follows:

<ImageView
 android:id="@+id/secret_image"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Now, you’ll use Remote Config to get the URL of the image to display. Open
RemoteConfigUtil.kt and add the following member variable to it:

private const val SECRET_IMAGE_URL = "secret_image_url"

secret_image_url will serve as the key for the image URL config.

Since you’ve added a new key, you also have to provide a new default value for it.
Modify DEFAULTS, as shown below:

private val DEFAULTS: HashMap<String, Any> =

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 448

 hashMapOf(
 SECRET_IMAGE_URL to "https://images.pexels.com/photos/
1108099/pexels-photo-1108099.jpeg"
)

In the code value, you set a default value for the secret_image_url key.

You also need to provide a getter method so the Pet Details page can access the
value. Add the following method to the same file:

fun getSecretImageUrl() =
remoteConfig.getString(SECRET_IMAGE_URL)

In the code above, you use getString() to get the value from Remote Config using
the key. There are similar methods for other types, like getBoolean(), getLong(),
etc. You store the values as strings on Remote Config. It’s your responsibility to call
the appropriate function to cast the value properly.

Using a Dynamic Value to Update the UI
The only thing left to do on the app side is updating SecretFragment.kt to use the
updated value and setting the image in the ImageView.

Open SecretFragment.kt and add the following method:

override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {
 super.onViewCreated(view, savedInstanceState)

binding.secretImage.setImage(RemoteConfigUtil.getSecretImageUrl(
))
}

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 449

In this code, you call the extension function setImage() and pass the value from
Remote Config as a parameter.

Build and run. Go to the details screen for any pet and flick the Call button onto the
pet’s image. The secret screen will appear — and it will now have the image you set
as the default Remote Config value!

Figure 19.8 — Testing Remote Config

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 450

Updating the Remote Config Value
To update the value of any Remote Config key, open the Firebase Console and select
the Remote Config option from the left navigation bar. It’s in the Engage section.

On the Remote Config dashboard, click Create configuration.

Figure 19.9 — Create Configuration Button

You’ll get a dialog like the one below:

Figure 19.10 — Add a New Parameter to Remote Config

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 451

For the Parameter key, use the same key you used in the codebase. In this case, it’s
secret_image_url. For the Default value, add the URL of the image you want to
change to. For this project, use https://images.pexels.com/photos/2253275/
pexels-photo-2253275.jpeg, which contains a picture of a cute dog. Click Save.

You’ll see a banner at the top that tells you that changes have been made, but they’re
not published yet.

Figure 19.11 — Unpublish Changes

Click Publish changes, then click Publish changes again on the confirmation pop-
up. The updated values will be available immediately.

Close and open the app, then use it for about 10 to 20 seconds so the Remote Config
SDK has enough time to fetch the new value. Now, go to the details screen and
unlock the secret screen. The screen will now have the updated image from Remote
Config.

Figure 19.12 — Testing Configuration Changes With Remote Config

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 452

Congratulations, you’ve successfully used Remote Config to set up a feature that you
can control without having to push any new updates!

Firebase Test Lab
Android is a highly fragmented operating system. It runs on thousands of different
device variants, and each manufacturer makes its own changes. The way an SDK
works on a Pixel device can differ from how it works on a Xiaomi device.
Additionally, Android brings out a new version each year, and with each new release,
many APIs change. Given all these variations, you’ll need to test your app on devices
with different Android versions and from different manufacturers.

Unless you have access to a wide collection of mobile test devices, such a testing
approach is quite difficult, for three reasons:

1. Cost: It’s expensive to buy so many devices.

2. Availability: Many devices disappear from the market after just one or two years.
Trying to procure a used device might be your only option.

3. Management: It’s quite a task to test your app on each device.

Fortunately, Firebase introduced Test Lab , which automates this entire process at a
lower cost. It lets you choose a set of devices from different manufacturers, upload
your app, then test it on all the selected devices.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 453

Running Your First Test
To run your first test on Test Lab, visit the Firebase Console and select Test Lab from
the navigation bar on the left. It’s in the Release & Monitor section.

You’ll get a set of options, as shown below:

Figure 19.13 — Getting Started With Test Lab

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 454

You can use both debug and release APKs (or AABs) on Test Lab. Generate a debug
APK and upload it to the Android Robo Test option. In a Robo test, a crawler goes
through different screens on your app and interacts with different UI elements. The
crawler records all the interactions and takes screenshots along the way.

Once you’ve uploaded the APK, Test Lab will start running a Robo test on a Pixel
device at API Level 30 using English (United States) locale and Portrait
orientation.

Figure 19.14 — Test Lab Default Test Matrix

This is the default configuration that Test Lab uses. A combination of test devices,
API levels, locales and orientations is called a test matrix. You can create a new
matrix to suit your requirements.

The test will take a few minutes to complete. Once it’s done, you’ll receive an email
with the test report. A Robo test fails if the app crashes during the test. When you
open the test results, you’ll get details of the test, like:

• The time the test took.

• The number of actions the crawler performed.

• A crawl graph along with screenshots to demonstrate the different paths the
crawler took.

• A video of all the interactions.

• Logs produced on the device during the test.

• CPU, memory and network performance statistics.

• Accessibility issues, warnings and suggestions.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 455

Creating a Robo Test Preset
A test preset is like a template that you can use to run your tests instead of
configuring the options every time. A preset consists of the following:

1. Name

2. Description

3. Test type: Robo test, instrumentation test or game loop

4. The set of devices to use

5. Additional options, depending on the test type

To create a new preset, select Presets on the Test Lab page. Since this is your first
preset, you’ll see a page like the one below:

Figure 19.15 — Test Lab New Preset

Click Create a new preset and you’ll come to the New Preset page. Give the preset
any name and description you want.

In the test type, select Robo test. You’ll create an Instrumentation test later.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 456

Since you haven’t created a test matrix before, you’ll see a section like the one
below:

Figure 19.16 — Customize Your Test Matrix

Click Customize to proceed to the Customize device selection screen, where you
can choose from a huge list of devices. Test Lab has two types of devices:

1. Virtual: Emulators that run on Google Cloud Platform.

2. Physical: Actual devices that are stored at Google data centers.

The number and types of devices you can run on your tests depends on your Firebase
plan. Physical devices are much more expensive than virtual ones.

Once you select a device, you can choose from the available API levels, locales and
orientations. You can add the same device multiple times with different
configurations. For now, add a Pixel 2 and a Redmi 6A with English (United
States) locale and Portrait orientation. Once you’re done, click Confirm.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 457

Next, expand the Additional option section. You’ll get the following options:

• Test timeout: How long you want the test to run before stopping it. This comes in
handy if you’re paying for Test Lab by the minute.

• Test account credentials: If your app implements a custom login screen, you can
add the login credentials along with the ID of the EditTexts to input them during
the test.

• Robo directives: You can specify the behavior of the crawler when it encounters a
resource with a specific name.

• Deep links: You can specify up to three deep links. The crawler will open the app
using these links and crawl them for 30 seconds each.

Once you’ve entered your desired values, click Save preset.

Creating an Instrumentation Test Preset
An instrumentation test preset differs from a Robo test preset only in the
Additional options section. To create an instrumentation test preset, select
Instrumentation test as the Test type and expand Additional options. There are
three options in this category:

1. Test timeout: This option is the same as the one for the Robo test.

2. Android Test Orchestrator: Using Orchestrator insulates your tests so crashes
and state changes in one test don’t affect others.

3. Sharding: This allows you to run your tests in parallel by grouping them into
different sets, thus speeding up the test suite. Each shard counts as a new device,
so depending on your Firebase plan, you might need to use this option
cautiously.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 458

Running a New Test
To run a new test, visit the Test Lab dashboard and click Run a test. Select the type
of test you want from the drop-down menu.

When you select a Robo test, you have to upload an APK — either a debug APK or a
release APK. You can also upload a Robo script to direct the crawler.

Figure 19.17 — Robo Script Configuration

To create a new Robo script, open Android Studio and go to Tools ▸ Firebase. If the
Firebase option is missing, make sure you’ve enabled Firebase Services and
Firebase Testing in Preferences ▸ Plugins ▸ Installed.

Once the Firebase panel loads, select Test Lab ▸ Record Robo Script and use it to
Guide Robo Test, then follow the steps displayed on the screen.

When you select an Instrumentation test, you have to upload a regular APK and a
test APK. To generate a test APK, run the following command in the Terminal tab in
Android Studio:

./gradlew assembleAndroidTest

This generates an APK that includes your instrumentation tests. You can find it in
app/build/outputs/apk/androidTest/debug.

Once you’ve uploaded the APKs, click Continue, then choose between creating a
new device set or using a preset. Once you’ve chosen a set, click Run 2 tests. Here, 2
signifies that you’re running tests on two devices with a sharding of 1. You’ll receive
an email when the testing completes.

That’s all there is to it! You now have thousands of devices at your disposal for
testing, and you didn’t even have to visit the store. :]

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 459

Key Points
• Crashlytics is easy to set up and can play a big part in keeping your app’s crash rate

under control.

• Use Crashlytics to log non-fatal exceptions.

• Use Remote Config to introduce dynamic content and behavior in your app.

• Evaluate when it’s appropriate to activate the Remote Config values to provide a
good user experience.

• Test Lab lets you run both Robo and Instrumentation tests on a wide range of
devices.

• Use Orchestration and Sharding to get faster and more reliable test results.

Real-World Android by Tutorials Chapter 19: Firebase Integration

raywenderlich.com 460

20Chapter 20: Release
Optimizations
By Kolin Stürt and Antonio Roa-Valverde

App development today favors small apps rather than large ones. This supports
popular trends, like entry-level devices and the “internet of things”. Furthermore,
smaller apps download, install and run faster, which is important for your business.
This chapter will help you keep your apps as small as possible.

In this chapter, you’ll learn how to prepare a build for release. You’ll learn about the
optimizations that ProGuard performs and how to translate to a certain level of
obfuscation. This adds a minimal layer of security to help prevent reverse
engineering or tampering with your app.

In the process, you’ll learn:

• How to use APK Analyzer.

• How to leverage optimization rules.

• How to fix compile and runtime errors.

raywenderlich.com 461

Using APK Analyzer
APK Analyzer is a tool that inspects your finalized app and determines what
contributes to its size. It presents a breakdown of your app’s files. You can see what
takes up the most space, along with the total method and reference counts.

Launch the analyzer by selecting Build ▸ Analyze APK, which opens a dialog for
your file system. If it isn’t already selected, navigate to your debug folder and select
app-debug.apk. Click OK to open APK Analyzer.

Figure 20.1 — Using APK Analyzer

Note the file size of the current APK. You’ll use this tool again later in the chapter to
see the result of your changes.

Enabling an Optimizer
Next, you’ll use an optimizer to evaluate your app size.

Enabling an optimizer is simple. In your app build.gradle, replace buildTypes with
the following:

buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'
 }
 debug {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 462

 }
}

Setting minifyEnabled to true enables an optimizer — in this case, R8.

ProGuard Versus R8
Android Studio comes with an optimizer by default: R8. ProGuard was the de facto
tool for Android for a long time, while R8 is the newer Google alternative. They’re
compatible with each other and perform similar operations to optimize Java
bytecode. Both remove unused code, such as methods, fields and classes, and
attempt to optimize code for performance.

The optimizer looks at the entry points of your app and maps out the code that the
app can reach. It removes the rest, and replaces the names of classes and methods
with shorter ones, making for a much smaller APK size!

The trade-off is that using any optimizer results in slower build times. The most
common problem you’ll face when enabling Proguard starts with compile errors.

Note: R8 is Google’s recommendation when using a code optimizer. It is also
the default option in Android Gradle Plugin 7.*. Through the rest of the
chapter notice that when mentioning ProGuard, you’ll be in fact using R8. The
main reason for this naming is that R8 works with the ProGuard rule format. If
you are interested in a sound comparison between both tools, check out this
blog post from the authors of Proguard: https://www.guardsquare.com/blog/
comparison-proguard-vs-r8-october-2019-edition.

Even though R8 is now the default tool, you can still use ProGuard in your project if
you want to. You’ll find all the needed Gradle configuration in this guide: https://
www.guardsquare.com/manual/setup/gradleplugin.

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 463

Fixing Compilation Errors
As optimizers do their work, they often mistakenly obfuscate and remove code that
they think you’re not using — even when you are. Therefore, as you go along, you’ll
need to test that everything still works with ProGuard enabled. The earlier you find
problems in the build, the easier it will be to fix them. :]

Sync Gradle, then build and run. Notice that there are already compiler errors:

Figure 20.2 — Compilation Errors

The compiler problems include two warnings. Click on the header to reveal more
information in Android Studio:

> Task :app:minifyDebugWithR8
AGPBI: {"kind":"warning","text":"Missing classes detected while
running R8. Please add the missing classes or apply additional
keep rules that are generated in /home/user/adva-materials/20-
release-optimizations/projects/starter/app/build/outputs/
mapping/debug/missing_rules.txt.\n",

...

Missing class
com.google.firebase.messaging.TopicOperation$TopicOperations
(referenced from: void
com.google.firebase.messaging.TopicOperation.<init>(java.lang.St
ring, java.lang.String))
Missing class javax.xml.stream.Location (referenced from:
javax.xml.stream.Location
org.simpleframework.xml.stream.StreamReader$Start.location and 2
other contexts)
Missing class javax.xml.stream.XMLEventReader (referenced from:
javax.xml.stream.XMLEventReader
org.simpleframework.xml.stream.StreamReader.reader and 4 other
contexts)
Missing class javax.xml.stream.XMLInputFactory (referenced from:
javax.xml.stream.XMLInputFactory
org.simpleframework.xml.stream.StreamProvider.factory and 2
other contexts)
Missing class javax.xml.stream.events.Attribute (referenced
from: javax.xml.stream.events.Attribute
org.simpleframework.xml.stream.StreamReader$Entry.entry and 7
other contexts)

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 464

Missing class javax.xml.stream.events.Characters (referenced
from: javax.xml.stream.events.Characters
org.simpleframework.xml.stream.StreamReader$Text.text and 2
other contexts)
Missing class javax.xml.stream.events.StartElement (referenced
from: javax.xml.stream.events.StartElement
org.simpleframework.xml.stream.StreamReader$Start.element and 3
other contexts)
Missing class javax.xml.stream.events.XMLEvent (referenced from:
void
org.simpleframework.xml.stream.StreamReader$Start.<init>(javax.x
ml.stream.events.XMLEvent) and 4 other contexts)

There seems to be issues with Firebase and javax.xml.stream.

Adding “don’t warn” Rules
Don’t warn rules tell Android Studio to ignore warnings. This is dangerous, but if
you know for sure that you’re not using part of the code, it can come in handy.

Don’t warn rules work by specifying the package name. * is a wildcard – it doesn’t
include sub-packages, whereas ** includes sub-packages. The rules for ProGuard go
in proguard-rules.pro.

Sometimes, R8 is giving you some hints about the missing rules that you need to
apply, like in this case. Open the following generated file in your app build path:
app/build/outputs/mapping/debug/missing_rules.txt. You’ll find the following
there:

Please add these rules to your existing keep rules in order to
suppress warnings.
This is generated automatically by the Android Gradle plugin.
-dontwarn
com.google.firebase.messaging.TopicOperation$TopicOperations
-dontwarn javax.xml.stream.Location
-dontwarn javax.xml.stream.XMLEventReader
-dontwarn javax.xml.stream.XMLInputFactory
-dontwarn javax.xml.stream.events.Attribute
-dontwarn javax.xml.stream.events.Characters
-dontwarn javax.xml.stream.events.StartElement
-dontwarn javax.xml.stream.events.XMLEvent

You just need to copy the lines starting with -dontwarn to your proguard-rules.pro
file.

Build and run the project. Great, now those warnings are gone!

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 465

Adding Keep Rules
Keep rules tell ProGuard not to obfuscate certain parts of your code. Some options
are:

• keep: Preserves entire classes and class members.

• keepclassmembers: Preserves just the class members.

• keepclasseswithmembers: Preserves all classes that have a specified member.

Some other options you can use include keepnames, keepattributes, keep class
and keep interface.

The rules are written in a specific template format, which you can find at https://
www.guardsquare.com/en/products/proguard/manual/usage#classspecification.

When you first opened proguard-rules.pro, there was some boilerplate code at the
top, which consisted mostly of commented-out lines that Android Studio provides,
as well as a few enabled lines:

-keep class kotlin.reflect.jvm.internal.** { *; }
-keep class kotlin.Metadata { *; }
-dontwarn com.google.crypto.tink.**

This code allows you to use reflection with cryptography.

Note: If you’re sharing your code, write keep rules as you write your code.
Then, be sure to publish them on your site, GitHub or GitLab README page so
other developers can easily use your code without any problems.

If you use an AAR that includes some predefined ProGuard rules, R8 will apply them
when compiling your project. You can learn more about this mechanism in the
official Google documentation: https://developer.android.com/studio/build/shrink-
code#configuration-files.

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 466

Run your APK Analyzer again. You’ll notice the APK size is much smaller now. That’s
because ProGuard has removed all the code you’re not using.

Figure 20.3 — The APK Is Smaller Now

Enabling More Optimizations
At this point, you’ve successfully applied optimizations for your app. However, there
are a few more steps you can take for your release version.

ProGuard provides an advanced optimization profile. By default, it isn’t used because
it can cause build and runtime errors. You enable advanced optimizations by
swapping the default proguard-android.txt with proguard-android-optimize.txt.

To experiment with this in your app, navigate to the app build.gradle. Replace the
proguardFiles line in the debug section with the following:

proguardFiles getDefaultProguardFile('proguard-android-
optimize.txt'),
 'proguard-rules.pro'

The build time will be much longer because ProGuard will perform more analysis and
optimizations inside and across methods. You’ll also need to spend more time
making sure your app still works as expected after the change.

Sync Gradle, then build the app. Everything still works! You should continue to
remove assets and resources that your project doesn’t need.

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 467

Shrinking Resources
As long as you’ve set minifyEnabled in the optimizer, you can enable the resource
shrinker, which removes unused resources after the code shrinker does its job. It will
also remove resources in libraries that you include. To make sure it knows which
resources your app uses, remove unused library code to make the resources in the
library unreferenced.

You can compress resources that your app does use with the help of a PNG crusher.
The PNG crusher should be on by default, but because build types don’t always
define this correctly, it’s best to add it explicitly.

To enable both resource shrinking and PNG crushing, add the following to your
build.gradle:

 buildTypes {
 release {
 ...
 shrinkResources true
 crunchPngs true
 ...

Other options for resources are to use vector-drawable XML files or to convert your
images to a format that allows smaller compression, such as WebP. You can find
instructions at https://developer.android.com/studio/write/convert-
webp#convert_images_to_webp.

NDK Optimizations
If you’ve been working with NDK, you’ll have an Android.mk file under the project’s
jni directory. This file tells the compiler how it should optimize native code.
Changing the option is as simple as appending a line in the file, as follows:

LOCAL_CFLAGS := -O3

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 468

The number after the -O refers to the level of optimization. There are four basic
levels:

• O0: The default option for debug builds, this performs no optimizations. This
setting reduces compile time and makes debugging easier because it produces
expected results.

• O1: The default level for release builds. This is the first level of optimization that
attempts to reduce code size.

• O2: This enables all supported compiler optimizations that don’t involve a space-
to-speed trade-off. It improves the performance of the generated code, but takes
longer to compile.

• O3: The most aggressive optimization level. It enables the following options:
-finline-functions, -funswitch-loops, -ftree-vectorize, -fpredictive-
commoning, -fgcse-after-reload, -ftree-partial-pre, -fvect-cost-model
and -fipa-cp-clone.

Optimizers like ProGuard may have issues when you call a method from JNI (Java
Native Interface). You can often find solutions in the JNI training article, here:
https://developer.android.com/training/articles/perf-jni#faq-why-didnt-findclass-
find-my-class.

Congratulations, you now know all about the main release optimizations you can do
for your app.

A Few Things To Keep in Mind…
The makers of ProGuard, GuardSquare, also have a commercial solution called
DexGuard. It minimizes code, but offers more protection regarding its side effect of
obfuscation. DexGuard encrypts the classes and strings as well as assets and resource
files. It also provides app and device integrity checking, which is important to keep
spammers out of your app.

If you want to use ProGuard’s obfuscation to protect proprietary code, this is a good
choice. You can find more information at https://www.guardsquare.com/en/
products/dexguard.

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 469

This chapter focused on release optimizations. You should not use them in place of
the code profiling and code tuning stages of your lifecycle. During development, you
shouldn’t forget about concepts like putting the nominal case first in a flow control
case or breaking out of loops early. You should always use good coding practices
when it comes to memory management and performance.

The optimizations you’ve applied in this chapter change your code. You should
perform them as part of the end of a development phase, before your app goes to
quality assurance. If QA finds problems and you make changes to the optimization
configuration, the change needs to be thoroughly tested.

When it comes to developer testing and debugging, it helps to compare the before
and after states of your app, and actually look at what the optimizer did to your
compiled code. This ensures that the optimizations did what you expected.

For example, if you’re looking for a way to obfuscate or protect the code, just adding
optimization might not work. In fact, it makes the logic even more visible in some
cases — by unrolling loops, for instance. That’s why it’s always good to check the
result of your changes and check how your compiled app looks in the App Store.
You’ll learn more about that in Chapter 22, “App Analysis”.

Key Points
• R8 is the default code shrinker and minification tool in Android.

• Don’t warn rules ignore warnings and errors.

• Keep rules allow you to keep the optimizer from touching specific code.

• Instead of keeping entire classes or large parts of code, keep only the minimum
code you need, giving you better optimizations.

Real-World Android by Tutorials Chapter 20: Release Optimizations

raywenderlich.com 470

21Chapter 21: Advanced
Debugging
By Subhrajyoti Sen

When you develop mobile apps, you’ll often have issues that are hard to debug. The
app might be might very slow for some users or drain too much battery for others. Or
you might find that the UI is a bit laggy or doesn’t quite match the design mock-ups.
Debugging these issues can be tedious. Fortunately, there are tools that make the
process easier.

In this chapter, you’ll learn about:

• Finding and fixing memory leaks using LeakCanary.

• Using the Memory Profiler to find Fragment and Activity leaks.

• Examining network calls using the Network Inspector.

• Finding Wake Locks using the Energy Profiler.

• Using Layout Inspector to improve your layouts.

You’ll start by looking at memory leaks.

raywenderlich.com 471

Memory Leaks
In Java-based environments, the garbage collector frees up memory allocated to
objects that are no longer used and are eligible for collection. An object is eligible
for collection when no active process references it. Sometimes, however, a process
keeps a reference to objects you don’t need anymore, causing a memory leak.
Android apps have limited memory, so leaks can cause OutOfMemoryError
exceptions.

Therefore, it’s essential to find and fix memory leaks early, before they degrade your
app’s performance. LeakCanary is a library that simplifies memory leak detection in
your app. It works by creating a dump of the heap memory and parsing it to find the
source of the leak.

Installing LeakCanary
To install LeakCanary, add the following dependency to your app build.gradle:

debugImplementation "com.squareup.leakcanary:leakcanary-
android:2.8.1"

Click Sync now and wait for Gradle to download the dependency.

Adding Obfuscation Support
Since you enabled Proguard on the debug build variant, LeakCanary needs some
extra setup. You can skip this setup if you disable Proguard for debugging.

Add the following classpath to the main project build.gradle:

classpath 'com.squareup.leakcanary:leakcanary-deobfuscation-
gradle-plugin:2.9.1'

The Gradle plugin above finds the mapping file during the build process and pushes
it into the APK. The mapping file enables LeakCanary to deobfuscate the heap dump
when it finds a leak.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 472

Now, open the app build.gradle and add the following line above the android block:

apply plugin: 'com.squareup.leakcanary.deobfuscation'

This enables the plugin.

Finally, you need to tell the plugin which build variants could be obfuscated. Do this
by adding the following code before the dependencies block:

leakCanary {
 filterObfuscatedVariants { variant ->
 variant.name == "debug"
 }
}

The code above checks if the name of the build variant is debug. It uses the result to
inform the plugin that you’ve enabled obfuscation on the debug variant.

With the setup complete, you’re ready to start hunting for leaks.

Detecting Memory Leaks
There’s no secret map that can help you find memory leaks. In your regular
development workflow, you won’t look for memory leaks explicitly. Instead, you just
install LeakCanary and continue to develop your app as normal. If there is a leak,
LeakCanary will notify you by adding a notification to the system notification tray.

Run the app, go through the various user flows and check if LeakCanary notifies you.
Remember to check the secret flows too.

You’ll notice that when you visit the Secret Doggo screen and come back to the
Details screen, LeakCanary notifies you of a leak.

Note: Remember that you can reach the Secret Doggo screen from the Detail
screen by dragging the phone icon to the top.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 473

Repeat the flow to confirm the leak. The notification will be similar to the one
below:

Figure 21.1 — LeakCanary Memory Leak Notification

Finding the Leak Source
In this section, you’ll use the heap dump to find the source of the leak.

Since a heap dump is a long operation, LeakCanary prefers to batch them.
LeakCanary, by default, waits for five leaks before dumping the heap. However, you
can tap the leak notification to force a heap dump even with one leak.

Tap the leak notification and wait for the heap dump to complete. It will take a few
seconds. Once complete, open your device’s app drawer and search for an app named
Leaks. LeakCanary installs this app to help you view the leak logs. Open the app.

Figure 21.2 — The Leaks App

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 474

The app lists all the memory leaks LeakCanary detected in your app. At the moment,
there’s only one leak, as shown below:

Figure 21.3 — LeakCanary Leak List

Tap the list item and open the leak details screen. You’ll get a screen that displays
all the details of the leak:

Figure 21.4 — Leak Information Details

The image above shows that:

1. Fragment is leaking MotionLayout. This is your first clue.

2. References underlined in red are the likely causes of the leak.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 475

Scroll through the leak details until you find something underlined in red. You’ll
come across the following section:

Figure 21.5 — Leak Sources

In the image above, you can see that callFlingXAnimation is underlined in red. It’s
leaking its target. Right below that, you can also see that its target points to a
FloatingActionButton with the ID call. You’ve found the source of your bug.

The FlingAnimation instance leaks an instance of the Call button, which ultimately
leaks the MotionLayout instance.

Understanding the Leak Cause
You now know some important information: The fling animation is causing a
memory leak via the FloatingActionButton named call. It’s time to figure out why.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 476

In most cases involving a leaked view, the problem is that an object that holds a
reference to the view outlives the lifecycle of that view.

It’s time to take a step back and revisit lifecycles. One significant difference between
Activitys and Fragments is their lifecycle. An Activity has a single lifecycle,
whereas a Fragment has two lifecycles: one for the Fragment as a whole and another
for the Fragment’s view. Because of this, Fragment has different onDestroyView and
onDestroy callbacks, whereas Activity has only the onDestory callback.

With this knowledge, you can figure out why the fling animation is leaking the view.
callFlingXAnimation has a reference to the call view but you declared it as a global
variable. When the user navigates back to the Pet Details screen from the Secret
screen, only the view contained inside AnimalDetailsFragment is recreated, not the
entire Fragment. Therefore, the app retains the memory allocated to
callFlingXAnimation — and it contains a reference to the old view that was
destroyed. This is your memory leak.

Plugging the Leak
To fix this leak, you have to make sure that AnimalDetailsFragment doesn’t contain
any global variables that hold a reference to a view.

Open AnimalDetailsFragment.kt and look at the following initializations:

private val callScaleXSpringAnimation =
SpringAnimation(binding.call, DynamicAnimation.SCALE_X).apply {
 spring = springForce
}

private val callScaleYSpringAnimation =
SpringAnimation(binding.call, DynamicAnimation.SCALE_Y).apply {
 spring = springForce
}

private val callFlingXAnimation = FlingAnimation(binding.call,
DynamicAnimation.X).apply {
 friction = FLING_FRICTION
 setMinValue(0f)
 setMaxValue(binding.root.width.toFloat() -
binding.call.width.toFloat())
}

private val callFlingYAnimation = FlingAnimation(binding.call,
DynamicAnimation.Y).apply {
 friction = FLING_FRICTION
 setMinValue(0f)
 setMaxValue(binding.root.height.toFloat() -

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 477

binding.call.width.toFloat())
}

You don’t want to keep their references in the View, but you do want to limit their
scope so the garbage collector can remove them when that scope completes. In this
case, the new scope is displayPetDetails(), so just move the initializations to the
beginning of displayPetDetails(). This removes the private visibility modifier,
which you don’t need for local variables.

displayPetDetails() will now be as follows:

private fun displayPetDetails(animalDetails: UIAnimalDetailed,
adopted: Boolean) {
 val callScaleXSpringAnimation = SpringAnimation(binding.call,
DynamicAnimation.SCALE_X).apply {
 spring = springForce
 }

 val callScaleYSpringAnimation = SpringAnimation(binding.call,
DynamicAnimation.SCALE_Y).apply {
 spring = springForce
 }

 val callFlingXAnimation = FlingAnimation(binding.call,
DynamicAnimation.X).apply {
 friction = FLING_FRICTION
 setMinValue(0f)
 setMaxValue(binding.root.width.toFloat() -
binding.call.width.toFloat())
 }

 val callFlingYAnimation = FlingAnimation(binding.call,
DynamicAnimation.Y).apply {
 friction = FLING_FRICTION
 setMinValue(0f)
 setMaxValue(binding.root.height.toFloat() -
binding.call.width.toFloat())
 }

 binding.call.scaleX = 0.6f
 binding.call.scaleY = 0.6f
 //... rest of the method
}

Build and run. Repeat the same workflow as before and verify that there’s no longer a
memory leak. Congratulations, you’ve resolved your first memory leak!

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 478

Android Studio Profiler
In recent versions of Android Studio, Google has significantly improved the tools you
can use to debug complicated issues, especially the Profiler.

The Profiler consists of four main components:

1. CPU Profiler

2. Memory Profiler

3. Network Profiler (now moved to Network Inspector in recent versions of Android
Studio)

4. Energy Profiler

In this section, you’ll learn how to use the Memory, Network and Energy Profilers.

Start by opening the Profiler by selecting View ▸ Tools Windows ▸ Profiler.

Figure 21.6 — Android Studio Profiler

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 479

Finding Memory Leaks With the Memory
Profiler
In addition to using LeakCanary, you can also use Android Studio’s Profiler to detect
memory leaks. Android Studio 3.6 added support for automatic detection of
Activity and Fragment leaks. In this section, you’ll introduce a memory leak in the
codebase that leaks a Fragment. You’ll then use the Memory Profiler to find and
trace the leak.

Introducing a Fragment Leak

Open MainActivity.kt and add the following global variable before onCreate():

lateinit var currentFragment: Fragment

The code above adds a public variable that holds an instance of a Fragment.

Next, open AnimalDetailsFragment.kt and add the following code inside
onViewCreated():

(requireActivity() as MainActivity).currentFragment = this

The code above does the following:

1. It gets a reference to MainActivity since AnimalDetailsFragment is attached
to MainActivity.

2. It then initializes currentFragment with the current instance of
AnimalDetailsFragment.

This is a common source of memory leaks. Exiting AnimalDetailsFragment invokes
its onDestroy(), so you’d expect its memory to be garbage collected. But since
MainActivity has a reference to the AnimalDetailsFragment instance, the garbage
collector can’t collect that instance, which results in a leak.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 480

Detecting and Tracing the Leak

Build and run. Once the app is running on a device, open the Profiler tab and start a
session as shown below:

Figure 21.7 — Starting a Profiler Session

Select the MEMORY row. You will see a screen like the one below:

Figure 21.8 — Memory Profiler

In the image above, you see the two tools that you’ll use to find the leak:

1. Force garbage collection: This tool can force garbage collection at any point in
time. You need this because you can’t determine when garbage collection will
occur, so it would be difficult to figure out when to look for a memory leak.

2. Capture heap dump: This tool will create a dump of the current Java heap,
allowing you to analyze the heap’s memory allocation in greater detail.

On the app, open the details page for any pet, interact with the UI, then press Back
to return to the previous page.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 481

Back in the Android Studio Memory Profiler, click Force garbage collection, select
Capture heap dump and click Record. Recording the heap dump will take a few
seconds. Once it’s done, you’ll get a screen like the one below:

Figure 21.9 — Memory Profiler Heap Dump

In the heap dump, you can view the different types of objects in the heap and the
memory each of them takes up. You’ll also notice that the dump alerts you of a
memory leak. Click the alert about the leak.

Android Studio will apply a filter that shows the Activity/Fragment leaks in the
dump. In this case, it will tell you that AnimalDetailsFragment is leaking, as shown
below:

Figure 21.10 — Example of Memory Leak in the Memory Profiler

Click the AnimalDetailsFragment row to open the Instance List. This will help you
figure out which instances of AnimalDetailsFragment are leaking. Since only one
instance is leaking, you’ll have one row in the instance list, as shown below:

Figure 21.11 — Memory Profile Leak Instance List

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 482

Click the instance to open the Instance Details panel. The panel has two tabs:
Fields and References. Choose the References tab. You’ll get a window like the one
shown below:

Figure 21.12 — Memory Profile Leaks References

In the window, you can see that currentFragment inside MainActivity has a
reference to the leaked Fragment. You’ve successfully found the source of the leak
using the Memory Profiler!

As an exercise, try using the lessons from the Memory Leak section above to resolve
this Fragment leak. If you get stuck, you can always refer to the final project for the
chapter.

Network Inspector
Up until now, you’ve probably used HttpLoggingInterceptor to analyze your
network calls by logging the network requests and their responses. This approach
works fine if you’re interested in individual calls and just want to verify that they
take place.

Now, however, you have a new option. Android Studio introduced the Network
Inspector to help you visualize all the network calls taking place in your app, as well
as the details of each call.

Note: Network Inspector only supports HttpURLConnection and OkHttp
networking libraries.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 483

Why Network Profiling Matters

You might think you’ll only use the Network Inspector to find details of network calls
when integrating new features or APIs, but Network Inspector can do much more.

Network Inspector lets you visualize the frequency of the network calls happening in
your app. This is very important when it comes to radio battery consumption. If
the user is on mobile data, a network call awakens the mobile chip to find a radio
signal and make your request go through. After making the request, the chip stays
awake for a few more seconds to wait for the response. Every time this happens, the
network call wakes up the chip, making it consume more power. And users don’t like
apps that consume too much battery, especially when they are on the go.

A good way to save battery is to use the Network Inspector to discover which calls
happen frequently. You can then determine if you can defer any of them. For
example, an API call to make a purchase has to be instant, whereas you can defer a
call to sync profile images of different contacts on a messaging app. You can batch
the deferrable calls and perform them in one go. This keeps the chip awake for a
single duration instead of waking it up repeatedly.

Another good use of the Network Inspector is finding unexpected network calls that
arise from bugs in the code or from third-party libraries. If a library you integrate is
making network calls, you want to know about them.

Navigating the Network Inspector

Before inspecting your network activity, you need to disable proguard on the debug
build. Remove the leakCanary block from the app build.gradle. Also, set
minifyEnabled to false for the debug build type.

Build and run. Open the App Inspection window by going to View ▸ Tools Windows
▸ App Inspection. Next, switch select the Network Inspector tab.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 484

In the app, navigate to the Search tab and search for a pet. In the Network Inspector,
you’ll get a screen like this:

Figure 21.13 — Android Studio Network Inspector

In the image above, you can see a few things:

• The y-axis represents the network speed.

• The x-axis represents time.

• A yellow spike represents the network request. The width of the spike represents
the time taken by the request, while its height indicates the amount of data
transferred.

• A blue spike represents the server response. The width and height of the spike
represent statistics similar to the yellow spike’s.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 485

To dig deeper into how the network works, select a section of the timeline and view
the details. Drag your cursor across a part of the timeline to select it, as shown
below:

Figure 21.14 — Network Inspector Details

In the image above, you can see that the app has made five network calls and all of
them have a status code of 200. You can also see that four requests have the type
jpeg, while one has the type json.

The calls with the jpeg types are mostly from Glide. You can confirm this by
switching to the Thread View. You’ll notice that the Glide threads have made many
calls, whereas the OkHttp thread has made one call.

Figure 21.15 — Network Inspector Thread View

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 486

Switch back to the Connection View tab and note how hovering over any request
will display the URL for that request. Clicking any of the Glide requests will show the
image that was downloaded, assuming the download is complete. Clicking the call
with the json type will open the details windows for the request, as shown below:

Figure 21.16 — Network Inspector Request Detail

Use this window to find the details of the network request as well as the response. As
a bonus, it also auto-formats the response JSON.

Now, you’ll move on to learn more about another tool that can help you reduce your
app’s battery drain.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 487

Energy Profiler
The battery usage of an app is a vital metric to track. Users care a lot about their
phone’s battery.

There are many reasons an app might be consuming a lot of battery, including:

1. Frequent GPS location requests

2. Unbatched network calls

3. Wake locks

4. Frequent alarms to schedule tasks

and many more. Android Studio added Energy Profiler to help monitor the energy
consumption of components, like CPU, radio and GPS sensors, as well as events that
cause battery drain, like alarms and wake locks.

Run the app. Go to the Profiler tab in Android Studio and click anywhere in the
ENERGY timeline. This opens the Energy Profiler. Hover your cursor over the Energy
Profiler timeline to see a screen like the one below:

Figure 21.17 — Android Studio Energy Profiler

From the tooltip in the image above, you can see that the CPU and Network energy
usage for the app is Light. It also indicates there are no system events that affect the
app’s energy consumption.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 488

Finding a System Event

Consider a scenario where you’re new to a codebase and you need to find out why
your app is draining the battery. The Energy Profiler is one of the best places to start.

Keeping the Battery Profiler open, explore and interact with the different screens of
the app. You’ll notice that, when you enter the Animal Details screen, a red bar
appears at the bottom of the Energy Profiler, as shown below:

Figure 21.18 — Energy Profiler Tooltip

From the tooltip in the image above, you can infer that the red line represents a
wake lock in the app. Now, this wake lock should ideally go away once you exit the
Details screen, but the Energy Profiler will tell you a different story. The red line
continues to show, even after you’ve left the screen. This is a possible source of
energy drain.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 489

Clicking anywhere on the red line will display the following message on newer
versions of Android Studio:

Figure 21.19 — System Events Has Moved Message

Open App Inspection and go the Background Task Inspector tab.

Figure 21.20 — Energy Profiler Wake Lock

Repeat the same set of steps to trigger a wake lock so that App Inspection can record
it. You’ll see that a wake lock has been recorded as shown below:

In the previous image, onCreate in AnimalDetailsFragment is calling a partial
wake lock. To know more about the leak, click on the entry to open the Task Details
window, as shown below:

Figure 21.21 — Energy Profiler Wake Lock Details

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 490

In the image above, a callstack points to line 104 in AnimalDetailsFragment. Open
AnimalDetailsFragment.kt and go to line 102. You’ll notice the following code,
which acquires a wake lock:

wakeLock =
(requireContext().getSystemService(Context.POWER_SERVICE) as
PowerManager).run {
 newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
"MyApp::MyWakelockTag").apply {
 acquire()
 }
 }

According to the Energy Profiler, this wake lock is never released. Checking for
wakelock usages confirms that.

To release the wake lock when the user leaves the screen, add the following code at
the end of AnimalDetailsFragment:

override fun onDestroy() {
 super.onDestroy()
 wakeLock.release()
}

The code above releases the wake lock when the Fragment is destroyed.

Build and run. Start the Energy Profiler and verify that the Fragment releases the
wake lock after you exit the details screen.

Now, you’re ready to learn to use a tool that helps you solve problems in your user
interface.

Layout Inspector
When you implement your app’s UI, you have to keep many things in mind, like:

• Making sure there’s no unnecessary nesting in the layouts.

• Ensuring the layout closely matches the design mocks.

The steps to verify your app’s layout are tedious and time-consuming. To ensure flat
layouts, you have to go through all the XML, view by view, and figure out if you can
flatten anything. Matching your UI with the design mocks involves comparing them
visually and going through each detail of the UI. Even then, you might miss that a
TextView is off by 8dp or your button has an extra margin of 4dp on one side.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 491

To simplify the process of finding visual bugs, Android Studio provides a tool named
Layout Inspector. It lets you inspect your view attributes after the layout has
rendered them on the device and also lets you visualize each layout in 3D. In this
section, you’ll use the Layout Inspector to flatten the view hierarchy and make sure
your UI matches the design mock.

Starting the Layout Inspector
To start the Layout Inspector, select View ▸ Tool Windows ▸ Layout Inspector, as
shown below:

Figure 21.22 — Android Studio Layout Inspector

This will open the Layout Inspector tab. First, you need to choose the process Layout
Inspector will use to extract the layout information. Click Select Process and choose
the process named com.realworld.android.petsave from your device:

Figure 21.23 — Layout Inspector Process Selection

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 492

The Layout Inspector will now show the layout that your device displays. Click any of
the views in the layout and the Layout Inspector will display the components present
in the layout on the Component Tree panel on the left. It will also display all the
attributes of the selected view on a panel to the right, as shown below:

Figure 21.24 — Layout Inspector Components Tree

Finding Unnecessary Nesting
With the Layout Inspector open, visit the Near You tab in the app. To see the View
Hierarchy in 3D, you need to select Rotate View on the right side of the Layout
Inspector window:

Figure 21.25 — Layout Inspector’s Rotate View

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 493

Selecting Rotate View displays the different levels of views in the layout. You can
drag your cursor around to view the hierarchy from different angles. Keep doing it till
you see a view like the one shown below:

Figure 21.26 — Layout Inspector View Hierarchy

In the image above, look at the views marked 1 and 2. Do you see any differences
between them? By the looks of it, view 2 doesn’t add anything new to view 1, which
indicates unnecessary nesting.

Click on the view tagged as 2. In the Component Tree window, you’ll notice that you
have a LinearLayout inside another LinearLayout, as shown below:

Figure 21.27 - Layout Inspector Nested LinearLayout Example

Open recycler_view_animal_item.xml and look for the LinearLayout with
recycler_view_item. You’ll notice that it’s nested inside another LinearLayout
with the same set of attributes.

<LinearLayout
 android:layout_width="match_parent"
 android:ayout_height="match_parent">

 <LinearLayout
 android:id="@+id/recycler_view_item"

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 494

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ImageView...>

 <TextView...>

 </LinearLayout>

</LinearLayout>

Remove the outer LinearLayout so the structure becomes:

<com.google.android.material.card.MaterialCardView>

 <LinearLayout>

 <ImageView/>

 <TextView/>

 </LinearLayout>
</com.google.android.material.card.MaterialCardView>

Build and run, then verify the RecyclerView items on the Near Me screen look the
same as before. Congratulations, you’ve successfully used Layout Inspector to reduce
an extra level of nesting!

Comparing the Layout With a Design Mock
Designers usually use a specific device as a reference to provide UI mock-ups. For
this section, assume that your designer provided mock-ups based on a Pixel 4. You’ll
create a new Android Virtual Device based on Pixel 4.

Build and run on the Pixel 4 emulator. Navigate to the Details screen of any pet.
Next, open Layout Inspector and click the Load Overlay icon, as shown below:

Figure 21.28 — Layout Inspector Overlays

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 495

Click Load Overlay to open a file chooser, then select design_mockup.png inside
the starter project. Doing this will lay the mock-up over your layout. Use the slider
labeled Overlay Alpha to change the transparency of the overlay.

Change the transparency a few times and try to find differences between the mock-
up and your layout. You might notice a few differences in the text below the pet’s
description. However, this is expected since the text length varies from pet to pet.
Another difference you’ll find is in the position of the Call button, as you can see
below. Change the Overlay Alpha to around 50% make it clear.

Figure 21.29 — Layout Inspector Overlay Example

Open fragment_details.xml and check the margin you used for the
FloatingActionButton. It’s set to @dimen/half_default_margin. Change the
margin to @dimen/default_margin, instead.

Build and run the app. Compare the Details screen using Layout Inspector. You’ll
find that the Call button is in the correct position, and both you and your designer
are happy now.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 496

Key Points
• Use LeakCanary to find and rectify memory leaks in your app.

• Avoid holding view references in global variables. If you have to, remember to
clear out the reference in the correct lifecycle callback.

• Find Activity and Fragment leaks using the Memory Profiler.

• Use the Network Inspector to examine your network calls.

• Use batching to avoid making frequent network calls.

• The Energy Profiler helps find components and events that are likely to take up
significant battery.

• Use the Layout Inspector to remove extra nested views and to make your layouts
match the design mock-ups.

In the next chapter, you’ll learn about analyzing databases and the different ways
you can reverse engineer code.

Real-World Android by Tutorials Chapter 21: Advanced Debugging

raywenderlich.com 497

22Chapter 22: App Analysis

By Kolin Stürt and Antonio Roa-Valverde

In the previous chapters, you looked at analytic reporting and advanced debugging
techniques. Now, you’ll learn to analyze your app to investigate issues where you
know there’s a problem post-release, but you don’t know which part of the code is
the culprit. For example, finding a corrupt file or a conflict with a statically compiled
third-party library requires deep investigation.

In this chapter, you’ll learn how to:

• Look at data artifacts that aren’t obvious from your code.

• Analyze databases.

• Reverse-engineer code you didn’t write.

For this chapter, you’ll use the Pixel XL API 30 (R) Emulator.

raywenderlich.com 498

Debugging Versus Investigating
When you debug your app, you apply tools to fix not just the symptoms, but the
underlying problem. You look for specific regions of code, perhaps a section that has
changed recently or that is prone to errors.

There are two types of tests you can run to find problems:

• Dynamic testing: Testing while executing the code.

• Static testing: Auditing the source code for issues.

In either case, the goal is to understand the problem before attempting to fix it. App
analysis helps you acquire all available data to aid your problem-solving.

Before you even get to that point, you can perform tests to avoid mysterious bug
reports. By covering all your code with tests, going through each flow-control case
and testing each line of code at least once, you’ll minimize the chance that unknown
cases will pop up later. Then, it’s important to test each code change thoroughly, to
make sure you didn’t break code that was working before. This is called regression
testing.

Because you wrote the code, you know how to use your app. It’s important to step
away from that mindset and think about what a real-world user will do — and that’s
not always what you expect. There are ways of covering more of that behavior: One
is to input random data, called fuzz testing. Another is to choose extreme values in
hopes of finding an edge case. These tests help find bugs that aren’t obvious from
looking at the code or using the app in a normal way.

Even with all this testing, you’ll find unexpected bugs. One example is memory
corruption due to race conditions. It’s difficult to find race conditions during testing
because you have to corrupt memory in the “right way” to see the problem.
Sometimes the problems appear a long time later in the app’s lifecycle. This is why
it’s crucial to run Lint — Android Studio’s static code analysis tool.

Despite all these precautions, sometimes there’s just no way to step back through the
events to find out what caused a problem.

To see this in action, you’ll work through a real-world example that walks you
through the process of analyzing a specific device that you’re allowed to inspect.
This will give you a sense of the process and the complications you’ll encounter
along the way.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 499

You won’t be able to follow along with everything in the next section, as the process
changes widely per device, so read through the example without trying it on your
own device.

Extracting Data
Your CEO comes to you with a device that crashes when they launch PetSave. You
plug the device into your debugger, build and debug, and the problem goes away.

However, a week later, the same story happens again. The C-level employees only get
the final release version, where you’ve disabled logs, and Logcat is no help. The fact
that it’s a release build might be a coincidence. The third time the CEO brings you
the device with the issue, you know you have to preserve the state of the defect. You
can’t just debug this app, you need a way to extract data from the device.

You’ll start your investigation by using Android Debug Bridge (ADB), an Android
tool that lets you communicate with an Android device via the command line. To
follow the remainder of this tutorial, enable ADB debugging on a physical device or
an emulator.

One of the simplest things to do with ADB is to list the apps installed on a device:

adb shell # 1
pm list packages -f | grep petsave # 2
exit

Here’s what the code above does:

1. Starts the ADB shell so you can run commands on the device.

2. Lists the packages installed on the device and filters them using the grep
command.

After running this command, if the CEO has correctly installed PetSave, you’ll see a
line like this in your output:

package:/data/app/com.realworld.android.petsave-
ei0L3AJk3xo5M3Gs9SVuTQ==/base.apk=com.realworld.android.petsave

Here, com.realworld.android.petsave is PetSave’s package name.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 500

Extracting Data From a Package
Once you’ve found the PetSave package, try to run the app over ADB to extract data
with the correct permissions. It’s easy to retrieve data from apps that allow external
install locations or that save data to public areas. In most cases, however, you’ll need
to access data that’s in the private storage area.

On some versions of the Android platform, you can access the private storage of
debuggable versions of the app:

adb exec-out run-as com.realworld.android.petsave cat databases/
petsave.db > petsave.db

Here, you’re using run-as to execute commands with the same permissions as the
app.

If that doesn’t work, you can also try to change file permissions and use the adb
pull command:

adb shell
run-as com.realworld.android.petsave #1
chmod 666 databases/petsave.db #2
exit
cp /data/data/com.realworld.android.petsave/databases/petsave.db
/sdcard/ #3
run-as com.realworld.android.petsave
chmod 600 databases/petsave.db #4
adb pull /sdcard/petsave.db . #5

This code:

1. Tells ADB to execute commands with the same app permissions.

2. Executes chmod, which lets you change file permissions. Permission 666 means
all users can read and write to the file.

3. Copies petsave.db to sdcard, which is a public area of the device.

4. Executes chmod again to reset the file permissions. Permission 600 means only
the owner — the app — can read and write to the file.

5. Now that you’ve put the file in a public area, you copy the file from the device to
the working directory of your computer.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 501

You now have a copy of an app’s local database on your computer. However, many
devices disable these features for security reasons. If that’s the case, the next thing
you’d try is a device backup. Device backups can include the APKs as well as the
private data for each app:

adb backup -apk -shared com.realworld.android.petsave

Here, you use backup to write an archive of the app and its data to the working
directory of your computer. The default filename is backup.adb.

Feel free to experiment, if you’re comfortable doing so, on a test device. But for the
sake of time and safety, this chapter will use the Android Emulator to skip to the
next step.

Extracting Data From The Emulator
Now that you have access to the file system of the CEO’s device, it’s time to extract
the data. Build and run in the emulator, then make a report.

In the Report screen, fill in the details and tap the SEND REPORT button. In
Android Studio, select View ▸ Tool Windows ▸ Device File Explorer, then choose
Emulator Pixel_XL_API_30 from the drop-down:

Figure 22.1 — File Explorer

Knowing where apps store information makes it easy to look for artifacts or to
recover deleted data. Here are some locations where Android keeps important data:

• All apps store user data in /data/data.

• You can find a list of apps on the device at /data/system/packages.list.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 502

• You can see when you last used an app at /data/system/package-usage.list.

• The operating system stores Wi-Fi connection information, such as a list of access
points, at /data/misc/wifi/wpa_supplicant.conf.

To try your hand at saving PetSave’s data to your device, navigate to /data/data.
You’ll see a list of all the packages:

Figure 22.2 — Locate the Data Folders

Find the com.realworld.android.petsave entry. Right-click on it and choose Save
As…. Save the file to a location on your computer and open it to view its contents.
You’ll see important directories such as:

• shared_prefs

• files

• databases

Now, you’ll look at each of these in more detail.

Examining SharedPreferences
Open MyPrefs.xml inside shared_prefs. You’ll notice at least one entry with a
timestamp.

Timestamps are very important to any debugging investigation because they give
you evidence of what happened at a specific time.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 503

Examining Other Files
Now, select users.dat in the files directory.

Android serializes objects in a specific record format, but you can still search for
strings using the strings utility, which both Mac and Linux already include.

If you’re using Windows, download the strings utility here: https://
docs.microsoft.com/en-us/sysinternals/downloads/strings.

In the terminal, type strings and a space followed by the path to users.dat. After you
press Space, drag users.dat into the terminal window to populate the path. Press
Enter and you’ll get an output of items.

Upon looking at the output, you’ll see extrat followed by nameq and passwordq.
You can use that order to deduce that you’re looking at the extra info about each
account, followed by a login name and an encrypted password. In Chapter 16,
“Securing Data at Rest”, you encrypted this data. But wait, it looks like this now:

"::basic_string(void*,void(*),void(*)_char_\0\0cd.Nico Sell -
CEO"

There’s a name in there that doesn’t look like a password, nor is it encrypted. Also,
there seems to be some extra garbage data.

Doing a Google search for ::basic_string leads you to typedef std::basic_string
string, a class template type for std::string. But this is C++.

Choose Edit ▸ Find ▸ Find in Path to search for std::string. Oh right, when working
on your app with the iOS team, you shared some portable code for productivity’s
sake.

user_processing_jni.cpp shows up in the search. Open it and check out line 40. It
looks like that could be what’s getting in the password field by mistake. Without
going into C++ too much, you’ve found a possible location of a bug that you can
report to the other team to fix.

Note: Interested in a bit of C++ and what the bug is? On line 50, the
constructor attempts to set this variable to zero, but there’s a mistake. In C++,
you must explicitly initialize all pointers; otherwise, they point to garbage
values. The line attempts to set the variable to all zeros, but sizeof only sets
the first character.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 504

In debug mode, that was enough for the app to keep going. In release mode,
the optimizer sees that you’re setting the variable to zero and not doing
anything with it, so it removes that line. Now, when you go to access it, it
points to a random part of memory — in this case, a section of the previous
_userNameString — and crashes! Worse, the memory layout will vary each
time, making this crash random.

Now, the other team sent you the fix. Replace line 50 with the following:

_passwordChar = "";

Now, you have happy C++ code. :]

Note: If you want to prevent the compiler from optimizing out the secure-
wiping of memory contents, check out the proper implementation in the
destructor on line 54, which uses volatile.

You used the strings utility here, but there are a few other tools to extract data, as
well:

• A hex and text viewer comes in handy to search for strings and patterns.

• A live data imaging tool that may be helpful is dd. You’ll find it at /system/bin.

• To extract the current memory state of the device, check out LiME.

Next, you’ll learn how to check the data stored in databases.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 505

Analyzing Databases
Often, user records are stored in a database instead of a serialized object. Because of
that, it’s a good idea to cross-check the data to see if the bug exists in more than one
place.

Navigate to the databases folder and you’ll see some files. Next, you’ll see some
different ways to examine them.

In Android Studio navigate to View ▸ Tool Windows ▸ App Inspection. Then you’ll
see the following tab:

Figure 22.3 — App Inspection

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 506

Now, double-click on reports:

Figure 22.4 — Browser the Data of Your DB

You’ll see all the reports. In Chapter 16, “Securing Data at Rest”, you encrypted this
data and stored it as base 64, so your first step will be to check that it really contains
base 64 characters. In this case, these characters include: A–Z, a–z, 0–9 and the +
and / symbols.

So far, everything’s going well — but analyzing your app doesn’t always go this
smoothly. For example, users often continue using the app after a bug occurs.
They’re not developers. They don’t understand that the more they use the app, the
farther away they put the state of the app at the time of the bug. For example, say
that when the CEO experienced the bug, they logged out of the app and submitted
the device to QA — not understanding that the logout functionality deleted the user
record and reports.

To address this, you need to know how to recover that data.

Recovering Deleted Data
The data you’ve analyzed so far exists inside a saved SQLite block. SQLite has
unallocated blocks and free blocks. When you delete something from the database,
SQLite doesn’t overwrite the block immediately. Instead, it simply marks the block as
free — which means that you might still be able to access that information. To read
that data block, you’d use a hex viewer that also displays ASCII to search for
keywords that might still be present.

The process of finding and extracting data when you don’t have access to the file
structure is called file carving. Sometimes, searching for a particular string of
content helps. Other times, you’d look for the header of a known file format.

For example, say you’re searching deleted data for images. In the JPEG format, the
first two bytes and the last two bytes are always FF D8 and FF D9. Searching for
those headers can help you identify the images.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 507

Here are a few more details about recovering deleted data:

• Find valuable information about SQLite file carving here: https://
forensicsfromthesausagefactory.blogspot.com/2011/04/carving-sqlite-databases-
from.html.

• Scalpel is an open-source data-carving tool, available at https://github.com/
sleuthkit/scalpel.

• DiskDigger is an automated undelete tool for Android. It scans the device for
photos, documents, music and videos: https://diskdigger.org/android.

• A commercial tool for viewing and undeleting SQLite records is SQLite Viewer,
available here: https://www.oxygen-forensic.com/en/products/oxygen-forensic-
detective.

Next, you’ll learn how to handle problems in code you don’t own.

Black Box Testing And Reverse-
engineering
At this point, you’ve analyzed and fixed code that you own, but bugs happen in
third-party frameworks, too. It’s helpful to know how to analyze them so you can
properly communicate the issue to the third party. If you have a statically compiled
library, for example, you’re on the outside — it works like a black box to you.

You can get a lot of information by analyzing a binary or app module. This includes
the code and files that Android Studio bundles with the APK. First, you’ll look at
what happens when you compile an app.

When you build your app, Android Studio produces an APK file. This is like a ZIP file
that contains a structure of Java’s JAR archives. Inside the archive are resources,
along with a DEX file. DEX stands for Dalvik Executable.

When Android Studio compiles your app, it puts the code into that DEX file and
names it classes.dex. That file contains bytecode, an intermediary set of instructions
that a Java Virtual Machine (JVM) runs or that ART (the Android Runtime) later
converts to native code. So what are JVM, ART and native code?

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 508

Apps run on a Java Virtual Machine (JVM). Android traditionally used Dalvik for its
JVM, but in recent years, Android replaced Dalvik with ART for performance reasons.
ART converts DEX into native code by running the dex2oat tool to create a native
ELF binary. Native code refers to the C/C++ code that the operating system
understands and the assembly and machine code that the CPU can read.

So now you’re thinking, because PetSave is a Kotlin app, reverse-engineering it must
be different than for Java apps. The good news is, like Java, Kotlin is a JVM language.
While Kotlin has its own syntax, the kotlinc compiler transforms the code into a
DEX file that contains Java bytecode. Because kotlinc compiles Kotlin to the same
bytecode as Java, most of its reverse-engineering tools are the same as for apps built
in Java!

Note: Sometimes, attackers also reverse-engineer apps in hopes of patching or
hooking security checks out of the code. A good example of a target is a
feature that’s only available with a paid subscription or after a user achieves a
level in a game. Keep in mind that these tools and techniques are not only
useful for debugging, but for performing a security audit of your app.

So now you’re thinking — enough theory already. Show me an example!

Understanding Bytecode
You now have a new issue to deal with: The team updated an expired API key but the
app still isn’t working.

Your first step is to check that the team used the correct key. Open
ReportDetailFragment in Android Studio and find sendReportPressed(). It adds
the report to the local database and prepares a network request to send the report.
That network request requires the API key so only authorized apps can make the call.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 509

Open ApiConstants.kt and note the const val SECRET used to make API requests.
It looks like the correct key:

Figure 22.5 — Access SECRET in ApiConstants

When you set a breakpoint in the debug version, things look fine. Based on your
previous experience, it looks like something is happening to the code for the release
version.

The release build variant disables debugging in many places. Commenting out those
security checks results in a false test. But Android Studio includes a tool called APK
Analyzer, which lets you view the bytecode of your finalized app.

Using APK Analyzer
APK Analyzer is a tool for inspecting your finalized app. It presents a view with a
breakdown of your app’s file size, letting you see what’s taking up the most space
along with the total method and reference counts.

For this example, you’ll look at the debug version. Launch the analyzer by selecting
Build ▸ Analyze APK. This will open a dialog for your file system. Then, navigate to
the debug folder, PetSave-Starter/app/build/outputs/apk/debug, select app-
debug.apk and click OK to open APK Analyzer:

Figure 22.6 — Using APK Analyzer

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 510

Note: If the APK file is missing, choose Build ▸ Build Bundle(s) / APK(s) ▸
Build APK(s) to generate it.

In APK Analyzer, select classes5.dex, then navigate to com/realworld/android/
petsave/core/data/api:

Figure 22.7 — Analyze the Classes in the APK for Your App

Right-click ApiConstants and choose Show Bytecode. Notice the line that starts
with .field public static final SECRET:

Figure 22.8 — Access the SECRET Constants in the Classes in the APK for Your App

At first glance, it seems that the secret token is correct. But is it? In the previous
chapters of this book, you looked at how spammers search for tokens to abuse
private APIs. Attackers also reverse-engineer apps, to steal intellectual property, for
example, or to clone the app.

Since this API key is sensitive, it’s likely protected using obfuscation techniques such
as reflection. As a consequence, however, it’s harder to debug when something goes
wrong.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 511

Introspection and Reflection
When you’re away at work, your pets hang out for hours, not seeming to do very
much. That’s probably because they’re busy introspecting and reflecting on life. In
Kotlin, introspection and reflection are features of the language that inspect objects
and call methods dynamically at runtime.

Open ApiConstants.kt and find aK(). Notice there’s some obfuscation. The previous
developer abbreviated the name and created a string from bits and pieces of other
strings, as well as from an object called GO. You can find the variables in SN.kt, in the
object GO definition. For your next step, you’ll check that those values are in the
final APK.

In APK Analyzer, select classes5.dex. Navigate to com/raywenderlich/android/
petsave/core/data/api. Right-click GO and choose Show Bytecode. Integers f1, f2
and f3 are the variables of 3, 1 and 5 that create part of the key. Things look OK for
those values at first glance:

Figure 22.9 — Obfuscation in Practice

However, if you follow those methods to the GO companion object, the numbers it
returns are not the real ones. As you look through SN.kt, you notice this code:

val kClass = Class.forName(ownerClassName).kotlin // 1
val instance = kClass.objectInstance ?:
kClass.java.newInstance() // 2
val member =
kClass.memberProperties.filterIsInstance<KMutableProperty<*>>()
 .firstOrNull { it.name == fieldName } // 3
member?.setter?.call(instance, value) // 4

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 512

Wait, what? What is this magic? This code does the following:

1. Gets the Kotlin class for ownerClassName.

2. Instantiates that class at runtime, if it isn’t already instantiated.

3. Dynamically gets the property that fieldName references for the instantiated
class.

4. Calls a setter on that property, passing in value.

The real magic happens when the app invokes sn() (setupNumbers), which looks for
com.raywenderlich.android.petsave.core.data.api.GO. It finds the fields
named f1 through f3 and swaps the values out for something else at runtime.

You’ve now figured out why the API key change didn’t go as planned and where you
need to update the real values.

Note: This is also good motivation to document tricky code for future
developers.

Using Reverse-engineering Tools
You’ve just reverse-engineered code, and because you have the original project open
in Android Studio, it was easy to do. But this is not the only way to view the
bytecode. Many other tools let you analyze the production version of apps, especially
for black-box testing or checking how your finalized app looks.

As long as you’re able to access the release APK, either by using the methods you
learned above or by downloading an APK from a site like https://
www.apkmirror.com/, you can reverse-engineer the code without having access to
the Android Studio project.

For example, Apktool will reverse-engineer the entire Android package back to a
workable form, including all resources and original source code. It’s available here:
https://ibotpeaches.github.io/Apktool/. There are even online versions, such as the
one at http://www.javadecompilers.com/apk.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 513

There are also many other tools you can use:

• smali/baksmali (https://github.com/JesusFreke/smali) is a set of tools to
transform bytecode into another intermediate, but more readable, language. From
there, you can convert the code back into Java.

• Android Asset Packaging Tool dumps the Android Manifest file.

• AXMLPrinter2 (https://code.google.com/archive/p/android4me/downloads)
parses Android binary XML formats.

• dex2Jar (https://github.com/pxb1988/dex2jar) lets you convert a DEX file to a
standard Java CLASS file.

• Get all the class names and most source code by opening a jar folder in JD-GUI
(https://github.com/java-decompiler/jd-gui).

• Dextra (http://newandroidbook.com/tools/dextra.html) supports ART and OAT.

• Jadx (https://github.com/skylot/jadx) lets you browse decompiled DEX code. It
also decompiles almost the entire project.

• JAD (http://varaneckas.com/jad/) will convert Java class files back to source files.

As you can see, it’s easy for anyone to do this. That’s the main reason developers use
obfuscation to hide or obscure proprietary logic or secret keys, as you saw above.
They can do this with string splitting, dummy code, disguising the names of methods
or using reflection, as you saw above. But more often, they use optimizers such as R8
or ProGuard. While the tools optimize code, they have the side effect of obfuscating
it. That further complicates things when it comes to debugging.

Debugging With ProGuard Output Files
In the app build.gradle, replace buildTypes’s code with the following:

buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'
 }
 debug {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-
android.txt'), 'proguard-rules.pro'

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 514

 }
}

Sync Gradle, then build and run. When ProGuard finishes running, it produces four
output files. They are:

• usage.txt: Lists code that ProGuard removed.

• dump.txt: Describes the structure of the class files in your APK.

• seeds.txt: Lists the classes and members that were not obfuscated. This helps you
verify that you obfuscated your important files.

• mapping.txt: Maps the obfuscated names back to the original.

You can use the mapping file to see the original code.

Build and run APK Analyzer again, then select classes.dex. Drill down to com/
realworld/android/petsave and you’ll see classes and methods along the lines of
i.n0.r.a. The single characters you see will vary from this example, but you can
follow the directory path of the characters to various methods:

Figure 22.10 — The Code After Proguard Obfuscation

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 515

For debugging, it’s not clear what the directories are. Click the Load Proguard
mappings… button to map the obfuscated names back to the original:

Figure 22.11 — Loading the Proguard Mapping File

Select mapping.txt in the debug folder and click OK.

Toggle the Deobfuscate names button to the left of the Change ProGuard
mappings… button to switch between obfuscated and deobfuscated code. Now, you
can trace the problem down to the specific code again.

There are a few more things you should know about the mappings file:

• Every time you make a release build, you rewrite mapping.txt. That means you
must save each copy with each release of your app. That way, when you receive an
obfuscated stack trace for a particular app release, you’ll be able to use it.

• Upload your mapping.txt to Google Play to deobfuscate your crash stack traces.
Instructions are here: https://support.google.com/googleplay/android-developer/
answer/6295281.

• If you’re using Firebase, you can find instructions about mapping.txt here:
https://firebase.google.com/docs/crashlytics/get-deobfuscated-reports?
platform=android.

Congratulations, you’ve now learned how to overcome the most common hurdles
when analyzing a compiled app.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 516

Some Final Notes
Finding a software defect is like holding a mirror up to yourself — a great learning
opportunity. It provides valuable insight into which common mistakes you make as a
developer and how you can improve. App analysis is self-analysis. And, like every
other phase of the lifecycle, it’s iterative.

Once you find the bug, thinking of how to solve it is iterative as well. It might mean
going back to good variables names, high-quality methods and class interfaces, or
even further back — maybe you coded the solution before the problem was clearly
defined.

Security researchers look at past bug fixes to profile a developer’s style. This speeds
up the process of finding vulnerabilities by guessing where others might be. Taking
the time to check the rest of your code for the same mistake when you encounter a
bug is an efficient way of preventing the same issues from appearing again in future
releases. It’s also good motivation for code reuse; when you fix a problem in one
place, you don’t have to find all the same occurrences of the problem in the areas of
the code you copy-pasted.

App analysis is a complex process. As you progress through the development
lifecycle, iterations become more expensive. Code-tuning and refactoring are less
expensive than debugging, while working out the initial requirements of the problem
domain is even more affordable. In other words, measure twice and cut once to avoid
defects in the first place.

This brings you back to the beginning of the cycle. And like any process, you can
come back to this book at any time. Just return to Chapter 2, “Starting from the
Beginning”.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 517

Key Points
• There are two types of tests you can run to help you find problems: dynamic and

static.

• Dynamic testing is testing while executing the code.

• Static testing is auditing the source code for issues.

• Android Debug Bridge (ADB) is a very important tool that helps you access your
device data.

• Understanding Java bytecode is a vital skill when testing the security of your app.

• Several tools allow you to reverse-engineer your app. APK Analyzer is one of
those.

Real-World Android by Tutorials Chapter 22: App Analysis

raywenderlich.com 518

23Conclusion

Congratulations! After a long journey, you’ve learned many important things about
how to implement a real-world Android app. Now, you can apply what you’ve learned
to your own apps by using the right architecture and adding animations and custom
views. You also learned many important concepts about security and debugging.

Remember, if you want to further your understanding of Kotlin and Android app
development after working through Real-World Android by Tutorials, we suggest you
read Android Apprentice and Kotlin Apprentice. Both are available in our online store:

• https://www.raywenderlich.com/books/android-apprentice

• https://www.raywenderlich.com/books/kotlin-apprentice

If you have any questions or comments as you work through this book, please visit
our forums at https://forums.raywenderlich.com and look for the forum category for
this book.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos, conferences and other things we do at raywenderlich.com
possible, and we truly appreciate it!

Wishing you all the best in your continued Android app development!

–The Real-World Android by Tutorials book team

raywenderlich.com 519

	Book License
	What You Need
	Book Source Code & Forums
	About the Authors
	About the Editors

	Acknowledgments
	Content Development

	Chapter 1: Introduction
	What Is This Book About?
	Who Is This Book for?
	The Sample Project
	Signing Up for an API Key
	Where to Go From Here?

	Chapter 2: Starting From the Beginning
	Package by Feature Approach
	Full Stack Features Through Layers
	Bridging Requirements and Implementation
	Devising a Plan of Attack
	Key Points

	Chapter 3: Domain Layer
	What Is a Domain Layer?
	Creating Your Domain Model
	Inverting Dependencies With Repositories
	Testing Your Domain Logic
	Key Points

	Chapter 4: Data Layer — Network
	What Is a Data Layer?
	Network Data Models
	Connecting to the API With Retrofit
	Interceptors
	Testing the Network Code
	Key Points

	Chapter 5: Data Layer — Caching
	Cache Data Models
	Caching Data With Room
	Managing Cache Dependencies With Hilt
	Putting It All Together
	Testing Your Repository
	Key Points

	Chapter 6: Building Features — Animals Near You
	What Is a Presentation Layer?
	Making Your Life Easier With Architecture
	Building Animals Near You
	Creating the UI Components
	Creating the View State
	Creating the Data Flow
	Your First Use Case
	Connecting the Layers
	Hilt on Android Components
	Displaying Cute Animals
	Allowing an Infinite Scroll
	Key Points

	Chapter 7: Building Features — Search
	Building a Search Feature
	Getting Started
	Searching Locally
	Triggering the Search
	Adding Search to the Repository
	Adding Search to the ViewModel
	Searching Remotely
	Canceling Old Search Requests
	Finishing Touches
	Testing
	ViewModel Tests
	UI Tests
	Key Points

	Chapter 8: Multi-Module Apps
	What is Modularization?
	Types of Modules
	Why Modularization Is Good
	Using Gradle With Modules
	Looking Back Over Your Decisions so Far
	Creating the Onboarding Feature Module
	Navigating Between Feature Modules
	Using Deep Links
	Additional Improvements
	Key Points

	Chapter 9: Dynamic Features Theory
	Android App Bundle
	Dynamic Delivery
	What Are Dynamic Features?
	Key Points

	Chapter 10: Building a Dynamic Feature
	PetSave’s New Features
	Deciding How to Create Your Dynamic Feature
	Preparing the App MNodule
	Preparing the Feature Module
	Handling Navigation
	Handling Dependency Injection
	Testing Module Install
	Key Points
	Where to Go From Here?

	Chapter 11: Animations
	Lottie
	Animated Vector Drawables
	Physics-based Animations
	Key Points

	Chapter 12: MotionLayout & Motion Editor
	Getting to Know MotionLayout
	Getting Started
	Adding Your First Constraint
	Motion Editor
	Adding a Trigger
	Overriding Visibility
	Animating More Features
	Adding Non-linear Motion
	ImageFilterView
	Key Points

	Chapter 13: Custom Views
	Creating Custom Views
	Implementing a Progress Button
	Initializing the Paint Objects
	Designing the Animation Logic
	Painting Your Shape
	Previewing Your Shape
	Adding Animation
	Drawing the Check Icon
	Putting Everything Together
	Manually Stopping the Animation
	Enhancing Performance
	Key Points

	Chapter 14: Style & Theme
	Defining Styles and Themes
	Structure of a Style
	Structure of a Theme
	Style Hierarchy
	Theme Overlay
	TextAppearance
	Setting Up Dark Themes
	Styling Custom Views
	Key Points

	Chapter 15: User Privacy
	Securing the Foundations
	Using Permissions
	Opting Out
	Clearing Caches
	Disabling Logging
	Disabling Screenshots
	Wiping Memory Securely
	Key Points
	Where to Go From Here?

	Chapter 16: Securing Data at Rest
	Implementing the Login
	Securing Data with Biometrics
	Customizing Encryption
	Key Points

	Chapter 17: Securing Data in Transit
	Understanding HTTPS
	Updating Security Providers
	Understanding Certificate and Public Key Pinning
	Using Certificate Transparency
	Preventing Information Leaks with OCSP Stapling
	Understanding Authentication
	End-to-end Encryption
	Key Points
	Where to Go From Here?

	Chapter 18: App Hardening
	Introducing Overflows
	Paying Attention to Warnings
	Sanitizing Data
	Validating Input
	Nullability and Safety Checks
	Concurrency
	Checking App Integrity
	Key Points

	Chapter 19: Firebase Integration
	Setting up Firebase
	Crashlytics
	Remote Config
	Firebase Test Lab
	Key Points

	Chapter 20: Release Optimizations
	Using APK Analyzer
	Enabling an Optimizer
	ProGuard Versus R8
	Fixing Compilation Errors
	Enabling More Optimizations
	A Few Things To Keep in Mind…
	Key Points

	Chapter 21: Advanced Debugging
	Memory Leaks
	Android Studio Profiler
	Layout Inspector
	Key Points

	Chapter 22: App Analysis
	Debugging Versus Investigating
	Extracting Data
	Recovering Deleted Data
	Black Box Testing And Reverse-engineering
	Using Reverse-engineering Tools
	Debugging With ProGuard Output Files
	Some Final Notes
	Key Points

	Conclusion

