O'REILLY"

i //&/
W)

/

\
/]

Data Security
for Web
Development

BEST PRACTICES

Jonathan LeBlanc &
Tim Messerschmidt

9

O'REILLY"

Identity & Data Security for Web Development

Developers, designers, engineers, and creators can no longer afford to pass
responsibility for identity and data security onto others. Web developers
who don't understand how to obscure data in transmission, for instance,
can open security flaws on a site without realizing it. With this practical
guide, you'll learn how and why everyone working on a system needs to
ensure that users and data are protected.

Authors Jonathan LeBlancand Tim Messerschmidt provide adeep dive into
the concepts, technology, and programming methodologies necessary
to build a secure interface for data and identity—without compromising
usability. You'll learn how to plug holes in existing systems, protect against
viable attack vectors, and work in environments that sometimes are
naturally insecure..

m Understand the state of web and application security today

m Design security password encryption, and combat password
attack vectors

m Create digital fingerprints to identify users through browser,
device, and paired device detection

m Build secure data transmission systems through OAuth and
OpenlID Connect

m Use alternate methods of identification for the second factor of
authentication

m Harden your web applications against attack

m Create a secure data transmission system using SSL/TLS, and
synchronous and asynchronous cryptography

“This is an excellent
book for beginners and
experienced developers
alike. It walks you
through the basics and
quickly drills down
into the 'how' and 'why'
things work with plenty
of useful, detailed
example code snippets.
A must have for any web
developer these days.”

—Lenny Markus
Sr.Manager, PayPal Engineering

Jonathan LeBlancis an Emmy
award-winning software engineer,
technical author, and the Head of
Global Developer Advocacy for
PayPal. Jonathan specializes in
identity, authorization, and security;
hardware-to-web communications;
and data mining techniques—all with
a focus towards human and device
interconnectivity.

Tim Messerschmidt is Program
Manager of Developer Relations at
Google, leading the Germany, Austria,
and Switzerland (DACH) region. Prior
tojoining Google, he headed up
PayPal's and Braintree's Developer
Evangelism teams across Europe,
Middle East, and Africa (EMEA) and
the Asia-Pacific (APAC) region.

NETWORKING

US $39.99 CAN $45.99
ISBN: 978-1-491-93701-3

VWAL i
AL

8

Twitter: @oreillymedia
facebook.com/oreilly

|dentity and Data Security
for Web Development

Best Practices

Jonathan LeBlanc and Tim Messerschmidt

Bejng - Boston « Farnham « Sebastopol - Tokyo [@YRIIMNY

Identity and Data Security for Web Development
by Jonathan LeBlanc and Tim Messerschmidt

Copyright © 2016 Jonathan LeBlanc, Tim Messerschmidt. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley Indexer: WordCo Indexing Services, Inc.
Production Editor: Colleen Cole Interior Designer: David Futato
Copyeditor: Kim Cofer Cover Designer: Karen Montgomery
Proofreader: Sharon Wilkey lllustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-06-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491937013 for release details.

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Identity and Data Security for Web
Development, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-93701-3
[LSI]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491937013

Preface

1. Introduction

Table of Contents

The Problems with Current Security Models
Poor Password Choices
Security over Usability
Improper Data Encryption
The Weakest Link: Human Beings
Single Sign-on
Understanding Entropy in Password Security
Entropy in Randomly Selected Passwords
Entropy in Human-Selected Passwords
Breaking Down System Usage of a Username and Password
Securing Our Current Standards for Identity
Good and Bad Security Algorithms
What Data Should Be Protected?
Account Recovery Mechanisms and Social Engineering
The Problem with Security Questions
Next Up

. Password Encryption, Hashing, and Salting........................ ...

Data at Rest Versus Data in Motion
Data at Rest
Data in Motion
Password Attack Vectors
Brute-Force Attack
Creating a CAPTCHA with reCAPTCHA
Dictionary Attacks

— O 0 N QN Ul R W

— = e e e e
Ul W W NN

17
17
18
19
20
21
22
28

Reverse Lookup Tables
Rainbow Tables
Salting
Generating a Random Salt
Salt Reuse
Salt Length
Where to Store the Salt
Peppering
Choosing the Right Password Hashing Function
berypt
PBKDEF2
scrypt
Validating a Password Against a Hashed Value
Key Stretching
Recomputing Hashes
Next Steps

Identity Security Fundamentals................coooviiiiiiiiiiiin,

Understanding Various Identity Types
Social Identity
Concrete Identity
Thin Identity
Enhancing User Experience by Utilizing Identity
Introducing Trust Zones
Browser Fingerprinting
Configurations More Resistant to Browser Fingerprinting
Identifiable Browser Information
Capturing Browser Details
Location-Based Tracking
Device Fingerprinting (Phone/Tablet)
Device Fingerprinting (Bluetooth Paired Devices)
Implementing Identity

Securing the Login with

OAuth2and OpenIDConnect..........covviniiiiniinninnennennennns

The Difference Between Authentication and Authorization
Authentication
Authorization
What Are OAuth and OpenID Connect?
Introducing OAuth 2.0
Handling Authorization with OAuth 2.0
Using the Bearer Token

29
30
32
33
33
34
34
34
35
36
37
38
40
41
41
42

43
43
44
44
45
45
46
47
48
49
50
52
54
55
56

57
57
58
58
58
61
63
65

iv

| Table of Contents

Authorization and Authentication with OpenID Connect 66

Security Considerations Between OAuth 2 and OAuth 1.0a 67
Building an OAuth 2.0 Server 68
Creating the Express Application 68
Setting Up Our Server’s Database 69
Generating Authorization Codes and Tokens 69
The Authorization Endpoint 72
Handling a Token’s Lifetime 75
Handling Resource Requests 78
Using Refresh Tokens 81
Handling Errors 82
Adding OpenID Connect Functionality to the Server 86
The ID Token Schema 87
Moditying the Authorization Endpoint 88
Adjusting the Token Endpoint 89
The UserInfo Endpoint 91
Session Management with OpenID Connect 91
Building an OAuth 2 Client 92
Using Authorization Codes 92
Authorization Using Resource Owner Credentials or Client Credentials 95
Adding OpenID Connect Functionality to the Client 96
The OpenID Connect Basic Flow 97
Beyond OAuth 2.0 and OpenID Connect 98
. Alternate Methods of Identification....................oiiiiinn 101
Device and Browser Fingerprinting 101
Two-Factor Authentication and n-Factor Authentication 102
n-Factor Authentication 102
One-Time Passwords 103
Implementing Two-Factor Authentication with Authy 106
Biometrics as Username Instead of Password 112
How to Rate Biometric Effectiveness 113
Face Recognition 114
Retina and Iris Scanning 114
Vein Recognition 115
Upcoming Standards 115
FIDO Alliance 116
Oz 117
The Blockchain 118
Wrap Up 118

Table of Contents | v

6. Hardening Web Applications.ooviiiiiiiiiiiiiiiiiiiiiiiiiiniennnes 119

Securing Sessions 119
Types of Sessions 120
How Express Handles Sessions 121

Handling XSS 125
The Three Types of XSS Attacks 125
Testing XSS Protection Mechanisms 126
Conclusion 130

CSRF Attacks 130
Handling CSRF with csurf 131

Valuable Resources for Node 132
Lusca 132
Helmet 133
Node Security Project 133

Other Mitigation Techniques 134

Our Findings 135

7. Data Transmission SECUNItY. ... ovvuvreeneennennrrnrinreneeneenesnnssnsennas 137

SSL/TLS 137
Certificate Validation Types and Authorities 139
Creating Your Own Self-Signed Certificate for Testing 141

Asyncronous Cryptography 148
Use Case 149
Implementation Example 151
Advantages, Disadvantages, and Uses of Aynchronous Cryptography 157

Synchronous Cryptography 158
Initialization Vector 159
Padding 160
Block Cipher Modes of Operation 162
Using AES with CTR Encryption Mode 164
Using AES with with GCM Authenticated Encryption Mode 166
Advantages, Disadvantages, and Uses of Synchronous Cryptography 168

A. GitHub Repositories.cvveeuneerieeiereieenieetiereneeenneenneeenenens 17
B. Technical Preconditions and Requirements.............ccoovviiiiiininnenn.. 173
1117 179
INAEX. 181

vi | Tableof Contents

Preface

“Companies Lose $400 Billion to Hackers Each Year™

—Inc. Magazine

A cybersecurity market report issued by Cybersecurity Ventures in Q4 of 2015 stated
that cyber attacks are costing businesses between $400 and $500 billion a year.? In the
same thread, IT security spending is due to increase by 4.7% in 2015 to $75.4 billion
USD, with an estimate that the world will spend upward of $101 billion in informa-
tion security in 2018, and grow to $170 billion in 2020. Therefore, a cybersecurity
workforce shortage of 1.5 million people is projected by 2019, as demand is expected
to rise to 6 million that year.

As web and application developers, designers, engineers, and creators, we are no
longer living in an age where we can offload the knowledge of identity and data secu-
rity to someone else. By not understanding how to properly obscure data in transmis-
sion, a web developer can unwittingly open up a security flaw on a site. A project
manager can cause a major attack vector to open up in an application by not under-
standing that previously secure password algorithms have been shown to now
include flaws, and by not prioritizing the work on rehashing the database of user
records. It is now the business of every person working on a system to take part in
ensuring that users and data are protected.

Despite this awareness, it seems like every week we have new cases of companies,
from startups to massive corporations, losing privileged user information, credit card
data, medical records, and many other pieces of information that they are entrusted
to protect. It has come to light that many of these same organizations never took the
time to encrypt data properly, storing everything in plain text, just waiting for some
hacker to abuse it.

1 http://www.inc.com/will-yakowicz/cyberattacks-cost-companies-400-billion-each-year.html

2 http://cybersecurityventures.com/cybersecurity-market-report

vii

http://www.inc.com/will-yakowicz/cyberattacks-cost-companies-400-billion-each-year.html
http://cybersecurityventures.com/cybersecurity-market-report

The true problem is that hacking is no longer just the business of individuals wanting
to prove that they can breach a system; it is now a realm of organized businesses,
hacking for money or to damage the business.

This is where this text comes in. As we explore each chapter and concept, you'll learn
how to plug holes in existing systems, protect against viable attack vectors, and work
in environments that are sometimes naturally insecure. We'll look at concepts such as
the following:

 Understanding the state of web and application security
« Building security password encryption, and combating password attack vectors

o Creating digital fingerprints to identify users through browser, device, and
paired-device detection

« Building secure data transmission systems through OAuth and OpenID Connect
« Using alternate methods of identification for a second factor of authentication
« Hardening your web applications against attack

o Creating a secure data transmission system using SSL/TLS and synchronous and
asynchronous cryptography

In the end, you’ll have a comprehensive understanding of the current state of identity
and data security, knowing how to protect yourself against potential attacks, and pro-
tect our users from having the data that they entrusted to you compromised.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, datatypes, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

vii | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ o ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

Preface | ix

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/identity-and-data-security.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

First of all we would like to thank the O’Reilly crew for publishing this book and ena-
bling us to share our knowledge, thoughts, and opinions with many individuals
around the world. A huge special thanks goes out to our editor, Meg Foley, who has
been patient, supportive, and helpful throughout the process of finishing this work.

Our thanks also go out to Lenny Markus, Allen Tom, and Aaron Parecki, who
patiently reviewed this book’s manuscript and helped to improve its quality tremen-
dously.

Wed also like to thank our developer relations team for proofreading, providing cri-
tique, and freeing us up to work on this book.

Finally, wed like to express our gratitude to you, our readers, for buying this book.
We hope you enjoy it!

x | Preface

http://bit.ly/identity-and-data-security
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Jonathan

I'd like to start out by thanking my partner in crime, Tim, for being an amazing co-
author to work with. Without our continued conversations, building up and breaking
down all of our ideas into new amazing hybrids of their original selves, this book
wouldn’t be what it is today. Your ideas, drive, and humor made this one of my favor-
ite experiences.

To my wife, Heather, you've helped to keep me sane when I decided to write my first
book almost five years ago. Despite the fact that I forgot how much time away that
took, you stood by me when I decided to write another one. Without you, I could not
have kept my sanity and drive throughout this process. You have always been by my
side to encourage me to chase my dreams. You've been my biggest advocate through
all of this, and I love you for that.

To my daughter, Scarlett, throughout the time that I have had to pleasure to be your
father, you have brought a calming effect into my life. With constant chaos, you have
allowed me to see that the world doesn’t have to be as serious as I used to think it was.
You've brought a peace into my life that I will always thank you for.

To my group, my friends. We may all go our separate ways, be split through compa-
nies and across the world, but I will always see you as some of my closest friends. We
have been through so much together and have sacrificed a lot. Despite all that, you
have been our supporters through everything we have gone through, boosting us up,
allowing us to succeed. Thank you.

Tim
Id like to thank Jonathan, who's not only been a fantastic colleague and friend, but
also a great coauthor on this book. It was brilliant to be able to bounce ideas and

thoughts back and forth, and I am positive that the book would have been far less
interesting without your influence, support, and work.

My wife, Karin, deserves a huge thank you—and probably an even bigger bouquet of
flowers—for granting me all the time I needed in order to finish my work on this
book.

Joe Nash, Alan Wong, Steven Cooper, and Cristiano Betta have been a fantastic team
throughout the time of authoring this book and deserve to be mentioned here.

I am grateful for everyone who encouraged me to write this piece and saw me ram-
bling about security concepts and usability concepts on various stages.

A special mention goes to Danese Cooper, PayPal's Head of Open Source, who
strongly encouraged me to write down my thoughts beyond blog posts.

Preface | xi

Finally, I would like to thank both John Lunn and Taylor Nguyen, who supported me
tremendously in writing this book and gave me support and advice throughout my
career.

xii | Preface

CHAPTER1
Introduction

Jonathan LeBlanc and Tim Messerschmidt

One of the most important investments that you can make in a system, company, or
application is in your security and identity infrastructures. We cant go a week
without hearing about another user/customer data breach, stolen credit cards, or
identity theft. Even though you can put an entire series of hurdles in the way of a
potential attacker, the possibility will always exist that your databases will be
breached, information will be stolen, and an attacker will attempt to crack the sensi-
tive data that is stored (if encrypted).

There is no bulletproof, secure method for protecting your data. Identity and data
security has always been about mitigating risk, protecting the secure data, and buying
yourself enough time to take action and reduce damage if something like this should
ever happen to you.

As we dive down into the concepts, technology, and programming methodologies
behind building a secure interface for data and identity, you will explore the trade-
offs and core concepts that you need to understand as you embark on making those
final decisions about your security. The best place to start is to explore the major
problems with identity and data security in the industry right now.

The Problems with Current Security Models

The current state of industry security is not one in which the technology can’t keep
up with the potential attack vectors, it's one in which development choices lead us
down a path of weak systems. One of the biggest mistakes that many of us tend to
make is to assume that users will understand how to protect their own accounts, such
as with strong password choices or two-factor authentication—or even if they do, that
they wouldn't pick the most usable choice over the easiest one. We, as developers,

have to protect our users in the same way that we try to protect our systems, and we
must assume that users will not do that for themselves.

To do that, we have to purge a few misconceptions from our heads:

Users will always use the most secure options

The simple fact is that the worst thing to count on is that users will be capable, or
willing, to use the option that will best secure their data. The onus has to be on
the site or service owner to ensure that data provided by users for their security
(such as a password) is hardened to ensure that minimum levels of security are
imposed (see more about data encryption and security in Chapter 2). For
instance, when two-factor authentication services are offered, a typical adoption
rate is approximately between 5% and 10% of users.

We should always make systems more secure, at the cost of usability

This is typically one of the reactions to the preceding point—to make a system as
secure as possible, at the cost of usability of the system for the user. This is simply
not the case; numerous mechanisms can be put in place to enhance security
without drastically affecting the user. We'll explore this further in “Security over
Usability” on page 4.

Our security will never be breached

From startups to large companies, many engineers have put too much faith in the
security of their systems. This has led to lax data encryption standards, meaning
that personal and privileged information, such as credit card data, home
addresses, etc., is stored as cleartext—data that is not encrypted in any way.
When the system is breached, hackers have to put in no effort to capture and use
that data.

Assume Your Data Will Be Stolen and Use Proper Data Encryption

In June 2015, a massive breach of US government data was said to
expose the personal information of millions of government work-

 ers, because the data itself was not encrypted.! No matter how big
you are, you should always assume that the possibility exists that
your database security will be breached, and data stolen. All sensi-
tive information should always be properly encrypted.

Let’s drill down into some of these issues a bit further to see the cause and effect of the
choices we make as users and developers.

1 Computer World

2

Chapter 1: Introduction

http://www.computerworld.com/article/2935132/cybercrime-hacking/hacked-data-on-millions-of-us-govt-workers-was-unencrypted.html

Poor Password Choices

As we stated previously, users are notorious for choosing highly unsecure passwords
for their accounts. To expand on that proof point, let’s look at the top passwords of
2015 (listed in Table 1-1), compiled by SplashData from files containing millions of
stolen passwords that have been posted online during the previous year.?

Table 1-1. Most popular passwords of 2015

1:123456 6: 123456789 11: welcome 16: dragon 21: princess

2: password 7 football 12: 1234567890 17: master ~ 22: qwertyuiop
3:12345678 8:1234 13: abc123 18: monkey 23: solo
4:qwerty 9:1234567 141111 19: letmein 24: passwOrd
5:12345 10: baseball ~ 15:Tqaz2wsx ~ 20:login 25: starwars

Before we get too far up in arms about people choosing these passwords, we need to
be aware of some possible issues with the data used to compile this list:

o Because most of this data comes from information leaks, it could be that these
passwords are just easier to crack through dictionary or brute-force attacks.

o We don’t know the source of much of this data, so we can’t validate the security
measures in place on the sites or services.

o The data may contain anomalies or simply bad data. If a default password is
being set by a service with a lot of leaked data (and never changed), it will push it
higher on the list. If we are analyzing data from multiple sources using informa-
tion that was poorly parsed, or has those anomalies, the list will be skewed.

With that said, even though those passwords may constitute a smaller number than
the lists purport them to be, and the data may be highly skewed, they still exist. When
building a data and identity security system, you have to provide an adequate level of
protection for these people. Typically, you want to build for the weakest possible
authentication system, which, depending on your security requirements, might com-
prise this list.

In many ways this is because of what we expect of people when they are creating a
password: provide a password with mixed case, at least one symbol and number, and
nothing recognizable in a dictionary or guessable from those who know you. These
types of expectations create poor usability for users, in that they won’t be able to
remember the password, and also ensures that they either pick the easiest way they

2 http://www.teamsid.com/worst-passwords-2015

The Problems with Current Security Models | 3

http://www.teamsid.com/worst-passwords-2015

can to enter the site, or write down that complex password on a Post-it note on their
display. Usability needs to be a part of identity security for it to be effective.

Security over Usability

Favor security too much over the experience and you’ll make the website a pain to use.

—Anthony T, founder of UX Movement

Your main objective when handling the data and identity of your users is to ensure
their security, but at the same time you don’t want to alienate your entire user base by
making your sign-in forms complex, or by forcing a multiscreen, manual checkout
process for purchasing goods, or by continually challenging users for identification
details as they are trying to use your service. Those are surefire ways of ensuring that
your users never return.

Some of the main reasons for shopping-cart abandonment include
users being uncomfortable with the buying process (it is too com-
plex/lengthy) or being forced to sign-up before purchasing. Many
of these concerns can be solved through the usability considera-
tions, such as a single-page checkout, and allowing a simplified
guest checkout.

The concept of usability versus security is always a balancing act. You need to ensure
that you have a high-enough confidence in the security of your users, and at the same
time do as much behind the scenes as you can so that they aren’t forced to break out
of the experience of your site to continually verify themselves.

Here are some of the questions that we can ask ourselves, when thinking this
through, are:

« Can I obtain identity information to increase my confidence that the user is who
she says she is, without imposing additional security checks?

o If I have a high confidence that the user is who she says she is, can I build a more
usable experience for that user versus one that I have no confidence in?

o What content requires user identification, and when should I impose additional
levels of security to verify that?

We'll explore these concepts further in Chapter 3, as you learn about trust zones and
establishing identity information on a user.

Improper Data Encryption

Data security and identification isn’t about planning for the best, it's about planning
for the worst. If there is the possibility of something happening, you should assume

4 | Chapter 1: Introduction

that it will happen and have a plan in place to decrease or mitigate the damage that is
done.

On March 27, 2015, Slack announced that its systems had been breached, and user
information was stolen. The damage of the security incident was lessened because of
its strong data encryption methods. From the company’s blog on the incident, “Slack
maintains a central user database that includes usernames, email addresses, and one-
way encrypted (hashed) passwords. Slack’s hashing function is bcrypt with a ran-
domly generated salt per password, which makes it computationally infeasible that
your password could be re-created from the hashed form.” In addition, following this
incident, Slack introduced two-factor authentication for users, as well as a password
kill switch for team owners that automatically logged out all users, on all devices, and
forced them to create a new password.

In this case, data encryption and quick action prevented a massive theft of user
accounts, and lessened the damage to Slack’s credibility and the confidence its users
had in the company. Data encryption isn’t always about trying to prevent data from
being stolen; it's meant to slow down hackers long enough to make it infeasible for
them to decrypt massive amounts of data, or to delay them until you can take appro-
priate action.

The Weakest Link: Human Beings

As developers and service providers, our biggest interest should be treating our users’
data with the most respect we can provide. Hence, we try to secure any kind of infor-
mation a user provides to us by using encryption algorithms, offer safe ways to com-
municate, and continuously harden our infrastructure in an ongoing struggle.

The most important element in this chain, the human being, is often taken out of the
equation. Therefore, we open up our application to threats that we might not have
considered when laying out and designing our security layer. The truth is, users tend
to go the easy way. People are likely to choose easy-to-remember and short pass-
words, simple-to-guess usernames, and might not be educated about current authen-
tication technology like two-factor authentication (also known as 2FA). We discuss
two-factor authentication in depth in Chapter 5—it certainly deserves extra attention
and focus. We will also discuss a technology derived from 2FA, called n-factor
authentication, which represents a scalable security approach depending on the use
case.

It is easy to understand why people tend to use and especially reuse simple passwords
—it saves them time while setting up user profiles and makes authenticating against
services and applications an easy task. Especially with the rise of mobile technology,
users are often faced with small screen real estate and touchscreen keyboards, which
can add an additional burden.

The Weakest Link: Human Beings | 5

The phenomenon described here is also known as password fatigue. Gladly, there are
multiple tools that we, as developers, can use in order to counter these problems and
ensure a smooth and pleasing registration and authentication flow within our appli-
cations while still maintaining user security.

Many operating systems, browsers, and third-party applications try
to solve password fatigue by allowing users to generate randomized
passwords and by offering a way to store those passwords under
protection of a master password.

A popular example is the password-management application Key-
chain that was introduced with Mac OS 8.6. Keychain is deeply
integrated into OS X and nowadays in iOS (via iCloud) and allows
for storing various types of data including credit cards, passwords,
and private keys.

More and more services like 1Password, Dashlane, and LastPass offer to generate
passwords for their users. This removes the need for users to come up with a secure
password and is often seen as a convenient way to speed up user account registration.

Katie Sherwin, a member of the Nielsen Norman Group, proposes simplifying pass-
word authentication flows through three approaches that improve user experience:*

« Show the rules
o Show the user input

o Show strength meters

By applying these three rules, we can ensure that users feel comfortable with the pass-
words they use and get a clear indication about the password’s strength. Further
research indicates that users who see a strength meter choose more secure passwords
—even if the strength indicator is not implemented that well.*

Those who saw a meter tended to choose stronger passwords than those who didn’t,
but the type of meter did not make a significant difference.

—Dinei Florencio, Cormac Herley, and Paul C. van Oorschot,
“An Administrator’s Guide to Internet Password Research”

Single Sign-on

Single sign-on, also known as SSO, is a technology that leverages existing user
accounts in order to authenticate against various services. The idea behind this con-

3 http://www.nngroup.com/articles/password-creation
4 http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf

6 | Chapter1:Introduction

http://www.nngroup.com/articles/password-creation
http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf

cept is prefilling and securing a central user account instead of forcing the user to
register at a variety of services over and over again.

Common choices that try to accommodate the wish to reuse user profiles to either
provide profile information or to simply authenticate against other services include
OpenID, OAuth 1.0, OAuth 2.0, and various hybrid models like OpenID Connect. In
Chapter 4 we will focus on a selection of authentication techniques and will discuss
the technical implementation details as well as the security implications.

Understanding Entropy in Password Security

Before we get too far into the weeds, we should first address how we can determine a
weak password from a strong one, if that password was created by a human being.
The standard industry mechanism for determining password strength is called infor-
mation entropy, which is measured in the number of bits of information in a provided
source, such as a password.

Typically, if you are using passphrases, a good level of entropy to
have at minimum is 36.86 bits, which coincides with the average
entropy level of 3 random words selected from a list of 5,000 possi-
ble unique words.

Password entropy is a measurement of how unpredictable a password is. This meas-
urement is based on a few key characteristics:

o The symbol set that is used
o The expansion of the symbol set through lowercase/uppercase characters

o Password length

Using this information, password entropy, expressed in bits, is used to predict how
difficult it would be for the password to be cracked through guessing, dictionary
attacks, brute-force attacks, etc.

When you are looking at determining overall password entropy, there are two main
ways of generating passwords that we should explore: randomly generated passwords
(computer generated) and human-selected passwords.

Understanding Entropy in Password Security | 7

According to “A Large-Scale Study of Web Password Habits,” by
Dinei Florencio and Cormac Herley of Microsoft Research, the
entropy level of the average password is estimated to be 40.54 bits.”

Entropy in Randomly Selected Passwords

When we look at randomly selected passwords (computer generated), the process for
determining the overall entropy of the passwords is fairly straightforward because
there is no human, random element involved. Depending on the symbol set that we
use, we can build a series of passwords with a desired level of entropy fairly easily.

First, the generally accepted formula that we use to calculate entropy is H = logz(bl)

where

o H = The password entropy, measured in bits
o b =The number of possible symbols in the symbol set
o [=The number of symbols in the password (or length)

To come up with the value of b, we can simply choose the symbol set that we are
using from Table 1-2.

Table 1-2. Entropy for each symbol in a symbol set

Symbol set name Number of symbols in set Entropy per symbol (in bits)
Arabic numerals (0-9) 10 3322
Hexadecimal numerals (0-9, A-F) 16 4.000
(ase-insensitive Latin alphabet (a—z or A-Z) 26 4.700
(ase-insensitive alphanumeric (a—z or A-Z, 0-9) 36 5.170
Case-sensitive Latin alphabet (a—z, A-Z) 52 5.700
Case-sensitive alphanumeric (a—z, A-Z, 0-9) 62 5.954
AIF'ASCII printable characters 95 6.570
All extended ASCII printable characters 218 7.768
Binary (0-255 or 8 bits or 1 byte) 256 8.000
Diceware word list 7776 12.925

5 http://research.microsoft.com/pubs/74164/www2007.pdf

8 | Chapter 1:Introduction

http://research.microsoft.com/pubs/74164/www2007.pdf

The symbol set you might not be familiar with is the diceware word
list. The method behind diceware is to use a single die (from a pair
of dice), and roll it five times. The numeric values on the die each
time create a five-digit number (e.g., 46231, matching the value of
each individual roll). This number is then used to look up a word
from a given word list. There are 7,776 possible unique words
using this method. See the diceware word list for the complete ref-
erence.

Using the formula, length of the password, and numbers of symbols in a given sym-
bol set, you can estimate the bits of entropy from a randomly generated password.

Entropy in Human-Selected Passwords

Before we get into measuring entropy levels within a password that was created by a
human being, rather than being randomly generated based on security standards, we
need to understand that these numbers are nontrivial. Many methods have been pro-
posed for doing so (NIST, Shannon Entropy, Guessing Entropy, etc.), but most of
these fall short in one way or another.

Shannon Entropy is seen to give an overly optimistic view of password security (while
providing no real actionable improvement hints), and NIST a nonaccurate (yet con-
servative) one. Because we always want to err on the side of caution with password
security, let’s quickly look at the NIST study on how to measure human-selected pass-
words, as that will give us a good starting point.

According to NIST special publication 800-63-2, if we take a human-selected pass-
word, we can measure the assumed entropy with the following guidelines:®

o The entropy of the first character is 4 bits.

« The entropy of the next 7 characters is 2 bits per character (they state that this is
“roughly consistent with Shannon’s estimate that when statistical effects extending
over not more than 8 letters are considered, the entropy is roughly 2.3 bits per char-
acter®).

o Characters 9 through 20 have an entropy of 1.5 bits per character.
o Characters 21 and above have an entropy of 1 bit per character.

« A 6-bit bonus is given to password rules that require both uppercase and nonal-
phabetic characters. (This is also a conservative bit estimate, as the NIST publica-
tion notes that these special characters will most likely come at the beginning or
end of the password, reducing the total search space.)

6 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Understanding Entropy in Password Security | 9

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://world.std.com/~reinhold/diceware.wordlist.asc

 An additional 6-bit bonus is given to passwords with a length of 1 to 19 charac-
ters that follow an extensive dictionary check to ensure the password is not con-
tained within a large dictionary. Passwords that are longer than 20 characters do
not receive this bonus because they are assumed to consist of multiple dictionary
words placed together into passphrases.

Let’s take that idea and see what the entropy of a few examples would be:

monkey (6 characters) = 14 bits of entropy
4 bits for the first character, 10 bits for the following 5 characters

Monkey! (7 characters) = 22 bits of entropy
4 bits for the first character, 12 bits for the following 6 characters, 6-bit bonus for
uppercase and nonalphabetic characters being used

tvMD128!Rrsa (12 characters) = 36 bits of entropy
4 bits for the first character, 14 bits for the following 7 characters, 6 bits for the
following 4 characters, 6-bit bonus for uppercase and nonalphabetic characters
being used, 6-bit bonus for a nondictionary string within 1-19 characters

tvMD128laihdfo#]h43 (19 characters) = 46.5 bits of entropy
4 bits for the first character, 14 bits for the following 7 characters, 16.5 bits for the
following 11 characters, 6-bit bonus for uppercase and nonalphabetic characters
being used, 6-bit bonus for a nondictionary string within 1-19 characters

tvMD128laihdfo#]h432 (20 characters) = 42 bits of entropy
4 bits for the first character, 14 bits for the following 7 characters, 18 bits for the
following 12 characters, 6-bit bonus for uppercase and nonalphabetic characters
being used

You can start to see some holes in the assumptions that the NIST study makes with
the last two password examples. First, one additional character causes the loss of 6
bonus bits of entropy because of the assumption that the password is of significant
length that a user would not have chosen a complex string. Second, that if a string of
that length was used for a password, it is most likely several dictionary words put
together, such as “treemanicuredonkeytornado,” which, based on the NIST study,
would actually give us 41 bits of entropy.

As we go further, you can see why determining the security of a human-created pass-
word can be tricky, and that’s because humans are unpredictable. If we plug a system
of security requirements into a computer-generated password system, and store that
in a password vault application like 1Password, KeePass, or LastPass, then we can
have a very predictable environment. That’s why, for the most part, we usually take
one of two steps (sometimes both) in securing identity in web development:

10 | Chapter1: Introduction

1. You require users, when they create their password, to strengthen their login.
This can be requirements for length, nonalphabetic characters, uppercase and
lowercase characters, nondictionary words, etc. For obvious reasons, the usability
of this solution is quite bad, and it may alienate many users, but the security
increases. The problem here is that when we make it harder to create a password,
the user will more likely forget that password, and then require the use of the
“forgot your password” reset flow.

2. You attempt to harden the data, as best you can, behind the scenes. This usually
involves encryption, salting, and key stretching (all concepts we will dive into in
Chapter 2), to try to help prevent weak passwords that are stolen from being
compromised. When you have a solution like this, you may also see a mechanism
that allows only a certain number of login attempts before temporarily locking
the account, to prevent potential brute-force attacks against weak passwords.
This solution is higher on the usability side, because users can pick practically
any password they want, but lowers the overall security of their account.

In the end, we're back to questions of usability versus security, and the truth of the
matter is that our ideal scenario, for all parties, is somewhere in between. Remember,
the two aren’t mutually exclusive.

Breaking Down System Usage of a Username and
Password

Another important step in understanding the concept of a username and password is
to break down what they represent in an identification system. If we put this simply,
they are an identification of who you are (the username, or public key) and then a
verification of that fact with something that only you should know (the password, or
private key).

With that understanding in place, there are two ways that we can think about han-
dling data in an authentication system:

Harden the system
In this case, we take an existing (or new) system that is built on top of a tradi-
tional username and password, and attempt to strengthen it.

Remove the username and password
In new or innovative technology solutions, this is the case where we apply the
concepts of a username and password, but do so in a different way.

As we dive further into each chapter, our main goals will be to build upon these two
concepts, focusing on hardening the system, or finding a new methodology for build-
ing our identity and data security with new tools and techniques.

Breaking Down System Usage of a Username and Password | 11

Securing Our Current Standards for Identity

Enhancing the security of an existing system is usually the choice of most of us, as we
are building on top of existing work, or building a product that uses a username and
password as the preferred login mechanism for users.

As we explored earlier in this chapter, users are usually the worst people to put in
charge of protecting their own security through their passwords. The vast majority of
the population will choose passwords that they can remember, which is almost always
the complete opposite of what we would traditionally think of as a secure password.

You know from earlier sections how to approximate the predictability of a password,
and that you should always build security toward the most unsecure element in the
chain, not the average. With that said, there are certain standard mechanisms that we
use for account security, and others that we should avoid.

Good and Bad Security Algorithms

Not all encryption algorithms are created equal when it comes to the security of our
data and privileged user information. Some are built for speed, for quickly and accu-
rately encrypting and decrypting large amounts of data. Others are designed to be
slow. Let’s say your database of a million encrypted user records has been stolen, and
the attacker is attempting to crack the encryption, such as by trying every word in the
dictionary, to reveal the data underneath. Would you prefer to make this as fast as
possible or as slow as possible? The correct answer is that you want this process to be
as slow as possible for the attacker.

With regular cryptographic hash functions, an attacker can guess billions of pass-
words per second. With password security hashing algorithms, depending on the
configuration, the attacker may be able to guess only a few thousand passwords per
second, which is a massive difference.

The good

The following hashing algorithms are meant to be used for password security, and are
built to be purposefully slow to make cracking the data harder:

PBKDF2
PBKDEF?2 stands for Password-Based Key Derivation Function 2, and was created
by RSA Laboratories. It applies a pseudorandom function, such as a hash, cipher,
or HMAGC, to the input (password) along with a salt. The process is repeated
many times, which produces a derived key.

berypt
Created by Niels Provos and David Maziéres, berypt stands for Belgian Funda-

mental Research in Cryptology and Information Security. It is a key derivation

12 | Chapter 1: Introduction

function based on the blowfish cipher. It incorporates a salt into the process to
protect the key, and also has an interesting adaptive functionality to it. Over time,
the iteration count can be increased to make it slower, so it remains resistant to
brute-force attacks.

scrypt
Created by Colin Percival, scrypt is another key derivation function that is

designed to combat large-scale hardware attacks by requiring high amounts of
memory and therefore slowing down computation.

The bad (for passwords)

The following are our standard cryptographic hashing algorithms, which are meant
to be fast. In the case of password security, this is not a good scenario because slowing
down the algorithm makes it much harder for an attacker to crack the data:

MD5
MD?5, or message-digest algorithm, was designed by Robert Rivest in 1991, and
produces a 128-bit hash value, typically expressed as a 32-digit hexadecimal
number.

SHA-1
SHA stands for Secure Hash Algorithm. Designed by the NSA, SHA-1 produces a
160-bit (20-byte) hash value. This hash value is typically rendered as a 40-digit
hexadecimal number.

SHA-2
Also designed by the NSA, SHA-2 is the successor of SHA-1, and consists of six
hash functions with hash values that are 224, 256, 384, or 512 bits (SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256).

What Data Should Be Protected?

We've hinted at this a few times during this chapter, but when it comes to asking
yourself, “What information absolutely needs to be encrypted?” the answer is pretty
simple: anything that is personally identifiable (identity data, personal information,
payment details), or anything that is imperative to your system that could open up
additional leaks or holes in your architecture if released.

Account Recovery Mechanisms and Social Engineering

After we've reviewed the details worth protecting, we should take this knowledge into
account when looking at recovery mechanisms. Often social engineering or weak
recovery mechanisms lead to exposure of information—even though protection

What Data Should Be Protected? | 13

mechanisms were implemented in order to prevent exactly this. If you are familiar
with these matters, feel free to skip to this chapter’s wrap-up.

Popular examples include customer support providing account details theyre not
supposed to share, and badly planned password-reset flows. A compromised email
account can lead to easy access to a user’s account—securing our users by offering
sensible security questions and allowing them to provide specific responses can help
lower the risk of information leaks.

Social engineering is a non-technical method of intrusion hackers use that relies heav-
ily on human interaction and often involves tricking people into breaking normal
security procedures. It is one of the greatest threats that organizations today
encounter.’

—TechTarget SearchSecurity

The Problem with Security Questions

While the overall knowledge and consciousness about secure passwords is steadily
growing, another volatile area—security questions—is often ignored. Instead of offer-
ing users an array of personal questions or even allowing for the definition of their
own security questions, many generic phrases are offered that are often as easy to find
out as searching for a person’s social media profile.

Security questions often appear as repetitive and sometimes even inadvertently come-
dic collections that can be cumbersome to answer and hard to remember (“What was
my favorite dish as a child?” “What’s your favorite book?”). Soheil Rezayazdi pub-
lished a list of Nihilistic Security Questions on McSweeney’s Internet Tendency that
should at least cause a slight smile on your face—here are our personal top five:*

When did you stop trying?
In what year did you abandon your dreams?
At what age did your childhood pet run away?

What was the name of your favorite unpaid internship?

M

What is the name of your least favorite child?

In all seriousness, the impact of social engineering is often completely underestima-
ted or even ignored. It is often easier to pass barriers instead of circumventing and
breaking them down. The scope of social engineering can be anything between look-
ing up some facts about a person online and sneaking into office buildings; while this

7 http://searchsecurity.techtarget.com/definition/social-engineering

8 http://www.mcsweeneys.net/articles/nihilistic-password-security-questions

14 | Chapter 1: Introduction

http://searchsecurity.techtarget.com/definition/social-engineering
http://www.mcsweeneys.net/articles/nihilistic-password-security-questions

might sound like an exaggeration (and often does not have to happen), it makes sense
to prepare and train staff accordingly.

If you are looking for more information on this topic, great resources on social engi-
neering are Kevin MitnicK’s books Ghost in the Wires (Back Bay Books), The Art of
Intrusion (Wiley), and The Art of Deception (Wiley).?

Next Up

Now that you understand all of the concepts that we are going to be using and talking
about throughout the rest of the chapters, let’s jump into the next chapter by drilling
down into how hashing, salting, and data encryption can be added to your systems.

9 Kevin Mitnick rose to mainstream fame by hacking companies such as Nokia and Pacific Bell. He’s currently
active as a security consultant.

NextUp | 15

CHAPTER 2
Password Encryption, Hashing, and Salting

Jonathan LeBlanc

In the first chapter you learned about the underlying concepts of password security,
and the current state of the industry and standards that are employed. Let’s start
putting some of that into practice as we explore the practical application of password
encryption and security. To start this implementer’s approach, let’s first look at the
ways that data can be transmitted and stored.

Data at Rest Versus Data in Motion

As we start to explore the concepts of data security, there are two important concepts
that we should address: data in motion versus data at rest.

When we talk about data at rest, we mean the inactive (or resting) digital data that is
being stored on your servers, such as the databases that you are using to store pass-
words, profile information, or any other details needed within your application.

When we discuss the concept of data in motion, we're talking about any data that is in
transit, being sent back and forth from an application to a database, or communica-
tion back and forth between websites and APIs or external data sources.

17

Data at Rest

If you're talking about credit card environments, where you've got a requirement to
encrypt the credit card information at rest, I think the most common method people
use there is enabling encryption within the database. That’s typically about as good as it
gets in terms of host-based encryption.!

—Chris Gatford, Hacklabs

Web and application developers rarely have to encounter the concept of protecting
the database that stores secure information about our clients, but it is a concept that
should be understood. While the technical aspects of data at rest are beyond the scope
of this book, let’s cover some of the basic concepts and guidelines to understand that
database encryption is absolutely needed, even though in 99% of organizations, this is
simply not done.

As we've tried to reiterate on a few occassions, you should always assume a worst-case
scenario when planning for data breaches. In this case, we should assume that an
attacker has gained access to our database, with the end goal of capturing any sensi-
tive data and passwords. Wouldn't you want to have both the password encryption to
prevent account access, as well as an additional layer of encryption on the database
itself?

First, let’s address the encryption methods that should be used on the database. Dif-
ferent from the standards that we discussed in Chapter 1 for password encryption,
the strong encryption methods that should be used for database encryption are
SHA-256 (Secure Hash Algorithm) or better, AES (Advanced Encryption Standard),
and RSA (Rivest-Shamir-Adleman). These are all part of the NIST-approved algo-
rithms.> Weak encryption algorithms, such as MD5 and SHA-1, should never be used
for database encryption.

Now, a few standards should be followed:

o Keep access control (user login) separate from database encryption. Should a
username or password fail, the database itself should remain encrypted, effec-
tively providing multiple levels of protection.

o The keys used for database encryption should be updated on a regular basis.
 Encryption keys should always be stored separately from the data.

Data federation is another method to help prevent unwanted access in the case of an
application with global reach and data storage. The purpose of this strategy is to

1 http://www.zdnet.com/article/encrypting-data-at-rest-is-vital-but-its-just-not-happening
2 http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general. pdf

18 | Chapter2: Password Encryption, Hashing, and Salting

http://www.zdnet.com/article/encrypting-data-at-rest-is-vital-but-its-just-not-happening
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

maintain distinct database systems in the regions where the personal information is
needed (e.g., the personal information of a UK customer is stored within a database
in the UK, not a centralized database in the US). Effectively, instead of having a cen-
tralized database with all customer information that is copied around to data centers
as needed, only information in the region in which it is needed is maintained. This
type of strategy is effective when government regulations/laws require access to be
granted to all user information that is stored in their country, regardless of whether
that data belongs to individuals in other countries.

Lastly, one underlying concept should be understood and implemented. You should
store only the minimum amount of sensitive user data that is required to run your
application, site, or services. A major industry trend over the past few years has been
to capture as much information about your users as possible, store it, and then figure
out whether it is useful and is viable at a later date. This is absolutely not the practice
that should be employed when you are trying to provide the best level of protection
for your users. When creating the architectural schema for your application or web-
site, you should consider the type of data that is needed for the state of the applica-
tion, and use that to build the database structure for personal information that should
be stored. The less privileged information you store, the less potential impact on your
customers.

Beyond the user data, sensitive financial information such as credit card data can also
be offloaded, typically to the payment provider through a system such as a credit card
vault. In addition to the security benefits of not having to host that data yourself, you
don’t incur the implications of having to implement all standards for PCI DSS com-
pliance, as required when hosting payment information for customers.?

Data in Motion

Data in motion, or data that is in transit, is what the vast majority of web and applica-
tion developers will be dealing with in their day-to-day work. Realistically, this will
encompass several scenarios, including these:

« Signup information from a user that will be used for account access and identity
« Transmission of profile information to and from service APIs

o Other data collected through the application or website and transmitted for data-
base storage

This is the data focus that we will be exploring throughout the upcoming chapters.
Our first step is to look into security and encryption behind the user profile, through
the proper storage and use of the user password.

3 https://www.pcisecuritystandards.org/security_standards

Data at Rest Versus Data in Motion | 19

https://www.pcisecuritystandards.org/security_standards

Password Attack Vectors

There are many ways for an attacker to attempt to gain access to user accounts. Some
are geared toward manipulation of the users themselves, while others attempt to tar-
get the application or website to gain access. A few of these are as follows:

Phishing

Tricking users into providing their login credentials through a malicious site or
application. Typically, you see these types of attempts come through email scams,
where the sender pretends to be the company in question, and requires users to
log in to the malicious site for some reason, thereby stealing their login creden-
tials and access to their accounts.

Social engineering

Taking the concept behind phishing to a new level, social engineering hacks are
usually orchestrated by other communication means, such as through phone
calls. The attacker pretends to be a network technician, or some sort of IT secu-
rity for a company, and asks users for their login credentials to repair the issue
that they are calling about. In doing so, they gain access to the user account.

As you can well imagine, it is difficult to build a safety net for cases such as these, but
when it comes to attacks against the website or application that we are working with,
we definitely can build safety measures into our login controls, profile systems, and
database structures. These attack vectors include the following:

Brute-force attacks

Calculating every possible key variation within a given length, and then trying
each one, one after another, until the password is guessed. The shorter the pass-
word, the faster this method works. As the length of the password increases, the
time to crack the password increases exponentially. When this method becomes
too costly, other methods, such as dictionary attacks, are employed. One of the
methods employed to counter brute-force attacks is key stretching, which we'll
explore later in this chapter.

Dictionary attacks

Looping through a list of predetermined words/terms, such as all words in a dic-
tionary (hence the term dictionary attack), and trying all combinations against an
encrypted password to find matching values. Unlike a brute-force attack, a dic-
tionary attack is just trying input that is considered to, most likely, be a common
input word, term, or phrase. Use of a salt (which we'll discuss in “Salting” on page
32) is an appropriate way of dealing with these types of attacks.

20

| Chapter 2: Password Encryption, Hashing, and Salting

Rainbow tables

Large lists that contain precalculated hashes (for a given hash function), and the
passwords from which they were derived. Unlike a dictionary attack, where the
hash function is applied at each crack attempt, the attacker can simply compare
the precalculated hash with the password hash from the user database, making
the entire process more efficient. Use of a salt is an appropriate way of dealing
with these types of attacks. This type of attack is typically carried out offline,
when the attacker has full access to the data.

Malware
Key loggers or screen scrapers that might be present on a user’s machine, logging
activity during login or sign-up. Typically, these are used in conjunction with
social engineering to prompt the user to load or install a piece of infected con-
tent. An appropriate way of dealing with these attacks is to use a second factor of
authentication (e.g., text-message verification) during login.

Offline cracking
We cannot forget that there’s always the possibility that all of our stored user
information will be stolen, giving attackers all the time they want to crack a pass-
word hash. Once the data is stolen, hardening techniques such as hashing our
passwords with a salt, and using appropriate hashing mechanisms that are built
to slow down cracking, are the barriers to data theft.

With an understanding of the general landscape of attack vectors, let’s dig into some
of these in more depth.

Brute-Force Attack

Brute-force attacks, also known as an exhaustive key search, is the practice of attempt-
ing to break password encryption by going through all potential permutations of a
password for a given length. In trying to break a password of a known length, up to
five characters, a brute-force attack will attempt every possible password permutation
of that length.

Obviously, this is not the first method that an attacker would use, because of the
length of time that it would take to crack a password. For a password with a key
length of N bits, the time that it would take to crack the password would be propor-
tional to the number of bits, which would be proportional to 2V in the worst case, but
half of that on average. Thus, as the password length increases, the time to break the
password also increases, exponentially.

Other methods, such as the use of rainbow tables or dictionary attacks, are more via-
ble attack vectors. Typically, brute-force attacks will be used with only offline data
(not a direct site attack, but data that was downloaded in a hack), and will be used
only when other more viable vectors are unavailable to the attacker. If proper pass-

Password Attack Vectors | 21

word encryption methods are employed that utilize key stretching, this attack method
becomes incredibly negligable.

Given these facts, when it does come to securing your web application from potential
brute-force attacks, various methods can be implemented to prevent this attack vec-
tor:

« Implementing a CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart) following an unsuccessful login attempt to
increase login complexity and help prevent automated attacks.

o Adding in a 2FA (two-factor authentication) verification mechanism, such as
through an SMS to a verified phone number using Authy or a similar service.

We'll go through an implementation of 2FA with Authy in Chapter 5, but let’s see
what a CAPTCHA implementation might look like when integrated within our site.

Creating a CAPTCHA with reCAPTCHA

One of the methods that we can employ for preventing an attacker from attempting
password after password is to use a CAPTCHA. Typically, you'll want to use a
CAPTCHA only after one to two failed password attempts. It could be that a user has
simply forgotten his password, or an attacker could be trying different password
combinations in an attempted brute-force attack.

Using a CAPTCHA

As with most security precautions, you want to try to impact users
as little as possible. We don’t want to show a CAPTCHA for every
login attempt, because it’s just an extra step that a user has to go
through to log in. When restricting use after only one to two failed
attempts, you ensure that the vast majority of your users are not
impacted, and those who are will mostly understand the reasons
for the added security on successive password attempts.

One of the leading CAPTCHA systems is reCAPTCHA by Google. It provides a very
nice and simple user interface that typically just asks users to click a box to confirm
they are not a robot. Your users arent heavily impacted as with traditional
CAPTCHA systems that require you to type in words from a picture or audio record-
ing, and it still provides high levels of security against potential bots and automated
attacks.

22 | Chapter2: Password Encryption, Hashing, and Salting

https://www.authy.com
https://www.google.com/recaptcha/intro/index.html

With that said, let’s see how were going to implement reCAPTCHA on one of our
sites, and then confirm user input on our Node server. The first step is to head over to
the reCAPTCHA admin page to sign-up for an API key pair for our site that will
allow us to use the system. On this page (given that we don’t have any existing keys),
we are met with the registration system that looks like Figure 2-1.

You don't have any sites registered to use the reCAPTCHA API

Register a new site

Label

Domains
(one per line)

+" Send alerts to owners

Figure 2-1. Registering our keys

Following the instructions on the page to register a new site, we enter a few pieces of
information:

Label
Something to identify the site or keys for ourself, such as the site name or URL.

Domains

The root domains that we will be placing reCAPTCHA on. This can be multiple
domains that we maintain.

When we click the Register button, we now see all of the setup information that we
need to go through to integrate reCAPTCHA on our site, as shown in Figure 2-2.

Password Attack Vectors | 23

https://www.google.com/recaptcha/admin

@ Adding reCAPTCHA to your site

~ Keys
Site key Secret key
Usa this in the HTML code your site serves to usars. Usa this for communication batween your site and Google. Be sure to keep it a secret.
6Lc2FxgTARAL 6Lc2FxgTARR

~ Step 1: client-side integration
Paste this snippet before the closing </head> tag on your HTML template:

<script sre='h

ps: //www.google. com/recaptcha/api.is' ></script>

Paste this snippet at the end of the <form> where you want the reCAPTCHA widget to appear:

<div class="g-recaptcha" data-sitekey="6Lc2FxgTARRN | "s</div>

The reCAPTCHA documentation site describes more details and advanced configurations.

~ Step 2: Server side integration

When your users submit the form where you integrated reCAPTCHA, you'll get as part of the payload a string with the name "g-recaptcha-response”. In order to
check whether Google has verified that user, send a POST request with these parameters:

URL: https:/# .google. ptch i/si ify
secret (required) BLC2FxgTAAAS
response (required) The value of 'g-recaptcha-response’.
remoteip The end user's ip address.

Figure 2-2. Adding reCAPTCHA to our site

At the top we can see the keys that we will be using for this process. Keep those in
mind as we go through the two steps that are needed for integration.

First we need to add the reCAPTCHA script include at the end of the <head> section
of our HTML document, and create the container for the widget within our login

form. Stripping down this process into just the pieces that we need on the page, the
HTML code looks like this:

<html>
<head>
<script src='https://www.google.com/recaptcha/api.js's></script>
</head>
<body>

<form method="post" action="/capture"s
<div class="g-recaptcha" data-sitekey="6Lc2FXgTAAAXXXXXXXXXXXX"></div>
<input type="submit" value="Submit"s>

</form>

</body>
</html>

24 | Chapter2: Password Encryption, Hashing, and Salting

Let’s walk through the code to see what were doing:

o We add the https://www.google.com/recaptcha/api.js script include right before the
closing </head> tag of our HTML document.

» We create a form that will POST the login data to our Node endpoint, /capture
(we will set up an Express app to capture POST requests to that endpoint).

« In the form, we simply have the <div> that will house the reCAPTCHA widget
(placed where we want it to show up in the form), and a Submit button to submit
the form to our server-side endpoint.

When we load that form, we should see something like Figure 2-3, clearly showing
the reCAPTCHA widget, with our Submit button below that.

™

I'm not a robot

Figure 2-3. reCAPTCHA on our site

The user will interact with the widget and click (or not) the option to identify them-
selves as human. When the form is submitted, the POST data will be sent to
our /capture endpoint. For the reCAPTCHA component, the data we will need to
capture for the verification step will be located within the g-recaptcha-response
parameter, and look something like this:

g-recaptcha-response=03AH]_VusWHPddH611975sAE4rH9twXhsO5HZcIlUa4Yv9eczU_aFxL12VeB
kisEkZdCBd7a1R35rNvCikbsgkAsEN8KoP40OSEFhzNebZN3yaK4826QQT2WOjjaK- fGIVXWGiTzHr cBW
roHDAbImEpukdJj58yN_vIFsgrnSvmXV3jWKO9f_zqiOpOwO7V848yYnXnIQdCugR3SKIEvexIEmlRewZ
GnJvnN2pKMaQ_Hcnjp5p2mc5Nm-z_bELGwf21srQvw8zmom4 1A9EtuOCS-N3PwZ_ROKELWASTWNYH7aI8
wlWMHCt8A71LDy_t82maP0jC07y6sVz1RILQ5dsI5gXCpnuUDPTfeAS0oJosTUChPPXjYWDEL1Z8dAIXXNP
SNdyhftEXtrN7PiebkIEVngwRxVUqZRLe9IQpLkIH1mOoOuuu5gKvadAi_-ohHHqaAem6e_AJe6GnWO8T
PDpgXBcNOU_kkDOfQ_zHZ7FVoOvhbBW8GWV5XR OB - 7yxibHguemem2X22W2atX0TC_hIaJZiWYZncGms
3Hgeq51LTKzInV1W6kHMCvGqCVrakhHjQn1tfQppXsPZyWPx6RWzNKROMLoe8bYefx2VdYZAhXeJfDMSD
sq1c7KYGICctNX1L34QIGwhxyPKUCYUXMHACKGY ryRCxbYKDwi6fdsONeQHe4nhGwFneKU4kI4Kp-ymEgc
HvDUaTGS8sLrXiY36eKZrB6CISOP4pQbIraTIvt2dE9VKVP jKsyvRKMONpIu6GOpIsxbOssUHHa_i1TK7w
sOk681LM7LKH_MxtQJIKwl8_6HycyhDn-BAjX8YEZ-KSs1lUvuVSelSxEo1R_y_n5MGo-qrRVSmKjP1402k
DBFOVIW1UZTIgl2gc6Iz_QU60z6IQOUIOAZNtkMv6aWu5h-uVkMcIRqQIHWWFQg

At this point, we need to set up that /capture endpoint to accept the form POST
from our HTML document. We'll be using Express for this one, with mostly standard
packages. Because we will be dealing with JSON responses, the only package that we'll

need to pull down from NPM is body-parser, to handle those responses. We start out
by installing this via the following terminal command:

npm install body-parser --save

Password Attack Vectors | 25

https://www.google.com/recaptcha/api.js

Next, let’s set up the variables for the packages that we'll need, as well as the configu-
ration for body-parser to handle JSON data responses:

var querystring = require('querystring'),
bodyParser = require('body-parser'),
https = require('https'),
app = require('express')();

//support JSON & URL encoded bodies

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({
extended: true

)

Here is what each package will be used for:

querystring
Converting JSON objects into strings for POSTing

body-parser
Accepting JSON responses from the verification step

https
Making HTTPS requests to verify the re-CAPTCHA data sent from the previous
form

app
Express

Now let’s build an app handler for the data that will be POSTed from our previous
form to the /capture endpoint. That block looks like this:

//handle all POST requests
app.post('/capture', function (reqg, res){
var response = req.body['g-recaptcha-response'];

var verify_data = querystring.stringify({
'secret' : 'YOUR SECRET KEY',
'response': response

s

//uber access token fetch endpoint
var verify_options = {
host: 'google.com',
path: '/recaptcha/api/siteverify',
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded',
'"Content-Length': verify_data.length

};

26 | Chapter2: Password Encryption, Hashing, and Salting

//set up request
var post_req = https.request(verify_options, function(result){
result.setEncoding('utf8');
result.on('data', function (verification){
console.log(verification);
b;
b;

//post data
post_req.write(verify_data);
post_req.end();

s

This code will run for all POSTed data sent to the /capture endpoint. When data
arrives, we run it through several steps:

1.

We capture the reCAPTCHA data to be verified within the POSTed data, located
within req.body[g-recaptcha-response].

. We build the POST object that will be needed to send to the verification end-

point. The data required will be our secret (this is the key that was given to us at
the beginning of this section when we signed up for our keys) and the response
from the POST body.

. We then build out the endpoint data for the verification step. The endpoint to

send this data is https://www.google.com/recaptcha/api/siteverify, so we set the
host to google.com, the path to /recaptcha/api/siteverify, and the method should
be POST.

. We set up the request. Because this is an HTTPS endpoint, we need to use

https.request(..), passing along the endpoint option variable that we just cre-
ated. When the results from that come back, we will simply be logging out the
response.

. We begin the request by sending through the verification data variable that we set

up at the beginning.

The last line is to start our server:

app.listen(process.env.PORT || 3000);

If we run this on localhost, it will listen on port 3000.

At this point, the verification has been sent, and a response on whether this is a
human or not (that the person clicked the “I'm not a robot” box) will be logged out
from our code.

Password Attack Vectors | 27

https://www.google.com/recaptcha/api/siteverify

If successful, the data response that we will see will look like this:

{

"success": true

}

If not successful, we'll see a response like this:

{

"success": false,
"error-codes": [
"missing-input-response"
]
}
Basically, if we read the success parameter from the response, we can see whether we
should process the login.

Using this method, we can prevent an automated script from simply making request
after request to our login for a given username, passing through every possible varia-
tion of a password that it can generate, leading to an account being compromised.

Dictionary Attacks

A dictionary attack is slightly different from a brute-force attack. Instead of trying
every permutation of a given password length, a dictionary attack takes words from a
pre-arranged list (typically all words in a dictionary and other common password
choices), encrypts those words, and compares the encrypted string against the
encrypted password obtained from a user’s account.

In a practical sense, let’s say that we had each of the words that we wanted to check,
such as the following (as just an example):
var words = ['animal', 'monkey', 'test', 'tornado', 'mango', 'slide', 'pepper',

'diaper', 'tube', 'cloth', 'hair', 'smell', 'eyes', 'tip', 'right',
‘wrong', 'happy'l;

Now, to conduct this type of attack, we would encrypt those words, perhaps with an

obtained salt (a random unique string used to strengthen weak passwords) from a

data breach, or perhaps without a salt, to give us a hash to compare. Given the words,

we might now have the list of hashes shown in Table 2-1.

From our data dump, lets say the user record has an encrypted password of
$2a$10$TFKgAYZrfb7p/J6Mz1INZsuh1p62Sa24GKBb7G8q4j702rciNtlopa. We compare
all of the hashes that we have produced against that user hash, and find a match with
the word mango. We now have a cracked password that we can use to gain access to
the user account.

28 | (Chapter2: Password Encryption, Hashing, and Salting

Table 2-1. Dictionary words and associated hashes

Common word Associated hash

test
animal
tornado
monkey
pepper
slide
mango
diaper
tube
cloth
hair
smell
tip
right
wrong
eyes
happy

$2a$105wkmirMIMsQxpSvKpn.KNyOTU65YuneDcMXwA7XEHR5brjhpjugWCm
$2a$105%.hfSmZVMv3kv5SE9hMun805p/AAWsH7eOrhfYdItGOUCaU/aRT85W
$2a$105GI5itVWvmom3vBLTCSsZJ.vUtp5qzAnjVUK5PG4PRIblelkw8BIdC
$2a$10SmmKLHtnYllvGrcwF9pXgjOEkczGm99f/iNU3qCA2G0ySPg0jAequO
$2a$105wbNHHKyHhIhToY6kpEx0Z0.qIS4UURMm7sKAUTLudiiyMO8wD.Haq
$2a$105/j9vzCZqmGvhGLMUFhwJ2.JvsiZ3i/MsXTfsf9VItR8Gitg.GWgv2
$2a$105TFKgAYZrfb7p/)6Mz1NZsuhlp62Sa24GKBb7G8q4j702rcINtlopa
$2a$10%/I1SCPiQC5wGh4JFIbXKImel90KvWdikg8cUuKmXvh5Za9HWcOADVy
$2a51051kZSe0Y1h710V4JGV5hBD.ZVttOnizitpgdeu1nQvO7txdemlvta2
$2a5$105et.LBm.NeYWXhVI/TFB3c0sOkRAPFh8iBjSicap1ZUYNBgFIOLUp2
$2a$10%6taHB2eQJDLeUUYL7Fw.0.uTavLILkOt74Jhv1uBHv350QAvwWKRgC
$2a$10$nVJwlzP5yheet0a8ALQGBehoreNsfY7ey(4X76t13ZdiCGYtHNg4m
$2a$10$xeKdWclook910KjcQ02GkOpzgPo.pkbc3QVIFsGKfv6UqYV2KoZIG
$2a$105Y0pfFI080WinGu1/1T7NHe6LsE1ey9ggq7.kivoiS2jkzSMpjZfZu
$2a$1096Q34ws6flQDvZU6RftualeW(40c8GCO2NeZfmCHyoW7aZvIH1sYG2
$2a$105vIend/GIfyDYVKIgvRhTUuTw26L57nw4MuZEYqHv2dSYiyppCnbA.
$2a$10%33IF6ALH4kab4(d8Zeq50JEfSFIECOCVIIXL5Ra.x9g80VCjKKti

The way we typically protect against dictionary attacks is through employing a salt in

our password encryption. Using a salt means that the attacker cannot just employ a

standard encryption algorithm to generate the hash, but also needs to compute the
hash with the associated salt.

Reverse Lookup Tables

Taking the process of dictionary attacks a bit further, and thus reducing time to
decrypt, a reverse table stores the plain-text variation of a password beside the associ-
ated hash of the password in a table. The table is stored to be searched on the hash as
opposed to the plain-text password.

If we go back to our dictionary attack list, it would look very similar, as shown in

Table 2-2.

Table 2-2. Example lookup table

Hash Associated word

$2a$105wkmirMIMsQxpSvKpn.KNyOTU65YuneDcMXwA7XEHRSbrjhpjugWCm test
$2a$10%6Q34ws6fIQDVZU6RftualeWC40c8GCO2NeZfmCHyoW7aZvoH1sYG2 wrong

Password Attack Vectors

29

We start with obtaining the hashed password from the user record. We then compare
that hash to the other hashes in our database. If there is a match, we pull the associ-
ated plain-text word for the password.

Like dictionary attacks, salting a password during hashing makes reverse lookup
tables essentially useless. Even if the salts were obtained in a user information data
breach, a lookup table would need to be generated for each word with the associated
one-time-use salt, making it incredibly inefficient.

Rainbow Tables

There is typically much confusion over the difference between a rainbow table and a
simple lookup table that stores a hash to a matching plain-text password. Rainbow
tables are essentially a way of reducing the amount of storage needed to calculate a
long list of password guesses to try in order to break a hash.

Let’s compare that space/time trade-off. A rainbow table attack takes less processing
time than a brute-force attack, but uses more storage. On the flip side, a rainbow
table needs more processing time than a simple lookup table, but requires far less
memory.

One important aspect is required for rainbow tables to function, and that’s called a
reduction function. In short, the purpose of a reduction function is to take a given
hash and run the algorithm to generate the next possible plain-text password for us.

For instance, say the passwords that we are looking for are numeric, and a maximum
of five digits in length. Our reduction function can have an algorithm that pulls the
first five digits from the resulting hash, like so:

1. We start with arbitrary password 12345.

2. We use bcrypt to hash that password, giving us a hash of $2a$06$qEMn/
vmty3PCCc5qxy0p00jbJYnokP9zfwhWVxT1jnfIqIQwOzuqgigq.

3. We use our reduction function to take the first five characters we find in the
hash.

4. That gives us the next plain-text password to try, 20635 (the literal first five num-
bers we encounter in the hash).

Here’s how this whole process works in detail. Let’s say we want to generate 10,000
potential plain-text passwords, and their associated hashes, to compare against hashes
that we have from a compromised list of user records. If we were using a lookup
table, we would have each of those plain-text passwords mapped directly to its hash.
That requires a lot of storage, but is rather trivial to query to see if we have a match.

30 | Chapter2: Password Encryption, Hashing, and Salting

Here’s how a rainbow table stores a chain of plain-text passwords and their associated
hashes:

1. We take some arbitrary password, such as treehouse.

2. We then hash that, say with bcrypt, to give us a resulting hash,
$2a5065TjLWuN71X8Gsh031hK8qVueHhV4nsT19ZGxk9fBSxwiU49nBw8kVy.

3. We then run that hash through our reduction function, giving us our next viable
plain-text password.

4. Next, we repeat steps 2 and 3 for a lengthy number of chains, say 10,000.

Here’s the secret. We store only the first plain-text password, and the last hash in the
10,000 word/hash chain. What we have done is created a list of 10,000 plain-text/
hash-pair guesses, while storing only one plain-text password, and one hash.

A rainbow table is not a decoding system for a hash, as hashing is
built to be one-way (can encode but not decode). A hashing func-
tion allows you to map a plain-text password to a resulting hash,
but if you try to get a plain-text password back from a hash, you’ll
get only some other random plain-text password. A rainbow table
works in reverse, mapping a hash to its associated plain-text pass-
word. We aren’t docoding; we're mapping.

Let’s say we now have a hash that we want to get the plain-text password for. We fol-
low a few steps to try to get it:

1. We look through the list of hashes that we have stored in our table (that last hash
of a 10,000 word/hash chain). If we find a match, we just grab the associated
word for that hash that we already precalculated.

2. If there is no match, we move to the next hash in the chain, hash #9,999, and do
the same thing.

3. We then follow this process all the way to the end of the chain, tryng to find the
associated plain-text password.

In a realistic implementation, we would have a multitude of chains created that we
could run through. With multiple machines, we would run these chains in parallel to
reduce the amount of time it would take to process the attack.

The best way to combat this attack is, again, through salting. In the case of attack vec-
tors like this, having a long, complex password becomes important because:

« It takes exponentially more time to run these attacks with each additional charac-
ter added.

Password Attack Vectors | 31

« Parrot and parrot (change of case) need to be stored as different attack cases in
the table, because they contain different characters. Adding mixed cases and spe-
cial characters through the salt allows us to increase the size of the character set,
and thus potential guesses, that an attacker needs to run through.

With that said, let’s look at the process of salting in more depth to truly understand
how to properly implement it in our hashing functions.

Salting

A salt is a sort of random data that is used in conjunction with the user password,
when hashing, to harden the data and to protect against a few of our attack vectors,
specifically dictionary attacks and rainbow tables. By providing that piece of random
data, of significant length, we’re ensuring that the produced hash is unique, so even if
multiple users have the same password (as we know they do), the unique salt applied
to the hash will ensure that the resulting hash itself is unique. The unique hash is
what protects us from the hash comparison methodologies behind rainbow tables
and dictionary attacks.

Let’s look at this in practice. First, let’s start by seeing what a hash might look like if
we run it through scrypt with no applied salt. Let’s assume the password that the user
is using is mechagodzilla:

//example hashes using the password 'mechagodzilla' and no salt
hash('mechagodzilla') =
162e0a91026a28f1f2afa11099d1fcbdd9f2e351095ebb196c90e10290ef1227

Each time scrypt hashes that password, the resulting hash will remain the same. If
mechagodzilla is part of the word list tested through a dictionary attack, then it
would be an easy matter of comparing the hashes and figuring out the user password.

Now let’s see what applying a random salt to the equation will give us. Lets use the
same mechagodzilla user password, but use a salt generated from the Node crypto
library when the hash is created. Here are three instances of that at work:

//example hashes using the password 'mechagodzilla' and random salt
hash('mechagodzilla' + '458cf2979ef27397db67077775225334") =
£34993916612e285612b32702114751f557a70606c32b54b92de55153d40d3b6
hash('mechagodzilla' + 'ef5b72eff781b09a0784438af742dd6e') =
7e29¢5c48f44755598dec3549155ad66f1af4671091353bedc4d7694d71dc866
hash('mechagodzilla' + 'cc989b105a1c6a5f0fb460e29dd272f3"') =
6dedd3dbb0639e6e00cadbf6272c141fb741e24925cb7548491479a1df2c215e

In simple terms, a salt of sufficient length and randomness provides a massive boost
in security toward certain attack vectors, with just that simple, unique addition.

32 | Chapter2: Password Encryption, Hashing, and Salting

Generating a Random Salt

Let’s look at how to generate a random salt for our hash functions by using the Node
crypto library. Because it is part of the standard library, we don’t have to go through
the additional step of installing from npm.

The Node crypto library, in addition to providing functionality for
generating random salts of varying length, also has built-in func-
tionality for working with PBKDF2 to generate required hashes
from the user password and salt.

We start by adding the crypto requirement to our Node project:
var crypto = require('crypto');

With that in place, we can generate our salt by using the randomBytes(..) method,
like so:

crypto.randomBytes(32, function(ex, salt){
//log readable string version of the salt
console.log('salt: ' + salt.toString('hex'));

//proceed to next step: using the salt
b

Generating a Salt Synchronously

Generating a salt via randomBytes can also be done synchronously,
like so: var buf = crypto.randomBytes(256);.

The randomBytes method will accept a parameter for the size of the generated salt, in
bytes. What is returned to us is the randomly generated salt. At this point, we can go
to the next step of adding that salt to one our our hash functions, as we'll see in
“Choosing the Right Password Hashing Function” on page 35.

Salt Reuse

One of the common issues in password hashing is reusing the salt over and over
again. This completely defeats the purpose of using a salt to begin with. If we have a
common salt being used, and a series of users who are using the same password, then
the resulting hash will be the same. From there, an attacker can create a reverse
lookup table and run a dictionary attack on each hash at the same time. When users
create a new account, or they change their password, a new salt and hash should be
generated and stored.

Salting | 33

Salt Length

What is the appropriate length for our salt, and what are the implications of using a
salt that is too short? Let’s tackle the first part: what is the ideal length of the salt? One
general rule of thumb is for the salt to be the same size as the output of the hash func-
tion used. If we look at SHA-256, for instance, the resulting hash is 32 bytes in length,
so our salt should be 32 bytes, at minimum. In the case of SHA-1, the output length is
20 bytes, so our salt should be 20 bytes as well.

The PBKDEF?2 standard recommends that a salt length of at least 64 bits (8 bytes) be
used to be effective. In many cases, the next power of 2, so 128 bits (16 bytes), is typi-
cally used.

Let’s move on to the implications of a using a short salt. If the generated salt is short,
lookup tables can be created with all possible salt values and then be used to crack the
data.

Where to Store the Salt

The first thought that you may have is that the salt should be stored in a secure loca-
tion, separate from the hash. The simple fact is that we use the salt to prevent pre-
computed attacks (e.g., rainbow tables), where we would have a series of hashes that
can be compared against what is stored in the user database. If we can prevent that
easy/quick lookup from happening, we force the attacker to start cracking the hashes
individually, which is significantly slower.

Because that is the case, we don’t need to obfuscate or encrypt the salt, and it can be
stored as a plain-text value in our database along with the hash. With that said, we
also don’t want to make it readily accessible (like a username) to the open world.

Peppering

One of the other concepts in password crytography, beyond the salt, is the concept of
a pepper. Much like the salt, a pepper is another value that is added to the salt and
password when hashing.

Where the salt and pepper differ is that instead of the pepper being stored alongside
the hash (like a public key), and being randomly generated anew for each hash, the
pepper is a more safeguarded key, and is typically pulled from a single, or subset, of
strings.

The simple formula for pepper use is as follows:
hash(salt + pepper + password) = password hash

4 https://tools.ietf.org/html/rfc2898#section-4.1

34 | Chapter2:Password Encryption, Hashing, and Salting

https://tools.ietf.org/html/rfc2898#section-4.1

When using a pepper, we will generally be following one of two scenarios:

 The pepper value is held in a different location than the password hash, and is
treated more like a private key than a public key.

« The pepper is never stored, but is instead randomly chosen from a subset of val-
ues when the hash is generated. When doing a password comparison, we will
instead compare the hash to the proposed password, the salt, and each possible
value of the pepper, so we will make multiple comparisons against possible values
for the pepper until the comparison either passes of fails. This means that the val-
ues for the pepper are calculated from the code layer, instead of the stored value.

In general, the reason to use a pepper is that the added characters and symbols can be
utilized to bolster a weak password. By prepending a unique value that is chosen for a
secure approach, we can harden passwords that would otherwise be easily crackable.
Our password length is now increased, it has special characters, etc. With this, the
resulting hash will be increasingly unique, helping to prevent dictionary attacks.

In reality, though, peppers have a few controversial aspects. Here are some of the rea-
sons peppers are not heavily employed:

o A pepper is valuable only if it’s kept secret. If an SQL injection attack is used, and
only one table with the hash and salt are stolen, but the pepper is safe, then it
does its job. Unfortunately, in many cases, the entire database structure is com-
promised and leaked, meaning that our pepper usually goes right along with it.

 Hashing algorithms that are employed en masse, and publicly vetted, do not
accept a pepper as an argument. Most implementers can bring about some disas-
trous results by doing this wrong, or modifying the hashing algorithm, which is
heavily discouraged.

o There is really no analysis of the benefits of a pepper out there, unlike salting.

Many in the cryptography community simply state that a salt of proper uniqueness
and length, and a hash with an appropriate number of iterations employed to slow
down cracking, is more than sufficient to make the pepper fairly useless.

In the end, it’s good to understand that these mechanisms are out there, but in prac-
tice, it's sometimes more trouble than its worth, especially when implementing
proper hashing and salting.

Choosing the Right Password Hashing Function

Now that we understand how everything works, let's move on to how we are going to
pick the hashing function that is best for our needs.

Choosing the Right Password Hashing Function | 35

We already know that the three main hashing functions that we should be using for
passwords are bcrypt, PBKDF2, and scrypt, but what’s the difference between the
three? Let’s break these down a little bit further and explore the benefits of each, and
how they are used in conjunction with a salt.

bcrypt

berypt is the first hashing function on our list. It’s a key derivation function designed
for passwords, and is based on the blowfish cipher.

Some of the benefits of berypt are as follows:

o It’s based on the blowfish cipher, which uses RAM-based lookup tables that are
constantly being altered throughout the execution of the algorithm. These types
of tables are easy to handle for a CPU, but because of the sequential memory
access and parallel processing required, the GPU falls short. In this way, it hin-
ders GPU hardware enhancements by an attacker.

o It’s specifically designed as a password hashing algorithm, with the intent of
being slow (a good thing in password hashing).

With that in mind, let’s jump into implementing this into our application or website.
First, we need to install the berypt package from npm, like so:

npm install bcrypt --save
We then require berypt in our Node app:

var bcrypt = require('bcrypt');

The berypt package has a built-in method for generating a salt, so we're going to be
using that instead of the one that is made available in the crypto library, so that we
don’t need to include both berypt and crypto in our library:

function bcrypt_encrypt(username, password){
bcrypt.genSalt(10, function(err, salt) {
bcrypt.hash(password, salt, function(err, key) {
//store username, hashed password, and salt in your database

H;
s
}
We've built a function that accepts a username and password, presumably from user
input when users are creating or updating their account. We're taking an asynchro-
nous approach to generating the hash, which is the preferred method. We call
bcrypt.genSalt(..) to create our salt. The method accepts the number of rounds (or
cost) of the process (default is 10), and the callback to the method returns any error
and the derived salt.

36 | Chapter2: Password Encryption, Hashing, and Salting

Once the salt is generated, we then call the bcrypt.hash(..) method to generate our
hash. It will accept the password to be hashed and the salt we just generated. The call-
back will return the hash key that is generated from the process.

We can then take that hash and store it in our database along with the salt and the
rest of the user record.

To do the same thing using a synchronous approach, we can do the following:

var salt = bcrypt.genSaltSync(10);
var hash = bcrypt.hashSync(password, salt);

PBKDF2

Next, let’s look into PBKDF2, which is a key derivation function that has an academic
background, coming from RSA laboratories.

PBKDEF?2 has a number of main benefits and implementations in the wild:

o Time tested and has been the subject of intense research over the years
o Recommended by NIST special publication 800-132°
o Used by password management systems 1Password, LastPass, and others

« Available as a standard method within the native Node crypto library

Because PBKDEF2 is the hashing algorithm baked into the Node crypto library, its
fairly easy to get started. We first need to require crypto in our Node application:

var crypto = require('crypto');

Now, we build a function much as we did with bcrypt, to accept a username and pass-
word:

function pbkdf2_encrypt(username, password){
crypto.randomBytes(32, function(ex, salt){
crypto.pbkdf2(password, salt, 4096, 512, 'SHA-256', function(err, key) {
if (err) throw err;
//store username, hashed password, and salt in your database
b
b;
}

We make a request to crypto.randomBytes(..) to generate a random salt for us. The
method accepts the number of bytes of data to be generated (in our case, 32 bytes),
and returns a salt.

5 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf

Choosing the Right Password Hashing Function | 37

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf

We then make a request to crypto.pbkdf2(..), passing in the following:

« The user password.
o The salt.

« The number of iterations, or the number of times that the hash function should
be applied (in our case, 4096).

o The keylength (in our case, 512).

o The digest function (in our case, SHA-256). You can get a list of supported digest
functions with crypto.getHashes().

What is returned to us is a hex string containing our hash. We can push it to a plain
string for viewing, like so:

console.log('key: ' + key.toString('hex'));
As before, we then store our username, hash, and salt in the user database.

To do the same thing synchronously:

const salt = crypto.randomBytes(32);
var result = crypto.pbkdf2Sync(password, salt, 4096, 512, 'SHA-256');
scrypt

Last on our hashing function list is scrypt. While there are many heated debates on
the use of PBKDF2 versus bcrypt, and which is better, scrypt takes a very different
approach to hashing than either of the two.

Benefits and implementations of scrypt include the following:

o Specifically designed to make it hardware and memory intensive for an attacker
to perform large-scale attacks.

o Implemented as the algorithm behind the cryptocurrencies Litecoin and Doge-
coin.

The main benefit here is that, unlike berypt and PBKDEF2, scrypt is designed to be
incredibly hardware and memory intensive in order to crack. In the case of bcrypt
and PBKDF2, an attacker would be able to run thousands of parallel attacks on the
hashed data from minimal hardware resources, since they are not meant to have large
resource demands.

Let’s get into the implementation. First, let’s install scrypt using npm:

npm install scrypt --save

38 | Chapter2: Password Encryption, Hashing, and Salting

http://bit.ly/crypto-gethashes

With scrypt, were going to use a mix of the crypto library (for the salt), and the
scrypt module (for the hash). We include those two into our Node application like
this:
var scrypt = require('scrypt'),
crypto = require('crypto');
With everything in place, we again have a function that accepts a username and pass-
word:
function scrypt_encrypt(username, password){
crypto.randomBytes(32, function(ex, salt){
scrypt.hash(password, {"N":16384,"r":8,"p":1}, 64, salt,
function(err, key) {

//store username, hashed password, and salt
//in your database

);
s
}

We use the crypto library to generate our salt, with crypto.randomBytes(..), passing
in the number of bytes that should be generated in the output. The output gives us
the generated salt.

We then go to our next step of generating the hash with that salt. We make a request
to scrypt.hash(..), which accepts a number of values:

o The user password to be hashed.
 An object containing the parameters to control the scrypt hashing:

— N: The maximum amount of time in seconds that scrypt will spend computing
the derived key (double).

— r: The maximum number of bytes of RAM used when computing the derived
key (integer). The default is 0.

— p: The fraction of the available RAM used when computing the derived key (0
to 1, converted to percentages). The default is 0.5.

o The length of the resulting hash.

o The salt we just generated.
Once computed, the derived hash will be sent back for us to store.

The same approach synchronously would look like this:

const salt = crypto.randomBytes(256);
var result = scrypt.hashSync(key,{"N":16384,"r":8,"p":1}, 64, salt);

Choosing the Right Password Hashing Function | 39

Validating a Password Against a Hashed Value

Once we have a hashed valued of a password stored with the salt in our database, how
do we validate that the hash we have stored matches a login attempt by a user at
future iterations of the application use?

Because we are working with one-way hash functions, there is a simple way to vali-
date a hash against another password to see if they are valid. We just follow a few
steps:

1.
2.

We capture the password from the user login attempt.

We look up the record from our database that matches who the user is purport-
ing to be, and get the hash and the salt.

. We use the same hashing function that we did to derive that hash (e.g., berypt)

with the salt from the database, to generate a new hash.

. We compare the newly generated hash with the hash from the database. If they

match, we have a valid password.

If we follow that process for PBKDF2, we can see how the comparison will work:

var dbsalt
var dbhash

"USER RECORD SALT FROM YOUR DATABASE';
"USER RECORD KEY FROM YOUR DATABASE';

crypto.pbkdf2(password, dbsalt, 4096, 512, 'SHA-256', function(err, comparehash){

if (err) throw err;

if (dbhash.toString('hex') === comparehash.toString('hex')){
//passwords match

} else {
//passwords don't match

}

s

As you can see, the preceding code looks quite similar to the encryption process with
PBKDEF2. There are several things that we need to note about the comparison pro-
cess:

o We first capture the hash and salt from our local user record storage for the user

who is trying to log in (variables dbsalt and dbhash).

o We then encrypt the password for the login attempt (the password that the user

supplied to log in) and encrypt it using dbsalt, the same salt that encrypted the
user password during registration.

o Once that hash is produced (the comparehash variable), we then compare the

hash stored for that user in their user record (dbhash) against the newly gener-
ated version.

40

Chapter 2: Password Encryption, Hashing, and Salting

o If the password was the same, using the same salt to encrypt the password and
compare against the stored value, then we will have a matching password and can
safely log the user in.

Some packages, such as bcrypt, make that process a bit easier for us by providing a
compare method. The compare method simplifies the steps of having to encrypt the
password with the salt that we stored by mixing hashing and comparison into a single
call, like so:

bcrypt.compare(password, hash, function(err, res) {
//returns true or false
H;
In this case, we're supplying the raw user password from the login attempt and the
hash from the database. The result will be either true or false, depending on
whether they’re a match.

Key Stretching

One of the underlying concepts that makes berypt, scrypt, and PBKDEF2 effective is a
technique that they employ called key stretching. As we learned in Chapter 1, a vast
majority of people don’t utilize standards of significant password length and com-
plexity to keep their profile data secure, and prevent attack vectors like brute-force
attacks, on their own. This is where key stretching comes in. It takes a potentially
weak password and outputs an encrypted key of significant length and complexity
that attack vectors like brute forcing no longer become viable options.

In the case of our cryptographic hash functions, key stretching is done by applying
the hash function repeatedly in a loop, until a hash of the desired length and com-
plexity is obtained. When we talked about number of iterations in the hash function
examples previously, that is the implementation of this key-stretching concept.

Recomputing Hashes

At some point, you may have the need to generate new secure password hashes for
your users. Perhaps:

o Hardware has changed because of Moore’s law and you need to change the
weight/work factor used by your encryption algorithms.

o Algorithms have changed, and the one you are using is no longer secure, or
something better has come along.

o The hashes are no longer as secure as they can be.

Key Stretching | 41

In these instances, the standard practice is to store a new hash for the users as they
use your system. As each user logs in with their username/password, you log them in
as you normally would by comparing the login hash with the stored hash. Then,
instead of throwing out the password, you generate a new hash for the user, and
replace the old one in the user database record, before throwing out the password.

To speed this process along, you can force logout for all users. For instance, if you
allow users to remain logged in via a session cookie, you can invalidate all user cook-
ies and force each user to log in on their next visit.

Next Steps

Expanding upon the concepts of password security, Chapter 3 looks at a few practical
approaches to protecting our systems against attack vectors.

42 | Chapter2: Password Encryption, Hashing, and Salting

CHAPTER 3
|dentity Security Fundamentals

Tim Messerschmidt and Jonathan LeBlanc

After discussing the ongoing issues with current security models in the first chapter
and introducing secure passwords, hashing, and salting in the second chapter, we
now focus on using a person’s identity across multiple sites to handle different
authentication and authorization scenarios.

Merriam-Webster defines identity as “the qualities, beliefs, etc., that make a particular
person or group different from others” These qualities are what make identity rele-
vant to the concept of security.

Understanding Various Identity Types

While using the Internet, an individual establishes an online identity that represents
certain elements or characteristics of that person. This form of identity can—and
often will—differ across multiple sites and leads to a fragmentation that we can group
into different areas based on a website’s use case.

In this section, we introduce three types of identity that we will then discuss in detail:
social identity, concrete identity, and thin identity. These types of identity often over-
lap and can share the same attributes, as shown in Figure 3-1.

These three identity types can be considered federated identities and are applied
through technologies such as SAML, OpenID, OAuth, and tokenization. Often
applied through single sign-on—known as SSO—Federated Identity Management
(FIM or FIdM) is the practice of using a set of identity attributes across multiple sys-
tems or organizations. While SSO is a way of using the same credentials across multi-
ple sites and applications, FIM shifts the verification of credentials toward the identity
provider.

83

- - - = ~
7 ~N
Ve AN
’ \
/ \
/ \
y Thin !
| Identity !
\)
d \ N 7 / N
7 \ N/ ’ \

/ S N7 \
/ =\ \
! Social o Concrete !
| Identity U Identity !
\ \ 1 1
\ W /

\ X /

AS /7 N\ /
N 7 N 7
~ - — ”~ ~ - — ”~

Figure 3-1. Overlapping identities

Social Identity

Social identity came up with the rise of social networks and can be seen as a very
moderate form of identity that people tend to share quite casually. Profile informa-
tion often concentrates on social connections, interests, and hobbies, while ignoring
or not necessarily favoring critical information that might be used against the user.

Services such as Facebook or Google+ allow users to quickly access other services by
using their already populated profiles and leverage scopes in order to control the level
of information shared. This quickly became a favored way of handling login scenar-
ios, especially on mobile phones, because it provides a big boost in convenience and
helps to avoid the issues of entering any kind of complex information on
touchscreens.

Concrete Identity

Leveraging social identity is completely valid and even encouraged for services such
as games, media consumption, and of course, social networks. But other use cases
such as online banking or ecommerce require a more concrete profile that provides
useful information—for example, the user’s email, address, phone number, spoken
languages, or age.

Especially in ecommerce scenarios, the payment process can be painful. Having to
enter a 16+ digit credit card number manually can be tedious on a physical device
and troublesome on a touchscreen. This is where services such as PayPal, Amazon
Payments, or Google Wallet come in. These services enable users to enter valuable

44 | Chapter 3: [dentity Security Fundamentals

information in one place, and reuse it on multiple sites. By tokenizing sensible cre-
dentials such as payment details, the checkout flow is sped up tremendously.

Another popular example of using concrete identity is in the election process and
many other state services. For example, in Lithuania, a citizen’s state-issued ID card is
backed up by OpenID.! This enables a form of eGovernment that allows people living
remotely to participate in ongoing discussions and actively contribute to the country’s
politic environment.

Thin Identity

Thin identity is an old concept that is currently gaining popularity again. Thin iden-
tity—or even no identity—simply means user authentication without gaining access
to profile information.

A good example is Twitter’s service Digits, which allows users to use their phone
number as a means of logging in. The identifying—and globally unique—bit here is
the person’s phone number. Looking at the definition of identity introduced at the
beginning of this chapter, the criterion of difference (from other phone numbers) is
certainly met. Digits and other similar services aim to replace error-prone and vul-
nerable passwords with another factor that seems to be universally given. Yahoo!
went a similar route and provided a way to do passwordless login using text messages
with one-time-only passwords’—this is not yet part of Yahoo!s developer offerings,
though.

Enhancing User Experience by Utilizing Identity

User experience studies carried out by the Nielsen Norman Group show that login
doesn’t necessarily have to be the first point of contact for users and often harms the
conversion process of turning visitors into users by forcing them to register or log in.?
The current sentiment in user-experience research is that a preview of offered func-
tionality is desirable and helps people decide whether they want to commit to an
application.

Leveraging existing profiles, such as a user’s social identity, can help ease the way after
the user does decide to register by prepopulating profile information and therefore
lowering the amount of information the user has to type in manually.

1 http://lists.openid.net/pipermail/openid-eu/2009-February/000280.html
2 http://www.infopackets.com/news/9545/new-yahoo-login-system-uses-no-password

3 https://www.nngroup.com/articles/login-walls

Enhancing User Experience by Utilizing Identity | 45

http://lists.openid.net/pipermail/openid-eu/2009-February/000280.html
http://www.infopackets.com/news/9545/new-yahoo-login-system-uses-no-password
https://www.nngroup.com/articles/login-walls
http://get.digits.com

Introducing Trust Zones

The devices we use nowadays come pre-equipped with a variety of sensors that can
gather information about the user’s environment. GPS, WiFi, cameras, accelerome-
ters, gyroscopes, light, and many other sensors are used to build up profiles and iden-
tify the user accordingly. Combining this concept with the concept of identity, we can
not only identify users, but also build up trust zones (Figure 3-2).

Biometric
Factors

Camera and other
Sensors

Connected Devices
(Bluetooth)

Verify
Identity

User

Figure 3-2. Trust zones

Trust zones allow us to scale our security based on users’ behavior, environment, and
our ability to determine whether they are who they say they are. In essence, we are
trying to create a digital fingerprint for the user, from any data that might be available
and unique for the given user, such as their browser configuration, hardware, devices,
location, etc.

If we can guarantee a user is at home, based on the current GPS coordinates and the
WiFi used to connect to the Internet, trust zones can offer the user a way to waive
certain steps within authorization and authentication of web and mobile applications.

46 | Chapter 3: Identity Security Fundamentals

Google introduced this concept for Android as a feature known as Smart Lock.!
When a user wears his Android Wear device, the phone can be set up to automati-
cally unlock whenever a Bluetooth connection between the wearable device and the
user’s phone is established.® Other supported factors for Smart Lock are the user’s
location, face recognition, and on-body detection, which is a feature that relies on the
device’s accelerometer. Chapter 5 covers these alternate ways of user authentication
more deeply.

Realistically, we're trying to remove hurdles during the application experience for the
users. If we can obtain enough bits of information about them from the system and
devices that they are using to determine that they are almost certainly who they say
they are, and they are in a trusted location, is it necessary to challenge them when
changing account information, or ask them to provide login details during a checkout
process instead of providing a one-click checkout experience?

These are the types of things that we can do when we have a strong certainty that
users are who they are purporting to be.

Let’s take this conversation into a practical look at this technology, starting with the
browser.

Browser Fingerprinting

One of our main goals as application and web developers is to make the experience of
our users as secure and as convenient as possible. With the concept of trust zones
understood, you can start to see how many of the security measures that we can put
in place may occur without burdening the user for more information.

One of the methods that can be employed is browser fingerprinting. This process uses
unique characteristics about the browser that the user is using, such as headers, fonts,
etc., to determine a second factor of authentication based on the user’s browser.

Back in May of 2010, The Electronic Frontier Foundation (EFF) published a report
from an experiment it was running on browser fingerprinting, called Panopticlick.
From this study, some interesting results were derived from the browsers that were
tested during the first 1 million visits to the Panopticlick site.®

o 84% of browsers tested had a unique configuration.

« Among browsers that had Flash or Java installed, 94% were unique.

4 http://developers.google.com/identity/smartlock-passwords/android
5 http://support.google.com/nexus/answer/6093922¢hl=en
6 https://www.eff.org/deeplinks/2010/05/every-browser-unique-results-fom-panopticlick

Browser Fingerprinting | 47

http://developers.google.com/identity/smartlock-passwords/android
http://support.google.com/nexus/answer/6093922?hl=en
https://www.eff.org/deeplinks/2010/05/every-browser-unique-results-fom-panopticlick
https://www.eff.org
https://panopticlick.eff.org

o Only 1% had fingerprints that were seen more than twice.

These are obviously not definitive numbers to determine to a near certainty the
browser uniqueness of each user, but the numbers are significant enough to be able to
easily use these types of tests as a second factor of authentication for our users. When
we are able to find a unique browser configuration, we have a high likelihood (99%)
of determining that the browser is unique and attributable to that individual. When
using this, coupled with additional techniques that we will explore in later sections,
we can predict with a high degree of certainty that users are who they say they are.
When we have that determination, along with the login mechanisms that the user has
used (such as a username/password), then we are able to maintain a high level of con-
fidence to create our trust zones.

These tests used the concept of bits of entropy to determine the fingerprint of a
browser. From its subset of tests, the EFF noticed that the distribution of entropy
observed on a tested browser is typically around 18.1 bits. This means that if a
browser was chosen at random, at best we would expect that only 1 in 286,777 other
browsers would share the same fingerprint.

In addition to making things easier for the user through these trust zones, there’s
another benefit to having this information tracked. If we are processing payments for
our users, inevitably there will be some disputes over a payment and who may have
made it. Being able to provide information such as these digital fingerprints during
dispute resolution can help to provide favorable results during the process.

Configurations More Resistant to Browser Fingerprinting

In its study, the EFF also noticed that certain configurations had a high resistance to
browser fingerprinting, meaning that they were harder to generate a fingerprint for.
These configurations included the following:

 Browsers with JavaScript, or disabled plug-ins.

 Browsers with TorButton installed, which anticipated and defended against the
fingerprinting techniques.

» Mobile devices, because the lack of configurability of the mobile browser tends to
lead to a more generic fingerprint. These devices generally do not have good
interfaces for controlling cookies, so information may be obtained more easily
through that method.

o Corporate desktop machines that are precise clones of one another, and don't
allow for degrees of configuration.

« Browsers running in anonymous mode.

48 | Chapter 3: dentity Security Fundamentals

Identifiable Browser Information

Through the studies that were performed during the Panopticlick project, the EFF
was able to assign different entropy bit levels for different configuration types that
can be derived from a browser. These included the characteristics and associated
entropy values listed in Table 3-1.

Table 3-1. Entropy (bits) for browser characteristics

Characteristic Bits of entropy

User Agent 10.0
Plug-ins 154
Fonts 13.9
Video 483
Supercookies 212
HTTP ACCEPT Header 6.09
Time Zone 3.04

Cookies Enabled 0.353

The browser uniqueness report, in addition to providing the characteristics, also pro-
vided the means through which those values were obtained,” as shown in Table 3-2.

Table 3-2. How browser characteristics were obtained

Characteristic Method

User Agent This was transmitted via HTTP, and logged by the server. It contains the browser micro-version,
0S version, language, toolbar information, and other information on occasion.

Plug-ins The PluginDetect JavaScript library was used to check eight common plug-ins. Extra code was
also used to estimate the current version of Acrobat Reader. The data was then transmitted via
AJAX post.

Fonts Aflash or Java applet was used, and the data was collected via JavaScript and transmitted via
AJAX post.

HTTP ACCEPT Header Transmitted by HTTP and logged by the server.

Screen Resolution JavaScript AJAX post.

Supercookies (partial test) JavaScript AJAX post.

Time Zone JavaScript AJAX post.

Cookies Enabled Inferred in HTTP, and logged by the server.

7 https://panopticlick.eff.org/static/browser-uniqueness.pdf

Browser Fingerprinting | 49

https://panopticlick.eff.org/static/browser-uniqueness.pdf
http://www.pinlady.net/PluginDetect

Looking at a breakdown of all characteristics, we have a good idea of how to imple-
ment these techniques. For the most part, were pulling data via JavaScript and log-
ging on our server, and at most (in the case of fonts), we have a flash or Java applet
doing the work for us.

Capturing Browser Details

Let’s take a look at the methods that we can use to begin capturing some of this infor-
mation from client-side JavaScript. This will be part of the data that we will need in
order to start generating a fingerprint for our users, as they come through.

User agent

Let’s start with a simple one, the user agent. This will provide us with quite a bit of
information that we can use for the overall fingerprint.

To obtain this string, we can use the data within the navigator object, like so:

var agent = navigator.userAgent;
From this test, you may see a string returned that would look something like the fol-
lowing:

Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_5) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36

There are some important pieces of information contained in this string that we can

use. Specifically:

Mozilla/5.0
Mozilla-compatible user agent and version. This is used for historical reasons,
and has no real meaning in modern browsers.

Intel Mac OS X 10_10_5
The operating system and version.

AppleWebKit/537.36
Web kit and build.

KHTML, like Gecko
Open source HTML layout engine (KHTML), like Gecko.

Chrome/48.0.2564.116
Browser (Chrome) and version.

Safari/537.36
Based on browser (Safari) and build.

50 | Chapter3:Identity Security Fundamentals

Time zone

Next, let’s capture the time zone by using getTimezoneOffset(). This function will
return the offset, in minutes, from GMT. To obtain the number of hours that the user
is offset from GMT, we can divide that result by 60, like so:

var offset = new Date().getTimezoneOffset() / 60;

You may notice something strange about the result here. The hour is correct, but the
negative/positive identifier is flipped. For instance, if I am on the East Coast of the
United States (GMT-5), the result returned is 5, not -5. This is because
getTimezoneOffset() is calculating GMT'’s offsite from your time zone, not the other
way around. If you wish to have it the other way around, multiply by -1, like so:

var offset = (new Date().getTimezoneOffset() / 60) * -1;

Screen resolution

The screen resolution can be obtained by using the window object. This will give us
the screen resolution of the monitor being used, which can be a fairly static indicator
for the browser fingerprint.

We can obtain those results with the following snippets:

var width = window.screen.width;
var height = window.screen.height;

This will give us the given numeric results for the width and height, such as 2560
(width) and 1440 (height) for a screen resolution of 2560 x 1440.

Plug-ins

Browser plug-in information can garner quite a bit of detail for the fingerprint, and is
obtained via navigator.plugins. Let’s say we want to capture the name of each plug-
in installed in the browser, and just display those for the time being. We can do so
with the following code:

//get plugin information

var plugins = navigator.plugins;

for (var 1 = 0; 1 < plugins.length; i1++){
console.log(plugins[i].name);

}

JavaScript Library for Plug-in Detection

An alternative method for obtaining additional plug-in informa-
tion from the browser is through the PluginDetect JavaScript
library.

Browser Fingerprinting | 51

http://www.pinlady.net/PluginDetect
http://www.pinlady.net/PluginDetect

The information displayed, depending on the plug-ins installed in the browser, may
look something like the following:

Widevine Content Decryption Module
Chrome PDF Viewer

Shockwave Flash

Native Client

That information can be added to the custom identifiers for the user’s browser.

Location-Based Tracking

Other than browser fingerprinting, another method that we can use for building trust
zones for users is to use their physical location.

Here’s how this can be valuable. Let’s say that we have an ecommerce store where the
user has filled out her shipping address during sign-up or a previous purchase. We
have that address stored to make it easier for the user to check out, and that has
become a trusted home location. If we could determine the physical location of the
person attempting to use the site while purporting to be the user, we could match that
against the address on file. If those two addresses match, we can use that as a trusted
point, and potentially lift the need to have the user confirm her login information
before checkout.

Use Geolocation with Caution

Use gelocation data from the user with caution. Physical location
can be masked, and may provide inaccurate results. With that said,

" ensure that you use alternate methods of identification with geolo-
cation, and use with caution.

Let’s look at a simple JavaScript-based approach to gathering the latitude and longi-
tude of the user, using the navigator object. First, let’s see what the current support
for geolocation is within modern browsers (Figure 3-3).

52 | Chapter3:Identity Security Fundamentals

* *

i0S Opera Android Chrome for
IE Edge Firefox ~ Chrome Safari Opera Safari Mini Browser Android

444

Figure 3-3. Current geolocation browser support

Looking at the support, we have good overall coverage in most modern browsers.
Now let’s see how to set up a simple example of this:

//on success handler

function success(position){
console.log('lat: ' + position.coords.latitude);
console.log('lon: ' + position.coords.longitude);

}

//error handler
function failure(err){
console.log(err);

}

//check geolocation browser availability and capture coordinates
if ('geolocation' in navigator){
navigator.geolocation.getCurrentPosition(success, failure, {timeout:10000});
} else {
console.log('geolocation is not available');

}
We start out by defining two handler functions, one for success and the other for
handling errors. Within the success function we will be passed position data, from
which we can then extract coordinate information. Within the error handler, we are
simply logging out the errors that may be produced. One potential error may be
caused by the user not allowing the website to capture his geolocation:

PositionError {}
- code: 1
- message: "User denied Geolocation"

Location-Based Tracking | 53

With those in place, we check at the bottom of the sample to see whether geolocation
is available within the navigator object. If it is, we call navigator.geolocation.get
CurrentPosition(..), passing in the success function, error function, and the
options, which contain a time-out of 10 seconds.

When run in a browser, the user will be asked to confirm his geolocation data
(Figure 3-4).

r /Users/jlebl D wser_fingerprint.html

IQ,E; "\:!‘ ‘Weuld you like to share your location with this file?
™\

LD

|- 4 Learn more...

Share Location | ~

Figure 3-4. Requesting use of geolocation data

Once allowed, we will be able to extract the latitude and longitude, compare those to
the address we have stored on file, and see whether the user is in a trusted zone. Cre-
ating a geofence of an appropriate range (range from the root address that the coordi-
nates are within) will allow us to handle cases of the user being within close proximity
to his home location.

Other Methods

There are many other methods for obtaining geolocation informa-
tion for a user. For instance, within a mobile application environ-
ment, we can leverage off of the GPS data for the same end result.

Device Fingerprinting (Phone/Tablet)

As you can see, a multitude of data points can be gathered to help us determine
whether users are who they say they are, without impacting their experience. This
allows us to continue to make things easier by not having to request additional infor-
mation from them for security.

Another method is to use the hardware fingerprint of the devices that are being used
by the person using our site or service. Users will typically use a range of devices
(phones, tablets, etc.) for interacting with your applications. These devices, when
used over time, can become trusted sources to help determine whether the user is on
a trusted device.

54 | Chapter3:Identity Security Fundamentals

Let’s take a look at a simple method for capturing this type of information from an
Android application. Build information is available that enable us to obtain informa-
tion about the device that the user is using.®

Some of that information can be pulled like so:

//Build Info: http://developer.android.com/reference/android/os/Build.html

System.getProperty("os.version"); //os version

android.os.Build.DEVICE //device

android.os.Build.MODEL //model
android.os.Build.VERSION.SDK_INT //sdk version of the framework
android.os.Build.SERIAL //hardware serial number, if available

We can obtain information such as the OS version, device, and model. This can all go
toward building a framework of trusted devices, and allowing a user to bypass the
need for additional levels of security, should they be required.

Changing Devices

A typical question here may be, “What if I change my device?” If a
device is changed, the system should note that the device is not
trusted, and show appropriate security challenges as one would for
an untrusted user. Once the user has verified her identity through
the challenges, that device can then be added to the list of trusted
devices.

Device Fingerprinting (Bluetooth Paired Devices)

Today our phones are not the only connected devices we have. We may have our
phones connected to a smart watch, a car, or other hardware around us. These devi-
ces, much like the phone, can be used as a hardware fingerprint to help determine
whether users are who they say they are. If we can find devices that are typically con-
nected to the phone, the trust score would increase.

Let’s look at an example of how this would work within an Android application, if we
wanted to fetch all of the Bluetooth devices that are connected to a phone:

//fetch all bonded bluetooth devices
Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();

//1f devices found, fetch name and MAC address for each
if (pairedDevices.size() > 0){

8 http://developer.android.com/reference/android/os/Build.html

Device Fingerprinting (Bluetooth Paired Devices) | 55

http://developer.android.com/reference/android/os/Build.html

for (BluetoothDevice device : pairedDevices){
//Device Name - device.getName()
//Device MAC address - device.getAddress()

}

We start by calling getBondedDevices() to capture any devices that are currently
attached to the phone. We then loop through the devices found, and can fetch some
basic information about them:

Device name
Readable name of the device, obtained through device.getName()

MAC address
The physical address of the device, obtained through device.getAddress()

Setting Proper Permissions

As of Android 6.0, there have been permission changes to provide
users with greater data protection. In order to obtain hardware
identifiers (such as the MAC address) of a Bluetooth-attached
device, you need to set the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permissions in your app. If those per-
missions are not set, device.getAddress() will return a constant
value of 02:00:00:00:00:00.°

Implementing Identity

Now that you have built up an understanding of identity types and the concepts
behind trust zones, in Chapter 4 we will take on a basic implementation of OAuth 2.0
and OpenID—the driving technologies behind identity. Please note that the identity
sector is currently evolving, and new standards, such as FIDO, are on the horizon.
These new technologies will be part of Chapter 5’ focus.

9 http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html

56 | Chapter3:Identity Security Fundamentals

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html

CHAPTER 4

Securing the Login with
OAuth 2 and OpenlID Connect

Tim Messerschmidt

In this chapter, we discuss the concepts behind the two standards—OAuth 2.0 and
OpenID Connect—in order to provide a comprehensive overview of current authenti-
cation and authorization standards. To do so, the difference between authentication
and authorization is outlined, followed by an explanation of OAuths evolution
throughout the years. Afterward, we sketch out a basic implementation of an OAuth
2.0 server and client that leverages OpenID Connect functionality.

The Difference Between Authentication and
Authorization

A common issue is seeing authentication and authorization as one and the same. In
fact, they are very different and can be used in different scenarios or combined to
allow access to different kinds of information. This section provides a basic under-
standing of the main differences and discusses why multiple standards exist and are
being pushed forward at the same time.

57

Authentication

Authentication is the process of identifying a user against a service. OpenlD was the
first standard that aimed at providing a decentralized protocol for identifying users
across multiple sites. The idea behind this was very simple: avoiding the tedious task
of re-entering information over and over. Basically the login process is being delega-
ted to another site.

OpenID was introduced in 2005 and saw enormous growth, totaling over 1 billion
user accounts in 2009.! Recent development showed less demand for OpenID and
central identity platforms. Instead, hybrid approaches were being introduced that
offered both user authentication and authorization at the same time.

Authorization

While authentication aims at user identity, authorization tries to solve the issue of
providing access to a user’s protected resources. This can involve providing access to
user profiles—which blurs the line between authentication and authorization—or
simple anomynous access to data.

Authorization standards like OAuth are often used as a more convenient and more
secure way of handling sign-in than regular basic authentication flows using user-
names and passwords. Authorization relies on third-party authentication systems and
is often used for various social login scenarios using service providers like Facebook,
Google+, or Twitter.

What Are OAuth and OpenlD Connect?

The first draft of the OAuth 1.0 Core was released in December 2007. The idea
behind OAuth was to provide an authentication technology that would allow for
anonymous resource sharing with third parties. Anonymous resource sharing can be
seen as a way of providing access to information and resources without the need to
provide information about the user’s identity.

In the OAuth process, the server side is referred to as the Service Provider, and the
client is called the Consumer. In order to allow for resource sharing and accessing a
user’s protected resources, a process called OAuth authorization flow is initiated that
consists of eight steps:

1. Consumer: Retrieve a Request Token

2. Service Provider: Grant Request Token

1 http://openid.net/2009/12/16/openid-2009-year-in-review/

58 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

http://openid.net/2009/12/16/openid-2009-year-in-review/
http://oauth.net/core/1.0

Consumer: Direct user to the Service Provider in order to sign in
Service Provider: Obtain authorization

Service Provider: Redirect the user to the Consumer

Consumer: Request an Access Token

Service Provider: Grant Access Token

® N U

Consumer: Use Access Token to access protected resources

This flow—as outlined in the official specification—is known as three-legged OAuth.
Three-legged OAuth requires using a web browser to obtain a user’s authorization.
The three parties involved in the process are as follows:

1. The Consumer (which we also identify as the Client)
2. The Service Provider
3. The End User

The whole reason for this convoluted process comes from the desire to prevent the
Consumer from ever handling the user’s credentials (username and password). By
involving all three parties, only a minimum of information is provided in order to
grant access to a User’s resources. By implementing OAuth, a potentially insecure
password is replaced by an opaque token that can be revoked by the application and
the End User. This results in avoiding the password anti-pattern.

Users should have access to their data and should be allowed to bring it from one site
to another. Social sites shouldn’t propagate bad behavior by teaching users that it's OK
to give any site their usernames and passwords for all the sites to which they belong.?

—Designing Social Interfaces

An alternative flow, known as two-legged OAuth (Figure 4-1), skips obtaining the
user’s authorization because no user data is being requested or involved. User data
can be filled within the Consumer and stored afterward within the Service Provider.
The two-legged OAuth flow can be used as a replacement for traditional basic
authentication.

2 http://designingsocialinterfaces.com/patterns/The_Password_Anti-Pattern

What Are OAuth and OpenlID Connect? | 59

http://designingsocialinterfaces.com/patterns/The_Password_Anti-Pattern

Consumer

Service Provider

Request a J Grant
Request Token 'l Request Token
Consumer

A 4
Direct User to the J Obtain the User’s
Service Provider 'l authorization
A 4
Verifier (1.0a)
Redirect the User
Request an
back to the
Access Token l
Consumer
A 4
Access Token [
faesspiotested Grant Access Token
resources [
|
|
|
|
|
\
N
N e e e e e e - e o - — — — — — — — — — _>

Figure 4-1. OAuth 1.0a authorization flow

60

Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

The Internet Engineering Task Force (IETF) started supporting OAuth in November
2008. The official Request for Comments was published in 2010.

OAuth 1.0a

Revision 1.0a of OAuth was released in June 2009. It serves as a
hotfix for possible session fixation attacks that allowed access to the
victim’s resources.

Eran Hammer, one of the coauthors of OAuth 1.0, wrote a blog
post about the possible exploit and how OAuth 1.0a fixes this
attack vector.*

In this book we use OAuth 1.0a as a base for any discussion regard-
ing the first version of OAuth.

From a security perspective, the first version of OAuth relies heavily on signing the
request on the Consumer’s side using HMAC-SHA1, RSA-SHA1, or PLAINTEXT. A Service
Provider is allowed to implement other signing methods. The signature is being
passed as the oauth_signature parameter, while the method used to sign the signa-
ture is being provided via oauth_signature_method. Nonces and timestamps are
being leveraged as additional security mechanisms that aim at avoiding replay attacks.

The process of signing requests and the bloated process of retrieving an Access Token
are among the main reasons behind criticism for OAuth 1.0a. Developers often feel
like they have to rely on libraries in order to implement OAuth 1.0-based authentica-
tion and feel like the standard is not approachable.

Introducing OAuth 2.0

Since the Web changed heavily and new form factors were released, new authentica-
tion scenarios had to be introduced in order to accommodate web applications,
native applications for desktop and mobile, and even interfaceless Consumers such as
Internet of Things devices. Furthermore, demand for more simplicity has been rising
among the developer community. Both reasons led to the introduction of the first
draft of OAuth 2.0 in April 2010.° The main framework for OAuth 2.0 RFC® and a
RFC discussing OAuth 2.0 Bearer Token Usage’ were published in 2012.

3 http://tools.ietf.org/html/rfc5849
4 http://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack

5 http://tools.ietf.org/html/draft-ietf-oauth-v2-01

6 http://tools.ietf.org/html/rfc6749
7 http://tools.ietf.org/html/rfc6750

What Are OAuth and OpenlID Connect? | 61

http://tools.ietf.org/html/rfc5849
http://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack
http://tools.ietf.org/html/draft-ietf-oauth-v2-01
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750

To address some of the main differences between OAuth 1.0a and 2.0, the following
details were updated:

1. Access Tokens are now subject to a time to live (TTL)/expiry time.
2. No more client-side cryptography.

3. Different flows to accommodate different authentication scenarios.

Drama around OAuth 2.0

If you are aware of the ongoing discussion between the OAuth 2.0
stakeholders or you simply don't care, feel free to skip to the next
section!

While OAuth 2.0 fixes a lot of the issues that OAuth 1.0 had, it is far from perfect and
saw its biggest critique coming from Eran Hammer, who participated in the OAuth
2.0 working group. In a post called “OAuth 2.0 and the Road to Hell,” Hammer writes
about his frustration with a standard that often lacks concrete implementation strate-
gies and leaves a lot of decision making to the implementer.® One of the points he
touches on is that Bearer Tokens are not encrypted per se and therefore are inher-
ently less secure than specified. OAuth 2.0 puts the trust into TLS and SSL and doesn’t
add additional security mechanisms on top of these protocols in order to control
token ownership.

Other contributors, such as Tim Bray, on the other hand, raise valid points about
OAuth 2.0 being usable already, working in its core, and not necessarily having the
need for interoperability.

Having said all that, OAuth 2 may not be perfect, and may have been harmed by the
Enterprise crap, but the core of Web functionality (all I care about) seems to have sur-
vived.?

—Tim Bray, “On the Deadness of OAuth 2”

8 http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
9 https://www.tbray.org/ongoing/When/201x/2012/07/28/Oauth2-dead

62 | Chapter4: Securing the Login with OAuth 2 and OpeniD Connect

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
https://www.tbray.org/ongoing/When/201x/2012/07/28/Oauth2-dead

OAuth 1.0 versus OAuth 2.0

Overall the industry seems to agree that OAuth 2.0 is a better standard than its prede-
cessor by offering an easier implementation and more flexibility in terms of defining
access to resources. Many developers are heavily challenged when implementing
OAuth 1.0’s signatures and often run into outdated or even deprecated libraries.
When you are able to use secure connections (which we highly recommend and
explain in Chapter 7), it makes sense to go for the slimmer OAuth 2.0—otherwise,
wed recommend taking a deeper look into OAuth 1.0a.

Looking at the tech landscape, there are only few active companies remaining that
still build upon OAuth 1.0 (such as Evernote'). Twitter, another prominent imple-
menter of OAuth 1.0a, nowadays offers a hybrid implementation that uses both
OAuth 1.0a and OAuth 2.0" based on the API you wish to use. Google, on the other
hand, announced that its OAuth 1.0 support has been deprecated as of April 20, 2012
and actively encourages developers to start using OAuth 2.0 instead."?

Handling Authorization with OAuth 2.0

In OAuth 2.0 the classical OAuth authorization flow, also known as the OAuth dance,
was simplified in order to require fewer steps:

Consumer: Direct user to the Service Provider in order to sign in
Service Provider: Obtain authorization

Service Provider: Redirect the user to the Consumer

Consumer: Use Authorization Code to request Access Token

Service Provider: Grant Access Token

A o e

Consumer: Use Access Token to access protected resources

This flow is a very basic summary of the process that happens when users aim to
authorize clients through OAuth 2.0. Figure 4-2 illustrates a more comprehensive ver-
sion of the OAuth dance.

10 http://dev.evernote.com/doc/articles/authentication.php
11 http://dev.twitter.com/oauth/reference/post/oauth2/token
12 https://developers.google.com/identity/protocols/ OAuthFor WebApps

What Are OAuth and OpenlID Connect? | 63

http://dev.evernote.com/doc/articles/authentication.php
http://dev.twitter.com/oauth/reference/post/oauth2/token
https://developers.google.com/identity/protocols/OAuthForWebApps

Consumer

Service Provider

Request a [The user grants
q > authorization by
Request Token l o
logging in
Authorization Code
The Authorization The application
Code is exchanged redirects the user to
for an Access Token l the client
A 4
Validate
Authorization
Code
A 4
Access Token [
e e Grant Access Token
resources [
|
|
|
|
|
\
\
e e e e - - - - — o —— o — — — — — — — — _>

Figure 4-2. OAuth 2.0 authorization dance

64 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

OAuth 2.0 Authorization Grant Types

According to the specification, the various OAuth 2.0 Grant Types are defined as fol-
lows:

Authorization Code
An intermediate token is being used to prevent sharing the resource owner’s

credentials

Implicit
The client is not being authenticated

Resource Owner Password Credentials
Used to obtain an authorization grant

Client Credentials
When the client is also the resource owner

A less confusing translation is provided by Aaron Parecki:"

Authorization Code

For apps running on a web server
Implicit

For browser-based or mobile apps

Resource Owner Password Credentials
For logging in with a username and password

Client Credentials
For application access

More information on authorization grant types can be found in Section 1.3 of the
OAuth 2.0 RFC document.**

Using the Bearer Token

The Bearer Token is one of the most used default token types in the OAuth 2.0 stan-
dard. When the server’s token endpoint retrieves a request for a new token, it recog-
nizes the type bearer and provides a default Access Token according to the
specification. This token is not further encrypted or signed—if this is something you
are interested in, the token type MAC (which stands for Message Authentication Code)

13 https://aaronparecki.com/2012/07/29/2/oauth2-simplified#authorization
14 http://tools.ietf.org/html/rfc6749#Section-1.3

What Are OAuth and OpenlID Connect? | 65

https://aaronparecki.com/2012/07/29/2/oauth2-simplified#authorization
http://tools.ietf.org/html/rfc6749#Section-1.3

is what youre looking for.” An alternative to this type is utilizing JSON Web
Tokens.'s

There are three different ways to use Bearer Tokens in practice. The first option is
using Request Header Fields to provide the Access Token: Authorization: Bearer
43e6ce68-4c59-4313-94e2-fcc2932cf5ca.

Second, the token can be passed in the request’s body as a form-encoded parameter
named access_token. In order for this to work, the request’s Content-Type header
needs to be set to application/x-www-form-urlencoded and all further body param-
eters need to comply to the encoding requirements—JavaScript’s method encodeURI
Component() comes in handy here.

When providing the Access Token as a URI query parameter, use access_token fol-
lowed by the Access Token itself. This last method is least desirable, because URLs
might be logged. If neither using the Authorization header nor passing the Access
Token via the request body is an option for you, make sure to send a Cache-Control
header that is set to no-store. Further security considerations are being outlined in
Section 5 of the official Bearer Token RFC."

Authorization and Authentication with OpenlD Connect

Now that we have discussed OAuth 2.0 in detail, it is time to highlight OpenID Con-
nect. OpenlID traditionally stands for an authentication framework that was widely
adopted in the pre-2010 era. With the rise of OAuth and the users’ wish to adopt mul-
tiple identities based on the authentication use case, a variety of hybrid extensions
and so-called pseudo-authentication using OAuth became popular. OpenID Connect
is a standard issued by the OpenID Foundation in February 2014 and resembles an
extra layer on top of the OAuth 2.0 core that handles user authentication in a standar-
dized REST-like manner.'® All data being transmitted is formatted using JSON. While
OAuth is supposed to be a standard for authorization, OpenID Connect enables
authentication use cases leveraging the OAuth 2.0 protocol. This pretty much means
that OpenID Connect is a superset of OAuth 2.0.

Userlnfo endpoint and Claims

Next to OAuth’s authorization and token endpoint, OpenID Connect relies on an
additional endpoint called UserInfo. This endpoint provides Claims about the authen-

15 https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05

16 http://tools.ietf.org/html/rfc7519

17 https://tools.ietf.org/html/rfc6750#Section-5

18 http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard

66 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
http://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc6750#Section-5
http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard
http://openid.net/foundation

ticated user. Claims are a predefined set of profile information about the user such as
the user’s name, the profile’s URL, or whether the user’s email address has been veri-
fied."” Additionally, an Address Claim can be requested and custom Claims can be
defined.

User authentication

OpenID Connect enables handling a user’s login or determining whether a user is
logged in already.

The ID Token

A central part of the OpenID Connect specification is the ID Token.”® The token’s
functionality revolves around the following details:

o It serves as security token.

« It contains authentication information.

o Itis signed using JSON Web Signatures (JWS).*!

o It can be encrypted using JSON Web Encryption (JWE).?

At the time of writing this book, both JWS and JWE are still works
in progress.

Security Considerations Between OAuth 2 and OAuth 1.0a

As highlighted in this chapter’s introduction, OAuth 1.0a’s security relies heavily on
client-side cryptography mechanisms. Use of TLS or SSL is not enforced and impor-
tant credentials like the consumer secret and token secret are stored in plain text.
Phishing attacks are a possibility and require the user to verify the authenticity of
websites before providing any credentials.”

19 http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
20 http://openid.net/specs/openid-connect-core-1_0.html#IDToken

21 https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41

22 https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-40

23 http://oauth.net/core/1.0a/#anchor32

Security Considerations Between OAuth 2and OAuth 1.0a | 67

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41
https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-40
http://oauth.net/core/1.0a/#anchor32

OAuth 2.0, on the other hand, relies on TLS version 1.0 as a security mechanism.*
Additionally, protection against cross-site request forgery, known as CSRF attacks,
can be achieved by utilizing the state parameter as outlined under the Authorization
Codes section of the specification.?

Building an OAuth 2.0 Server

This section covers an implementation of OAuth 2.0 for the Node.js web application
framework Express. Express serves as base for many web projects and is listed as one
of the most popular packages hosted on npm, the Node package manager.

To allow for seamless authentication and authorization mechanisms between the
server’s different routes, a feature called middleware will be leveraged. Middleware
can be used on an application level, a route level, and to handle errors. You can imag-
ine middleware as a function that can be plugged into your application’s routes and is
able to interact with the request and response objects. Popular examples for third-
party middleware are cookie-parser, which enables parsing cookie headers, and
passport, which is a popular middleware for handling user authentication.

Since version 4.x of Express, the only built-in middleware is
express.static; this function is responsible for serving static
assets.”

Creating the Express Application

Before we can get started with the OAuth 2.0 server integration, we need to take a few
minutes to set up our environment. Please refer to Appendix B for instructions on
installing and setting up Node.js and the Express generator accordingly.

Following the installation of the generator, we will create our first Express applica-
tion:

express oauth
cd oauth

npm install
npm start

24 http://tools.ietf.org/html/rfc6749#Section-1.6
25 https://tools.ietf.org/html/rfc6749#section-10.12
26 http://expressjs.com/en/guide/using-middleware. html#middleware.built-in

68 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

http://tools.ietf.org/html/rfc6749#Section-1.6
https://tools.ietf.org/html/rfc6749#section-10.12
http://expressjs.com/en/guide/using-middleware.html#middleware.built-in
http://expressjs.com

This creates a new Express application in the folder oauth and installs the required
dependencies. The command npm start runs our application, which will be served
on http://localhost:3000/ (unless specified otherwise).

That’s all it takes to create our first Express application! We will use this knowledge in
our upcoming samples throughout this book.

Setting Up Our Server’s Database

To allow for interaction with MongoDB, our project’s database, we will use the data-
base connector mongoose.js. To install the package, execute npm install mongoose
--save from the root folder of your application. The --save option for the npm
install command makes sure that an entry for Mongoose is added to our project’s
package.json file as a runtime dependency. This is important because the node_mod-
ules folder, where all the installed modules reside, is usually not pushed to the server.

First, we need to set up the code that allows us to connect to our MongoDB database.
Add the following code snippet to the app.js file that the Express generator created for
you:

var mongoose = require('mongoose');

mongoose.connect('mongodb://localhost/book");
For development purposes, we will use a local database (obviously this would change
when deploying this application onto a different environment). By connecting to
Mongoose within app.js, we provide application-wide access to the database itself—a
necessity for having the ability to handle database queries and object manipulation
within our application’s routes.

Generating Authorization Codes and Tokens

Two types of tokens are relevant for our OAuth 2.0 integration. A key requirement for
OAuth Tokens is that they need to be unique, nonsequential, and nonguessable.

Authorization Codes

Authorization Codes are used in redirection-based authorization flows. A code can be
used only once, and a maximum lifetime of 10 minutes is recommended by the offi-
cial specification.”

A typical authorization server response contains the parameters listed in Table 4-1.

27 http://tools.ietf.org/html/rfc6749%Section-4.1.2

Setting Up Our Server's Database | 69

http://tools.ietf.org/html/rfc6749#Section-4.1.2
https://www.mongodb.org
http://mongoosejs.com

Table 4-1. Authorization request response

Parameter Necessity Description
code Required An access grant that is bound to the client’s redirect URL and identifier
state Required® Used to prevent cross-site request forgery

2 Providing the state parameter in the authorization response is required when it is submitted in the authorization request

Access Tokens

Access Tokens are tokens with a short lifetime that are used to access protected resour-
ces. The short lifetime is a built-in security mechanism that tries to prevent any frau-
dulent usage of resources. Using the Access Token to access resources consumes the
token. Securing HTTP requests to access OAuth 2.0-protected resources is also
known as Bearer Token usage. Table 4-2 contains a complete overview of an Access
Token endpoint response.

Access Tokens in OAuth 1.0

An Access Token in OAuth 1.0 is valid until it is revoked manually.

Table 4-2. Defining a successful Access Token response

Parameter Necessity Description

access_token Required The Access Token issued by the authorization server

token_type Required Helps the client utilize the Access Token with resource requests

expires_in Recommended Lifetime in seconds

scope Optional The scope of resources that can be accessed

refresh_token Optional Used to refresh the Access Token with the same authorization grant
Refresh Tokens

Refresh Tokens allow refreshing Access Tokens after they are consumed or expired. In
order to allow for refreshing the Access Tokens, Refresh Tokens are long-lived and
expire after they have been used to refresh the Access Token. This feature can also be
used to request Access Tokens with a narrower scope, and its implementation is
optional.

Generation of codes and tokens

To ensure complete uniqueness of tokens and authorization codes, various packages
for Node.js can be leveraged in order to generate UUIDs. Two of the popular modules
to generate UUIDs are hat and node-uuid.

70 | Chapter4: Securing the Login with OAuth 2 and OpenlD Connect

http://github.com/substack/node-hat
http://github.com/broofa/node-uuid

In order to use hat, we will use npm:
npm install hat --save

After the module is installed and the entry added to our package.json file, we can start
working with hat to create UUIDs:

var hat = require('hat');
var token = hat();

To avoid collisions, the function rack() can be used:

var hat = require('hat');
var rack = hat.rack();
var token = rack();

node-uutid, another solution to generate UUIDs, can be installed using npm, too:
npm install node-uuid --save
Next, we obtain access to the module and generate UUIDs using the v4 method:

var uuid = require('node-uuid');

var token = uuid.v4(); // Unique token
Both hat and node-uuid allow for passing additional parameters to further random-
ize the generated tokens. Please refer to the individual documentation for more
details. For any further examples in this book, we will stick with using node-uuid.
Both modules can be exchanged mutually based on your own preference.

If we were to generate a unique string using a self-implemented method, we might
consider JavaScript’s Math.random() as a feasible choice to build upon. Considering
its pseudorandom nature a different method like hat or node-uuid should be used,
though.?® Adam Hyland published a fantastic article on the nature of Math.random()
in 2013—you should definitely read it when considering the use of this method.”

Official Documentation of Math.random() from ES5

Returns a Number value with positive sign, greater than or equal to 0 but less than 1,
chosen randomly or pseudo randomly with approximately uniform distribution over
that range, using an implementation-dependent algorithm or strategy. This function
takes no arguments.

28 See the documentation here, http://es5.github.io/x15.8.html#x15.8.2.14
29 https://bocoup.com/weblog/random-numbers

Setting Up Our Server's Database | 71

http://es5.github.io/x15.8.html#x15.8.2.14
https://bocoup.com/weblog/random-numbers

The correct implementation if UUIDs requires three criteria:

+ They must be universally unique.
 They must be nonsequential.

+ They must be nonguessable.

Using a database’s identifier like MongoDB’s ObjectId is not recommended because
we cannot guarantee the preceding requirements will be met. ObjectId is a 12-byte
BSON type and consists of the following elements:*

o A 4-byte value representing the seconds since the Unix epoch
o A 3-byte machine identifier
o A 2-byte process ID

+ A 3-byte counter, starting with a random value

The Authorization Endpoint

As discussed in the introductory section for OAuth 2.0, the Authorization Code flow
requires two endpoints to be implemented in order to work. First, we will look at
implementing the authorization endpoint:

var uuid = require('node-uuid');
var Client = require('../lib/models/client');
var AuthCode = require('../lib/models/authcode');

router.get('/authorize', function(req, res, next) {
var responseType = req.query.response_type;
var clientld = req.query.client_1id;
var redirectUri = req.query.redirect_uri;
var scope = req.query.scope;
var state = reg.query.state;

if (!responseType) {
// cancel the request - we miss the response type

}
if (responseType !== 'code') {

// notify the user about an unsupported response type
}

if (!clientId) {
// cancel the request - client id is missing

}

30 See the documentation here, http://docs.mongodb.org/manual/reference/object-id

72 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

http://docs.mongodb.org/manual/reference/object-id

Client.findOne({
clientld: clientId
}, function (err, client) {
if (err) {
// handle the error by passing it to the middleware
next(err);

}

if (!client) {
// cancel the request - the client does not exist

}

if (redirectUri !== client.redirectUri) {
// cancel the request

}

if (scope !== client.scope) {
// handle the scope
}

var authCode = new AuthCode({
clientId: clientId,
userId: client.userlId,
redirectUri: redirectUri

s

authCode.save();

var response = {
state: state,
code: authCode.code

};

if (redirecturi) {
var redirect = redirectUri +
'?code=' + response.code +
(state === undefined ? '' : '&state=' + state);
res.redirect(redirect);
} else {
res.json(response);
}
s
H;
The preceding code assumes that there is a Mongoose model called Client. A client
consists of an ID, a secret, a user ID, and a few other attributes like the redirect URI it

uses in order to communicate with the Consumer.

When the redirect client flow is being used, the code is provided as query parameter
—in case of a resource request, a JSON object containing both the state and the code
is returned.

Setting Up Our Server's Database | 73

One of the attributes of a client is also the scope. The scope tells the Service Provider
which kind of attributes the Consumer is allowed to access. When obtaining the
user’s authorization, clients usually display the scopes in order to make sure that users
understand what kind of information they share.

Our application requires client credentials to be passed in both the /authorization
and /token routes. Client IDs, secrets, and names are required to be unique in order
to avoid any issues. We will build upon MongoDB’s schema mechanisms to realize
this challenge. One mechanism is that properties can be flagged as unique in order to
avoid duplicate keys in the database:

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var ClientModel = function() {
var clientSchema = mongoose.Schema({

clientld: { type: String, default: uuid.v4(), unique: true },
clientSecret: { type: String, default: uuid.v4(), unique: true },
createdAt: { type: Date, default: Date.now },
name: { type: String, unique: true },
scope: { type: String },
userld: { type: String },
redirectUri: { type: String }
19N

return mongoose.model('Client', clientSchema);

b
module.exports = new ClientModel();

In ClientModel we use MongoDB’s default initialization to our advantage. Instead of
having to pass a client ID and secret whenever we create a client, this process is shif-
ted to the database schema itself.

When dealing with attributes that are flagged as unique—such as the client’s name—
we need to check whether the database entry was created successfully. When using
the save() method, you'll notice that mongoose and the underlying MongoDB won't
provide feedback on whether the operation was successful. This is where a callback
mechanism can be used. By checking whether an error occurred before rendering the
client’s details, we can ensure that we avoid confusion and problems:

router.get('/', function(req, res, next) {
var client = new Client({
name: 'Test',

userld: 1,

redirectUri: 'http://localhost:5000/callback’
s
client.save(function(err) {

if (err) {

next(new Error('Client name exists already'));

74 | Chapter4: Securing the Login with OAuth 2 and OpeniD Connect

} else {
res.json(client);
}
s
b

When implementing this route, you'll want to pair it with a form that allows users to
enter a client name, select scopes (which will be required for OpenID Connect), and

the client’s redirect URI.

AuthCode, another Mongoose model we rely on, is implemented in a similar manner.

It represents the authorization codes our application issues in /authorize:

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var AuthCodeModel = function() {
var authCodeSchema = mongoose.Schema({

code: { type: String, default: uuid.v4() },
createdAt: { type: Date, default: Date.now, expires: '16m' },
consumed: { type: Boolean, default: false },
clientld: { type: String },
userld: { type: String },
redirectUri: { type: String }
s

return mongoose.model('AuthCode', authCodeSchema);

b

module.exports = new AuthCodeModel();

Handling a Token’s Lifetime

In this example, we will look at creating and storing tokens using mongoose.js, han-
dling the token’s lifetime, and consuming the token afterward. For our application,

we will use a Token TTL of 3 minutes.

First we will set up a new Mongoose schema® called Token. The schema will consist

of the details outlined in the OAuth 2.0 specification:

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var TokenModel = function() {
var tokenSchema = mongoose.Schema({
userld: { type: String },
refreshToken: { type: String, unique: true },
accessToken: { type: String, default: uuid.v4() },

31 http://mongoosejs.com/docs/guide.html

Setting Up Our Server’s Database

75

http://mongoosejs.com/docs/guide.html

expiresIn: { type: String,

tokenType: { type: String,

consumed: { type: Boolean,

createdAt: { type: Date,
b

default:
default:
default:
default:

'10800' },
'bearer' },
false },

Date.now, expires:

return mongoose.model('Token', tokenSchema);

};

module.exports = new TokenModel();

You will notice that an expires flag has been defined. It’s set to 3 minutes and will
cause the database entry to be deleted (other values like 1h or simple integers for sec-
onds can be used here too). In order to make creating Access Tokens as easy as writ-
ing a few lines of code, sensible default values for fields like tokenType are being used.

The Access Token is initialized using the node-uuid module in order to populate the
accessToken and refreshToken fields. userId identifies the resource owner and can
be used to consume all Access Tokens that were assigned to the user.

By providing the user’s ID to both the RefreshToken and Token objects, we can

ensure that we are able to consume all issued tokens at once:

var mongoose = require('mongoose')
var uuid = require('node-uuid");

var RefreshTokenModel = function()

var refreshTokenSchema = mongoose.Schema({

userld: { type: String },
token: { type: String,
createdAt: { type: Date,
consumed: { type: Boolean,

s

3

{

default: uuid.v4() },
default: Date.now },
default: false }

return mongoose.model('RefreshToken', refreshTokenSchema);

}

module.exports = new RefreshTokenM

After defining the Access Token and Refresh Token schema, were able to generate

both of them like this:

var uuid = require('node-uuid");
var Token = require('../lib/models

odel();

/token');

var RefreshToken = require('../lib/models/refreshtoken');

var userld = 1; // some id

var refreshToken = new RefreshToke
userId: userId

s

refreshToken.save();

n({

76 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

var token = new Token({
refreshToken: refreshToken.token,
userId: userId

b

token.save();

If we put all of this together, we can begin implementing our token endpoint. For the
first implementation of this route, we will refrain from handling Refresh Tokens that
were obtained before—we cover handling them in “Using Refresh Tokens” on page 81
after covering some more basics. Here’s the code for our first draft:

var AuthCode = require('../lib/models/authcode');

var Client = require('../lib/models/client');

var Token = require('../lib/models/token");

var RefreshToken = require('../lib/models/refreshtoken');

router.post('/token', function (req, res) {
var grantType = req.body.grant_type;
var authCode = req.body.code;
var redirectUri = req.body.redirect_uri;
var clientId = req.body.client_id;

if (!grantType) {
// no grant type passed - cancel this request

}

if (grantType === 'authorization_code') {
AuthCode. findOne({
code: authCode
}, function(err, code) {
if (err) {
// handle the error
}

if (!code) {
// no valid authorization code provided - cancel

}

if (code.consumed) {
// the code got consumed already - cancel

}

code.consumed = true;
code.save();

if (code.redirectUri !== redirectUri) {
// cancel the request

}

// validate the client id - an extra security measure
Client.findOne({

Setting Up Our Server's Database | 77

clientId: clientId
}, function(error, client) {
if (error) {
// the client id provided was a mismatch or does not exist

3

if (!client) {
// the client id provided was a mismatch or does not exist

3

var _refreshToken = new RefreshToken({
userId: code.userlId

s

_refreshToken.save();

var _token = new Token({
refreshToken: _refreshToken.token,
userId: code.userlId

s

_token.save();

// send the new token to the consumer
var response = {

access_token: _token.accessToken,
refresh_token: _token.refreshToken,
expires_in: _token.expiresIn,
token_type: _token.tokenType

};
res.json(response);
s
s
}
s

Now our server is ready to issue Access Tokens in order to allow the Consumer to
access protected resources.

Handling Resource Requests

Whenever a resource is accessed using the Access Token, the token needs to be con-
sumed in order to make sure no more resource requests are made using this token:

var Token = require('../lib/models/token");
var accessToken = 'some uuid';

Token.findOne({
accessToken: accessToken
}, function(err, token) {
if (err) {
// handle the error
}

78 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

if (!token) {
// no token found - cancel

}

if (token.consumed) {
// the token got consumed already - cancel

}

// consume all tokens - including the one used
Token.update({

userId: token.userld,

consumed: false

b q

$set: { consumed: true }
b
b

Mongoose’s findOne and update functions are practical when dealing with tokens
because we can easily consume all tokens for a certain user or check whether a token
is still valid.

This method makes for convenient middleware that protects our application’s resour-
ces. Let’s apply this to an Express route:

var Token = require('../models/token');

var authorize = function(req, res, next) {
var accessToken;

// check the authorization header
if (reqg.headers.authorization) {
// validate the authorization header
var parts = req.headers.authorization.split(' ');

if (parts.length < 2) {
// no access token got provided - cancel
res.set('WWW-Authenticate', 'Bearer');
res.sendStatus('401');

return;
}
accessToken = parts[1];
} else {
// access token URI query parameter or entity body
accessToken = req.query.access_token || req.body.access_token;
}

if (!accessToken) {
// no access token got provided - cancel with a 401

}

Setting Up Our Server's Database | 79

Token.findOne({
accessToken: accessToken
}, function(err, token) {
// Same as in above exarmple

// consume all tokens - including the one used
Token.update({

userId: token.userId,

consumed: false

1 {
$set: { consumed: true }
b;
// ready to access protected resources
next();
s

b
module.exports = authorize;

After the authorization middleware has processed the request, the request is passed
on to the next middleware or the route itself by executing next().

Authorizing requests using the authorization middleware we just implemented is as
easy as adding it to our resources route:

var express = require('express');
var router = express.Router();
var authorize = require('../lib/middleware/authorize');

router.get('/user', authorize, function (req, res) {
var user = {
name: 'Tim Messerschmidt',
country: 'Germany'
}
res.json(user);

s

module.exports = router;

Additional middleware can be passed by using array-syntax instead. If we were to use
another middleware that logs all requests, the /user definition would change to the
following:

router.get('/user', [logger, authorize], function (req, res) {
var user = {
name: 'Tim Messerschmidt',
country: 'Germany'
}
res.json(user);

s

80 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

Using Refresh Tokens

The Refresh Token is being used to obtain a new Access Token. In order to do so, the
Consumer communicates with the Service Provider’s token endpoint. In the next
example, we will continue working on the token endpoint we have implemented in
order to issue Access Tokens in exchange for Authorization Codes.

The key difference for this scenario is the different Grant Type refresh_token; it
indicates that the client obtained an Access Token before and is now trying to obtain
new credentials in order to continue accessing protected resources:

var AuthCode = require('../lib/models/authcode');
var Token = require('../lib/models/token");
var RefreshToken = require('../lib/models/refreshtoken');

router.post('/token', function(req, res) {
var grantType = req.body.grant_type;
var refreshToken = req.body.refresh_token;
var authCode = req.body.code;
var redirectUri = req.body.redirect_urti;
var clientId = req.body.client_id;

if (!grantType) {
// no grant type provided - cancel

}
if (grantType === 'authorization_code') {
} else if (grantType === 'refresh_token') {

if (!refreshToken) {
// no refresh token provided - cancel

}

RefreshToken.findOne({
token: refreshToken
}, function (err, token) {
if (err) {
// handle the error
}

if (!token) {
// no refresh token found
}

if (token.consumed) {
// the token got consumed already
}

// consume all previous refresh tokens
RefreshToken.update({
userId: token.userId,

Setting Up Our Server's Database | 81

consumed: false

b {

$set: {consumed: true}

s

var _refreshToken = new RefreshToken({
userId: token.userId

s

_refreshToken.save();

var _token = new Token({
refreshToken: _refreshToken.token,
userId: token.userId

s

_token.save();

var response = {
access_token: _token.accessToken,
refresh_token: _token.refreshToken,
expires_in: _token.expiresIn,
token_type: _token.tokenType

b

// send the new token to the consumer
res.json(response);
b
}
b
You will notice that using the token endpoint with Refresh Tokens is very similar to
the code we have used before to authorize requests using Access Tokens. After apply-
ing some basic parameter checks, the tokens are being consumed using the update-
mechanism, and the next action—in this case, issuing a new Access Token—is
executed.

Handling Errors

In this section’s code listings, we've mostly looked at success cases and covered error-
handling through comments. This subsection covers how to handle errors according
to the OAuth spec utilizing Express’s response object.

Before we dive into OAuth’s specification again, a quick look into HTTP status®
codes reveals that there is a selection of codes (Table 4-3) that will be interesting for
us.

32 https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

82 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Table 4-3. Relevant HTTP status codes

Code Name Description

302 Found The user agent must not automatically redirect. Can be used in routes such as the Authorization
Request.

400 Bad Request Malformed request.

401 Unauthorized Authentication failed or not provided. Response must contain WWW-Authenticate header.

403 Forbidden Even though an authentication might have happened, the requesting party is not authorized to

access the underlying resources.
500 Internal Server Error - An unexpected condition occurred and the server cannot handle the request.

503 Service Unavailable The server might be overloaded and cannot handle the request at this time.

These status codes provide us with a toolkit to handle different use cases in the
authentication and authorization we encounter throughout the OAuth flow. OAuth’s
specification provides error codes that need to be provided in order to help the
implementer identify potential sources of errors® (Table 4-4).

Table 4-4. OAuth error codes

Code Description

invalid_request Parameters missing, invalid parameter value provided, or parameters might be
duplicates.

unauthorized_client Malformed request.

access_denied The resource owner or authorization server denied the request.

unsupported_response_type The authorization server does not support obtaining an authorization code using this
method.

invalid_scope The requested scope is invalid, unknown, or malformed.

invalid_grant The provided authorization grant or Refresh Token is invalid, expired, or the client
details don’t match those defined in the authorization request (redirect URI, different
client).

server_error Internal server error that can be used when a 500 error cannot be returned to the
client.

temporarily_unavailable The server is currently unable to handle the request. Can be used in redirect scenarios
where a 503 cannot be returned.

Please note that these error codes differ based on the current step in the authentica-
tion flow.

33 http://tools.ietf.org/html/rfc6749%section-4.1.1

Setting Up Our Server's Database | 83

http://tools.ietf.org/html/rfc6749#section-4.1.1

Using the knowledge we've acquired about the tools that both HTTP/1.1 and OAuth
2.0 provide, we can advance to building our own error-handling class:

var util = require('util');

function OAuthError(code, message, err) {
Error.call(this);
Error.captureStackTrace(this, this.constructor);

if (err instanceof Error) {
this.stack = err.stack;

this.message = message || err.message;
} else {
this.message = message || '';

}

this.code = code;

switch (code) {

case 'unsupported_grant_type':
this.status = 400;
break;

case 'invalid_grant':
this.status = 400;
break;

case 'invalid_request':
this.status = 400;
break;

case 'invalid_client':
this.status = 401;
break;

case 'invalid_token':
this.status = 401;
break;

case 'server_error':
this.status = 503;
break;

default:
// Leave all other errors to the default error handler
this.status = 500;
break;

}

return this;

}
util.inherits(OAuthError, Error);

module.exports = OAuthError;

Because OAuthError is an extension of Error and is supposed to be used toward
Express’s error-handling mechanism (via using next or throwing an error), Node’s
util module is used in order to inherit all Error methods and properties. The OAuth

84 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

specification allows us to define custom error codes (such as invalid_token) to
refine the interaction with clients.

Because the routes handling POST requests don’t have access to the next parameter,
we set up a new handler:

function handleError(err, res) {
res.set('Cache-Control', 'no-store');
res.set('Pragma', 'no-cache');

if (err.code === 'invalid_client') {
var header = 'Bearer realm="book", error="invalid_token","' +
'error_description="No access token provided"';
res.set('WWW-Authenticate', header);

}
res.status(err.status).send({
error: err.code,
description: err.message
bs
}

module.exports = handleError;

The default behavior is to turn off caching by providing both the Cache-Control and
Pragma (nowadays mostly obsolete) headers to the client. This ensures the freshness
of information provided.

Using error handlers

After we've extended the Error class to be able to provide more meaningful feedback
to the client, we can implement this accordingly to handle all cases that apply to our
current scenarios.

The first step is to make both the OAuthError class and the handleError function
available via require:

// Require custom error handling
var OAuthError = require('../lib/errors/oautherror');
var errorHandler = require('../lib/errors/handler');

For GET requests, we can build upon middleware once more. By using the command-
chain, we simply hand over the OAuthError to the appropriate handler—the Express
generator creates one by default that renders the status code and error message (when
running in a development environment):

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
app.use(function(err, req, res) {
console.log('error');
res.status(err.status || 500);

Setting Up Our Server's Database | 85

res.render('error', {
message: err.message,
error: err
b
s
}

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res) {
console.log('error');
res.status(err.status || 500);
res.render('error', {
message: err.message,
error: {}
s
H;

When checking whether the GET request was populated according to OAuth’s require-
ments, we can simply invoke the error handler like this:
if (!responseType) {
next(new OAuthError('invalid_request',

'Missing parameter: response_type'));

}

For POST requests, we alter the code slightly. In this example, we validate that the
Authorization Code has been consumed before issuing a new Access Token:

if (code.consumed) {
return errorHandler(new OAuthError('invalid_grant',
'Authorization Code expired'), res);

}

You will notice that this time we invoke the errorHandler and pass the response
object in order to set the status and error message accordingly.

Adding OpenlID Connect Functionality to the Server

Now that we've discussed how to implement OAuth 2.0 on the server by adding both
the /token and /authorize endpoints, this section highlights how to build upon our
existing implementation by adding OpenID Connect functionality on top. Before we
add the userinfo endpoint, we should examine the ID Token (Table 4-5), OpenID
Connect’s security mechanism of proving authentication and authorization.

86 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

Table 4-5. The basics of an ID Token®

Parameter ~ Necessity Description

Required Issuer Identifier—comes as URL using https scheme and contains host, port, path
https://example.com

iss

sub
aud
exp

iat

nonce

auth_time Optional

acr
amr

azp

Required Subject Identifier—must not exceed 255 ASCII characters

Required The ID Token’s audience—must contain the OAuth client_id

Required Expiration time

Required Time at which the token was issued

Required* If present the nonce must be verified

Time at which the user authentication occurred

Optional Authentication Context Class Reference

Optional Authentication Methods References

Optional Authorized party—must contain the OAuth client_1id

2 http://openid.net/specs/openid-connect-core-1_0.html#/DToken

OpenID Connect tokens are JSON Web Tokens that must be signed using JWS and
can then be optionally signed and encrypted using JWS and JWE. One popular mod-
ule choice to handle JWT with Node is njwt, which handles signing tokens via HS256
per default.*

The ID Token Schema

As with the other tokens that we've been using in this example so far, we will create a
new Mongoose schema that will handle the generation and expiry of our ID Token:

var mongoose = require('mongoose');
var uuid = require('node-uuid");

var IdTokenModel =

function() {

var idTokenSchema = mongoose.Schema({

createdAt: {
iat:

exp: {
sub: {
iss: {
aud: {
userld: {

s

return mongoose.

type: Date, default: Date.now, expires: 'Im' },

{ type: String, default: Math.floor(new Date() / 1000) },

type: String, default: Math.floor(new Date() / 1000) + 180 },
type: String, default: uuid.v4(), maxlength: 255 },

type: String },

type: String },

type: String }

model('IdToken', idTokenSchema);

34 https://www.npmjs.com/package/njwt

Adding OpenlD Connect Functionality to the Server | 87

https://www.npmjs.com/package/njwt
http://openid.net/specs/openid-connect-core-1_0.html#IDToken

b
module.exports = new IdTokenModel();

The ID Token specification requires the iat and exp values to represent the seconds
since 1970-01-01T0:0:0Z UTC.* We achieve this by using JavaScript’s Date class,
which returns the milliseconds since Unix Epoch and get the seconds by dividing the
result by 1,000.* Math.floor rounds down the result to the next integer.

Modifying the Authorization Endpoint

When dealing with a regular OAuth 2 authorization flow, the scope parameter is con-
sidered optional and serves the purpose of defining resources that will be accessed on
top of handling a simple login with OAuth. This behavior changes when we decide to
use OpenID Connect as our Authorization and Authentication framework, though.
OpenID Connect’s specification defines multiple scope values that can be passed in
order to specify which pieces of profile information are required by the client. The
minimum scope that needs to be passed is openid; this tells the server that an
OpenlID Connect authorization attempt is being made.

Considering the required scope as just outlined, we will go ahead and modify the
authorization endpoint accordingly:

router.get('/authorize', function(reqg, res, next) {
var responseType = req.query.response_type;
var clientld = req.query.client_id;
var redirectUri = req.query.redirect_uri;
var scope = req.query.scope;
var state = reg.query.state;
var userld = req.query.user_id;

// Same as in above example

if (!scope || scope.indexOf('openid') < 0) {
next(new OAuthError('invalid_scope',
'Scope 1s missing or not well-defined'));

}
Client.findOne({

clientId: clientId
}, function (err, client) {

if (scope !== client.scope) {

35 http://openid.net/specs/openid-connect-core-1_0.html#IDToken
36 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

88 | (Chapter4: Securing the Login with OAuth 2 and OpenID Connect

http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

next(new OAuthError('invalid_scope',
'Scope 1s missing or not well-defined'));

s
s
In this example, we have made the basic assumption that each request to the endpoint
is an OpenID Connect authentication request. Another way of handling the request is
handling all requests with a scope containing openid as OpenID Connect, and all
other requests as OAuth 2.

Instead of checking the scope parameter in the initial statements, we move the condi-
tional statement down to the Client section and will check if we are dealing with an
OpenID Connect authentication request. The OpenID Connect specification does
not specify how to handle non-openid scope requests—the fallback to OAuth 2 seems
to be a sensible choice, though:

if (scope && scope.indexOf('openid') >= 0) {
// OpenID Connect Authentication request - generate an ID Token

}

Adjusting the Token Endpoint

While the changes to the authorization endpoint are minimal and easy to handle, we
need to make a few more changes to our token endpoint. The client’s request will
practically stay the same, but we'll need to create the ID Token, store that token, and
pass it to the client with our Access Token response.

One of the new requirements for the token endpoint is verifying if the Grant Type
(the Authorization Code we pass to the token endpoint) is the result of an OpenID
Connect authentication request—otherwise, the endpoint is not supposed to return
an ID Token:

router.post('/token', function (req, res) {
var grantType = req.body.grant_type;
var refreshToken = req.body.refresh_token;
var authCode = req.body.code;
var redirectUri = req.body.redirect_uri;
var clientIld = req.body.client_id;

if (!grantType) {
return errorHandler(
new OAuthError('invalid_request',
'Missing parameter: grant_type'),
res);

}

if (grantType === 'authorization_code') {

Adding OpenlD Connect Functionality to the Server | 89

AuthCode. findOne({
code: authCode
}, function (err, code) {
// the same validation as for the OAuth 2 flow

Client.findOne({
clientId: clientId
}, function (error, client) {
// same as in the OAuth 2 example

var _token;
var response;
if (client.scope && (client.scope.indexOf('openid') >= 0)) {
// An OpenID Connect request
var _idToken = new IdToken({
iss: client.redirectUri,
aud: client.clientId,
userId: code.userlId
b

_idToken.save();

_token = new Token({
refreshToken: _refreshToken.token,
idToken: _idToken.sub,
userId: code.userId

s

_token.save();

// send the token to the consumer
response = {
access_token: _token.accessToken,
refresh_token: _token.refreshToken,
id_token: _idToken.sub,
expires_in: _token.expiresIn,
token_type: _token.tokenType
}

res.json(response);
} else {
// An OAuth 2 request
_token = new Token({
refreshToken: _refreshToken.token,
userId: code.userId
s

_token.save();

// send the token to the consumer
response = {
access_token: _token.accessToken,
refresh_token: _token.refreshToken,

90 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

expires_in: _token.expiresIn,
token_type: _token.tokenType
b

res.json(response);
}
s
b;
s
b;

The UserInfo Endpoint

After we have adjusted the authentication and token endpoints, the last adjustment
we need to handle is adding a new endpoint called UserInfo. The UserInfo endpoint
shares the resource owner’s profile information with the client. All requests to this
endpoint must be signed using the OAuth 2 Access Token provided as the
Authorization header.

Because we have already written the middleware that handles OAuth 2-based author-
ization, adding the UserInfo endpoint is as easy as adding this new route:

router.get('/userinfo', authorize, function(req, res) {
// The request got authorized - share profile information

N

This example outlines the power of middleware. Instead of writing duplicate code to
handle simple tasks like checking the Authorization header, we simply mount a
middleware that handles this task for all relevant routes.

Session Management with OpenlD Connect

OpenID Connect Session Management is a draft that proposes the ability to control
end-user sessions to the OpenID Connect stack.”” This would enable the functionality
to not just log in the user (as a lot of OAuth 2 clients do) but also handle the termina-
tion of sessions—the actual logout process.

The specification proposes to pass three parameters to the Service Provider in order
to allow for logging out the user. id_token_hint is a required parameter that matches
the previously issued ID Token and identifies the authenticated end-user plus the
user’s session. The parameter post_logout_redirect_uri will be used for redirects
after the logout and is optional. Finally, the parameter state can be passed as an
additional security mechanism; after the logout, it will be passed on to the post_log
out_redirect_uri as a query parameter. state is an optional parameter, too.

37 https://openid.net/specs/openid-connect-session-1_0.html

Adding OpenlD Connect Functionality to the Server | 91

https://openid.net/specs/openid-connect-session-1_0.html

Building an OAuth 2 Client

Client-side OAuth 2.0 varies based on our client’s use case and flow. In the following
sections, we discuss the redirection-based Authorization Code flow and how to use
the credentials-based flow.

Using Authorization Codes

Authorization Codes are one of the most common OAuth 2.0 grant types. They find
their usage in multiple web and mobile applications that leverage redirects in order to
exchange the necessary information.

In this example, we implement another Express server that will act as the Consumer.
The sample will leverage Jade, a Node template engine, and show a simple button that
allows us to authorize the user.

The first step is enabling session support for Express. To do so, execute npm install
express-session --save to install the required node module and add the following
lines to your app.js or index.js file that handles the Express initialization:

var session = require('express-session');

app.use(session({
secret: 'your session secret',
resave: false,
saveUninitialized: false,
cookie: { maxAge: 60000 }

s

The resave option ensures that sessions are saved even if they didn’t get modified.
saveUninitialized doesn't save new sessions before they are modified—especially
when dealing with authentication and authorization purposes, it is recommended to
disable this option (the default value is true according to the documentation®):

var express = require('express');

var router = express.Router();
var uuid = require('node-uuid');

var SEVER_URL = 'YOUR SERVER URL';
var REDIRECT_SERVER_URL = 'REDIRECT URL';

var CLIENT_ID = 'YOUR_CLIENT_ID';
router.get('/', function(req, res) {

var state = uuid.v4();
req.session.state = state;

38 https://github.com/expressjs/session#saveuninitialized

92 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

https://github.com/expressjs/session#saveuninitialized

var options = {
url: SERVER_URL + '/authorize',
client_1id: CLIENT_ID,
redirect_uri: REDIRECT_SERVER_URL + '/callback',
state: state,
response_type: 'code',
user_1id: 1

};

var authorizationURL = options.url +
'?redirect_uri=' + options.redirect_uri +
'&user_1id="' + options.user_id +
'&client_1id=' + options.client_1id +
'&response_type="' + options.response_type +
'&state=' + options.state;

res.render('index', {
authorizationURL: authorizationURL
s
s
Our Express route renders a template called index and provides the authorizatio
nURL to the template in order to avoid hardcoding the Clients details into the tem-
plate itself:

extends layout

block content
hi OAuth 2 Client
a(href="#{authorizationURL}")
button Authorize

After the Service Provider authorizes our client, it redirects to the specified redi

rect_uri and provides the state query parameter (if sent to the server in the previ-
ous request) and the Authorization Code itself as code.

We leverage request—a module that eases making HTTP requests—in order to
request the Access Token. Install request by executing npm install request --
save:

var express = require('express');
var router = express.Router();

var request = require('request');
router.get('/callback', function(req, res, next) {
var state = req.query.state;

var code = req.query.code;

// Compare the state with the session's state
if (state !== req.session.state) {

Building an OAuth 2 Client | 93

next(new Error('State does not match'));

}

request.post({

url: SEVER_URL + '/token',

form: {
code: code,
grant_type: 'authorization_code',
redirect_uri: REDIRECT_SERVER_URL + '/callback',
client_id: CLIENT_ID

}}, function(error, response, body) {

if (error) {
// handle the error
next(error);

}

var resp = JSON.parse(body);
var accessToken = resp.access_token;

// Use the Access Token for a protected resource request

10N
s
Node is able to perform HTTP requests without leveraging the help of any third-
party modules. We chose request over implementing requests manually with the
http module for simplicity and better readability.

Storing tokens on the Client

There is a big discussion about finding the most secure and most conveniently acces-
sible storage for tokens. Realistically, an Access Token expires after a few minutes, so
we can take that lifetime into consideration. For the Refresh Token, on the other
hand, we deal with a far longer lifecycle and have to handle the token appropriately.
From a security standpoint, we want to ensure that our tokens are not vulnerable to
XSS (cross-site scripting), which means that they shouldn’t be accessible from Java-
Script (injections) that runs on our client. This reasoning would rule out utilizing
HTML5 Web Storage. HTML5 Web Storage offers both local storage that can be
accessed via window.localStorage and doesn’t expire, and window.sessionStorage,
a session-based storage mechanism that gets wiped as soon as the user closes the
browser’s tab.

Classic cookies can be flagged with the HttpOnly option, which ensures that the
cookie’s value can be accessed only from the server side. This serves as a protection
mechanism against XSS attacks and leaves XSRF/CSREF attacks for discussion—a big
risk that often is not accounted for. Gladly, modern web frameworks often offer secu-
rity mechanisms (Which might have to be enabled in their configuration) in order to

94 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

handle the threat of replay attacks and more. We discuss these concepts in depth in
Chapter 6.

Custom schemes

On mobile platforms, it has become quite popular to use a custom URL scheme in
order to make server-to-application calls. A URL can be broken into the following
components: scheme: //host/path?query. This allows apps to define callbacks from
the Web like myoauthapp://book/auth?callback.

Authorization Using Resource Owner Credentials or Client Credentials

Next to the Authorization Code Grant Flow, another popular OAuth 2.0 Grant is
known as the Resource Owner Password Credentials Grant, as defined in section 4.3 of
the OAuth 2.0 specification. This flow, illustrated in Figure 4-3, represents a simpli-
fied way to obtain an Access Token and involves fewer steps in doing so.

The specification describes this flow as viable for scenarios in which the user deeply
trusts the client—this could be a device’s operating system or a highly privileged
application.

Resource Owner Client Service Provider
(redentials
Provide Request an ‘[Grant
(redentials Access Token '[Request Token
Access Token
\ 4
Access protected
resources
T
|
|
e .’

Figure 4-3. OAuth 2.0 Resource Owner Credentials Grant

Building an OAuth 2 Client | 95

https://tools.ietf.org/html/rfc6749#section-4.3

The Resource Owner Credentials Grant Type (Figure 4-4) is similar to the Client Cre-
dentials Grant Type, in which the Client provides its credentials to the Service Pro-
vider. The difference is that in the first case the user trusts the client and therefore
submits his details, whereas in the latter example the client owns the resources him-
self and therefore another step in the authentication scenario can be removed.

Client Service Provider
Client Credentials
Request an o Grant
Access Token 'l Request Token
Access Token
A4
Access protected
resources
T
I
\
N e e e e e e e e e - e —— —— —— —— — *

Figure 4-4. OAuth 2.0 Client Credentials Grant

As you might have guessed, in this flow the client simply asks for the user’s creden-
tials. A popular example for a Client Credentials—driven API is PayPal's REST API,
which uses client credentials in order to authorize a merchant’s application to accept
payments.*

Adding OpenlD Connect Functionality to the Client

Because OpenID Connect heavily relies on OAuth 2.0 in terms of communication
and security mechanisms, only a few changes or additions to our client-side OAuth
2.0 example are needed in order to add support for OpenID Connect.

OpenID Connect provides two ways to handle the consumer and service provider
communication. The first flow is known as Basic Client and is detailed in the Basic
Client Implementer’s Guide.* The second flow, the Implicit Client, is detailed in the

39 https://developer.paypal.com/docs/api/#authentication—headers
40 http://openid.net/specs/openid-connect-basic-1_0.html

96 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

https://developer.paypal.com/docs/api/#authentication—headers
http://openid.net/specs/openid-connect-basic-1_0.html

Implicit Client Implementer’s Guide.”" The implicit flow is known as client-side flow
or implicit grant flow and removes the need for an authorization token; the Access
Token is simply sent back to the server and no Refresh Token is issued. This flow is
generally seen as less secure than the basic flow and will therefore not be outlined in
detail. A great post covering the OAuth 2.0 implicit flow has been written by Sven
Haiges.*

The OpenlD Connect Basic Flow

When dealing with OpenID Connect’s Basic flow, we'll need to adjust the client-side
OAuth 2.0 requests for authentication and accessing resources. For OAuth 2.0, the
scope parameter is optional and needs to be used when added to the initial authenti-
cation request. When adding OpenID Connect functionality to the client, scope
becomes a required parameter that needs to be set to cover at least openid as a scope
value.” Table 4-6 provides an overview of common scopes that can be used.

Table 4-6. OpenID Connect request scope values

Scope value Necessity Description

openid Required Specifies that the Client is making an OpenlD Connect request

profile Optional Access to the User’s profile Claims, such as name, family_name, and given_name
email Optional Access to the email and email_verified Claims

address Optional Access to the address Claim

phone Optional Access to the phone_number and phone_number_verified (laims

offline_access Optional Request that an OAuth 2.0 Refresh Token is issued in order to allow for obtaining a new
Access Token and therefore allowing to access the Userlnfo endpoint even when the user
is not present

The request to handle the client’s authentication will be altered to this form:

var options = {
url: SERVER_URL + '/authorize',
client_id: CLIENT_ID,
redirect_uri: REDIRECT_SERVER_URL + '/callback',
state: state,
scope: 'openid',
response_type: 'code',
user_1id: 1

b

41 http://openid.net/specs/openid-connect-implicit-1_0.html
42 https://labs.hybris.com/2012/06/05/0auth2-the-implicit-flow-aka-as-the-client-side-flow
43 http://openid.net/specs/openid-connect-basic-1_0.html#RequestParameters

Adding OpenlD Connect Functionality to the Client | 97

http://openid.net/specs/openid-connect-implicit-1_0.html
https://labs.hybris.com/2012/06/05/oauth2-the-implicit-flow-aka-as-the-client-side-flow
http://openid.net/specs/openid-connect-basic-1_0.html#RequestParameters

var authorizationURL = options.url +
'?redirect_uri="' + options.redirect_uri +
'&user_1id=' + options.user_id +
'&client_1id="' + options.client_1id +
'&scope=" + options.scope +
'&response_type="' + options.response_type +
'&state=" + options.state;

res.render('index', {
authorizationURL: authorizationURL
bs
The difference compared to the OAuth 2 client is that this time we are required to
pass the scope parameter (set to at least openid) in order to match the specifcation’s
minimum requirements.

After obtaining the user’s authorization, the authorization code is issued and
exchanged for the actual token. The token endpoint’s response will differ slightly and
will also contain an id_token attribute:

{
"access_token": "71518132-d27b-4828-9317-5571346c89fb",
"refresh_token": "3ae3e757-7c32-492d-8af5-8dba943d2ec3",
"{d_token": "eeOb16a5-5be7-4629-8d1b-bf3fd7eab4a9",
"expires_in": "10800",
"token_type": "bearer"

}
The ID Token can be used as an additional security mechanism. It contains claims
about the authentication of an end user as defined in the OpenID Connect specifica-
tion.** An example value that can be easily validated is azp (authorized party) that
must match the Consumer’s client_1id.

The OpenID Connect specification provides a list of all 21 standard Claims that can
be returned by the server’s UserInfo endpoint.” Claims must be returned in JSON
format unless the format was defined differently during the client’s registration.*

Beyond OAuth 2.0 and OpenlID Connect

In this chapter, we have discussed the ins and outs of both OAuth 2.0 and OpenID
Connect. Both protocols find strong adoption within the industry and empower mil-
lions of users and a multitude of applications. Still, with the rise of mobile apps and
especially mobile authentication and authorization, the need to provide a better user

44 http://openid.net/specs/openid-connect-core-1_0.html#IDToken Validation
45 http://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
46 http://openid.net/specs/openid-connect-registration-1_0.html

98 | Chapter4: Securing the Login with OAuth 2 and OpenID Connect

http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-registration-1_0.html

experience is even more prominent than on the desktop. In the following chapter, we
discuss current multifactor authentication systems and viable alternatives, such as
biometrics, to identify users and grant authorization for certain actions or informa-
tion.

Beyond OAuth 2.0 and OpenlD Connect | 99

CHAPTER 5
Alternate Methods of Identification

Tim Messerschmidt and Jonathan LeBlanc

Because of the heavy intersection between mobile devices, desktop clients, and a new
breed of connected hardware out of the Internet of Things, the demand for a new
class of authentication and authorization technology is on the rise. This chapter cov-
ers upcoming standards such as FIDO that enable covering multiple form factors and
are able to scale beyond software-based authentication technology.

Device and Browser Fingerprinting

Next to regular authentication and authorization scenarios, device and browser fin-
gerprinting allows for a more passive way to identify users across a big target group.
Applications like Am I Unique? are broadly available and can leverage many factors
in order to determine whether a user is unique.

When performing device and browser fingerprinting, the user is usually tested
against some very general and broad factors—such as the device’s platform, the cur-
rent browser, or whether cookies are enabled on the device—and then against more
granular and subtle determinants, like the device’s resolution, time zone, the brows-
er’s enabled plug-ins, or user agent. When Flash is enabled, services like Am I
Unique? or Panopticlick are even able to obtain a list of currently installed fonts.

Eight factors can be concatenated and lead to a browser’s fingerprint (Table 5-1).

101

http://fidoalliance.org
http://amiunique.org
http://panopticlick.eff.org

Table 5-1. Browser measurements to determine uniqueness

Variable Obtained through

User Agent HTTP
HTTP ACCEPT headers HITP
Cookies enabled HTTP
Screen resolution AJAX
Timezone AJAX
Browser plugins AJAX
System fonts Flash or Java applets, collected through AJAX

Supercookie test AJAX

Additional factors, such as the user’s geolocation, can be obtained through HTMLS5 if
the user agrees to share them or by analyzing the user’s IP address (which does not
require the user’s consent).

Panopticlick released a paper on browser uniqueness that is a worthwhile read and a
great source for further information on this subject.!

Two-Factor Authentication and n-Factor Authentication

Because of the known weaknesses and issues that come along with basic authentica-
tion through passwords, the demand for more secure login methods is high. Two-
factor authentication (2FA) relies on the addition of another token, such as a one-
time password, which is consumed after usage and therefore prevents common
security exploits, such as replay attacks. This section explains the basic concepts of
both two-factor authentication and the upcoming n-factor authentication technolo-
gies.

n-Factor Authentication

n-factor authentication, also known as multifactor authentication (MFA), is based on
assuming that every individual should have three basic components:

o Something you know
 Something you have

+ Something you are

1 http://panopticlick.eff.org/browser-uniqueness.pdf

102 | Chapter5: Alternate Methods of Identification

http://panopticlick.eff.org/browser-uniqueness.pdf

When examining these three requirements, you will quickly realize that they match
concepts that we have discussed before. Something you know is the most basic compo-
nent and can be assumed as granted: it can be as simple as a password or passphrase.

The second item on our list, something you have, aims at securing passwords or pass-
phrases by adding another layer of protection. Popular examples are smart cards or
RSA Tokens, which are used for RSAs SecurID network authentication technology.
As of 2014 about 1.75 billion people worldwide have access to mobile phones—a
small and affordable piece of technology that can easily act as an additional physical
layer in authentication and authorization technology.? By being able to receive text
messages and/or emails and allowing for the installation of authentication applica-
tions that generate one-time passwords, such as Google Authenticator and Authy,
people are able to secure existing logins.

Lastly, something you are focuses on the individual’s identity and adds a handful of
new challenges that we discuss in the following section. The basic assumption here is
that the usage of something intrinsic, such as the individual’s fingerprint, uniquely
identifies the user among all users and therefore adds a third layer of security.

One-Time Passwords

One-time passwords, known as OTPs, have been positioned in the industry as a means
to fight traditional password weaknesses and exploits. By being ever-changing and
usable only once, they reduce an application’s attack surface drastically.

Currently, there are three ways to generate one-time passwords. The first implemen-
tation, time-synchronization, generates short-lived tokens. Popular two-factor
authentication applications, such as Authy or Google Authenticator, use this method
to generate OTPs.

Both the second and third implementations are based on mathematical algorithms
and generate long-lived tokens. One way to handle these OTPs is generating them
based on the previous password, and therefore requiring them to be used in a prede-
fined order. The other way to handle mathematically generated OTPs is generating
them based on a random challenge.

When not being generated by a client-side application, OTPs can be delivered by
either text messages or emails. The industry tends to favor text over email at the
moment because it’s broadly available; a phone number is rated to be unique across
all users, and can be made accessible through text-to-speech and therefore also cover
landline phones. A reason to use emails instead is the cost of sending a text message
and the inability to check whether the text message arrived at its destination. Another

2 http://www.emarketer.com/Article/Smartphone-Users-Worldwide- Will-Total-175-Billion-2014/1010536

Two-Factor Authentication and n-Factor Authentication | 103

http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://github.com/google/google-authenticator
http://www.authy.com

issue of text messages is the weak (A5/x) or nonexistent encryption standards that
allow for man-in-the-middle attacks.?

On mobile devices, using emails to transport one-time passwords has one big advan-
tage for the user experience: applications can automatically open and import the OTP,
which heavily reduces friction and is being used by companies like Slack (Figure 5-1).
The key to automating this process is registering a custom URL handler (via
Android’s application manifest* and utilizing URL Schemes on iOS°) that detects
when URLs of a certain markup are handled.

.4 01306 .4 01306

yourteam.slack.com yourteam.slack.com

Enter your password for
yourteam.slack.com

Enter your email address for
yourteam.slack.com

Your email address password

a minute to review our

Privacy Policy Password long? Hard to type?

Get a magic link sent to your email
that'll sign you in instantly.

‘Send Me a Mobile Sign In Link

Figure 5-1. Slack’s mobile sign-in flow

3 http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2006/CS/CS-2006-07.pdf
4 http://stackoverflow.com/a/2448531/636579
5 http://code.tutsplus.com/tutorials/ios-sdk-working-with-url-schemes—mobile-6629

104 | Chapter5: Alternate Methods of Identification

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2006/CS/CS-2006-07.pdf
http://stackoverflow.com/a/2448531/636579
http://code.tutsplus.com/tutorials/ios-sdk-working-with-url-schemes—mobile-6629

This sign-in flow results in an email similar to the one shown in Figure 5-2.

¥ slack

Open this email on your phone or tablet to log in to Slack!

Hello friend,

You requested that we send you a link to make it easy to
login to our mobile app. Well, your wish is our command!
Here you go:

Sign in to Slack on your mobile device

Not on your mobile device right now? This link will only
work on iOS, Android or Windows Phone. So, keep that in
mind.

Don't have the app yet? You can download it for iOS or
download it for Android.

Thanks for using Slack.

Figure 5-2. Slack’s sign-in email for mobile devices

When analyzing the email’s source code, you'll notice that a URL like the following is
used: https://slack.com/z-app-211=9624547-19991285158-c]1D]fifFa?s=3Dslack.
Because Slack clearly owns the authority over slack.com (and no other applications
should claim any URIs containing this domain), no custom scheme workaround like
myapp://auth.com/ is needed. By clicking the “Sign in to Slack on your mobile
device” button from within your mobile email client, you open the Slack application
and will be signed in.

Two-Factor Authentication and n-Factor Authentication | 105

https://slack.com/z-app-211=9624547-19991285158-cJ1DJfifFa?s=3Dslack

Since version 6.0 (Marshmallow), Android enables declaring web-
site associations. This mechanism helps to protect your native
applications by preventing third-party applications from accessing
information that is meant for internal consumption only.

Implementing Two-Factor Authentication with Authy

Now that you understand how OTPs work, let’s see how to implement these within
our own apps and websites. For this example, we're going to use a Twilio authentica-
tion service called Authy. Authy will allow us to do things that we’ll need for a 2FA
system, such as the following:

+ Register/delete 2FA user accounts on our service.
« Send SMS verification codes to those users.

o Verify the verification codes after users enter them on the website to verify them-
selves.

With that said, our first task is to set up an application with Authy and get a key that
we will use to verify our application against the service. We can do that by following
these steps:

. Go to the Authy dashboard at https://dashboard.authy.com/signin.
. Sign in or register a new account.

1
2
3. Click Access Authy Dashboard.
4

. Click Enable Two-Factor Authentication, and select your preferred verification
method, which is required to create a new application.

Click Create Your First App.

u

6. Enter an application name on the form that pops up; then click Create. Follow
the rest of the instructions to create the application.

Once the application dashboard comes up, at the top of the page you will see an
information section, which includes your hidden product and sandbox keys. We're
going to be using our production key, so click the eye beside the hidden key to reveal
it (Figure 5-3).

6 http://developer.android.com/training/app-links/index.html#web-assoc

106 | Chapter5: Alternate Methods of Identification

http://developer.android.com/training/app-links/index.html#web-assoc
https://www.authy.com
https://dashboard.authy.com/signin

Current Plan Pay As You Go

Api Key for Production

Figure 5-3. Authy key details

Take note of that key, because we'll be using it in our Authy 2FA example.

The complete sample code for the following Authy example is
available at https://github.com/iddatasecuritybook/chapter5/tree/
master/authy-2fa.

With our key in hand, let’s dive into a practical walk-through of how to implement
2FA using the service. First we need to install a few npm modules, specifically:

body-parser
For dealing with JSON/URL-encoded payloads post Express 4.0

authy
A helpful module for working with Authy functionality for users and tokens

We can pull down these packages via npm with the following terminal commands:

npm install body-parser --save
npm install authy --save

We can now create our .js file, and instantiate our packages and the body-parser
functionality:

var express = require('express'),
app = express(),
bodyParser = require('body-parser'),
authy = require('authy')('YOUR AUTHY PRODUCTION API KEY');

//to support JSON-encoded bodies
app.use(bodyParser.json());

//to support URL-encoded bodies
app.use(bodyParser.urlencoded({ extended: true }));

In the preceding code, we set up our express, body-parser, and authy variables.
With the Authy instantiation, we pass in that Authy production key that we obtained
when we created our application on the site. In the last two lines, we then set up

Two-Factor Authentication and n-Factor Authentication | 107

https://github.com/iddatasecuritybook/chapter5/tree/master/authy-2fa
https://github.com/iddatasecuritybook/chapter5/tree/master/authy-2fa
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/authy

body-parser to be able to handle JSON- and URL-encoded objects that we will need
to parse from our requests later.

With Express, we can now set up a few routes in our application to handle POST
requests to different endpoints for working with user setup and token verification.
Let’s start with defining a route to handle user registration:

When should you register a new user with Authy?

The Authy registration for new users should be done when you
have a new user creating an account with your site or service, dur-
ing your regular registration process. As you are storing user infor-
mation for your site, you will also store the user ID that Authy
provides during registration.

//route: register a new user via provided email and phone number
app.post('/register', function(req, res){

var emaill = req.body.email;

var number = req.body.number;

authy.register_user(email, number, function (err, response){
//expected response:
//{ message: 'User created successfully.’,
// user: { id: 16782433 },
// success: true }
res.send(response);
b
H;
The preceding route will allow any POST request sent to the /register endpoint of
the application to be handled. The endpoint is expecting two pieces of data to be sent

to it:

email
The email of the user to be registered. This should match the email that was
stored in your user records when you registered the individual.

number
The phone number of the user to be used for the SMS 2FA process.

With that information obtained, we then make a request to authy.regis
ter_user(..), passing in the email and number that we just pulled from the POST
body. If all is successful, the return value (stored in response), should contain three
pieces of data:

message
The human-readable success message.

108 | Chapter5: Alternate Methods of Identification

user
The user ID of the newly registered user. This should be stored in your user data-
base for sending the 2FA requests.

success
A Boolean true/false indicating the success state.

Next on our list is to set up the ability to send SMS 2FA messages to a given user ID:

When should you send the SMS verification code?

SMS verification should be conducted during login. When a user
enters her first set of credentials (typically username/password),
you can then send the SMS message from Authy for a second level
of authentication.

//route: send authy SMS message with verification code
app.post('/sms', function(req, res){
var uid = req.body.uid;

authy.request_sms(uid, function (err, response){
//expected response:
//{ success: true,
// message: 'SMS token was sent',
// cellphone: '+1-XX12362760' }
res.send(response);

b

b

This route will accept any POST request to the /sms endpoint, and will expect one
piece of data to be POSTed:

uid
The user ID that was obtained from registering the user with Authy, during the
last step.

Once we pull out that value, we can then make a request to authy.request_sms(..),
passing along that UID and a callback. This will attempt to send an SMS verification
code to the phone number that is registered for that given user during the registration
step. In the response object (on success), we are expecting a few parameters:

success
A Boolean true/false indicating the success state

message
The human-readable success message

Two-Factor Authentication and n-Factor Authentication | 109

cellphone
The cell phone number that the SMS was transmitted to

At this point, the user has obtained a verification code. She will enter the code on
your site, and you will need to verify that it is correct:

How and when should you validate a verification code?

When users are sent the SMS verification code during the login
step (for second factor verification), you should supply a method
for them to enter the code that they see on their mobile device on
your site.

//route: verify a provided verification token against a given user
app.post('/verify', function(req, res){

var uid = req.body.uid;

var token = req.body.token;

authy.verify(uid, token, function (err, response){
//expected response:
//{ message: 'Token is valid.',
// ‘token: 'is valid’,
// success: 'true' }
res.send(response);

H;

b
This route will handle the verification step. It will accept a POST request to

the /verify endpoint, and will expect two pieces of data in the POST body:
uid
The user ID that Authy provided during the registration step

token
The verification token that the user was sent via SMS during the last step

Once we obtain that information, we can then call authy.verify(..), passing in the
UID, token, and a callback function. If the verification step completes successfully, we
can expect three pieces of data to come back from the response:

message
The human-readable success message

token
Verification of whether the token is valid

success
A Boolean true/false indicating the success state

110 | Chapter5: Alternate Methods of Identification

Once we verify the token is legitimate, we can then allow the user to enter the site,
and the 2FA process is now complete.

If a user deletes her account from our site we may need a last step. We want to ensure
that we clean up all residual user information, including her Authy user registration
data:

When should you delete users from Authy?

When users delete their account with your site or service, you
should also clean up their information in Authy by deleting the
registered account. The registration/deletion steps should be
synced with your site/service registration and deletion steps.

//route: delete an existing user
app.post('/delete', function(req, res){
var uid = req.body.uid;
authy.delete_user(uid, function (err, response){
//expected response:
//{ message: 'User was added to remove.
res.send(response);

i

, success: true }

I9H
19K

This route will accept a POST request to the /delete endpoint, and expect one item
in the POSTed data:

uid
The user ID that Authy provided during the registration step
When obtained, we then make a call to authy.delete_user(..), passing along the

user ID and a callback. If the deletion is successful, we should see the following
parameters come back in the response:

message
The human-readable success message

success
A Boolean true/false indicating the success state

Once done, the user has been removed from the Authy registration system. In our
app sample, the last thing we need to do is start the server:

app.listen(process.env.PORT || 3000);

This will listen on the expected port (such as if running via Heroku), or on port 3000
otherwise. Once the server is up and running (assuming on localhost port 3000 in
this case), we can then run some tests by sending POST requests from the terminal to
each of the endpoints we set up.

Two-Factor Authentication and n-Factor Authentication | 111

First we issue a request to register a new user:

curl -H "Content-Type: application/json" -X POST -d
'{"email":"jenny@email.com, "number":"18675309"}"' http://localhost:3000/register

We send an HTTP POST request to the register endpoint, passing along an email
and phone number in the POST body. The JSON response from that will give us the
user ID for the newly registered person, which we will use for the next step.

The second step is to trigger the send of an SMS to the phone of that registered user:

curl -H "Content-Type: application/json" -X POST -d

"{"uid":"16572253"}"' http://localhost:3000/sms
From the registration request, we obtained a user ID from Authy. We send that UID
through to the SMS endpoint. The response should be a text message showing up on
the registered phone number. The response from that will provide us with a verifica-
tion code via SMS.

Next, we send the token we have in our SMS through for verification:

curl -H "Content-Type: application/json" -X POST -d
'{"uid":"16572253", "token":"0512278"}' http://localhost:3000/verify

We send the user ID and token via a POST body to the /verify endpoint, which
should provide us with a message stating that the token is valid, if the request was
successful.

The last step is to clean up the user records by deleting the user we just created:

curl -H "Content-Type: application/json" -X POST -d
"{"uid":"16572253"}"' http://localhost:3000/delete

We send the user ID to the /delete endpoint, which, on success, will provide us with
a success message response.

With all of that in place, we now have the structure to provide 2FA SMS token verifi-
cation for our users.

Biometrics as Username Instead of Password

With the growing availability of fingerprint scanners on mobile devices, such as the
iPhone device family and newer Android devices, more and more applications are
trying to identify use cases that enhance the overall user experience. This surge in
new technology has led to people wanting to use their fingerprint to replace password
prompts on their phones.

From a logical standpoint, it might seem an easy choice to leverage biometrics to
authorize access to applications, unlock a devices screen, and much more, but this
creates new issues. Passwords are traditionally vulnerable, as we discussed in Chap-

112 | Chapter5: Alternate Methods of Identification

ters 1 and 2, and can be leaked or exposed to third parties. When using simple pass-
words, we can simply alter that password and exchange it for a new, more secure one.
When using fingerprints, we run into a whole new dimension of issues: human
beings have a maximum of ten fingers, and it is highly desirable that those finger-
prints are not invalidated by being exposed to the public.

Using Fingerprints as a Security Mechanism

The German Chaos Computer Club managed to bypass the secu-
rity mechanisms of Apple’s TouchID in 2013. By replicating a fin-

" gerprint using a high-resolution photograph, the CCC managed to
trick an iPhone 5s TouchID sensor into unlocking the phone. In
the exploit’s summary, the CCC highly recommends not using fin-
gerprints to secure anything.”

Tim Bray, co-inventor of XML and contributor to the IETF’s OAuth work, expressed
his opinion about using fingerprint scanners and other biometric factors in a blog
post® that led to an interesting discussion with John Gruber, inventor of the Mark-
down standard.” Gruber states that using a fingerprint is still better than using no
security (like not locking your phone with a four-digit pin or a passphrase) or weak
security.

Considering the discussion between Bray and Gruber and the fact that the CCC man-
aged to exploit fingerprint scanners into unlocking, it might be wise to consider bio-
metric factors less as a security mechanism and more as a mechanism to prove
identity.

How to Rate Biometric Effectiveness

When handling biometric factors for authentication scenarios, the false-positive rate,
also known as false-acceptance rate, of the used mechanism is critical. Google
requires third-party manufacturers that want to implement fingerprint scanners for
Android phones to use an implementation that leads to a false-positive rate of not
higher than 0.002%.'° False-rejection, another confounding factor, leads to user frus-
tration and should be avoided—Google’s guidelines define a maximum rate of 10%
and a maximum latency between scan and action of 1 second. A third important cri-
terion to secure fingerprint scanning is limiting the number of false attempts before

7 http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
8 https://www.tbray.org/ongoing/ When/201x/2013/09/22/ The-Fingerprint-Hack
9 https://twitter.com/gruber/status/381857717406560257
10 https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf

How to Rate Biometric Effectiveness | 113

http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://www.tbray.org/ongoing/When/201x/2013/09/22/The-Fingerprint-Hack
https://twitter.com/gruber/status/381857717406560257
https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf

disabling fingerprint scanning; Apple allows for three false attempts on iOS devices
before asking the user to unlock the phone differently, while Google defines a maxi-
mum of five tries before disabling fingerprint scanning for at least 30 seconds (per the
manufacturer’s guideline).

Face Recognition

Facial recognition aims at using either digital images or videos to identify people. This
process extracts and processes a wide array of so-called landmarks and features in
order to match profiles. Factors such as the relative position and size of those land-
marks are normalized and compared using either geometric (comparing distinguish-
ing features) or photometric (generating statistical values) approaches. Emerging
three-dimensional recognition systems have proven to be less sensitive to changes in
lighting and can help improve recognition by scanning different angles (often at the
same time, by stacking multiple sensors on the same chip).

Various banks such as the national banks of Costa Rica and Ecuador have announced
that they will use facial recognition technology on mobile devices to secure access to
banking accounts." Alipay, the Alibaba Group’s online payment platform, announced
in November 2015 it will roll out facial recognition to both iOS and Android devi-
ces.”? Both examples demonstrate that the finance industry does not seem to be com-
pletely behind fingerprint technology and tries to evaluate other biometric factors on
a broader scale.

Retina and Iris Scanning

In a similar fashion to face recognition, retina scans rely on identifying unique pat-
terns. When observing a person’s eye, blood vessels can be analyzed to identify users
(Figure 5-4). Even identical twins do not share the same blood-vessel network and
therefore cannot circumvent this security concept.'

While both retina and iris scanning use cameras to identify people, the key difference
lies in the identification process itself. Whereas retina scans rely on light being absor-
bed by blood vessels in order to analyze a person’s retina, iris scanning takes an image
of an eye that is then analyzed to identify structure. These images can be captured
from a distance of 3 to 10 inches and therefore are considered less intrusive than ret-
ina scans that require the the user’s eye to be much closer to the scanning device. An

11 http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-
costa-rica-clients

12 http://findbiometrics.com/alipay-facial-recognition-comes-to-ios-android-212227/

13 http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences/

114 | Chapter5: Alternate Methods of Identification

http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-costa-rica-clients
http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-costa-rica-clients
http://findbiometrics.com/alipay-facial-recognition-comes-to-ios-android-212227/
http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences/

iris is supposed to have 266 unique spots that can be leveraged to determine unique-
ness."

Figure 5-4. Anatomy of an eye (illustration courtesy of the National Eye Institute)

While a person’s retina might change because of temporal or permanent effects (like
diabetes or high blood pressure), the retina supposedly stays the same between the
birth and death of a human being.'®

Vein Recognition

While fingerprints remain usable as long as they can be duplicated or obtained in any
other way, a person’s veins are viable for authentication mechanisms only as long as
blood flows through the body. Fujitsu has deployed palm vein recognition as a solu-
tion across ATMs in Japan that leverages biometric details to encrypt the dataset itself
and therefore removes the need for encryption keys.'®

Upcoming Standards

When analyzing the current authentication and authorization standards, it becomes
quite apparent that the industry has not decided on a common standard. In this sec-
tion, we present three currently viable contenders with very different focus and
industry backing: The FIDO Alliance, Oz, and the Blockchain.

14 http://www.globalsecurity.org/security/systems/biometrics-eye_scan.htm
15 http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences

16 http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-
cryptographic-key

Upcoming Standards | 115

http://www.globalsecurity.org/security/systems/biometrics-eye_scan.htm
http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences
http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-cryptographic-key
http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-cryptographic-key

FIDO Alliance

The FIDO Alliance, which stands for Fast Identity Online, is a new industry alliance
between major contributors such as Google, BlackBerry, Microsoft, PayPal, and
Lenovo. FIDO provides a scalable identity solution for multiple platforms and covers
the three basic principles of authentication—something you have, something you know,
something you are—by providing two scenarios: Universal Authentication Framework
(UAF) and Universal 2nd Factor (U2F).

Both U2F and UAF are compatible with current federated identity services such as
OpenlD, SAML, and authorization protocols like OAuth.

UAF

UAF was designed with passwordless and mutlifactor authentication flows in mind. A
trust relation is established by leveraging local mechanisms, such as using micro-
phone input, entering a PIN, or fingerprint-scanning. The beauty of the protocol is
that various factors can be combined; this kind of security-layering is a concept that is
outlined in Chapter 6.

From a privacy perspective, the FIDO alliance dictates that only the minimal data
needed should be collected, and used only for FIDO purposes. User verification is
handled locally on the device and does not convey any biometric details to third par-
ties (Figure 5-5).

Authentication Local Device _[Success
Request Authentication 'l

Figure 5-5. FIDO UAF authentication

U2F

While UAF combines various factors to provide a secure and passwordless solution,
U2F augments an existing authentication implementation by adding a second factor.
The second factor simplifies password requirements to four-digit PIN codes and
manifests in a device that presents the second factor via USB or NFC. This piece of
hardware is usable across all implementing online services as long as the web browser
supports the U2F protocol.

The devices are supposed to be designed with mainstream adoption in mind. This is
why the design principles are minimal and allow for affordable hardware that can be
distributed widely. From a security perspective, a secure key will be provided to man-
ufacturers of secure elements and will change with every chipset batch.

116 | Chapter5: Alternate Methods of Identification

U2F was designed with flexibility in mind: multiple people can share one device, and
each person can use multiple devices to secure accounts across implementing sites
(Figure 5-6).

Authentication Local Device J
Request Authentication using Success
! U2F Dongle '[

Figure 5-6. FIDO U2F authentication
U2F utilizes a special registration and authentication message format to communicate
with all supporting devices and browsers. Table 5-2 lists the requirements for the

authentication message.

Table 5-2. Authentication message format

Parameter Description

Control byte 0x07 to check if the key handle was created for the provided application parameter, x03 if a real
signature and user presence is required

Challenge SHA-256 hash of client data (stringified JSON)

Application SHA-256 hash of the application identifier

Key handle length byte Defines the length of the following key handle
Key handle Provided by the relying party and obtained during registration

In case of a successful authentication, the response contains a parameter that provides
information about the user presence, a counter that increments whenever a successful
authentication operation was performed, and a signature consisting of the following:

o Application parameter (32 bytes)
o User presence byte (1 byte)

« Counter (4 bytes)

o Challenge parameter (32 bytes)

0z

Eran Hammer, known for his contributions to both OAuth 1.0 and 2.0, published a
web authorization framework called Oz in September 2015. This framework compiles
industry best practices to provide not just a protocol but a concrete implementation
that is opinionated about details such as client-side cryptography using HMAC.

Upcoming Standards | 117

http://github.com/hueniverse/oz

This framework does not try to be a solution that covers all platforms and form fac-
tors, but rather a viable tool for JavaScript-based applications that aim to implement a
secure solution for authorization.

Oz provides an OAuth 1.0-esque authorization flow and is based on two current solu-
tions: Hawk, a client-server authorization protocol, and Iron, a tool that allows
encoding and verifying JavaScript objects. As opposed to OAuth, Oz tries not to han-
dle user authentication; its sole purpose is handling application-to-server-
authorization scenarios. From an architecture standpoint, Oz is similar to a slimmed-
down implementation of OAuth 2 enriched with security best practices.

The Blockchain

Developed to verify Bitcoin transactions, the blockchain is slowly becoming a power-
ful tool beyond the scope of cryptocurrency and the payment landscape. The idea
behind using the blockchain for identity scenarios is simple: a user can store proof of
certain attributes—such as first and family name, address, or date of birth—and make
the cryptographic hash of these attributes publicly available to anyone who is able to
provide the user’s public key. This allows individuals to verify information, while
authenticity of these details can be ensured. The interesting twist in this concept is
the ability to decide which pieces of information to share.

Let’s use the example of a car accident. Somebody scratches our car and wants to pro-
vide important information such as insurance details, contact name, and phone num-
ber. We can only hope that the person gives us the correct details because we cannot
verify anything until it is probably too late. Utilizing the blockchain, we could rely on
exchanging cryptographic hashes and verify all information provided on the spot.

A company called ShoCard tries to build upon this concept by providing a consumer-
friendly mobile application. All information is stored in the public blockchain data
layer and made accessible on demand.

Wrap Up

In this chapter, we explored upcoming standards and technologies that will provide
simpler authentication flows and promise better security. In contrast, the following
chapter provides an overview about currently available browser technology, Node
modules, and integral server components that vastly enhance security and help us,
the developers, build better applications.

118 | Chapter5: Alternate Methods of Identification

https://github.com/hueniverse/hawk
https://github.com/hueniverse/iron
http://www.shocard.com
http://www.shocard.com/what-is-a-blockchain
http://www.shocard.com/what-is-a-blockchain

CHAPTER 6
Hardening Web Applications

Tim Messerschmidt

We've spent some time in previous chapters discussing the relevance of OAuth 2.0
and OpenID Connect, and analyzed the relevance of identity and biometry plus the
impact of multifactor authentication. This chapter covers security considerations for
Node applications, especially focusing on Express.

In security, it is fantastic to provide a secure solution to identify users and authorize
access to certain resources, but because of a multitude of attack vectors, it is simply
not enough to rely on a simple protocol to secure applications. This is why we tend to
go for layered security. Let’s use a simple analogy: In medieval times, a castle was
secured by a wooden gate, which was a good way to keep people out and defend
property. When combined with stone walls, the gate got even better, because it took
more time for even heavy machinery to breach the walls. If combined with a moat,
the wall and gate became even more useful. If we take this analogy and apply it to
today’s standards, we want to make sure not only that our application is capable of
identifying users, but also that we can withstand a DDoS attack, secure our sessions,
and prepare for potential XSS and CSRF attacks.

Securing Sessions

Sessions have a simple reason to exist: they persist user logins across various routes
within our application without the need to re-authenticate the user by prompting for
usernames and passwords over and over again. Just like passwords, sessions have to
meet certain requirements in order to meet security expectations: session IDs should
be unique, nonguessable, and nonsequential. Just like passwords, sessions benefit
from long session IDs that decrease attack vectors.

119

Types of Sessions

Before we dive into the details of sessions and securing sessions on top of the mecha-
nisms that Express provides by default, it is sensible to explore the differences
between cookies and sessions (Figure 6-1) and what makes them interesting.

r—-r—-""=-"="=== A r—-r—-""=-"="=== A
Client I | Server ' Use
! HTTP ! l session
: request : : IDto
sesionipt | Serercheditthe | B Loads sesion detl
Cookie contains session is still valid from memory/
session identifier and if so loads the database
session
Server extracts Provide session
details needed in details to the server
order to authenticate|
user

ree=T===-==== A

| Database :

Load user ! |
details with ! |
userlD ! | Loads session detail |

! from memory/ !

| |

| database I

| |
. o4

Provide user data
to the client/
pre-render view

Display
user data

Figure 6-1. Session and cookie relationship

What's a cookie?

Cookies are used as client-side storage for information—they’re mostly used in order
to store certain user preferences, authentication details (such as the username and
password), and session information. In fact, cookies can be seen as the client-side
implementation of sessions and are usually combined with strong cryptographic
mechanisms to provide safety, integrity, and authenticity of the data.

120 | Chapter 6: Hardening Web Applications

If you are looking for additional material on cookies, RFC 2965 “HTTP State Man-
agement Mechanisms” from 2000’ states that cookies are not to be used for account
information unless encryption is being used. Section 8 of the updated RFC 6265 from
20112 (this RFC supersedes RFC 2965) defines various considerations that must be
taken into account to ensure security.

What's a session?

While cookies are used as a client-side mechanism, sessions are stored server side and
serve as a way to persist user interaction with web applications. Session identifiers are
used to handle a minimum of details on the client side but also expose the application
to the possibility of session fixation attacks (as outlined in RFC 6265°).

How Express Handles Sessions

Since version 4 of Express, a lot of bundled middleware (for example, bodyParser,
cookieParser, and session) has been moved into separate modules to allow for
quicker updates and better maintainability. This section explores some of the func-
tionality that the module express-session brings to the table in order to allow for
secure handling of sessions.

When using the Express generator or looking at most tutorials, you will see a default
initialization of the session middleware that looks something like this:

var session = require('express-session');

app.use(session({
secret: 'mechagodzilla’,
resave: false,
saveUninitialized: true,
cookie: {

secure: true

}

s

1 http://tools.ietf.org/html/rfc2965
2 http://tools.ietf.org/html/rfc6265#section-8
3 http://tools.ietf.org/html/rfc6265#section-8.4

Securing Sessions | 121

http://tools.ietf.org/html/rfc2965
http://tools.ietf.org/html/rfc6265#section-8
http://tools.ietf.org/html/rfc6265#section-8.4

Securing Passwords with SHA-2

SHA-256 is part of the family of SHA-2 (Secure Hash Algorithm) hash functions and
produces digests (hash values) that are 256 bits by using 32-bit words. The SHA-2
finds usage in popular protocols such as SSL or PGP, but has recently received heavy
criticism for being used as cryptographic tool in order to secure passwords. Please
refer to Chapter 2 for additional information about SHA-2 and proper alternatives.

Let’s look at the default options that are being passed to the middleware:

 secret is a required option and resembles the session secret that is utilized to
sign the session ID cookie. The session module relies on the node module
cookie-signature, which utilizes crypto (a popular module for cryptography)
in order to sign the provided value with SHA-256 as keyed-hash message authen-
tication code, also known as HMAC. Finally, the signed value is hashed as Base64
before being returned to Express.

o The next option, resave, determines whether sessions are saved in the session
storage even when they did not get modified. This used to default to true but its
use is no longer recommended. Instead, decide based on your session storage: if
req.session.touch() is used, resave can be set to false; otherwise, true is the
recommended value.*

o saveUninitialized is used to indicate whether a new (but unmodified) session
should be saved. While true is the default value, it is recommend to set this value
to false when being used to handle authentication.

o cookie allows for deeper configuration of your session ID cookie. secure is rec-
ommended to be set to true and ensures that secure cookies for HTTPS-enabled
websites work. The session middleware does not rely on the cookieParser mid-
dleware anymore and can even cause issues when used in conjunction with it.

» cookie.maxAge is set to null by default and results in cookies being handled as
browser-session cookies, which means that they are removed as soon as the
browser window is closed.

4 http://github.com/expressjs/session#resave

122 | Chapter 6: Hardening Web Applications

http://github.com/expressjs/session#resave

Testing the session ID generation can be a difficult task when using
the secure option for the cookie. The value true serves the cookie
only via HTTPS. When testing on both HTTP and HTTPS connec-
tions, the value auto can be used, but please be aware that a cookie
that is set via HTTPS is accessible only for HT'TPS connections.
Nonsecure cookies can be accessed using either HTTP or HTTPS.®

In our examples, we stick to true as the default value for our ses-
sion cookie (this is the recommended setting).® When developing

in a non-HTTPS-enabled environment, consider setting secure to
false.

A prime feature of this middleware is the possibility of setting up your own function
for generating session IDs. genid can be used with any function that creates and
returns unique IDs. Currently, the default implementation uses uid2.

Using genid

While uid2 seems to be a reasonable implementation for creating session IDs, genid
provides a way to create harder-to-guess IDs, provide Access Tokens, or whichever
other scenario you are looking for. Asynchronous functions are sadly not supported
as of now but are a listed issue in the project’s repository.”

Let’s use genid to produce our own session IDs:

var session = require('express-session');
var uuid = require('node-uuid');

app.use(session({
genid: function(req) {
return uuid.v4()
}s
secret: 'mechagodzilla’,
resave: false,
saveUninitialized: false,
cookie: {
secure: true
}
)

In this example, we generate UUIDs with node-uutid. In the following section, we will
have an in-depth look at applying this in practice.

5 http://www.w3.0rg/Protocols/rfc2109/rfc2109
6 http://github.com/expressjs/session#cookie-options
7 http://github.com/expressjs/session/issues/107

Securing Sessions | 123

http://www.w3.org/Protocols/rfc2109/rfc2109
http://github.com/expressjs/session#cookie-options
http://github.com/expressjs/session/issues/107

Best practices when dealing with sessions

Sessions are designed to have a finite lifespan and are supposed to expire by either
being invalidated through the web application or simple cookie mechanics. Within
our application, we can tie the generated session to a timespan and therefore easily
validate whether the session should remain valid, is invalid, or should be invalidated.
To minimize expensive database operations, it is reasonable to provide the session’s
creation date as an additional suffix in the session hash itself. This not only helps to
reduce computing time, but also adds another factor to the generated hash and there-
fore acts as an additional security mechanism. A potential attacker deals not only
with the sessions ID, but also with a timestamp. To make session-guessing even
harder, we can add additional factors into generating session hashes.

When using your own function to generate session IDs, you need to be aware that the
session secret provided to Express is not being used (even though it is a required
parameter). The module cookie-signature is easy to use and allows for the signing
and unsigning of cookies:

var cookie = require('cookie-signature');

var value = 'test';
var secret = 'myamazingsecret';

var signedValue = cookie.sign(value, secret);
// signedValue is 'test.6L58yh6xptQIl6IyKASGXGr63TRIwwxTNUYy6ui51Bk'

var unsignedValue = cookie.unsign(signedValue, secret);
// unsignedValue is 'test'

Let’s apply these best practices to the session-generation function we've worked with
before:

var session = require('express-session');
var uuid = require('node-uuid");

app.use(session({
genid: function (req) {
var timestamp = Date.now();
var id = uuid.v4();
var sessionld = id + 'S' + timestamp;
return sessionld;
1
secret: 'mechagodzilla',
resave: false,
saveUninitialized: false,
cookie: {
secure: true
}
s

124 | Chapter 6: Hardening Web Applications

In this example, the $ symbol is being used as a delimiter. By leveraging this syntax,
we can easily identify the timestamp after we've retrieved the session’s ID. Using this
mechanism, we not only benefit from making session-guessing harder, but also have
the power to check whether sessions are expired already by simply validating the
timestamp:

var sessionParts = req.sessionID.split('S');
if (sessionParts.length === 2) {

var timestamp = sessionParts[1];

// Validate session

}...

In this section, you've learned how the express-session module works, which meth-
ods and modules it uses, and how to build your own secure implementation of ses-
sion ID generation in order to achieve security-layering and make session-guessing
harder than before.

Handling XSS

Cross-site scripting is a popular attack that was briefly introduced in Chapter 4. XSS
attacks are based on the fact that the browser trusts sites it visits, and therefore can be
led toward executing malicious code. By injecting this code into other sites, it’s dis-
tributed and either persisted or used for one-off attacks such as filling out forms
within web applications.

The Three Types of XSS Attacks

When dealing with XSS prevention mechanisms, three attack methods become appa-
rent:

o Persistent XSS
o Reflected XSS
o« DOM-based XSS

Persistent XSS relies on malicious code being stored in a website’s database. This
results in the injected code being loaded over and over again and was a popular
exploit in the early days of Internet forums.

Reflected XSS attacks originate from the original request and can be seen as one-time
attacks that are returned in the server’s response to the victim.

The last type, DOM-based XSS, is based on modifying client-side code and often
attacks the URLs fragment identifier, which we know as the hash mark that normally
serves for navigational purposes. Another example of DOM-based XSS is modifying

HandlingXsS | 125

entries in HTML5’s LocalStorage; OWASP released a cheat sheet when dealing with
HTMLS5 in order to assist with securing your application.®

Testing XSS Protection Mechanisms

In this section, we will explore how a basic reflected injection attack works and which
mechanisms Node, HTTP, and the browsers put into place to prevent exploitation.

First we will generate a new project (using the Express generator) configured to be
vulnerable. To get started, execute the following command in your terminal:

express Xss
cd express
npm install .

This generates the initial setup for our application. After all modules are installed, we
can start working on a basic user-registration feature—residing in views/index.jade—
which accepts a first and last name and eventually displays these details on a simple
profile page:

extends layout

block content
h1l Registration
form(method="'POST', action='/register')
fieldset
legend Your details
label(for="'firstname') Firstname
input(id='firstname', name='firstname', type='text')
label(for="'1lastname') Lastname
input(id='lastname', name='lastname', type='text')
input(type="'submit', value='Submit')

The form submits a POST request with the populated body to the route /register.

In this step, we will add this new route declaration to our application (which you can
find in routes/index.js):

router.post('/register', function(reqg, res) {
var user = {
firstname: req.body.firstname,
lastname: req.body.lastname

3

res.render('profile', { user: user });

s

8 http://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Local_Storage

126 | Chapter 6: Hardening Web Applications

http://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Local_Storage

For this example, we don't bother with storing user data and simply render another
template, profile, with the POST request’s details. The profile page is created by run-
ning the following command:

touch views/profile.jade

The following template displays the user’s first name and last name by using Jade’s
buffered code mechanism:

extends layout

block content
h1l Your Profile
p= user.firstname
p= user.lastname

Now that all the pieces are in place, we can run our first attempt at an XSS attack.

Instead of submitting an innocent combination of first and last name, we want to
abuse the last name in order to submit a script that loads another site:

<script>window.location="http://tme.coffee"</script>

Submitting the details populates the POST request’s body like this:
{

firstname: 'Tim',
lastname: '<script>window.location="http://tme.coffee"</script>'

}

Now the basic assumption is that our profile page would simply render the informa-
tion provided and therefore load the URL http://tme.coffee instead of displaying the
last name.

Gladly, Jade escapes buffered code and therefore simply renders the output shown in
Figure 6-2.

Your Profile
Tim

<script>window.location="http://tme.coffee"</script>

Figure 6-2. Escaped profile information

HandlingXsS | 127

http://tme.coffee

When inspecting the page’s source, you will notice that the escaped profile page ren-
ders like this:

<body>
<h1>Your Profile</h1>
<p>Tim</p>
<p> script window.location=
http://tme.coffee /script </p>
</body>
For this upcoming step, lets be foolish and disable this automatic escaping-
mechanism. We can do this by changing the template:

extends layout

block content
h1l Your Profile
p= user.firstname
p!= user.lastname

Instead of displaying buffered code with =, we use the functionality to render unbuf-
fered code, != (which is definitely not safe for input) and resubmit our form.

This is where things get interesting, as differences in browsers become quite appa-
rent. Chrome (tested with Version 48.0.2564.48 beta) doesn’t render the last name
field and prints the following statement in the JavaScript console:

The XSS Auditor refused to execute a script in http://localhost:

3000/register because its source code was found within the request.

The auditor was enabled as the server sent neither an X-XSS-
\ Protection nor Content-Security-Policy header.

Doing the same experiment with Mozilla’s Firefox V42 results in the script tag execut-
ing—the browser loads up the page http://tme.coffee.

XSS Auditor is a feature that was initially introduced with WebKit and made its way
into the Chromium Project’s WebKit fork Blink. That implies that a wide array of
browsers such as Chrome, Opera, and Safari come with this built-in mechanism
against reflected XSS attacks. Microsoft’s Internet Explorer supports XSS Auditor
functionality with version 8 and above.

Circumventing XSS Auditor

XSS Auditor should not be seen as a sole defense mechanism against XSS attacks. It is
rather an additional client-side tool to decrease the risk implied by vulnerable soft-
ware. By blacklisting certain payloads and query parameters, injection points are sup-
posed to be detected and execution on the browser DOM is prevented by
transforming the response into a nonexecutable state.

128 | Chapter 6: Hardening Web Applications

http://localhost:3000/register
http://localhost:3000/register
http://tme.coffee

Let’s have a look at the script tag detection mechanism in WebKit’s XSSAuditor.cpp:’

static bool startsOpeningScriptTagAt(const String& string, size_t start)

{

return start + 6 < string.length() && string[start] == '<'
&& WTF::toASCIILowerUnchecked(string[start + 1]) == 's'
&& WTF::toASCIILowerUnchecked(string[start + 2]) == 'c'
&& WTF::toASCIILowerUnchecked(string[start + 3]) == 'r'
&& WTF::toASCIILowerUnchecked(string[start + 4]) == 'i'
&& WTF::toASCIILowerUnchecked(string[start + 5]) == 'p'
&& WTF::toASCIILowerUnchecked(string[start + 6]) == 't';

}

Based on this detection mechanism, potential threads can be detected and examined
more deeply.

The Auditor relies on the following HTTP header to be set: X-XSS-Protection. We
can inspect our request’s header to understand how Express, Node, and Chrome han-
dle this situation:

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Encoding:gzip, deflate
Accept-Language:en-US,en;q=0.8,de;q=0.6
Cache-Control:max-age=0

Connection:keep-alive

Content-Length:73
Content-Type:application/x-www-form-urlencoded
Host:localhost:3000
If-None-Match:W/"be-JIAfZIOVAe1p85FawKqWIg"
Origin:http://localhost:3000

Referer:http://localhost:3000/

Upgrade-Insecure-Requests:1

User-Agent:Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_5) ...

The sample application does not provide the X-XSS-Protection itself; WebKit sets
this option by default, and it needs to be explicitly disabled by setting the header
manually:

router.post('/register', function(reqg, res) {
var user = {
firstname: req.body.firstname,
lastname: req.body.lastname

b

res.set('X-XSS-Protection','0');
res.render('profile', { user: user });

s

9 https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/ WebCore/html/
parser/XSSAuditor.cpp#L102

HandlingXsS | 129

https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/WebCore/html/parser/XSSAuditor.cpp#L102
https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/WebCore/html/parser/XSSAuditor.cpp#L102

The header options value 0 disables this mechanism, 1 enables it, and 1;mode=block
results in rendering a blank page. Obviously, it is always desirable to set the value to
either 1 or 1;mode=block. Be aware that while other web frameworks—such as Sina-
tra for Ruby—provide the X-XSS-Protection header as default, Express relies on
external modules such as Helmet.

Setting the X-XSS-Protection header causes vulnerabilities on old
versions of Internet Explorer.'® It is recommended to set the header
to 0 accordingly. Helmet handles this exception automatically.!

Security consultant Egor Homakov wrote an interesting post about the mechanism of
XSS Auditor.”?

Conclusion

Through a combination of sensible browser defaults like the X-XSS-Protection
header and the features of modern templating engines like escaping input, a solid
base-layer security is being provided. Previously, we've explored security-layering,
and it definitely makes sense to hold on to this behavior when dealing with reflected
XSS. As developers, we should use both client-side and server-side features that help
escaping and sanitizing input in order to prevent exploitation of our application.

More information on XSS attacks and tools that help with reducing attack vectors can
be found on http://excess-xss.com.

CSRF Attacks

Nearly as popular as XSS, cross-site request forgery is used to leverage the browser’s
trust in a user to execute requests on the user’s behalf. This can cause sites to execute
requests that seemingly come from a valid authorized user and pose a huge threat. In
fact, CSRF ranks as the eighth-biggest harm in OWASP’s top 10 list of current secu-
rity threats,"”® down from the fifth place in 2010."* While the threat might be decreas-
ing in commonness, a place within the top 10 of ongoing vulnerabilities still justifies

10 http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities
11 http://github.com/helmetjs/helmet#xss-filter-xssfilter
12 http://homakov.blogspot.de/2013/02/hacking-with-xss-auditor.html

13 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
14 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2010

130 | Chapter 6: Hardening Web Applications

http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities
http://github.com/helmetjs/helmet#xss-filter-xssfilter
http://homakov.blogspot.de/2013/02/hacking-with-xss-auditor.html
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2010
http://www.sinatrarb.com
http://www.sinatrarb.com
http://www.npmjs.com/package/helmet
http://excess-xss.com

discussing the issue itself and the prevention mechanisms that help Node.js develop-
ers to deploy secure applications.

Handling CSRF with csurf

Express offers an optional middleware called csurf that can be installed via npm. The
module provides a unique token that needs to be rendered in forms and will be vali-
dated after form submission—a mechanism thats similar to what we have done with
providing the state parameter when requesting the Authorization Code in the previ-
ous example:

var csurf = require('csurf');

var csrfMiddleware = csurf({
cookie: true

s

app.get('/form', csrfMiddleware, function(reqg, res) {
res.render('form', { csrfToken: req.csrfToken() });

s
In this example, we create a new middleware based on csurf that stores cookies
instead of req.session to store the CSRF token secret. This middleware is mounted
for the route /form and provides the generated token as an option to the form tem-
plate:

extends layout

block content
h1l CSRF protection using csurf
form(action="/login" method="POST")
input(type="text", name="username=", value="Username")
input(type="password", name="password", value="Password")
input(type="hidden", name="_csrf", value="#{csrfToken}")
button(type="submit") Submit

By rendering the CSRF token as a hidden part of a hypothetical login form, we pro-
vide a way to send the token back to the server. This allows us to validate the authen-
ticity of our request in the /login route:

app.post('/login', csrfMiddleware, function(req, res) {

// This request is unique and can be handled accordingly

b
Some of the functionality in csurf relies on using a session middleware (like cookie-
parser or express-session) before using the middleware itself. This is just a matter
of handling the initialization process of your application’s middleware accordingly.

CSRF Attacks | 131

http://github.com/expressjs/csurf

Protecting our application against CSRF attacks with popular modules such as csurf
is incredibly easy and leaves little excuse for not doing so. By simply using a middle-
ware and handling the provided token, a whole level of threat can be managed.

Valuable Resources for Node

In this section, we briefly introduce a handful of Node modules that help you with
improving your application’s security.

Lusca

Back in 2012, PayPal started adopting Node to power its application stack. Part of this
process was the development of krakenjs, an extension of Express. Part of the kraken
suite is a module called Lusca, which focuses heavily on improving security by setting
sensible defaults and providing protection mechanisms against prominent vulnera-
bilities.

Lusca can be used as application-level middleware by adding it to your application’s
initialization process:*®

var express = require('express'),
app = express(),
session = require('express-session'),
lusca = require('lusca');

//this or other session management will be required
app.use(session({

secret: 'abc',

resave: true,

saveUninitialized: true

)

app.use(lusca({
csrf: true,
esp: { /* ... %/},
xframe: 'SAMEORIGIN',
p3p: 'ABCDEF',
hsts: {maxAge: 31536000, includeSubDomains: true, preload: true},
xssProtection: true

D)

Please note that not only common threats such as XSS and CSRF are covered. Lusca
also features HTTP Strict Transport Security (HSTS), Content Security Policy (CSP)
options, and support for the X-Frame-Options response header.

15 Sample taken from the project’s documentation, https://github.com/krakenjs/lusca#usage

132 | Chapter 6: Hardening Web Applications

https://github.com/krakenjs/lusca#usage
http://krakenjs.com

Helmet

Helmet is a collection of 10 security middlewares that operate similarly to how Pay-
Pal's Lusca functions. You can either use a default initialization with
app.use(helmet() and cover 6 out of 10 middlewares or use the submodules individ-
ually.'s

Currently, Helmet comes with the following modules:

 contentSecurityPolicy, which contains CSP settings

« dnsPrefetchControl, which controls browser DNS prefetching. Currently beta
and soon part of the default middleware.

« frameguard, for prevention of clickjacking

» hidePoweredBy, which controls the X-Powered-By header
o hpkp, HTTP Public Key Pinning

o hsts, HTTP Strict Transport Policy

« ieNoOpen, X-Download-Options (IE8 and newer)

« noCache, which enables or disables client-side caching

o noSniff, which prevents MIME-type sniffing

« xssFilter, the X-XSS-Protection header

We definitely recommend reading Helmet’s documentation. The contributors took

the time to provide detailed explanations of attack types and how they can be mitiga-
ted."”

Node Security Project

The last valuable resource that is worth mentioning is the Node Security Project. Sub-
scribing to its Node Security Newsletter is definitely worthwhile and trying out nsp.
nsp allows for auditing your Node application’s package.json and npm-shrinkwrap.json
files for known vulnerabilities.

Install nsp by running the following command:

npm install -g nsp

16 As documented in the project’s repository, http://github.com/helmetjs/helmeti#how-it-works
17 http://github.com/helmetjs/helmet#usage-guide

Valuable Resources for Node | 133

http://github.com/helmetjs/helmet#how-it-works
http://github.com/helmetjs/helmet#usage-guide
http://github.com/helmetjs/helmet

Then navigate to your project and run nsp like so:

cd testapp
nsp check

Potential output looks similar to Figure 6-3.

-+ nsp check
(+) 2 vulnerabilities found

Regular Expression Denial of Service

Name uglify-js

Installed 2.2.5

Vulnerable <2.6.0

Patched >=2.6.8

Path testapp@@.d.® > jade®@l.11.8 = transformers@2.1.0 > uglify-js@2.2.5
More Info https://nodesecurity.iofadvisories/48

Incorrect Handling of Mon-Boolean Comparisons During Minification

Name uglify-js

Installed 2.2.5

Vulnerable == 2.4.23

Patched == Z2.4.24

Path testapp@@.0.@ > jade@l.11.@ > transformers@2.1.@ > uglify-js@2.2.5
More Info https://nodesecurity.io/advisories/30

Figure 6-3. nsp security audit

The Node Security Project also curates a list of valuable resources (such as talks,
papers, blog posts, and more)."® This collection serves as a great overview of current
security best practices for Node.

Other Mitigation Techniques

A lot of mitigation techniques—such as HSTS and CSP—have been mentioned in the
preceding sections. Before moving on to the next chapter, Table 6-1 briefly summari-
zes their core functionality.

The X-Powered-By header does not necessarily open up a vulnerability but tells
potential attackers about our application stack. By default, Express sets the header to
X-Powered-By: Express and therefore exposes which framework was used to build
the application. We recommend unsetting the header either by using the options pro-
vided by Helmet and Lusca, or manually as shown here:

18 http://nodesecurity.io/resources

134 | Chapter 6: Hardening Web Applications

http://nodesecurity.io/resources

router.get('/myroute', function(req, res) {
res.set('X-Powered-By', '');

s

We highly recommend that you do some further research on these mitigtation techni-
ques in order to understand how to implement them most effectively.

Table 6-1. Mitigation techniques

Mechanism Description

Content Security Policy? Prevents execution of malicious content in trusted sites (reduces risk of XSS).

HTTP Strict Transport Security> A mechanism that allows applications to be accessed only via secure connections.

HTTP Public Key Pinning® Ensures the authenticity of a server’s public key.

Frameguard? Allows you to define if an application can be framed (in a <frame> or <iframe> tag).

Platform for Privacy Preferencese P3P defines which information a website collects about users.

2 http://content-security-policy.com

b http://tools.jetf.org/html/rfc6797

¢ https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning
4 https://en.wikipedia.org/wiki/Clickjacking

¢ http://www.w3.0rg/P3P

Our Findings

In this chapter, we have discussed and dissected session mechanisms, the potential
threat behind cross-site scripting, and the severe impact of cross-site request forgery.
So far you have learned about the following:

o Express security features (such as express-session)
o Client-side XSS prevention (XSS Auditor and the X-XSS-Protection header)

« Server-side XSS prevention (escaping and buffering parameters using templating
engines)

o Securing requests against CSRF (providing unique tokens with csurf)
o Using security modules (helmet and Lusca)
« Mitigation techniques (CSP, HSTS, HPKP, and more)
In the following chapter, we will look at efficient and secure data transmission using

techniques such as SSL, asymmetric and symmetric encryption, and the implications
of cryptography itself.

OurFindings | 135

http://content-security-policy.com
http://tools.ietf.org/html/rfc6797
https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning
https://en.wikipedia.org/wiki/Clickjacking
http://www.w3.org/P3P

CHAPTER 7
Data Transmission Security

Jonathan LeBlanc

In Chapter 2, we discussed at length the protection of identification and account
security through the use of proper hashing and salting techniques. Even though
account security is vitally important to any system, what about security for any data
that is being transmitted from one party to another, as that data might be sensitive in
nature or contain privileged user information?

In this chapter, we explore numerous data-security techniques that are designed to
protect data in motion, or better said, data that is moving between parties. We'll look
at a few of these techniques in depth:

o SSL secure data transmission
« Asymmetric key cryptography, better known as public/private key encryption

o Symmetric key encryption, better known as shared secret encryption

Let’s start out by exploring our ideal secure scenario.

SSL/TLS

In an ideal scenario, when working with data security as web developers, Secure
Sockets Layer (SSL) is the mechanism that you should be targeting as your data secu-
rity standard for a user. If youre not familiar with how it works, you'll be familiar
with seeing the effect of an SSL certificate being used on websites that you visit,
Figure 7-1, for example shows the expanded certificate information for https://
www.google.com.

137

https://www.google.com
https://www.google.com

® 0@ /Gacooge %

<« C' @ https//www.google.com/?gws_rd=ssl|

www.google.com
Your connection to this site is private

Permissions | Gonnection

B The identity of this website has been
verified by Google Internet Authority G2
Valid Certificate Transparency information
was supplied by the server

Certificate :*

E Your connection to www.google.com is
encrypted using a modern cipher suite.

The connection uses TLS 1.2

The connection is encrypted and
authenticated using AES_128_GCM and
uses ECDHE_RSA as the key exchange
mechanism.

What do these mean?

] GeoTrust Global CA

Google Internet Authority G2

L

v Details

2 www.google.com

www.google.com

Issued by: Google Internet Autherity G2

Expires: Menday, April 18, 2016 at 8:00:00 PM Eastern
Daylight Time

@ This certificate is valid

try US
» California
vy Mountain View

Google Inc

& www.google.com

us

n Google Inc

Google Internet Authority G2

OK

Figure 7-1. SSL certificate on Google

SSL, and its successor, Transport Layer Security (TLS), are cryptographic protocols
that are typically bundled together. When creating a secure SSL connection on your
website, you will be required to set up an SSL certificate provided by an SSL certifi-
cate authority (CA), which is a company that can issue these digital certificates. When
doing so, you verify identification information about your site to the certificate
authority, and then your web server generates two cryptographic keys: a public and a
private key. This process uses the symmetric key cryptography approach to data secu-
rity and data privacy, which we’ll explore in more detail later in this chapter.

These certificates usually contain some basic information about you and your web-

site:

» Domain name
o Company name
o Address

« City

« State/province

« Country

138 | Chapter7: Data Transmission Security

Certificate Validation Types and Authorities

You can obtain various SSL certificate types when working through a certificate
authority, depending on your needs.

Domain Validation (DV)

The CA validates that the applicant has the right to use the specific domain name,
meaning that someone with admin rights to the domain is aware of the application.
Rights are typically proven by either receiving and confirming an email that is sent to
the admin email for the domain, or by configuring specific DNS records for the
domain. No company information is vetted or displayed to customers visiting the
website who view the certificate details.

With domain validation, you will see the green lock in the URL bar, as shown in
Figure 7-2, but will not see company-specific details when the certificate is loaded.

® ® BattleHack - Are you the x

&= C' [https://2015.battlehack.org

Figure 7-2. Domain validation certificate example

Organization Validation (OV)

The domain verification in the DV step is conducted, but in addition, the company/
organization information goes through some vetting, such as name, city, state, and
country. This basic information will also be displayed to customers visiting the web-
site who view the certificate details.

With sites that have this type of validation, you will be able to see company informa-
tion when the certificate is loaded, as shown in Figure 7-3.

SSL/TLS | 139

k=) DigiCert High Assurance EV Root CA
W = DigiCert SHA2 High Assurance Server CA
@ - facebook.com

*.facebook.com

; r_:o...-ﬂ Issued by: DigiCert SHAZ High Assurance Server CA
Expires: Friday, December 30, 2016 at 7:00:00 AM Eastern
Standard Time
& This certificate is valid
v Details
Country US

State/Province CA
Locality Menlo Park
Organization Facebook, Inc.
Common Name “.facebook.com

Country US
Organization DigiCert Inc
Organizational Unit www.digicert.com
Common Name DigiCert SHA2 High Assurance Server CA

(S———

Figure 7-3. Organization validation certificate example

Extended Validation (EV)

The CA validates domain ownership (DA), organization information (OV), as well as
checks the legal existence of the organization. This is the lengthiest process of the
three, and also validates that the organization is aware of the SSL certificate request
and approves it. The validation step requires specific documentation that certifies the
identity of the company, as well as an additional set of steps and checks.

Typically, you will see an example of this type of validation in sites that have a green
address bar with the lock and company name, as displayed in Figure 7-4.

® ® W Twitter »

= C |G Twitter, Inc. [US]| https://twitter.com

Figure 7-4. Extended validation certificate example

140 | Chapter7: Data Transmission Security

When working with a CA, such as DigiCert, GoDaddy, Verisign, or Comodo you will
typically be brought through a few steps to do the following:

« Create a certificate signing request (CSR)

o Purchase the certificate

Once the certificate is purchased, the CA will validate and process the CSR, and then
issue you the certificate for installation (typically through email). Many CAs offer
support for Wilcard certificates, which allow you to also secure all subdomains under
a root domain.

Creating Your Own Self-Signed Certificate for Testing

Using in Production Will Produce an Error

Working with self-signed certificates, as you will see in this section,
should never be done in a production environment where you are
expecting actual traffic. The entire purpose of working with self-
signed certificates is for testing only. Using them will produce a
nasty browser warning explaining to all your visitors that your cer-
tificate is not trusted. You have been warned. The message looks
like Figure 7-5, which will take over the entire browser window
before going on to your site content.

The site's security certificate is not trusted!

You attempted to reach . but the server presented a certificate issued by an entity that is not
trusted by your computer's operating system. This may mean that the server has generated its own security
credentials, which Chrome cannot rely on for identity information, or an attacker may be trying to intercept your
communications.

You should not proceed, especially if you have never seen this wamning before for this site

| Proceed anyway | | Back to safety

P Help me understand

Figure 7-5. Untrusted certificate warning

Now that you have been thoroughly warned about using the following section for
testing only, let’s proceed to create and sign our own certificates for testing purposes.
This will allow us to build our infrastructure in a separate environment before mov-
ing to a proper production environment with a trusted certificate authority.

SSLATLS | 141

In the previous sections, you learned about the fundamentals of setting up a
production-level certificate. Now let’s go through the steps needed for setting up our
own certificate.

Certificate setup

The first step is to create our private key and the self-signed certificate that we will be
using when we spin up a Node server instance.

For the sake of the example, we're going to store our keys in the same folder as the
program that we will be running. With that said, load up a terminal window and go
to the folder you are using for this program.

Let’s start with the private key setup. Type in the following command:
openssl genrsa -des3 -out server.key 2048

You will be asked to enter and verify a password for the file. What you are essentially
doing is creating a new 2048-bit, triple-DES-encrypted RSA key; encrypting it with a
password; and then storing it to a file, server.enc.key.

The process looks like Figure 7-6.

Figure 7-6. Generating a 2048-bit RSA key

Next up, we need to create a certificate signing request (CSR). Using our previously
generated key, we issue the following command:

openssl req -new -key server.key -out server.csr

This will create our certificate signing request, with the intent of outputting the CSR
to server.csr. After issuing the command, you will be required to input more detailed
information about yourself and your company.

o The passphrase used for the private key (the same one used for the last com-
mand)

* Your two digit country code

« Your state or province

« Your city or locality name

« Your company or organization name

o The group or unit that this belongs to in the company

142 | Chapter7: Data Transmission Security

+ Any common name to be used for the certificate request, or your name

 An appropriate email address to contact
You will also be asked to add a few extra attributes, including these:

o A challenge password

o A company name (optional)

The entire process, end-to-end, looks like Figure 7-7.

LM-SJN-00712571:self-signed-cert jleblanc§$ openssl req -new -key server.key -out server.csr
Enter pass phrase for server.enc.key:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Arizona

Locality Name (eg, city) []:Lake Havasu City

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Acme Corporation
Organizational Unit Name (eg, section) []:Mail-Order Merchandise

Common Name (e.g. server FQDN or YOUR name) []:ACME

Email Address []:wileecoyote@acme.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:greattunnelpainter
An optional company name []:Coyote Inc

Figure 7-7. Creating a certificate signing request

Removing Key Encryption

If you are using the self-signed certificate for testing and wish to
remove the password and encryption from your private key (not
recommended for anything but single-user, local testing), then at
this point you could use your previously generated encrypted pri-
vate key (say thats server.enc.key), and generate the new unen-
crypted private key (server.key) with the following command:

openssl rsa -in server.enc.key -out server.key

The list of commands to issue to get to the same point as we were
in this section, using this method, are shown here:

openssl genrsa -des3 -out server.enc.key 2048
openssl req -new -key server.enc.key -out server.csr
openssl rsa -in server.enc.key -out server.key

Now that we have our CSR in place, we can self-sign the certificate to create our
needed certificate file (CRT), using the following command:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

SSLTLS | 143

This command creates a temporary certificate for one year (specified by the -days
option). If you did not remove the encryption from the original key file, then you will
be required to enter the key passphrase for this step, as shown in Figure 7-8.

LM-SJN-00712571:self-signed-cert jleblanc$ openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt
signature ok
subject=/C=US/ST=Arizona/L=Lake Havasu City/O=Acme Corporation/OU=Mail-Order Merchandise/CN=ACME/emailAddress=wileecoyote@acme

.com
Getting Private key
Enter pass phrase for server.enc.key:

Figure 7-8. Creating the self-signed certificate

Our self-signed certificate is now ready for us to use in our server setup, to start creat-
ing secure HTTPS connections between the server and browser.

Server setup

The server code for the following example is available in its entirety
at https://github.com/iddatasecuritybook/chapter7/blob/master/self-
signed-cert/server.js.

For the sake of our example server, were going to assume that you chose not to
remove the encryption from your private key in the last section, but well still go
through how to adjust the code in case you no longer need the passphrase. We're also
assuming that you have Express set up as we go through the code sample.

We're going to look at an Express server setup that will use our private key and self-
signed certificate from the previous step to accept secure (HT'TPS) connections from
an alternate source, such as the browser or another program that we’re running
locally. In this case, we will be working with JSON strings that will be sent from
another program to our server, through a secure communication channel thanks to
our certificate and key.

We will be working with a few modules for our server, the filesystem (fs), https, and
querystring, which are all standard modules and don’t require pulling anything
from npm, as well as body-parser, which will allow us to support JSON/URL-
encoded bodies in Express 4.0 or beyond. We install body-parser from npm with the
following command:

npm install body-parser --save
Let’s look at the server code in its entirety, and then describe what’s going on in each
step:

var fs = require('fs'),
https = require('https'),
querystring = require('querystring'),

144 | Chapter7: Data Transmission Security

https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/server.js
https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/server.js

bodyParser = require('body-parser')
app = require('express')();

//support JSON & URL encoded bodies

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({
extended: true

)

//handle all POST requests
app.post('/', function (req, res){
var message = req.body;
res.send('Message receilved:' + querystring.stringify(message));

s

//set certificate options

var options = {
key: fs.readFileSync('server.key'),
cert: fs.readFileSync('server.crt'),
passphrase: 'YOUR KEY PASSWORD'

b

//create server with certificate options
https.createServer(options, app).listen(3000, function () {
console.log('Server started: Listening on port 3000');

s

In the code example, you can see that we refer to a passphrase and
your key password as the input. These values should never be hard-
coded in your code. Instead, you should use environment variables,
\ files with restricted read permissions, or the like. The Node module
dotenv is a great way to handle these environment variables. A
complete run through of its use is available in “Application Config-
uration” on page 177.

We start off by including all of our required modules, then adding in our body-
parser options to Express for supporting JSON- and URL-encoded strings. Those
sections comprise our first two blocks of code.

Next we need to handle all incoming POST requests that will be coming to the server.
We do that by setting app.post(/, ..). In the return function, we first start by
extracting req.body, which will be the POST object that the browser or other pro-
gram sent over. In this example, we then simply send back an acknowledgment that
the message was received.

SSLTLS | 145

In the next block, we set up our certificate options to create that secure connection.
Within the options variable, we add three pieces of data:

key
Our private key, read in from our local server.key file.

cert
Our self-signed certificate, read in from our local server.crt file.

passphrase
The passphrase for our private key file. If you removed the encryption from this
key file in the previous section, you can omit this line.

Lastly, we create our server instance, with those options, and listen on port 3000.
When you're ready to test this out, you can issue the following command on your ter-
minal, assuming the file is saved as server.js:

node server.js

The server will spin up on port 3000 and will start listening for incoming traffic. Our
next step is to set up another script to act as our client, and send it over an appropri-
ate JSON object over our new HTTPS connection.

Making secure requests to the server
The client code for the following example is available in its entirety

at https://github.com/iddatasecuritybook/chapter7/blob/master/self-
signed-cert/client.js.

Our client script, client.js, is a fairly standard POST request, with a few differences.
We'll look at the full code next, then describe each of the sections (and any caveats):

var querystring = require('querystring'),
https = require('https');

//POST data to be sent to server
var postData = querystring.stringify({
'message’ : 'My secure JSON string'

s

//POST options

var postOptions = {
hostname: 'localhost',
port: 3000,
path: '/',
rejectUnauthorized: false,
method: 'POST',
headers: {

146 | Chapter7: Data Transmission Security

https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/client.js
https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/client.js

'Content-Type': 'application/x-www-form-urlencoded',
'Content-Length': postData.length

};

//set up HTTPS POST request to server
var postReq = https.request(postOptions, function(res){
res.setEncoding('utf8');
res.on('data', function (data){
console.log(data);
H;
s

//POST data to server
postReg.write(postData);
postReq.end();

We start things off by including the querystring and https standard Node modules.

We then create the JSON object that we will be sending through the HTTPS POST
request, post_data. We add just a simple string for our needs, then stringify the
entire object for POSTing.

Under the POST options, this is where we need to pay attention to slight differences
from a standard POST request with a non-self-signed certificate. Within the POST
options, we specify a few options:

hostname
The host to send the request to. Because were running the server locally, this is
localhost.

port
The port to make the request to. The server is on port 3000, so that's what we
specify here.

path
The path to make the request to. The server is accepting all POST traffic to the
same handle, so this can be anything.

rejectUnauthorized
This is the one to take note of. Specifying this as false will allow you to make
POST requests with a self-signed certificate without being blocked by a certificate
error.

method
The HTTPS request method, in this case POST.

headers
Our content headers, specifying content type and length.

SSLTLS | 147

Adding rejectUnauthorized: false to your POST options will
allow you to work with a self-signed certificate without receiving
error messages about the certificate not being trusted. The error
produced, when not properly handled, will throw an error much
like Figure 7-9.

LM-SJN-00712571:self-signed-cert jleblanc$ node client.js
events.js:141
throw er; // Unhandled 'error' event

A

self signed certificate
at Error (native)
at TLSSocket.<anonymous> (_tls_wrap.js:1000:38)
at emitNone (events.js:67:13)
at TLSSocket.emit (events.js:166:7)
at TLSSocket._ finishInit (_tls_wrap.js:567:8)
LM-SJN-00712571:self-signed-cert jleblanc$

Figure 7-9. Error thrown when making POST requests with a self-signed certificate

Next we set up the HTTPS POST request object. We do this by using
https.request(..), passing in the post_options variable. In the response, we set the
encoding of the response, then handle the case where data is sent back from the
server with res.on(..). In the case of our client, we are simply logging out the
response.

Lastly, we send off the POST request to the server. If all went well, we should see the
response shown in Figure 7-10 when using our client.

LM-SJN-00712571:self-signed-cert jleblanc$ node client.js

Message received:message=My%20secure%20JSON%20string

Figure 7-10. Response from HTTPS POST request

Asyncronous Cryptography

Asyncronous cryptography, also known as public/private key encryption, uses sets of
public/private key pairs. A sender encrypts and signs, then a receiver decrypts and
verifies any message that should be transmitted securely over a potentially insecure
channel, such as when SSL is not available.

148 | Chapter7: Data Transmission Security

Some of these use cases may include multiuser environments over Internet-enabled
hardware, small-scale microelectronics, or in any case where you might not be able to
ensure the integrity of the connection for users.

What we have to know beforehand is how we will be working with these key sets
(public/private keys) in order to secure the message being sent. The public-key part
of the set can be known to anyone needing it (much like a username), while the pri-
vate key must remain known only to the party it belongs to (much like a password).

Use Case

Let’s look at a practical scenario of when this will be valuable. Suppose youre walking
around a store with your mobile phone, and the store uses a series of BLE (Bluetooth
low energy) devices, also known as beacons, for in-aisle purchasing. The device allows
a phone to connect to it, and then it connects to a web endpoint to process the mes-
sage. In this case, the messages may be to check the users in with their account, or to
pay for their goods through a store credit card or PayPal account. These BLE beacons
themselves are not secure devices and can be modified by a malicious party. We want
to ensure that when users are sending their login information, the beacon hasn't been
modified to transmit that clear-text data to a malicious endpoint instead of the store
endpoint.

This is where public/private keys come in. The person sending the message encrypts
the message with the public key of the recipient (perhaps through a public keystore
that verifies requests from the application asking for the public key), and then signs
the message with his private key (in the case of the person walking around the store,
this might be embedded within their store application). The encrypted and signed
versions of the message are transmitted through the beacon, and on to the store API
endpoint. That store API endpoint then decrypts the encrypted message with its pri-
vate key (perhaps stored securely on its servers), and the signed version is verified
using the public key of the sender (the person walking around the store).

We have now decrypted the message and verified its origins. In doing so, we’ve miti-
gated a number of potential attack vectors:

A malicious party cannot simply watch cleartext traffic through the beacon and
store any sensitive information going back and forth, because we encrypt the data
end-to-end.

+ A malicious party cannot send fake data through to the endpoint with hopes of
gaining user account access, as the private key is known only to the user, and the
message verification would fail without the public-key signing.

Asyncronous Cryptography | 149

« A malicious party cannot force the beacon to push data to its own endpoints and
expect any valid results. The data might arrive, but without a method of decrypt-
ing the data or checking its validity, the information would not be beneficial.

Let’s break this down into a simple process, shown in Figure 7-11.

Encrypt/Decrypt
AY
_’ _>
/ Receiver Ciphertext Receiver \
Public Key Private Text
Sender Receiver
AN
_’ —>
Sender Ciphertext Sender
Private Key Public Key
Sign/Verify

Figure 7-11. Asymmetric cryptography process

These are the steps that you follow as you transmit data:

1. You generate two sets of keys, public/private keys for the person sending the data
(sender), and another public/private key set for the person receiving the data
(receiver).

2. You create a small message (typically a string/JSON object or the like) that you
would like to transmit.

3. From the sender side, you take that message and encrypt it with the receiver’s
public key, then take the encrypted message and sign it with your private key.

4. You transmit the encrypted and signed data to the recipient, sometimes through
an intermediate device or service.

5. The recipient verifies the signed payload with the public key of the sender, then
(if valid) decrypts the encrypted message with their private key.

You now have a verified and decoded message that can be processed as needed.

150 | Chapter7: Data Transmission Security

Implementation Example

Let’s see this functionality in practice through a Node implementation of this process.
We're going to break this into a three-step process to explore the main features of the
example:

o Steps la/1b: Generating your two sets of public/private keys. la covers doing so
directly in code, with no storage of the keys, while 1b takes that concept a bit fur-
ther and shows you how to implement file storage for the public/private keys on
top of that. For a proof of concept, la is an expedient way to get started, but for
all production implementations, 1b is preferred. Choose one of these implemen-
tations as you are running through the examples.

o Step 2: Encrypting and signing a piece of data from the side of the sender, to be
sent through to the receiver.

o Step 3: Decrypting and verifying the data that was sent from a sender.

When Keys Should Be Generated and Used

Even though we are showing a full end-to-end example that can be
executed in a single pass, the code execution most likely shouldn’t
be structured this way in a production environment. If you have a
sender/receiver relationship, typically the sender device will be reg-
istered with the receiver’s service. When that device/site registra-
tion occurs, the public/private keys for that pairing (steps 1a or 1b)
should be run. Only when the user begins using the service to
transmit data (steps 2 and 3) should those keys then be extracted
and used.

Let’s start out with generating keys.
Step 1a: Generating keys without file storage

The complete sample code for the asymmetric key cryptography
process without using the filesystem is available at https://
github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-

crypto/crypto_no_fs.js.

The first thing we need to do when generating our needed public/private key pairs is
to add in a Node package to help us with generating, encrypting, decrypting, signing,
and verifying our keys.

Asyncronous Cryptography | 151

https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js

There is a popular package, named ursa, for doing just that, and we install it like so:
npm install fs --save

Next, we add that package as a requirement at the top of our Node script:
var ursa = require('ursa');

Now that we have our packages defined, it’s time to generate a few public and private
keys that we are going to need during the process. As mentioned earlier, in this exam-
ple we are going to simply generate these into variables without any file storage com-
ponent:

//generate sender private and public keys

var senderKey = ursa.generatePrivateKey(1024, 65537);

var senderPrivKey = ursa.createPrivateKey(senderKey.toPrivatePem());
var senderPubKey = ursa.createPublicKey(senderKey.toPublicPem());

//generate recipient private and public keys

var recipientKey = ursa.generatePrivateKey (1024, 65537);

var recipientPrivKey = ursa.createPrivateKey(recipientKey.toPrivatePem());

var recipientPubKey = ursa.createPublicKey(recipientKey.toPublicPem());
In this code snippet, we are running the same three lines of code to generate keys for
the sender and recipient.

When generating keys, the first item on our list is to make a request to the ursa
generatePrivateKey(...) method, which will produce a random key set used to
extract our individual public and private key pairs.

The parameters passed to generatePrivateKey() are as follows:

 The number of bits in the modulus (in the preceding case, 1024). Anything 1024
or over is generally considered secure, but the method defaults to 2048 if no
number is specified.

« The exponent value, which must be odd. This argument is optional as well, and
defaults to 65537.

We then need to break those up into our individual matching keys, using the ursa
methods createPrivateKey(..) and createPublicKey(..), which will accept our pre-
viously generated key set in the previous line as a parameter.

That parameter can be passed through as senderkey.toPrivatePem() or sender
key.toPublicPem(), depending on whether you're attempting to generate a public or
private key.

Next, let’s look at doing the same thing, but this time using file storage for the keys.

152 | Chapter7: Data Transmission Security

Step 1b: Generating keys with file storage

The complete sample code for the asymmetric key cryptography
process using the filesystem is available at https://github.com/iddata
securitybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js.

Now, let’s look at more of a production-level deployment, where we might be working
with thousands of key pairs stored in a keystore, or having individual sender keys
deployed through an application on a user’s device.

As in the previous example, we'll include the ursa package for working with our pub-
lic/private key pairs, but in addition to those we'll include a few others: fs for gener-
ating files and storing information on the filesystem, path for normalizing folder/file
paths, and mkdirp for generating folder structures with some good duplicate folder
handling without producing errors.

The fs and path packages are part of the core modules, so we don't need to define
those. For the other two, we install them from npm like so:

npm install ursa --save
npm install mkdirp --save

As we have done many times before, we now add those packages as requirements to
the top of our Node script:

var fs = require('fs');

var ursa = require('ursa');

var path = require('path');

var mkdirp = require('mkdirp');

We're going to streamline our key generation a bit, and instead of duplicating the
code for generating just two sets of keys, we’ll put that all together into a single pub-
lic/private key generation function that we can call:

function makeKeys(rootPath, subPath){
try {
mkdirp.sync(path.join(rootPath, subPath));
} catch (err) {
console.error(err);

3

var key = ursa.generatePrivateKey(1024, 65537);
var privatePem = key.toPrivatePem();
var publicPem = key.toPublicPem();

try {
fs.writeFileSync(path.join(rootPath, subPath, 'private.pem'),

privatePem, 'ascii');

Asyncronous Cryptography | 153

https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js

fs.writeFileSync(path.join(rootPath, subPath, 'public.pem'),
publicPem, 'ascii');
} catch (err) {
console.error(err);

}

Working with the Filesystem

Accessing the filesystem can be unreliable. Therefore, it’s always a
best practice to ensure that you are appropriately capturing and
handling errors that are produced. A simplified example is dis-
played in the preceding code.

Our makekeys function will accept two parameters: a root path for where the keys will
be stored (rootpath), and a subpath for separating out the public/private keys into
individual folders (subpath). In the end, we are looking for a folder structure that
looks something like this:

o ./keys/sender (which includes the public/private .pem files for the sender)

o ./keys/receiver (which includes the public/private .pem files for the sender)

We start by creating our necessary folder path with mkdirp.sync() for the path sup-
plied. The path package will normalize the root and subpaths together for the folder
locations to be created.

Working with mkdirp

Instead of producing errors when attempting to create a duplicate
folder structure, mkdirp just continues with the next line of code
execution. This makes mkdirp nice to work with in an environment
in which someone could try to create a duplicate folder structure.

Over the next three lines, we use the ursa package to generate our key pairs, then
extract the public and private keys into individual variables.

Lastly, we use the fs.writeFileSync(..) method to create our .pem files to hold the
public and private keys. writeFile(..) in the preceding example will accept three
parameters:

o+ The path and filename to write. In this case, it's our root and subfolders, with
either private.pem or public.pem as the filename.

o The content to write, which is obtained from our variables holding the public
and private keys.

154 | Chapter7: Data Transmission Security

« The content type, in this case ASCIL.

Now that we have our function in place to create a public and private key where we
designate, we can create both the key pairs for the sender and receiver with the fol-
lowing three lines:

var rootPath = './keys';
makeKeys(rootPath, 'sender');
makeKeys(rootPath, 'receiver');

We should now have the directory structure and four .pem files created. In a more
realistic deployment, the content of these .pem files might be stored in a properly
secured key storage lookup, or public keys separated into a public keystore that allows
the lookup of keys for encryption or verification from verified sources, such as from
application locations that were registered with the service.

Key Storage File Types

Numerous file-extension standards are used for public/private key
storage, including (but definitely not limited to) .pem (can be used
for the public key or for the entire public/private chain), .key (for
just the private key), .pub (for just the public key), .cert (a .pem file
with a different file extension that is recognized by Windows
Explorer), as well as many others. Choose the one that works best
for you. For more discussion on this topic, see this Server Fault
exchange.

Now that we have our keys in place, we can follow the same type of methodology as
we did in step la, but this time we're going to extract the contents of the keys from
the .pem files we just wrote:

var rootPath = './keys';

//generate sender private and public keys

var senderPubKey = ursa.createPrivateKey(
fs.readFileSync(path.join(rootPath, 'sender', 'private.pem')));

var senderpubkey = ursa.createPublicKey(
fs.readFileSync(path.join(rootPath, 'sender', 'public.pem')));

//generate recipient private and public keys

var recipientPrivKey = ursa.createPrivateKey(
fs.readFileSync(path.join(rootPath, 'receiver', 'private.pem')));

var recipientPubKey = ursa.createPublicKey(
fs.readFileSync(path.join(rootPath, 'receiver', 'public.pem')));

We start with a given root path (same as when we generated the keys) that we should
pull the keys from. For each key, we use the ursa package to create either a public or a
private key. Because it is expecting the key content from the files we wrote, we use the

Asyncronous Cryptography | 155

http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file/9717#9717
http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file/9717#9717

fs.readFileSync(..) method to pull the content in, passing along the full path to
our .pem files. In a full production deployment, these files would reference back to
your particular keystore, where the .pem files are stored.

Next, were going to see how to use these keys to encrypt and sign a message to be
sent.

Step 2: Encrypting and signing a message

We're now at the stage where the user (the sender) is ready to send some data through
a potentially insecure device or third party, on the way to the receiver. To prepare this
data to be sent, we need to encrypt and sign it by using the keys that we just created:

//prepare JSON message to send

var msg = { 'user':'Nikola Tesla',
'address':'W 40th St, New York, NY 10018',
'state':'active' };

msg = JSON.stringify(msg);

//encrypt with recipient public key, and sign with sender private key

var encrypted = recipientPubKey.encrypt(msg, 'utf8', 'base64');

var signed = senderPrivKey.hashAndSign('sha256', encrypted, 'utf8', 'base64');
Let’s say that the data that we are trying to send is a JSON structure with some privi-
leged information, the msg variable in the code. To start out, let'’s go ahead and con-
vert that into a string to be encrypted.

Next we use the recipient’s public key (most likely obtained from a public keystore) to
encrypt the data by calling recipientPubKey.encrypt(..), passing in the string to be
encrypted.

After we encrypt, we need to create a signed version of the encrypted data by using
the sender’s private key to hash and sign the encrypted string that we just created,
which we do by calling senderPrivKey.hashAndSign(..), passing in the hashing algo-
rithm (SHA-256) and the encrypted string.

We now have two variables: the encrypted version and the signed version. We take
those two variables and transmit them through the third-party device or service.

Let’s say the device working as the transmitter between the sender and the receiver is
compromised. Without the private key of the recipient, the raw JSON structure can’t
be extracted. In essence, if the data is sniffed, it will be completely useless.

We're now at the stage where the data has transferred through the third-party device
or service, and has arrived safely at the recipient for decryption and verification.

156 | Chapter7: Data Transmission Security

Step 3: Decrypting and signing a message

With the data safely in the hands of the recipient, we need to both extract the data
and ensure that the data is coming from a valid source through our matching public/
private key pairs:

//verify message with sender private key

var bufferedMsg = new Buffer(encrypted);

if (!senderPubKey.hashAndVerify('sha256', bufferedMsg, signed, 'base64')) {
throw new Error("invalid signature");

} else {
//decrypt message with recipient private key
var decryptedMsg = recipientPrivKey.decrypt(encrypted, 'base64', 'utf8');
console.log('decrypted message verified:', decryptedMsg);

}

We start out by verifying the data that was sent over, to ensure that the originally
signed data is from the source that we expect it to be. We create a buffer out of the
encrypted message, for comparison. We then use senderPubKey.hashAndverify(..),
passing in the same hashing algorithm we used to sign the data, along with the buffer
of our encrypted string, and the signed version of the data that we received from the
sender. What is happening here is that we are comparing the encrypted ciphertext
against the signed ciphertext that we received from the sender. If they don’t match, we
have an unverified data object; but if they match, we have valid data and can then
move to decrypt the data packet.

Once verified, we now decrypt the data that was transmitted over. As you may recall,
we originally encrypted the data with the recipient’s public key, so now we can
decrypt that data only by using the matching recipient private key by passing the
encrypted message to recipientPrivKey.decrypt(..).

If we print that out, we'll see the original JSON structure that we started with. Now
that we have a verified and decrypted message, we can begin using the data however
we need to.

Advantages, Disadvantages, and Uses of Aynchronous Cryptography

Aynchronous, or public key, cryptography has advantages when compared against
synchronous cryptography methods. In the same light, we also have to deal with a
few drawbacks with this method.

Let’s look at a few of the benefits here:

Key convenience
Because each party (sender and receiver) has their own private key, and that key
doesn’'t need to be transmitted, we don’t have to deal with trying to find a secure
method for transmitting that data as we do in a synchronous environment.

Asyncronous Cryptography | 157

Key nonrepudiation
Because each party owns their own private key, and that value is never shared, an
attack case involving a piece of data with an authenticated server but a potentially
compromised key is a nonissue. Each party is responsible for the secure storage
of their private keys, meaning that this issue doesn’t come up.

Now, we are dealing with one pretty big negative when working with this method:

Speed
Because a lot of processing needs to happen during encryption and decryption
when using this method, it is quite slow when compared to a synchronous
model.

With all of this said, asynchronous cryptography is not overly well suited for a single-
user environment, where you might be encrypting data to be sent between two parties
that you own. This is where synchronous cryptography shines. This method works
well in a multiuser environment, where the channels between a sender and receiver
might not be secure.

Synchronous Cryptography

With asynchronous cryptography, we've explored the realms of transmitting data
through potentially insecure channels. The use of public and private keys in our
examples is similar to the methodology behind technologies such as OAuth and
OpenID Connect.

Now that you have that understanding, let’s see how to further protect data transmis-
sion between two sources that trust each other. Think of it this way: let’s say I'm writ-
ing an email through my Gmail account to be sent to another Gmail account, Google
is transmitting data through a secure HTTPS connection, and we can safely assume
that the email at the end of the line is from an authentic source.

One of the main uses for synchronous cryptography is in a trusted environment.
Instead of using two separate public and private keys, we instead use a shared secret
between two sources. Using a single key can significantly increase the encryption and
decryption speed, but at the same time, if the single key is compromised, the resulting
damage might be worse.

At a high level, Figure 7-12 shows how this process works end-to-end with a single
shared secret key.

158 | Chapter7: Data Transmission Security

Shared Secret

v

v
E

v

v

Sender Encrypt Ciphertext Decrypt Receiver

Figure 7-12. Symmetric cryptography process

In the image, we see that

o The sender has a piece of plain-text data that they intend to send to the receiver
over the channel.

o The sender uses the shared secret to encrypt the data, giving us the ciphertext.

o When the receiver obtains the ciphertext, they use the same shared secret to
decrypt the ciphertext into its original plain text.

Next, we'll run through a few practical examples of synchronous cryptography by
using AES Block ciphering with a few different modes of operation using an initiali-
zation vector. Before we do that, though, let’s see what initialization vectors and pad-
ding are, how these modes of operation differ, and how they affect the block cipher
security and performance.

Initialization Vector

Many of the cryptographic algorithms that we are likely to use are what we call itera-
tive algorithms. When a piece of data that is to be encrypted is split into blocks for
encryption, those iterative algorithms depend on the data from previously encrypted
blocks in order to process the next subsequent block. In these cases, the first block of
data that will be encrypted has no previous block to build, so it needs a piece of data
to begin running the algorithm. This is the initialization vector.

An initialization vector is a fixed-sized piece of data that is typically required to be
random, or at the least, pseudorandom. Typically, each time you are encrypting a new
piece of data, you would supply a new, random, fixed-length piece of data.

Let’s look at a practical example. In the CBC encryption mode of operation (we will
explore that in the next section), the way it works is by breaking the data to be
encrypted into blocks. As the algorithm goes through each block, the plain-text block
is XORed (exclusive or—A or B, but not A and B) against the previous encrypted

Synchronous Cryptography | 159

block, before finally being encrypted together. Because the first block in the chain
needs to have a previous block to XOR against, we need to supply that data. That data
is the initialization vector.

Padding

In the case of certain block cipher algorithm modes, such as Cipher Block Chaining
(CBC) described in the next section, when the data to be encrypted is split into blocks
of data to be processed, the plain-text data that is to be encrypted needs to be an exact
multiple of the blocks produced. This means that each block needs to be an equal
size. In these cases, if we come across data that cannot be chunked up into equal
blocks, we need to add some padding data to the blocks.

Several standard conventions are employed that set standards on what this dummy
data should be. Let’s look at these visually. Let’s say that we want to encode the string
“This is my block data” If the cipher mode we are employing requires equal block
sizes, it would split the data into three blocks of 8 bytes, represented with the hex val-
ues of each character:

R LR PP P R LR PP P R LR PP P +
IT h 1 s _ 1 s _Im vy b 1L o c k|_ d at a? 2?2 72|
R LR PP P R LR PP P R LR PP P +
|54 68 69 73 20 69 73 20|6d 79 20 62 6¢c 6f 63 6b|20 64 61 74 61 2?2 22 27|
R LR PP P R LR PP P R LR PP P +

Those three characters at the end will be the padding that we need to add to the
string. Let’s see how this looks with each convention:

Each padded byte is the value of the total number of bytes needing to be added
Each byte of padding is set to the value of the total number of bytes of padding.
In this case, we have 3 bytes of padding, so we set the value to 03:

R LR PP R LR PP R LR PP +
IT h 1 s _ 1 s _Im vy b 1 o c k|_ d a t a _ _ _|
R LR PP R LR PP R LR PP +
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 03 03 03|
R LR PP R LR PP R LR PP +

The preceding convention is the most popular method used
throughout the industry, as it’s easy during decryption to read these
padding bytes and know, easily, what is a padding byte and how
many you should be looking for.

160 | Chapter7: Data Transmission Security

The first padded byte is 0x80, followed by 0 bytes for the rest
For this one, we set the first byte of padding to 0x80 and all subsequent padding

bytes to 0:

D TP D TP D TP +
IT h 1 s _ 1 s _Imy _ b 1l o c k|_ dat a _ _ _|
D TP D TP D TP +
|54 68 69 73 20 69 73 20|6d 79 20 62 6¢c 6f 63 6b|20 64 61 74 61 80 00 00|
D TP D TP D TP +

Each byte is set to 0 except the last byte, which is the number of the total bytes of pad-
ding
This is a take on the first method, but we set all bytes of padding to 0, with the
exception of the last byte, which should be equal to the total number of bytes of
padding. In the case of our example, that will be 03:

B LR PP P B LR PP P B LR PP P +
IT h 1 s _ 1 s _Im vy b 1 o c k|_ d a t a _ _ _|
B LR PP P B LR PP P B LR PP P +
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 00 00 03|
R R R +

All bytes are set to 0
All bytes of padding should be set to 0:

LT LT LT +
IT h 1 s _ 1 s _Imy _ b 1l o c k|_ da t a _ _ _|
L E TP L E TP L E TP +
|54 68 69 73 20 69 73 20|6d 79 20 62 6¢c 6f 63 6b|20 64 61 74 61 00 00 00|
L E TP L E TP L E TP +

All bytes are set to spaces (0x20)
All bytes of padding should be set to spaces:

R L R L R L +
IT h 1 s _ 1 s _Imy _ b 1l o c k|_ d a t a _ _ _|
R L R L R L +
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 20 20 20|
R L R L R L +

How padding works is something that we should understand when choosing a proper
mode of operation, because it can be costly depending on the data that is to be
encrypted. In each case of the padding, the decryption process needs to know how to
properly determine which method was used, and how to properly disregard padding
values.

In the case of the algorithms that we are going to use in the practical examples that
follow, padding will be taken care of for us, so it'’s not something that we need to be
concerned with in our implementations.

Synchronous Cryptography | 161

Block Cipher Modes of Operation

Understanding the potential modes of operation is important when working with
data encryption. A mode of operation is an algorithm that uses a block cipher (such as
AES) to provide functionality such as confidentiality or data authentication for the
block of information to be encrypted.

Within the case of our web operations, we will be working with three main categories
of modes:

Encryption
This means, in general terms, data privacy/confidentiality. A potential attacker
who has the generated ciphertext (the encrypted data) will not be able to get any
information about the plain-text data, except for the length perhaps.

Authentication
Authentication mode provides a mechanism for determining data authenticity. If
a receiver obtains ciphertext or cleartext from a sender, they can determine
whether the data is genuine and was constructed by the sender.

Authenticated Encryption
This includes both previous categories.

Now that we have an understanding of the categories, let’s look at some of the NIST-
approved block cipher modes of operation' (Table 7-1). Many of these modes range
heavily in how they function, but at the end of this section we list the most popular
industry-standard modes.

Table 7-1. Encryption modes of operation

Mode Name Description

ECB Electronic Codebook The simplest mode of operation. The data that is supplied for encryption is divided into
blocks. When encrypting/decrypting, these blocks are processed individually. The main issue
with this mode is that identical plain-text blocks are encrypted into identical ciphertext
blocks, which creates a pattern that a potential hacker can exploit. One of the benefits of this
mode is that the blocks can be processed in parallel, speeding up encryption/decryption.

(BC Cipher Block Chaining In this mode, each plain-text block is XORed against the previous ciphertext (encrypted)
block, before then being encrypted itself. Since this is an iterative algorithm, an initialization
vector needs to be supplied. In order to make each block unique, the initialization vector
needs to be supplied as the first block. One of the chief drawbacks is that blocks cannot be
processed in parallel, since each block needs to be run sequentially. The other issue is that
plain-text input needs to be a multiple of the block size (each block the same size), meaning
that the initial data may have to be padded to bring it to that length.

1 http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

162 | Chapter7: Data Transmission Security

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

Mode Name Description

OFB Output Feedback The output of OFB is what is called a stream cipher. The plain-text blocks are combined with
random or pseudorandom characters to generate keystream blocks. These keystream blocks
are then XORed with the plain-text blocks to get the end ciphertext. This mode also utilizes a
supplied intialization vector. One of the benefits with this mode is that each block can be a
different size, meaning that there is no need to pad the initial plain-text data. One of the
drawbacks is that encrypting and decrypting blocks cannot be done in parallel, since
encrypting each block depends on the previous blocks.

CFB Cipher Feedback CFB mode is very similar operationally to CBC. The main difference between these two is that
(BC mode creates the ciphertext after the block cipher algorithm is run, while CFB generates
it after we compute the XOR.

(TR Counter Counter mode, much like OFB, turns the block cipher into a stream cipher. The keystream that

is used can be a function that produces successive values for the random data (a counter).
The function producing the counter data just needs to ensure that the data does not repeat
for a long period of time. The most common counter type is one that increments a number by
1 each time. Where CTR differs from OFB is that both CTR encryption and decryption can be
run in parallel, since it doesn’t generate the ciphertext by XORing the plain-text block against
the previous ciphertext block (as in OFB).

If you want to protect the privacy of the data that you are sending, but don’t necessar-
ily need to authenticate the sending source of the data, then the mode under the
encryption category will fill that need.

If confidentiality is not required for the message being sent, that's where the authenti-
cation mode will come into play. For instance, if you just need to know that the mes-
sage came from an approved sender, but the message itself is not sensitive in terms of
data privacy, then the mode of operation in Table 7-2 is probably best.

Table 7-2. Authentication modes of operation

Mode Name Description

(MAC Cipher-based Message CMAC mode is used for determining the authenticity and integrity of a message. It uses a
Authentication Code block cipher algorithm in conjunction with a secret key to generate the resulting cipher.
This mode is not heavily used.

In many cases you probably want to not only maintain the privacy of the data being
transmitted, but also verify the source of the data for additional security. In this case,
the combined authenticated encryption modes listed in Table 7-3 are an excellent
option.

Table 7-3. Authenticated encryption modes of operation

Mode Name Description
™ Counter with This is the easiest combined mode of operation. As the full name suggests, CCM is a
(BC-MAC combination of the CTR and (BC modes of operation. This mode also includes the use of an

initialization vector, and message authentication is done on the plain-text data. Encryption/
decryption cannot be run in parallel.

Synchronous Cryptography | 163

Mode Name Description

GM Galois/Counter ~ GCM has been widely adopted because of its efficiency and performance. Like CCM, GCM uses
Mode an initialization vector, but the message authentication is done on the ciphertext as opposed to
the plain-text data. Encryption/decryption can also be run in parallel, unlike CCM.

KW / Key Wrapping Permutations of proposed key wrap algorithm modes for encrypting and authenticating data.
KWP / These modes are not widely used.
TKW

Even with a basic understanding of the preceding tables, it can be difficult to choose
the best modes of operations in each category. If we break them into current
industry-standard use, these are the most popular modes of operation in each cate-

gory:
« Encryption: CTR (for good parallelization/speed)

o Authentication: CMAC (because its the only approved one, although it’s not
widely used in the industry)

o Authenticated Encryption: GCM (industry-accepted standard)

Even though there are preferred modes by many in the industry,
the mode that you choose to use should always come down to your
needs on security, performance, scaling, and how each mode fits
into those plans. Just because it’s popular doesn’t mean it’s right for
you.

Now that you have an understanding of modes of operation, let’s apply these to a few
examples, starting with AES using the CTR encryption mode.

Using AES with CTR Encryption Mode

This sample code for using AES with CTR mode is available at
https://github.com/iddatasecuritybook/chapter7/blob/master/
symmetric-crypto/aes-ctr.js.

We have all the our core basics to start looking at using a cipher algorithm (AES) with
a particular mode of operation (CTR encryption in this case).

We're going to be using the standard Node crypto package for this example, so there
is nothing to pull down from npm. At the top of your Node script, add the following
initialization variable:

var crypto = require('crypto');

164 | Chapter7: Data Transmission Security

https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-ctr.js
https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-ctr.js
https://nodejs.org/api/crypto.html

Now we need to set the variables that we are going to be working with in the example:

var text = "Encryption Testing AES";

var key = crypto.randomBytes(32); //256 bit shared key
var iv = crypto.randomBytes(16); //initialization vector - 16 bytes
var algorithm = 'aes-256-ctr'; //cipher and mode of operation

Going from top to bottom, these are as follows:

text
The data to be encrypted/decrypted.

key
A 32-byte shared key to be used by the crypto library for encryption/decryption.
We use the crypto.randomBytes(..) method to generate that string.

iv
The initialization vector, which should be a random 16-byte string. We use the
crypto.randomBytes(..) method to generate that string.

algorithm
The cipher algorithm and mode of operation to use. In this case, we're using the
AES cipher algorithm with the CTR mode of operation.

Next, we create the ciphertext by encrypting the data:

var cipher = crypto.createCipher(algorithm, key, iv);
var encrypted = cipher.update(text, 'utf8', 'hex');
encrypted += cipher.final('hex"');

We first make a call to crypto.createCipher(..) to initialize the cipher that we want
to use, passing in the algorithm/mode, the shared key, and the initialization vector.

Next, we use cipher.update(..) to update the cipher with data. We supply the data to
be encoded, the input encoding utf8, and the output encoding hex.

cipher.update(data, input_encoding, output_encoding)

The input encoding (second parameter) should be one of utf8,
ascii, or binary. If no input encoding is specified, the data (first
parameter) must be a Buffer. If a Buffer is specified as the data,
input encoding will be ignored.

Lastly, we make the request to cipher.final(..), passing in the output encoding
type, to return the ciphertext.

Our plain-text input is now encoded. At this point, there should be a few things
known about the ciphertext and decryption:

Synchronous Cryptography | 165

« The ciphertext can now be transmitted to its end source (the receiver).

o The shared key and initialization vector must be known to the receiver to
decrypt. The key should be a shared secret between the app and the host (sender
and receiver), and the IV can be considered as a one-time-use nonce, shared
between both parties.

Now, let’s say the cipher has been transmitted to the receiver, and they also have the
key and initialization vector. We can now begin deciphering the ciphertext to extract
our plain-text message:

var decipher = crypto.createDecipher(algorithm, key, iv);

var decrypted = decipher.update(encrypted, 'hex', 'utf8');

decrypted += decipher.final('utf8');
We start by making a call to crypto.createDecipher(..), passing along the same val-
ues that we did for creating the cipher during encryption.

We then call decipher.update(..), passing in the ciphertext, the ciphertext encoding
(in this case, hex), and the intended output encoding (in this case, utf8).

Lastly, we call decipher.final(..) with the output encoding type to retrieve our final
decoded message.

Using AES with with GCM Authenticated Encryption Mode

This sample code for using AES with GCM mode is available at
https://github.com/iddatasecuritybook/chapter7/blob/master/
symmetric-crypto/aes-gcm.js.

Now let’s look at an example that uses the GCM joint authenticated encryption mode
of operation. This one is fairly similar to the previous CTR mode example, but with
an additional encryption/decryption step to handle the authentication piece that we
didn’t have in the CTR mode example.

We're again going to use the standard Node crypto package, so require that at the top
of your Node script:

var crypto = require('crypto');

166 | Chapter7: Data Transmission Security

https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-gcm.js
https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-gcm.js

Next, we initialize the variables that we are going to be using:

var text = "Encryption Testing AES GCM mode";

var key = crypto.randomBytes(32); //256 bit shared key
var iv = crypto.randomBytes(16); //initialization vector - 16 bytes
var algorithm = 'aes-256-gcm'; //cipher and mode of operation

As before, these variables are as follows:

text
The data to be encrypted/decrypted.

key
A 32-byte shared key to be used by the crypto library for encryption/decryption.
We use the crypto.randomBytes(..) method to generate that string.

iv
The initialization vector, which should be a random 16-byte string. We use the
crypto.randomBytes(..) method to generate that string.

algorithm
The cipher algorithm and mode of operation to use. In this case, were using the
AES cipher algorithm with the GCM authenticated encryption mode of opera-
tion.

Now, let’s encode the data to get our ciphertext, and see the differences when we add
the authentication piece:

var cipher = crypto.createCipher(algorithm, key, iv);
var encrypted = cipher.update(text, 'utf8', 'hex');
encrypted += cipher.final('hex"');

var tag = cipher.getAuthTag();

We first make a call to crypto.createCipher(..) to initialize the cipher, passing in
the algorithm/mode, the shared key, and the initialization vector.

Next, we use cipher.update(..) to update the cipher with data. We supply the data to
be encoded, the input encoding utf8, and the output encoding hex.

We then create the ciphertext by calling cipher.final(..) with the output format-
ting.

This is where the authentication piece comes in; after we have the ciphertext, we have
to generate a tag by calling cipher.getAuthTag(..). This will be a Buffer containing
an authentication tag that has been computed from the cipher data. This will be used
to authenticate the source of the ciphertext.

Synchronous Cryptography | 167

As of the writing of this text, getAuthTag supports only the GCM
authenticated encryption mode.

As in the previous example, the ciphertext should be transmitted to the receiver. The
receiver should also have knowledge of the shared key, the initialization vector, and
the authentication tag:

var decipher = crypto.createDecipher(algorithm, key, iv);
decipher.setAuthTag(tag);

var decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');

We make our call to crypto.createDecipher(..), passing along the same values that
we did for creating the cipher during encryption.

Following that, we need to pass in the authentication tag to validate the source of the
ciphertext. We do so by calling decipher.setAuthTag(..), passing in the tag that was
generated from the encryption step.

Next, we go back to the standard decipher techniques by calling decipher.update(..)
to pass in the data, providing the ciphertext, ciphertext encoding (in this case, hex),
and the intended output encoding (in this case, utf8).

Lastly, we call decipher.final(..) with the output encoding type to retrieve our final
decoded message. The ciphertext will now be decoded and the source authenticated,
allowing us to use the data at will.

Advantages, Disadvantages, and Uses of Synchronous Cryptography

As we close out our exploration of synchronous cryptography, it's a good idea to
understand what it does well, and what it doesn’t do well.

Using this method over its asymmetric counterpart has some advantages:

Security
When we are using a secure algorithm, such as the US government-designated
Advanced Encryption Standard (AES) that we looked at previously, the cipher-
text that is produced is incredibly secure, and is considered essentially unbreaka-
ble with current computing standards.

Speed
One of the main issues with asymmetric key cryptography is the complexity of
the process that it needs for encryption and decryption. With symmetric cryp-
tography, using modes of operation that allow for parallel block processing for
encryption and decryption, we have a fast processing mechanism.

168 | Chapter7: Data Transmission Security

If we flip the coin, though, this methodology has one major drawback:

Shared key

As you saw in the practical examples, we generate a single shared key that is used
by the sender for encryption, as well as the receiver for decryption. You need to
take great care in ensuring that this key can be shared between both parties,
without being retrieved by an attacker. Should this key be obtained by an illicit
third party, they now have access to all encrypted data that is using that shared
key. This means that the amount of damage that may be caused by using this
method is typically quite high.

With all said and done, one of the best methods for using this type of cryptography is
when youre encrypting and decrypting your own data, when you have safe, secure
access to shared keys between endpoints. All in all, if you have a safe way to share the
key between yourself and an unknown party, you probably don’t need to be using
your own encryption in the first place.

Synchronous Cryptography | 169

APPENDIX A
GitHub Repositories

We are well aware that mistakes might have slipped into the code that were not spot-
ted throughout the review period, that code needs to be updated in order to reflect
current trends, or that those libraries and modules we build upon are deprecated in
favor of something better. This is why we have created an organization on GitHub
that holds all code we present throughout this book. You will find the complete
OAuth 2 and OpenID Connect server, the client that interacts with those service pro-
viders, and all those small snippets we use to demonstrate certain features.

If you have any questions or want to contribute, please feel free to create an issue on
GitHub or fork the affected project, make the change, and send us a pull request. We
promise to proactively improve the code over time in order to ensure longevity of the
information we conveyed here.

7

http://github.com/iddatasecuritybook

APPENDIX B
Technical Preconditions and Requirements

This appendix explains some basic concepts around Node and adds extra material
that supplements the book’s content.

On ES6/ES2015

You'll notice that we are using ES5 syntax as a base for the code throughout this book.
The simple reason is that we wanted to use the more common syntax to ensure that
everyone is able to comfortably read through this book.

We highly encourage you to try out ES6 by using compilers/transpilers such as Babel.
Node is slowly adopting ES6—in the meantime, you can prepare your application and
ensure that you are ready to deploy to production when ES6 is fully supported.

Setting Up Your Node.js Environment

This book assumes a working Node.js environment and the ability to install various
modules using npm. This section runs through setting up Node in order to ensure
that you will be able to follow the book.

First, install Node by either downloading and running the installer from nodejs.org’s
Downloads section or leveraging a package manager such as brew, pacman, or apt-
get. Verify that the installation worked by typing which node or node -v into your
terminal—this should display either the path to your node executable or your local
node version.

173

http://babeljs.io/docs/usage/cli
http://nodejs.org/en/download
http://nodejs.org/en/download
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://nodejs.org/en/download/package-manager
http://nodejs.org/en/download/package-manager

The download from nodejs.org always serves the most recent stable
version of Node and should be favored over alternative ways of
installing Node whenever possible.

Once Node is set up, you can proceed with installing Express by utilizing npm. To see
if your environment is working correctly, simply enter npm in your terminal. You
should see a brief explanation about using the command.

Managing Node Versions or Alternative Installations

By using the installer obtained from nodejs.org, the newest stable version of Node.js
will be installed on your machine. Sometimes you might have to use another version
of Node or even switch between multiple versions based on the project you are work-
ing on. nvm (which stands for Node Version Manager) is a community project that
allows for doing exactly this.

You can use the install script for cURL by running the following command:
curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.0/install.sh | bash

Assuming youd like to install version 5.7.0 of Node.js (the latest stable version of
Node), youd run the following command:

nvm install 5.7.0

Once the installation is done, run nvm use 5.7.0 and your environment is set up:
5.7.0 will be your system’s default Node.js version.

Should you be required to run multiple versions of Node, you have the choice of run-
ning the specific version either by using the command-line interface nvm run 5.7.0
or by setting up a project-specific .nvmrc file containing the target version number.

Installing the Express Generator

Assuming the setup works as intended, you can proceed by installing and using the
Express generator. This generator allows for scaffolding your project and creating a
reasonable structure:

npm install -g express-generator

You will notice that we use the -g option. This implies that we want to install the gen-
erator globally and not just as a module for our current project.

To verify that the Express generator was set up correctly, type the following command
to see the generator’s usage information:

express --help

174 | Appendix B: Technical Preconditions and Requirements

You can find more documentation on the generator and Express on ExpressJS.com.

Setting Up Express

If youd like to avoid using a generator to set up your first Express project, you can
start by following these instructions:

1. Create a new folder with mkdir projectname.
2. Navigate to the folder by running cd projectname.

3. Create a package.json file by running npm init in your project’s root folder. Don’t
worry about fleshing out the content yet—the next section will go into pack-
age.json in more detail.

4. Run touch app.js (or whatever name you defined in step 3) to create your applica-
tion’s entry point. Here you'll define many of the modules your project ends up
using, create the server itself, and initialize the middleware your project might
rely on (see Chapter 4).

5. Finally, run npm install express --save to install the most important module
for your project: Express itself.
After you've taken care of these five steps youre ready to implement a basic Express
application that you can then build out in order to achieve additional functionality:

var app = require('express')();

app.get('/', function(req, res) {
res.send('Hello from Express!');

s

app.listen(3000, function() {
console.log('App active on port 3000');

s

The preceding example presents the beauty of Express: with a mere nine lines of code,
you can run a simple web server. By navigating to localhost:3000, you'll be presen-
ted with a hearty Hello from Express!.

Run the application with the following command: node app. js. Congratulations!

You can extend this by starting to serve static resources (such as your site’s CSS and
JavaScript or images) by modifying the preceding example:

var express = require('express');
var app = express();

app.use(express.static('public'));

app.get('/', function(req, res) {

Technical Preconditions and Requirements | 175

http://expressjs.com/en/starter/generator.html

res.send('Hello from Express!');

s

app.listen(3000, function() {
console.log('App active on port 3000');
b
You can also specify that static resources are served through another folder structure
such as /resources by using the following method:

app.use('/resources', express.static('public'));

It is safer to declare the folder by using the absolute path to the folder: __dirname +
'/public'. express.static uses relative paths—this leads to issues when running
the Node process from another folder:

app.use('/static', express.static(__dirname + '/public'));

Creating and Maintaining Your package.json File

If you've been using the Express generator, you will notice that a file called pack-
age.json was generated for you. Otherwise, go ahead and create one by running npm
init in your terminal.

package.json contains information about module dependencies, the project’s authors,
versioning, and a section called scripts containing commands for npm. In the follow-
ing example case, running npm start or npm run start starts a new instance of your
newly generated Node server:

{

"name": "book",
"version": "1.0.0",
"private": true,
"scripts": {

"start": "node ./bin/www"

1

"dependencies": {
"body-parser": "~1.13.2",
"cookie-parser": "~1.3.5",
"debug": "~2.2.0",
"express": "~4.13.1",
"jade": "~1.11.0",
"morgan": "~1.6.1",
"serve-favicon": "~2.3.0"

176 | Appendix B: Technical Preconditions and Requirements

You can also extend the scripts section for other tasks, like running eslint:

"scripts": {
"start": "node ./bin/www",
"lint": "eslint app.js lib/** routes/**"

¥

Damon Bauer wrote a great blog post on using npm scripts for a variety of tasks that
normally would be covered through task runners like grunt, gulp, or broccoli.! It’s a
highly recommended read in case you are looking for further inspiration.

By running npm install, all entries in the dependencies section will be retrieved.
npm update --save ensures that your project uses the latest version of each depend-
ency in the dependencies section and updates package.json accordingly. The site
http://www.npmjs.com allows you to search for modules or browse popular choices—
you will notice that npm itself is a module that can be updated using npm.

Additional sections—such as bugs—can be defined to help developers understand
how to interact best with the project, how to contact the developers in case they want
to get in touch, or under which license the project was published. Check out http://
browsenpm.org/package.json for an interactive overview about all possible pack-
age.json sections.

Application Configuration

Environment variables are a sensible way of handling configuration details, such as
database passwords or third-party API credentials, without hardcoding them in your
applications code. The Twelve-Factor App methodology defines this as separation of
code and configuration and sees the benefit of being able to quickly change between
different deployment targets such as production environments.

The module dotenv was designed to specifically cater to this use case and utilizes a
configuration file called .env (located in your projects root folder) that stores infor-
mation in the NAME=VALUE format:

MONGO_DB=mongodb: //localhost/database
MONGO_USER=tim
MONGO_PW=sloths-are-more-awesome-than-monkeys

1 http://css-tricks.com/why-npm-scripts

Technical Preconditions and Requirements | 177

http://css-tricks.com/why-npm-scripts
http://www.npmjs.com
http://browsenpm.org/package.json
http://browsenpm.org/package.json
http://12factor.net/config
http://github.com/motdotla/dotenv

You can access these details by loading the module and calling the config method.
You will notice that process.env is going to be populated with the information from
your .env file:

require('dotenv').config();

var mongoose = require('mongoose');

mongoose.connect(process.env.MONGO_DB);
dotenv allows you to pass configuration options, such as path (in case you require a
different location for your configuration file), silent (which suppresses warnings
when no .env file can be found), or encoding (the default is utfs).

Version Control and Configuration Files

them to your project’s .gitignore file. Please also check out the
" dotenv FAQ for more information on this matter.

Working with JSON/URL-Encoded Bodies in Express

As of Express 4.0, working with JSON- and URL-encoded bodies has changed
slightly, and requires an additional setup step to be able to work with that data when
it is POSTed to your server. The body-parser npm module, when used in the follow-
ing format, will allow your server to support those entities:

T Make sure to exclude your dotenv configuration files by adding

var bodyParser = require('body-parser')

var app = require('express')();

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({
extended: true

D)

2 http://github.com/motdotla/dotenvi#should-i-commit-my-env-file

178 | Appendix B: Technical Preconditions and Requirements

http://github.com/motdotla/dotenv#should-i-commit-my-env-file

2FA / Two-factor authentication

The process of using a secondary means
of identification during a login or user
discovery step. Typically, your first
authentication system is a username and
password, then your second factor of
authentication may be a code provided by
SMS to a registered phone number, a reg-
istered fingerprint, code via email, etc.

Ciphertext
Unreadable output of an encryption algo-
rithm.

Cleartext
Human-readable data that is transmitted
or stored unencrypted.

EFF
The Electronic Frontier Foundation. A
nonprofit dedicated to protecting user
privacy and civil liberties in the digital
world.

Entropy
In the context of identity, this concerns
the amount of information that is discov-
erable about users, determining the likeli-
hood that users are who they say they are.

MFA
Multifactor authentication is a means of
user identification that requires more than
one method of authenication (username
and password, SMS code, email code, fin-
gerprint, etc.).

Glossary

NIST

The National Institute of Standards and
Technology, a unit of the US Commerce
Department. NIST promotes and main-
tains measurement standards and main-
tains active programs for encouraging and
assisting industry and science to develop
and use these standards.

OWASP
The Open Web Application Security
Project is a community that maintains
tools, documentation, and guides in the
field of web application security, and is
considered a forefront standard in the
space.

Plain text
Human-readable data that is supplied to
the encryption algorithm

Security-layering
The practice of using multiple security
mechanisms in a stacked approach to pro-
tect identity, data, and resources.

U2F
Universal 2nd Factor is an open authenti-
cation security standard that aims to
strethen/simplify two-factor authentica-
tion using specialized USB or NFC devi-
ces based on similar security technology
found in smart cards.

179

UAF less user experiences. This may be
The Universal Authentication Framework through voice commands, facial recogni-
protocol defines the process for password- tion, or another similar standard.

180 | Glossary

A
Access Tokens
client-side OAuth 2.0, 94
handling lifetime of, 75-78
OAuth 2.0, 70
Refresh Token to obtain, 81
resource requests, 78-80
token lifetime management, 76
UUIDs for, 70-72
account recovery mechanisms, 13
AES (Advanced Encryption Standard) block
cyphering
with CTR encryption mode, 164
with GCM authenticated encryption mode,
166-168
Alipay, face recognition software used by, 114
Am I Unique?, 101
Android
device fingerprinting, 55
fingerprint scanners, 112
permissions changes in version 6.0, 56
Smart Lock, 46
website associations, 106
application configuration, 177
asynchronous (asymmetric) cryptography,
148-158
advantages, 157
decrypting and signing a message, 157
disadvantages, 158
encrypting and signing a message, 156
generating keys with file storage, 153-156
generating keys without file storage, 151
implementation example, 151-157
key storage file types, 155

Index

use case, 149

uses of, 158

when keys should be generated and used,

151

working with mkdirp, 154

working with the filesystem, 154
ATMs, palm vein recognition for, 115
AuthCode, 75
authenticated encryption mode of operation,

162-164, 166-168
authentication

authorization vs., 57

defined, 58

multi-factor, 102, 116

n-factor, 102

one-time passwords, 103-106

OpenlD Connect, 67

two-factor, 102-112

UAF, 116

with OpenID Connect, 66
authentication mode of operation, 162-164
authorization

authentication vs., 57

defined, 58

endpoint modification with OpenID Con-

nect, 88

OAuth 2.0, 63-65

OpenlD Connect, 66
Authorization Codes

client-side OAuth 2.0, 92-95

endpoint implementation, 72-75

OAuth 2.0, 69

UUIDs for, 70-72
Authorization Endpoint, 88

181

Authy
two-factor authentication with, 106-112
when to delete users from, 111
when to register new user with, 108
when to send SMS verification code, 109
when to validate verification code, 110

B
banks, face recognition software used by, 114
Basic Client flow, 97
berypt, 12, 36
Bearer Token, 65
biometrics, 112-115
as username instead of password, 112
face recognition, 114
rating effectiveness of, 113-115
retina/iris scanning, 114
vein recognition, 115
Bitcoin, blockchain and, 118
bits of entropy, 48
BLE (Bluetooth low energy) devices, 149
block cipher modes of operation, 162-164
blockchain, 118
blowfish cypher, 36
Bluetooth devices, fingerprinting, 55
Bluetooth low energy (BLE) devices, 149
body-parser module, 144
browser fingerprinting, 47-52, 101
capturing browser details, 50
configurations more resistant to, 48
identifiable browser information, 49
JavaScript library for plug-in information,
51
plug-ins for, 51
screen resolution, 51
time zone, 51
user agent, 50
brute force attacks, 20-22

C

CA (certificate authority), 138

CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans
Apart)
creating with reCAPTCHA, 22-28
limiting use of, 22

CBC (Cipher Block Chaining) encryption
mode, 163

CCM (Counter with CBC-MAC) authenticated
encryption mode, 163
certificate authority (CA), 138
certificate file (CRT), 143
certificate signing request (CSR), 142
certificate validation, 139-141
domain validation, 139
extended validation, 140
organization validation, 139
self-signed certificates, 141-148
CFB (Cypher Feedback) encryption mode, 163
Chrome, XSS Auditor with, 128
Cipher Block Chaining (CBC) encryption
mode, 163
cipher.update(...), 165
Claims, 66
Client Credentials Grant, 96
client, OAuth 2.0, 92-96
adding OpenID Connect functionality to,
96-98
custom URL schemes, 95
OpenID Connect Basic flow, 97
storing tokens on, 94
using Authorization Codes, 92-95
client-side storage, cookies and, 120
CMAC (Cipher-based Message Authentication
Code), 163
concrete identity, 44
configuration, 177
cookie-signature module, 124
cookies, 94, 120
Counter (CTR) encryption mode (see CTR
encryption mode)
Counter with CBC-MAC (CCM) authenticated
encryption mode, 163
cross-site request forgery (CSRF) attacks (see
CSREF attacks)
cross-site scripting (XSS) (see XSS)
CRT (certificate) file, 143
crypto (Node package)
for AES with CTR encryption, 164-166
for AES with GCM authenticated encryp-
tion, 166-168
for random salt generation, 33
cryptography (see asynchronous cryptography)
(see synchronous cryptography)
CSR (certificate signing request), 142
CSREF (cross-site request forgery) attacks, 68,
130-132

182 | Index

csurf, 131

CTR (Counter) encryption mode, 163, 164
custom URL schemes, 95

Cypher Feedback (CFB) encryption mode, 163

D
data at rest, 17-19
(see also database)
data encryption (see encryption)
data federation, 18
data in motion, 17, 19
(see also data transmission security)
data transmission security, 137-169
asynchronous cryptography, 148-158
self-signed certificates, 141-148
SSL/TLS, 137-148
synchronous cryptography, 158-169
database
encryption for, 18
OAuth 2.0 server database setup, 69-86
device fingerprinting, 101
bluetooth paired devices, 55
phone/tablet, 54
diceware, 9
dictionary attacks, 28
and reverse lookup tables, 29
defined, 20
digital fingerprinting (see browser fingerprint-
ing) (see device fingerprinting)
Digits service, 45
DOM-based XSS, 125
domain validation (DV), 139
dotenv module, 145

E

e-commerce
concrete identity for, 44
shopping cart abandonment, 4
ECB (Electronic Codebook) encryption mode,
163
elections, concrete identity for, 45
Electronic Frontier Foundation (EFF), 47
email, for OTPs, 103
encryption
account recovery mechanisms, 13
determining need for, 13
good/bad algorithms for, 12
improper, 4
social engineering and, 13

encryption mode of operation, 162-164, 164
endpoints
Authorization Codes, 72-75
modification with OpenID Connect, 88
Token, 89
UserInfo, 66, 91
entropy
formula for calculating, 8
in human-selected passwords, 9-11
in password security, 7-11
in randomly selected passwords, 8
environment variables, 145
error codes, OAuth 2.0, 83
error handling, OAuth 2.0, 82-86
ES2015, 173
ES5,71
ES6, 173
Express
best practices for sessions, 124
creating new application, 68
csurf, 131
enabling session support for, 92-94
generator installation, 174
genid, 123
JSON/URL-encoded bodies in, 178
package.json file, 176
self-signed certificate with, 144
session handling by, 121-125
setup, 175
two-factor authentication with, 108
express-session module, 121-125
extended validation (EV), 140
eye, retina/iris scanning of, 114

F

Facebook, 44

facial recognition, 114

false-positives/false-rejection, for fingerprint
scanners, 113

federated identity, 43

FIDO (Fast Identity Online) Alliance, 116

fingerprinting (see browser fingerprinting) (see
device fingerprinting)

fingerprints, as security mechanism, 112-115

Firefox, XSS protection for, 128

fs package, 153-156

Fujitsu, palm vein recognition used by, 115

Index | 183

G
GCM (Galois/Counter mode) authenticated
encryption, 163, 166-168
genid, 123
geolocation, 52
(see also location-based tracking)
getTimezoneOffset() function, 51
GitHub repositories, for sample code, 171
Google
and OAuth 2.0, 63
reCAPTCHA, 22
Smart Lock, 46
Google+, 44
GPS coordinates, 46
Grant Types, OAuth 2.0, 65

H

hashing
and key stretching, 41
for password security, 12
recomputing hashes, 41
validating a password against a hashed
value, 40-41
hashing function
berypt, 36
choosing, for passwords, 35-41
PBKDEF2, 37
scrypt, 38
Hawk, 118
Helmet, 133
HTML5 Web Storage, 94
human, as weakest link in security chain, 5-7
human-selected passwords, entropy in, 9-11

I
ID Token, 98
basics, 86
for OpenID Connect, 67
schema, 87
identity
defined, 43
for enhancing user experience, 45
securing current standards for, 12-13
identity security
alternate methods of identification, 101-118
biometrics, 112-115
blockchain, 118
browser fingerprinting, 47-52, 101

concrete identity, 44
device fingerprinting, 54, 101
face recognition, 114
FIDO Alliance, 116
fundamentals of, 43-56
identity types, 43-45
location-based tracking, 52-54
n-factor authentication, 102
Oz, 117
rating effectiveness of, 113-114
retina/iris scanning, 114
social identity, 44
thin identity, 45
trust zones, 46-47
two-factor authentication, 102-112
U2F, 116
UAF, 116
upcoming standards, 115-118
vein recognition, 115
Implicit Client flow, 96
information entropy, 7
(see also entropy)
initialization vector, 159
Internet Explorer, XSS Auditor with, 128
iPhone fingerprint security mechanism, 112,
113
iris scanning, 114
Iron, 118
iterative algorithms, 153

J

Jade, 127

Japan, palm vein recognition in, 115
JavaScript library, 51

JSON Web Tokens, 87

K

key derivation function
berypt, 36
PBKDE?2, 37

key encryption, removing, for self-signed cer-
tificates, 143

key stretching, 41

Keychain, 6

krakenjs, 132

KW (Key Wrap) authenticated encryption
mode, 163

184 | Index

L

layered security, 119
location-based tracking, 52-54
login
authentication vs. authorization, 57
securing with OAuth 2 and OpenID Con-
nect, 57-99
Lusca, 132

M
malware, 21
Math.randomy(), 71
MD5, 13
MFA (see multi-factor authentication)
middleware, 68
mkdirp
installing, 153
working with, 154
modes of operation, 162-164
MongoDB, 69
multi-factor authentication (MFA), 102, 116

N

n-factor authentication, 102
NIST (National Institute of Standards and
Technology)
approved algorithms, 18
entropy measurement, 9
Node
crypto package (see crypto)
Helmet, 133
Lusca, 132

managing versions/alternative installations,

174
security modules, 132-134

XSS protection mechanism testing, 126-130

Node Security Project, 133
Node.js
environment setup, 173
Express server framework (see Express)

0
OAuth 1.0

about, 58-61

OAuth 2.0 vs., 63, 67
OAuth 2.0, 57-99

about, 61-63

Access Tokens, 70

authorization and authentication with
OpenlD Connect, 66
Authorization Codes, 69, 92-95
authorization endpoint, 72-75
authorization Grant Types, 65
authorization using Client Credentials
Grant, 96
authorization using Resource Owner Pass-
word Credentials Grant, 95
authorization with, 63-65
Bearer Token, 65
building a client for, 92-96
building a server for, 68-91
error codes, 83
error handling, 82-86
Express application for, 68
GitHub repository for sample code, 171
OAuth 1.0 vs., 63, 67
OpenID Connect functionality to client,
96-98
OpenID Connect functionality to server,
86-91
problems with, 62
Refresh Tokens, 70, 81
resource requests, 78-80
server database setup, 69-86
token lifetime, 75-78
UUID generation, 70-72
OAuth authorization flow, 58
OFB (Output Feedback) encryption mode, 163
offline cracking, 21
one-time passwords (OTP), 103-106
online identity, 43
(see also identity)
OpenlD Connect
adding functionality to OAuth 2.0 client,
96-98
adding functionality to server, 86-91
authorization and authentication with, 66
Authorization Endpoint modification, 88
Basic flow, 97
Claims, 66
GitHub repository for sample code, 171
ID Token, 67
ID Token schema, 87
request scope values, 97
session management with, 91
Token Endpoint modification, 89
user authentication, 67

Index | 185

UserInfo endpoint, 66

UserInfo endpoint modification, 91
organization validation (OV), 139
OTP (one-time passwords), 103-106
Output Feedback (OFB) encryption mode, 163
Oz, 117

P
package.json file, 176
padding, 160
palm vein recognition, 115
Panopticlick, 47, 101
password
biometrics as alternative to, 112
entropy in, 7-11
hashing function for, 35-41
human-selected, 9-11
in identification system context, 11
most popular, 3
one-time passwords, 103-106
peppering, 34
poor choices for, 3
randomly selected, 8
removing, for self-signed certificates, 143
salting, 32-34
secure hash generation for, 41
security questions, 14
validating against a hashed value, 40-41
password attacks
brute force attacks, 20-22
CAPTCHA creation with reCAPTCHA,
22-28
dictionary attacks, 28
peppering to prevent, 34
rainbow tables, 30-32
reverse lookup tables, 29
salting to prevent, 32-34
vectors, 20-32
password entropy, 7
(see also entropy)
password fatigue, 6
PayPal, Node and, 132
PBKDF?2 (Password-Based Key Derivation
Function 2), 12, 37
people, as weakest link in security chain, 5-7
peppering, 34
persistent XSS, 125
phishing, 20, 67
phone numbers, for thin identity, 45

plug-ins
browser fingerprinting, 51
JavaScript library for plug-in information,

51

POST requests
self-signed certificates, 145-146
two-factor authentication, 108-112
XSS protection, 126

private key, removing password/encryption for
self-signed certificates, 143

public/private key encryption (see asynchro-
nous cryptography)

R
rainbow tables, 21, 30-32
random salt, 33
randomBytes(...) method, 33
randomly-selected passwords, entropy in, 8
reCAPTCHA, 22-28
reduction function, 30
reflected XSS, 125
Refresh Tokens
client-side OAuth 2.0, 94
lifetime management, 75-78, 76
OAuth 2.0, 70
using, 81
rejectUnauthorized: false option, 148
Resource Owner Password Credentials Grant,
95
resource requests, OAuth 2.0, 78-80
response object, 82
retina scanning, 114
reverse lookup tables, 29
RSA (Rivest-Shamir-Adleman) key, 142
RSA Tokens, 103

S
salt/salting, 32-34
(see also hashing function)
appropriate length, 34
dictionary attack prevention, 29
peppering vs., 34
rainbow table attack prevention, 31
random generation, 33
reuse, 33
storage, 34
synchronous generation, 33
scope parameter, 88, 97
scope, of client, 74

186 | Index

screen resolution, for browser fingerprinting,
51
scrypt, 13, 38
Secure Hash Algorithm (see SHA entries)
Secure Sockets Layer (see SSL)
security
for existing systems, 12-13
humans as weakest link, 5-7
usability vs., 4
security layering, 119
security models, problems with current, 1-5
security modules
Helmet, 133
Lusca, 132
security questions, 14
self-signed certificates, 141-148
certificate setup, 142-144
error from using in production, 141
marking secure requests to server, 146-148
removing key encryption, 143
server setup, 144-148
server
adding OpenID Connect functionality to,
86-91
database setup for OAuth 2.0, 69-86
for OAuth 2.0, 68-91
secure requests with self-signed certificates,
146-148
setup for self-signed certificates, 144-146
session(s)
best practices for, 124
cookies, 120
defined, 121
Express and, 121-125
management with OpenID Connect, 91
securing, 119-125
types of, 120
SHA-1, 13
SHA-2, 13, 122
SHA-256, 122
Shannon Entropy, 9
ShoCard, 118
shopping cart abandonment, 4
short message service (SMS) verification code
(see SMS verification code)
single sign-on (SSO), 6
Slack
mobile sign-in flow, 104
security breach, 5

Smart Lock, 46
smart phones, device fingerprinting for, 54
SMS (short message service) verification code
sending, 109
validating, 110
social engineering
defined, 20
encryption and, 13
social identity, 44
social media, logins for, 58
SSL (Secure Sockets Layer), 137-148
certificate validation types and authorities,
139-141
domain validation, 139
extended validation, 140
organization validation, 139
self-signed certificates, 141-148
SSO (single sign-on), 6
synchronous (symmetric) cryptography,
158-169
advantages of, 168
AES with CTR encryption, 164
AES with GCM encryption, 166-168
block cipher modes of operation, 162-164
disadvantages of, 169
initialization vector, 159
padding, 160
uses of, 169

I

tablets, device fingerprinting for, 54
text messages, for OTPs, 103
thin identity, 45
three-legged OAuth, 59
time zone, for browser fingerprinting, 51
TLS (Transport Layer Security), 138
(see also SSL)
Token Endpoint, 89
tokens, 70
(see also specific tokens, e.g.: Access
Tokens)
endpoint modification with OpenID Con-
nect, 89
handling lifetime of, 75-78
OAuth 2.0 Access Tokens, 70
OAuth 2.0 Refresh Tokens, 70
UUIDs for OAuth 2.0, 70-72
TouchID, 113
Transport Layer Security (TLS), 138

Index | 187

(see also SSL)
trust zones, 46-47
Twilio, 106
Twitter
Digits service, 45
hybrid OAuth implementation, 63
two-factor authentication (2FA), 102-112
Authy, 106-112
one-time passwords, 103-106
two-legged OAuth, 59

U
U2F (Universal 2nd Factor) standard, 116
UAF (Universal Authentication Framework)
protocol, 116
ursa package, 152-156
usability, security vs., 4
user agent, browser details from, 50
user, as weakest link in security chain, 5-7
UserInfo endpoint, 66, 91
username
biometrics as alternative to, 112
in context of identification system, 11
UUIDs (Universal Unique Identifiers), 70-72

v

vein recognition, 115

W
web applications, hardening, 119-135
CSREF attacks, 130-132
handling XSS, 125-130
Node modules, 132-134
securing sessions, 119-125
various mitigation techniques, 134
WebKit, XSS Auditor and, 128

X

X-XSS-Protection header, 129

XSS (cross-site scripting)
circumventing XSS Auditor, 128-130
handling, 125-130
protection mechanism testing, 126-130
token storage, 94
types of, 125

XSS Auditor, 128-130

Y

Yahoo!, one-time-only passwords for, 45

188 | Index

About the Authors

Jonathan LeBlanc is an Emmy award-winning software engineer, technical author,
and the Head of Global Developer Advocacy for PayPal. Jonathan specializes in iden-
tity, authorization, and security; hardware-to-web communications; and data mining
techniques—all with a focus towards human and device interconnectivity.

Tim Messerschmidt is Program Manager of Developer Relations at Google, leading
the Germany, Austria, and Switzerland (DACH) region. Prior to joining Google, he
headed up PayPal’s and Braintree’s Developer Evangelism teams across Europe, Mid-
dle East, and Africa (EMEA) and the Asia-Pacific (APAC) region.

Colophon

The fish on the cover of Identity and Data Security for Web Development is a long-tail
seamoth (Pegasus volitans) also known as the batfish, sea dragon, or dragonfish. They
are covered with bony plates arranged in concentric rings and their pectoral fins are
large and winglike. Seamoths live in shallow coastal waters with beds of seagrass or
seaweed and sandy or silty bottoms.

Most seamoths measure 5 inches (13 cm) but the long-tail seamoth measures 7 inches
(18 cm). Despite their name, the large fin muscles of a seamoth are not strong enough
for flapping flight. The fins are most useful to change a predator’s view, quickly
expanding to add width and depth to a seemingly nondescript fish. The mouth is sit-
uated on the underside of a long snout, which indicates seamoths are bottom feeders;
feasting on minuscule animals that live among the grains of sand. They are poor
swimmers and do not travel far, yet are widely dispersed across oceans because their
larvae are carried thousands of miles by ocean currents as part of the plankton. The
seamoths have dispersed themselves throughout the coastal waters of the southern
Pacific and Indian Oceans all the way to South Africa. They cannot survive the cold
barrier in the sea off the Cape of Good Hope, so they have yet to reach the Atlantic
Ocean.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW Type-
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Jonathan
	Tim

	Chapter 1. Introduction
	The Problems with Current Security Models
	Poor Password Choices
	Security over Usability
	Improper Data Encryption

	The Weakest Link: Human Beings
	Single Sign-on

	Understanding Entropy in Password Security
	Entropy in Randomly Selected Passwords
	Entropy in Human-Selected Passwords

	Breaking Down System Usage of a Username and Password
	Securing Our Current Standards for Identity
	Good and Bad Security Algorithms

	What Data Should Be Protected?
	Account Recovery Mechanisms and Social Engineering
	The Problem with Security Questions

	Next Up

	Chapter 2. Password Encryption, Hashing, and Salting
	Data at Rest Versus Data in Motion
	Data at Rest
	Data in Motion

	Password Attack Vectors
	Brute-Force Attack
	Creating a CAPTCHA with reCAPTCHA
	Dictionary Attacks
	Reverse Lookup Tables
	Rainbow Tables

	Salting
	Generating a Random Salt
	Salt Reuse
	Salt Length
	Where to Store the Salt

	Peppering
	Choosing the Right Password Hashing Function
	bcrypt
	PBKDF2
	scrypt
	Validating a Password Against a Hashed Value

	Key Stretching
	Recomputing Hashes
	Next Steps

	Chapter 3. Identity Security Fundamentals
	Understanding Various Identity Types
	Social Identity
	Concrete Identity
	Thin Identity

	Enhancing User Experience by Utilizing Identity
	Introducing Trust Zones
	Browser Fingerprinting
	Configurations More Resistant to Browser Fingerprinting
	Identifiable Browser Information
	Capturing Browser Details

	Location-Based Tracking
	Device Fingerprinting (Phone/Tablet)
	Device Fingerprinting (Bluetooth Paired Devices)
	Implementing Identity

	Chapter 4. Securing the Login with OAuth 2 and OpenID Connect
	The Difference Between Authentication and Authorization
	Authentication
	Authorization

	What Are OAuth and OpenID Connect?
	Introducing OAuth 2.0
	Handling Authorization with OAuth 2.0
	Using the Bearer Token
	Authorization and Authentication with OpenID Connect

	Security Considerations Between OAuth 2 and OAuth 1.0a
	Building an OAuth 2.0 Server
	Creating the Express Application
	Setting Up Our Server’s Database
	Generating Authorization Codes and Tokens
	The Authorization Endpoint
	Handling a Token’s Lifetime
	Handling Resource Requests
	Using Refresh Tokens
	Handling Errors

	Adding OpenID Connect Functionality to the Server
	The ID Token Schema
	Modifying the Authorization Endpoint
	Adjusting the Token Endpoint
	The UserInfo Endpoint
	Session Management with OpenID Connect

	Building an OAuth 2 Client
	Using Authorization Codes
	Authorization Using Resource Owner Credentials or Client Credentials

	Adding OpenID Connect Functionality to the Client
	The OpenID Connect Basic Flow

	Beyond OAuth 2.0 and OpenID Connect

	Chapter 5. Alternate Methods of Identification
	Device and Browser Fingerprinting
	Two-Factor Authentication and n-Factor Authentication
	n-Factor Authentication
	One-Time Passwords
	Implementing Two-Factor Authentication with Authy

	Biometrics as Username Instead of Password
	How to Rate Biometric Effectiveness
	Face Recognition
	Retina and Iris Scanning
	Vein Recognition

	Upcoming Standards
	FIDO Alliance
	Oz
	The Blockchain
	Wrap Up

	Chapter 6. Hardening Web Applications
	Securing Sessions
	Types of Sessions
	How Express Handles Sessions

	Handling XSS
	The Three Types of XSS Attacks
	Testing XSS Protection Mechanisms
	Conclusion

	CSRF Attacks
	Handling CSRF with csurf

	Valuable Resources for Node
	Lusca
	Helmet
	Node Security Project

	Other Mitigation Techniques
	Our Findings

	Chapter 7. Data Transmission Security
	SSL/TLS
	Certificate Validation Types and Authorities
	Creating Your Own Self-Signed Certificate for Testing

	Asyncronous Cryptography
	Use Case
	Implementation Example
	Advantages, Disadvantages, and Uses of Aynchronous Cryptography

	Synchronous Cryptography
	Initialization Vector
	Padding
	Block Cipher Modes of Operation
	Using AES with CTR Encryption Mode
	Using AES with with GCM Authenticated Encryption Mode
	Advantages, Disadvantages, and Uses of Synchronous Cryptography

	Appendix A. GitHub Repositories
	Appendix B. Technical Preconditions and Requirements
	On ES6/ES2015
	Setting Up Your Node.js Environment
	Managing Node Versions or Alternative Installations
	Installing the Express Generator
	Setting Up Express
	Creating and Maintaining Your package.json File
	Application Configuration
	Working with JSON/URL-Encoded Bodies in Express

	Glossary
	Index
	About the Authors
	Colophon

